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ABSTRACT: We present a unified theory of control synthesis for generalized
linear (i.e. descriptor) systems using constant-ratio proportional and
derivative (CRPD) feedback. Our framework includes the theory of static
state feedback and output feedback for regular state-space systems as a

special case. The main elements of this thedry include (1) a covering of

the space of all systems, both regular and singular, by a family of open and

dense subsets indexed by the unit circle; (2) a group of transformations
which may be viewed as symmetries of the cover; (3) an admissible class of
feedback transformations on each subset which is specifically adapted to
that subset. We obtain a general procedure of control synthesis of CRPD
feedback for generalized linear systems which uses the symmetry
transformations to systematically reduce each synthesis problem to an
ordinary static state feedback (or output feedback) synthesis problem for a
corresponding regular system. We apply this approach to obtain natural
generalizations of the Disturbance Decoupling Theorem, the Pole Assignment

Theorem, and the Brunovsky Classification Theorem.
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" I. INTRODUGTION

In recent years, there has been considerable interest in generalized
linear systems-i.e. state-space models of the form
E x(t) = A x(t) + B u(t)
with the matrix E possibly singular. We represent this system by the

matrix triple (E,A,B) and refer to it as a regular system if E 1is

nonsingular and as a singular system if E 1is singular. There are

extensive applications of singular systems in areas which include large-

scale systems, singularly perturbed systems, circuit theory, and economic

models [1] [2] [3] [4]. There has been considerable success in extending

many results to singular systems. These include controllability and

‘observability [5] [6] [26], pole placement by state feedback [7] [8],

optimal regulation [9] [10] [21], and singular control [11]. (This 1list
of references is intended to be indicative rather than comprehensive.)
For many applications, it is useful to have a theory of control
which treats regular systems and singular systems together in a unified
way, rather than separately. One such application is singular perturbations.

In sin ular perturbations, singular systems represent idealized models

which are obtained by neglecting various smail parameters in more complex
models. For example, a singular system may be obtained by neglecting the
inductance in a model for an armature-controlled DC-motor [27]. 1In these

as well as in various other applications, the singular system represents an
approximation for a ''mearby" system which itself may or may not be singular.
Consequently, it is important to develop control techniques which are vobust
ig ghe sense that they are effective whdn 2 LS only Known tiiac che actual

sosfem 1s inoa suitable aneizhborhood of oo wiven singular syscen, ard mav
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or may not itself be singular. In other words, the techniques should work

well on open sets in the space of all systems, both regular and singular.

Many of the existing techniques for the control of singular systems
depend on the Weierstrass decomposition of the system into finite-frequency
and infinite-frequency subsystems. (See e.g. [28] [7].) Since the
dimension cf the finite-frequency subsystem is equal to the degree of
det(sE-A), these techniques generally require that this degree be known
precisely. However, deg det(sE-A) is not constant on any open neighborhood
of a singular system. Consequently, control methods based on the Weierstrass
decomposition may encounter difficulties in applications of the type
described in thepreceding paragraph.

Given the goal of developing control methodswhich work well on open
sets in the space of systems, it might be tempting to try to develop
techniques which work well for all systems, both regular and singular.

For example, one may attempt to extend directly to all systems the well-
developed theory of state feedback for regular systems. However, a
common situation in mathematics is the existence of nice results which
apply to almost all systems -—- i.e. to a generic subset. To extend

the results to the remaining non-generic systems may be very difficult,

and the results obtained may be extremely complicated and pathological.

For example, if static state feedback is applied to a singular system,
the resulting closed-lcop system may fail to have unique solutions. This
is a pathology which is never encountered when state feedback is applied

to regular systems.



In our approach, we view the set of regular systems as an open and
dense subset of the space of generalized systems, and we view control tools
such as static state feedback and static output feedback as techniques
appropriate for this subset. We do not attempt to apply these techniques
directly to the complement of this open and dense subset-i.e. to the
singular systems. Instead, as the first element of the theory, we define a

family of open and dense subsets {20) each of which is isomorphic to the

space of regular systems, and with the property that this family covers the
space of all generalized systems. 20 consists of those systems which do
not have an eigenvalue at the point ctnf on the extended real axis. In
particular, 20 is the set of regular systems-i.e. those systems which do
not have an eigenvalue at infinity. Since each subset Zg is Opeﬁ, a given
generalized system is an interior point of each subset to which it belongs.
Thus, if a system (E,A,B) belongs to Lg, the control techniques to be
developed for fg apply not only to (E,A,B), but to all those systems in an
open neighborhood of (E,A,B).

The second element of the theory is a symmetry group of the covering
{26). This consists of a group of transformations {R¢) with the property
that R, maps 29 isomorphically onto Zg+¢.

The third element of the theory is an admissible feedback on each

subset 20 which is specifically adapted to that subset. On the subset

Zg, we consider feedback of the form
u = F(cosfx - sindx) + v

as well as the analogous output feedback. Thus, the parameter § which



indexes the subset 29 specifies the constant ratio of the state to

derivative in the feedback. We refer to this as constant-ratio proportional

and derivative (CRPD) feedback. If #=0, this feedback is ordinary static

state feedback. Hence, the theory of state feedback for regular systems is
included as a special case of the theory we present.

For each fixed value of §, we will see that the theory of the feedback
u = F(cosfx - sinfx) + v for the open and dense subset Zg is completely
analogous to the theory of ordinary state feedback for the subset ZO of
regular systems. Thus, instead of attempting to extend the theory of state
feedback from the subset XO of regular systems to the space of all
generalized systems, we cover the space of generalized systems with a family

of subsets {20) each isomorphic to XO’ and define on 20 a type of

feedback which is “natural” for 20 in the same way that ordinary state
feedback is "natural" for 20.
It turns out that there is a very special "intertwining" relationship

between the symmetry transformations (R,)}) and the CRPD feedback

¢
transformations. By exploiting this property, we obtain a general procedure
of control synthesis of CRPD feedback for generalized linear systems which

systematically reduces each synthesis problem to an ordinary static state

feedback (or output feedback) synthesis problem for a corresponding regular

system. We emphasize that the regular system is not obtained by the
Weierstrass decomposition of the system, but rather by an appropriate
symmetry transformation R¢, which may be viewed as a system rotation.

We illustrate the effectiveness of this approach by deriving direct
generalizations of three major results in the theory of static state
feedback for regular systems. These are the Disturbance Decoupling Theoresm
{12} [13] [14], the Pole Assignment Tﬁgorem [15}, and the Brunovsky

Classification Theorem [19]. {r addition to its thioretical usetulness,



the transformation of feedback compensation problems for generalized
systems to feedback compensation problems for regular systems is of
interest from the computational viewpoint since numerical techniques for
finding compensators for regular state~space systems are much more fully
developed than for generalized linear systems.

Proportional and derivative feedback of the formu = F} x + Fp X + v
has been applied to singular systems by Langenhop [29] and by Mukundan-
Dayawansa [30]. The specialized form of proportional and derivative
feedback which we refer to as CRPD feedback was introduced as a design tool
for singular systems by Christodoulou [31], where it was applied to input-
output decoupling, and independently by Zhou [17] (also Zhou-Shayman-Tarn

[18]), where it was applied to a variety of control synthesis problems.

I1. OPEN COVERING OF THE SPACE OF GENERALIZED SYSTEMS

For the most part, we consider time-invariant generalized linear

systems of the form
E x(t) = A x(t) + B u(t) (1)

where E, A, and B are real matrices of dimensions nxn, nxn, and nxm
respectively, and E may or may not be singular. When appropriate, we will
augment (1) with a disturbance input and/or an output equation. We
represent the system (1) by the matrix triple (E,A,B). If E is
nonsingular, (1) is equivalent (via left multiplication by E—l) to the
ordinary state-space system

1A x(t) + E'IB u(t) (2)

1

x(t) = E~

which we represent by the matrix triple (I, E A, E'lB) or by the matrix

pair (E'lA, E 1By

Let )(n,m) denote the space of all matrix triples

E,A,B) e ™" x[Rnxn XIRnxm. Let Y{(n,m) denote the open and dense subset
p

A

of i(n,m) detined by
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A

Y(n,m) & ((E,A,B) €. Y(n,m): det(sE-A) Z=0).
The condition that the polynomial det(sE-A) 1is not identically zero
guarantees uniqueness for the solutions of (1). In the literature, the

systems belonging to X(n,m) are generally referred to as regular systems.

However, we will reserve the word "regular"” to refer to a generalized linear
system (E,A,B) for which E 1is nonsingular. We refer to the systems in
Z(n,m) as the admissible systems, and to the condition det(sE-A)z=0 as
the admissibility assumption. If E 1is singular, we refer to (E,A,B) as a

singular system.

We now define a covering of the space Z(n,m) of admissible systems.
For each f4eR,let za(n,m) denote the subset of X(n,m) given by
Y,(n,m) 2 ((E,A,B) € J(n,m): det(cosdE - singA) = 0).
The proof of the following result is a direct consequence of this
definition.

Proposition 1:

(a) Zo(n,m) is an open and dense subset of Z(n,m).
(®) Yy (m) = Y (n,m).

() Lmm = U Tam.
{0, x)

Remark 1: By virtue of the periodicity 20+r(n,m) - Xg(n,m), it is natural
to regard {Zg(n,m): e{0,n)} as a covering of Z(n,m) by open and dense
subsets indexed by the points on a circle.

Remark 2: If =0, Zo(n,m) consists of those triples (E,A,B) for which E
is nonsingular-i.e. the regular systems. Thus, the regular systems

constitute one of the open and dense subsets in the covering {Zg(n,m)}.

111, SYMMETRY GROUP OF THE COVERING

Next, we define a group of symmetries of the cover (zg(n,m):

9=10,x)}-transformations which mar those subsets into each other. For euch

el

~

~ . - Tty - N st N
$2 R,daliine a mapping KéA Jan,o o {n.my by



A .
B ) R¢(E,A,B) = (cos¢E + singa, -singE + cosgA, B).
" If (E,A,B) = R¢(E,A,B), then

EH _ [cos¢1 sin¢I] [E} | .

-singl cos¢l A

A A

Thus, (E, A) is obtained from (E,A) via rotation by an angle 4. The

following result is an immediate consequence of (3).

Proposition 2:

A

(a) R, is the identity transformation on Y.(n,m).

(b) R o R = R .
¢ ¢+ 9

Proposition 2 implies that the map of R x Z(n,m) into Z(n,m) given by

(¢,(E,A,B)) » R,(E,A,B) defines a group action of the additive group of

EN

¢

real numbers on the manifold ) (n,m).

The following result describes the relationship of the transformations
(R¢) to the covering {Z¢(n,m)} of the space Z(n,m) of admissible
systems. The proof is straightforward.

Proposition 3:

(a) R¢(Z(n,m)) = )(n,m).
(b) R¢(Za(n,m)) - Zo+¢(n,m)-

Remark 3: Since Rél - R_¢,

{Zg(n,m)} are mutually isomorphic. Since Zo(n,m) is the space of all

it follows from Proposition 3 that the subsets

regular systems, each set Xﬁ(n,m) is isomorphic to the space of regular

systems.

We now examine how the system elgenvalues transform when the system
undergoes a rotatien. Tt will be usefuk to recall the identification of the

extended complex plane, ¢ U (=}, with the complex orojective space ¢P(1).
2 S
Define an equivalercs velation ~ on [7-1{0,0%1 whereby (s,,s,) =
N

(37,52) if and orly LE there axists o Lwnlero Jant.ex numbar A suceh zbha”
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(sl,sz) - A(sl,sz). (Equivalently, ¢P(1l) can be regarded as the set of all
lines through the origin in ¢?) If (51,52) € ¢2-((0,0)}, we denote by

[(31’32)] the corresponding element of (¢P(1l)-i.e. the equivalence class

containing (51’52)' We refer to (31,52) as the homogeneous coordinates

of [(51,52)]. If (51’52) ~ (51’52)’ then sl/s2 - 51/52. Consequently, we

can identify @¢P(1) with the extended complex plane via the map

[(sl,sz)] - 51/52' If 52-0, then [(sl,sz)] is identified with the point
at infinity in the complex plane.

Let (E,A,B) be an admissible system-i.e. (E,A,B) € Z(n,m). We say that
[(31’52)] € ¢P(l) 1is a system eigenvalue of (E,A,B) if and only if

A

det(le-szA)-O. Note that if [(sl,sz)]-[(sl,sz)], then det(le-szA)=O if

A

and only if det(slﬁ-szA)=O. Thus, the system eigenvalues are well-defined.

Remark 4: Since [(s], sp)] is identified with the extended complex number
a i si/sy, we will also refer to a as a system eigenvalue provided
det(s1E-spA) = 0. If s9 # 0, then a is a (finite) complex number and is a
system eigenvalue if and only if det(aE-A) = 0. This coincides with the
usual definition of a finite eigenvalue of a generalized linear system. If
sy = 0, then ¢ = » and is a system eigenvalue if and only if det E = 0. We
will define the multiplicity of the eigenvalue o = ® to be n - deg det(sE~A).
Thus, the multiplicity of ¢ = « is equal to the dimension of the infinite-
frequency subsystem in the Weierstrass decomposition, and does not depend
on the Jordan structure of the nilpotent operator associated with that
subsystem.

The preceding definition of eigenvalues at infinity is unusual in that

it does not distinguish between dynamic infinite-frequency (i.e. impulsive)

modes and nondynamic constraints. [t is more common to define the multiplicity
of o = @ to be the number of independent impulsive modes, namely rank E -
dog det(sE-A).  (See e.z. [1i.) Bv thls definition, the system nns a toral

i o E A e s (=t i o AmEiairoa) e - e Py et s b
aamne T o elZenvaliies (Dol LYo Ard tmiiplire ) o7nny Koo rank . I A AR VRS AN
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by our definition, the system has n eigenvalues, independent of rank E.

The usual definition of infinite eigenvalues is well-suited for many
purposes. Our unusual definition of infinite eigenvalues has two sources
of motivation. For applications which require the type of robustness
discussed in Section I, it is useful to base the control techniques on data
which depends continuously on the system parameters. Since rank E is
discontinuous at any singular system, the usual definition of infinite
eigenvalues has the consequence that the total number of system eigenvalues
is discontinuous. The second motivation stems from our use of system
rotations in control synthesis. The behavior of the eigenvalues under system
rotation is crucial to this approach. It is important that the total number
of system eigenvalues be invariant under system rotation. Since rank E is
not invariant under rotation, the usual definition of eigenvalues at infinity

does not yield this property.

Remark 5: It follows immediately from the definition of },(n,m) that a
system (E,A,B) belongs to Xg(n,m) if and only if it has no system
eigenvalue at the point [(cosf, sind)] of ¢P(l), or equivalently at the
point ctnf of the extended complex plane. In particular, Zo(n,m) (the
set of all regular systems) consists of those systems which have no

eigenvalues at infinity.

The following result shows how the eigenvalues of a generalized linear
system change under a system rotation. If the system is rotated by ¢, the
homogeneous coordinates of an eigenvalue undergo a rotation of -¢. If the
eigenvalue is regarded as an extended complex number, then it undergoes a

linear fractional transformation.
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A A

-Proposition 4: Let (E,A,B) € Z(n,m), and let (E,A,B) 4 R¢(E,A,B). Then

A

[(31’32)] is an eigenvalue of (E,A,B) if and only if [(sl,sz)] is an

eigenvalue of (E,A,B), where
s cos¢ -sin S
1 A 1
E I I @
S, sing cosé Sy .
Equivalently, the extended complex number a 1is an eigenvalue of (E,A,B) if

and only if the extended complex number a 1is an eigenvalue of (E,A,B),

where

» A (cosdla - singd (5
@ (sing)a + cosé )

Proof: Using the definition of R

¢’
A A A A

le - szA - le - szA, (6)

it is trivial to verify that

which establishes the first assertion. The second assertion follows from
the first by setting a & sl/s2 and « 4 51/52' |
Let (E,A,B) be an admissible éystem, and let R(E,A,B) denote its

controllable subspace. R(E,A,B) consists of those states in ij which are

reachable in positive time from the initial state x(0-) 4 0. If R(E,A,B)
—IRn, then (E,A,B) is called controllable [5]. The following result was
proved by Cobb {19]. (For a simplified proof, see also [17], [18]). If P
is a linear transformation on IR" and S 1is a subspace of Rr", <P|S>
denotes the subspace S + P(S) + ... + Pnnl(S)-i.e. the smallest P-invariant
subspace containing S.

Lemma 1 [19]: If (E,A,B) € }(n,m) and o 1is a real number satisfying
det(aE-A)»#0, then

R(E,A,B) = <(aE-A>‘1E|1m(aE-A)‘1B>.

Corollary 1: The generalized system (E,A,B) is controllable if and only if

-1 -1 .
the regular system (L, {(aE-A) "E, (aE-A) B) is controllable.
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Using Lemma 1, we can prove the following result.
Lemma 2: Let (E,A,B) € J,(n,m), and let (E,A,B) 4 R_,(E,A,B). Then

R(E,A,B) = R(E,A,B).

Proof: If sind=0, the assertion holds trivially, so we may assume sinf»0.

A A

Since (E,A,B) is a regular system, we have
R(E,A,B) = <E 'a|Im E"1B>. (7

let « 4 cosf/sinf. Since (E,A,B) € Zﬂ(n,m), det(aE-A)»0. By Lemma 1,
R(E,A,B) = <(aE-A)'1ElIm(aE-A)_1B>. . (8)

It is trivial to verify that

Im E'1B = Im (aE-A)-lB. (9)

Letting P 4 (aE-A)_lE and Q 4 E—lA, it is straightforward to show that

Q = -al + (1 + a2)p

P-—2 1+ Q. (10)
1+e l+a
Thus, P and Q have the same invariant subspaces. Consequently, it
follows from (9) that
<Q|Im E lp> - <P|Im(aE-A)‘lB>. (11)

Then the assertion of the lemma follows from (7), (8), and (11).H

Corollary 2: (E,A,B) € za(n,m) is controllable if and only if the regular
system R_G(E,A,B) is controllable.
Remark 6: Let (E,A,B) € J,(n,m), and let (E,A,B) 2 R_,(E,A,B) =
(cosfE - sinfA, sinfE + cosfA, B). Since the regular system (%,;,B) is
controllable if and only if

rani[E Y8, 5 tme s ta™ e ey - a, (12)

it follows from Corollary ? that the generalized linear system (E,A,B) is

controllable if and only if the rank condition (12) holds. If §=0, then
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. (12) specializes to give the usual rank test for the controllability of a

regular system.

We now show that the controllable subspace is invariant under system

rotation.
Proposition 5: Let (E,A,B) € J,(n,m), and let (E,A,B) 4 R, (E,A,B) e

20+¢(n,m). Then
R(E,A,B) = R(E,A,B).
Proof: Applying Lemma 2 twice, we have R(E,A,B) = R(R_(0+¢)(E,A,B)) -

R(R_e(R_¢(E,;,B))) - R(R_,(E,A,B)) - R(E,A,B). |

Corollary 3: Let (E,A,B) € )(n,m). Then (E,A,B) is controllable if and

only if R¢(E,A,B) is controllable.

We now consider the state equation (1) together with a linear output
equation
y(t) = C x(t) (13)

where C 1is a real pxn matrix. We represent the system (1), (13) by the

A

matrix quadruple (E,A,B,C). In place of ) (n,m), Y(n,m), and Xa(n,m), we
define sets TI'(n,m,p), I'(n,m,p), and Fe(n,m,p) as follows: Let T(n,m,p)

denote the space of all matrix quadruples (E,A,B,C) e R™" xR™? xR X

~

prnf Let TI'(n,m,p) denote the open and dense subset of TI'(n,m,p) defined
by

[(n,m,p) 4 {(E,A,B,C) € ;(n,m,p): det(sE-A) =E0).
Let Fe(n,m,p) denote the subset of [I'(n,m,p) given by

r,(n,m,p) 2 ((E,A,B,C) € [(n,m,p): det (cosdE-sinfA) = 0).
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.In analogy to Proposition 1, (Fo(n,m,p): fe{0,x)} 1is a cover of TI(n,m,p)
by open and dense subsets. Abusing notation slightly, we use the symbol R¢
to denote the mapping of ;(n,m,p) given by
R¢(E,A,B,C) 2 (cos¢E+singA, -singE+cosdA, B, C).

With this redefinition of R¢, analogues of Propositions 2 and 3 are
immediately obtained by replacing i(n,m), Z(n,m), and Zg(n,m) with
E(n,m,p), I'(n,m,p), and Fo(n,m,p) respectively.

We now examine the relationship between system rotation and
observability. We adopt the definitions of observability and unobservable

subspace suggested by Cobb [6]. Let (E,A,B,C) be an admissible system, and

let N(E,A,B,C) denote its unobservable subspace. N(E,A,B,C) consists of

those states X, such that if x(0-) = Xg» then y(0-) = 0 and the free
response of the system is identically zero on [0, ). (E,A,B,C) |is
observable if N(E,A,B,C) = 0, or equivalently, if knowledge of y(0-)
together with the input and output on [0, ») 1is sufficient to determine
x(0-).

The following result was proved in [17], [18].
Lemma 3: If (E,A,B,C) € I'(n,m,p) and a 1is a real number satisfying

det(aE-A)=0, then

n-1 1
N(E,A,B,C) = [} ker C[(aE-A) "E]
1=0

i

Corollary 4: The generalized system (E,A,B,C) is observable if and only if

the regular system (I,(aE—A)-lE, (aE-A)—lB, C) 1is observable.

Using Lemma 3, we can prove the following result.

Lemma 4: Let (E,A,B,C) & Fg(n,m,p), and let (E,A,B,C) 2 R_B(E,A,B,C), Then

AA

N(E,A,B,C) = N(E,A,BC).

Proocf: If sind=0, the assertion holds trivially, so we may assume sin#=0.
N
AN
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n-1 ~ A

N(E,A,B,C) = [) ker G(E Ay, (14)
i-0
the largest E = A-invariant subspace contained in ker C. Let
a 4 cosf/singd. Since (E,A,B,C) € Fo(n,m,p), det(aE-A)»0. By Lemma 3,
n-1 1i
N(E,A,B,C) = {] ker C[(aE-A) "E]", (15)
i=0

the largest (aE-A)-lE-invariant subspace contained in ker C. From the
proof of Lemma 2, we know that E-lA and (aE-A)-lE have the same
invariant subspaces. Thus, it follows from (14), (15) that

N(E,A,B,C) = N(E,A,B,C). IR

Corollary 5: (E,A,B,C) € Po(n,m,p) is observable if and only if the
regular system R_H(E,A,B,C) is observable.

Remark 7: Let (E,A,B,C) € Fa(n,m,p), and let (E,A,B,C) 4 R-g(E,A,B,C) =

(cosfE-sindA,sinfE+cosfA,B,C). Since the regular system (E,A,B,C) is

observable if and only if

C A A
C(E'lA)

rank . - n, (16)
C(EulA)n_l

it follows from Corollary 5 that the generalized linear system (E,A,B,C) is
observable if and only if the rank condition (16) holds. If #=0, (16)
specializes to the usual rank test for the observability of a regular

system.

We now show that the unobservable subspace is invariant under system

rotation.

Proposition 6: Let (E,A,B,C) & Iy(n,m,p), and let (E,A,B,C) 2 R¢(E,A,B,C) €

’ ™
F9+¢\n,m,p). Then
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N(E,A,B,C) = N(E,A,B,C).
A A AA

Proof: Applying Lemma 4 twice, . we have N(E,A,B,C) = N(R_(0+¢)(E,A,B,C)) -

N(R_,(E,A,B,C)) = N(E,A,B,C). W

Corollary 6: Let (E,A,B,C) € I'(n,m,p). Then (E,A,B,C) is observable if and

only if R,(E,A,B,C) is observable.

¢

IV. CONSTANT-RATIO PROPORTIONAL AND DERIVATIVE FEEDBACK

Without question, static state feedback (and static output feedback)
are extremely useful tools in control design for regular linear systems.
Various results in the theory of control by state feedback have been
extended to singular systems in recent years. Cobb [7] has investigated the
effects of applying state feedback u = Fx + v to the system (E,A,B), and P
has studied pole placement problems. He has shown that under certain
conditions, state feedback can be used to eliminate impulses in the system.

State feedback has also been used by Pandolfi [20] in connection with
stabilization.

In spite of these and other useful results for the control of singular
systems using state feedback, there is evidence that state feedback is less
natural as a tool for singular systems than it is as a tool for regular
systems. For example, if (E,A,B) is a regular system (i.e. E nonsingular)
to which the state feedback u = Fx + v is applied, the resulting closed
loop system is (E, A+BF, B), which is again a regular system. In
particular, the closed-loop system is an admissible system-i.e.
det(sE- (A+BF)) not identically zero. On the other hand, if the open loop
system (E,A,B) is admissible but singular, the closed loop system

(E, A+BF, B) may fail to be admissible. Thus, admissibility of regular
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. systems is preserved by state feedback, but admissibility of singular

systems is not preserved.

Recall that (za(n,m): g€[0,7)} 1is a covering of the space Z(n,m)

of admissible generalized linear systems by open and dense subsets. Our
approach 1s to define for each subset Ip(n,m) an allowable class of feedback
transformations which is natural for Ig(n,m) in the same way that state
feedback transformations are natural for the subset Ip(n,m) of regular systems.
Thus, the type of feedback which may be applied to an admissible system

(E,A,B) depends on which of the subsets {Ze(n,m)} the system (E,A,B) belongs.

SN

Specifically, we will allow feedback of the form

u = F(cosfx - sinfx) + v (17)
to be applied to the systems belonging to the subset zg(n,m). In (17), ¢
is fixed, while the mxn gain matrix F 1is arbitrary, and v represents a
new external input. The fixed parameter # specifies the ratio of state to
derivative in the feedback law. Consequently, we refer to (17) as constant-

ratio proportional and derivative (CRPD) state feedback.

Remark 8: 1In the case where #=0, the subset Ze(n,m) is precisely the set
zo(n,m) of regular systems, while the feedback (17) is ordinary state
feedback. Thus, the theory we present includes the theory of state feedback
for regular systems as a special case. Note however that if (E,A,B) is a
singular system, then (E,A,B) ¢ zo(n,m), so ordinary state feedback is not
an allowable transformation. Thus, the CRPD feedback applied to a singular

system will always contain some contribution of the derivactive.
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Remark 9: Although we .focus primarily on CRPD state feedback, it is

equally natural to consider output feedback from this viewpoint. The CRPD
‘ state feedback (17) is replaced by the CRPD output feedback

u = F(cosfy - sinB&) + v (18)

which is applied to those systems (E,A,B,C) belonging to the subset

Fe(n,m,p).

Remark 10: In certain applications, derivatives of states or output§ can be
measured directly, without requiring differentiation. Examples include rate
gyros and accelerometers [32]. 1In applications where this is not the case,
CRPD feedback can be regarded as an idealized compensation which can be
approximated by a proper compensator obtained by adding a high~frequency pole.
This is analogous to the use of lead compensation to approximate pure

proportional and derivative feedback in classical control [33].

The following result shows that just as the set zo(n,m) of regular
systems is invariant under state feedback, the set Zg(n,m) is invariant

under the CRPD feedback (17).

AA

Proposition 7: Let (E,A,B) € Xg(n,m), and let (E,A,B) denote the closed

loop system resulting from the CRPD feedback (17). Then (E,A,B) € Ze(n,m).
Proof: (E,A,B' = (E + sindBF, A + cosfBF, B), so cosfE - sinfA = cosfE -

A A

sinfA. Hence, (E,A,B) € Ze(n,m) if and only if (E,A,B) € Xg(n,m). R

We have defined a different class of allowable feedback transformations
for each subset in the covering (Ze(n,m): fe{0,n)}. Since the rotation
map R; is an isomorphism of Zg(n,m) onto Za+¢(n,m) (Proposition 3 and

Remark 3), one might hope that Rﬁ would relate the allowable feedback

rransformations on (n,m) with those on Zg(n,m), The result which

¢
“9+e

rollows shows that this is indeed the gase. It is a fundamental result
. -

wnich provides the basis for a systematic procedure of control synthesis for

sen~raiized Ticeac svstewms by CRPD feedhack. Lat gg(F): Zg(n,m)ﬂzg(n,m>
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- denote the transformation on zg(n,m) induced by the feedback law (17). 1In

other words,

g,(F)(E,A,B) = (E + sinfBF, A + cosfBF, B). (19)

Fundamental Temma of CRPD Feedback: The following is a commutative diagram:

g, (F)
5, (n,m) ’ >3, (n,m)

Ygyg (M) Y04 (0m)
) Byrg (D) o+

I.e. R¢ o go(F) - g€+¢(F) o R¢.

Proof: By direct verification. W

The following corollary will prove crucial.

Corollary 7: The following is a commutative diagram:
gy (F)

Zo(n,m) > J,(n,m)

R, R 4

Ya(n,m) >)(n,m)
° g0 (F) 0

A

Remark 11: An analogous result holds for CRPD output feedback. Let ge(F)
denote the transformation on Fo(n,m,p) induced by the output fe-dback law
(18), where F 1is a pxm matrix. In other words,

gy (F) (E,A,B,C) & (E+sindBFC, AtcosfBFC, B, C). (20)

Then R¢ o gg(F) = g0+¢(F) o R¢.

Corollary 7 is of critical importance because it permits us to deduce
properties of generalized systems under CRPD feedback from known properties
of regular systems under ordinary state feedback. To illustrate thls, we

prove the invariance of the controllable subspace under CRPD state feedback,
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- and the invariance of both the controllable subspace and the unobservable
subspace under CRPD output feedback.

Proposition 8:

AA

(a) If (E,A,B) € Zo(n,m) and (E,A,B) 4 gg(F)(E,A,B), then R(E,A,B)
~ R(E,A,B).

(b) 1f (E,A,B,C) € T,(n,mp) and (EB,C) & ;o(F)(E,A,B,C), then
R(E,A,B) = R(E,A,B) and N(E,A,B,C) = N(E,A,B,C).
Proof: (é) We have R(g,;,B) - R(R_ﬂ(é,;,B)) - R(gO(F) o RQH(E,A,B)) -
R(R_a(E,A,B)) - R(E,A,B), where we have used successively Proposition 5, the
Fundamental Lemma (Corollary 7), the invariance of the controllable subspace
of a regular system under ordinary state feedback [{22], and Proposition 5
again.

(b) Since the CRPD output feedback (18) can be regarded as a
special case of the CRPD state feedback (17), it follows from (a) that
R(E,A,B) = R(E,A,B). VWe have N(E,A,B,C) = N(R_B(E,K,B,C)) - N(éO(F) o
R_G(E,A,B,C)) - N(R_e(E,A,B,C)) = N(E,A,B,C), where we have used
successively Proposition 6, the Fundamental Lemma (Remark 11}, the
invariance of the unobservable subspace of a regular system under ordinary

outy t feedback [22], and Proposition 6 again. B

Part (a) of Proposition 8 appears in a somewhat different form in [17],

[18}.

V. CONTROIL, SYNTHESIS PROCEDURE

In this section, we give a systematic procedure for control syuthesis

using constant ratio proportional and devivative feedback. The key feature

of this procedure is that a synthesis problem for a generalized system using

CRPD feedback is solv2d by solving a syntnesis problem for a corresponding
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" regular system using ordinary state (or output) feedback. Thus, all of the

available techniques for state (or output) feedback synthesis of regular
systems can be applied to the CRPD feedback synthesis of generalized

systems. This procedure in no way uses the Weierstrass decomposition of the

generalized system. The corresponding regular system is obtained from the

given generalized system by a system rotation.

Corollary 7 to the Fundamental Lemma provides the basis for the

following control synthesis procedure:

1. Rotate the system. Given a control synthesis problem for an

admissible system (E,A,B), choose &8 such that (E,A,B) € Zo(n,m).
Rotate by -4 to obtain the regular system (EO,AO,B) 4 R_g(E,A,B)
€ Zo(n,m).

2. Rotate the Derformance specifications. Determine what properties a

A

regular system (EO O,B) € Zo(n m) must have in order for the

A A

system (E,A B) =R (EO O,B) € Zg(n,m) to satisfy the given
performance specifications of the synthesis problem.

3. Solve a state feedback synthesis problem for the regular system

LEO*AO B). Choose a gain matrix F so that the closed loop

regular system, call it (EO,AO,B), which is obtaiir zd from
(EO O,B) via the state feedback law u = Fx+v, satisfies the
rotated performance specifications determined in Step 2. Note that

(Eg.8g.B) = 85(F) (Eg.Aq,B).

4. TImplement the CRPD feedback law u=F(cost-sin0i)+v for the

original ceneralized svstem (¥ A,B8) using the gain F determined
in Sten 4. Let (E,A,B) denote the resulting closed loop system

g (F)(8,A,B). By Corollarv 7 of the Fundamental Lemma, (E,A,B) =

-~

39 o gO(F) o R_Q(H,A,B) = RJQEQ,AO,B).- From Steps 2 and 3, it
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A A

follows that the closed loop system (E,A,B) satisfies the given

performance specifications of the control synthesis problem.
Remark 12: It is clear that the solution of a given CRPD feedback synthesis
problem by the above procedure requires two results. It requires the
solution of a corresponding state feedback synthesis problem for regular
systems (for Step 3) together with knowledge of how the relevant system
properties (e.g. pole location) are transformed by system rotation (for Step
2). The former results are generally known (see e.g [22]), while we have

presented some of the latter results in Section III (Propositions 4,5,6).

Remark 13: Since a given admissible system (E,A,B) belongs to Za(n,m) for

all but finitely many 4 € [0O,n), it is possible to implement the above

control synthesis procedure with §# regarded as an additional design i
parameter to be determined. This flexibility in the choice of 4 1is useful

in certain synthesisvproblems such as disturbance decoupling. This will be

illustrated below.

Remark 14: By virtue of Remark 11, there is an analogous procedure for
control synthesis using CRPD output feedback in which the synthesis problem
is solved by solving a corresponding ordinary o.itput feedback synthesis

problem for a corresponding regular system.

A. Disturbance Decoupling Problem

We will use the control synthesis procedure above to solve the
disturbance decoupling problem for a generalized linear system using CRPD
feedback. The disturbance decoupling problem refers to a control system

E x(t) = Ax(t) + Bu(t) + Dw(t)

v(tg) = Cx(t) ~ (21)
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- where w(t) E]Rr is a disturbance input which is not directly measurable.
The disturbance decoupling problem is to find feedback (of a specified type)
such that the output of the closed loop system is independent of the
disturbance input. This is equivalent to requiring that, for the closed
loop system, the controllable subspace from the disturbance input is

contained in ker C.

In the special case where (21) is a regular system (i.e. E nonsingular)
and the feedback is required to be state feedback, we have the following
well known result of Basile-Marro [12] [13] and Wonham-Morse [14]. (See

e.g. [22].)

Theorem 1 (Basile-Marro, Wonham-Morse): Let (E,A,B,C,D) be a regular
system. Let V" be the largest subspace V which is contained in ker C
and satisfies A(V) € E(V) + Im B. The disturbance decoupling problem is
solvable via state feedback, u=Fx+v, if and only if Im D C E(V*).

We represent the system (21) by the matrix quintuple (E,A,B,C,D). In

place of }(n,m), Y(n,m), and Ze(n,m), we define sets ;(n,m,p,r),
A(n,m,p,r), and Ag(n,m,p,r) as follows: Let ;(n,m,p,r) denote the space
of all matrix quintuples (E,A,B,C,D) e R™™ x RFT x R x RPF™ x R™*F,

Let A(n,m,p,r) & {(E,A,B,C,D) € g(n,m,p,:): det(sE-A) #& 0}, and let
Ag(n'm’p’r) A ((E,A,B,C,D) € A(n,m,p,xr): det(coslE-sinfA) = 0}. In analogy
to Proposition 1, {Ae(n,m,p,r): g € {0,m)}) is a cover of A(n,m,p,r) by
open and dense subsets. Abusing notation slightly, we use the symbol R¢

. . A
tc denote the mapping of A(n,m,p,r) given by R¢(E,A,B,C,D) = (cos¢E +

singA, -singE + cosda,B,C,D), and the symbol gH(F) to denote the mapping

A

[

of Ae(n,m,p,r) glven by gg(F)(E,A,B,C,D) (E+sinfB¥, A + cosfBF,B,C,D).

With these redefinitions of R¢ and g;(F), we again have R~0 o) gH(F) =
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.gO(F) o R_a, as in Corollary 7. Consequently, we have the obvious analogue

of the control synthesis procedure.

We now derive a generalization of Theorem 1 by following step-by-step

the synthesis procedure:
1. Given (E,A,B,C,D) € A(n,m,p,r), choose & such that (E,A,B,C,D) €

A
Ag(n,m,p,r). Let (EO,AO,B,C,D) = R_a(E,A,B,C,D).

A A

2. Let (EyAyB,C,D) €Aj(n,mp,r) and let (E,A,B,C,D) 2

A A

Ra(EO’AO’B’C'D)' (E,A,B,C,D) 1is disturbance decoupled if and only

if R(E,A,D) C ker C. Applying Proposition 5, this is equivalent

A A

to the condition R(EO,AO,D) C ker C on the regular system

A A

(EO,AO,B,C,D).
3. We need to choose a state feedback gain matrix F so that the
A A %
closed loop regular system (EO,AO,B,C,D) A gO(F)(EO,AO,B,C,D)
satisfies the rotated performance specifications-i.e. such that
R(EO,AO,D) C ker C.

4. If the gain matrix F required in Step 3 exists, then the CRPD
feedback law u = F(cos@x—sinﬁi) + v solves the disturbance

decoupling problem for the system (E,A,B,C,D).

From the above procedure, it fo.lows that the disturbance decoupling
problem for (E,A,B,C,D) € Ae(n,m,p,r) is solvable using the CRPD state
feedback (17) if and only if the disturbance decoupling problem for the
regular system (EO,AO,B,C,D) is solvable using ordinary state feedback.
Applying Theorem 1, we immediately obtain the following result.

Theorem 2: Let (E,A,B,C,D) = Ag(n,m,p,r), and let V; be the largest

subspace V which is contained in ker C and satisfies

{sinfE + cosia)(V) < (cosfFE-sinfA)(V) + Im B.
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The disturbance decoupling problem is solvable using CRPD state feedback
u = F(cos&x—sinﬁﬁ) + v if and only if

*
Im D C (cosﬂE-sinHA)(Vo).

Remark 15: 1In the special case where §=0, Ao(n,m,p,r) consists of the
regular systems, and the CRPD feedback u = F(cosfx-sinfx)+v coincides with
ordinary state feedback. Thus, Theorem 1 is recovered as a special case of
Theorem 2. The thesis of Zhou [17] and paper of Zhou-Shayman-Tarn [18])
contain a result which can be shown to be equivalent to Theorem 2 provided
6»#0. However, since this result does not apply in the case #=0, it does
not offer the insight which Theorem 2 provides-namely that the well known
result of Basile-Marro and Wonham-Morse (Theorem 1) is a special case of a
broader result (Theorem 2) which applies to all admissible systems,

regardless of whether or not they are regular.

Theorem 2 is of interest for regular systems as well as for singular
systems. If (E,A,B,C,D) is a regular system, then by definition we have
(E,A,B,C,D) € Ao(n,m,p,r). However, it is also true that (E,A,B,C,D) €
Ag(n,m,p,r) for all but finitely many values of the parameter §.
Consequently, it is permissible to apply the CRPD feedback (17) to the
system (E,A,B,C,D) choosing a nonzero value of #. The following example

shows that it i1s possible to use CRPD feedback to disturbance decouple

regular systems which cannot be decoupled using ordinary state feedback-i.e.

*
for which the condition Im D C E(V ) of Theorem 1 is not satisfied.

Example 1: Consider the regular system (E,A,B,C,D), where

~afr ool oo 1 a [0 a1 o i
I R N Y Py
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- Since Im D 1is not contained in E(ker C), it folléws immediately from
Theorem 1 that this system cannot be disturbance decoupled using ordinary
state feedback.

Regarding 4 as a parameter to be determined, we note that it follows
from Theorem 2 that a necessary condition for the solvability of the
decoupling problem using the CRPD feedback (17) is

Im D C (cosfE - sinbA) (ker C) (22)
It is easily verified that (22) is satisfied if and only if tanfd = 1/2.
Using this choice for # and following the control synthesis procedure, the
CRPD feedback gain F is obtained by solving a decoupling problem for the
regular system R_o(E,A,B,C,D). One obtains F=[§ /5-6] with 6
arbitrary. Using any such F, the CRPD feedback law (17) decouples the

disturbance. For any choice of § except 2/5, the resulting closed loop

system is a regular system.

B. Pole Placement

We will use the control synthesis procedure above to extend to
generalized systems with CRPD state feedback the following well known result
concerning pole pl .cement for regular systems with ordinary state feedback.

Theorem 3 ([15]1): Let (E,A,B) be a regular system. (E,A,B) is controllable

if and only if for every self-conjugate set © of n complex numbers,
there exists state feedback u = Fx+v such that ( 1is the set of system

eigenvalues of the resulting closed loop system (E, A+BF, B).

We have the following generalization of Theorem 3.
Theorep . Let (E,A,B) € Xg(n,m). (E,A,B) is controllable if and only if
for everv self-conjugate set 0 of n numbers from ¢ U {=} - {ctnf},
rhere exists CRPD state feedback u = F(cos&x—sin9§)+v such that O 1is the

Lat of swvazem eigenvalues of the resulting closed loop system gg(F)(E,A,B).
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- Proof: We prove this result by following the control synthesis procedure

given above. (1) Rotate to obtain the regular system (EO,AO,B) a
A A A A A A A
R_,(E,A,B). (2) Let (Ejy,A,,B) € Zo(n,m) and let (E,A,B) = R,(E;,A;,B).

A A

It follows from Proposition 4 that (E,A,B) has system eigenvalues € if and

only if the system eigenvalues of (EO,AO,B) are

qQ A ( (cosfla + sind,
0 -'-(sinf)a + cosf’

a € (1}.

(3) Consider the problem of choosing a state feedback gain matrix F so
that the closed loop regular system (EO,RO,B) 4 gO(F)(Eo,AO,B) satisfies
the rotated performance specifications-i.e. such that (EO’;O’B) has system
eigenvalues Uy Since O 1is an arbitrary self-conjugate set of n
numbers from ¢ U {»=} - {ctn §), QO is an arbitrary self-conjugate set of
n numbers from ¢. By Theorem 3, this problem is solwvable for all such OO
if and only if the regular system (EO,AO,B) is controllable. By Proposition
5, the controllability of (EO,AO,B) is equivalent to the controllability of
(E,A,B). (4) Since the solvability of the problem in Step (3) is equivalent
to the solvability of the original problem of choosing F so that the set

of system eigenvalues of gg(F)(E,A,B) is 0, it follows that this problem

is solvable for arbitrary  if and only if (E,A,B) is controllable. B

Remark 16: . heorem 4 shows that if (E,A,B) is a controllable system in
zg(n,m), then the CRPD state feedback (17) can be used to assign the system
eigenvalues arbitrarily (subject to self-conjugacy) in the Riemann sphere
(i.e. the extended complex plane) with the single point {ctn #} deleted.
Since Eg(n,m) is invariant under the CRPD feedback (17) {Proposition 7),
and Xg(n,m) consists of those systems which do not have an eigenvalue at
ctnd, the CRPD feedback (17) can never place an eigenvalue at ctnf. In the
special case where J=0, this means that’the eigenvalues of a controllable

regular system can be assigned arbitrarily by ordinary state feedback in the



27
Riemann sphere with the point at infinity deleted-i.e. in the complex plane.
Thus, the pole placement result for Zo(n,m) using CRPD feedback with a
given nonzero value of § is completely analogous to the well known result
(Theorem 3) for regular systems using ordinary state feedback. The only
difference is that the point ctnd which is deleted from the Riemann sphere

no longer happens to be the point at infinity.

Remark 17: Let ¢ be fixed, and let Hg(s) denote the mapping of the extended
complex plane into itself defined by the linear fractional transformation

_ (cosB)s + sinb
Ho(s) = (-sinb)s + cosb’

Let (E,A,B), (Ep, Ag, B)s Q) Q0 be as in the proof of Theorem 4. It follows
from the proof of Theorem 4 that the problem of finding CRPD feedback to
shift the eigenvalues of (E,A,B) to Q is equivalent to the problem of finding
ordinary state feedback to shift the eigenvalues of the regular system

(Ep> Ap, B) to Qp = Hg(Q).

For closed-loop stability, @ will be a subset of the open left half-plane.
However, the left half-plane is not invariant under the mapping Hg.
Consequently, Qn will generally not be a subset of the left half-plane. This
is an u isual feature of the state feedback synthesis problem to be solved for
(Egs Ay, 8). Qp will be a subset of the image of the open left half-plane under
Hy. There are four cases to consider. If 6 = 0, the region is trivially the
left half-plane, while if 6 = #, the region is the right half-plane. If
O<ti<r/2, the rezion is the interior of the circle of radius l/lsinZO] and center
at —vtnl? oo che real axis, while 1€ ©/2<8<w, the region is the exterior of

N o 7 ~ 1
CNls Clrc e,

C. Choosing the Ratlo Parameter ©

2ive s svsren {F,0,8) belongs to y(n,n) for all but finitelv-many values

Sarie eoamener v, Lonsequent iy, if CRPD feedback u = Flcosu x o~ 5in? %) + v
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(or the analogous output feedback) is applied to the system, almost any value
of 6 may be chosen. We briefly discuss some of the issues involved in the
choice of 6.

For an application such as disturbance decoupling, the additional
flexibility offered by the choice of 6 may be required to make the problem

solvable. This is apparent from Theorem 2, and is illustrated by Example 1.

where the disturbance decoupling problem is solvable if and only if tanf = 1/2.
For such applications, problem-solvability dictates the choice of 0.

The role of the parameter 6 in pole-placement is quite different from
its role in diéturbance decoupling. From a theoretical viewpoint, 6 has a
minimal effect on the solvability of the pole-assignment problem. If (E,A,B)
is controllable, Theorem 4 implies that CRPD feedback of the form u = F(cosb x
sin® %) + v can place the system eigenvalues anywhere in the extended complex
plane except at the point ctnf. Thus, changing the value of 6 has no effect
on pole-assignability except to change the position of the lone forbidden
eigenvalue location.

However, from a practical viewpoint, the choice of 6 is more complex.
Ba ic to the control synthesis procedure is the rotation of (E,A,B) e Zg(n,m)
to che regular system (Eg, Ao B) & R_g(E,A,B) € Zo(n,m). If 8 is such that
(E,A,B) is near the boundary of Zg(n,m), then (Eg> Ag> B) will be near the
boundary of Zp(n,m). In other words, (Eg, Ag, B) will be a nearly-singular

regular system. This is undesirable from a computational viewpoint since

Step 3 of the synthesis procedure requires the solution of a feedback synthesis

problem Lor (Egs A B).

Ywample 2t (‘onsider the svystem (£,A,8) where



(E,A,B) ¢ Ze(n,m) for any nonzero 6. Then

-sin® cosb cosb sin®
0 -5ino 0 cosB

The ordinary state-space pair associated with the regular system (Eg, Ag, B)

is (Ejlag, Eg'B) with

—ctné -csclf —ctnbcscHd

Eglag = Eg'B =
0 -ctnb -csch

If 6 is nearly 0, then (Eg, Ag, B) is nearly-singular, and the entries of
(Eg'Ags Eg'B) approach infinity.

To avoid the computational difficulties associated with the solution of
synthesis problems for nearly-singular regular systems, it is desirable to
choose 6 such that (E,A,B) is well within the interior of Zg(m,m). In other
words, the open—loop system eigenvalues should not be too close to the point
ctnd.

Different complications may arise if a desired closed-loop eigenvalue
is near the point ctnB. If this is the case, the state feedback gain F
determined in Step 3 of the synthesis procedure must t.: such that the closed-
loop regular system g(F)(Eg, Ag, B) has an eigenvalue near infinity.
Consequently, F must be high-gain.

Example 3: let (E,A,B) be as in Example 2. Suppose that the desired closed-

loop clgenvalues are both at the point -l. [n the resulting CRPD feedback law

u = F{cosd w - sind %) + v, the entries or [ are found to be
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-5inb £, = -2sin® - cos®H
1+sin26 2 7 T+sin26 .

£y =

_As 0+31/4 (i.e. as ctnb>-1), the entries of F go to infinity.

The use of high-gain feedback in the presence of unmodeled high-~frequency
dynamics can result in instability of the closed-loop system. This potential
problem can be avoided by choosing 6 such that ctn® is not too close to any
of the desired closed-loop eigenvalues.

Other issues which are relevant to the choice of 6 are sensor noise, plant
parameter variations, and load disturbances which cannot be completely decouplcd.
To minimize the effect of measurement noise, it is natural to choose 8 to be
very small. In this case, CRPD feedback can be viewed as ordinary proportional
feedback perturbed by the addition of a very small derivative term. However,
if (E,A,B) is singular, then there is an open-loop eigenvalue at infinity,
which will be close to ctnb 1if 6 is chosen to be small. Consequently, there
must be a trade-off bétween the objective of choosing 6 to minimize the effect
of sensor noise and choosing ® so that (Ep, Ag, B) is not nearly-singular.

The implications of plant parameter variations and load disturbances for the
choice of 6 in CRPD feedback remain to be investigated. It is known [34] that
derivative feedback can be useful for the reduction of sensitivity in reguler

systems.

VI. FEEDBACK CLASSIFICATION

In this section, we generalize Brunovsky'’s well known classification of
controllable regular systems under the action of the state feedback group
[16] (23] ([24] [22]. We begin by reviewing the definition of the state
feedback group.

Consider the ordinary state-space model

%(t) = A x(t) + B u(¥®) (23)
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where (A,B) €IR™T xIR™™®. e consider three types of elementafy
transformations on the system (23). They are (1) change of basis in the
state-space, x=Pz with P a nonsingular nxn matrix; (2) change of basis
in the input space, u=Qv with Q a nonsingular mxm matrix; (3) state

feedback, u=Fx+v. These operations transform the matrix pair (A,B) as

follows:
a,8) -~ (2 lap, plB) (24-1)
(A,B) - (A, BQ) (24-2)
(A,B) =  (A+BF, B). (24-3)

The transformation group generated by (24-1), (24-2), (24-3) can be
conveniently represented In the following way. Recall that a right group
action of a group G on a set X 1is a mapping 7n: X X G - X satisfying

the conditions

n(x, e) = x

n(x, gng) = n(n(x, gl)’ 82)
where e denotes the identity element of G. If x € X, the orbit of x,
denoted xG, consists of the subset (n(x,g): geG) of X.

Let C(n,m) denote the space of all matrix pairs (A,B) e R™X! x g
which are controllable. ©Let H(n,m) denote the group consisting of all
nonsingular (n+m) x (n+m) matrices of the form

P 0
F Q
with P mxn, F mxn, Q mxm. We refer to C(n,m) as the space of

controllable pairs and to H(n,m) as the state feedback pgroup. Define a

right group action of H{n,m) on C(n,m) by
’_ - - -
n(a8), |5 8}) 5 (p larsr e, 2 lBQ). (25)

The transformations (24-1), (24-2), (24-3) correspond to the special cases

)

of (23) where £=0 &and Q=I, P=I and ¥=0, P=I and Q=1 respectively.
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(Al’Bl) and (A2,B2) are
In other words, it

It is of interest to know when two systems

related by a transformation in the state feedback group.
acting on C(n,m)

is useful to have a classification of the orbits of the group action (25).

m integer

This is provided by Brunovsky's Theorem [16].
Theorem 5 (Brunovsky): The distinct orbits of H(n,m)
are in one-to-one correspondence with the partitions of n into
parts, n = ny + n, + + no, 0y > n, > ... =2 n 2 0. On each orbit,
there is exactly one pair (AC,BC) of the form
3 0 0 o ]
0 1 a 0
A =0 0 ? ~
c
0 0 J
n
g r
(;nl 0 0 0 0
0 e, 0
B - 2
[ed
0 0 e 0 0
n
— r —J
where r a rank B, Jk is a kxk matrix of the form
0 1 O 0
0 0 1
. 1
0

is a k-dimensional column vector in which the only nonzero

wnlch is 1.
cem 5 as the Brunovskvy canonical

and ek
componeant 1s the last,
We wiil refer to the vair (AC,BC) in Fheo
form associated with rhe partition (n,,...,nm) of n Note that
L B N
nzaeso  walle o R ¢! are 72ro
r+l’ B

s
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In order to generalize the preceding result, we begin by considering
four types of elementary transformations applied to the generalized linear
system (1). They are (1) change of basis in the state-space, x=Pz with P
a nonsingular mnxn matrix; (2) change of basis in the input space, u=Qv
with Q a nonsingular mxm matrix; (3) proportional and derivative

feedback, u = F,x - F X + v; (4) left multiplication by a nonsingular nxn

1 2

matrix R'l. These operations transform the matrix triple (E,A,B) as

follows:
(E,A,B) -~ (P_lEP, P'lAP, P'IB) (26-1)
(E,A,B) » (E, A, BQ) (26-2)
(E,A,B) » (E+BF,, A+BF;, B) (26-3)
(E,a,B) » R IE, "'a, R71B). (26-4)

The transformation group generated by (26-1), (26-2), (26-3), (26-4)
can be conveniently represented in the following way. Let G(n,m) denote

the group consisting of all nonsingular (3n+m) x (3n+m) matrices of the

form
R 0 ©0 O
0 P O O
0O 0 p O
0 F2 Fl Q
with R and P nxn, Q mxm, and Fl’FZ mxn. We refer to G(n,m) as the

proportional and derivative state feedback group. Define a right group

A

action of G(nm,m) on JY(n,m) by
R 0 0 0
0O » 0 0O
MEAB, |y o p o) 2 (rERsTTBR,R7APRTEE R T1BQ) (27)
0 F, F ?J

The transformations (26-1), (26-2), (26-3), (26-4) correspond to the special

cases of {27) where R=P, Fwan-O, and “QwI; R=P=-I and Fl—FQ—O; R=P-1 and

0=1; P=1, F,=F,=0,

and Q=1 respactively.
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Since we are not interested in proportional and derivative feedback in
its full generality, we are interested in‘those subgroups of G(n,m)
obtained by requiring the proportional and derivative feedback u—le-F2i+v
to be the CRPD state feedback (17). For each 4, let Ga(n,m) denote the

subgroup of G(n,m) consisting of all nonsingular (3n+m) x (3n+m)

matrices of the form

R 0 0] 0
0 P 0 0
0 0 P 0
0 sinfF cosdF Q (28)

We refer to the family of subgroups (Gg(n,m): (0, )} as the CRPD state

feedback groups.

Remark 18: Let Z(4) denote the (3n+m) x (3n+m) matrix

0 0
cos¢l singl
-singl cos¢l
0 0

OO Or
~HO OO

It is easily verified that
-1
Gg+¢(n,m) = 2(¢) G,(n,m) Z(4) ~.
Hence, the CRPD state feedback groups (Go(n,m): [0, n)} are a one-
parameter family of conjugate subgroups of the general linear group

GL(3n+m R), each of which is contained in G(n,m).

A

Let gﬁ(R,P,Q,F) denote the transformation on X(n,m) induced by the
matrix (28) in Gg(n,m). In other words,
gg(R,P,Q,F)(E,A,B) & (R‘lhmsineg‘lmv,R‘lAP+coseR'IBF,R‘13Q). (29)
Proposition 9: Zg(n,m) is invariant under the action of Ge(n,m).

Vrpnf: [t follows from (29) that
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gg(R,P,Q,F) - gg(I,I,Q,O) ga(I,I,I,F) go(I,P,I;O) gg(R,I,I,O). (30)
"By Proposition 7, Zg(n,m) is invariant under ga(I,I,I,F), and it is
trivial to check that zg(n,m) is invariant underx go(I,I,Q,O),
gg(I,P,I,O), and g,(R,I,1,0). Hence, it follows from (30) that Za(n,m) is

invariant under gg(R,P,Q,F).||

Proposition 10: The following is a commutative diagram:

g,(R,P,Q,F)
L (mom) d —2 Ly(n,m)

-l I

20+¢(n,m) Zo+¢(n»m)

Bgag (R B QF)
I.e. Ryjo gy (R.B.Q.F) = g, ,(R,P,Q,F) o Ry.

Proof: By direct verification. IR

Remark 19: Since go(I,I,I,F) = go(F), the Fundamental Lemma of CRPD

Feedback is a special case of Proposition 10.

Let Ce(n,m) denote the set of those systems (E,A,B) € Eo(n,m) which

are controllable.

Proposition 11: Cg(n,m) is invariant under the action of Ge(n,m).

A A A

Proof: Let (E,A,B) € Ca(n,m) and let (E,A,B) A ge(R,P,Q,F)(E,A,B). By
Proposition 9, (E,A,B) € Xg(n,m)' so it suffices to show that (E,A,3) is

A A A

A A
controllable. Let (EO,AO,BO) = R_H(E,A,B) and let (EO,AO,BO) =

A A A

R O(E,A,B). gince controllability is invariant under system rotation

(Proposition 5, (EO,AO,BO) ig controllable, and it suffices to show that
(EO,AO,BO) is controllable.

A ~

By Proposition 10, (EO,AO,BO) = gO(R,P,Q,F)(EO,AO,BO). This implies

that

Ail/\ A——ll\ ~ . o
(Eq'Ag. Eg Bg) = BB, Ay, Bp oY [g 8]>. (31)

¢
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-1 -1 .
0 AO’ EO BO) is a

Since the regular system (EO,AO,BO) is controllable, (E
L -1 -1
controllable pair-i.e. (EO AO, EO BO) € C(n,m). Since C(n,m) 1is invariant
under the action of the state feedback group H(n,m), (31) implies that
/\-1/\ A_l/\ A A A
(EO AO, EO BO) € C(n,m). Hence, the regular system (EO,AO,BO) is

controllable. I

By virtue of Proposition 11, we can restrict the action of Go(n,m) on

~

Z(n,m) to the invariant subset Co(n,m). For the remainder of this
section, we study the action of the CRPD state feedback group Gg(n,m) on
the subset Ce(n,m) consisting of the controllable systems in Za(n,m).
Remark 20: In the special case where #=0, Ca(n,m) consists of the
controllable regular systems, and Ga(n,m) can be regarded as the state

feedback group H(n,m) augmented by left-multiplication.

We now classify the systems in Cg(n,m) relative to the action of the
CRPD state feedback group Gg(n,m).
Theorem 6: The distinct orbits of Go(n,m) acting on Ce(n,m) are in one-
to-one correspondence with the partitions of n into m integer parts, n
1 2 T m m

=n, +n, + +tn,nx2n, 2 ...=20 > 0. On each orbit, there is
’A)

exactly one triple (E,A,B) of the form

E = cosfl + sinfa
A = -sinfI + cosHAC
B =3B

c

where (AC,BC) is the Brunovsky canonical form associated with the

parcition (nl,A..,nm).
A
Prootf: let (E,A,B) & Cg(n,m), and let (EO,AO,BO) = R_g(E,A,B). Let
(A ,8 3y denote the Brunovsky canonical form of the pair (Eé AO’ EélBO) €
C Z
Cim,mYy. By Thevrem 5, there exist P, Q.& guch that
-l.-1 -1.-1 -1.-1
(A_.B) = (P Eg AP + PTUELTBOF, PTUESTBNQ).

2 P, Lo Follows chat
{
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gO(R,P,Q,F)(EO,AO,BO) = (I’Ac’Bc)'

Applying R, to both sides of this equation and invoking Proposition 10

| gives
ga(R,P,Q,F)(E,A,B)'- (cosfI + sin&Ac, -sinfI + cosoAc, Bc)
as required.
It remains to show that the form (E,A,B) is unique. Let (Ac'Bc) be a

pair in Brunovsky canonical form, and suppose there exist R,P,Q,F such that
ga(R,P,Q,F)(E,A,B) - RG(I’Ac’Bc)

It follows from Proposition 10 that
gO(R,P,Q,F)(EO,AO,BO) - (I’Ac’Bc)'

This implies that R=E.P and

0

-1 -1 P O

From the uniqueness part of Theorem 5, we conclude that (Ac’Bc) is unique.

Since (E,A,B) = RH(I'AC’BC)’ it follows that (E,A,B) is unique.

Remark 21: The canonical form for the action of Gg(n,m) on Ca(n,m)

given in Theorem 6 is a rotated version of Brunovsky canonical form. 1In the
special case where §=0, the canonical form is (I’Ac’Bc) with (AC,BC) in
Brunovsky canonical form. Thus, Brunovsky's result (Theorem 5) can be
rezarded as a special case of Theorem 6, although there is a slight
¢ifference in form which is due to the fact that Co(n,m) consists of
matrix triples whereas C(n,m) consists of matrix pairs, and Go(n,m)

consists of H(n,m) augmented by left-multiplication.

Example 4: Let n=5, m=3, and (nl,nz,n3) = (3,2,0). The canonical form for
the orbit associated with the partition (nl,nz,n3) {(of the action of

G,{n,m) on C,{n.,m)) is

g

NS ARG L VAL S A OA IO CAE A IO EIEI € AT AL A0 I LU 2 08 At e kTR R e e s
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cosf sind 0 0 0
0 cosf sind 0 0
E = 0 0 cosf 0 0
0 0 0 cosé sing
0 0 0 0 cosé
-sind cosf 0 0 0
0 -siné cosf 0 0
A = 0 0 -sing 0 0
0 0 0 -sind cosf
0 0 0 0 -siné
O 0 0]
0 0 0
B=]1 0 o0
00 0
0 1 Q_

If n: XX G- X 1is a group action, the stabilizer of an element
X € X 1is the subgroup of all geG such that g5(x,g)=x. For the action
(25) of the state feedback group H(n,m) on the space of controllable pairs
C(n,m), Brockett [24] has described the structure of the stabilizer
subgroups. In particular, he has shown that if (Ac’Bc) is the Brunovsky
canonical form corresponding to the partition (nl,...,nm) of n, and if r
denotes the rank of Bc’ then the dimension of the stabilizer of (AC,BC)

is equal to

(n+m) (m-r) + 2 (ni+1—n.). (32)
{i,j: n.zn.) J

We now describe additional properties of the action of the CRPD state

feedback group Gg(n,m) on the space Cg(n,m) of controllable systems in

Zg(n,m). Let Orbg(nl,‘..,nm) denote the orbit of this action
corresponding to the partition (nl,...,nm) of n. In other words, if
(AC,S‘) denotes the Brunovsky canonical form corresponding to (nl,...,nm),

then Orbg(nl,...,nm) is the orbit of the triple Rﬁ(I’Ac’Bc) € Ce(n,m).



39

Theorem 7:
(a) R¢ maps Orbe(nl,...,nm) isomorphically onto 0rb0+¢(nl,...,nm).
(b) The dimension of Orbg(nl,...,nm) is 2n2 + (n+m)r -

(ni+l-n.) (where r 1is the rank of B ).
{(i,j3: niZn.) J ¢

J
Proof: Let (E,A,B) € Cg(n,m), and let (Ac’Bc) denote the Brunovsky
canonical form corresponding to (nl,...,nm). It follows from Proposition

10 that gO(R,P,Q,F) o R_g(E,A,B) = (I,AC,BC) if and only if

gg(R,P,Q,F)(E,A,B) - RH(I’Ac’Bc)' Consequently, R_B(E,A,B) €

Orbo(nl,...,nm) if and only if (E,A,B) € Orba(nl,...,nm). Thus,
RG(OrbO(nl""'nm)) = Orbo(nl,...,nm), which easily implies that
R¢(Orb0(n1,...,nm)) e 0rb0+¢(n1,...,nm).

Since the map R¢ is an isomorphism, this proves (a).
By virtue of (a), it suffices to prove the dimension formula in the

special case where §=0. It is easy to check that

£ g] belongs to

the stabilizer of (AC,BC) under the group action (25). Consequently, the

gO(R,P,Q,F)(I,AC,BC)=(I,AC,BC) if and only if R=P and [

dimension of the stabilizer of (I’Ac’Bc) under the action of Go(n,m) is
given by (32). Since the dimension of Go(n,m) is 2n2+m2+mn, and the
dimension of Orbo(nl,...,nm) is the difference between the dimension of

Go(n,m) and the dimension of the stabilizer, (b) follows immediately. . ]

Remark 22: Hayton [25] has studied the action of the state feedback group
H(n,m) on the space of generalized systems. Our approach differs
considerably since we do not permit ordinary state feedback transformations

(i.e. no derivative contribution) to be applied to the singular systems.

VIT. CONCLUSION

e have presentad a unified theory of control synthesis which applies
[

+to all admissihle seneralized linear systems, borh regular and singular.

Our avproach iif%ers considerably from rhosz in the literature. We do not
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attempt to apply ordinary static state feedback and output feedback to
singular systems. Instead, we cover the space of all admissible systems by
a family of open and dense subsets indexed by the unit circle. One of these
subsets coincides with the set of all regular systems. There is a group of
symmetry transformations of this cover, which can be identified with the
group of rotations of the plane. On each of the open and dense subsets, we
define an admissible class of feedback transformations by fixing the ratio
of state to state-derivative (or output to output-derivative) in the

feedback law. Thus, the class of allowable feedback transformations is

specifically adapted to each subset. On the subset consisting of the
regular systems, the admissible feedback coincides with ordinary static
state (or output) feedback. Thus, the theory of static state feedback (and
static output feedback) for regular systems is included as a special case of
our theory.

Using this approach, we obtain a general procedure of control synthesis
of constant-ratio proportional and derivative feedback for generalized
linear systems which systematically reduces each synthesis problem to an
ordinary static state feedback (or output feedback) synthesis problem for a
corresponding regular system. The regular system is obtained by system
rotation, not by the Weierstrass decomposition. In particular, this means
that the determination of the associated regular system is trivial from a
computational point of view. We apply the control synthesis procedure to
derive generalizations of three fundamental results in the theory of state
feedback for regular systems. These include the Disturbance Decoupling
Theorem, the Pole Assignment Theorem, and the Brunovsky Classification
Theorem. In the case of disturbance decoupling, our result is interesting
even when specialized to the regulart Sygtems. We are able to show that
constant-ratio proportional and derivative feedback can be used to

disturbance-decounle regular systems which cannot be decoupled using
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