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This dissertation contributes to auction theory with application of the theory

to the analysis of some real-life problem.

In Chapter 1, I study the problem of competition between contest designers

where they offer differentiated prizes to a group of contestants with some mini-

mal effort requirements. The equilibrium among contestants is either a separating

equilibrium, where strong contestants participating in high-prize contest and weak

contestants in low-prize contest, or a mixing equilibrium, where strong players par-

ticipate in high-prize contest with probability 1, middle-type players randomize

between the two contests, and weak players go to low-prize contest with certainty.

I then solve an equilibrium of contest designers where one designer’s choice of min-

imal effort level is assumed to be non-strategic. Finally, I provide conditions such

that the assumed non-strategic choice of minimal effort level is optimal and thus

characterize at least part of the equilibrium set, which expands the knowledge on

competing auctions.



In Chapter 2, I apply auction theory to analyze the effect of a merger on firms’

research and development (R&D) investment. There is a substantial literature on

the effects of mergers on product prices, but the effects of mergers on other outcomes,

such as R&D investment spending, are less studied. I develop a model for evaluating

the likely effects of a merger (or joint research venture) on the R&D efforts of

competing firms. The R&D process is modeled as an all-pay contest (auction)

among firms, with the payoff from investment going to the firm that invests the

largest amount. I provide an explicit characterization of the equilibrium in a multi-

player asymmetric all-pay contest model. The equilibrium solution then is applied

through simulation to calibrate the effects of mergers on firms’ R&D efforts and

efficiency as well as on social welfare. I find that each firm is expected to exert more

efforts after a merger, but if there are only few firms premerger, a merger reduces

total R&D effort. A merger may also cause inefficiency, but the loss in efficiency is

low. My results also show that net surplus increases after a merger if the number

of firms is small.

In Chapter 3, I study a problem of sequential auctions and extend the standard

model of sequential second-price auctions to a dynamic game with an infinite horizon

with one new buyer entering the auction every period. I first derive properties of the

symmetric and stationary equilibrium, where buyers bid according to their private

valuation less a pivotal continuation value, and I also show that the price path in

such equilibrium is weakly decreasing. Imposing preconsistent beliefs, I give the

conditions under which a stationary equilibrium exists.
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Chapter 1: Simultaneous Contests

1.1 Introduction

Contests are situations in which agents spend resources in order to win one or

more prizes. A leading feature is that, regardless of winning or not, all contestants

bear some costs. Most of the literature on contest has considered the case where

agents compete for a unique prize, such as Tullock (1980) [13], Varian (1980) [14],

Dasgupta (1986) [4] and many others. But the prevalence of contests with multiple

prizes is obvious. Employees spend effort in order to be promoted in organizational

hierarchies, which often consist of several types of well-defined positions; athletes

compete for gold, silver, and bronze medals, or for monetary prizes; young musicians

compete for the first, second, and third prizes; students compete for grades in tests

and courses.

Several papers study contest models with multiple prizes under complete in-

formation setting. Broecker’s (1990) [2] model of credit markets has several features

of an all-pay auction with as many prizes as contestants. Wilson (1979) [15] and

Anton and Yao (1992) [1] study split-award auctions where several bidders can win.

More recently, Moldovanu and Sela (2001, 2006) [9, 10] study multi-prize contests

with incomplete information. They show that the winner-takes-all structure (i.e.
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only one big prize) in which the highest-effort contestant wins the prize is usually

the optimal architecture for maximizing expected total effort.

However, these papers assume that all contestants are not constrained from

participating in a contest. In real-life contests, contestants usually face some pre-

requisites for participation. For example, researchers at universities are required to

achieve a minimal quality and quantity of output in order to be promoted. Similarly,

entry in professional sport competitions is often restricted, whereby only contestants

who have achieved a certain predefined minimal requirement are allowed to com-

pete. Such constraints can have significant effect on the optimal allocation of prizes.

Megidish and Sela (2013) [8] show that if the exogenous minimal effort constraint

is sufficiently high, the expected total effort in a random contest is higher than in a

winner-take-all contest.

Although a grand contest where all contestants participate is efficient in a

private-value setting, it might not be always welcome. There are also other practices

where prizes are offered in multiple contests, which I refer as simultaneous contests1.

For instance, authorities may want to encourage weak competitors and give them

the chance to win some of the prizes. This type of mechanism commonly appears in

sport competitions where strong teams compete in a high league while weak teams

compete in a lower one. If we limit the players to participate only in one contest,

then the intuition about the bidders’ behavior will be ambiguous. A high ability

(type) contestant may believe he should participate in the low prize contest since as

1Contests need not be held at the same time. As long as contestants are allowed to participate
in only one of the contests, they can be considered as held at the same time.
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a strong player, the probability of winning is high. On the other hand, a low ability

contestant may take a chance and participate in the high prize contest hoping to be

the sole participant and win the high prize. It is interesting to study the choice of

contest in addition to the choice of effort level.

The literature on competing auctions has treated this kind of problems. McAfee

(1993) [7] and Peters (1997) [12] consider cases of a limiting number of sellers, while

Burguet and Sákovics (1999) [3] and Hernando-Veciana (2005) [6] investigate the

strategic interactions among a finite number of sellers. In these models, sellers offer

mechanisms or reserve prices and buyers choose among the auction sites. Gavious

(2009) [5] works on a related but different scenario where one auctioneer sells two

differentiated objects in two second-price auctions. Gavious’ work is a benchmark

for my analysis and I provide a richer characterization of contestants’ equilibrium

in this chapter. In addition, this chapter is one of the few studies of competing

auctions that provide the equilibrium between differentiated auctioneers (or contest

designers in the context of this chapter).

This chapter is organized as follows. Section 2 introduces the setting of the

model. Section 3 studies the equilibrium among contestants given the minimal effort

requirements for participation. Section 4 studies the optimal choice of minimal effort

requirements by contest designers, who expect that contestants behave according to

the equilibrium in section 3. A brief conclusion is presented in section 5. Proofs can

be found in the appendix.
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1.2 The Model

Consider two contests offered by L and H (hereafter contest L and H) with

n ≥ 3 contestants. The prize of contest L is normalized to 1, and the prize of contest

H is assumed to be a > 1. The prize of a contest is awarded to the one who makes

the highest effort in that contest. Assume that if contestant i makes an effort xi,

he bears a cost of xi
ci

, where ci is the ability (or type) of contestant i. Assume that

abilities are drawn independently of each other from an interval [c, c̄] (c̄ > c ≥ 02)

according to a distribution function F with a continuous density f > 0. Also assume

that abilities are private information, but the distribution is common knowledge.

Assume that there is a minimal effort requirement r ≥ 0 associated with

contest H. Since the support of contestant types, [c, c̄], is general, an assumption

of 0 effort requirement in contest L does not create any qualitative difference3 but

will simplify the notation later. Then, a contestant’s strategy consists of two parts:

the contest in which he chooses to compete and the level of effort to exert in that

contest.

2In the case of c = 0, the cost for player of type 0 is not defined. However, since it is the weakest
type, it is safe to assume the type 0 player always exerts 0 effort and expects to receive 0 payoff.
Details are discussed in the proof of Lemma 1.1 in appendix.

3A positive minimal effort requirement in contest L only blocks out contestants with low abilities
from any contest.
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1.3 Contestant’s Equilibrium

1.3.1 Separating Equilibrium

I first consider an equilibrium where contestants are clearly partitioned, i.e.

strong (high type) contestants participating in contest H and weak (low type) con-

testants in contest L. On one hand, my analysis in this section is based on that of

Gavious’ (2009), where he proves the existence of such equilibrium for some “appro-

priately” chosen reserve prices in H and L auctions. On the other hand, I extend

his result further to show the existence of such equilibrium for an arbitrary minimal

effort requirement (equivalent to reserve price in regular auction setting). Before

presenting any result, it is useful to define c∗ such that aF n−1(c∗) = 1 first.

Proposition 1.1. If r satisfies the condition

c∗ −
∫ c∗

c

(
1− F (c∗) + F (t)

)n−1

dt ≤ r ≤ ac̄−
∫ c̄

c

F n−1(t)dt

then there exists s̄ ∈ [c∗, c̄] such that the strategy

σ(c) =


{L, bL(c)} if c ≤ c < s̄

{H, bH(c)} if s̄ ≤ c ≤ c̄

(1.1)
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forms an equilibrium for the contestants, where

bL(c) =

∫ c

c

td
(

1− F (s̄) + F (t)
)n−1

+ c
(

1− F (s̄)
)n−1

bH(c) = a

∫ c

s̄

tdF n−1(t) + r

and s̄ is uniquely determined by the equation

∫ s̄

c

(
1− F (s̄) + F (t)

)n−1

dt = as̄F n−1(s̄)− r. (1.2)

The pivotal type s̄ is the type of contestant who is indifferent between partic-

ipating in contest L and winning with certainty, or participating in contest H and

winning if he is the only player in contest H. The condition which determines c∗ is

very meaningful. For any s̄ ≥ c∗, we have aF n−1(s̄) ≥ 1. This expression is equiv-

alent to as̄F n−1(s̄) ≥ s̄, which indicates that the expected utility for a contestant

with a cutoff ability when he participates in contestant L is less than his utility

when he participates in contest H. Moreover, in light of Myerson (1981) [11], the

derivative of the expected payoff is equal to the probability of winning. Thus, the

condition that aF n−1(s̄) ≥ 1 can be also interpreted as that the marginal utility

of the cutoff type player is higher in contestant H than in contestant L. Figure

1.1 illustrates the effort functions in the case of uniform distribution on [0,1] and

parameters a = 6, n = 4 and s̄ = 0.7.

Based on the proof of Proposition 1.1, we know that in equilibrium, r cannot

be too large, because if r > ac̄ −
∫ c̄
c
F n−1(t)dt, none of the players will participate
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Figure 1.1: Effort Functions in Separating Equilibrium

in contest H. Since contestants endogenously choose which contest to participate,

we should find out how the cutoff type changes with respect to the minimal effort

and the value of prize factor.

Corollary 1.1. The pivotal type s̄ increases with r but decreases with a.

It is intuitive that increasing r will increase s̄. Corollary 1.1 also shows that

increasing a will decrease s̄ since more contestants closer to the pivotal type will be

better off by participating in contest H and thus decreases s̄.

1.3.2 Equilibrium with Mixed Strategy

In the previous section, I constructed equilibrium for some values of the min-

imal effort requirement. For other values, a full separation of the players is not
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guaranteed. Instead, certain types of contestants may want to employ mixed strate-

gies in equilibrium. Before going into the details of any mixed strategy equilibrium,

I would like to present a result which relates the mixed strategies to the cutoff value

c∗.

Theorem 1.1. In equilibrium, the upper bound of the type of contestants who may

take mixed strategies is c∗. If the type of a player lies in the mixing interval, he

participates in contest L with probability α and in contest H with probability 1− α,

where

α =
1

F (c∗) + 1
=

a
1

n−1

a
1

n−1 + 1
.

Moreover, the mixing interval is convex.

Proof of Theorem 1.1. Assume contestant with type c participates in contest L with

probability p(c) and in contest H with probability 1 − p(c), where 0 ≤ p(c) ≤ 1.

If p(c) equals to 0 or 1, it means that this player actually employs a pure strategy.

Furthermore, suppose x is the lowest type of players who randomizes between contest

L and contest H. Then the expected payoff of player with type c (≥ x) in contest

j can be characterized by U j(c) =
∫ c
x

Prj(t)dt + U j(x), where Prj(t) (j = L,H) is

the probability that a type t player will win in contest j (See Myerson (1981) [11]).

In a mixed-strategy equilibrium, the player should be indifferent between the

two contests, i.e. UL(c) =
∫ c
x

PrL(t)dt + UL(x) = UH(v) = a
∫ c
x

PrH(t)dt + UH(x)

for every c in the mixing interval. One of the necessary conditions is that the

rate at which UL and UH increase must also be the same. That is, we require

PrL(c) = aPrH(c) for all c in the mixing interval. The probabilities are computed

8



as below:

PrL(c) =
(

1−
∫ c̄

c

p(t)f(t)dt
)n−1

PrH(c) =
(

1−
∫ c̄

c

(1− p(t))f(t)dt
)n−1

Then, the following equation must hold for all c in the mixing interval:

1−
∫ c̄

c

p(t)f(t)dt = a
1

n−1

(
1−

∫ c̄

c

(1− p(t))f(t)dt
)

which, after rearranging all terms to the right-hand side, is equivalent to

a
1

n−1 − 1−
∫ c̄

c

(
a

1
n−1 − (a

1
n−1 + 1)p(t)

)
f(t)dt = 0 (1.3)

Taking derivative on both sides with respect to c, we immediately find that

p(c) =
a

1
n−1

a
1

n−1 + 1
,

for all c in the mixing interval, which is defined as α. This means that if a contestant

randomizes between the two contests, he has to do it according to the probability

profile (α, 1− α).

However, the upper bound of the mixing interval must be lower than c̄; oth-

erwise, the left-hand side of equation (1.3) is positive, while the right-hand side is

9



0. Observe that for s ≥ c∗,

∫ c̄

s

(
a

1
n−1 − (a

1
n−1 + 1)p(t)

)
f(t)dt

≤
∫ c̄

s

a
1

n−1f(t)dt

= a
1

n−1 (F (c̄)− F (s))

≤ a
1

n−1 (F (c̄)− F (c∗))

= a
1

n−1 − 1.

The first inequality uses the non-negativity of p(t), the second inequality is from

s ≥ c∗ and the last equality follows the definition of c̄ and c∗. Combined with

equation (1.3), this implies that p(t) has to be 0 for all t > c∗ and that the upper

bound of the types of randomizing contestant is c∗. In fact, as suggested by the

inequality, those whose types are above c∗ prefer to compete in contest H. To sum

up,

p(t) =


a

1
n−1

a
1

n−1 +1
if x ≤ t ≤ c∗

0 if c∗ < t ≤ 1.

For the last part of the theorem, suppose there were a “hole”, say (y, z), in the

interval. Then, the expected payoff would grow at different rates in the two contests

as a function of player’s type, and thus y and z could not be both indifferent.

This implies that if there is some positive measure of players who utilize mixing

strategies, then the mixing interval should be a single large interval rather than

several disconnected small intervals.
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According to Theorem 1.1, the probability profile of a player who randomizes

between the two contests is independent of his type as long as he is in the mixing

interval. The intuition for this, as can be seen in the proof, is that the returns,

and thus the marginal returns, of participating in both contests should be the same.

Moreover, the rate at which the marginal return changes should also be the same,

which is independent of the type of the randomizing contestants.

Based on Theorem 1.1, it is expected that in equilibrium, high type players

go to contest H with probability 1, middle type players randomize between the

two contests with a profile (α, 1 − α), and low type players go to contest L with

certainty. The following proposition makes a full characterization of the equilibrium

with mixed strategy (which I refer to as mixing equilibrium).

Proposition 1.2. If r satisfies4

ac
(
αF (c∗) + (1− α)F (c)

)n−1

≤ r < c∗ −
∫ c∗

c

(
1− F (c∗) + F (t)

)n−1

dt

then, there exists s ∈ [c, c∗) such that the strategy

σ(c) =



{L, βL(c)}, if c ≤ c < s

{(α, 1− α), (βML(c), βMH(c))} if s ≤ c < c∗

{H, βH(c)}, if c∗ ≤ c ≤ c̄

(1.4)

4When 0 ≤ r < ac
(
αF (c∗) + (1−α)F (c)

)n−1

, the solution to equation (1.5) is negative, which

means s = c. In this case, the minimal effort requirement is not binding and the mixing interval
starts from the lower bound c to c∗.

11



forms an equilibrium for the contestants, where α = 1
F (c∗)+1

,

βL(c) =

∫ c

c

td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

+c
(

1− αF (c∗)− (1− α)F (s)
)n−1

βML(c) =

∫ c

s

td
(

1− αF (c∗) + αF (t)
)n−1

+ βL(s)

βMH(c) = a

∫ c

s

td
(
αF (c∗) + (1− α)F (t)

)n−1

+ r

βH(c) = a

∫ c

c∗
tdF n−1(t) + βMH(c∗)

and s is uniquely determined by

∫ s

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

dt

= as
(
αF (c∗) + (1− α)F (s)

)n−1

− r. (1.5)

The cutoff type s is the lowest type of contestant who is indifferent between

participating in contest L or contest H. The next corollary shows how the cutoff

value s is affected by the minimal effort and the prize factor. The behavior of s

and the intuition of its behavior are the same as s̄ in the previous section. Figure

1.2 illustrates the effort functions in the case of uniform distribution on [0,1] and

parameters a = 6, n = 4 and s = 0.3.

Corollary 1.2. s increases with r but decreases with a.

One further observation is that randomizing players will participate in contest

L with probability α = a
1

n−1

a
1

n−1 +1
> 1

2
, which indicates that such players are more

12



Figure 1.2: Effort Functions in Mixing Equilibrium

likely to participate in contest L than in contest H.

1.4 Designers’ Problem

Now that the contestants’ strategy has been characterized for any reasonable

minimal effort requirement, let us turn to the designers’ problems. Suppose that

designers maximize the expected total effort in their respective contest by setting

the minimal effort requirements.

1.4.1 Contest H

First consider designer H. Assume that the distribution and the support of

contestant types is such that the optimal minimal effort requirement of contest L

13



is at a corner5 (which is normalized to 0 to be consistent with previous analysis).

According to conditions (1.2) and (1.5), there is a one-to-one mapping from r to

either s̄ or s. Therefore, the problem of choosing an optimal r is equivalent to

choosing a proper cutoff value s (s̄ or s).

The problem of H is to maximize

TEH =


n
( ∫ c̄

s
bH(c)f(c)dc

)
, if s ∈ [c∗, c̄]

n
(

(1− α)
∫ c∗
s
βMH(c)f(c)dc+

∫ c̄
c∗
βH(c)f(c)dc

)
, if s ∈ [c, c∗).

Undoubtedly, TEH is continuous at c∗ because as s approaches c∗, βH(c∗−) = bH(c∗).

Therefore, there exists a maximizer of TEH according to extreme value theorem.

Proposition 1.3. TEH is maximized at an inner point s that satisfies either

(1− F (s))(aF n−1(s)− 1)

+ (n− 1)(1− F (s))f(s)

∫ s

c

(
1− F (s) + F (t)

)n−2

dt

= f(s)

[
asF n−1(s)−

∫ s

c

(
1− F (s) + F (t)

)n−1

dt

]

or

(
α− (1− α)F (s)

)
(n− 1)

∫ s

c

(
α− (1− α)F (s) + F (t)

)n−2

dt

= sαn−1(1 + F n−1(s))−
∫ s

c

(
α− (1− α)F (s) + F (t)

)n−1

dt.

5A full solution where both H and L chooses their minimal effort requirements is too difficult
at the current stage.
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The conditions in Proposition 1.3 are the first-order conditions of TEH in the

separating equilibrium and in the mixing equilibrium respectively. Intuitively, the

higher a is, the lower c∗ will be and the more likely that the optimal s will be in the

region of a separating equilibrium.

Example 1.1. Suppose there are 4 contestants and their abilities are distributed

according to F (c) = c. If a = 6, then c∗ = 0.55 and optimal s∗ = 0.588, which

implies a separating equilibrium among contestants. Figure 1.3 shows the total effort

in contest H as a function of s for these parameter values.

Figure 1.3: Total Effort Example 1

Example 1.2. Suppose there are 4 contestants and their abilities are distributed

according to F (c) = c. If a = 2, then c∗ = 0.794 and the optimal s∗ = 0.516, which

15



Figure 1.4: Total Effort Example 2

corresponds to a mixing equilibrium among contestants. Figure 1.4 shows the total

effort in contest H in these parameter values.

1.4.2 Contest L

In this part, I revisit the assumption that the optimal minimal effort in contest

L is at a corner and give conditions where the corner solution is optimal.

The idea is to mimic the analysis of virtual value in standard auctions. De-

signer L does not have incentive to exclude any contestant if the “virtual value”

under the current setting is non-negative for all types. For a fixed pivotal type s,

the “virtual value” takes the form of t− F (s)−F (t)
f(t)

6. However, s in general is affected

6This is for the case of separating equilibrium. For the case of mixing equilibrium, a slight
difference need to be made. See the proof of Proposition 1.4 for detail.
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by the choice of minimal effort level in L as well. The next proposition addresses the

concern of endogeneity and shows that a regular condition of a commonly defined

virtual value function, along with proper a boundary condition, is sufficient for the

optimality at corner.

Proposition 1.4. The minimal effort requirement at a corner is optimal for L if

the virtual value function t− 1−F (t)
f(t)

is increasing and cf(c)− 1 ≥ 0.

The results of Propositions 1.3 and 1.4 are important. They provide condi-

tions that characterize at least part of the equilibrium set of the competing auction

(contest) problem, which brings us more closer to the full solution of such kind of

problem.

1.5 Concluding Remarks

I study the problem of competing contests with differentiated prizes. Given

the condition of minimal effort requirements, equilibrium is either a separating equi-

librium, where strong contestants participating in contest H and weak contestants

in contest L, or a mixing equilibrium, where strong players participate in contest

H with probability 1, middle-type players randomize between the two contests, and

weak players go to contest L with certainty. I also solve an equilibrium of con-

test designers where one designer’s choice of minimal effort level is assumed to be

non-strategic. A full solution, though desirable, is too computationally involved at

the current stage. Finally, I investigate the conditions such that the assumed non-

strategic choice of minimal effort level is optimal and thus characterize at least part

17



of the equilibrium set, which expands the knowledge of competing auctions.

1.6 Appendix A: Proofs

Lemma 1.1. Consider a simple contest where n players compete for a single prize

V . Suppose an effort x causes a cost x
t

to a contestant with type t, the types are

distributed on [t, t̄] and let G(u) = Pr(t ≤ u). Then the equilibrium strategy b(t) and

expected utility U(t) for a type t player are

b(t) = V

∫ t

t

sdGn−1(s) + V tGn−1(t)

U(t) =
V

t

∫ t

t

Gn−1(s)ds.

Lemma 1.1 is a derivation from Myerson (1981) [11] for the specific parame-

terization. Nevertheless, a proof is still included, which serves as a quick reference

for latter results.

Proof. The player with type t act as if his type is s to maximize the expected utility,

max
s
U(t, s) = V Gn−1(s)− b(s)

t
.

In equilibrium, the problem must be solved by s = t. Then, the calculation yields

b(t) = V

∫ t

t

sdGn−1(s) + k

where k is a constant. A reasonable k is such that the expected utility of the weakest

18



contestant (type t) is 0. Otherwise, if the weakest contestant has positive expected

payoff, he will have incentive to deviate by exerting an effort ε higher than his close

neighbor.

Next, let us check that a sufficient second-order condition is satisfied,

U12(t, s) = −b′(s) < 0

because b(·) is strictly increasing.

Then, plug in the expression of b and abuse the notation a little bit,

U(t) = U(t, t) = V Gn−1(t)− b(t)− k
t

= V Gn−1(t)− k

t
− V

t

∫ t

t

sdGn−1(s)

= V Gn−1(t)− k

t

−V
t

(
tGn−1(t)− tGn−1(t)−

∫ t

t

Gn−1(s)ds
)

=
V

t

∫ t

t

Gn−1(s)ds+
V tGn−1(t)

t
− k

t

where the third equality comes from integration by parts. Since we require U(t) = 0,

k = V tGn−1(t) and thus U(t) = V
t

∫ t
t
Gn−1(s)ds.

Finally, let me show that the assumption that type 0 contestant makes an

effort of 0 and gains 0 expected utility is still consistent. b(t) is well-defined and is

continuous at t = 0 because

b(0) = 0 = lim
t→0+

b(t)
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Define U(0) = 0. According to L’Hospital’s rule,

lim
t→0+

U(t) = lim
t→0+

V

t

∫ t

0

Gn−1(s)ds = lim
t→0+

Gn−1(t)

1
= 0

and thus U(t) is also continuous at t = 0.

Proof of Proposition 1.1. Let G1(c) =
∫ c
c

(
1 − F (c) + F (t)

)n−1

dt − acF n−1(c) + r.

Using the fact that aF n−1(c∗) = 1 and F (1) = 1,

G1(c∗) =

∫ c∗

c

(
1− F (c∗) + F (t)

)n−1

dt− c∗ + r ≥ 0

G1(c̄) =

∫ c̄

c

F n−1(t)dt− a+ r ≤ 0

Therefore, the existence of s̄ is guaranteed by the continuity of G1(c). Moreover,

G′1(c) = [1− aF n−1(c)]− (n− 1)f(c)[acF n−2(c) +

∫ c

c

(1− F (c) + F (t))n−2dt]

Since aF n−1(s̄) ≥ aF n−1(c∗) = 1, G′1(c) < 0. This completes the proof that the

cutoff value s̄ is unique.

The results from Lemma 1.1 can be carried over to establish the functional form

of bL and bH with proper accommodation to the context. For bL,
(

1−F (s̄)+F (t)
)n−1

is the probability that a type t contestant would win in contest L, which happens

when those with types in [t, s̄] are absent, and the constant for the weakest type

is c
(

1 − F (s̄)
)n−1

. For bH , it is adjusted with the observations that the prize is

multiplied by a and that the lowest type in contest H should exert an effort equal
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to r.

It is left to show that no player will defect from one contest to the other. Let

U j(t|c) be a contestant’s expected utility given that his type is c, he acts as if his

type is t and he participates in contest j = L,H and the other n − 1 contestants

playing according to strategy (1.1). Incentive compatibility requires that

UL(c|c ≤ s̄) ≥ UH(ĉ|c ≤ s̄) (1.6)

UL(ĉ|c ≥ s̄) ≤ UH(c|c ≥ s̄). (1.7)

Using the results from Lemma 1.1 again,

UL(c|c ≤ s̄) =
1

c

∫ c

c

(
1− F (s̄) + F (t)

)n−1

dt

UH(c|c ≥ s̄) = const+
a

c

∫ c

s̄

F n−1(t)dt

= aF n−1(s̄)− r

s̄
+
a

c

∫ c

s̄

F n−1(t)dt.

The constant aF n−1(s̄)− r
s̄

appears because a player’s utility in contest H is not zero
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even if his type is s̄. Then, using condition (1.2) and aF n−1(s̄) ≥ aF n−1(c∗) = 1,

cUL(ĉ ≤ s̄|c ≥ s̄)

= c
(

1− F (s̄) + F (ĉ)
)n−1

− bL(ĉ)

= ĉUL(ĉ ≤ s̄|ĉ ≤ s̄) + (c− ĉ)
(

1− F (s̄) + F (ĉ)
)n−1

=

∫ ĉ

c

(
1− F (s̄) + F (t)

)n−1

dt+ (c− ĉ)
(

1− F (s̄) + F (ĉ)
)n−1

≤
∫ s̄

c

(
1− F (s̄) + F (t)

)n−1

dt+ (c− s̄)
(

1− F (s̄) + F (ĉ)
)n−1

≤ as̄F n−1(s̄)− r + c− s̄

≤ as̄F n−1(s̄)− r + (c− s̄)aF n−1(s̄)

≤ as̄F n−1(s̄)− r + a

∫ c

s̄

F n−1(t)dt

≤ c(aF n−1(s̄)− r

s̄
) + a

∫ c

s̄

F n−1(t)dt

= cUH(c|c ≥ s̄)

and thus (1.7) is satisfied. For (1.6), notice that

UH(ĉ > s̄|c ≤ s̄) = aF n−1(ĉ)− bH(ĉ)

c

with a derivative

∂UH(ĉ > s̄|c ≤ s̄)

∂ĉ
= (1− ĉ

c
)(n− 1)F n−2(ĉ)f(ĉ) < 0.
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Therefore,

UH(ĉ > s̄|c ≤ s̄) ≤ UH(ĉ = s̄|c ≤ s̄) = aF n−1(s̄)− r

c
.

To complete the proof, it remains to show that

UL(c|c ≤ s̄) =
1

c

∫ c

c

(
1− F (s̄) + F (t)

)n−1

dt ≥ aF n−1(s̄)− r

c

or, equivalently,

∫ c

c

(
1− F (s̄) + F (t)

)n−1

dt ≥ acF n−1(s̄)− r.

Define

h(c) =

∫ c

c

(
1− F (s̄) + F (t)

)n−1

dt− acF n−1(s̄) + r

and observe that h(c) = r > 0 and that h(s) = 0 by condition (1.2). Since

h′(c) =
(

1− F (s̄) + F (c)
)n−1

− aF n−1(s̄) ≤ 1− 1 = 0,

h(c) is non-increasing and thus the condition h(c) ≥ 0 is satisfied.

Proof of Corollary 1.1. Differentiating (1.2) with respect to r, we get

(
1−

∫ s̄

c

(n− 1)(1− F (s̄) + F (t))n−2f(s̄)dt
)∂s̄
∂r

=
(
aF n−1(s̄) + as̄(n− 1)F n−2(s̄)f(s̄)

)∂s̄
∂r
− 1

Since aF n−1(s̄) > 1, ∂s̄
∂r
> 0.
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Similarly, differentiating (1.2) with respect to a,

(
1−

∫ s̄

c

(n− 1)(1− F (s̄) + F (t))n−2f(s̄)dt
)∂s̄
∂a

= s̄F n−1(s̄) +
(
aF n−1(s̄) + as̄(n− 1)F n−2(s̄)f(s̄)

)∂s̄
∂a

it can be seen directly that ∂s̄
∂a
< 0.

Proof of Proposition 1.2. Similar to the proof of Proposition 1.1, let

G2(c) =

∫ c

c

(
1− αF (c∗)− (1− α)F (c) + F (t)

)n−1

dt

−ac
(
αF (c∗) + (1− α)F (c)

)n−1

+ r

When 0 ≤ r < c∗ −
∫ c∗
c

(1− F (c∗) + F (t))n−1dt,

G2(c) = r ≥ 0

G2(c∗) =

∫ c∗

c

(
1− F (c∗) + F (t)

)n−1

dt− ac∗F n−1(c∗) + r < 0.

The existence of s is, thus, guaranteed by the continuity of G2(c). Moreover,

G′2(c) =
(

1− αF (c∗) + αF (c)
)n−1

− (n− 1)(1− α)f(c)

∫ c

c

(
1− αF (c∗)− (1− α)F (c) + F (t)

)n−2

dt

− a
(
αF (c∗) + (1− α)F (c)

)n−1

− (n− 1)(1− α)f(c)ac
(
αF (c∗) + (1− α)F (c)

)n−2

.
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The third term negates the first term, because 1 − αF (c∗) = a
1

n−1αF (c∗) and α =

a
1

n−1 (1− α), and the second and forth terms are obviously negative. So G′2(c) < 0,

which indicates that s is unique.

Now, given the existence of s, the construction in Theorem 1.1 indicates that

contestants with c ∈ [s, c∗] are indeed indifferent between entering contest H and

contest L. For players whose c > c∗,

UH(c|c > c∗) = UH(c∗) + a

∫ c

c∗
PrH(t)dt = UH(c∗) + a

∫ c

c∗
F n−1(t)dt

UL(c|c > c∗) = UL(c∗) +

∫ c

c∗
PrL(t)dt = UH(c∗) + (c− c∗).

Since aF n−1(c) > 1 for all c > c∗, a
∫ c
c∗
F n−1(t)dt > a(c − c∗)F n−1(c∗) = c − c∗.

Thus, we have established first part of the entering strategies of contestants whose

types are above the cutoff point s.

For players with type c < s, we have

UL(c|c < s) =

∫ c

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

dt

= UL(s)−
∫ s

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

dt

UH(c|c < s) = ac
(
αF (c∗) + (1− α)F (s)

)n−1

− r

= UH(s)− a(s− c)
(
αF (c∗) + (1− α)F (s)

)n−1

.

Actually, using F (c) < F (s), 1 − αF (c∗) = a
1

n−1αF (c∗) and α = a
1

n−1 (1 − α), we
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can derive

∫ s

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

dt

< (s− c)
(

1− αF (c∗) + αF (s)
)n−1

= (s− c)a
(
αF (c∗) + (1− α)F (s)

)n−1

Therefore, UL(c|c < s) > UH(c|c < s), which means players whose types c < s

participate in contest L definitely.

The functional form of βL, βML, βMH and βH can be derived using Lemma 1.1

again with proper accommodations. For βL, the probability of that a type t ∈ [c, s]

contestant would win in contest L is

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

=
(

1− α
(
F (c∗)− F (s)

)
−
(
F (s)− F (t)

))n−1

which happens when those with types in [t, s] are absent and those with types in

[s, c∗] participates in contest H. The constant for the weakest type in this case is

c
(

1− αF (c∗)− (1− α)F (s)
)n−1

. For βML, the probability of winning in contest L

is
(

1−αF (c∗) +αF (t)
)n−1

for a contestant with type t ∈ [s, c∗] with the restriction

that βML(s) = limc→s βL(c). For βMH , the probability of winning in contest H is

(
1− (1− α)

(
F (c∗)− F (t)

))n−1

=
(
αF (c∗) + (1− α)F (t)

)n−1
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with the lowest type exerting an effort equal to r. For βH , it is adjusted with the

restriction that βH(c∗) = limc→c∗ βM(c).

Proof of Corollary 1.2. Differentiating (1.5) with respect to r,

∂s

∂r

[(
1− αF (c∗) + αF (s)

)n−1

−(n− 1)(1− α)f(s)

∫ s

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−2

dt

]

=
∂s

∂r

[
a
(
αF (c∗) + (1− α)F (s)

)n−1

+(n− 1)(1− α)f(s)as
(
αF (c∗) + (1− α)F (s)

)n−2
]
− 1.

Since 1− αF (c∗) = a
1

n−1αF (c∗),

(
1− αF (c∗) + αF (s)

)n−1

= a
(
αF (c∗) + (1− α)F (s)

)n−1

and thus ∂s
∂r
> 0.

Before doing the same thing for a, observe that 1−αF (c∗) = α = a
1

n−1 (1−α).

Equation (1.5) is thus equivalent to

∫ s

c

(
α− (1− α)F (s) + F (t)

)n−1

dt = s
(
α + αF (s)

)n−1

− r

Then, taking derivative with respect to a and rearranging terms,

(1 + F (s))
∂α

∂a
= (1− α)f(s)

∂s

∂a
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Because ∂α
∂a
< 0, ∂s

∂a
< 0 as well.

Proof of Proposition 1.3. According to the extreme value theorem, TEH must attain

a maximum because it is a real-valued, continuous function on [c, c̄]. A necessary

condition for maximizer is that it shall be a root of the first-order condition or be

at the end points.

When s ∈ [c∗, c̄],

TEH = n

(∫ c̄

s

bH(c)f(c)dc

)

= n

∫ c̄

s

(
acF n−1(c)− a

∫ c

s

F n−1(t)dt
)
f(c)dc

−n(1− F (s))

∫ s

c

(
1− F (s) + F (t)

)n−1

dt

where the last equality uses the expression of r from equation (1.2) and the observa-

tion that
∫ s

0

(
1−F (s) +F (t)

)n−1

dt is a constant for any given s. Taking derivative

of TEH with respect to s, after simplification,

∂TEH
∂s

= n(1− F (s))(aF n−1(s)− 1)

+n(n− 1)(1− F (s))f(s)

∫ s

c

(
1− F (s) + F (t)

)n−2

dt

+nf(s)

[∫ s

c

(
1− F (s) + F (t)

)n−1

dt− asF n−1(s)

]

= n(n− 1)(1− F (s))f(s)

∫ s

c

(
1− F (s) + F (t)

)n−2

dt

+n(1− F (s))(aF n−1(s)− 1)− nf(s)r.

Therefore, ∂TEH

∂s
is negative at the upper bound c̄.
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Similarly, when s ∈ [c, c∗),

TEH = n

(
(1− α)

∫ c∗

s

βMH(c)f(c)dc+

∫ c̄

c∗
βH(c)f(c)dc

)
.

Then,

∂TEH
∂s

= (1− α)n
[
− βMH(s)f(s) +

∫ c∗

s

∂βMH(c)

∂s
f(c)dc

]
+(1− F (c∗))

∂βMH(c∗)

∂s

= (1− α)nf(s)
[
− sαn−1(1 + F n−1(s)) +

∫ s

c

(
α− (1− α)F (s)

+F (t)
)n−1

dt

+
(
α− (1− α)F (s)

)
(n− 1)

∫ s

c

(
α− (1− α)F (s) + F (t)

)n−2

dt
]

∝
(
α− (1− α)F (s)

)
(n− 1)

∫ s

c

(
α− (1− α)F (s) + F (t)

)n−2

dt− r

and thus ∂TEH

∂s
is positive at the infimum of s such that r = 0.

It can also be shown that

∂TEH
∂s
|s=c∗− = (1− α)

∂TEH
∂s
|s=c∗+

which implies that c∗ is a maximizer only if the first-order condition is equal to 0 at

c∗, although ∂TEH

∂s
is generally not continuous at s = c∗.

Proof of Proposition 1.4. Consider a more general minimal effort requirement in

contest L, rL. Let the lower bound of contests who participate in contest L be cL
7.

7The notation is purposely chosen to be different from c. In previous sections, cL is identical to
c because rL is set at 0. However, contestant with type c may not want to participate in contest
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In a separating equilibrium,

rL = cL

(
1− F (s) + F (cL)

)n−1

. (1.8)

Then, the total effort in contest L is

TEL = n

∫ s

cL

bL(c)f(c)dc

= n

[∫ s

cL

∫ c

cL

td
(

1− F (s) + F (t)
)n−1

f(c)dc

+

∫ s

cL

cL

(
1− F (s) + F (cL)

)n−1

f(c)dc

]

= n

[∫ s

cL

(∫ s

t

f(c)dc
)
td
(

1− F (s) + F (t)
)n−1

+cL

(
1− F (s) + F (cL)

)n−1(
F (s)− F (cL)

)]

= n

[∫ s

cL

(
F (s)− F (t)

)
td
(

1− F (s) + F (t)
)n−1

+cL

(
1− F (s) + F (cL)

)n−1(
F (s)− F (cL)

)]
= n

(
F (s)− F (t)

)
t
(

1− F (s) + F (t)
)n−1∣∣∣s

cL

+ncL

(
1− F (s) + F (cL)

)n−1(
F (s)− F (cL)

)
−n
∫ s

cL

(
1− F (s) + F (t)

)n−1(
F (s)− F (t)− tf(t)

)
dt

= n

∫ s

cL

(
t− F (s)− F (t)

f(t)

)(
1− F (s) + F (t)

)n−1

f(t)dt

where the third equality comes from reversing the order of integration and the fifth

equality uses integration by parts.

L for a positive minimal effort rL.
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Assume a regularity condition hold that ψ(t) = t − F (s)−F (t)
f(t)

is increasing in

[c, s]. To maximize expected effort, L would like to award the prize to the player

with the highest type (lowest cost) above an established cutoff value t∗ such that

ψ−1(t∗) = 0. Therefore, if c ≥ t∗, it is of L’s interest not to exclude any contes-

tant from participating in contest L. Since the “virtual values” are increasing, as

assumed, it suffices to have ψ(c) = c− F (s)
f(c)
≥ 0 because F (c) = 0.

Now consider the conditions in Proposition 1.4 that a standard virtual value

function t− 1−F (t)
f(t)

is increasing and that cf(c)− 1 ≥ 0. Observe that

∂ψ(t)

∂t
= 1− −f

2(t)− [F (s)− F (t)]f ′(t)

f 2(t)

= 2− [F (s)− F (t)]f ′(t)

f 2(t)
.

When f ′(t) ≥ 0,

∂ψ(t)

∂t
≥ 2− [1− F (t)]f ′(t)

f 2(t)
> 0

because t− 1−F (t)
f(t)

is increasing. When f ′(t) < 0,

∂ψ(t)

∂t
≥ 2 > 0

because F (s)− F (t) is non-negative in [c, s]. Moreover,

c− F (s)

f(c)
≥ c− 1

f(c)
≥ 0.

Therefore, the two conditions in Proposition 1.4 are sufficient for the conditions
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prescribed for optimality at corner in the case of a separating equilibrium.

Likewise, in a mixing equilibrium,

TEL = n
(∫ s

c

βL(c)f(c)dc+ α

∫ c∗

s

βML(c)f(c)dc
)

= n

∫ s

c

∫ c

c

td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

f(c)dc

+nc
(

1− αF (c∗)− (1− α)F (s)
)n−1

F (s)

+αn
[ ∫ c∗

s

∫ c

s

td
(

1− αF (c∗) + αF (t)
)n−1

f(c)dc

+
(
F (c∗)− F (s)

)∫ s

c

td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

+nc
(

1− αF (c∗)− (1− α)F (s)
)n−1(

F (c∗)− F (s)
)]

= n

∫ s

c

(∫ s

t

f(c)dc
)
td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

+nc
(

1− αF (c∗)− (1− α)F (s)
)n−1(

αF (c∗) + (1− α)F (s)
)

+αn
[ ∫ c∗

s

(∫ c∗

t

f(c)dc
)
td
(

1− αF (c∗) + αF (t)
)n−1

+
(
F (c∗)− F (s)

)∫ s

c

td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

= n

∫ s

c

(
F (s)− F (t)

)
td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

+nc
(

1− αF (c∗)− (1− α)F (s)
)n−1(

αF (c∗) + (1− α)F (s)
)

+nα
[ ∫ c∗

s

(
F (c∗)− F (t)

)
td
(

1− αF (c∗) + αF (t)
)n−1

+
(
F (c∗)− F (s)

)∫ s

c

td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1]

.
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Combine the first and third terms,

TEL = n

∫ s

c

(
αF (c∗) + (1− α)F (s)− F (t)

)
td
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1

+nc
(

1− αF (c∗)− (1− α)F (s)
)n−1(

αF (c∗) + (1− α)F (s)
)

+nα

∫ c∗

s

(
F (c∗)− F (t)

)
td
(

1− αF (c∗) + αF (t)
)n−1

.

Use integration by parts again,

TEL

= n
(
αF (c∗) + (1− α)F (s)− F (t)

)
t
(

1− αF (c∗)− (1− α)F (s) + F (t)
)n−1∣∣∣s

c

− n

∫ s

c

(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1(
αF (c∗) + (1− α)F (s)− F (t)− tf(t)

)
dt

+ nc
(

1− αF (c∗)− (1− α)F (s)
)n−1(

αF (c∗) + (1− α)F (s)
)

+ nα
(
F (c∗)− F (t)

)
t
(

1− αF (c∗) + αF (t)
)n−1∣∣∣c∗

s

− nα

∫ c∗

s

(
1− αF (c∗) + αF (t)

)n−1(
F (c∗)− F (t)− tf(t)

)
dt

= n

∫ s

c

(
t− αF (c∗) + (1− α)F (s)− F (t)

f(t)

)(
1− αF (c∗)− (1− α)F (s) + F (t)

)n−1

f(t)dt

+ nα

∫ c∗

s

(
t− F (c∗)− F (t)

f(t)

)(
1− αF (c∗) + αF (t)

)n−1

f(t)dt.

The conditions for L not to exclude any contestant are t−αF (c∗)+(1−α)F (s)−F (t)
f(t)

≥

0 for all t ∈ [c, s] and t − F (c∗)−F (t)
f(t)

≥ 0 for all t ∈ [s, c∗]. It suffices to have t −

αF (c∗)+(1−α)F (s)−F (t)
f(t)

increasing in [c, s] with c− αF (c∗)+(1−α)F (s)
f(c)

≥ 0, and t− F (c∗)−F (t)
f(t)

increasing in [s, c∗] with s− F (c∗)−F (s)
f(s)

≥ 0.

Similar to the case in separating equilibrium, the two conditions in Proposition
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1.4 are also sufficient for those in the previous paragraph.

1.7 Appendix B: A Numerical Example

In this part, I will present some formula assuming a uniform distribution on

[x, x+ 1]. Thus, F (t) = t− x and f(t) = 1.

First, consider those in contest H. When s ≥ c∗,

bH(c) = a

∫ c

s

td(t− x)n−1 + as(s− x)n−1 −
∫ s

x

(1− s+ t)n−1dt

=
n− 1

n
a(c− x)n +

1

n
a(s− x)n + ax(c− x)n−1 − 1

n
+

1

n
(1− s+ x)n

and

TEH = n

∫ x+1

s

bH(c)dc

=
n− 1

n+ 1
a[1− (s− x)n+1] + (1 + x− s)(a(s− x)n − 1)

+ax[1− (s− x)n] + (1− s+ x)n+1.

Taking derivative,

∂TEH
∂s

= 1 + an(1− x)(s− x)n−1 − 2an(s− x)n − (n+ 1)(1− s+ x)n.
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When s < c∗, notice that a(c∗ − x)n−1 = 1 and a
1

n−1 (1− α) = α. Then,

βMH(c) = a

∫ c

s

td(αc∗ + (1− α)t− x)n−1 + as(αc∗ + (1− α)s− x)n−1

−
∫ s

x

(1− αc∗ − (1− α)s+ t)n−1dt

=
n− 1

n
αn−1(1 + c− x)n − αn−1(1− x)(1 + c− x)n−1

+
1

n
[αn−1(1− α)(1 + s− x)n + (α− (1− α)(s− x))n].

Using the fact that α(1 + c∗ − x) = 1,

βMH(c∗) = c∗ − 1 + c∗ − x
n

+
αn−1

n
(1− α)(1 + s− x)n +

1

n
(α− (1− α)(s− x))n

and thus

βH(c) = a

∫ c

c∗
td(t− x)n−1 + βMH(c∗)

=
n− 1

n
a(c− x)n + ax(c− x)n−1 − 1

n

+
αn−1

n
(1− α)(1 + s− x)n +

1

n
(α− (1− α)(s− x))n.
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Total effort can be calculated as

TEH = n

(
(1− α)

∫ c∗

s

βMH(c)dc+

∫ x+1

c∗
βH(c)dc

)
= (1− α)αn−1

{n− 1

n+ 1
[(1 + c∗ − x)n+1 − (1 + s− x)n+1]

−(1− x)[(1 + c∗ − x)n − (1 + s− x)n]
}

+
n− 1

n+ 1
a[1− (c∗ − x)n+1] + ax[1− (c∗ − x)n]

−(x+ 1− c∗) + (α− (1− α)(s− x))n+1

+(1− α)αn−1(α− (1− α)(s− x))(1 + s− x)n

and its derivative is

∂TEH
∂s

= (1− α)[(n+ 1)αn(1 + s− x)n − nαn−1(2s− x)(1 + s− x)n−1

−(n+ 1)(α− (1− α)(s− x))n.

Then, consider formula in contest L. When s ≥ c∗,

bL(c) =

∫ s

x

td(1− s+ t)n−1

= (n− 1)

∫ s

x

t(1− s+ t)n−2dt

=
n− 1

n
[(1− s+ c)n − (1− s+ x)n]

−(1− s)[(1− s+ c)n−1 − (1− s+ x)n−1]
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and

TEL = n

∫ s

x

bL(c)dc

=
n− 1

n+ 1
[1− (1− s+ x)n+1]− (n− 1)(s− x)(1− s+ x)n

−(1− s)[1− (1− s+ x)n] + n(1− s)(s− x)(1− s+ x)n−1.

When s < c∗,

βL(c) =

∫ c

x

td(1− αc∗ − (1− α)s+ t)n−1

=
n− 1

n
[(α− (1− α)s+ c)n − (α− (1− α)s+ x)n]

−(α− (1− α)s)[(α− (1− α)s+ c)n−1 − (α− (1− α)s+ x)n−1]

βML(c) =

∫ c

s

td(1− αc∗ + αt)n−1 + βL(s)

=
n− 1

n
[(α− (1− α)s+ c)n − (α− (1− α)s+ x)n]

−αn−1(1 + c)n−1 +
1

n
αn−1(1− α)(1 + s)n

−(α− (1− α)s)(α− (1− α)s+ x)n−1
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and thus

TEL = n

(∫ s

x

βL(c)dc+ α

∫ c∗

s

βML(c)dc

)
=

n− 1

n+ 1
[1 + c∗ − (1− α)αn(1 + s)n+1]− 1 + c∗αn(1 + s)n

+n(α− (1− α)s)(α− (1− α)s+ x)n−1

−(n− 1)(α− (1− α)s+ x)n

+
n(n− 1)

n+ 1
(α− (1− α)s+ x)n+1

−(n+ 1)(α− (1− α)s)(α− (1− α)s+ x)n.

For formula with a more general uniform distribution on [c, c̄], simply replace

s, c and x with

s′ =
s

c̄− c
, c′ =

c

c̄− c
and x′ =

c

c̄− c

respectively in the equations above.
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Chapter 2: Mergers in R&D Races

2.1 Introduction

Whether proposed mergers would reduce the level of competition is the focal

concern of antitrust reviews. There are a huge literature on modeling and estimating

the impacts of a merger, yet price effect is their only subject. Depending on specific

market characteristics, competition in developing new products through research

and development (R&D) activities can also be a determinant factor for consider-

ation. Recent merger proposals have successfully drawn the attention of antitrust

agencies and researchers to this question1.

Unlike pricing, R&D usually requires substantial investments and often takes

up many years. Thus, firms in concentrated markets are more likely to invest in

R&D because they can appropriate more returns from innovation. Then, extending

further, if there are even fewer rivals, they may want to do more R&D since more

returns can be captured. On the other hand, in concentrated industries, firms have

1For example, in a number of recent high-profile cases (AT&T/T-Mobile, Applied Materi-
als/Tokyo Electron, and Halliburton/Baker Hughes), the Department of Justice expressed con-
cerns about the loss of innovation competition resulting from a merger between competitors. In
like manner, the proposal of John Deere/Precision Planting in high-speed precision planting mar-
ket was terminated (May 2017). Proposals in the chemical and seed market also raised similar
concerns, yet all were approved (ChemChina/Syngenta in May 2017, Dow/DuPont in August 2017
and Bayer/Monsanto in March 2018).
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existing products and economic profits associated with them. They invest in R&D

partly to protect their existing positions, and also to give themselves a chance to

leap ahead of rivals with a major innovation. Once the number of rivals is reduced,

thereby reducing research competition among rivals, firms may be less incentivized

to invest in research and innovation. Thus, the effects of a merger that would

reduce the number of active rivals in a concentrated market is ambiguous, which is

confirmed by a growing body of empirical investigations on mergers and R&D. For

example, Ornaghi (2009) [34] and Stiebale and Reize (2011) [41] find a decrease in

innovative effort after mergers, while Bertrand (2009) [17] and Stiebale (2013) [40]

report a significant increase in R&D intensity after mergers.

Theoretical works are even fewer, as MacDonald has concluded in his report

(2016) [31] that there is still a very limited base on which such effects can be es-

timated. To my knowledge, only Davidson and Ferrett (2007) [22], Phillips and

Zhdanov (2013) [36], Motta and Tarantino (2017) [33], and Federico, Langus and

Valletti (2017) [25] have provided theoretical insights on this topic. In Davidson

and Ferrett (2007) [22], firms first decide the level of process R&D, which reduces

production cost, and then compete in the product market. They show that when

the degree of R&D complementarity is non-trivial, a merger encourages insiders

(merger participants) to invest more in R&D and benefits insiders with a lower

cost on product market, regardless of the strategic variable in market competition

(price vs quantity). Motta and Tarantino (2017) [33] also study a Bertrand game

with cost-reducing investment. Under a variety of cases, they show that absent ef-

ficiencies, a horizontal merger reduces innovation and suppresses price competition
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between them.

Though process innovation, analyzed by the previous two papers, is important

in certain industries, the competition among firms does not go beyond their current

products. On the other hand, my focus in this chapter is on product innovation,

which is related to firms’ future products, and is more aligned with the concerns of

recent merger proposals. For product innovation, Phillips and Zhdanov (2013) [36]

study the incentives of merger under a setting of Bertrand competition in differen-

tiated goods. They show that large firms may optimally decide to let small firms

conduct R&D and then acquire these small innovative companies. However, they

assume that R&D inputs by different firms are the same and that the probability of

successful innovation is evenly distributed among firms who conduct R&D. In other

words, firms in their model either maintain the R&D effort or quit R&D activity

completely. The lack of flexibility in adjusting R&D effort makes their model not

well suited for evaluating merger effects. Moreover, they restrict the range of capital

ratios of different firms and thus their results do not carry over to mergers among

firms of similar size.

In this chapter, I develop an alternative model, a model of contest, for eval-

uating the likely effects of a merger on R&D investment of competing firms. Such

a modeling choice of R&D, which overcomes the weaknesses aforementioned, is not

uncommon in the literature (see, for example, Dasgupta and Stiglitz, 1980 [23]; Fu-

denberg et al., 1983 [26]; Harris and Vickers, 1985 [28]; and Leininger, 1991 [30]),

but is rare in merger analysis. In this sense, my model is more close to Federico,

Langus, and Valletti (2017) [25] and, similar to theirs, my model is appropriate to
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the situation where all firms are effective innovators. However, my model is different

from theirs in several ways. First, their model is a game of complete information

and firms (except the merged firms) are symmetric and thus make the same R&D

effort. My model is an incomplete information game. Although firms are symmetric

ex ante, they may make different R&D effort in the interim stage, which makes

my model closer to an empirical application. Second, the probability of winning in

their model is a function of the firm’s own effort, while in my model, the winning

probability generally depends on the efforts of other firms as well. The technique

used to solve for equilibrium is different. Last but not least, in spite of some com-

mon results on firms’ expected effort, we diverge on the welfare effect of a merger.

They posit that consumers are worse off after the merger. Firms in their model do

not differ except the status of being merged or not, and thus, a merger always de-

creases the probability of price competition. But, it is also reasonable to posit that

firms in their model employ similar research strategies. As argued by Dasgupta and

Stiglitz (1980) [23], if firms tend to imitate each other’s research strategy, much of

R&D expenditure may be essentially duplicative, and consequently socially wasteful

(p. 267). Therefore, welfare analysis shall not neglect the firms’ side because they

are part of an economy too. My results focus on this aspect and show that if the

number of firms is small, due to a significant reduction in total R&D effort, the net

surplus (which is the innovator’s realized profit subtracted by all firms’ R&D effort)

tends to increase after a merger. This also suggests an argument put forth earlier

by Fullerton and McAfee (1999) [27] and Che and Gale (2003) [20] that the optimal

number of competitors is two.
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2.1.1 Other Related Literature

My work is directly related to those on asymmetric all-pay contest/auction,

because asymmetry is always involved in merger analysis regardless of modeling

choice. If firms are symmetric pre-merger, then they must be asymmetric post-

merger, let alone they might be asymmetric at first. Only recently, Siegel (2009,

2010) [37, 38] has contributed significantly to the understanding of asymmetries in

complete information all-pay auctions2. The incomplete information case is con-

siderably less well-understood, mostly due to the difficulty in obtaining explicit

solutions. Most research in the latter area considers only 2 players. Amann and

Leininger (1996) citeAmann show existence and uniqueness of equilibrium under

independent private value setting with continuous signals, while Szech (2011) [42]

studies such model with discrete signals. Siegel (2014) [39] also studies discrete sig-

nals game, where signals can be correlated and values interdependent, and makes

connections between incomplete and complete information games. The only excep-

tion is Parreiras and Rubinchik (2009) [35]. They model a contest among many

asymmetric players and prove the existence of a unique equilibrium. Although my

theoretical results nest within theirs, their model is too abstract for easy use within

application. Instead, I offer an explicit characterization of a multi-player asymmet-

ric all-pay contest/auction model for applications, which is my second contribution

in this chapter.

In addition, this chapter can be seen as a continuation of the works on mergers

2A comprehensive survey of earlier studies on all-pay contests or all-pay auctions can be found
in the book of Konrad (2009) [29].
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in auction markets. Waehrer (1999) [45] and Dalkir, Logan, and Masson (2000) [21]

and Thomas (2004) [43] examine mergers in asymmetric first-price auctions. Bran-

nman and Froeb (2000) [19], Tschantz, Crooke, and Froeb (2000) [44] and Waehrer

and Perry (2003) [46] examine mergers in asymmetric second-price auctions. More

recently, Mares and Shor (2008) [32] examine mergers in asymmetric common-value

auctions. My results, thus, supplement this strand of literature with an analysis on

mergers in all-pay auctions.

The rest of this chapter is organized as follow. Section 2 introduces the asym-

metric all-pay contest model in the language of a R&D race and characterizes the

unique perfect Bayesian equilibrium. Its application to merger analysis is demon-

strated in Section 3 and section 4 presents the simulated merger effects. Section 5

concludes. All proof are in the appendices.

2.2 The Model

Consider n (= n1 + n2) firms in a R&D race (or a technology procurement).

Following the assumptions in Dasgupta and Stiglitz (1980) [4], let firms follow the

same research strategy toward some patentable characteritics so that the firm who

exerts the most effort will invent first and win the R&D race3 and let the winner

capture all benefits that are to be had among firms (i.e. the winner takes all). Each

firm possesses a private signal concerning the potential profit4. For simplicity, let

3Fudenberg et al. (1983) [26] also assume that an higher level of effort leads to an innovation
sooner, though their effort levels are discrete. In this sense, it is also the firm with the most effort
that is the first to invent and realizes profits.

4As discussed by Bhattacharya (2016) [18], firms’ different profits can be stemmed from their
differences in delivering a patent to a commercial good, or can be their different assessments of a
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each firm’s (potential) profit be equal to their signal. Firms decide their investment

levels (which I call effort later on) simultaneously based on the observed signals.

Suppose firms are of two types, where n1 are type 1 and n2 are type 2. The

signals of type 1 firms follow a distribution function F and the signals of type 2

firms follow a (different) distribution function G. Assume further that all signals

are independent, that F and G are both continuously differentiable functions on a

common support [0, 1], and that the corresponding density functions are continuous

and are bounded away from zero for all values in [0, 1]5. Finally, assume that

everything described so far is common knowledge except each firm’s private signal.

Each firm decides how much effort to exert in R&D activities simultaneously.

Suppose the strategies are symmetric within each type. Specifically, denote ai =

α(xi), the effort a type 1 firm with signal xi will exert, and bj = β(yj) for a type 2

firm with signal yj. Then, the expected payoffs for firms of each type can be written

as

Π1(ai, xi;α, β) = xiF
n1−1(α−1(ai))G

n2(β−1(ai))− ai,

Π2(bj, yj;α, β) = yjF
n1(α−1(bj))G

n2−1(β−1(bj))− bj.

The problem is usually solved through first-order conditions, which typically

forms a system of differential equations. To simplify the analysis, I follow Amann

and Leininger (1996) [16] and define k(x) = β−1(α(x)), which maps the signal of

potential procurement contract.
5This last assumption is the sufficient condition for the uniqueness of equilibrium, according to

Parreiras and Rubinchik (2009) [35].
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a type 1 firm into the signal of a type 2 firm who exerts the same effort. k(x) is

well defined on (0,1]6 and maps [0,1] to [0,1]. Then, the unique equilibrium7 can be

characterized as follow

Theorem 2.1 (Unique Equilibrium). The following strategies form the unique per-

fect Bayesian equilibrium

α(x) =

∫ x

max{k−1(0)}
k(t)d[F n1(t)Gn2−1(k(t))]

β(x) = α(k−1(x))

where k(x) is the solution to the following ordinary differential equation with bound-

ary condition k(1) = 1,

k(x)[F n1(x)Gn2−1(k(x))]′ = x[F n1−1(x)Gn2(k(x))]′.

The proof essentially transforms the system of differential equations (first-

order conditions) into an ordinary differential equation using the defined mapping

k. The boundary condition of k(1) = 1 simply means that firms with the highest

signal exert the same level of effort regardless of their types.

6k(x) may have a mass at 0. See the proof of Theorem 2.1 in Appendix A for more detail.
7This result is nested in Parreiras and Rubinchik (2009) [35] whose model is more general yet

too abstract. For application purpose, I explicitly solve the equilibrium strategies for a case of
restricted asymmetry.
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2.3 Application to Merger Analysis

In this section, I follow the methodology of Dalkir, Logan and Masson (2000)

[21]. Suppose each firm has some signal draws from a common distribution function

and selects the highest one. Premerger I define the number of draws by firm i as qi.

The merger of two firms, i and j, are modeled as a single firm with a total number

of draws qmerger = qi + qj. If all firms have the same number of draws prior to

merger, the post merger number of draws will differ among firms. This necessitates

the analysis of asymmetric model in the previous section. If firms are asymmetric

premerger, they may or may not be symmetric post merger.

Let us start with the number of firms equal to the number of i.i.d signal draws,

which is denoted as n. Mergers are thus a “regrouping” of the signals among the

rest of firms. In a typical two-firm merger, the merged firm with two signals faces

n−2 rivals each with a single signal. To simplify the analytical work (not simulation

yet), assume all signals follows a cumulative distribution F (x) = xa (a > 0) on [0,1].

2.3.1 The symmetric market

I review the symmetric case first in order to have easier comparison with the

asymmetric case later. Using the language in the previous section, F (x) = G(x) =

xa and n1 +n2 = n fully depict the situation. Therefore, the optimal effort of a firm

with signal x is ∫ x

0

tdt(n−1)a =
(n− 1)a

(n− 1)a+ 1
x(n−1)a+1.
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Accordingly, the expected effort of a firm is

∫ 1

0

(n− 1)a

(n− 1)a+ 1
x(n−1)a+1dxa =

(n− 1)a2

[(n− 1)a+ 1](na+ 1)
.

2.3.2 The asymmetric market

In a two-firm merger, there are n1 = n − 2 unmerged firm. Their number

and distribution of signals remain unchanged, i.e. qi = 1 and F (x) = xa. For the

merged firm, it has qmerger = 2 signals each following F , and thus the highest signal

follows G(x) = F 2(x) = x2a. Using the result of Theorem 2.1, k(x) can be solved

analytically,

k(x) =


1 + 1

2
lnx if n = 3

1 + 1
n−3

(1− x−n−3
2 ) if n ≥ 3

which is the solution for uniform distribution (a = 1). Solutions for other values of

a and the detailed derivation is omitted for expositional easiness and they can be

found in Appendix B. Based on the expression of k(x), I can calculate the equilibrium

effort α(x) and β(x).

In Figure 2.1, I illustrate the equilibrium effort using uniform distribution

(a = 1) for the case of 48 premerger firms (postmerger, there are two unmerged

firms and one merged firm). It is shown that the merged firm always exerts positive

effort, while the unmerged firms do not exert any effort for small signals, which

is 0.25 and below in this case. However, when signals are relatively large (0.39

and above), unmerged firms exert a higher effort than the merged firm. This kind

8The number of firms does not qualitatively change the shape of equilibrium strategies.
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Figure 2.1: Equilibrium Efforts when 4 Premerger Firms

of strategies seems strange at first glance, as compared with their counterpart in

other asymmetric auction formats where the strategies of different types do not

cross in the interior of bidding interval. The core intuition behind is as follows.

The unmerged firms are “weaker” than the merged firm in the sense of first-order

stochastic dominance. When the signal is low, weaker firms know that they are not

likely to win the competition and thus avoid this irreversible effort. On the other

hand, when the signal is high, it is in the interest of weak firms to exert high effort as

the chance of winning from doing so is sufficiently high. The reason for this is that

although the strong firm is fully aware of the equilibrium strategy of weak firms,

the likelihood of her weak rivals having high signals and exert aggressive efforts is

rather small, and thus, the strong firm almost “overlooks” the weak firms.
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2.4 Calibrating the Effects of a Merger

Before calibrating the model, I would like to discuss some features of the

model. Firstly, my model implies that there will be a winner anyway9. Then the

effort of all firms (including the winner) is a “waste” from the viewpoint of a social

planner. The ideal situation would be that the winner realizes all profits from

innovation while every firm spend little R&D input. Nevertheless, governments

(or procurers) may not have access to firms’ signals and thus have to encourage

innovations and award patents/contracts through such costly races. Therefore, it is

important to calibrate the total effort level in the industry, in addition to the effort of

individual firms. It seems that merger would reduce total effort and cause less waste.

Nevertheless, it shall not be taken as an implication of this model that monopoly is

the best market structure. A monopolist in my model would exert ε effort, which

is not desirable because the probability of innovation is also negligible. Moreover,

potential entrants, who are absent in my model, shall play a more significant role in

a monopoly market10.

Secondly, inefficiency is present whenever there is asymmetry. By inefficiency,

I mean that the firm with the highest signal in the market does not win the R&D

race. As can be inferred from Figure 2.1, inefficiency may arise in two scenarios.

One is that the merged firm does not possess the highest signal but happens to win

9This seems strange, as innovation is not deterministic. But my model does not impose time
constraints on firms. There will be some firm who makes an innovation at last and this firm is the
winner.

10For example, Harris and Vickers (1985) [28] and Leininger (1991) [30] study patent races
between incumbent and challenger under complete information and in their environments, both
firms’ efforts are socially waste and such waste is inevitable.
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because all signals of unmerged firms are low and fall inside a neighbourhood of the

no-effort region. The other case, which is more likely, is that the merged firm does

have the highest signal, yet she loses the race because some unmerged firm exerts a

higher level of effort.

Finally, based on the previous two arguments, a merger appears to raise a

tradeoff between a reduction in total effort and an increase in inefficiency. Thus,

the overall effect, which is the realized profit (the winning signal) subtracted by the

total effort, is ambiguous and is worthy of simulation. I label this overall effect as

the net surplus on the firms’ side from the R&D race.

2.4.1 Calibration of merger effects

Calibration of the model is conducted through numerical calculation and sim-

ulation. Except where otherwise stated, I use uniform distribution for simulation.

In all cases, I only consider a merger of 2 firms.

Table 2.1 shows the baseline results. The first column is the market structure,

depicting the number of firms both premerger and post-merger, and column 2 is

the number of signals per firm. Column 3 is the ex ante expected effort of each

firm, which adds up to be the expected total effort presented in column 4. It shows

that after a merger, each firm is expected to exert more effort, no matter merged or

not. On an aggregate level, post-merger total effort increases faster in the number

of premerger firms. A merger reduces total effort as long as the number of firms is

small, and the cutoff number here is 6, which is a close description of a concentrated
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(1) (2) (3) (4) (5) (6) (7) (8)
Market structure qi Expected Total effort Winner’s Ineff. Net

effort expected simulated signal rate surplus

pre-merger n = 3 1 0.167 0.5 0.513 0.755 0 0.242
(0.333) (0.194) (0.199)

post-merger n1 = 1 1 0.190 0.453 0.420 0.750 0.106 0.330
n2 = 1 2 0.263 (0.249) (0.198) (0.137)

post - pre -0.093 -0.005 0.088
t-stat -17.08 -2.387 47.40

pre-merger n = 4 1 0.150 0.6 0.601 0.800 0 0.199
(0.395) (0.164) (0.278)

post-merger n1 = 2 1 0.171 0.590 0.549 0.795 0.106 0.246
n2 = 1 2 0.248 (0.347) (0.168) (0.237)

post - pre -0.052 -0.005 0.047
t-stat -5.95 -3.035 11.08

pre-merger n = 5 1 0.133 0.667 0.646 0.828 0 0.182
(0.437) (0.144) (0.332)

post-merger n1 = 3 1 0.148 0.666 0.613 0.825 0.077 0.212
n2 = 1 2 0.221 (0.400) (0.148) (0.297)

post - pre -0.033 -0.003 0.03
t-stat -2.976 -2.036 4.831

pre-merger n = 6 1 0.119 0.714 0.726 0.859 0 0.134
(0.480) (0.120) (0.392)

post-merger n1 = 4 1 0.130 0.716 0.705 0.856 0.092 0.150
n2 = 1 2 0.198 (0.459) (0.127) (0.371)

post - pre -0.019 -0.003 0.016
t-stat -1.467 -3.887 1.812

pre-merger n = 7 1 0.107 0.750 0.752 0.878 0 0.126
(0.501) (0.106) (0.425)

post-merger n1 = 5 1 0.115 0.753 0.732 0.876 0.064 0.144
n2 = 1 2 0.178 (0.493) (0.110) (0.417)

post - pre -0.020 -0.002 0.018
t-stat -1.242 -2.752 1.552

Note: The t-stat measures the significance of the difference of post-merger and pre-merger efforts. A common
threshold for significance at 5% is 1.96.

Table 2.1: Effects of Merger
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industry. Column 5 records the simulated total effort.

The results in the last 3 columns are derived through simulation for 1000

times. The numbers in column 6 is the average winning signals, or the average

realized profit, with the standard deviation recorded in parenthesis. According

to the values presented, inefficiency does exist, and the average realized profit is

significantly lower after a merger, but the magnitude of decrease is small (less than

1%). The frequency of inefficient outcome is shown in column 7 (around 10%).

The last column measures the integrated effect on the net surplus. It shows

that in all cases11, a merger increases the net surplus and that the increase is sta-

tistically significant if there is a small number of firms premerger. This is aligned

with previous findings because the reduction of total effort outweighs the decrease

in profit when the number of firms is small. It may further imply that two firms is

optimal in industries which are innovation-driven and require intensive R&D invest-

ment. Such a result, distinct from the implication of the innovation theory of harm

as summarized in Federico (2017) [24], calls for an attention to the welfare analysis

where firms shall also be included as part of the economy.

Table 2.2 presents a comparison between symmetric and asymmetric mergers

through which triopoly becomes duopoly. The first row, which can be found in Table

2.1 as well, is the case of symmetric firms becoming asymmetric after a merger. The

second row shows the case where asymmetric firms merging to become symmetric.

The third row shows the case where firms become even more asymmetric after

11The net surplus does not always increase after a merger. If the number of firms is large enough,
for example 70, the loss in efficiency is dominant, and thus reduces the net surplus.
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(1) (2) (3) (4) (5) (6) (7)
Market structure qi Expected Total Winner’s Ineff. Net

effort effort signal rate surplus

pre-merger n = 3 1 0.167 0.5 0.755 0 0.242
(0.194) (0.199)

post-merger n1 = 1 1 0.190 0.453 0.750 0.106 0.330
n2 = 1 2 0.263 (0.198) (0.137)

post - pre -0.005 0.088
t-stat -2.387 47.40

pre-merger n1 = 2 1 0.171 0.590 0.795 0.106 0.246
n2 = 1 2 0.248 (0.168) (0.237)

post-merger n = 2 2 0.267 0.534 0.800 0 0.264
(0.164) (0.159)

post - pre 0.005 0.018
t-stat 0.673 1.99

pre-merger n1 = 2 1 0.171 0.590 0.795 0.106 0.246
n2 = 1 2 0.248 (0.168) (0.237)

post-merger n1 = 1 1 0.193 0.504 0.784 0.177 0.359
n2 = 1 3 0.311 (0.176) (0.167)

post - pre -0.011 0.113
t-stat -1.430 12.33

Table 2.2: Symmetry vs. Asymmetry
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a merger. Please note that I omit the simulated total effort, because it can be

inferred directly from winner’s signal and net surplus. Since the number of firms is

still small, merger leads to higher expected effort level per firm and reduces total

effort as expected. Moreover, a net surplus gain is realized in all cases.

2.4.2 Sensitivity

One calibration issue is whether it is sensitive to the chosen density function,

i.e. the uniform distribution. Without a detailed analysis, I examine the sensitivity

with an example. Suppose each firm has two signals from a uniform distribution.

Then the highest signal does not follow uniform. Table 2.3 presents a contrast of cal-

ibrated results for triopoly merging to be duopoly. The case of uniform distribution

is in the first row, and the new model the last row.

(1) (2) (3) (4) (5) (6) (7)
Market structure qi Expected Total Winner’s Ineff. Net

effort effort signal rate surplus

pre-merger n = 3 1 0.167 0.5 0.755 0 0.242
(0.194) (0.199)

post-merger n1 = 1 1 0.190 0.453 0.750 0.106 0.330
n2 = 1 2 0.263 (0.198) (0.137)

post - pre -0.005 0.088
t-stat -2.387 47.40

pre-merger n = 3 2 0.229 0.686 0.863 0 0.155
(0.119) (0.325)

post-merger n1 = 1 2 0.256 0.530 0.857 0.121 0.308
n2 = 1 4 0.274 (0.124) (273)

post - pre -0.006 0.153
t-stat -6.262 26.82

Table 2.3: Uniform vs. Non-uniform Distribution
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The two sets of results do not exhibit qualitative differences. Conclusions

in previous part can be carried over to the non-uniform case, which is a desirable

property since close model shall have close outcomes. It may be extended further

that if firms have similar initial shares of signals, merger would yield to similar

consequences based on my model.

2.5 Conclusion

This chapter develops a model for analyzing mergers in markets where, apart

from price competition, R&D investment decision also plays an important role. R&D

investment is modeled as an all-pay contest, and I give an explicit characterization

of the unique solution to this multi-player asymmetric all-pay contest. Simulation

shows that each firm is expected to exert more effort after a merger, but the total

effort will be lower after a merger if the industry is concentrated premerger. Merger

may cause inefficiency, but the loss is not large. As an overall estimate of merger

effects, the net surplus tends to increase after merger if the number of firms is small.

As an early attempt to analyze merger effects on R&D investment using an

incomplete information contest model, there are several directions to extend current

work. Firstly, in my model, the winner takes all potential profits, while efforts by

the other firms are simply wasted. But it may not be so in real life. Firms, though

falling behind, may come up with some second-best substitutes and share a fraction

of the signaled profits. It would be interesting to explore models that incorporate

the multi-prize feature into merger analysis.
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Secondly, the current model considers R&D investment for only one round. It

is reasonable to extend it to multiple rounds as R&D projects can be progressive.

Moreover, it is possible for a temporary laggard to catch up and even surpass the

leader. Thus, to develop methods for estimating merger effects in the long run is

important, yet challenging as well.

Thirdly, current analysis is under the independent private value framework.

Since my model in this chapter is more appropriately applied to industries with

high concentration, firms’ profit signals or their costs for R&D activity are likely to

be correlated or affiliated. How merger outcomes would change when affiliation is

taken into consideration remains an open question.

Lastly, the focus of this chapter is the likely effects of merger on R&D invest-

ment decisions, while the more direct effects on price competition is captured by

the signals for simplicity. It is, thus, worthwhile to develop a comprehensive model

which unifies both price and R&D competitions. All of these, however, are left for

future research.

2.6 Appendix A: Proof of Theorem 2.1

The existence and uniqueness of equilibrium is proved in Parreiras and Ru-

binchik (2009) [35] in a more general sense. It is then sufficient for me to prove the

equilibrium using necessary conditions.

Before proving, I would like to define the effort distribution function M(a) :=

F (α−1(a)) and N(b) := G(β−1(b)) as in Amann and Leininger (1996) [16]. I present
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some general results concerning the equilibrium below. These are of the same essence

as those in Amann and Leininger (1996) [16], but the proofs are different from theirs.

Lemma 2.1 (Common Support). supp(M) = supp(N).

Proof. Suppose a = α(x) ∈ supp(M), yet a /∈ supp(N). Then there is an open

neighborhood of a, U(a), such that for all a′ ∈ U(a), N(a′) = N(a). Suppose

N(a) > 0. Then if type 1 firms all lower their effort from a to a′ < a but a′ ∈ U(a),

their probability of winning does not change, while they may save cost through

reducing effort from a to a′. This improves type 1 firms’ payoffs and, thus, a cannot

be optimal, which contradicts a = α(x). Consequently, N(a) = 0.

A similar argument holds for type 2 firms.

Lemma 2.2 (Full Support).

supp(M) = [0, max
x∈[0,1]

α(x)],

supp(N) = [0, max
y∈[0,1]

β(x)].

Proof. Suppose there is a “hole” (s, t), 0 < s < t < maxy∈[0,1] β(y), over which M is

constant, while s and t belong to the support of M . Then, by Lemma 2.1, N must

be constant over (s, t). Since N(s) = N(t), it can never be optimal for type 2 firms

to exert effort b = t by the same argument as in Lemma 2.1. Hence, such a hole in

the interior of [0,maxx∈[0,1] α(x)] cannot exist. Neither can it exist in the interior of

[0,maxy∈[0,1] β(y)].
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Lemma 2.3 (Monotonicity). Let x > x′, a = α(x), and a′ = α(x′). Then N(a) ≥

N(a′).

Proof. By definition of equilibrium, we must have

Π1(a, x;α, β) ≥ Π1(a′, x;α, β),

Π1(a′, x′;α, β) ≥ Π1(a, x′;α, β).

Plug in the expression of Π1 and rearrange the terms, we get

(xMn1−1(a)− x′Mn1−1(a′))(Nn2(a)−Nn2(a′)) ≥ 0.

By definition of effort distribution, M(a) = F (α−1(a)) = F (x) > F (x′) =

M(a′). Then the first term is positive and, thus, the second term must be non-

negative, which implies N(a) ≥ N(a′).

Lemma 2.4 (No Atoms). M is continuous on [0, β(1)] with β(1) ≤ 1, N is contin-

uous on [0, α(1)] with α(1) ≤ 1.

Proof. Suppose N is not continuous at z; i.e., let z ∈ (0, α(1)] and δ > 0 such that

N(z) > N(z − ε) + δ for all ε < ε1(z, δ).
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Using the monotonicity in Lemma 2.3, we have

Π1(z, x;α, β)− Π1(z − ε

2
, x;α, β)

= xMn1−1(z)Nn2(z)− z − [xMn1−1(z − ε

2
)Nn2(z − ε

2
)− (z − ε

2
)]

> xMn1−1(z)[Nn2(z)−Nn2(z − ε

2
)]− ε

2

> xMn1−1(z)[Nn2(z)− (N(z)− δ)n2 ]− ε

2

>
ε

2

for any ε < xMn1−1(z)[Nn2(z)− (N(z)− δ)n2 ] ≡ ε2(x, z, δ).

If we define ε̄ = min{ε1(z, δ), ε2(x, z, δ)}, then for all ε < ε̄,

Π1(z, x;α, β)− Π1(z − ε

2
, x;α, β) >

ε

2
> 0,

which means that type 1 firm will not exert any effort in the range of [z − ε̄, z]. As

a consequent, M(·) is constant for [z − ε̄, z]. However, by the same argument as in

Lemma 2.1, z cannot be a best response for type 2 firms, which is in contradiction

to z = α(x) for some x ∈ [0, 1]. Thus, N must be continuous.

A symmetric argument works for M .

Lemma 2.5. If F (0) = G(0) = 0, then min{M(0), N(0)} = 0.

Proof. Suppose M(0) = s > 0 and N(0) = t > 0. Then for any x 6= 0, take some
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ε < n−1
n
xsn1−1tn2 ,

Π1(ε, x;α, β) = xMn1−1(ε)Nn2(ε)

≥ xsn1−1tn2 − ε

>
1

n
xsn1−1tn2

= Π1(0, x;α, β).

However, this means that for almost any type 1 firm (except those with signal

0), a strictly positive effort would yield a better payoff than no effort, which is

a contradiction to equilibrium. Thus, either M(0) = 0 or N(0) = 0, whichever

completes the proof.

Lemmas 2.1, 2.2 and 2.3 together implies that α(1) = β(1). Also, based on

the 5 Lemmas, k(x) is well defined on (0,1] and maps [0,1] to [0,1]. Moreover, k(x)

is strictly increasing except possibly on k−1(0).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. The expected payoffs for firms of each type are

Π1(a, x;α, β) = xF n1−1(α−1(a))Gn2(β−1(a))− a

Π2(b, y;α, β) = yF n1(α−1(b))Gn2−1(β−1(b))− b

where I will suppress subscripts i and j for succinctness. Let f and g be the density
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function of F and G respectively. Then, the first-order conditions are

x
(

(n1 − 1)F n1−2(x)f(x)Gn2(β−1(α(x))) 1
α′(x)

+ n2F
n1−1(x)Gn2−1(β−1(α(x)))g(β−1(α(x))) 1

β′(β−1(α(x)))

)
= 1 (2.1)

and

y
(
n1F

n1−1(α−1(β(y)))f(α−1(β(y))Gn2−1(y) 1
α′(α−1(β(y))

+ (n2 − 1)F n1(α−1(β(y))Gn2−2(β−1(y)g(y) 1
β′(y)

)
= 1. (2.2)

Given the definition of k(x), we have β(k(x)) = α(x) and

k′(x) = (β−1)′(α(x))α′(x) =
α′(x)

β′(β−1(α(x)))
.

Then, equation (2.1) can be rewritten as

α′(x) = x
(

(n1 − 1)F n1−2(x)f(x)Gn2(k(x))

+n2F
n1−1(x)Gn2−1(k(x))g(k(x))k′(x)

)
= x[F n1−1(x)Gn2(k(x))]′.
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Let y = k(x) in equation (2.2) and observe that α−1(β(k(x))) = x,

α′(x) = k(x)
(
n1F

n1−1(x)f(x)Gn2−1(k(x))

+(n2 − 1)F n1(x)Gn2−2(k(x))g(k(x))k′(x)
)

= k(x)[F n1(x)Gn2−1(k(x))]′.

Therefore, a necessary condition for k(x) is such that

k(x)[F n1(x)Gn2−1(k(x))]′ = x[F n1−1(x)Gn2(k(x))]′.

This is an ordinary first-order differential equation, which admits a unique solution

with boundary condition k(1) = 1.

Then, k(x) yields the unique equilibrium strategies

α(x) =

∫ x

max{k−1(0)}
k(t)d[F n1(t)Gn2−1(k(t))]

β(x) = α(k−1(x))

where α(x) = 0 if and only if x ∈ k−1(0) by Lemma 2.5.

2.7 Appendix B: Derivation in Merger Analysis

In this section, I derive the analytical solution to the model introduced in

Merger Analysis. The boundary condition that k(1) = 1 is implied in each of the

following solutions.
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When the signals follow F (x) = xa, after a merger, there are n1 = n − 2

unmerged firms whose signals follow distribution F . For the merged firm, its highest

signal follows G(x) = F 2(x) = x2a. Then, according to Theorem 2.1,

k(x)[(xa)n−2]′ = x[(xa)n−3k2a(x)]′

which is, after simplification,

(n− 2)xa−1 = (n− 3)k2a−1(x) + 2xk2a−2(x)k′(x). (2.3)

Several special cases shall be addressed before I give a general solution.

When a = 1, equation (2.3) becomes

k′(x) +
n− 3

x
k(x) =

n− 2

x
.

The solution to this first order linear differential equation is

k(x) =


1 + 1

2
lnx if n = 3

1 + 1
n−3

(1− x−n−3
2 ) if n ≥ 3.

When a = 1
2
, equation (2.3) becomes

k′(x)

k(x)
+
n− 3

2x
=
n− 2

2
x−

3
2
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which is equivalent to

d ln(k(x)) =
(n− 2

2
x−

3
2 − n− 3

2x

)
dx.

Therefore, the solution is

k(x) = x−
n−3
2 e(n−2)(1−x−

1
2 ).

When a 6= 1 or 1
2
, equation (2.3) is a Bernoulli differential equation. Define

z = k1−(2−2a) = k2a−1 to transform it into a linear differential equation such that

z′ +
(2a− 1)(n− 3)

2x
z =

(2a− 1)(n− 2)

2
xa−2.

The solution to z is

z(x) =
(2a− 1)(n− 2)

(2a− 1)(n− 2)− 1
xa−1 − 1

(2a− 1)(n− 2)− 1
x−

(2a−1)(n−3)
2

and then

k(x) = [z(x)]
1

2a−1 .
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Chapter 3: Sequential Auctions with New Entrants

3.1 Introduction

Auctions are usually practiced in a sequential manner and, in a variety of

context, auctions are expected to be held periodically even without an end. One

of the examples is the monthly car plate auction in Shanghai, China. The city

government issues thousands of car plates every month and allocates these car plates

among hundreds of thousands of buyers through a modified pay-as-bid auction. A

natural question arises: is such a mechanism efficient? That is, is a buyer with higher

valuation more likely to get an object? Moreover, is a buyer with higher valuation

more likely to get an object earlier? To answer these questions, I investigate a

simplified version of this practice by a model of sequential second-price auctions on

an infinite time horizon.

The bulk literature on sequential auctions stems from a seminal paper by

Milgrom and Weber (2000) [66]1. They derive the symmetric equilibrium bidding

strategies in both sequential first-price and second-price auctions and prove that in

an independent private value setting where buyers have unit demand, the sequence

of prices forms a martingale. However, an observation by Ashenfelter (1989) [47]

1It was written in 1982 and was not published until 2000.
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indicates that prices in sequential auctions for identical items (rare wines) do not

remain constant but rather follow a declining path. Such a phenomenon, named

“declining price anomaly”, was also empirically supported by other authors2.

Afterwards, many research on sequential auctions has been devoted to compro-

mising the anomaly by modifying Milgrom and Weber’s model in different aspects.

McAfee and Vincent (1993) [61] introduce risk preferences, Bernhardt and Scoones

(1994) consider stochastically equivalent goods, Menezes and Monteiro (1997) [63]

study the effect of participation fees, Jeitschko (1999) [59] investigates uncertainty

on the supply side, and Gale and Stegeman (2001) [54] add asymmetry among bid-

ders into sequential auctions with complete information. More recently, Mezzetti

(2011) [64] shows a different kind of risk aversion, called “aversion to price risk”,

can explain declining prices in sequential auctions. Hu and Zou (2015) [57] further

generalize the result in Mezzetti (2011) [64] by considering a more general utility

function. Ghosh and Liu (2017) [55] let the bidders to form beliefs on the number

of inactive bidders. With a richer set of beliefs, they show that the equilibrium de-

pends on the entire history of prices and that the equilibrium generates a downward

price trend in expectation.

Although substantial progress has been made, all the works mentioned above

on sequential auctions are still restricted to only finite periods and a fixed population

of bidders. Nonetheless, sequential auctions may express certain dynamic features

and the knowledge of sequential auctions so far is very limited. There are three

2See Ashenfelter and Genovese (1992) [48], McAfee and Vincent (1993) [61], Beggs and Graddy
(1997) [50], Van den Berg et al. (2001) [70] and Lambson and Thurston (2006) [60].
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papers in the literature that address the dynamics of an infinite-horizon model of

sequential auctions. McAfee and Vincent (1997) [62] focus on the problem of an

auctioneer who sells a single good optimally by setting a sequence of reserve prices.

It is not a trivial possibility that, in the presence of a reserve price, the auction ends

with no sale. When no sale occurs, the auctioneer tends to sell the good again with

a new and lower reserve price. They characterize the Perfect Bayesian Equilibrium

in both sequentially optimal second-price and first-price auctions.

Instead of selling only one good, I consider the case where the auctioneer

offers one good in every period. In this sense, this chapter is more closely related

to those of Said (2011, 2012) [68, 69]. His first paper (Said, 2011 [68]) shows the

equilibrium bidding strategy in a sequential second-price auctions of stochastically

equivalent objects. In that model, buyers draw new private valuations whenever a

seller arrives. This assumption, however, does not carry to my model as I study the

cases where buyers’ private valuations are persistent over periods.

The second paper by Said (2012) [69] is more general and comprehensive. He

examines an environment where seller offers a random number of objects each pe-

riod and where, with entry and exit, the number of buyers whose valuations are

persistent is also random in each period. He proves that a dynamic VCG mecha-

nism is efficient, and he also proposes an indirect implementation of the dynamic

VCG mechanism through sequential ascending auctions. The underlying thought is

that when a bidder quits the current auction, his valuation is indirectly revealed to

all remaining ones, which allows the remaining buyers to update their beliefs and

bidding strategies, and thus, the indirect mechanism may achieve an outcome that
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is equivalent to the direct mechanism.

In spite of the elegant theoretical results, such efficient mechanisms are rarely

observed due to the complicated calculation of payoffs or optimal bidding strategies.

This chapter models a more common form of sequential auctions by extending the

original Milgrom and Weber’s model to an infinite time line. The dynamic feature

is captured by admitting one additional bidder after each auction. With a mild

restriction on the discount factor, I establish a symmetric and stationary equilibrium

where buyers behave according to their private valuation less a pivotal continuation

value, the value of participating in future auctions. I also show that the price path

in such equilibrium is weakly decreasing, and thus contribute to the literature on

sequential auctions and the explanation of declining price anomaly.

The rest of the chapter is organized as follows. Section 2 describes the setting

of the model. Section 3 first demonstrates properties of the stationary equilib-

rium of the sequential second-price auctions model, then provides conditions for

the existence of equilibrium, and finally discusses the model with that of sequential

bargaining. The equilibrium results are extended to sequential auctions of other

formats in section 4. Comments and conclusions are presented in section 5. All

proofs are in the appendix.

3.2 The Model

Consider a discrete and infinite time line where an auction is held in each

period. There is a large pool of risk-neutral buyers with unit demand. Each buyer
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has a valuation (type) xi, which follows a commonly known distribution function F

on [0, 1] with a continuous density function f . The valuation is private knowledge

and does not change across time. Finally, assume that buyers discount the future

with a factor δ ∈ (0, 1).

In each period, the auctioneer offers an identical object through a sealed-bid

second-price auction. After an auction, the winner leaves the auction with the object

while the rest of the buyers remain on site. Before the next auction begins, a new

buyer arrives at the auction site and the auctioneer announces the winning bid3 of

the last auction. With a new buyer coming in, the number of competitors in each

auction, denoted as n, is kept constant4. With the announcement of winning bid, the

new entrant is not informationally disadvantaged compared with those remainders.

This allows all buyers to update their belief on the distribution of competitors,

which is important to form the stationary equilibrium in this chapter. Learning

in sequential auctions is also studied by Jeitschko (1998) [58] and Ghosh and Liu

(2017) [55].

Since the sequential second-price auctions model is a dynamic game of incom-

plete information, the equilibrium concept I use is that of perfect Bayesian equi-

librium. This solution concept requires that behaviors be rational with respect to

agents’ beliefs, and that agent’s beliefs be updated according to Bayes’ rule wherever

possible.

3Here I assume that the winning bid rather than the winning price is disclosed. In sequential
second-price auctions, the announced winning price reveals one (the highest) of the valuations
among the remaining bidders, which introduces asymmetry among bidders and thus complicates
the model.

4This assumption allows me to avoid the effect of changing n when deriving the value functions.
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To solve this infinite-horizon model, I take the approach in Fudenberg, Levine

and Tirole (1985) [52] where they first assume the existence of an equilibrium and

then compute it from the differential equations resulting from a dynamic program-

ming method. In the same spirit, I restrict my attention to perfect Bayesian equi-

librium that is stationary and symmetric. By stationarity I mean that the strategies

used by buyers can depend only on his private information.

3.3 Continuation Value

With the winning bid made public, the winner’s valuation, as well as the

distribution of the remaining n− 1 bidders, can be inferred provided that all buyers

follow the same monotonic bidding strategy. Let y be the minimum of all previously

announced winning valuations5, which is sufficient to be an upper bound of the types

of remaining buyers. The bidding strategy may be a function of both the buyer’s

private type and the upper bound of the types of remainders, i.e. b = b(x, y). Also

denote V (x, y) the expected value in this scenario, i.e. the expected value to a buyer

with valuation x when the types of all the other bidders in the auction are capped

by y.

Suppose the remaining buyers hold the following beliefs:

(B1) Distribution all remainders are distributed on the truncated interval [0, y],

while the new entrant’s valuation is a draw from the entire support.

(B2) Strategy the new entrant uses the same bidding strategy as the remaining

5In the case there is no previous auction, let y = 1.

71



buyers.

Then, the Bellman Equation for a remaining buyer with valuation xi is

V (xi, y) = maxbi E[xi −max b−i|bi > max b−i]F (b−1(bi))
(
F (b−1(bi))

F (y)

)n−2

+ δ
∫ y
b−1(bi)

V (xi, y
′)dF

n−1(y′)
Fn−2(y)

+ δV (xi, y)(1− F (y))

(3.1)

where b−i means the bid made by all bidders other than i. The first term describes

the expected payoff when the buyer wins the current auction. The second term

reflects the continuation value if the winner in the current auction has a valuation

y′ ∈ (xi, y), implying that the newcomer’s valuation is below y, and the last term

shows the continuation value if the new entrant’s valuation is above y.

The equilibrium bidding strategy is not obvious with respect to the Bellman

equation (3.1) per se. But there is a common conclusion in the literature on sequen-

tial auctions that a buyer’s bidding strategy in a sequential second-price auction

is the buyer’s private value less his continuation value. Therefore, the crux of the

problem is to figure out the continuation value V (x, y).

Let us first consider a new entrant in some period. The current auction ends

with two possible outcomes: either the newcomer wins the object and receives a

payoff of xj−max b−j, or he loses and enters the next period as one of the remaining

buyers with some “announced” highest type in the next auction y′ ∈ (xj, y). In

the latter case, the problem of the new entrant will not be different from other

remaining buyers. This means that the new entrant’s continuation value can also
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be characterized by V , which implies that the new entrant’s bidding strategy is also

the same as the remaining bidders.

Now that all buyers, either the remainders or the new entrant, employ the same

bidding strategy, we may proceed to calculate the expected payoffs in a stationary

equilibrium with a further assumption on the bidding function.

Proposition 3.1 (Equilibrium payoff). Suppose there is a symmetric, monotonic

and stationary equilibrium where b is a function of x only. Then, the expected payoff,

or the continuation value, V satisfies

V (x, y) =

∫ x

0

P n−1(t)

P n−2(y)
dt

where

P (x) =
F (x)

1− δ + δF (x)
.

Proposition 3.1 provides a succinct expression for the value function V (x, y).

Recall that in any standard auction, the derivative of the value function (with respect

to the private valuation) is the probability of winning. Thus, we may conjecture

that V1(x, y) also measures some probability of winning. To see this, let us first look

into P (x). Observe that

P (x) = F (x) + δ(1− F (x))
[
F (x) + δ(1− F (x))[· · · ]

]
,

which is the sum of a discounted flow of probabilities that a pivotal buyer would

win. This means that P (x) is the probability of winning against a flow of new
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entrants. In other words, if we consider the flow of new entrants as one buyer whose

valuation is drawn from the entire support, then P (x) is simply the probability of

winning against this “one player”. Thus, the role of P (x) in an infinite sequence of

auctions is just like the role of F (x) in a one-shot auction. Consequently, given the

information structure that there is one new entrant whose valuation is drawn from

the entire support and the other n − 2 remaining buyers whose valuations are less

than y, the probability that a buyer with valuation x wins in the auction is

P (x)
(P (x)

P (y)

)n−2

= V1(x, y)

and, not surprisingly, P (x) = V1(x, x). It is also intuitive that V1(x, y), the proba-

bility of winning, is increasing in x, the buyer’s own valuation, and decreasing in y,

the last winning valuation, which indicates the level of competition in the current

auction.

3.4 Equilibrium

Now that some features of the stationary equilibrium have been character-

ized, we turn to explore the conditions under which such an equilibrium exists. A

candidate strategy for the equilibrium, which is aligned with Proposition 3.1, is

proposed:

(S) Consider a buyer with valuation xi. Let b(xi) = xi − δV (xi, xi), which is the

buyer’s valuation less his pivotal continuation value.
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Noticed that in the proposed strategy (S), a new entrant employs the same

strategy as the remaining bidders. Such argument is straightforward if the new

entrant has a valuation below y, since his continuation value is the same as the

remaining oners. If the new entrant has a valuation above y, which means that he

has the highest valuation in the current auction, any bid above b(y) could secure the

good with the same payment, given the strategies of the remainders fixed. Therefore,

a sincere bid6 that follows the same functional form as described would not harm

the new entrant.

Let us then proceed to verify the monotonicity of the bidding strategy as a

first step of the proof of equilibrium.

Proposition 3.2 (Monotonicity). The bidding function b(x) is increasing in x.

A direct implication of Proposition 3.2 concerns the evolution of prices in this

sequence of auctions.

Corollary 3.1 (Declining prices). In the infinite-horizon sequential second-price

auctions, the price path is non-increasing.

The underlying thought of Corollary 3.1 is straightforward. Consider some

period with the lowest historical winning valuation as y. If the new entrant’s valu-

ation is above y, then the winning price in the current period remains the same as

in the previous one. If the new entrant’s valuation is below y, which means every

6I avoid using the term of “continuation value” to describe the strategy for this particular kind
of new entrant, because strictly speaking, such new entrant wins the current auction in equilibrium
and does not continue in the game. The possibility that such new entrant would like to obtain the
good later at a lower price is discussed in detail in the proof of Theorem 3.1.
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buyer’s valuation is less than y, the winning price in the current period has to be

lower than the last one according to Proposition 3.2.

Since bidding strategies b is strictly increasing, behavior along the equilibrium

path is perfectly separating, which implies that Bayesian updating fully determines

beliefs. To determine optimality off the equilibrium path, which is not necessarily

stationary, we need to consider the behavior of buyers after a deviation. Since such

post-deviation histories are zero probability events, off-equilibrium beliefs can be

chosen arbitrarily. Therefore, suppose that, after a deviation, buyers still believe

that the deviating one is behaving in accordance with b.

This specification of off-equilibrium beliefs is particular. These beliefs are

consistent with Bayes’ rule even after zero probability histories, which is equivalent

to the condition of preconsistency in Hendon, Jacobsen and Sloth (1996) [56]7. They

argue that preconsistency is sufficient to apply one-shot deviation principle in an

extensive form game of incomplete information. Perea (2002) [67] shows that a

weaker condition, called updating consistency, is both sufficient and necessary for

the one-shot deviation principle. Then, the following result can be established.

Theorem 3.1 (Equilibrium). There exists δ̄ < 1 such that ∀δ ∈ [0, δ̄], the strategy

(S) and the beliefs (B) form a stationary perfect Bayesian equilibrium in the infinite-

horizon sequential second-price auctions.

Intuitively, given the expectation of declining prices, the only possible devi-

7These beliefs also satisfy the “no-signaling-what-you-don’t-know condition” in Fudenberg and
Tirole (1991) [53]. This means that a conditional probability system could be constructed for this
equilibrium such that it satisfies Fudenberg and Tirole’s conditions for perfect extended Bayesian
equilibrium. The set of all such equilibria coincides with the set of sequential equilibria in finite
games.
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ation from the equilibrium is a strategic delay of serious bidding, i.e. shading the

bid in one period in order to win an item later with a (possibly) lower price. If the

discount factor is equal to 1, which means waiting is at no cost, everyone has an

incentive to deviate. On the other hand, if the discount factor is 0, which makes it

a one-time game in nature, it is optimal for everyone to adhere to the prescribed

strategy. Therefore, the equilibrium is supported by a range of discount factor

that is bounded away from 18. A numerical exercise shows that if F is a uniform

distribution on [0, 1], δ̄ is around 0.92 for n = 109.

This part shall be concluded with some comments related to the literature on

durable good monopoly and sequential bargaining with the interpretation that a

single seller faces a continuum of infinitesimal buyers. Firstly, the features of the

current model correspond to the Coasian dynamics (Coase, 1972 [51]). Needless to

say, both models exhibit a decreasing sequence of prices, which is established upon a

stationarity assumption on strategies (Ausubel and Deneckere, 1989 [49]). Moreover,

the periodic efficiency sets forth the skimming property that higher-valued buyers

buy earlier.

Secondly, there is a discrepancy when the discount factor δ becomes close to 1.

In Fudenburg, Levine, and Tirole (1985) and others, perfect Bayesian equilibrium

always exists, while stationary equilibrium does not exist in the current model.

This is becuase buyers no longer have incentives to separate themselves. When δ

8In practice, some time is required between two consecutive auctions for organization and for
buyers to show up. It is reasonable to skip the discussion for equilibrium at δ close to 1, though
this range of δ may be of some theoretical interest.

9Fixing uniform distribution, further experiments suggest that δ̄ decreases as n becomes larger
and that given n, higher valuation supports a higher δ. The latter statement indicates that
stationary equilibrium exists at earlier stage even though discount factor is large.
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approaches to 1, it becomes costless to wait and mimic lower-valued buyers and thus

stationary equilibrium as described may not exist.

3.5 Efficiency

At last, we come to the efficiency argument of the sequential auctions. Before

that, it is helpful to first define an efficiency concept.

Definition 3.1. A multi-period mechanism is periodically efficient if the allocation

in each period is efficient.

Periodic efficiency is different from full efficiency, as the latter requires that the

agent with higher valuation receives a good with higher probability and, particularly,

receives a good sooner. In a dynamic model with entry and exit, it is possible that

a winner, or even a loser, in a later period values the good more than some winner

in a previous period. Generally, full efficiency is hard, if not impossible, to attain in

an infinite-horizon model. Thus, I would rather use the notion of periodic efficiency

in this chapter.

Corollary 3.2 (Efficiency). The infinite-horizon sequential second-price auctions is

periodically efficient.

The efficiency property is a direct result of the monotonicity as presented in

Proposition 3.2. This means in the infinite-horizon auctions, the winner in each

period is the highest-valued among all buyers in that period. Moreover, given the

fact that there is only one new entrant in each period, it may be inferred that if
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a good is awarded to a higher-valued buyer, then this buyer must be absent in

all previous periods, and that the losers do not have a valuation higher than any

previous winner. This indicates that for this particular model, periodic efficiency is

equivalent to full efficiency.

3.6 Conclusion

This chapter supplements the literature on sequential auctions and declining

price anomaly. My model extends the standard sequential auctions to an infinite

horizon and introduces a dynamic population where one new buyer enters the auc-

tion in every period. Symmetric and stationary equilibria are derived, where buyers

bid according to their private valuation less a pivotal continuation value. It is also

shown that in the stationary equilibrium, the price path is non-increasing.

The current analysis has several directions for further development. A natural

extension is to study a similar kind of sequential auctions, i.e. sequential pay-as-bid

auctions and sequential uniform-price auctions, where in every period multiple units

are sold and the same number of new buyers enter. However, in such settings, the

remainders’ inference of the distribution of opponents’ valuation are not proportional

to that of new buyers.

Other possibilities include studying an optimal design for the auctioneer in

this setting. Alternative lines of research may be dropping the assumption of unit

demand or allowing buyers to exit. These, however, introduce additional inter-

temporal considerations, as the expected payoffs are no longer identical functions of
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individual valuations. These questions, however, are left for future work.

3.7 Appendix: Proofs

Proof of Proposition 3.1. First, use the assumption that b is a function of x only

and rewrite the Bellman Equation (3.1) as

F n−2(y)(1− δ + δF (y))V (x, y)

= max
bi

E[xi −max b−i|bi > max b−i]F
n−1(b−1(bi))

+ δ

∫ y

b−1(bi)

V (x, y′)dF n−1(y′).

Apply the Envelope Theorem by taking partial derivative with respect to y,

(n− 2)F n−3(y)f(y)(1− δ + δF (y))V (x, y)

+ F n−2(y)δf(y)V (x.y)

+ F n−2(y)(1− δ + δF (y))V2(x, y)

= δV (x, y)(n− 1)F n−2(y)f(y)

where the subscript V2 means the partial derivative of V with respect to the second

argument. After simplification, it turns out that

V2(x, y)

V (x, y)
= − (n− 2)(1− δ)f(y)

F (y)(1− δ + δF (y))
.
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Notice that the right-hand side depends only on y not on x. Therefore, one solution

of V (x, y) is such that V (x, y) be decomposed to two separate functions of x and y

respectively. Let V (x, y) = φ(x)ψ(y). Then

ψ′(y)

ψ(y)
=
V2(x, y)

V (x, y)
= − (n− 2)(1− δ)f(y)

F (y)(1− δ + δF (y))
.

Integrating both sides with respect to y yields

log(ψ(y)) = −
∫ y

−∞

(n− 2)(1− δ)f(t)dt

F (t)(1− δ + δF (t))

= −(n− 2)

∫ y

−∞

(1− δ)dF (t)

F (t)(1− δ + δF (t))

= −(n− 2)

∫ y

−∞

( 1

F (t)
− δ

1− δ + δF (t)

)
dF (t)

= −(n− 2)[log(F (y))− log(1− δ + δF (y))]

= −(n− 2) log
F (y)

1− δ + δF (y)
.

Therefore,

ψ(y) =
(1− δ + δF (y)

F (y)

)n−2

.

Now apply the Envelope Theorem again by taking partial derivative with re-

spect to x, we have

F n−2(y)(1− δ + δF (y))φ′(x)ψ(y) = F n−1(x) + δ

∫ y

x

φ′(x)ψ(y′)dF n−1(y′).
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Plugging in ψ(y), it follows directly that

φ′(x) =
( F (x)

1− δ + δF (x)

)n−1

.

Given the common structure of both φ′(x) and ψ(y), denote

P (x) =
F (x)

1− δ + δF (x)
.

Then, V1(x, y) = φ′(x)ψ(y) = P n−1(x)/P n−2(y). Impose a reasonable boundary

condition that a buyer with valuation 0 has expected payoff 0, i.e. V (0, y) = 0 for

all y, we have

V (x, y) =

∫ x

0

P n−1(t)

P n−2(y)
dt.

Proof of Proposition 3.2. Taking derivative of b,

b′(x) =
d(x− δV (x, x))

dx

= 1− δP (x) + δ
(n− 2)P ′(x)

∫ x
0
P n−1(t)dt

P n−1(x)

=
1− δ

1− δ + δF (x)
+
δ(n− 2)P ′(x)

∫ x
0
P n−1(t)dt

P n−1(x)
> 0
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because

P (x) =
F (x)

1− δ + δF (x)
> 0,

P ′(x) =
(1− δ)f(x)

[1− δ + δF (x)]2
≥ 0.

Proof of Theorem 3.1. Denote si = b(xi) = xi − δV (xi, xi). Suppose other buyers

also follow this bidding strategy. Let b̂j = maxj 6=i bj, i.e. the highest bid among

the rest of buyers, and denote b̂j = x̂j − δV (x̂j, x̂j), where x̂j is then the highest

valuation among the rest of buyers.

The table below shows the payoffs of buyer xi in different situations. For

example, the grid in column 1 row 1 is the expected payoff when buyer xi bids b′i,

higher than si, while the highest bid of the others is even higher.

Bid of Buyer xi

Highest Bid of Others b′i > si bi = si b′′i < si

b̂j > b′i δV (xi, x̂j) δV (xi, x̂j) δV (xi, x̂j)

b′i > b̂j > si xi − b̂j δV (xi, x̂j) -

si > b̂j > b′′i - xi − b̂j δV (xi, x̂j)

b′′i > b̂j xi − b̂j xi − b̂j xi − b̂j

Table 3.1: Pay-offs in Sequential Second-Price Auctions

Then, it suffices to show that xi − b̂j < δV (xi, x̂j) if b′i > b̂j > si and that

xi − b̂j > δV (xi, x̂j) if si > b̂j > b′′i , which is equivalent to show that x − δV (x, y)

is increasing in x when x < y. This is straightforward if we take derivative with
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respect to x,

1− δV1(x, y) = 1− δP
n−1(x)

P n−2(y)
> 1− δP (y) =

1− δ
1− δ + δF (y)

> 0.

Given the structure of Bellman equation (3.1), if a buyer aims to win the good

in current period, then he cannot do better than adhering to strategy b provided

that others follow the same strategy. However, expecting a declining price, one may

want to wait for some later period to win the good with a low price.

Apply the one-shot deviation principle (Hendon, Jacobsen and Sloth, 1996 [56]

and Perea, 2000 [67]). Consider a buyer whose valuation is x. It is an interesting

case only if x is the highest among the current n buyers (otherwise, the bidder x

does not matter in the current period). Suppose bidder x underbids in one period

and makes a winning bid in the next period. The expected winning price in the

current auction is then b(E(X(2)|X(1) = x)), where X(k) means the k-th highest

order statistic of a sample of n. The expected winning price in the next period is

b(E(X(3)|X(1) = x)). Therefore, to prevent any attempt for such strategic delay, it

is sufficient that for all x,

x− b(E(X(2)|X(1) = x)) ≥ δ[x− b(E(X(3)|X(1) = x))]. (3.2)

Denote g(x, δ) = x− b(E(X(2)|X(1) = x))− δ(x− b(E(X(2)|X(1) = x))). Then,

b(x) < x for all x implies g(x, 0) > 0 and b(x) being increasing implies g(x, 1) < 0.

By a continuity argument, for a fixed x, there exists δx ∈ (0, 1) such that g(x, δ) ≥ 0
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for all δ ≤ δx. Now define

δ̄ = inf
0≤x≤1

{δx}.

Then, for all δ ≤ δ̄, condition (3.2) always holds and thus strategic delay is prevented

in the equilibrium described as Proposition 3.1.

On the other hand, according to the definition of δ̄, there is xδ such that

g(xδ, δ) < 0 for δ > δ̄. This means condition (3.2) is also necessary for the existence

of stationary equilibrium.
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