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In open-region electromagnetic simulations, the computational domain has to be 

truncated by an absorbing boundary condition (ABC) to model the infinite space. The 

performance of ABC strongly affects the accuracy of overall numerical simulation. For a 

class of advanced problems demanding high accuracy, such as in the modeling of medical 

detection devices, indoor wireless communication systems and remote sensing 

equipments, the received signal can be several orders of magnitude less than the 

transmitted signal. Furthermore, wide-band simulations require long running times for 

transients-based simulations, which increase the potential for instability. Therefore, 

accuracy and stability of absorbing boundary conditions are identified as critical in the 

design of numerical algorithms compatible with advanced applications.   

In this work, theory of Concurrent Complementary Operators Method (C-COM) 

in both transient and frequency-domain numerical simulations is investigated. The C-

COM is based on the basic premise of primary reflection cancellation. The C-COM 

applications to numerically derived ABCs in finite difference time-domain (FDTD) 



 

method, and to frequency domain ABCs in both finite difference frequency domain 

(FDFD) method and finite element method (FEM) method are developed. Extensive 

numerical experiments are conducted showing dramatic increase in accuracy when the C-

COM is applied in comparison to previous published techniques.  

Previous works that addressed the boundary instability arising from the 

application of the absorbing boundary condition used either the von Neumann analysis or 

the Gustafsson-Kreiss-Sundström (GKS) analysis. These earlier works, however, did not 

explain the inconsistencies that have been observed between the theoretical predictions 

and numerical experiments. This thesis presents a new stability analysis applicable to 

boundary conditions. This new analysis, referred to as Coupled Stability Analysis (CSA), 

is based on the fundamental assumption that absorbing boundary conditions are not 

perfect, and therefore, generate waves that reflect back into the computational domain. It 

is found that this analysis yields results that are fully consistent with those obtained from 

numerical experiments. As an important consequence of this analysis, and contrary to 

earlier conjectures, we show that Higdon’s absorbing boundary condition of order 3 (and 

possibly, higher orders) to be unconditionally unstable.  
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I. INTRODUCTION 

I.1 OPEN-REGION ELECTROMAGNETIC SIMULATIONS  

Second-order linear partial differential equations (PDEs) can be classified as 

elliptic, hyperbolic, or parabolic, depending on the coefficients of the equation. Examples 

of the physical phenomena described by the second-order PDEs include fluid dynamics, 

electromagnetics, acoustics, diffusion and heat flow, neutron diffusion and radiation 

transfer, and elastic wave in solids, … etc. [1]-[3].  Only very narrow range of real world 

physical problems can be solved using analytical methods such as separation of variables, 

integral solutions and series of expansion.  Numerical methods are important tools to deal 

with the majority of real-world problems, which are not solvable analytically. For the 

hyperbolic and parabolic problems, one of the popular numerical techniques is based on 

finite difference approximation of the partial derivatives, which gives an approximation 

of the PDEs directly. With the introduction of variational methods, PDEs can also be 

constructed as equivalent functionals. The variational methods form a common base for 

the Finite Element Method (FEM) and Weighted Residual Method (WRM). If integral 

forms of PDEs can be constructed, Boundary Element Method (BEM), or WRM can be 

used. The commonly used numerical methods for the physical phenomena described by 

the 2nd order PDEs are illustrated in Fig. 1. 
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 Fig. 1. Numerical methods used to solve physical problems described by the 2nd order PDEs. 

 

The hyperbolic or parabolic problems are usually spatially large or infinite space 

problems. Using numerical simulations to model these problems over infinite domain is 

impossible due to limited computational resources. Therefore, the computational domain 

has to be truncated to a finite size and on the truncated boundary, artificial boundary 

conditions needs to be applied to model the infinite space. For practical problems, the 

computational domain needs to be truncated as close as possible to the radiating objects 

to save time and computational resources.  Fig. 2 shows how an artificial boundary 

condition is applied to the truncated boundary to simulate the infinite space. The artificial 

boundary conditions applied to the truncated computational domain are named absorbing 

boundary conditions (ABCs), non-reflecting boundary conditions (NRBCs), or radiation 

boundary conditions (RBCs).  
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Fig. 2. Illustration of an open-region simulation. 

 

The solution to electromagnetic (EM) wave propagation is governed by 

Maxwell’s equations given by  

0B
D

JEH

HE

=•∇
=•∇

+
∂
∂

=×∇

∂
∂

−=×∇

ρ

ε

µ

t

t

       (1) 

where E is the electric field, H is the magnetic field, t is time, µ  and ε are the 

permeability and permittivity of medium, respectively, J is the volume current density, D 

is the electric flux density, B is the magnetic flux density, and ρ is the volume charge 

density. Maxwell’s equations are coupled first-order differential equations representing a 

hyperbolic system [4][5].  
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I.2 MESH TRUNCATION TECHNIQUES IN OPEN-REGION 

ELECTROMAGNETIC SIMULATIONS 

In computational electromagnetics, the Finite Difference Time-Domain (FDTD) 

method, the Finite-Difference Frequency Domain (FDFD) method, and the Finite 

Element Method (FEM) are widely used finite volume numerical techniques. When 

applying these numerical methods to an open-region EM simulation, artificial boundary 

conditions are necessary to terminate the truncated computational domain.  

Based on the method by which these artificial boundary conditions are 

constructed, they can be classified as analytically derived absorbing boundary conditions, 

numerically derived absorbing boundary conditions, or absorbing media. Boundary 

conditions strongly affect the accuracy of the overall simulation as has been documented 

extensively in numerous publications [1]-[15].  

The major challenge in the construction of ABCs includes two aspects: accuracy 

and stability. The higher accuracy an ABC can achieve, the less the reflected error will 

influence the simulation results. As any ABC generates reflections, the reflected fields, 

when interfering with the interior physical fields, results in instability. Intensive research 

showed that the current boundary conditions are still not accurate enough to achieve 

sufficient levels of accuracy. For instance, in high resolution sensing applications, 

medical non-destructive detection, and indoor wireless communication systems, the 

detected/received signals can be several orders of magnitude less than the transmitted 

signals. Therefore, in the numerical simulation of such systems, ABCs generating a 
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reflection as low as 1/100 (or −40 dB) with respect to the transmitted signals might not be 

sufficient to achieve the accuracy requirements of the system.  

A solution for problems where high accuracy is required is the Concurrent 

Complementary Operators Method (C-COM). Originally proposed in 1995, the 

Complementary Operators Method (COM) is simple, flexible, and efficient [16]. The 

COM operators were also extended to the general analytical ABCs in FDTD. The 

complementary operation can annihilate the first order reflections from an existing ABC. 

Compare with other artificial boundary conditions, the COM is the only technique which 

can effectively minimize the effects of evanescent wave. When compared with other 

ABCs, it needs approximately twice as much the CPU time, computer memory, or 

storage space.  

To take advantage of the strong absorption properties of the COM method and to 

avoid the extra consumption of computer resources, the concurrent complementary 

operators method (C-COM) was developed. The C-COM method averages the two 

independent complementary operations on an interface inside the computational domain. 

The C-COM method had already been successfully demonstrated on analytically derived 

ABCs such as Higdon’s ABC in time domain methods [17], and frequency domain finite 

difference method [18]. The C-COM has been used for guided microwave structure and 

optical beam modeling in which high accuracy is required [19]. 

I.3 ABSORBING BOUNDARY CONDITIONS 

The complementary operators method and its concurrent version are developed 

based on the average of two complementary operations developed for an existing 
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absorbing boundary condition (ABC). From the previous section, the ABCs can be 

derived either analytically or numerically.  

I.3.1 Analytically Derived Absorbing Boundary Conditions 

The analytically derived ABC is based on the one-way wave equation. A one-way 

wave equation describes the behavior of a wave propagating in only one direction. A one-

way wave equation describes a wave propagating along the x-direction in free space is 

given as 

0)1( =∂+∂ U
c tx        (2) 

where ∂x is the partial derivative in x, ∂t is the partial derivative in time t, c is the light 

speed, and U is the unknown field. The one-way wave equation represents a first order, 

perfect absorbing boundary condition for a plane wave propagating along the x-direction. 

This can be demonstrated as following: 

A plane wave propagating along the x-direction can be written as 

yjkxjktjyjkxjktj yxyx eReU −+−− += ωω      (3) 

where, ω is the radian frequency, R is the reflection coefficient that is generated by the 

imperfection of a boundary condition and it expresses the amplitude of the reflected wave 

relative to the amplitude of the incident wave, and kx is the wave numbers in x-directions. 

Substituting (3) into the one-way wave equation,  

c
jjk

c
jjk

R
x

x

ω

ω

+

+−
−=        (4) 
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As the wave is propagating along the x-direction only, ky = 0, and kx = ω/c. it follows that 

the reflection R = 0, which means that the one-way wave equation absorbs the outgoing 

wave perfectly.  

The Higdon’s ABC, which is a representative analytically derived ABC [14], is 

developed based on one-way wave equation. 

The Nth order Higdon’s ABC is given as 

NiU
c

UB
N

i
t

i
xN ,...,2,1,0)cos(

1

==∂+∂= ∏
=

φ    (6) 

where, BN denotes the Nth order boundary operator, φi is the incident angle which the 

propagating wave impinge the boundary. Obviously, when the incident angle is 0°, which 

means the wave is incident normal to the truncated boundary, the first order Higdon’s 

ABC reduces to the one-way wave equation.  

In the open-region simulations, suppose we have a two-dimensional 

computational boundary at x=a, the fields at any point to the left of the boundary can be 

expressed as 

yjkxjktjyjkxjktj yxyx eReU −+−− += ωω      (7) 

where, ω is the radian frequency, R is the reflection coefficient and it expresses the 

amplitude of the reflected wave relative to the amplitude of the incident wave. kx, and ky 

are the wave numbers in x and y directions respectively. Ideally we would like to have 

zero reflection from the computational boundaries. Therefore, the spurious reflection that 

is induced by the imperfect absorption of the computational wall is given by the second 

term in (4), 

yjkxjktj yxeR −+ω         (8) 
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By simple substitution of (4) into the Higdon’s ABC, the reflection coefficient R 

can be found 

∏
= +

+−
−=

N

i ix

ix
N kjjk

kjjkBR
1 cos

cos][
φ
φ      (9). 

 

I.3.2 Numerically Derived Absorbing Boundary Conditions 

Another important category of ABC is the numerically derived ABC. Examples in 

this category are the Liao’s and Colonius ABCs [20], [21]. The numerically derived 

ABCs are constructed by using the extrapolation of the numerical fields in both space and 

time. In numerically derived ABC, the boundary nodes are denoted as a linear 

combination of the interior nodes as long as the reflection generated by the boundary can 

be much less than the incident wave. As illustrated in Fig. 3, the boundary nodal value at 

current time t, U(m,n,t) is constructed from the linear combination of numerical fields, 

U(m-i,n-j,t), U(m-i,n-j,t-∆t),…, i,j=1,2,3…in both space and time. 

 



 9

m,n
m-3,n

m-3,n-1

m-3,n+1 m-1,n+1

m-1,n-1

y

x
 

Fig. 3. Illustration of the construction of numerically derived ABCs.  

 

Consider a mesh-truncation boundary parallel to the y-axis and located at x=x0. 

We denote the field at a point in a two-dimensional computational domain as l
nmu , , where 

tl
ynxm

l
nm uu ∆

∆∆≡ ,,         (10) 

Therefore, using a numerically derived ABC, the fields at the boundary nodes can be 

written as 

k
ji

I

Ii

J

Jj

l

k
ijk

l
nm uu ,

1
, ∑ ∑∑

−= −= =

= β       (11) 

where βijk are constant coefficients. The reflection generated by the numerically derived 

ABCs can be derived similar to the derivation of the reflection for analytically derived 

ABCs. In the two-dimensional numerical domain, the field 

ynjkxmjktlj
d

ynjkxmjktljl
nm

yxyx eReu ∆−∆+∆∆−∆−∆ += ωω
,    (12) 
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substituting this field into (11), the reflection constant Rd can be found, which is a 

function of (∆x,∆t). 

I.4 OUTLINE OF THESIS 

The research work presented in this thesis addresses three areas: 1) developing C-

COM operators on numerically derived ABCs in FDTD, 2) developing C-COM operators 

on ABCs in frequency domain numerical techniques, and 3) developing accurate stability 

analysis scheme for analytically derived ABCs.  

In chapter 1, the theory of complementary operators is briefly described. The 

COM operators for both analytically derived ABCs and for numerically derived ABCs 

are developed. The COM operators for frequency domain numerical techniques are also 

introduced. The C-COM implementation in both time domain and frequency domain 

numerical techniques is also developed. 

In chapter 2, the applications of C-COM in open-region electromagnetic 

simulations are investigated. The applications of C-COM in this thesis include the 

applications on the numerically derived ABC in FDTD and the typical ABC in frequency 

domain using both Finite Difference and Finite Element techniques. Comparison study 

between the Perfectly Matched Layer (PML) method and C-COM is performed on 

radiation problems and waveguide problems. 

Earlier works on stability issues resulted from ABCs were not inclusive. Some 

inconsistence was observed in earlier publications [22]-[27]. In this work, a coupled 

stability analysis method based on the stability analysis of linear time invariant (LTI) 

system in digital signal processing is developed. In chapter 4, the coupled stability 
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analysis is discussed and applied to Higdon’s ABC in FDTD. The results using this novel 

stability analysis method are consistent with the phenomena observed in numerical 

experiments.  Within the framework of stability, the effects of weighting functions in the 

finite difference scheme are investigated in chapter 5.  
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II. COMPLEMENTARY OPERATORS FOR ABSORBING 

BOUNDARY CONDITIONS  

 

II.1 THEORY 

In 1995, Ramahi introduced the complementary operators method (COM) as a 

simple, flexible and efficient technique for mesh truncation in FDTD simulation. The 

original COM is developed based on Higdon’s ABC [16]. The COM operators were also 

extended to the general analytical ABCs in FDTD. The COM operators, are two 

independent operators conducted on the existing absorbing boundary conditions to 

annihilate the first order and odd-order reflections.  

The idea of the COM operators is to annihilate the reflection arise from existing 

absorbing boundary conditions [16]. If with such a pair, two operations on an absorbing 

boundary condition can generate reflection R and –R, which are equal in magnitude but 

180 degree out of phase, then the average of the solutions resulted from two operations 

will have a perfect absorption of an outgoing wave. However, the two independent 

solutions have multi-reflections from the absorbing boundary. Consequently, only the 

first order reflection, which generated by the ABC, is expected to be suppressed 

successfully. The complementary operations are illustrated in Fig. 4.  
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ABC1

Incident = 1

Reflected = +R
ABC1

Incident = 1

Reflected = +R

∑2/1 ∑2/1

ABC2

Incident = 1

Reflected = -R
ABC2

Incident = 1

Reflected = -R

Incident = 1Incident = 1  

Fig. 4. Illustration of complementary operation. 

 

II.2 COMPLEMENTARY OPERATORS METHOD (COM) IN FINITE 

DIFFERENCE TIME-DOMAIN 

II.2.1 Complementary Operators for Analytically Derived ABC 

A generalized Higdon’s ABC is a representative analytically derived ABC [7], 

∏
=

=∂+∂=
N

i
t

i
xN U

c
UB

1

0)cos( φ      (1) 

An operation pair, the space derivative and the time derivative, (∂x, ∂t), reported 

in [16], is used to generate complementary solutions. Applying the complementary 

operator pair (∂x, ∂t) to the Higdon’s ABC, we obtain two separate boundary conditions 

∏
−

=

− =∂+∂∂=
1

1

0)cos(
N

i
t

i
xxN U

c
UB φ      (2) 

and, 
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∏
−

=

+ =∂+∂∂=
1

1

0)cos(
N

i
t

i
xtN U

c
UB φ      (3) 

where −
NB  and +

NB  denotes the complementary operation of the Higdon’s ABC with the 

complementary operator pair. The field, U is subject to a two-way propagation wave, in 

two-dimensional space, let 

yjkxjktjxjktj yxx eeReU −+− += )( ωω      (4) 

in which, ω is the radian frequency, R is the reflection coefficient, and kx,ky are the wave 

numbers in x, y directions, respectively. Substituting the field U into the complementary 

pairs, we have the reflections of the two complementary operations 

∏
−

=

−

+
+−

+=
1

1 cos
cos)1(][

N

i ix

ix
N kjjk

kjjkBR
φ
φ      (5) 

and, 

∏
−

=

+

+
+−

−=
1

1 cos
cos)1(][

N

i ix

ix
N kjjk

kjjkBR
φ
φ      (6) 

Obviously, the average of the two reflections cancels the primary reflection arises from 

the original Higdon’s ABC. Therefore, the complementary pairs generate two 

complementary boundary conditions. The average of the two solutions using these 

complementary boundary conditions cancels the primary reflection generated by the 

original boundary condition. 

 

II.2.2 Complementary Operators for Numerically Derived ABC  

Numerically derived ABCs use extrapolation method to solve the boundary 

unknowns based on the numerical fields in the interior computational domain. Consider a 
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mesh-truncation boundary parallel to the y-axis and located at x=x0. When implemented 

in an FDTD scheme, any numerically-derived ABCs enforced at x= x0 can be expressed 

as a weighted polynomial of space- and time-shift operators as [28]:  

0
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑ ∑∑

−= −= =

−−− U TSSIBU
I

Ii

J

Jj

K

k

kj
y

i
xijkβ    (7) 

Where U  is the unknown field, and βijk are constant coefficients. I is the identity 

operator, Sx
-i is the space-shift operator along the x-axis, Sy

-i is the space-shift operator 

along the y-axis, and T-i is the time-shift operator. The shift operators are explicitly 

expressed as follows: 

),,(),,(

),,(),,(

),,(),,(
),,(),,(

yibyaxNtUbyaxNtUS

byxiaxNtUbyaxNtUS

byaxtiNtUbyaxNtUT
byaxNtUbyaxNtIU

i
y

i
x

i

∆−=======

=∆−======

==∆−=====

=======

−

−

−

   

where ∆x and ∆y are the mesh spacing in x and y direction, respectively, and ∆t is the 

time step. Equation (7) simply expresses the relationship between the field, U, at the 

boundary node in terms of interior nodes. 

The essential two operators in C-COM are ∂x and ∂t. In an FDTD scheme, these 

two operators are converted to the following discrete operators:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
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−−

2

11 TI
x
SI

x         (8) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
−

→∂
−−

2

11 SI
t
TI

t         (9) 



 16

Notice that the second term in each expression constitutes an averaging process 

that is essential to insure both full complementariness and stability [16].  

When applying the C-COM operators to the numerical boundary operator in (7), 

we obtain the new complementary absorbing boundary condition pair 

BTI
x
SIBN ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
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⎝

⎛
∆
−

=
−−

−

2

11

      (10) 

and 

BSI
t
TIBN ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
−

=
−−

+

2

11

      (11) 

A time-harmonic plane wave incident on the boundary at x=x0 will experience a 

reflection from the terminal boundary. The field due to the incident wave for x <x0 can be 

expressed as 

ttyyyxxxttyyyxxx njnjknjk
d

njnjknjk eReU ∆+∆−∆∆+∆−∆−
∆ += ωω      (12) 

The field U∆, is defined at discrete points in space, x=nx∆x, y=ny∆y, and the discrete points 

in time, t=nt∆t. kx, and ky are the wave number in x, and y direction, respectively, ω is the 

radian frequency, and Rd is the reflection coefficient. 

Applying (10) and (11) to (12), and assuming that the reflection coefficient of the 

numerical absorbing boundary operator B is R[B], we obtain the following two reflection 

coefficients: 

][][ BReUBR xxjk
Nd

∆− −=       (13) 

and 

][][ BReUBR xxjk
Nd

∆+ =       (14) 
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Notice that irrespective of whether the boundary operator is analytically-derived 

or numerically-derived, the application of the complementary operators resulted in 

reflections coefficients that are precisely 180o out of phase, hence insuring full 

complementariness. 

 

II.3 COMPLEMENTARY OPERATORS IN TIME-HARMONIC 

COMPUTATIONAL SIMULATIONS 

In time-harmonic computational electromagnetics, finite difference and finite 

element method both are popular numerical techniques. The complementary operators in 

time-harmonic computational electromagnetics are based on finite-difference operations.  

Consider a computational domain terminated at x=x0, a finite-difference operator 

pair, 1−− −= SIDx , 1−+ += SIDx , operates on a frequency-domain absorbing boundary 

operator B [28],  

0)( 1 =−= −− UBSIBUDx       (15) 

and, 

0)( 1 =+= −+ UBSIBUDx       (16) 

The corresponding reflection coefficients can be derived 

][][ BReBDR xxjk
x

∆− −=       (17) 

][][ BReBDR xxjk
x

∆+ =        (18) 

in which, R[B] is the reflection coefficient of the original absorbing boundary operator 

applied to, and  xk  is the wave number in the x-direction. Notice that ][ BDR
x

+  and 
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][ BDR
x

−  are precisely 180 degrees out of phase and, hence full complementariness is 

achieved analytically and numerically. 

 

II.4 THEORY OF CONCURRENT COMPLEMENTARY OPERATORS 

METHOD  

Since the COM operation requires two independent operations, this needs more 

computer resources and CPU time than the regular absorbing boundary conditions. The 

concurrent complementary operators method (C-COM), which makes the two 

independent complementary operations done on a periphery in the computational domain, 

was developed to take advantage the superb absorption of the COM method and avoid the 

additional computation [17]. With the concurrent version of COM, not only the first order 

reflection can be annihilated, but also the higher order multi-reflection can be suppressed, 

as illustrated in Fig. 5. By averaging the fields at the interface between the boundary zone 

and the interior region, the final reflections entering the interior region are of the second 

order of the original reflections.  
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Fig. 5. Illustration of the reflection resulted from C-COM operation. 

 

II.4.1 C-COM Implementation in Transient Simulations 

When implementing C-COM in FDTD method, we first divide the computational 

domain into two regions: a boundary zone and an interior region, as shown in Fig. 6. The 

interior region includes the simulated structure and any localized sources.  

To reduce the side boundary reflections, in the boundary zone, instead of defining 

one storage location for each field component, we allocate two storage (memory) 

locations to each field component. Then, a single simulation of the problem is performed 

in the interior region, and stored. Within the boundary zone, the field components are 

stored in two arrays independently. Next, we apply the two complementary boundary 

operators to two stored boundary zone field sets, respectively. Notice that each set of 

fields in the boundary zone is updated independently of the other set. This amounts to 

having two independent simulations in the boundary zone.  
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The next step is to connect the solutions in the interior zone and boundary zone. 

This is performed by averaging the two values obtained for each field at the interface 

lying between the interior zone and boundary zone. The distance from the interface to the 

boundary has to be at least the width (size) of the stencil, which is essential for the 

discretization of the ABC.  

 

Boundary 
region

Interior region Difference 
Stencil

Terminal 
BoundariesEz Hx Hy

Ez fields are averaged along 
these perimeters

 

Fig. 6. Illustration of implementation of C-COM in FDTD.  

 

The above steps required for implementation of the C-COM for a two-

dimensional TM case can be summarized as following: 
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1) Ez, Hx, and Hy are updated in the interior region according to standard FDTD 

schemes. 

2) On the mesh terminal boundary, apply BN- on Ez
(1) and BN

+ on Ez
(2). 

3) Within the boundary layer, Ez
(1) is updated from Hx

(1), and Hy
(1), and Ez

(2) is 

updated from Hx
(1) and Hy

(1). Both sets are updated using standard FDFD 

schemes. 

4) Ez
(1) and Ez

(2) are averaged along the interface connecting the two regions, (see 

Fig. 6). The new values of Ez
(1) and Ez

(2) along the interface are given the 

value of the average (Ez
(1)+ Ez

(2))/2. 

5) Advance time by one-half time step. 

6) Update Hx and Hy in the interior region. At the interface, Hx and Hy in the 

interior region will use (Ez
(1)+ Ez

(2))/2 as calculated in step 4. 

7) In the boundary layer, Hx
(1) and Hy

(1) are updated using Ez
(2). 

 

The procedure outlined above annihilates reflections arising from side boundaries. 

To extend the annihilation to corner reflections, four storage locations need to be 

assigned to each field in the boundary zone to account for secondary reflections. Then an 

identical averaging procedure to the one outlined above is performed, except having four 

field values to update the in the boundary zone and four field values to average at the 

interface. 
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II.4.2 C-COM Implementation in Time-Harmonic Simulations 

The implementation of C-COM in frequency-domain numerical simulation is of a 

great difference, comparing with that of C-COM in time-domain. In time-harmonic 

numerical techniques, we solving a steady state electromagnetic problem rather than a 

time dependent problem, therefore, a matrix system, resulted from the time-harmonic 

equations (Helmholtz equations) is developed to characterize the problem. As an 

example, we illustrate the C-COM implementation in a two-dimensional TM problem.  

The first step in the implementation of the time-harmonic numerical techniques is 

to divide the computational region into grid. Following a procedure highly similar to that 

used in the implementation of the C-COM in time-domain simulation, we divide the 

computational domain (grid) into two non-overlapping regions⎯a boundary region and 

an interior region as shown in Fig. 7. The interior region includes all radiating or 

scattering objects, while the boundary region is an empty domain set up purely for 

computational purposes. To each field node in the boundary region we assign two field 

values, 1
zE  and 2

zE . In the interior region we assign a single field value, zE  to each node, 

as in conventional implementation.  

Next, we apply either frequency domain numerical techniques to each node in the 

interior region as in standard implementation. In the boundary region, we apply the 

numerical techniques to each set of fields designated by the superscripts 1 and 2.  

The next step is the implementation of the complementary operators. The first 

operator −
xD  is applied to the set of fields denoted by 1

zE  whereas the second operator +
xD  

is applied to the second set of fields denoted by 2
zE .  
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The final step links the boundary and interior regions. This is accomplished by 

constructing an interface between the two regions. On the interface, the field values 

needed from the boundary region are obtained from the average values of 1
zE  and 2

zE .  

Let Γ be the interface perimeter between the boundary layer and the interior region. (The 

interior region is inclusive of Γ.)  Let us focus on the left-hand-side segment of Γ shown 

in Fig. 7.  On Γ, the update equation for the fields uses the average field values 

( 1
zE + 2

zE )/2 from the left-hand side and zE  from the interior region. The averaging is 

processed by modifying the coefficients of the matrix system by replacing the 

corresponding coefficients of 1
zE  and 2

zE  so that the average of the two fields are 

obtained through the modified equations.  

 

 

Fig. 7.  Illustration of C-COM implementation using finite difference frequency domain method. 
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II.5 CONCLUSIONS 

In this chapter, the complementary operators method theory and its concurrent 

version for analytically derived absorbing boundary conditions (ABCs) in time-domain 

open-region simulations are introduced. The C-COM theory is extended for numerically 

derived ABCs in time-domain simulations. The C-COM theory and implementation for 

time-harmonic numerical techniques are developed.  
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III. APPLICATION OF C-COM IN OPEN-REGION 

RADIATION AND SCATTERING PROBLEMS 

In this chapter, the C-COM applications in open-region electromagnetic 

simulations are developed. The C-COM operators for Liao’s ABC in FDTD, the C-COM 

for Bayliss-Turkel ABC in both FDFD and FEM are presented. Comparison study 

between C-COM and PML in frequency domain method is also presented.  

III.1 C-COM ON LIAO’S ABC IN FINITE DIFFERENCE TIME-

DOMAIN 

As discussed in chapter 1, the Liao’s ABC is a typical numerically derived ABC, 

based on the extrapolation of the wave fields in space and time using Newton backward-

difference polynomial. The Liao’s ABC at the boundary x=x0, is given as [21]  

∑
=

+ ∆−∆−−−=∆+
N

j

N
j

j tcjxtjtUCxttU
1

0
1

0 ),)1(()1(),( α   (1) 

where c is the speed of light, α is a constant in the range 0.5<α<2, the binomial 

coefficient N
jC  is  

)!(
!
jN

NC N
j −

=          (2) 

Converting (1) to a generalized numerically derived ABC form, Liao’s ABC 

reduces to: 

0)(
1 1

=+−= ∑∑
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−− USTIUB
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j

ji
ij

N
L β      (3) 
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where βij are constant coefficients, and N,M is the order of the operator.  

Applying the complementary operators on (3), we have: 
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To demonstrate the validity of the above implementation, we present a numerical 

experiment where the C-COM is applied to Liao’s 2nd and 3rd order ABCs. (This 

procedure will be referred to as C-COM(Liao2) and C-COM(Liao3).) We consider the 

problem of a current source radiating in a two-dimensional free space (TM polarization).  

The size of the computational space is 31∆x x 31∆y. For simplicity, we consider a 

uniform mesh in the x and the y directions, with a space step ∆x = ∆y = ∆s = 0.015m and 

time step ct∆9.0 , where ct∆  is the Courant limit. The source is located at the center point 

(16∆x,16∆y). The temporal form of the source is a compact pulse given by the 

convolution )(*)( thth , where )(th  is defined as: 

⎩
⎨
⎧ ≤≤+−

=
otherwise

tttt
th

0
0))sin(3)sin(12)sin(15(10

)( 321
4 τωωωπ

   (6) 

where, 910−=τ , 3,2,1,/2 == iii τπω , … 

An observing point is chosen at (19∆x,19∆y). The C-COM averaging layer perimeter 

is positioned 10 cells from the mesh terminal boundaries in all directions.    

Fig. 8 shows the normalized error at the observation point when using Liao 2nd, Liao 

3rd, C-COM(Liao2), and C-COM(Liao3). The normalized error is defined as 
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)max(
log

ref

refabc

E
EE

error
−

=  

where Eabc is the solution obtained using the different boundary condition schemes and 

Eref  is the reference numerical solution obtained devoid of any boundary reflections. 

From Fig. 8, we observe that the C-COM operation resulted in a significant reduction in 

the reflected field. In fact, since the pulse energy is confined to a support not exceeding 

100 time steps, we observe an effective reduction in the reflected pulse of several orders 

of magnitude.  Additional key observation is the stability of the solutions. For the case of 

C-COM(Liao3), the simulation was run for 100,000 time steps and the solution did not 

exhibit any instable behavior, as shown in Fig. 9. Equally encouraging is the fact that the 

simulation did not generate any instability from the corner region, which is known to 

induce catastrophic instabilities [27]. This stable behavior is in sharp contrast to the case 

when C-COM is applied on analytic ABCs such as Higdon’s operators [27]. 

 

 

 



 28

0 200 400 600 800
-10

-8

-6

-4

-2
C-COM Liao 2nd

C-COM Liao 3rd

 

Liao 2nd

 

Liao 3rd

 

N
or

m
al

iz
ed

 e
rr

or

Time Step 

 

Fig. 8. Comparison of the error of C-COM on Liao’s 2nd and 3rd order ABC.  

 

 

Fig. 9. Stabile behavior of the FDTD simulation with C-COM(Liao3). 
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III.2 C-COM IN FINITE DIFFERENCE FREQUENCY-DOMAIN 

Although the time-domain and frequency-domain simulations are two different 

mathematical representations of the same physical phenomenon, the numerical solution 

paradigm could be totally different. Therefore, the complementary operator pair in time-

domain needs to be adapted to fit the particular numerical techniques in frequency-

domain.  

 

A. C-COM on Bayliss-Turkel ABC in Finite Difference Frequency-Domain 

In a two dimensional time-harmonic computational electromagnetic problem, the 

governing equation is the Helmholtz wave equation, which, for the case of TM-

polarization is given by 

022 =+∇ zz EkE        (7) 

where k is the wave number. (For the case of TE-polarization, Ez is replaced by Hz.)  The 

field Ez corresponds to the scattered or total field. (The physical boundary conditions 

pertaining to the scattering object will be adjusted in accordance with the formulation 

used.) 

The basic idea of Bayliss-Turkel ABC is to construct a weighted sum of three 

partial derivatives of the field: 1) a spatial partial derivative in the direction of outgoing 

wave propagation, 2) a spatial partial derivative in a direction transverse to the direction 

of outgoing wave propagation, and 3) a time partial derivative. Properly constructed, this 

differential boundary operator systematically annihilates an outgoing scattered wave, 

leaving a remainder term that represents the residual error of the process. Consider 
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solutions U(R,θ,φ,t) in a spherical coordinates system,  forming a partial derivative 

operator based on one-way wave equation, 

Rtc
L

∂
∂

+
∂
∂

=
1        (8) 

The first-order Bayliss-Turkel boundary operator is given as 

R
LB 1

1 +=         (9) 

and the remainder (error) of the first-order boundary operator is )( 3−RO . The Nth Bayliss-

Turkel boundary operator can be obtained via a recursion relation: 

1)12( −
−

+= NN B
R

NLB       (10) 

The remainder term is )( 12 −− NRO . 

For a planar (Cartesian) boundary, the Nth order BT operator in frequency domain 

for a planar boundary is reduced to a Higdon’s ABC  

N
nN jkB )( +∂=        (11) 

where ∂n is the partial derivative of the field in the direction normal to the computational 

boundary. When the outer boundary is planar and coinciding with the Cartesian planes, 

the BT condition reduces to Higdon’s boundary condition when it is applied in the 

frequency domain. 

Applying the FDFD scheme to the free-space Helmholtz equation at an interior 

node ( )iji, , we have  

( ) ( ) ( ) ( ) ( ) ( ) 0,41,1,,1,1 22 =−∆+−+++++− iziziziziz jiEkjiEjiEjiEjiE  

(12) 
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In the boundary region, we apply the finite-difference equation to each set of 

fields designated by the superscripts 1 and 2, we have 

( ) ( ) ( ) ( ) ( ) ( ) 0,41,1,,1,1 1221111 =−∆+−+++++− bzbzbzbzbz jiEkjiEjiEjiEjiE  

(13) 

( ) ( ) ( ) ( ) ( ) ( ) 0,41,1,,1,1 2222222 =−∆+−+++++− bzbzbzbzbz jiEkjiEjiEjiEjiE   

(14) 

The next step is the implementation of the complementary operators. The first 

operator 1−+ += SIDx  is applied to the set of fields denoted by 1
zE  whereas the second 

operator 1−− −= SIDx is applied to the second set of fields denoted by 2
zE . More 

explicitly, we have 

0}{ 1 =+
zEBD

x
        (15) 

0}{ 2 =−
zEBD

x
        (16) 

The final step links the boundary and interior regions. This is accomplished by 

constructing an interface between the two regions. On the interface, the field values 

needed from the boundary region for the FDFD equation are obtained from the average 

values of 1
zE  and 2

zE .  Let Γ be the interface perimeter between the boundary layer and 

the interior region. (The interior region is inclusive of Γ.)  On Γ, the update equation for 

the fields uses the average field values ( 1
zE + 2

zE )/2 from the left-hand side and zE  from 

the interior region. Thus, the finite difference equation for the fields on Γ is given by  

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) 0,41,1,,1           

,1,1

22

21

2

1

=−∆+−++++

+−+−

ΓΓΓ jiEkjiEjiEjiE

jiEjiE

zzziz

bzbz  
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(17) 

Similar equations are applied on the other three sides of Γ.  The FDFD equations 

for the corner nodes of the interior region are slightly different.  For example, the finite 

difference equation for the upper left-hand corner node is given by 

( ) ( ){ } ( )

( ) ( ){ } ( ) ( ) ( ) 0,41,1,1,

,1 ,1,1

2221

21

2

1
            

2

1

=−∆+−++++

+++−+−

ΓΓ

Γ

jiEkjiEjiEjiE

jiEjiEjiE

zzbzbz

zbzbz

  

(18) 

The width of the boundary region must be greater than the width of the stencil 

demanded by the differential operator used in the C-COM.  For instance, if B is a 3rd 

order BT operator, then the order of the C-COM operation is 4, and consequently, the 

width of the stencil needed will be 5. This implies that the boundary region has to be at 

least 6 nodes wide. 
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Fig. 10. The Finite-Difference Frequency-Domain grid highlighting the interior and boundary 

regions designated for the application of the C-COM. Also shown is the interface perimeter Γ, 

along which the fields from the boundary region are averaged. 

 

To test the effectiveness of the C-COM on the absorption of outgoing waves, we 

consider a two-dimensional radiation problem with computational domain of 24∆ x 

24∆. (In numerical experiments given here, the grid will be uniform in the x- and y-

directions with ∆ = 0.025λ.).   We place a current source right at the center (12∆, 12∆).  

Let the exact field at each of the monitor points be Eex.  The computed field is 

approximately given by Ec-com. The normalized percentage error is then given by 

ex

comcex

10 E
EE  20log Error Normalized

−−
=     (19) 
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The exact solution, Eex is obtained from the series solution. Notice that the exact 

solution includes numerical errors, which are not attributed to boundary condition 

reflections such as numerical dispersion. Fig. 11 shows the normalized error when using 

C-COM4 for the radiation problem. The maximum error is –45 dB, which was observed 

at neighbor nodes of the current source. Due to the Bessel series characteristics, the 

theoretic solution is singular at the source point, therefore, the reflection observed at the 

neighbor nodes of the source node could be overestimated due to the space resolution, 

i.e., if the space step is smaller, the reflection is expect to be smaller, compared to an 

analytical solution obtained using series solution. 

 

 

Fig. 11. Normalized error of numerical experiment using C-COM4 in FDFD.   

 

Next, we turn to the problem of plane TM (transverse-magnetic, or E-wave) 

scattering by a 2.0λ x 2.0λ perfectly conducting square cylinder. The size of the 

computational domain is 54∆ x 54∆.  This experiment is chosen in order to study the 
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performance of C-COM in the shadow region of a scatterer where the scattered field has 

a relatively high magnitude in comparison to other regions around the scatterer.  The 

outer boundary is positioned such that the separation between it and the conductor is 

0.35λ. A total of 164 nodes span the observation contour, starting from the lower left-

hand corner as shown in Fig. 12. Fig. 13 (a) and (b) show the magnitude of the scattered 

field on the observation contour for two different angles of incidence of φ=0o and φ =45o. 

The accuracy of the C-COM4(2,7) is observed to be quite satisfactory, especially in the 

shadow region of the scatterer. 
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Fig. 12.  Computational domain used for the problem of plane wave TM scattering from a 

perfectly conducting slab measuring 2.0λ x 2.0λ.  
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(b) 

Fig. 13. Magnitude of the scattered field along Γ  for the geometry shown in Fig. 4, The node 

numbering starts with the lower left-hand corner, as calculated using FDFD with C-COM4(2,7) 

(C-COM), and the reference solution (Reference), for two different angles of incidence (a) φ = 

0.0o,  (b) φ = 45o. 
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For the next numerical experiment, we study the TM and TE scattering from a 

thin perfectly conducting rectangular slab measuring 0.2λ x 3λ. The size of the 

computational domain is 77∆ x 21∆.  The outer boundary is positioned such that the 

separation between it and the conductor is 0.4λ, as illustrated in Fig. 14.  Fig. 15 (a) and 

(b) show the magnitude and phase of the scattered field due to a TM plane wave 

incidence. The figures show the scattered field as calculated using the C-COM method 

and the reference solution for comparison, at an observation contour Γ as calculated 

using the FDFD method with C-COM4(2,7). A total of 136 nodes span the observation 

contour Γ . The numbering of the nodes starts at the lower left-hand corner and proceeds 

clockwise. Results are only shown for field values on the upper half of the contour due to 

the symmetry of the solution.  The results are presented for C-COM4(2,7) and the 

reference solution. For this and the following experiments, the reference solution is a 

reflection-free solution obtained when solving the problem in a domain large enough, 

while applying C-COM4(2,7), such that the boundary reflections are very small.   
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Fig. 14.  Computational domain used for the problem of plane wave scattering from a perfectly 

conducting slab measuring 3λ x 0.2λ.  
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Fig. 15. Scattered field along Γ  for plane wave incidence, TM-polarization (geometry shown in 

Fig. 4). The node numbering starts with the lower left-hand corner and proceeds clockwise. 

Because of symmetry, only filed points along the upper half of the contour are plotted. Field 

calculated using FDFD with C-COM4(2,7)  (C-COM) and the reference solution (Reference) (a) 

Magnitude (b) Phase. 
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The same thin plate discussed above, measuring 0.2λ x 3λ, is studied under plane 

TE wave excitation. An identical computational geometry is used for both the scattering 

structure and computational domain.  Unlike the results presented above where the field 

was plotted on an observation contour very close to the surface of the scatterer, here, we 

show the surface current density. Fig. 16 and Fig. 17 show the magnitude and phase of 

the surface current density for two different angles of incidence.  Considering the close 

proximity of the perimeter of the computational domain from the scatterer, we observe a 

very strong agreement between the solution obtained using the C-COM and the reference 

solution. The strong performance of the C-COM solution is especially noticeable when 

scattered fields impinge at the computational boundary at or near-grazing incidence.  

For the two perfectly conducting scatterers chosen as representative geometry, the 

numerical results obtained show a very strong agreement between the C-COM solution 

and the reference solution. Such favorable agreement is achieved despite the very close 

proximity of the conductor to the outer boundary. The C-COM method also demonstrates 

effectiveness in predicting solutions with high degree of accuracy even when the solution 

is dominated by waves traveling at near-grazing incidence to the terminal boundary, as 

was the case for the end-on incidence in TM and TE-polarization scattering.  
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(b) 

Fig. 16. Surface current density along the surface of a perfectly conducting slab for the case of 

broadside incidence, TE-polarization. Because of symmetry, only half of the surface span is 

considered. Node 30 corresponds to the middle of the left-hand-side surface. Nodes increase in 

number in the clockwise direction. (a) Magnitude (b) Phase. 
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(b) 

Fig. 17. Surface current density along the surface of a perfectly conducting, slab for the case of 

end-on incidence, TE-polarization. Because of symmetry, only half of the surface span is 

considered. Node 3 corresponds to the middle of the left-hand-side surface. Nodes increase in 

number in the clockwise direction. (a) Magnitude (b) Phase. 



 42

 

B. Comparison Study on C-COM and PML in Finite Difference Frequency-Domain 

 

A comparison study between PML and C-COM is investigated in a 15∆×15∆ 

interior computational domain, with a current source placed at the center, as illustrated in 

Fig. 18. The exact solution is obtained by using the series solution. The PML requires 8 

layers extra. Notice that this extra requirement by the PML method means that the total 

computational domain size (for the PML simulation) is 38∆×38∆ which is comparable to 

the extra memory and CPU time needed for C-COM4. The observed reflections at edges 

parallel to outer boundary, including the averaging interface, the first layer, the second 

layer and the third layer next to the averaging interface, are plotted in Fig. 19. The 

numerical experiments show that with C-COM4, even inside the boundary zone where 

the averaging takes place, the reflection is significantly reduced in comparison to the 

PML solution. At the same computational resource cost of PML, we can easily reach 

more than 10dB less reflection by using C-COM4 boundary treatment. 
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Fig. 18. A radiation problem numerical experiment. 
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Fig. 19. Observed reflection at different locations of the numerical experiment.  
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III.3 C-COM IN FINITE ELEMENT METHOD 

A. Application of the C-COM on Bayliss-Turkel ABC in Finite Element Method 

Using finite difference scheme of Bayliss-Turkel (BT) ABC, it can be 

implemented in a FEM algorithm to absorb the outgoing wave [32].  This implementation 

of the boundary condition provides a simple and easy way to integrate the absorbing 

boundary conditions developed in time-domain into the time-harmonic computational 

electromagnetics. 

For a planar (Cartesian) boundary, the Nth order BT operator in frequency domain 

is given by 

N
nN jkB )( +∂=        (20) 

Using finite difference scheme, the boundary unknowns, Ub, can be expressed as a 

function of interior fields, Ui, 

ib BUU =         (21) 

The interior fields, Ui, are calculated from the finite element discretization of the 

Helmholtz equation. For brevity, the FEM formulation of Helmholtz equation is not 

presented here. Starting from the FEM matrix system of Helmholtz equation, 

}{}]{[ FUM i =        (22) 

Next, we integrate the boundary unknowns into the FEM matrix system, we have 
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where the boundary operator matrix Mb subject to two sets of equations with respect to 

the two complementary operators, 
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The next step is to average the C-COM zone solutions of the two sets of 

complementary operations.  Right on the interface perimeter of C-COM zone and interior 

computational domain, the nodal fields subject to two sets of equations 
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The C-COM can then be implemented easily by modifying the coefficients matrix 

in the FEM matrix system.  The averaging layer in a FEM system, using triangle 

elements, is illustrated in Fig. 20.  
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Fig. 20. FEM C-COM implementation illustration. 

 

To test the absorption effectiveness of the C-COM in FEM, we consider a two-

dimensional radiation problem with a current excitation located right at the center of the 

computational domain. The computational domain is 20∆x20∆, (In numerical experiments 

given here, the grid will be uniform in the x- and y-directions with ∆ = 0.025λ.).  

Let the exact field at each of the monitor points be Eex. The normalized percentage 

error is then given by 

||log20 10 ex

comcex

E
EE Error Normalized

−−
=     (28) 
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The exact solution, Eex is obtained from the series solution. The normalized error of the 

numerical experiments using C-COM4 is shown in Fig. 21. The maximum reflection 

observed is –45 dB, which occurs at the neighbor nodes of the source.  

  

Fig. 21. The normalized error of the numerical experiment using C-COM4 in FEM.  

 

B. Comparison Study of C-COM and PML in Finite Element Method 

A comparison study between C-COM and PML is conducted on a two-

dimensional parallel plate waveguide. The waveguide is excited with a TEM mode. The 

waveguide is sketched as Fig. 22.  
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Fig. 22. Waveguide terminated with a 10-layer PML.  

For the PML terminated waveguide, a ten-layer PML medium was used. Three 

different discretizations (mesh#1=2698 nodes, mesh#2=5831 nodes, mesh#3=11514 

nodes) were considered [33]. The corresponding reflection coefficient observed at a fixed 

distance from the PML layers (0mm in this case) as a function of frequency for TEM is 

shown in Fig. 23. It was shown that the lowest reflection at the observed point of the 

reported PML termination is about –90 dB. Since PML consists of lossy material layers 

to absorb outgoing wave, thus the reflection is both frequency dependent and mesh 

density (grid size) dependent.  

 

Fig. 23. Normalized reflection error due to PML termination for various number of finite 

elements, TEM mode, 10 layer PML [33].  
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When a TEM is excited in a waveguide terminated with C-COM4, the reflection 

is independent of the frequency. This is because of the finite difference scheme nature of 

the way C-COM applied in frequency domain, which is integrated in the FEM matrix 

system. To obtain the accuracy, the spatial step used in the finite difference scheme is 

required to be less than 1/10th of the wavelength. In our numerical experiments, the 

spatial step is normalized to wavelength. However, the reflection is space dependent. The 

corresponding error of the waveguide for C-COM2, which means C-COM applied to a 

second BT boundary condition, C-COM2, C-COM3, and C-COM4 are illustrated in Fig. 

24 (a), (b), and (c) respectively. The observed reflections indicate that with a C-COM4 

boundary condition, we can reach an extremely low reflection up to –130 dB without 

increasing the computational resource consumption when comparing with PML.  
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(b) 

 

(c) 

Fig. 24. Normalized Error of C-COM in FEM, for TEM mode in a parallel plate waveguide, (a). 

C-COM2, (b). C-COM3, (c). C-COM4. 
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III.4 CONCLUSIONS 

In this chapter, the applications of C-COM in open-region simulations are 

presented to demonstrate the high accuracy of C-COM. The simulations using C-COM as 

a boundary mesh truncation technique here include the C-COM for Liao’s ABC in 

FDTD, the C-COM for Bayliss-Turkel ABC in both Finite Difference Frequency-Domain 

and Finite Element Method. Free space current source radiation, two-dimensional 

scattering problems and guided wave propagation problems are investigated. These 

simulations showed that with C-COM, the reflection arising from the original ABCs can 

be significantly reduced in both time-domain and frequency-domain simulations. The 

comparison between PML and C-COM in time-domain and frequency-domain 

simulations also demonstrated that the C-COM is a highly efficient and highly accurate 

mesh truncation technique.  

 



 52

IV. STABILITY ANALYSIS OF OPEN-REGION FINITE 

DIFFERENCE TIME-DOMAIN SIMULATION 

In an open-region electromagnetic FDTD simulation, the Yee scheme is used to 

discretize Maxwell’s curl equations in the interior computational domain [34]-[35].  On 

the outer boundary, an absorbing boundary condition (ABC) or mesh truncation 

technique is applied and then implemented using a specific finite difference scheme. The 

implementation of the boundary condition strongly affects the accuracy of the overall 

simulation as has been documented extensively in numerous publications [6]-[15]. 

However, what has received much less attention is the effect of the discrete form of the 

analytic boundary conditions, or more precisely its implementation, on the stability of the 

solution. This work aims to, first, address critical issues related to the instability 

generated by boundary conditions, and second, to introduce an analysis method that is 

consistent with numerical experiments.   

In the electromagnetic computational context, instability is generally referred to 

the time-dependent growth of the solution such that it violates the physical phenomenon 

being simulated. When boundary conditions (or mesh-truncation techniques) are applied 

at the boundary of the computational domain, instability of the overall solution can occur. 

Different methods have been applied to study the stability behavior induced by the 

boundary conditions. In [22]-[24], the GKS (Gustafsson, Kreiss, and Sundströn) theory, 

referred as Z-transform analysis, was used to investigate the stability of Higdon’s and 

Liao’s absorbing boundary conditions. Higdon discussed the stability of the Higdon’s 

ABC by using the Kreiss theorem and GKS theory [25]. Wang and Tripp applied the von 
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Neumann analysis to Liao’s ABC [26]. From these previous works, the boundary scheme 

induced instability was, in certain cases, eliminated by enforcing the so-called stabilizing 

or damping factors in the difference schemes. However, while these previous works 

predict that the instability is ensured once stabilizing or damping factors are introduced, 

numerous numerical simulations conducted by these authors revealed that instability was 

strongly evident in the solution despite the introduction of damping factors. 

In [27], Ramahi, through empirical experiments, found, that the Cartesian-based 

computational domain results in certain numerical irregularities, particularly in the corner 

regions of the domain. More specifically, Ramahi found that the stencil used to describe 

(discretize) the boundary condition leads to numerical crosstalk.  These irregularities act 

as a source of catastrophic instability (i.e., instability that grows very large in a relatively 

small number of time steps) [27]. The computational geometry could introduce the corner 

instability arising from the crosstalk between fields of the internal grids and the fields on 

the boundary. Although the cause of the corner instability is identified, it is suspected that 

this source of instability can be mitigated by introducing a quarter-pi shape corner region 

that will inherently eliminate the possibility of stencil cross talk amongst boundary nodes 

[27]. The quarter-pi corner region, however, can introduce interpolation errors that can 

prove equally detrimental to the overall accuracy of the simulation.  

While the work in [36] uncovered a critical mechanism that produces instability in 

FDTD simulation, it did not isolate a small, yet important growth in the solution that can 

easily be overshadowed by more pronounced growth generated by the instability arising 

from the corner regions [37]. It is these observations that created the impetus behind this 

present work. 
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In this work, we refer to the finite difference scheme used to convert Maxwell’s 

equations into a discrete form in the internal computational region as the internal scheme.  

Similarly, we refer to the finite difference scheme used to discretize the boundary 

conditions as the boundary scheme.  In section IV.1, we briefly review the instability 

criteria for the internal and boundary schemes. We show that numerous previous works 

established that the stability behavior of the FDTD solution depends not only on the 

internal scheme, but also on the boundary scheme. By applying the von Neumann 

analysis on the Higdon’s ABC, we show that for a linear, constant coefficient, one-time 

step (first-order time derivative) difference scheme, the stability analyses obtained using 

different methods, such as GKS and Kreiss theories, yield identical results to those 

obtained using the von Neumann analysis.  In section IV.2, we present empirical findings 

that conclusively prove that satisfying the stability requirements of the internal scheme 

and boundary scheme is not sufficient to guarantee the stability of FDTD simulation.  In 

section IV.3, we introduce a method based on the discrete-time system stability analysis 

to predict the instability induced by the coupling between internal grids and boundary 

nodes. We refer to this method as Coupled Stability Analysis. The new stability analysis 

is applied to Higdon’s second and third-order absorbing operators. 
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IV.1 STABILITY OF INTERNAL SCHEME AND BOUNDARY 

SCHEME 

IV.1.1 Stability of Yee Scheme 

In the classical FDTD method, the Yee scheme is used to discretize Maxwell’s curl 

equations in the interior of the computational domain (for details, please refer to appendix 

A.1). For brevity we will not state the full description of the FDTD discrete set of 

equations corresponding to (1); the reader is referred to [6] and references therein for an 

exhaustive discussion of the FDTD method.  

The stability requirement of the Yee scheme is given by applying the Courant-

Friedrichs-Lewy (CFL) condition. The CFL condition identified a fundamental and 

necessary condition for convergence of any numerical approximation of a partial 

differential equation, linear or non-linear. For linear problems, the convergence is 

equivalent to stability. This equivalence leads to the CFL condition for stability. The 

weakness of the CFL condition is that it is necessary but not sufficient for convergence. 

For two-dimensional problems, the stability criterion of the Yee scheme, referred as the 

Courant limit in FDTD, is given as 
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where ∆t is the time increment; ∆x, ∆y are the space increment in x direction and y 

direction, respectively, and c is the speed of light. 
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IV.1.2 Stability of Boundary Scheme 

The stability analysis methods applied on the boundary scheme include the von 

Neumann condition, Kreiss and GKS (Gustafsson, Kreiss, and Sundströn) theories. These 

methods are all based on the Fourier transform representation of the solution. For one-

step, linear, constant coefficient finite-difference formulae on regular grids of partial 

differential equation, the von Neumann condition gives a necessary and sufficient 

stability criterion. The Kreiss theory asserts that a “first-order linear hyperbolic system 

with a left-hand boundary condition is stable if and only if it admits no solutions without 

any left reflection”. The GKS theory is a discrete analogue of the Kreiss theorem, which 

is developed for continuous problem [38]-[41].  

Stability analyses were applied to two popular absorbing boundary operators: the 

Liao’s and Higdon’s ABCs. The investigation of the stability induced by applying Liao’s 

ABC can be found in [22], [23], [26]. It was found that when the frequency approaches 

zero, the Liao’s boundary operator approaches zero, leading to instability. A damping 

factor was proposed to stabilize the boundary scheme. The stability analysis results in  

[22], [23] are identical to the conclusion in [26], in which the von Neumann condition 

was used to study the stability of Liao’s ABC. 

When Higdon’s boundary operators were used, it was found that there is a 

breakdown in the Kreiss theory at zero frequency; consequently, it was conjectured that 

the instability was related to the harmonics close or equal to DC [25]. In [41], it was 

argued that the instability was possibly triggered by an incompatibility between the initial 

data and the boundary conditions. The zero frequency instability was reported in [43] as 
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well. A constant, which we referred as damping or stabilizing factor, was introduced as 

the frequency approaches zero to prevent the boundary operator from becoming zero. 

Higdon’s absorbing boundary condition is based on the one-way wave equation. 

The Nth order Higdon ABC is given by 
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where c is the light speed, φi is the incident angle for which the boundary condition is 

perfectly absorptive, and αi is a damping factor [41].  To discretize (2) into a finite 

difference equations, we use the following operators 
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where I is the identity operator, S-1 is the space-shift operator, and T-1 is the time-shift 

operator. The choice of the weighting coefficients a and b give different difference 

scheme including the forward Euler (a=0, b=1), backward Euler (a=b=0), box scheme 

(a=b=0.5), … etc. In general, the weighting coefficients are positive real numbers 

bounded by unity.  The shift operators are explicitly expressed as: 
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Consider a computational domain bounded on the right-hand-side by x=xa, where 

xa ≥ x ≥ 0. Substituting the operators (3) and (4) into (2), we have  
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From (6), the difference formula of the first-order Higdon’s ABC (i.e., N=1), is a 

one-time step, linear, constant coefficient scheme.  Furthermore, the difference scheme of 

the higher-order Higdon ABC (i.e., N≥2) is also a linear and constant coefficient formula 

since it is derived by cascading first-order formula.  

The von Neumann analysis is based on the Fourier representation of the explicit 

solution. In our problem, we replace the field at the node (n,m), u(n,m), with a Fourier 

representation of the solution, u(n,m)=gnejmθ, where θ=kx∆x, θ∈[-π,π] [40]. A stable 

solution requires that the magnitude of any time-harmonic component (Fourier 

component) to remain bounded in time. Substituting u(n,m)=gnejmθ  into (6), we obtain 

the amplification factor 
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For the second or higher order Higdon’s ABC (N≥2), the amplification factor is a 

multiple root. 

The stability of the boundary scheme requires that the amplification factor 

satisfies |gi(θ)|< 1, θ∈[-π,π] for the second or higher order Higdon’s ABC. From 

equation (8), the magnitude of the amplification factor depends on h and αi∆x. The 

coefficient, h, is set by the stability requirement of the internal scheme (satisfying the 

Courant limit). The damping factor, αi, is crucial to the stability of the boundary scheme.  

For αi=0, and a=b, |gi(θ)| =1 at θ=0, as shown in Fig. 25.  Since for the second or higher-

order Higdon’s ABC, the root is a multiple root, the scheme is unstable. When a≠b, the 

same behavior is observed, i.e., at θ=0, |gi(θ)| =1, as can be seen in Fig. 26. Therefore, 

based on the von Neumann analysis, the second or higher order Higdon’s ABCs are 

unstable for αi=0.  (Notice that for θ=0, the Fourier representation of the solution 

corresponds to the zero frequency, which is consistent with the observation in [25],  [43], 

[43].) 
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Fig. 25. Magnitude of the amplification factor at a=b, αi∆x=0. (a). θ=[0, π]  (b). θ=0. 

 

Next, we consider the effect of introducing a small damping factor term, αi∆x=ε, 

0<ε <<1. Higdon originally introduced αi to mitigate instability [41]. Previous work has 
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shown that αi has to be small enough in order not to affect the low-frequency behavior of 

the solution [24]. 

Let us consider the case for αi∆x=0.0001, and a=b. Because of symmetry, it is 

sufficient to consider θ∈[0,π].  Fig. 27 (a) and (b) show the amplification factor to be 

less than unity, thus implying that the boundary scheme can be made stable by the 

addition of a small loss factor, αi . 

 

 

Fig. 26. Magnitude of the amplification factor at a≠b, θ=0,αi∆x=0.  (The graph is generated by 

Matlab®. Note that the voids of the graph are due to display effects.) 

 



 62

 

 

(a) 

0 0.1 0.2 0.3 0.4 0.5
0.999

0.9995

1

1.0005

1.001
θ=0             
αi∆x=0.0001 

 

(b) 

Fig. 27. Magnitude of the amplification factor at a=b, αi∆x=0.0001 (a) a=b=[0,1]  (b) θ =0, 

a=b=[0,0.5]. 

When a≠b, we consider the behavior of |gi(θ)|at θ =0,π first and then examine the 

general case 0<θ<π. For the case θ =0, π , gi(θ) remains bounded as clearly seen in Fig. 
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28 (a) and (b).  For 0<θ<π, by using multivariable optimization in Matlab, we find that 

for a small damping factor of αi∆x=0.0001, gi(θ) remains bounded by unity for a≤0.5, 

b≤0.5. Furthermore, as αi∆x increases |gi(θ)| decreases, however, this adversely affects 

the lower frequencies behavior of solution.  

 

(a) 

 

(b) 

Fig. 28.  Magnitude of the amplification factor at αi∆x=0.0001, a≠b, (a)θ=0, (b)θ=π. 
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As a conclusion, the von Neumann analysis when applied on the boundary 

schemes predicts that the numerical solution will be stable providing that a≤0.5, b≤0.5, 

and the factor αi, satisfies that αi∆x>0. These results are identical to those predicted in 

[24]-[25], [41]-[43], where the GKS condition was used.  Therefore, as a summary, the 

von Neumann and GKS analyses yield the following conditions for stability: 
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IV.2 MILD AND CATASTROPHIC INSTABILITY 

In section II it was shown that Higdon’s ABCs of any order can be stabilized by 

the introduction of a small loss factor, αi. However, several researchers including the 

authors of this work have repeatedly observed numerical instability even when the 

internal stability criterion is satisfied and a non-zero loss factor, αi, is added. In this 

section, we show several numerical examples that give rise to different forms of 

instability not predicted by previous analyses. Depending on the speed by which the 

solution “blows up”, we classify the instabilities as either mild or catastrophic. Before 

going any further, one might question the practicality of looking into the stability 

behavior after the elapse of thousands or even hundreds of thousands of time steps. In 

many practical scenarios in electromagnetic simulations, especially in the analysis of 
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resonant structures, the energy lingers within the system for long period of time and 

dissipates very slowly. To capture the low frequency behavior of the response of such 

resonant systems, which typically corresponds to the slow dissipation of energy, large 

number of time steps is essential, and it is not uncommon to run simulations for hundreds 

of thousands of time steps.  (For a sample of the type of practical problems encountered 

in electromagnetic applications, the reader is referred to [44].  

In [27], it was observed by Ramahi, that the corner region in the FDTD 

computational domain is a source of the catastrophic instability. This finding is 

demonstrated by a simple experiment in which a line source is placed in the center of a 

computational domain of size 40 ∆x x 50 ∆y. The domain is then elongated to 40∆x x 

500∆y, 40∆x x 2000∆y, 40∆x x 4000∆y, and 40∆x x 8000∆y, while the instant at which 

the instability occurs is observed. Fig. 29 shows the electric field at an observation point 

that is fixed with respect to the location of the source. (The observation point is offset by 

(+3∆x, +4∆y).) 

Simple observation shows that the dramatic (artificial) increase in the solution 

occurs precisely at the location of the corner. Further discussion on this experiment can 

be found in [27].   It was concluded in [27], that the only source of instability arises from 

the corner region of the computational domain. However, this conclusion, even though 

supported by previous works and empirical findings, overlooked a mild form of 

instability.  
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Fig. 29.  Observed instability when using Higdon’s fourth-order ABC with no damping. 

 

In accordance with the conclusion reached in section II above, if a damping factor 

is inserted in Higdon’s ABC and the weighting functions a and b were made to satisfy the 

conditions a≤0.5, b≤0.5, then the boundary scheme should be stable. Applying a small 

loss factor αi∆x=0.0001, and adhering to the stability criterion, we repeat the above 

experiment and observe in Fig. 30 a mild form of instability that precedes the instability 

that arise from the corner region. The same experiment is repeated with Higdon’s third-

order ABC, and similar results are observed. Fig. 31 and Fig. 32 show that the instability 

arising from the corner regions proceeds the instability arising from the boundary. These 

two experiments conclusively demonstrate that the boundary itself and the corner regions, 

both contribute uniquely to instability.  

The important conclusion that is reached here is the following: When using the 

FDTD method to solve open-region radiation problems, the numerical solution can 
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experience instability even though the Courant limit and the boundary stability criterion 

(9) are both satisfied. These findings lead to an investigation of an alternative analysis 

that can provide consistent prediction of instability. This analysis will be referred to as 

Coupled Stability Analysis. 
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Fig. 30. Observed instability when using Higdon’s fourth-order ABC with a damping factor. 
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Fig. 31. Observed instability when using Higdon’s third-order ABC with no damping. 
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Fig. 32. Observed instability when using Higdon’s third-order ABC with a damping factor. 
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IV.3 COUPLED STABILITY ANALYSIS 

IV.3.1 Theory 

Since no boundary condition can work perfectly to absorb all waves incident at 

the boundary, some energy reflects back into the computational domain. This very 

reflection causes the interference between the fields solved for by the internal scheme and 

the fields generated by the boundary scheme. To characterize any potential instability due 

to this interference, it is natural to expect that neither the internal scheme nor the 

boundary scheme can be considered separately. In this section, an analysis method is 

introduced that couples the interior solution to the boundary fields based on the stability 

analysis of a linear time-invariant (LTI) discrete system.  

A. Stability of linear time-invariant discrete system 

In discrete signal processing theory, the system function is defined as the Z-

transform of the output series divided by the Z-transform of the input series. A linear 

time-invariant (LTI) discrete system is asymptotically stable if the output series resulting 

from the initial energy decays to zero as the discrete time index becomes large. The 

system is marginally stable if the magnitude of output series is less than some finite 

positive constant [45], [46]. 

Consider the linear time-invariant finite dimensional discrete-time system given 

by the system transfer function H(z): 

)())((
)()(

21 npzpzpz
zNzH

−−−
=

L
     (10) 
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where p1, p2,…, pn denote the poles of H(z), and N(z) is a polynomial. The system H(z) is 

asymptotically stable if and only if 

1|| <ip    for i=1,2,…,n       (11) 

Based on the LTI theory, the system is marginally stable if and only if 1|| ≤ip  for 

all non-repeated poles, and  1|| <ip  for all repeated poles. In the complex plane, if we 

define the closed unit-disc to be the open unit-disc plus the unit circle, then the system is 

unstable if there are one or more poles outside the closed unit-disc, or if there are 

repeated poles on the unit-circle. 

B. LTI discrete system defined by boundary difference schemes  

In the FDTD method, the space and time are discretized and the fields are 

sampled in both time and spatial domains. At each node in the computational domain, the 

fields solved by using the FDTD method results in a discrete series with sampling 

frequency fs=1/∆t. In this discrete time series, the nth number in the sequence is          

u[n] = u(n∆t). 

When an absorbing boundary condition is applied to truncate the computational 

domain, the interior fields and the boundary fields are related through the difference 

scheme of the absorbing boundary condition. As the sampled interior fields and boundary 

fields are both discrete series, the relationship defined by the difference scheme of ABC 

will be considered here as defining the discrete system. In this system, the boundary 

fields are treated as output while the interior fields are treated as inputs. 

The difference scheme of ABC, whether they are derived numerically or 

analytically, is a linear combination of the discrete sequences of the interior nodes and 
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the interior nodes at previous time steps. Therefore, the system defined by the boundary 

difference scheme is also a linear system. This system is causal because the output, which 

is the boundary fields sequence, is dependent only on the present and past values of the 

inputs. From the linearity property of the system, it can also be proved that this system is 

time-invariant, which means that a time shift in the input sequence causes a 

corresponding time shift in the output sequence. As a result, we conclude that the system 

defined by the difference scheme of ABCs is a LTI discrete system.  

 

C. Coupled stability analysis 

Let us consider a boundary normal to the x-axis. Denoting the Z-transform 

operation by Z, we apply the Z-transform on the boundary field designated by the spatial 

index m (corresponding to discretization along the x axis) and temporal index n, we have 

)()( n
muzY Z≡         (12) 

Next, we apply the Z-transform on the fields at the boundary, but at previous time 

steps; from the Z-transform properties, we have: 
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Applying Z-transform on the internal fields for the time step n, we have: 
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Note that L and N depend on the length of the numerical stencil of the boundary condition 

in space and time respectively.  

Since the fields are subject to the wave equation, and since the boundary 

condition is not perfectly absorbing, we must assume the presence of a two-way 

propagating wave traveling along the x direction at each spatial node. We have 
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where kx is the wave number in the x direction, ky is the wave number in the y direction 

and Rd is the reflection coefficient. In the discrete domain, the reflection coefficient Rd is 

a function of ∆x and ∆t but independent of the sequence number n. Since we are 

interested in the behavior of the fields at a boundary normal to the x-axis, the y-

dependence in (15) is ignored.  

The Z-transforms of the discrete series described in (15) are 

)()()(

...
)()()(

)()()(

)()()(

)()(

)2()2(
22

)1()1(
11

xkNmjtjn
d

xkNmjtjnyjlkn
NmN

xkmjtjn
d

xkmjtjnyjlkn
m

xkmjtjn
d

xkmjtjnyjlkn
m

xjmktjn
d

xjmktjnyjlkn
m

xxy

xxy

xxy

xxy

eReeuzX

eReeuzX

eReeuzX

eReeuzY

∆−+∆∆−−∆∆−
−

∆−+∆∆−−∆∆−
−

∆−+∆∆−−∆∆−
−

∆+∆∆−∆∆−

+==

+==

+==

+==

ωω

ωω

ωω

ωω

ZZ

ZZ
ZZ

ZZ

  (16) 

 

Using the linearity property of the Z-transform, and equations (14) to (16), the Z-

transform of the internal series {X2(z),X3(z), …, XN(z)}, can be denoted as a linear 

combination of X1(z), and Y(z).  To show this, we consider, as an example, a second-order 
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absorbing boundary condition. The boundary field n
mu  is calculated from the grid fields 

n
m

n
m uu 21  , −− . Since the reflection R is independent of the sequence number n, hence, 

applying the Z-transform on the grid fields n
mu , n

m
n
m uu 21 , −− , we have 
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After simple algebraic manipulation of the equations in (17), the relationship between 

X2(z), X1(z), and Y(z) is derived: 

)()()cos(2)( 12 zYzXxkzX x −∆=      (18) 

Using the same technique, the Z-transform of the other interior grid fields, X3(z), X4(z),…, 

XN(z) can also be expressed as a combination of X1(z) and Y(z). 
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To construct the transfer function of the system, we consider a mesh-truncation 

boundary parallel to the y-axis and located at x=a. When implemented in an FDTD 

scheme, any linear, constant coefficient ABC enforced at x=a can be expressed as a 

weighted polynomial of space- and time-shift operators as:  
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Applying the Z-transform on (20), and using (12)-(19), we can obtain an equation 

relating the transfer function of the system expressed as  
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We assert that the FDTD simulation, along with an absorbing boundary condition 

is stable if and only if the Courant limit is satisfied, boundary scheme stability condition 

is satisfied, and H(z) has poles that are inside the unit disc.  

Next, we apply the coupled stability analysis to Higdon’s second- and third-order 

operators. 

IV.3.2 Applications of Coupled Stability Analysis to Second-Order Higdon’s ABC 

Higdon’s second-order Higdon’s ABC is given by 
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Expressed in terms of the nodal fields, (22) becomes 
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If αi is constant, then, ai =a1 , bi =b1 , ci =c1 , for i=1, 2,3,… Applying the Z-transform to 

(23), use the properties derived in (16)-(19), the system function of the second-order 

Higdon’s ABC can be obtained 
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The system of (24) is depicted in Fig. 33, where, 
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Fig. 33. Diagram of the system function of the second-order Higdon’s ABC difference scheme 

 

The poles of (24) are obtained by solving for the roots of the equation 
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giving the two roots:   
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The norm of the two poles, with damping term αi∆x=0.0, and αi∆x=0.0001, are 

plotted in Fig. 34 (a) and (b), for the case a=b. The damping factor reduces the norm of 

the first pole to slightly less than unity as observed in Fig. 34 (b).  Therefore, we 

conclude that for a=b, if and only if the damping factor term is nonzero, and a=b ≤ 0.5, 

the second-order Higdon’s ABC results in a stable FDTD scheme.  
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Fig. 34. The norms of the two poles for second-order Higdon’s ABC (a) Norm of z1; (b) Norm of 

z2. 
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Fig. 35. The norms of poles for the second-order Higdon’s ABC as a function of a and b, for 

αi∆x=0.0001 (a). Norm of z1.; (b). Logarithmic plot of norm of z2. 
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When a≠b, the norms of the poles are plotted in Fig. 35 (a) and (b), in which the 

damping factor is set at αi∆x=0.0001. Careful observation of the figures shows that the 

poles of the transfer function in (24) remain bounded for a≤0.5, b≤0.5, and αi∆x>0.   

Therefore, we conclude that for the second-order Higdon ABC, a stable solution is 

obtained under the following conditions 

5.0,5.0
0

)(
1

)(
1

1

22

≤≤
∆<

∆
+

∆

=∆<∆

ba
x

yx
c

tt

i

c

α       (26) 

Similar to the experiments discussed above, we consider a source placed at the 

center of a computational domain of size 40∆x x 40∆y. The space step ∆x=∆y=0.015 m, 

and ∆t subjected to the Courant limit. An observation point is chosen at (+5∆x, +5∆y) 

with respect to the source.  The field calculated at the observation point is shown in Fig. 

36, for the case a=b. When the stability criterion (26) for the second-order Higdon’s 

ABC is satisfied, the simulation result is stable. However, when (26) is not satisfied, the 

output becomes highly unstable as is clearly evident from Fig. 36. Fig. 37 shows the 

instability for case a≠b, where the simulation results are fully consistent with the coupled 

stability analysis. For both cases, the damping term αi∆x=0.0001. 
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Fig. 36. Stability behavior of the second-order Higdon’s ABC for case a=b. 
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Fig. 37. Stability behavior of the second-order Higdon’s ABC for case a≠b. 
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IV.3.3 Applications of Coupled Stability Analysis to Third-Order Higdon’s ABC 

Similar to the analysis above, and applying the coupled stability analysis on 

Higdon third-order ABC, the system function defined by equation (21) is 
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The system function is illustrated in Fig.14, in which 
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Fig. 38. Diagram of the system function of the third-order Higdon’s ABC difference scheme. 

 

Consequently, the poles are the roots of the following equation 
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where, ]
2

,0[ π
∈∆xkx , and, the kx∆x is dependent on the incident angle φi,  for a specific 

wave and space stepping,  

]
2

,0[,cos2cos πφφ
λ
πφ ∈∆=∆=∆ iiix xxkxk     (29) 

Equation (28) gives three poles, which are all dependent on the weighting 

functions a, b and the wave number kx. For a stable scheme, the norms of the poles 

should be within the open-unit disc as kx∆x varies from 0 to π/2.  

For the case a=b, the plots of the norms of the poles are shown in Fig. 39 (a), (b) 

and (c), for a damping factor of αi∆x=0.0001. (Again, we will not consider the case for 

αi∆x=0.0 as that violates the boundary stability criterion. It can easily be shown that 

coupled stability analysis also results in instability for αi∆x=0.0 ).  Careful observation of 

Fig. 39 (a), (b) and (c), reveal that all three poles cannot be simultaneously less than 

unity, and consequently, stability cannot be guaranteed. For the case a≠b, it suffices to 

consider the norm of the poles at kx∆x=0. From Fig. 40, these norms, cannot be 

simultaneously less than unity.  Therefore, we conclude that Higdon’s third-order ABC 

results in an unconditionally instable FDTD scheme. The instability cannot be eliminated 

by the introduction of damping factors. 
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(c) 

Fig. 39. Norms of poles of third-order Higdon ABC for a=b and  for different incident angle 

kx∆x.(a). Norm of z1 (b). Norm of z2; (c) Norm of z3. 
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(c) 

Fig. 40. Norm of poles of the third-order Higdon’s ABC at kx∆x=0 (a) Norm of z1.; (b) Norm of 

z2. (c) Norm of z3. 
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As a numerical experiment, we consider the problem of a source radiating in a 

40∆x x 40∆y two dimensional computational domain (with same source, observation 

point and space parameters as above). We show in Fig. 41 and Fig. 42 the effect of a and 

b on the stability behavior of the solution for the third-order Higdon ABC, while 

introducing a damping factor of αi∆x=0.0001. Notice that the solution is always unstable 

irrespective of the choices for a and b, and, more importantly, the solution is unstable 

despite the non-zero positive damping factor.  
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Fig. 41. Instability of the 3rd order Higdon’s ABC for cases a=b and a≠b. 
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Fig. 42. Instability of the 3rd order Higdon’s ABC when using series weighting functions a=b. 

 

IV.4 CONCLUSIONS 

In this chapter, a novel coupled stability analysis (CSA) method is developed to 

analyze the stability problems arising in the open-region FDTD simulations. The coupled 

stability analysis predicts that the second-order Higdon’s ABC can be conditionally 

stable while the third-order Higdon’s ABC is unconditionally instable. The numerical 

experiments in previous research work and presented here showed a good agreement with 

the predictions using CSA analysis.  
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V. WEIGHTED DIFFERENCE SCHEME AND DAMPING 

EFFECTS ON REFLECTION OF HIGDON’S ABC 

When applying an ABC on boundary, the stability and absorption efficiency of 

the simulation are the most two important issues to be concerned. In the past, more 

attention has been paid on the absorption efficiency. However, stability issue is also 

critical: an instable boundary condition, or boundary difference scheme can result in an 

unstable simulation. The stability analysis when an ABC is applied to the truncated mesh 

is more complicated because it involves the interaction between the internal difference 

scheme and the boundary scheme.  

The Higdon’s ABC (HABC), which is a representative analytically derived ABC 

is important for its simplicity and high absorption (More discussion about Higdon’s ABC 

can be found in section I.3.1). Based on the coupled stability analysis (CSA) method, 

which gives an efficient evaluation of the stability of the HABC, the stability of the 

criterion for the second order Higdon’s ABC (HABC2), is given as following: 

5.0,5.0
10

)(
1

)(
1

1

22

≤≤
<∆<

∆
+

∆

≤∆

ba
x

yx
c

t

iα ,      (1) 

where ∆t is the time increment; ∆x, ∆y are the space increment in x direction and y 

direction, respectively, and c is the speed of light. αi is the damping factor, a and b are 

the weighting coefficients for difference formula. 
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For the third order or fourth order HABC, the FDTD simulation is 

unconditionally unstable. 

Under the frame of stability requirements, the right choice of the weighting 

coefficients and damping factor becomes crucial for absorption efficiency. In this 

chapter, the absorption efficiency of weighted difference schemes and damping is 

investigated. 

V.1 WEIGHTED DIFFERENCE SCHEME AND DAMPING EFFECTS 

ON REFLECTION OF HIGDON’S ABC 

The magnitude of the reflection coefficient for the numerical finite difference 

formula of the second order Higdon’s ABC is [7]: 
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for more details about parameters of Eq. (2), please refer to section IV.1.2.  

Assume that the wavelength is 20∆x, for different weighted schemes, the 

reflection minimized when a=b=0.5, as seen in Fig. 43. When a damping factor is 

applied to stabilize the boundary scheme, it will increase the reflection of the boundary 
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condition. For simplicity, we assume that the damping factor α1 =α2=α. Fig. 44 shows the 

relationship between reflection and damping factor term. It is seen that the relationship is 

non-linear: when damping factor term α∆x>0.001, the reflection increase dramatically 

against damping factor term α∆x; when α∆x <0.001, the reflection is almost a constant (-

220 dB).  
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Fig. 43. Reflection of HABC2 when weighting functions a, b vary in [0,0.5]. 
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Fig. 44. Reflection vs. damping of the box difference scheme of Higdon’s 2nd Order ABC. 

 

The absorption efficiency is demonstrated by considering numerical experiments 

in 2-D space in which we study a problem that a Gaussian pulse is generated at the center 

and propagating in free space(TM polarization). The computational domain is 40×40 

cells. For simplicity, we consider a uniform mesh in the x-direction and y-direction, with 

a space step ∆x=∆y=0.015m and the time step 0.9∆tc, where ∆tc is the Courant limit. The 

temporal form is a Gaussian pulse. An observing point is set (5∆x,5∆y) offset from the 

source. The normalized error at the observing point, defined as 

)max(
log 2

ref

refHABC

E
EE

error
−

=  

where EHABC2 is the solution obtained by using 2nd order HABC and Eref is the numerical 

solution obtained devoid of observing any boundary reflections. 



 90

0 100 200 300 400 500
-7

-6

-5

-4

-3

-2

-1

 a=b=0.5
 a=b=0.25
 a=0.0,b=0.5

er
ro

r

time step

 

Fig. 45. Normalized simulation error of HABC2 obtained using weighted difference schemes 

with damping term α∆x=0.001. 

In the numerical experiments, three weighted difference schemes, the box scheme 

a=b=0.5, scheme 2(a=b=0.25) and scheme 3 (a=0.0, b=0.5) with damping factor term 

α∆x =0.001 and damping factor term α∆x =0.1 are shown in Fig. 45 and Fig. 46.  The 

box scheme with damping term α∆x =0.001 gives the minimum errors, compared to the 

other combinations. 
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Fig. 46. Normalized error of HABC2 obtained using weighted difference schemes and damping 

factor term α∆x=0.1, and the normalized error of the optimized difference scheme and damping 

factor. 

 

V.2 CONCLUSIONS 

Under the stability requirements, the weighting functions and damping factors are 

restricted when using finite difference approximation for the second-order Higdon’s 

ABC. In this chapter, the optimized combination of weighting functions and damping are 

found to minimize the reflection. For the second-order Higdon’s ABC, the box difference 

scheme and a damping constant less than 10-3/∆x gives the minimum reflection.  
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 APPENDIXES 

A.1 FINITE VOLUME NUMERICAL TECHNIQUES IN 

ELECTROMAGNETICS 

In this section, the finite volume numerical techniques used in this thesis are 

briefly described. 

 

A.1.1 Yee Scheme and Finite Difference Time-Domain 

In 1966, Kane Yee originated a set of finite-difference equations for the time-

dependent Maxwell’s curl equations system. The Yee scheme becomes the most useful 

finite-difference time-domain in computational electromagnetics since its fundamental 

basis is so robust. Namely: 

A. Yee scheme solves for both electric and magnetic fields in time and space, 

using the coupled Maxwell’s curl equations rather than solving for the 

electric field or the magnetic field alone with a wave equation. 

B. As illustrated in , the Yee cell in the FDTD centers its E and H 

components in three dimensional space so that every E component is 

surrounding by four H components, and every H component is 

surrounding by four E components. This is extremely useful for specifying 

field boundary conditions and singularities. The finite-difference 
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expressions for the space derivatives used in the curl operators are central-

difference scheme and of second-order accuracy. 

C. The Yee scheme also centers its E and H components in time in what is 

termed a leapfrog arrangement. All of the E computations in the modeled 

space are completed and stored in memory for a particular time point 

using previously stored H data. Then all of the H computations in the 

space are completed and stored in memory using the E data just computed. 

It’s a fully explicit and second-order accurate difference scheme.  
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Fig. A. 1. The unit cell (Yee cell) used in Yee scheme. 

The field in space is then denoted by the three indexes i, j, k, as 

),,(),,( zkyjxikji ∆∆∆=       (A.1)  

then any field components u of E or H, can be written as 

n
kjiutnzkyjxiu ,,),,,( =∆∆∆∆       (A.2) 
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The Yee cell in three-dimensional space is shown in Fig. A. 1 where the field 

components are staggered in space as before, such that they are a half-cell apart.  Using 

the central difference scheme, Maxwell’s equations transform to the following discrete 

finite-difference equations: 
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where εijk and µijk correspond to the permittivity and permeability of each cell in the 

mesh. 

The order for calculating the fields is illustrated in Fig. A. 2.  First, the electric 

field components are calculated; second, time is advanced one half-step; and third, the 

magnetic field is updated from the previously calculated electric field.  This sequence is 

then repeated for all time steps. 
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over entire grid

Enforce physical and
absorbing boundary

conditions

Advanced time
by ∆t/2

Calculate H
over entire grid

 

Fig. A. 2. Sequence of Field Calculation Within the FDTD Algorithm 
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A.1.2 Finite Difference Frequency Domain 

The FDFD method in electromagnetics is to solve the time-harmonic Maxwell’s 

equations in frequency domain. For a simple medium, the homogeneous Helmholtz’s 

equations are subject to: 

022 =+∇ uku         (A.9) 

where u can be any component of E or H in Cartesian coordinates system, and k is wave 

number in the medium. Therefore, for any component of E or H, using the central-

difference scheme illustrated in Fig. A. 3, the finite difference frequency domain 

formulation of the two-dimensional, equal spaced (∆=∆x=∆y), homogeneous 

Helmholtz’s equation is 

0),(
),(4)1,()1,(),1(),1( 2

2 =+
∆

−−+++++−
jiuk

jiujiujiujiujiu
 

          (A.10) 

 

Fig. A. 3. The central-difference scheme.  
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A.1.3 Finite Element Method 

The inhomogeneous Helmholz wave equation in two-dimensional space is given 

by: 

),(),(]),([ 22 yxgyxu yxk =+∇      (A.11) 

where k(x,y) is the wave number in the medium, and g is a known excitation function. 

The Helmholz equation describes the radiation of waves for TE-polarized or TM-

polarized fields.  Here, the use of the FEM is demonstrated in solving the Helmholz 

equation for the TM polarization where u represents the Ez.  The remaining two field 

components, Hx and Hy, can be found from Ez , using Maxwell’s equations. 

The construction of a functional for (A.11): 

∫
Ω

Ω−+∇= guduukuuF 2)()( 22      (A.12) 

This form can be simplified by invoking Green's theorem, which gives the 

following identity: 

∫ ∫
Ω Γ

Γ
∂
∂

=Ω∇⋅∇+∇ d
n
uuduuuu )( 2      (A.13) 

Substituting (A.11) in (A.14), we have: 

∫ ∫
Ω Γ

Γ
∂
∂

−Ω−−∇⋅∇= d
n
yugudukuuuF 2)( 22    (A.14) 

Therefore, the variation of the functional  

0)( =uFδ         (A.15) 

gives the exact solution of the inhomogeneous Helmholtz equation.  
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In finite element methods, the unknowns, u(x,y), are denoted as a function of 

nodal values, uk,  

,...3,2,1,),(
1

== ∑
=

kuNyxu
M

k
kk      (A.16) 

where Nk is the shape functions. And the excitation, g(x,y), is also denoted as a function 

of the nodal values, gk, similar to the unknowns, 
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kgNyxg
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k
kk      (A.17) 

Substituting (A.16) and (A.17) into (A.15), we finally have a matrix system 

}{}{ kk gu =M         (A.18) 

where M denotes the coefficient matrix.  

 

A.2 Z-TRANSFORM 

In this section, the Z-transform and its important properties used in this thesis are 

briefly described.  

The Z-transform of a given discrete signal, x[n], is given by: 

∑
∞

−∞=

−==
k

nznxzXnx ][)(]][[Z      (A.19) 

where z is a complex variable. The above definition is for a non-causal signal, i.e. x[n] is 

known for time index, n<0. In most cases the signal will be causal giving rise to the One-

Sided Z-transform: 

∑
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The Z-transform has many important properties. Here, we just discuss its linearity 

and shift property, which are critical for our coupled stability analysis. 

Linearity: 

Consider two sequences x[n] and y[n] with Z-transforms X(z) and Y(z), 

respectively, then 

][][]][][[ zbYzaXnbYnaX +=+Z      (A.21) 

where a and b are constants. 

Shift of sequence: 

Consider a sequence x[n] such that Z-transform of the sequence is X(z), then for 

the sequence whose values are x[n+n0], we have 

][]][[ 0
0 zXznnX n=+Z       (A.22) 
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