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Automotive air-conditioning is a high impact technology where 

improvements in energy consumption and environmental performance can make 

a significant difference in fuel efficiency and comfort. The mandatory phase out of 

R134a as refrigerant in the European Union has set the stage for new systems 

and alternative refrigerants. While some of these refrigerants, such as R152a or 

R290, have a low Global Warming Potential, their flammability requires 

secondary loop systems to be used. The added thermal mass of such systems 

may increase power consumption and delay cool down while benefitting thermal 

comfort during start/stop operation. The recent revival of electric vehicles, as well 

as the associated focus on air-conditioning energy consumption, provides new 

challenges and opportunities.  



 

This research focuses on the performance evaluation of refrigerants 

R152a and R290 during transient operation in secondary loop systems, 

quantification of thermal storage benefits for start/stop operation, and 

investigation of energy saving potentials in electric vehicles through the use of 

advanced air-conditioning system controls and cabin preconditioning.  

A test facility was built to dynamically test secondary loop systems over a 

wide range of pull down conditions and drive cycles using a passenger cabin 

model and associated controls. It was shown that R290 is a viable alternative in 

secondary loop systems and system performance may be on par or better 

compared to R134a direct expansion systems. The preservation of cooling 

capacity and thermal comfort during off-cycle periods were quantified for a 

secondary loop system, as well as a combined ice storage system. System 

efficiency increases with longer off-cycle periods compared to direct expansion 

systems. Advanced compressor control strategies and the use of cabin 

preconditioning can make use of this characteristic and improve energy efficiency 

by more than 50%. Ice storage may be used in combination with cabin 

preconditioning to preserve comfort for an extended driving time with reduced 

use of the vapor compression cycle. A Modelica model of the secondary loop 

system was developed and validated with experimental data. The model enables 

dynamic simulation of pull-down and drive cycle scenarios and was used to study 

the effects of coolant volume and coolant concentration on transient performance. 
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1 Literature Review 

Chapter 1 reviews the pertinent literature in the fields of dynamic testing of 

automotive air-conditioning systems, the use of alternative refrigerants in air-

conditioning systems, and the use of secondary loop systems in air-conditioning 

and refrigeration.  

 

1.1 Dynamic Testing of Automotive Air-Conditioning Systems 

Early studies on transient testing of automotive air-conditioning systems 

were performed by J. E. Rubio-Quero et al. [1] who used a Ford 1994 Crown 

Victoria R134a system for transient testing of mobile air-conditioning systems. 

Rubio-Quero et al. stated that while steady state tests are common in the 

automotive industry, they often do not accurately reflect the operating conditions 

of mobile air-conditioning systems (MACs). Since typical control schemes involve 

thermostatic expansion valves, and/or compressor clutch cycling, MACs most 

often operate in transient conditions.  

C. D. Collins and N. R. Miller [2] studied transient behavior of MACs. Their 

focus was on the development of a refrigerant charge loss diagnostic tool using 

measures of the transient behavior of the system to reduce premature clutch 

failure, and the experimental characterization of transient and steady-state 

performance of MACs. A narrow range of operating conditions was simulated, 

corresponding to a vehicle cruising at highway speeds with the MAC operating in 

full recirculation mode in a low humidity, high ambient temperature environment. 
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The test facility lacked the means of controlling humidity, since air loops were 

used, which controlled temperature by the power input to electric heaters and no 

air handling unit was present. The influence of humidity was neglected during this 

study. 

P. G. Weston et al. [3] studied the design and construction of a MAC test 

facility for transient studies. The major operating transients that should be 

addressed by a test facility were found to include: changes in compressor speed 

due to variations in vehicle engine speed; changes in condenser air flow rate due 

to ram-air effects at the front of the vehicle; changes in the passenger 

compartment air temperature during pulldown; and cycling of the compressor 

clutch to prevent evaporator frosting. Drive cycle tests were performed by using a 

square wave generator for the input to a compressor motor inverter and 

condenser fan inverter. The setting of the duration of square wave plateaus 

controlled compressor behavior during the drive cycle. The concepts of an 

"environment controller" and a "system controller" were briefly introduced, but 

details on the development of both were stated to be future research. 

P. Hrnjak ([4], [5], [6]), B. Hill ([7], [5]), J. Wertenbach [8], and Ward 

Atkinson ([9], [10]) presented work on the Society of Automotive Engineers (SAE) 

Alternate Refrigerant Cooperative Research Project. Steady-state tests to 

evaluate the coefficient of performance (COP) and cooling capacity, as well as 

transient tests to investigate soak and cool down performance were performed 

on an R134a system, as well as an enhanced R134a system and an R744 

system. Transient experimental analysis on secondary loop systems using 
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hydrocarbons as refrigerant was planned but has not been published at the 

present time. Three environmental chambers were used (indoor, outdoor, and 

compressor chamber) which enabled the initial temperature conditioning of all 

components. The indoor, as well as the outdoor chamber initially housed open 

wind tunnels. The automotive passenger cabin was simulated by adding a closed 

loop to the evaporator chamber. A water to air heat exchanger with controllable 

water flow rate was used to simulate the cooling rate of vehicle thermal mass. 

The water could be heated according to changes in temperature of the thermal 

mass of the vehicle. Coefficient of performance (COP), as well as evaporator 

capacity of the different systems were compared in steady-state performance 

tests, as well as transient New European Drive Cycle (NEDC) tests. Tests were 

conducted only up to 2,500 rpm. A model, which was validated with experimental 

results, extrapolated capacity and COP data at higher compressor speeds. 

However, the NEDC cycle and the USA equivalent, Federal Test Procedure (FTP) 

include significant portions of compressor speeds higher than 2,500 rpm. 

J. A. Baker et al. [11] presented research on building, testing and 

demonstrating a commercially viable, energy efficient secondary loop R152a 

MAC system. A test vehicle was equipped with a secondary loop system, and 

climatic wind tunnel tests, as well as road tests for cooling performance, were 

conducted. The wind tunnel tests included soak, cool down, as well as steady 

state performance tests and extended idle tests at an ambient temperature of 

40°C and 40% relative humidity. Results were presented in the form of average 

cabin air temperature and average air-conditioning (A/C) vent outlet temperature.  
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A. Gado ([12], [13]) built a dynamic simulator to simulate a passenger 

cabin while testing actual air-conditioning components under laboratory 

conditions on a test bench. Inputs to the dynamic simulator included: supply 

temperature, supply air humidity ratio, evaporator airflow rate, and various other 

user inputs, such as cooling loads and physical characteristics of the cabin. The 

mass and energy balance equations which were the core of the dynamic 

simulator were explicitly stated. It was shown that the dynamic simulator was 

able to run drive cycles, such as the NEDC, as well as pull down tests and cyclic 

tests with compressor on/off cycling. Instead of focusing only on compressor 

power consumption, the dynamic simulator allowed for real time monitoring and 

recording of refrigerant pressure and temperature, as well as air-side 

temperature and relative humidity. Cabin temperatures during NEDC cycle, as 

well as superheat and subcooling information were presented. 

M. B. Yahia and C. Petitjean [14] performed dynamic tests on a test bench. 

NEDC cycle, as well as steady state tests, based on European climate were 

performed. Two windtunnels, together with a variable speed compressor stand 

were used to test an NEDC cycle. The research focused on energy consumption 

of the compressor, however the control of the compressor speed was not well 

refined. Yahia and Petitjean found that average compressor power consumption 

during an NEDC differed about 5% from the steady state weight calculated 

average value. Test bench results and results from climatic windtunnel tests with 

actual cars did not agree well, and test conditions of the test bench had to be 

adjusted so that test bench results would resemble climatic windtunnel results 
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tested under the original test conditions. The authors concluded that if the A/C 

system could be controlled in short enough time intervals there should be little 

effect of transients on energy consumption, however no proof of this theory was 

provided in the test data shown. 

 

1.2 Transient Modeling of Automotive Air-Conditioning Systems 

C. Huang [15] conducted dissertation research on a dynamic simulation 

model for automobile passenger compartment climate control and evaluation. 

The objective of the dissertation was to develop a mathematical model to 

simulate dynamic features of mobile air-conditioning systems while predicting 

temperature and relative humidity inside the passenger cabin. The model 

consisted of two modules, one of them being the A/C network, and the other one 

being the passenger compartment. The passenger compartment was modeled 

as a lumped capacitance model. The model consisted of energy and mass 

balance equations that took the various loads, as well as the thermal and 

physical parameters of the cabin into consideration. Huang was able to 

transiently model the passenger cabin, showing the dynamic behavior of cabin 

temperature and relative humidity during a pull down procedure. 

M. Wang, D. Farley, and L. Leitzel [16] investigated head pressure spikes 

during vehicle acceleration by experiment and simulation. Head pressure spikes 

occur during gear shifts due to sudden acceleration of the compressor rpm and 

are a concern for system durability and passenger comfort requirements. Head 
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pressure spikes are mainly a mass balance phenomenon between the expansion 

device and the compressor, where the compressor pumps refrigerant faster than 

the expansion device can accommodate. The research focused on a 

mathematical transient model with application to A/C systems with scroll 

compressor. The developed model was able to simulate head pressure spikes 

effectively and allow conclusions on the phenomenon. It was found that scroll 

compressors have significant head pressure spikes due to their high volumetric 

efficiency. It was also found that the type of expansion device, as well as ambient 

conditions and heat transfer performance at the condenser during acceleration 

significantly affect the magnitude of head pressure spikes.  

T. Hendricks [17] conducted optimization of vehicle air-conditioning 

systems using transient air-conditioning performance analysis. The Sinda/Fluint 

analysis software was used to capture two-phase flow effects in evaporator and 

condenser, as well as system mass effects, air-side heat transfer, vehicle speed 

effects and temperature dependent properties. The A/C model was integrated 

with a simplified cabin model. Single-variable and multi-variable design 

optimizations were performed on COP, cabin cool down time, and system heat 

load capacity. The simplified cabin model was able to predict cabin and panel 

outlet temperatures during transient cool down periods and steady state 

operation. Combining the A/C system model and the cabin model allowed the 

prediction of drive cycle behavior and vehicle idle performance. Examples were 

presented in form of an optimization of COP, based on condenser tube diameter 

and transport line diameter. 
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R. Marzy, J. Hager, and C. Doppelbauer [18] investigated the optimization 

of vehicle warm-up, using the 1-D simulation tool KULI. To investigate vehicle 

warm-up, sub models for the vehicle engine, the HVAC system, and the vehicle 

cabin were combined into one model. A 3-D computational fluid dynamics (CFD) 

airflow simulation for the front end to model complex flows at the radiator and 

engine was added. Resistance curves were used on the air-side for the various 

heat exchangers and elements of the HVAC system in the 1-D model, which 

allowed for flexibility in adding or taking out components to model different 

system designs. Although the implementation of this software model was 

described and some transient simulation results were shown, validation of the 

model with experimental data was not provided. 

C. Tian and X. Li [19] evaluated the transient behavior of automotive air-

conditioning systems using a variable displacement compressor. They built a 

mathematical model to evaluate variation of stroke length, based on change of 

suction pressure. As a result of their simulation effort, a time lag between system 

change and compressor wobble plate response of less than three seconds was 

found. Similarly, a time lag between piston stroke length and refrigerant mass 

flow rate was found to be less than five seconds. Experimental evaluation of 

transient response of variable displacement compressor parameters, such as 

rotary speed, piston stroke length, suction pressure and MFR was conducted. 

Both, experimental results and modeling results, showed that transient effects of 

the wobble plate are negligible and a variable displacement compressor can be 

modeled as a steady state component for transient modeling of HVAC systems. 



8 

H. Tummelscheit and D. Limperich [20] published information about the 

Air-Conditioning Library in the Dymola development environment for simulation of 

advanced A/C systems. The simulation tool Dymola, based on the language 

Modelica, was chosen by German original equipment manufacturers (OEMs) as 

the preferred tool for model development and library development. The A/C 

library is a commercial package which contains a complete range of component 

models and templates of typical A/C system architectures and refrigerants. 

Dymola has steady-state, as well as transient simulation capabilities and includes 

a dynamic process interface to show dynamic ph-diagrams and other 

visualization techniques. A model encryption allows the selective hiding of model 

source code, which unfortunately prevents convenient modification of existing 

models and addition of own code. Tummelscheit and Limperich used the Air-

Conditioning Library with Dymola to compare the performance of R134a and 

Fluid "H". They concluded that fluid "H" shows lower capacity and COP and 

higher superheat and therefore cannot be used as drop-in refrigerant for R134a. 

I. Bayraktar [21] conducted research on time dependent simulation 

methods for vehicle thermal management. Underhood and HVAC optimization 

were considered, and both 1-D and 3-D calculations of component temperatures 

were conducted. Air flow and heat transfer were evaluated using 3-D CFD tools, 

namely Fluent and RadTherm software packages. Model results were compared 

to experimental results from a passenger compartment model in a climate 

chamber, instrumented with more than 100 thermocouples and a large number of  

pressure transducers on air- and refrigerant-side. To verify the model, the target 
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was to minimize difference between experimental and computational results for a 

cabin cool down process at four checkpoint locations (10, 20, 40 and 50 minutes). 

The author concluded that 1-D simulation can provide valuable first predictions, 

but higher fidelity 3-D CFD models are needed to analyze transient behavior of 

the entire thermal system of a vehicle. 

B. Li and A. Alleyne [22] presented a full dynamic system model with 

switched moving boundary components, which was able to accommodate severe 

transients in heat exchanger dynamics. The research was focused on start/stop 

cycles, specifically the phenomenon of compressor clutch cycling. Heat 

exchanger models were implemented in Thermosys, a Matlab toolbox. The 

dynamic system model was created in Matlab/Simulink and was successfully 

validated using an experimental test stand. In the moving-boundary modeling 

framework, heat exchangers were divided into control volumes or zones in terms 

of fluid phase. The location of the boundary between zones is a key dynamic 

variable that captures the essential multi- phase flow dynamics. It was shown 

that switching schemes between different representations (i.e. subcooled liquid, 

superheated vapor, or two-phase) handle the transitions of dynamic states while 

keeping track of vapor and liquid refrigerant regions during start-stop transients. 

The authors concluded that their model enables the adjustment of hysteresis set 

points on compressor cycling (i.e. at which temperatures the compressor turns 

on and off) in simulation before experimental testing is required. System 

responses like space temperature, refrigerant cycle pressure and superheat 

condition were successfully predicted by the model. 
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K. Sandhu, C. Chatham and A. Milosevic [23] developed a model to study 

the impact of various A/C circuit configurations on A/C performance of a Land 

Rover vehicle. In hybrid or electric vehicles, the A/C system design and resulting 

power consumption significantly affects driving range and cooling performance of 

batteries and electric systems. The simulation software GT-Suite was used. The 

model was validated at several steady-state conditions against experimental 

results from an R134a A/C system. A multi-evaporator design was studied with 3 

cooling loads, one of them being an intermediate heat exchanger cooling a 

secondary loop for battery and inverter cooling. Refrigerant R1234yf was used in 

the model. Transient pull down tests were simulated by integrating the A/C 

system model with a vehicle cabin model. A target evaporator temperature was 

calculated, based on ambient temperature, blower speed, solar intensity, 

recirculation mode and battery cooling demand. The target evaporator 

temperature was subsequently used to control compressor speed. Results of a 

pull down simulation in form of transient cabin temperature and transient 

compressor power were presented. However, no comparison with experimental 

data was provided. 

 

1.3 Alternative Refrigerants in Air-Conditioning and Refrigeration 

Table ‎1.1 shows properties of five flammable refrigerants, along with 

R134a properties as baseline. Isobutane (R600a) is a hydrocarbon refrigerant, 

mostly used for medium- and low-temperature domestic refrigeration applications. 

With a low Global Warming Potential (GWP) of 8, an Ozone Depletion Potential 
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(ODP) of 0, and an Atmospheric Life Time (ALT) of less than a year, R600a has 

excellent environmental properties. R600a is in the safety classification A3 of the 

ASHRAE Standard 34 [24], meaning that it is highly flammable. It has a lower 

flammability limit (LFL) of 1.7 vol.%, which makes it the easiest to ignite among 

the refrigerants in the table. The acute toxicity exposure limit (ATEL) is a value 

used by ASHRAE Standard 34 [24] and ISO 817 [25] to establish the maximum 

refrigerant concentration limit for a refrigerant in air. It is calculated from the 

acute toxicity data using methods determined in accordance with the standards.  

Table ‎1.1: Alternative Refrigerants and Characteristics (Wang et al.) [26] 

Refrigerants 
R134a 
(HFC) 

R290 
(HC) 

R600a 
(HC) 

R290/R600a 
mix. (HC) 

R152a 
(HFC) 

R1234yf 
(HFO) 

Global Warming Potential (GWP) 1,430 11 8 7 140 4 

Ozone Depletion Potential (ODP) 0 0 0 0 0 0 

Atmospheric Life Time [a] 14 <1 <1 <0.04 2 <0.05 

Acute Toxicity Exp. Level [ppm] 50,000 50,000 25,000 40,000 50,000 101,000 

Lower Flammability Limit [vol.%] - 2.2 1.7 2.0 3.9 6.5 

Minimum Ignition Energy [mJ]  - 0.25 0.25 N/A 0.38 >1000 

Safety Group A1 A3 A3 A3 A2 A2L 

Molar Mass [kg/kmol] 102.03 44.096 58.122 N/A 66.051 114.042 

Vapor Density (25°C) [kg/m
3
] 32.35 20.65 9.12 N/A 18.47 37.94 

Critical Temperature [°C] 101.1 96.8 135 114.8 113.3 94.7 

Critical Pressure [kPa] 4,061 4,247 3,647 4,040 4,522 3,382 

Normal Boiling Point [°C] -26.11 -42.11 -11.78 -31.5 -24.0 -29.48 

Vapor Spec. Heat (25°C) [kJ/kg K] 1.0316 2.0724 1.8189 1.77 1.2536 1.053 

 

Propane (R290) is a hydrocarbon (HC) refrigerant used for high-, medium-

and low-temperature applications in commercial and industrial refrigeration, air 

conditioning, as well as heat pumps and chillers. With a GWP of 11, an ODP of 0, 

and an ALT of less than a year, R290 is an environmentally friendly choice. A 
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LFL of 2.2 vol.% puts it in the safety classification A3 with a MIE of 0.25 mJ 

required for ignition.  

An HC zeotropic mixture, a blend of R290 and R600a, is mostly used in 

high- and medium-temperature commercial, automotive and residential 

applications. As its constituents are R290 and R600a, it has a small GWP of 7, 

an ODP of 0, and a negligible ALT. Its LFL of 2.0 vol.% is in the typical range of a 

HC refrigerant, so that the assigned safety classification is A3. Due to 

flammability and safety concerns, this HC mixture, as its constituents, should be 

used in a SL system when used in MACs.  

1,1-Difluoroethane (R152a) is a HFC refrigerant, and was investigated for 

use in MACs, as well as household refrigerators. Its GWP of 140 is quite high 

compared to that of HCs, but is beneath the upper limit of 150, set by the 

European Council[27]. An ALT of about 2 years makes it less environmentally 

friendly compared to HCs, yet far superior to the currently used R134a. The 

advantage of R152a is the higher LFL of 3.9 vol.% and the resulting safety class 

A2. 

2,3,3,3-Tetrafluoropropene (HFO1234yf), proposed by American chemical 

companies, is currently investigated for use in MACs by Spatz and Minor [28]. Its 

GWP of 4 is the lowest among the reviewed flammable refrigerants. As R1234yf 

has zero ODP and a negligible ALT, it is the most environmentally friendly of the 

reviewed flammable refrigerants. A LFL of 6.5 vol.% and a MIE of greater than 

1000 mJ make it the safest choice among the assorted classification of 
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refrigerants in terms of flammability. The safety class to be designated is 

expected to be A2L. Due to its low LFL and MIE as compared to HCs, chemical 

companies proposed to apply R1234yf to DX systems without using a SL as a 

safety measure when used in MACs.  

Granryd[29] and Corberan et al. [30] summarized the environmental safety 

considerations and standards applied for the safe use of flammable refrigerants. 

Both ASHRAE Standard 34 [24] and European standard prEN378 (CEN, 2006) 

[31] classify refrigerants in three classes 1–3, where Class 1 is used for non-

flammable fluids and Class 3 for highly flammable fluids. The group of Class 3 

refrigerants, which includes HCs, is currently limited in use for industrial 

applications in the USA and France, due to restrictive regulations. Some 

European standards, such as prEN378 (CEN, 2006), British standard BS EN378-

1 (BSI, 2008) [32] and German standard DIN 8975 (DIN, 2004) [33], allow for a 

broader range of applications if certain safety requirements are met. As a result, 

the use of HCs in household refrigerators, freezers and small heat pumps has 

increased in European countries. 

Furthermore, Granryd [29] compared the performance of HCs, such as 

R600a and R290 and their mixtures to the well established refrigerants R12, R22 

and R134a. Blends of R290 with R600a could achieve vapor pressures close to 

that of R134a and would hence be a suitable replacement. While R290 has a 

higher volumetric cooling capacity, R600a and the HC blends have a lower 

volumetric cooling capacity compared to R134a. As a refrigerant with a high 
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volumetric cooling capacity will provide a high cooling capacity for a given swept 

volume of the compressor, R290 shows superior characteristics.  

Colbourne [34] summarized a study analyzing over 50 published technical 

documents comparing the performance of fluorinated refrigerants and HCs. A 

significantly higher number of tests showed an increase in performance when 

using HCs as compared to using fluorinated refrigerants, as shown in Colbourne 

and Suen [35]. The average improvements in Coefficient of Performance (COP) 

resulting from the use of HCs were 6.0% for domestic refrigeration applications, 

15.0% for commercial refrigeration applications, 8.8% for air-conditioning and 9.6% 

for heat pumping as shown in Table ‎1.2.  

Table ‎1.2: Comparison of Performance of Hydrocarbons per Application [26] 

Applications 

Proportion of cases where HCs improved COP 
Average 

Improvement < 10% 
Improvement 

10% - 20% 
Improvement 

> 20% 
Improvement 

Total 

Domestic Refrigeration 63.9% 13.9% 5.6% 83.7% 6.0% 

Commercial Refrigeration 51.6% 12.9% 25.8% 90.3% 15.0% 

Air-Conditioning 63.0% 25.9% 3.7% 92.6% 8.8% 

Heat Pumping 58.6% 37.9% 3.4% 100% 9.6% 

 

Colbourne and Ritter [36] investigated the compatibility of non-metallic 

materials with HC refrigerant and lubricant mixtures. Experiments were 

performed in compliance with European standards for the testing of elastomeric 

materials and ASHRAE material compatibility test standards. Test results were 

presented for swell rates, hardness rating, mass changes and the change of 

tensile strength. A R290/R600a HC blend in combination with various lubricants 
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VG32 Mineral Oil, VG100 Mineral Oil and VG46 Polyol Ester Oil, was tested. The 

chosen materials for testing were common materials, such as Buna N, HNBR, 

EPDM, Viton and Neoprene. Results for Buna N, HNBR, Viton and Neoprene 

indicated that linear and volumetric swell was minimal and acceptable. Buna N, 

HNBR, Neoprene and Silicone were found to show only minimal amount of mass 

change. The authors concluded that Buna N, Viton, Neoprene and HBNR, as 

well as Mylar as a plastic, were all suitable elastomers for use with HC 

refrigerants.  

Maclaine-Cross and Leonardi [37] compared the refrigerant performance 

of HCs based on refrigerant properties and concluded that the COP 

improvements, commonly reported in literature, were consistent with better 

thermodynamic properties of HCs. R600a properties and their influences on 

system performance were discussed. In refrigeration systems, the evaporator 

has to withstand pressures similar to those in the condenser during the off period. 

Since the typical condensing pressures of R600a is about 50% smaller than that 

of R134a and other refrigerants, the thickness of the heat exchanger material can 

be reduced. This helps the heat transfer in heat exchangers through a reduction 

of thermal resistance, and thus reduces capital costs and environmental impact. 

Additionally, the low compressor discharge temperature of R600a allows for a 

cheaper and more efficient design of the electric motor. They suggested that 

although performance differences between ideal cycles using R600a and 

common refrigerants were small, the flow and heat transfer parameters were 

typically better by a factor of two for R600a. This explains the 20% energy 
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savings reported in literature. Through redesign of components, similar 

improvements can be achieved in other small applications.  

Joudi et al. [38] studied the performance of MAC systems with alternative 

refrigerants. A computer model was developed to determine the most suitable 

alternative refrigerant to R12. The influence of evaporating temperature, 

condensing temperature and compressor speed in an ideal cycle was considered. 

Four refrigerants were studied: R134a, R290, R600a and an R290/R600a 

mixture. The model predicted the R290/R600a mixture as the most suitable 

alternative to R12. A subsequent experiment with a prototype MAC system 

compared R290, the HC blend and R12 performance. It was observed that R290 

outperformed R12 by approximately 8.3% in terms of COP, depending on 

condensing temperatures, whereas the R290/R600a mixtures had a similar 

performance to R12. For the pull-down time at soaking temperatures, a superior 

performance of the HC blend was recognized for all test conditions. The power 

consumption of the HC mixtures was slightly higher for all operating conditions 

investigated, resulting in slightly lower COPs between 0.86% and 2.27%, based 

on operating conditions. 

Ghodbane [39] investigated the use of R152a and HCs in MACs. Based 

on thermophysical data, a quantitative analysis of MACs with flammable 

refrigerants was proposed. R290 having the lowest normal boiling point (NBP) 

was expected to have the highest operating pressure, while R600a was expected 

to have the lowest operating pressure. R152a was expected to have a similar 

operating pressure to R134a since its NBP is closest to R134a. Critical 
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temperatures of R152a, R290 and R600a are all above 93.3°C. An ideal 

performance comparison with respect to R134a was performed over a wide 

range of evaporating and condensing temperatures. The cooling capacity of the 

system was set to be 3.7 kW. Pressure drop was neglected and the compressor 

isentropic efficiency was set to be 100%. Results showed that over the whole 

range of evaporating temperatures, R152a had the highest COP in the range of 

37.8–54.4°C condensing temperature, which is the desired range for MACs. The 

COP of R152a was increased about 6–19% as compared to R134a, depending 

on condensing temperature. R152a showed a higher hot discharge gas 

temperature compared to other refrigerants, resulting in 6.6–14.1 K higher 

temperatures compared to R134a. Despite the higher discharge temperature, 

R152a was chosen by Ghodbane as the most suitable flammable refrigerant to 

replace R134a in MACs, due to its superior performance. A more realistic 

evaluation of the refrigerants under operating conditions in a vehicle with 

simulation of road load conditions followed. R152a remained the best performer 

with a performance increase over R134a of 11% at road load conditions and 8% 

at idling conditions. R152a had a condensing heat transfer coefficient of about 

1.33 times higher than R134a under the prescribed conditions for idling (1.26 for 

road load). The evaporative heat transfer coefficient of R152a increased to 1.04 

times of R134a at the same ambient conditions under idling (1.14 times for road 

load). The highest increase in evaporative heat transfer coefficient was reported 

for R290 with 1.43 times of R134a for idling (1.51 times for road load). Two-

phase flow pressure drop data showed that the HCs, as well as R152a, have a 
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considerably low pressure drop, with R152a having 50% less pressure drop than 

R134a. 

 

Risk assessment 

In their research ‘‘Hydrocarbon‎Refrigerant‎Risk‎ in‎Car‎Air-Conditioning’’,‎

Maclaine-Cross and Leonardi [40] provided an overview of the potentially 

dangerous scenarios that need to be considered when employing flammable HC 

refrigerants in MAC systems. Principal hazards associated with refrigerants were 

determined to be: explosion in space, fire, asphyxiation or poisoning, flying debris 

resulting from an explosion, cold burns and damages due to chemical reactions. 

Several safety standards were adopted in Europe, Australia, Asia and the USA, 

which restrict the use of flammable refrigerants based on the charge amount, 

safety design of the system, as well as the individual properties of the 

refrigerants. Based on the necessary precautions demanded by these standards, 

the authors believe that R600a and mineral oil mixtures require the least 

expenditure on precautions for MAC systems. This combination is already 

commonly used in household refrigerators.  

Razmovski and Rajasekariah [41] experimentally evaluated possible 

ignition sources in a car by connecting a welding torch to a HC refrigerant 

cylinder. The refrigerant streaming out of the welding torch was then tested for 

more than 15 min on the hot engine, electrical wiring, exhaust system, ignition, 

switches, fan motor and internal cigarette lighter. It was found that none of the 
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aforementioned sources ignited the torch and a lit up match or external butane 

cigarette lighter was the only possible ignition source for the HC refrigerant in a 

car. One scenario that particularly causes concerns is an explosion of flammable 

refrigerant within the passenger compartment through rupturing of a pipe just 

before the expansion valve, which releases a refrigerant cloud into the passenger 

compartment. It is expected that a fatigue fracture of the liquid line could be a 

likely cause of this scenario.  

Maclaine-Cross and Leonardi [40] concluded from their experiments that 

safe operation of HC refrigerants in cars is possible. In a study about HC 

refrigerant leakages in car passenger compartments, Maclaine-Cross referred to 

a report made by Arthur D. Little Ltd. [42], who noted that serious injury to 

occupants through use of flammable refrigerant would only be possible if the car 

crashed, due to overpressure in the compartment after a fatigue damage of the 

liquid line. The risk level of such an event, which could also occur with non-

flammable refrigerants, was estimated to be 4.16x1010 per car year. Most 

refrigerants, not only HCs, are asphyxiants and causes drowsiness and driver 

fatigue. The potential hazards implied are thousands of times more frequent than 

the ignition of refrigerants and have a higher potential to entail damage through 

possible crashes. Peak concentrations in fractions of the LEL were determined 

for a variety of Australian cars, built from 1970 to 1989. For models built in the 

1970s, the concentration in the cabin was found to be above the LEL only for an 

instantaneous complete fracture. In all cars built in the 1980s, the possible 

concentration after one of the aforementioned events was well below the LEL.  
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A report from Dieckmann et al. [43] for the USA Department of Energy 

was reviewed, which assessed the risk of using flammable refrigerants in MACs. 

Field data from car crashes and car fires was used as basis for the analysis. The 

extent of damage to the refrigerant circuits in crashed cars was visually inspected. 

A fault tree analysis allowed for risk estimates. 

A similar risk assessment, performed by Elbers and Verwoerd [44], 

considered an R290 heat pump system used for residential heating. The 

estimated risk in terms of fatalities is provided in above table. To provide a 

context for these safety estimates, Ritter and Colbourne [45] published a review 

on HC risk assessment from 1991 to 1998. The use of background risks as a 

basis for comparison of the risk of fire with HC was presented. The background 

risks are then taken as a datum for comparison with the risk of a fire due to the 

use of flammable refrigerant. Several systems were considered by Ritter and 

Colbourne, including MAC, supermarket cold storage rooms, supermarket line 

chest freezers and integral unit chillers. A typical MAC system with a charge of 

400 g of HC mixture was assessed to have a risk level of 3.0x107 per car year. 

The risks considered included minor burns from jet fires, cloud fires and 

overpressure. The risk level of a car crash, resulting from leakage of a HC 

mixture was subsequently estimated to be 9.91x108 per car year. This number is 

negligible compared to the background risk of fire frequency in cars, which is 

3.29x103. Based on the foregoing comparison, Ritter and Colbourne [45] 

concluded that the risks of flammable refrigerant leakages and possible 
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subsequent fires, evaluated for numerous systems, are mostly negligible when 

compared to background risks.  

Jetter et al. [46] used a fault tree analysis to estimate the number of 

refrigerant exposures of automotive service technicians and vehicle occupants in 

the USA. The estimated number of exposure for occupants in a vehicle is smaller 

than the exposure for technicians. Furthermore the largest best estimate was a 

leakage following a collision. The authors claimed that a common concern, the 

leakage from the evaporator in the passenger compartment following a collision, 

might be overrated because for parked vehicles and those standing still after an 

accident, refrigerant leaking out of the evaporator would flow through the 

condensate drain due to its high density compared to air and would not enter the 

passenger compartment in a significant amount.  

A quantitative risk assessment model was developed by Colbourne and 

Suen [47] to examine the influence of design, installation of equipment and 

external conditions on the frequency of ignition and the associated 

consequences for indoor refrigeration and air-conditioning units using HC 

refrigerants. The output of the model was evaluated with a sensitivity analysis of 

the parameters to show their relative impact on the overall risk level. Key aspects 

in terms of design were shown to be refrigerant charge quantity and installation 

height due to their impact in the event of quick dispersion. Also the refrigerant 

selection itself showed a noticeable impact on the risk value, where R600a 

showed the highest risk. 
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The above literature review on low GWP refrigerants showed that 

flammable refrigerants are safely used in a variety of industrial, commercial and 

residential (mostly Europe/ Asia) settings. Cars with MACs running with Propane 

(R290) exist in Australia. Simulation and experimental research on flammable 

refrigerants in MACs shows that R152a and R290, as well as mixtures of R290 

and R600a are promising candidates to be used in future automotive air-

conditioning systems. Hydrocarbons, such as R290 and R600a, are superior with 

regard to environmentally friendly operation. At the same time the supply of HCs 

can be reliably guaranteed in most parts of the world. Risk assessment studies 

showed that the risk of fire due to the use of hydrocarbons as refrigerant in direct 

expansion systems (DX) is low compared to background risks. It is generally 

agreed upon that it is safe to use hydrocarbons in MACs if safety measures are 

taken. The secondary loop is one of these safety measures which, in addition to 

fire hazard mitigation, includes other advantages, such as cold storage and 

enabling of multiple cooling loads.  

 

1.4 Secondary Loop Systems in Air-Conditioning and Refrigeration 

The vapor compression cycle of a secondary loop (SL) system consists of 

a compressor, a condenser, an expansion device and an intermediate heat 

exchanger, often called chiller. The chiller cools down a working fluid in the 

secondary loop, which in turn cools down the air by exchanging heat in the cooler, 

a liquid to air heat exchanger. One or more pumps cycle the coolant in the 

secondary cooling circuit. 
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Primary Loop Equipment 

Most of the components used in DX systems can also be used for SL 

systems, which is also true for the compressor. Palm [48] reported that HC 

producers listed the compressor manufacturers whose compressors are 

compatible with HCs, including 23 compressor manufacturers. After taking an 

internal evaluation of safety aspects, Danfoss [49] decided to supply 

compressors used in small hermetic systems with HC charge of 150 g or less. 

Corberan et al. [50] investigated the performance of a positive displacement 

hermetic refrigerant piston compressor working with R290 as refrigerant. The 

cooling capacity of an R22 compressor that was switched to R290 operation 

decreased by 13% to 19%. However, the COP of the system increased from 2 to 

6% at the same time. 

The intermediate heat exchanger, often called chiller, is of special interest 

in SL systems. Pellec et al. [51] tested two types of heat exchangers (brazed- 

and platular-welded-plate heat exchangers) working with ammonia and silicone 

heat transfer fluid as a secondary refrigerant. With the same mass flow rate on 

the secondary refrigerant-side, the heat transfer coefficient is about five times 

less for the platular- welded-plate heat exchanger compared to the brazed plate 

heat exchanger, due to the plate patterns. Setaro et al. [52] tested and compared 

heat transfer and pressure drop for a brazed plate heat exchanger and a tube-

and-fin coil using two different refrigerants, R22 and R290 in an air-to- water heat 

pump system. Both, the heat transfer coefficient and pressure drop of R290, are 

lower than R22 in the two types of heat exchangers which were studied. Hrnjak 



24 

and Hoehne [53], who studied charge minimization in SL systems, reported that 

an air to R290 minichannel heat exchanger developed for a 2 kW cooling 

capacity refrigeration system needed less than 0.13 kg of R290 due to its smaller 

internal volume compared to traditional fin-and-tube heat exchangers. Fernando 

et al. [54] studied liquid-to-refrigerant heat exchangers using flat multiport with 

1.4 mm hydraulic diameter tubes and showed a lower charge compared to plate 

heat exchangers. Fernando et al. ([55], [56], [57]) also carried out comprehensive 

tests on performance of minichannel aluminum tube heat exchangers working as 

evaporator and condenser. Correlation equations of refrigerant-side (R290) heat 

transfer coefficient were compared and validated with experimental results.  

 

Primary Loop Refrigerants 

Primary refrigerants for commercial systems can be distinguished into 

Ammonia, hydrofluorocarbons (HFCs) and HCs. A lot of examples exist for 

Ammonia and HFCs as primary refrigerants, including American manufacturers, 

as shown by Likes [58], who established an early SL system for supermarkets. 

The primary refrigerant was R22 and the secondary refrigerant was a water-

propylene glycol solution, 65/35% by mass. Preliminary test results showed that 

the performance of the secondary system for the medium temperature case was 

satisfactory, but the energy consumption was higher than expected. Rolfsman 

[59] reported a supermarket in Sweden which was converted to a SL system. 

NH3 was used as the primary refrigerant and CO2 was used as the secondary 

refrigerant for freezing. Five of the same systems were installed and had been 
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operating successfully for a year. Evenmo [60] cited a supermarket in the United 

Kingdom using R407C as the primary refrigerant and a commercial fluid as the 

secondary fluid, since first opened in February 1997. In the same year, Horton et 

al. [61] tested a drop-in SL refrigeration system for medium temperature 

supermarket applications. The primary refrigerant was R22 and the secondary 

refrigerants were a 50/50% mixture of water-propylene glycol, and hydro-

fluoroether. Comparison of the performance of the R22 baseline vapor 

compression cycle and SL systems showed that the COP of the primary loop in 

the SL setup was about 1.5–2 times higher compared to the baseline. Nyvad and 

Lund [62] reported on a supermarket in Denmark replacing its existing (H)CFC-

plant with a new indirect SL system. In this system, NH3 was used as the primary 

refrigerant and Tyfoxit (Tyforop Chemie Gmbh [63]) was used as the secondary 

refrigerant. The experimental results showed that average energy consumption 

of the SL system with NH3 as the primary refrigerant was 35% less compared to 

the old system using (H)CFC as the refrigerant. Arias and Lundqvist [64] reported 

field test results of advanced systems in three supermarkets. Two of them used a 

cascaded SL system with R404A as primary refrigerant and potassium formate 

brine solution as secondary refrigerant. The third system had individual SL 

refrigeration units in each display case which were all connected to a central 

building chiller for heat rejection. Faramarzi and Walker [65] tested the 

performance of a SL refrigeration system in USA supermarkets. The primary 

refrigerant was R507 and secondary refrigerant was Dynalene. The energy 

consumption of this SL refrigeration system was 4.9% less compared to the 
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baseline multiplex system. Minea ([66], [67]) reported a supermarket refrigeration 

system with SLs installed near Montreal, Canada. This advanced system 

involved secondary fluid loops on both refrigerating and condensing sides, heat 

recovery with brine- to-air heat pumps and passive heat exchangers. The primary 

refrigerant was R507 and the secondary refrigerants for low temperature freezing 

loop and medium temperature refrigeration loop were potassium formate and 

propylene glycol (50/50% by mass), respectively. The secondary fluid on the 

condensing side was ethylene glycol/ water mixture (50/50% by mass). The total 

quantity of the primary refrigerant was reduced by 61% compared to a baseline 

multiplex refrigeration systems.  

Examples for HCs as primary refrigerant include Rivers [68], who reported 

on an SL refrigeration system designed for a supermarket in Greenwich, England. 

An HC was chosen as primary refrigerant. Propylene glycol was employed as the 

medium temperature secondary refrigerant, while an organic potassium salt 

solution was chosen for the low temperature loop. Baxter [69] reported a case 

study for a small Danish supermarket where the old refrigeration plant had been 

replaced with a cascade plant. R290 was used as the high temperature 

refrigerant (14/30°C) while CO2 was used as the low temperature refrigerant 

(32/11°C). CO2 was used directly to perform the cooling in the freezers while 

propylene glycol was used in the coolers. Total energy consumption was 

decreased by 10% with the new plant. 

Primary refrigerants mostly used in residential and automotive air-

conditioning are HCs, CO2, or R152a (used in MACs). Examples for 



27 

hydrocarbons include Choi et al. [70], who evaluated the performance of R22, 

R290, R290/600a (70/30%), and R32/152a (50/50%) used in a water-to-water 

residential heat pump for space cooling and heating. The secondary fluid was a 

60/40% mixture of water and ethylene glycol. For the same system capacity, 

R32/152a proved to be the best performer due to a good temperature glide 

matching in the heat exchangers and its excellent thermodynamic and 

transporting properties. The HC mixture R290/600a had the highest COP at a 

given compressor speed, but its COP at the constant-capacity criterion was the 

lowest. Chang et al. [71] reported the performance and heat transfer 

characteristics of a heat pump system charged with HC refrigerant (R290, R600a, 

R1270 and binary mixture of R290/ R600a and R290/R600). The secondary fluid 

was ethyl alcohol. Test results showed the heating and cooling capacity of R290 

was slightly less than that of R22. The COP of R290 was slightly higher 

compared to R22. The heating and cooling capacities of R290/600a and 

R290/600 mixtures were nearly linear with respect to mass fraction of R290. 

Pelletier and Palm [72] tested a domestic heat pump using R290 as compared to 

the R22 baseline system. For R290, the heating capacity was 7–10% lower, 

while the heating COP was 4–5% higher than R22. Payne et al. [73] investigated 

and compared the performance of R22, R290 and zeotropic mixtures of 

R32/R290 and R32/152a. The secondary fluid was 70/30% mixture of water and 

ethylene glycol. In the cooling mode at a constant capacity, the R32/290 (50/50%) 

mixture resulted in the highest COP, 8% higher than R22. In the heating mode, 

the COP of R290 was the highest, 6–8% higher than that of the remaining fluids.  
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Examples using CO2 as primary or secondary refrigerant in residential 

systems include Stene [74], who investigated the performance of a residential 

brine-to-water CO2 heat pump for combined low temperature space heating and 

hot water heating. The system heating capacity was 6.5 kW. Yanagisawa et al. 

[75] investigated a SL refrigeration system, using a vapor compression NH3 

cycle as the primary loop and a CO2 thermosiphon loop as the SL. In the SL, CO2 

was circulated between the intermediate heat exchanger and the cooler by the 

difference in density between liquid and vapor lines. The experimental SL with 

the CO2 liquid head of 0.9 m operated at a cooling capacity of 3.5 kW and COP 

of 3.7. 

In automotive air-conditioning, natural refrigerants, such as HCs, are 

considered due to the currently used refrigerant, R134a being phased out by 

2011 in the European Union. HCs present a potential alternative to R134a due to 

their good thermodynamic and transport properties, heat transfer characteristics, 

material compatibility, low cost, low toxicity and low GWP (Corberan et al. [30]; 

Domanski and Yashar [76]; Fernando et al. [54]; Mani and Selladurai [77], Palm 

[48]). The chemical industry has been working to synthesize new chemicals and 

mixtures of chemicals that have a GWP below the required threshold, such as 

R152a (Ghodbane [39]) and R1234yf (Hill [78]; Spatz and Minor [28]). The HCs, 

R152a, and NH3, have received less attention compared to other refrigerants 

because of safety concerns, such as flammability or toxicity. The USA 

Environmental Protection Agency (EPA) does not explicitly forbid the retrofit of 

R134a systems with Hydrocarbons, though some states do [79]. However, HCs 
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are declared unacceptable substitutes on the basis of a current lack of adequate 

assessment of their flammability risk by the U.S. EPA as of 2010 [80]. Therefore, 

most published papers on these refrigerants being employed in automotive direct 

expansion systems are theoretical in nature. However, one way of safely 

employing HCs, R152a or NH3 in MACs is to use them in conjunction with a SL 

system. An SL system would prevent the primary refrigerants from entering the 

passenger cabin and thereby mitigate any fire hazard for vehicle occupants.  

 

Secondary Refrigerants 

There are two kinds of secondary refrigerants: single phase fluids and 

two-phase fluids. Single phase fluids generally include some kind of antifreeze 

solution, corrosion inhibitor, or biocides. A series of glycol-, potassium acetate-, 

and potassium formate-based secondary refrigerants have been applied in SL 

refrigeration systems (Ure [81]). There are few SL refrigeration systems that use 

a two-phase mixture as secondary refrigerant. Two-phase secondary refrigerants 

take advantage of the high latent heat during the phase change process from 

liquid to solid or from liquid to gaseous state (Delventura et al. [82]). The higher 

the percentage of refrigerant undergoing the phase change, the higher the 

energy stored per kilogram of refrigerant. The freezing point is the most important 

physical property to consider when choosing among fluids. Usually the freezing 

point of the chosen secondary refrigerant is not less than 5–10 K below the 

system operating temperature. Aqueous solutions, due to their high specific heat 

and good heat transfer coefficients, are widely used as working fluids in the 
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secondary circuit. Most commonly used aqueous solutions with their 

thermophysical properties are listed in Table ‎1.3 (Melinder [83]).  

Table ‎1.3: Characteristics of Aqueous Solutions as Secondary Refrigerants [26] 

Aqueous Solutions 
cA  

[wt.%] 
tF 

 [°C] 
t  

[°C] 
ρ  

[kg/m
3
] 

cp  
[kJ/kg K] 

k 
[W/m K] 

μ  
[mPa s] 

Ethylene Glycol 36.19 -20 -10 1058 3.494 0.415 7.99 

Propylene Glycol 39.41 -20 -10 1045 3.620 0.384 21.67 

Ethyl Alcohol 29.73 -20 -10 970 4.127 0.393 12.22 

Methyl Alcohol 24.87 -20 -10 969 3.914 0.431 5.42 

Glycerol 46.28 -20 -10 1129 3.155 0.460 2.94 

Ammonia  13.46 -20 -10 953 4.239 0.460 2.94 

Potassium Carbonate 30.95 -20 -10 1322 2.877 0.519 6.25 

Calcium Chloride 20.82 -20 -10 1196 2.992 0.530 4.48 

Magnesium Chloride 16.59 -20 -10 1151 3.192 0.505 5.58 

Sodium Chloride 22.62 -20 -10 1182 3.305 0.530 4.22 

Lithium Chloride 13.66 -20 -10 1083 3.405 0.522 3.97 

Potassium Acetate 27.91 -20 -10 1155 3.232 0.467 5.67 

Potassium Formate 28.94 -20 -10 1192 3.121 0.506 3.55 

 

Other secondary refrigerants, which are widely used include ice slurries 

and CO2. Ice slurries consist of a number of ice particles in an aqueous solution 

where the diameter of ice particles is equal or smaller than 1mm, as stated by 

Egolf and Kauffeld [84]. The smaller the ice particles are, the better the slurries 

can be transported. The cooling capacity of an ice slurry is four to six times 

higher than that of conventional chiller water, depending on the ice fraction (Ure 

and Mashrae [85]). Often cooling point depressants, such as salts or ethanol are 

used, as researched by Meewisse and Ferreira [86] who compared two freezing 

point depressants, sodium chloride and ethanol. The results showed that 

economic performance of SL cooling cycle utilizing sodium chloride as freezing 

point depressing substance was at most 8% higher than that of ethanol. 
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Examples of successful integration of ice slurries in SL systems include 

Wang and Goldstein [87], who applied an ice slurry system for cooling in railway 

transportation, Christensen and Kauffeld [88], who described the application of 

ice slurry as secondary refrigerant in a SL system with the use of an ice slurry 

accumulation tank, and Wang et al. [89] who studied an SL ice slurry system 

using ethylene glycol-water binary solution in the Ritz Carlton Plaza Hotel in 

Japan. Fukusako et al. [90] reviewed studies related to the cold thermal storage 

systems and components using ice slurries and recent research activities on ice 

slurries in Japan. The types of ice storage systems were categorized into five 

groups by the process of ice manufacturing. Saito [91] reviewed recent research 

on cold thermal energy storage including a SL ice slurry system. The ice making 

process, ice storage process, transportation and utilization of stored ice, as well 

as the whole process were identified as important future research topics. 

Recently more and more attention has been paid to Carbon Dioxide (CO2), 

which shows several benefits as a two-phase secondary fluid. The advantages of 

utilizing CO2 as a secondary refrigerant are lower pumping power (zero pump 

power when thermosiphon is used), smaller pipe size, excellent heat transfer 

properties, and good material compatibility with the additional benefit of the low 

cost of the fluid compared to conventional single-phase secondary refrigerants. 

The main disadvantage of CO2 appears to be relatively low critical temperature 

and limited availability of components (Hinde et al. [92]). A few applications that 

utilize CO2 as a volatile secondary refrigerant have been implemented in low-

temperature applications in supermarket systems in Sweden (Melinder [93]; 
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Pachai [94]; Pearson [95]). Pearson [96] submitted patents on the use of CO2 as 

a volatile secondary refrigerant, including a novel hot gas defrost system.  

Further examples on CO2 as secondary refrigerant include Christensen 

[97], who investigated a SL system using CO2 as primary and secondary 

refrigerant in supermarket applications. Tests showed that CO2 was a suitable 

alternative to HFCs in supermarket applications. Pachai [94] reported a SL 

system installed in Helsingborg, Sweden. The primary refrigerant was a HC, a 

mixture of R290 and R170, and the low- and intermediate-temperature side 

secondary refrigerants were CO2 and propylene glycol, respectively. The system 

had successfully been running since 1997 and more than fifty shops have been 

installed with similar systems in Sweden. Nilsson et al. [98] reported an ice rink 

refrigeration system with CO2 as the secondary fluid with a cooling capacity of 15 

kW. Also in 2006, a British company implemented an air-conditioning system to 

protect computer servers against overheating for a bank at its London office, as 

reported by Jahn [99]. The chilled water circuit condensed CO2 at 6°C. Then, 

CO2 was pumped out to the server cabinets by centrifugal pumps, evaporated, 

and returned to the condenser to begin the process again. The cooling capacity 

of the whole system was 300 kW. Hinde et al. [92] reported that at least nine low-

temperature CO2 systems were operational in the USA and Canada in early 2008. 

All systems utilized CO2 as a low-temperature two-phase secondary refrigerant. 

The stores ranged in size from small neighborhood markets to large 

supercenters and warehouse-style stores. The system's cooling capacities 

ranged from 22 to 160 kW.  
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Secondary Loop Systems in Automotive Applications  

Examples of secondary loop systems in MACs include Ghodbane[39], 

who investigated the potential of R152a and HC refrigerants as alternative 

refrigerants to R134a and published a comparative assessment of a SL system 

applied to MACs. The assessment showed that the SL for MACs requires less 

development time compared to other alternatives, such as CO2, air cycle, etc. 

Ghodbane expected the SL system to have higher mass and cost than the 

baseline R134a system, but to offer the potential of being lower mass and cost 

compared to the other alternatives to R134a systems. The performance of a SL 

MAC with R152a or HCs as primary refrigerant and ethylene glycol-water mixture 

in 50/50 wt.% as secondary refrigerant was compared theoretically to a 

traditional DX system using R134a. Based on the theoretical comparison, the 

author decided to experimentally test a SL system using R152a as primary 

refrigerant. Comparison of the performance of the SL system with a production 

R134a system as baseline is shown in Table ‎1.4 at 87.5 km/h road load and 

ambient conditions of 37.8°C and 40% RH. The SL system COPs were 

decreased by 5–19% while the condenser capacities were increased by 6% 

when R152a was used as a primary refrigerant. The contributor to higher 

compressor power and higher condenser capacity for the SL system was a low 

suction condition, which was dictated by the cooling capacity requirement. Added 

pump power in combination with the indirect contribution from low suction 

conditions were found to result in a low COP compared to DX systems.  
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Table ‎1.4: Comparison of R152a to R134a in an Automotive Secondary Loop 

System [39] 

Parameter 
Refrigerant / System 

R134a DX R152a DX R134a 2LP R152a 2LP 

Ambient Temperature [°C] 37.8 37.8 37.8 37.8 

Ambient Relative Humidity [°C] 40 40 40 40 

Humidity Ratio [kg/kg dry air] 0.017 0.017 0.017 0.017 

Evap. Air Flow Rate [m
3
/h] 424.8 424.8 424.8 424.8 

Evap. Air Mass Flow Rate [kg/min] 7.8 7.8 7.8 7.8 

Evap. Outl. Air Temperature [°C] 10 10 10 10 

Cond. Air Flow Rate [m
3
/h]  3,398 3,398 3,398 3,398 

Cond. Air Mass Flow Rate [kg/min] 62.6 62.6 62.6 62.6 

Cond. Outl. Air Temperature [°C] 47.8 47.2 48.3 47.8 

Refrigerant Charge [kg] 0.96 0.62 0.96 0.62 

Refr. Mass Flow Rate [kg/min] 3.14 1.82 3.28 1.88 

Comp. Suction Pressure [kPa] 300 295 214 213 

Comp. Suction Temperature [°C] 3.6 4.4 -5.6 -5.0 

Comp. Discharge Pressure [kPa] 1,723 1,544 1723 1,544 

Comp. Discharge Temperature [°C] 90.6 107.2 95.6 123.3 

Comp. Isentropic Efficiency 60% 60% 60% 60% 

Comp. Power [kW] 3.24 2.89 4.03 3.89 

Cond. Outl. Pressure [kPa] 1,640 1,510 1,640 1,510 

Cond. Outl. Temperature [°C] 50.6 51.7 50.6 51.7 

Cond. Capacity [kW] 10 9.6 10.8 10.6 

Evap. Inl. Pressure [kPa] 368 326 263 235 

Evap. Inlet Temperature [kPa] 6.7 5.6 -2.8 -3.3 

Evaporator Effectiven./Overall Eff. 85% 85% 62% 62% 

Evap. Latent Load [kW] 3.1 3.1 3.1 3.1 

Evap. Sensible Load [kW] 3.6 3.6 3.6 3.6 

Evap. Cooling Capacity [kW] 6.7 6.7 6.7 6.7 

Comp. Power [kW] 3.2 2.9 4.0 3.9 

Comp. Power Loss [kW] 0.097 0.087 0.12 0.12 

A/C Blower Power [kW] 0.28 0.28 0.28 0.28 

System Power [kW] 3.6 3.3 4.6 4.4 

Cycle COP [-] 2.072 2.322 1.666 1.726 

System COP [-] 1.863 2.065 1.464 1.51 

 

Dentis et al. [100] compared the SL system with R152a and HC 

refrigerants to an R134a system on a test bench, and demonstrated that the 

performance of SL system was similar to, and in some cases exceeded, the 
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performance of an R134a system. Ghodbane [101] also compared the 

performance of MAC SL systems to conventional R134a systems used in a small 

size passage car under the same test conditions in a windtunnel and in road 

performance tests. The SL system delivered equal or better performance and 

comfort levels compared to the production R134a system.  

Ghodbane and Baker [102] received a patent on the SL system for 

passenger compartment heating and cooling. Another patent was issued to 

Kadle and Ghodbane [103] for a heat pump using SL air-conditioning system. An 

R152a SL system with pre-prototype components installed in a sport utility 

vehicle was demonstrated by Ghodbane et al. [104]. They built and tested the 

performance of an R152a SL system, in a compact passenger car. The energy 

consumption of the MAC compressor in the SL system was shown to be 13–16% 

lower compared to the production R134a system when applying a capacity 

control algorithm. The global warming impact of direct refrigerant emissions of 

the R152a SL system was claimed to be lower by at least 94% compared to an 

equivalent R134a system. 

 

1.5  Literature Review Summary 

 Few researchers did transient tests with MACs in controlled laboratory 

environments. Transient tests, such as drive cycle tests, are usually 

performed in a climatic windtunnel, which is associated with high 

expenses. At the same time, climatic windtunnel tests limit the amount 

of instrumentation and the accuracy of results that can be obtained.  
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 Researchers which performed dynamic tests with MACs usually 

operated in narrow operating conditions, often limited by the employed 

equipment. In few cases where drive cycle research was conducted, 

the drive cycle control was rigid and of limited accuracy. 

  A. Gado developed a cabin model which enabled transient testing of 

MAC components without the need for industry scale climatic 

windtunnels.  

 Most pure modeling research and simulation studies are limited to 

simple transient studies, such as pulldown scenarios.  

 Commercial software was used in many cases which limits access to 

the source code and the flexibility of adding own component models.  

 The software Dymola shows a potential to be universally employable in 

transient studies of MAC systems. Dymola is based on a modular 

approach with a variety of component libraries which can be updated 

by adding new components or altering the source code of existing 

components. 

 In general, publications on research in automotive air-conditioning are 

rare when compared with other fields. The automotive industry often 

chooses to not disclose complete statements of testing conditions or 

exact system parameters.  

 The review on low GWP refrigerants showed that mildly flammable to 

flammable refrigerants are safely used in a variety of industrial, 

commercial and residential (mostly Europe/ Asia) settings. Cars with 

direct expansion MACs running with Propane (R290) exist in Australia.  

 Simulation and experimental research on flammable refrigerants in 

MACs shows that R152a and R290, as well as mixtures of R290 and 

R600a are promising candidates to be used in future automotive air-

conditioning systems.  
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 Hydrocarbons, such as R290 and R600a, are superior with regard to 

environmentally friendly operation. At the same time the supply of HCs 

can be reliably guaranteed in most parts of the world.  

 Risk assessment studies showed that the risk of fire due to the use of 

hydrocarbons as refrigerant in direct expansion systems (DX) is low 

compared to background risks. It is generally agreed upon that it is 

safe to use hydrocarbons in MACs if safety measures are taken. The 

use of secondary loop system is one of these safety measures.  

 A variety of alternative  flammable refrigerants can be used as primary 

refrigerants in SL systems. Considering the desired characteristics for 

automotive systems, such as normal boiling point and specific volume, 

R152a and R290 have been shown to operate well in SL systems.  

 Experimental research on R152a SL MAC systems was done by 

Ghodbane et al., who showed the viability of automotive SL systems, 

whereas R290 has only been used in commercial applications and not 

yet in automotive applications.  

 Though limited experimental research was done, no studies on the 

typical characteristics and strengths of secondary loop system (i.e. 

cold storage, multiple cooling loads, delayed pull down, etc.) were 

found in published literature.  

 For simplicity and reliability, aqueous mixtures of water and ethylene 

glycol work well as secondary refrigerants in automotive SL systems. 

The high specific heat and high heat transfer coefficient of water favor 

mixtures with high water content, such as a 68/32% water ethylene 

glycol mixture. 
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2 Research Objectives 

The overarching goal of this thesis is to study the performance of 

secondary loop systems, in particular thermal storage potential and benefits in 

terms of transient performance. Based on the reviewed literature, as well as 

developments in state-of-the-art automotive air-conditioning units, the following 

research objectives have been identified: 

1. Characterize performance of secondary loop systems using low-
Global Warming Potential (GWP) refrigerants 

o Build a test facility which enables steady-state and transient 
performance measurements with high accuracy for direct 
expansion, as well as secondary loop systems 

o Quantify performance characteristics of secondary loop 
systems, such as cooling capacity, coefficient of 
performance (COP), energy consumption and pull down time 

o Investigate the performance of environmentally friendly low-
GWP refrigerants, such as R152a and R290 in secondary 
loop systems 

2. Quantify potential benefits of thermal storage, as well as measures 
to reduce A/C energy consumption 

o Quantify the effect of thermal storage on thermal comfort 
and power consumption during off-cycle operation 

o Investigate the role of phase change thermal storage to 
reduce energy consumption of  secondary loop systems 

o Evaluate alternative measures of reducing energy 
consumption, such as compressor and pump controls, as 
well as cabin pre-conditioning 

3. Model and simulate a secondary loop system for steady-state, as 
well as transient operation with Modelica 

o Model a passenger cabin, a direct expansion system and a 
secondary loop system 

o Validate models based on experimental data 
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o Simulate effects of coolant volume and composition on 
transient system performance 

 

A test facility was built to accommodate direct expansion and secondary 

loop systems. The test facility, the sensing equipment, and modifications made to 

the facility for different tests are described in Chapter ‎3. Data acquisition and 

controls of the facility, as well as the cabin model needed for transient testing, 

are discussed in Chapters ‎4 and ‎5. 

Experimental results to quantify the performance of secondary loop 

systems in relation to direct expansion systems, as well the test procedures used 

for steady-state and transient performance testing are discussed in Chapter ‎7. 

The performance of alternative refrigerants, such as R152a and R290 in 

the secondary loop system is discussed in Chapter ‎8. Steady-state, as well as 

transient experimental results are provided with respect to the R134a direct 

expansion system.  

Thermal storage of secondary loop systems during off-cycle period, as 

well as the development of suitable test procedures is discussed in Chapter ‎9, as 

well as an evaluation of ice storage with regards to thermal comfort and energy 

saving in electric vehicles. 

Chapter ‎10 introduces possible control strategy to reduce energy 

consumption during the operation of the air-conditioning unit in electric vehicles. 

The benefits of different control strategies and cabin pre-conditioning are 

investigated and discussed. 
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Models of a direct expansion system, a secondary loop system, and an 

automotive passenger cabin were built in the Modelica language. Details of the 

models and their validation with experimental data are shown in Chapter ‎11. 

Simulations were carried out to study the effect of coolant volume and coolant 

composition on transient system performance.  
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3 Experimental Test Facility 

Chapter ‎3 is divided into three parts, each introducing a variation of the 

experimental facility, which was build to perform tests on mobile air-conditioning 

systems (MACs). While chapter ‎3.1 acquaints the reader with the basic direct 

expansion (DX) system, also referred to as the baseline system, Chapters ‎3.2 

and ‎3.3 introduce variations which enable experimental research on secondary 

loop systems. Specifically, the secondary loop (2LP) test facility, and the 

combined secondary loop ice storage (IS) facility. Each facility allows for the use 

of different refrigerants in the vapor compression cycle. 

 

3.1 Direct Expansion Test Facility 

Figure ‎3.1 shows the direct expansion (DX) baseline facility. The test rig 

features a basic vapor compression cycle (VCC), including a compressor (1), a 

condenser (2), an electronic expansion valve (3) and an evaporator (4). The 

automotive compressor is belt driven by an electric motor (5), similar to the 

operation in cars using internal combustion engines (ICEs). The motor is driven 

by a variable frequency drive (VFD), enabling a variable speed control of the 

compressor. A torque meter in between the electric motor and the compressor, 

combined with an rpm meter in front of the compressor clutch, allows for 

measurement of compressor power consumption. A receiver (6) was installed 

after the condenser for a stable refrigerant charge management during changing 

operating conditions. A mass flow rate meter, placed at the lowest point of the 
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test facility after the receiver, measured mass flow rate of subcooled liquid 

refrigerant to determine refrigerant-side cooling capacity.  

For the purpose of automotive air-conditioning testing, the test facility 

allowed for two independent climatic environments, namely the ambient and the 

passenger cabin. This was accomplished by housing the condenser windtunnel 

(9) in a climatic chamber and installing the evaporator in a psychrometric loop 

featuring an air handling unit (AHU) (8). The condenser windtunnel, as well as 

the evaporator psychrometric loop served the purpose of air flow rate and air-

side capacity measurements at the respective heat exchangers. In addition to 

nozzles (7), needed for air flow rate measurement, both the windtunnel and the 

psychrometric loop featured thermocouple mesh grids, relative humidity 

measurements, flow turbulators, and flow straighteners in accordance with 

AHSRAE standard [105]. 

Figure ‎3.1 contains a legend, which details system components and 

sensing equipment used in the direct expansion baseline facility. 
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Figure ‎3.1: Direct Expansion (DX) Test Facility Schematic 

 

Component Symbols Component/Sensor 

1 Compressor 
2 Condenser 
3 Expansion Valve (electronic) 
4 Evaporator 
5 Electric Motor 
6 Receiver 
7 Air Flow Nozzle 
8 Air Handling Unit 
9 Fan 

Sensor Symbols  

m Mass Flow Rate Meter 
M Torque Meter 
P Pressure Transducer 
ΔP Differential Pressure Transducer 
r RPM Meter 
T Thermocouple 
ɸ Relative Humidity Sensor 
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3.2 Secondary Loop Test Facility 

Figure ‎3.2 shows a schematic of the secondary loop (2LP) experimental 

test facility. Compared to the baseline direct expansion facility, several 

modifications were made to the facility. The evaporator of the VCC was replaced 

with an intermediate plate type heat exchanger (4). Instead of the evaporating 

refrigerant cooling down the air of the passenger cabin directly, the intermediate 

heat exchanger cools down a secondary working fluid.  

About 5.5 kg of a water-ethylene glycol mixture were used in the current 

research, prepared to 32 wt% ethylene glycol and 68 wt% water. The use of a 

water glycol mixtures is common in automobiles and was chosen due to its 

balance between frost prevention, high specific heat capacity, cost effectiveness, 

and safety. The mass fraction of water and glycol was chosen to prevent pipe 

bursts due to freezing at low ambient temperature while maximizing water 

content in the mixture, due to the superior heat transfer characteristic of pure 

water. Furthermore, this specific mass fraction was chosen to allow for 

comparison with previous research by Ghodbane et al. [104].  

A variable speed pump (8) was used to circulate the chilled coolant from 

the intermediate heat exchanger through a liquid to air heat exchanger, called the 

cooler (5). In the experimental test facility, the cooler cools down the air in the 

psychrometric loop. In an automobile, the cooler would be located underneath 

the dashboard to provide cool air to the passenger cabin. A reservoir (9) was 

used as pressure expansion tank. Temperatures and coolant mass flow rate 
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were measured to determine capacities of the intermediate heat exchanger and 

the cooler in the secondary loop. 

In automobiles, this configuration allows for the entire vapor compression 

cycle to be placed underneath the hood. This results in a significant reduction of 

refrigerant charge, a reduction of refrigerant-side pressure drop, and an increase 

in safety when using flammable or high pressure refrigerants. On the other hand, 

more components (heat exchangers, pump, coolant) result in an increase in 

mass and consequently fuel consumption, A/C power consumption, as well as a 

thermal delay in passenger cabin cool down. Some of these disadvantages may 

be offset by a smart choice of refrigerants and thermal storage controls to 

balance the need for capacity to deliver passenger comfort and the goal of 

achieving a reduction in long term A/C power consumption. 
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Figure ‎3.2: Secondary Loop (2LP) Test Facility Schematic 

 

Component Symbols Component/Sensor 

1 Compressor 
2 Condenser 
3 Expansion Valve (electronic) 
4 Intermediate Heat Exchanger 
5 Cooler 
6 Electric Motor 
7 Receiver 
8 Coolant Pump 
9 Coolant Reservoir 

10 Air flow Nozzle 
11 Air Handling Unit 
12 Fan 

Sensor Symbols  

m Mass Flow Rate Meter 
M Torque Meter 
P Pressure Transducer 
ΔP Differential Pressure Transducer 
r RPM Meter 
T Thermocouple 
ɸ Relative Humidity Sensor 
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3.3 Secondary Loop combined with Ice Storage Test Facility 

Figure ‎3.3 shows the test facility schematic for a secondary loop test 

facility including ice storage (IS). The figure omits the primary loop, i.e. the VCC, 

since the refrigerant-side was not modified. The main change to the secondary 

loop facility, introduced in Chapter ‎3.2, is the addition of an ice storage box (3) 

and the integration of three sets of ball valves (6) to bypass each heat exchanger. 

The ice storage heat exchanger, shown in Figure ‎3.4 was custom 

designed and built in the laboratory for the purpose of producing ice from 15 

Liters of water and using the ice to assist the VCC in cooling the passenger cabin. 

Based on transient performance data from the baseline and secondary loop 

system, the heat of fusion of 10 to 15 L of ice was found to provide enough 

energy for cooling the passenger cabin during a 20 minute commute without the 

need for a vapor compression system. However, this idealized approximation did 

not account for the challenge of distributing the heat fast and evenly throughout 

the ice so as to harvest the cooling capacity in a quick and homogenous fashion. 

During realistic operation, the ice would melt quickly around the tubes of the heat 

exchanger, giving rise to sensible heating of liquid water around the tubes. The 

estimated 10 to 15 L of ice would not suffice as a standalone source of cooling, 

but would rather be helpful in taking part of the load away from the VCC. To 

increase heat transfer, fins were added to the ice storage heat exchanger, 

though with a significantly larger fin spacing compared to air-side fins.  
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Figure ‎3.3: Ice Storage (IS) Test Facility Schematic 

 

Component Symbols Component/Sensor 

1 Intermediate Heat exchanger 
2 Coolant Pump 
3 Ice Storage Heat Exchanger 
4 Cooler 
5 Coolant Reservoir 
6 Ball Valve 
7 Air Flow Nozzle 
8 Air Handling Unit 

Sensor Symbols  

m Mass Flow Rate Meter 
ΔP Differential Pressure Transducer 
T Thermocouple 
ɸ Relative Humidity Sensor 
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Figure ‎3.4: Ice Storage Heat Exchanger Schematic 

 

The ice storage heat exchanger, made solely of copper, was 

manufactured in the laboratory according to the following design goals: 

 to allow for manual construction using soldering connections 

 to create a large surface area for heat transfer, while remaining 
structurally stable 

 to fit into and sufficiently use the volume of a 15 liter plastic box 

 

Figure ‎3.5 provides information on the operational modes of the ice 

storage test facility. Bypasses, controlled by ball valves, allow for four operational 

modes of the facility. Mode (a) bypasses the ice storage heat exchanger, so as to 

use only the basic secondary loop system for cooling. Mode (b) is a charging 
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mode, in which the cooler is bypassed to allow the entire cooling capacity of the 

VCC to be used for ice production. Mode (c) enables the combination of VCC 

and ice storage to cool the passenger cabin. Mode (d) forces the ice storage box 

to cool the passenger cabin alone, by bypassing the chiller.  

 

Figure ‎3.5: Ice Storage Facility Operation Modes 
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Specifications of the sensing equipment used throughout the three 

variations of the experimental test facility are provided in Table ‎3.1. The type of 

sensing equipment, as well as manufacturer and model, are shown. The table 

further provides information on operating range and systematic uncertainty, 

based‎on‎manufacturer’s‎data. 

Specifications of system components, such as compressor, expansion 

valves, and heat exchangers are provided in ‎Appendix A.  

Table ‎3.1: Sensing Equipment Specifications 

Sensor Manufacturer/Model 
Operating 

Range 
Systematic 
Uncertainty 

Refrigerant-side    

Thermocouple Omega / T-type -200 : 350 °C ± 0.5 K 

Pressure Transducer 
Setra / 280E 0 : 250 psig ± 0.13% FS 
Setra / 280E 0 : 500 psig ± 0.13% FS 

Mass Flow Rate Meter MicroMotion  0 : 1,300 kg/h ± 0.05% AR 

Air-side    

Thermocouple-grid Omega / T-type -200 : 350°C ± 0.3 K 

Relative Humidity Sensor 
Vaisala / HMD 30YB 2 : 100% ± 2 % 
Vaisala / HMD 60Y 2 : 100% ± 2 % 

Differential Pressure Tr. Setra / 264 5.0" WC ± 1% FS 

Refrigerant-side    

Thermocouple Omega / T-type -200 : 350 °C ± 0.5 K 
Mass Flow Rate Meter MicroMotion/ R025 0 : 2,720 kg/h ± 0.5% AR 

Compressor/Pump Power    

RPM Meter Shimpo / RS-220H 0 : 500 Hz ± 0.1% AR 
Torque Meter Himmelstein 28002T 56.5 Nm ± 0.1% FS 
Watt Meter Ohio Semitronics / PC5 0 : 750 W ± 0.5% FS 
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4 Data Acquisition and Analysis 

Chapter 4 introduces the data acquisition process, as well as the data 

reduction process and uncertainty analysis. 

 

4.1 Data Acquisition Process 

Figure ‎4.1 shows the structure of the data acquisition process (DAQ). The 

sensing equipment (1), introduced in Chapter 3, sends output signals of 4-20 mA 

or 0-5 VDC to National Instrument Field Point modules (2) [106]. Field Point 

modules collect the signals and transfer them to a data acquisition personal 

computer (PC) (3). National Instrument's LabVIEW software reads in the signals 

for further processing. Several LabVIEW programs (4) were written, some of 

which are introduced in Chapter ‎5. The programs allow for reading sensor 

signals, converting them to the unit of measure (i.e. pressure or mass flow rate) 

and employing data reduction techniques. In addition to the standard LabVIEW 

library, the PID Control Toolset, as well as a sub-program, XProps [107], were 

used. XProps is a software distributed by Optimized Thermal Systems and is 

based on NIST's REFPROP-8 [108] refrigerant property database. Furthermore, 

sub-programs for moist air and for water-glycol mixtures were used in the data 

reduction process. Part of the processed data was used to control  equipment in 

the test facility (5) (6), as well as visualize processes real time on the PC monitor 

(7). Controls can be distinguished into continuous controls, using analog output 

modules (used for EXV opening, compressor rpm, etc.), or the control of discrete 
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events, using digital output modules (used for compressor clutch, pump on/off, 

etc.). An array of all collected data and processed data was written to a Microsoft 

Excel spreadsheet (8). Custom Microsoft Excel analysis spreadsheets were used 

for further data analysis and visual formatting. 

 

Figure ‎4.1: Data Acquisition Process Structure 

 

4.2 Data Reduction Process 

Data reduction was performed within the LabVIEW data acquisition 

program. Property subroutines are an essential part of converting measurables, 

such as temperature and pressure, into calculated parameters, such a density, 

specific heat capacity, enthalpy, and others. A refrigerant property subroutine, a 

moist air property subroutine, as well as a property subroutine for aqueous 

mixtures of glycol were used in LabVIEW to calculate fluid properties. The 
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refrigerant property subroutine is based on XProps [107]. The moist air property 

subroutine was developed by Hwang and Aute in the Center for Environmental 

Energy Engineering. The glycol property subroutine was written specifically for 

this research. Equations and coefficients used in the subroutine were borrowed 

from M. Conde Egineering [109]. A visual representation of all subroutines, 

showing the respective inputs and outputs, is provided in Figure ‎4.2. 

Air flow rates across cooler and condenser were determined by pressure 

drop measurement across nozzles in the condenser windtunnel and the 

evaporator psychrometric loop. The calculation of air flow rates, and 

subsequently the calculation of air-side heat exchanger capacities, were based 

on the "Standard Methods for Laboratory Airflow Measurement", ANSI/ASHRAE 

41.2-1987 (RA92) [105]. 

Airs side mass flow rates were calculated based on air flow rate and local 

density using Equation (1).  

InNozzNozzleVm , 
     (1) 

Air-side capacity was determined for the evaporator and cooler using 

mass flow rate and enthalpy difference, while condenser air-side capacity was 

determined using mass flow rate, specific heat capacity, and temperature 

difference, as shown in Equations (2) and (3), respectively. 

 hAirEvap,,  mQ AirEvap


     (2) 

 TcmQ pAirCond  AirCond,,
      (3) 
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Figure ‎4.2: Moist Air / Refrigerant / Glycol Property Sub Routines 

 

Evaporator or cooler air-side capacity can be further distinguished into 

sensible and latent capacity. Sensible capacity constitutes the portion of heat 

transfer which is used to decrease the temperature across the evaporator or 

cooler, while latent capacity denotes the portion used to dehumidify the air. A 

common parameter used in air-conditioning is the Sensible Heat Factor (SHF), 

which decribes the amount of total heat used for sensibly changing the 
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temperature of a given quantity of air. Sensible and latent capacity, as well as the 

sensible heating factor are shown in Equations (4), (5), and (6). 

                       (4) 

                                (5) 

    
          

       
     (6) 

Refrigerant-side capacities for evaporator, intermediate heat exchanger, 

and condenser were determined using refrigerant mass flow rate and enthalpy 

difference, as shown in Equation (7). 

 hRefRef  mQ 
     (7) 

Calculation of energy balance for refrigerant-to-air heat exchangers, as 

well as refrigerant-to-coolant and coolant-to-air heat exchangers, were 

determined to proof proper operation of the system and ensure consistency of 

measured data. Equation (8) gives an example of an energy balance calculation 

for the evaporator in the baseline DX system. 

 
100

Ref,

,Ref,

Evap

AirEvapEvap

Evap
Q

QQ
EB



 


     (8) 

Compressor power was determined by torque and rpm measurements, as 

shown in equation (9). Pump electrical power was measured directly using a 

wattmeter.  

rpmTorquePComp       (9) 
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Compressor isentropic and volumetric efficiencies were calculated using 

experimentally measured data. Isentropic efficiency was determined using 

Equation (10), where the numerator denotes ideal enthalpy difference achieved 

through isentropic compression, and the denominator describes the 

experimentally measured enthalpy difference. The volumetric efficiency was 

determined by Equation (11),‎where‎MFR‎is‎the‎refrigerant‎mass‎flow‎rate,‎ρsuction 

is the suction density, rpm is the compressor speed, and VD is the compressor 

displacement.  

            
                         

                            
     (10) 

            
   

            
   

  

     (11) 

System efficiency, determined by the coefficient of performance (COP), 

was  calculated by comparing refrigerating effect to the power consumed by the 

system. Equations (12) and (13) introduce the COP, where Q is cooling capacity, 

and P is power consumption. In case of a secondary loop system, two COPs can 

be distinguished. The primary COP, Equation (12), is the efficiency of the primary 

refrigeration cycle, where Q is refrigerant-side cooling capacity at the 

intermediate heat exchanger, and P is power consumption of the compressor. 

Total COP, Equation (13), was determined by air-side cooling capacity and 

combined power consumption of compressor and coolant pump. 

Comp

Chiller

prim
P

Q
COP

Ref,




     (12) 
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AirCooler
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P

Q
COP

,




     

(13) 

Up to this point, the discussed equations dealt with performance 

measurements during steady state operation. However, air-conditioning 

operation in an automobile is often highly transient, which is reflected by the 

majority of the experimental tests conducted in this research. To assess and 

compare transient performance, performance parameters, such as power 

consumption and cooling capacity, are integrated over the duration of the 

respective tests. Similarly to the coefficient of performance for steady state 

operation, a transient COP, the transient performance factor (TPF), was defined 

to compare system performance during transient operation. The TPF is defined 

in Equation (14). 

    
      
 

   

       
 

   

     (14) 

While ice storage is used in connection with the secondary loop system, 

two additional performance parameters can be introduced: cooling capacity of 

the ice storage heat exchanger, Equation (15), and ice storage charging COP, 

Equation (16). Cooling capacity of the ice storage heat exchanger can only be 

measured on the refrigerant-side and not on the ice-side, due to phase change. 

                                   (15) 

                
     

      
     (16) 
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4.3 Uncertainty Analysis 

Uncertainty analysis was performed on both, steady state, as well as 

transient data. The total uncertainty of a parameter can be distinguished into two 

contributors, the so called systematic uncertainty and random uncertainty. The 

systematic uncertainty is a bias error, which causes the mean of a measured 

parameter to be significantly different from its "true" value. Systematic uncertainty 

can be caused by imperfections in the measurement instrument, imperfections of 

the calibration of the instrument, and unexpected changes in the environmental 

conditions which cannot be accounted for. Calibration with a more precise 

instrument can be used to remove part of the systematic error of an instrument. 

Random uncertainty is based on the fact that repeated measurements of the 

same parameter using the same instruments under the same operating 

conditions will randomly and unpredictably differ in magnitude. Random 

uncertainty is closely related to the precision, i.e. the resolution of the 

instruments used for measurement. For a finite repeated set of measurements, 

the higher the precision of the instruments, the smaller the variance around the 

mean of the measurand. If a measurement under identical operating conditions 

and with identical instruments would be repeated indefinitely, the random 

uncertainty would be expected to be null, due to a statistically normal distribution. 

The total uncertainty of a parameter can subsequently be determined by linear 

summation of the systematic and random uncertainty. Figure ‎4.3 strives to 

visualize the concepts of systematic uncertainty, random uncertainty, and  

calibration. 
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Figure ‎4.3: Systematic and Random Uncertainty 

 

During the data reduction process, non-measurable fluid properties, such 

as enthalpy or specific heat, were calculated based on measured physical 

properties, such as temperature and pressure. These non-measurables were 

further used to determine system performance metrics, such as cooling capacity 

and COP. Random uncertainty of non-measurables and performance metrics can 

be computed as their respective standard deviation, using Equation (17).  
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      (17) 

For any calculated parameter, the systematic uncertainty needs to be 

propagated by means of Pythagorean Addition, shown in Equation (18) for a 

function f and coefficients xi from x1 through xn.  

                  
  

   
   

 
 

  
  

   
   

 
 

     
  

   
   

 
 

 

 

 

      (18) 

Equation (18) implies that the relationship of any calculated parameter, i.e. 

enthalpy, to its measurable components, i.e. temperature and pressure, be 

known. A flexible approach of finding the uncertainty of calculated parameters is 

the use software which allows for propagation of uncertainty of fluid properties, 

such as Engineering Equation Solver (EES).  

Table ‎4.1 provides an example of systematic and random uncertainty for a 

steady state test of the secondary loop system (2LP), using Propane (R290) as 

primary refrigerant. The table shows systematic, random, and total uncertainty of 

performance parameters at idling compressor speed and at compressor speed 

related to highway driving. Uncertainties of three different cooling capacities are 

given: refrigerant-side cooling capacity at the intermediate heat exchanger, 

refrigerant-side cooling capacity at the cooler, and air-side cooling capacity at the 

cooler. Total uncertainty was lowest on the refrigerant-side, due to a low 

systematic uncertainty. High systematic uncertainty caused the air-side capacity 

to exhibit the highest total uncertainty. Random uncertainty was typically highest 

on the refrigerant-side, due to vibrations in the compressor belt drive and PID 
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control of the EXV. The thermal mass of the coolant allowed coolant and air-side 

measurements to have decreased fluctuations and consequently lower random 

uncertainty. In general, relative uncertainty of cooling capacity for idling speed 

tests was about twice as high compared to high way speed tests. This was due 

to reduced absolute magnitudes of measurands compared to fixed absolute 

uncertainties (e.g. decreased ∆T across heat exchanger, while thermocouple 

uncertainty of 0.5 K stays constant). Uncertainty of power consumption was 

dominated by random uncertainty for the reasons mentioned above. Uncertainty 

of primary or refrigerant-side COP was about 5-6%, mostly dominated by random 

uncertainty. Uncertainty of total system COP on the refrigerant-side was about 6% 

for highway speed tests and about 10% for idling speed tests.  

Table ‎4.1: Relative Systematic and Random Uncertainties (R290 2LP, T35RH40) 

Performance 
Parameter 

Idling Highway 

Systematic 
[%] 

Random 
[%] 

Total 
[%] 

Systematic 
[%] 

Random 
[%] 

Total 
[%] 

Capacity (refrigerant) 0.7 2.5 3.2 0.7 1.1 1.7 
Capacity (coolant) 4.6 1.3 5.9 2.2 0.5 2.8 
Capacity (air) 14.5 1.7 16.2 7.7 1.2 8.8 
Power Consumption 0.4 4.1 4.5 0.4 3.7 4.1 
COP (refrigerant) 0.9 4.8 5.7 0.8 3.9 4.6 
COP (coolant) 6.5 3.3 9.8 2.7 3.4 6.1 

 

Due to lower uncertainty compared to air-side measurements, refrigerant-

side COP was used to describe steady-state system performance of the direct 

expansion system, while coolant-side COP was used to describe steady-state 

system performance of the secondary loop system. 
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Table ‎4.2 provides a summary of total relative uncertainties of 

performance parameters during steady state operation. Uncertainties are given 

for different refrigerants (R134a, R152a, R290), different system layouts (DX, 

2LP), a range of ambient temperatures and relative humidities (15°C/80%, 

25°C/50%, 35°C/40%, 45°C/20%), and different compressor speeds (idle, 

highway). Across various refrigerants, system layouts, and operating conditions, 

several characteristics can be observed: Refrigerant-side capacity typically 

showed a relative uncertainty in the range of 3%, often less at highway speed 

and more at idle speed. For the secondary loop system, refrigerant-side capacity 

was in the range of 3% at highway speed and in the range of 6% at idle speed. 

Relative uncertainty of power consumption was on the order 3% at highway 

speed and on the order of 5-7% at idle speeds. In a few cases, moslty when 

idling at low ambient temperatures, relative uncertainty was significantly higher 

than above mentioned values. At these conditions the lack of cooling load, which 

made EXV PID control difficult, resulted in fluctuations in MFR, which increased 

random uncertainty of cooling capacity. 
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Table ‎4.2: Summary of Steady-state Relative Uncertainty of Performance 

Parameters 

Refrig./System R134a DX 

Amb. Conditions T15 RH80 T25 RH50 T35 RH40 T45 RH20 
Speed idle hwy idle hwy idle hwy idle hwy 

Capacity (ref) [%] 1.2 - 1.3 1.3 1.4 1.6 1.5 1.5 
Capacity (col) [%] - - - - - - - - 
Capacity (air) [%] 12.8 - 15.5 8.5 19.1 10.0 20.0 13.6 
Power [%] 6.7 - 6.1 3.4 6.5 2.9 6.9 2.7 
COP (ref) [%] 7.0 - 6.4 3.6 6.8 3.3 7.4 3.2 
COP (col) [%] - - - - - - - - 

Refrig. /System R152a DX (drop-in) 

Amb. Conditions T15 RH80 T25 RH50 T35 RH40 T45 RH20 
Speed idle hwy idle hwy idle hwy idle hwy 

Capacity (ref) [%] 14.1  - 3.1 1.8 2.8 2.0 2.5 6.8 
Capacity (col) [%] - - - - - - - - 
Capacity (air) [%] 13.6  - 13.3 7.5 17.0 9.3 18.7 12.1 
Power [%] 42.2  - 6.6 3.7 6.3 3.2 7.0 3.0 
COP (ref) [%] 16.5  - 7.3 4.2 7.0 3.8 7.4 7.7 
COP (col) [%] - - - - - - - - 

Refrig./System R290 DX (drop-in) 

Amb. Conditions T15 RH80 T25 RH50 T35 RH40 T45 RH20 
Speed idle hwy idle hwy idle hwy idle hwy 

Capacity (ref) [%] - - 2.3 - 2.6 3.3 2.9 2.6 
Capacity (col) [%] - - - - - - - - 
Capacity (air) [%] - - 12.6 - 14.2 8.1 16.3 11.3 
Power [%] - - 4.6 - 4.8 2.3 5.0 2.0 
COP (ref) [%] - - 5.3 - 5.5 4.0 6.1 3.4 
COP (col) [%] - - - - - - - - 

Refrig. /System R152a 2LP (drop-in) 

Amb. Conditions T15 RH80 T25 RH50 T35 RH40 T45 RH20 
Speed idle hwy idle hwy idle hwy idle hwy 

Capacity (ref) [%] 4.4 - 2.2 2.7 4.3 1.5 4.3 2.7 
Capacity (col) [%] 7.0 - 6.5 3.5 5.4 2.9 5.1 2.8 
Capacity (air) [%] 11.4 - 14.0 7.8 17.0 9.6 18.9 12.4 
Power [%] 6.6 - 5.1 2.8 6.1 2.4 6.9 2.4 
COP (ref) [%] 7.8 - 5.5 4.0 7.5 2.8 8.2 3.7 
COP (col) [%] 13.1 - 10.9 5.2 10.2 4.6 9.9 4.4 

Refrig. /System R290 2LP (reduced speed) 

Amb. Conditions T15 RH80 T25 RH50 T35 RH40 T45 RH20 
Speed idle hwy idle hwy idle hwy idle hwy 

Capacity (ref) [%] 5.8 - 3.2 1.9 3.2 1.7 3.0 2.0 
Capacity (col) [%] 9.0 - 6.1 3.1 5.9 2.8 5.5 2.7 
Capacity (air) [%] 14.7 - 12.8 7.1 16.2 8.8 17.5 11.7 
Power [%] 4.7 - 4.7 4.1 4.5 4.1 4.1 4.5 
COP (ref) [%] 7.4 - 5.7 4.6 5.7 4.6 5.1 5.1 
COP (col) [%] 15.6 - 10.8 6.3 9.8 6.1 8.9 6.4 
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For transient measurements the principle of random uncertainty, by which 

a parameter is repeatedly measured under the same conditions, becomes 

irrelevant. since all parameters are deliberately changing in time. As a result, 

uncertainty of transient tests can only be evaluated by systematic uncertainty, 

though it's calculation is more involved. The absolute magnitude of a measurand 

can change significantly during the course of a test. Systematic uncertainty was  

evaluated at every timestep during the test and integrated over the time of the 

experiment to determine the total uncertainty of accumulated performance 

parameters, such as energy consumption or energy availability for cooling. 

Transient uncertainty analysis was performed using the uncertainty 

propagation table method in the Engineering Equation Solver software (EES). An 

example of transient uncertainty is given in Figure ‎4.4, showing absolute 

uncertainty of performance parameters during a New European Drive Cycle test 

(NEDC) for the R152a secondary loop (2LP) system. The uncertainty of air-side 

capacity followed uncertainty of the temperature difference across the cooler, 

and was consequently decreasing as the test progressed. Uncertainty of 

refrigerant-side uncertainty followed fluctuations in MFR, which were determined 

by the compressor speed profile. During sharp transients superheat can be lost 

and refrigerant-side uncertainty can spike. Uncertainty of power consumption 

directly followed the NEDC compressor speed profile.   
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Figure ‎4.4: Transient Uncertainty Example - New European Drive Cycle 

 

Similar to the analysis of transient performance data, discussed in 

Chapter ‎4.2, transient uncertainty data can be integrated over time to find the 

accumulated uncertainty over the duration of a transient test. With accumulated 

uncertainties of air-side capacity (19) and power consumption (20), uncertainty of 

the transient performance factor (TPF) can be determined, based on 

Pythagorean summation (21). 
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 Uncertainty of steady state experimental results, as well as accumulated 

uncertainty of transient experimental results, are provided by means of error bars 

in the charts shown in Chapters ‎7, ‎8, and ‎9.  
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5 Automation and Control 

Chapter 5 provides information about automation and control of the data 

acquisition system and test facility. The chapter discusses the passenger cabin 

model, which allows transient testing of MAC components, as well as the controls 

implemented for drive cycle testing, and the controls implemented for research 

on energy saving strategies through alternative control of the air-conditioning 

system. 

 

5.1 Structure of the Data Acquisition Control 

Figure ‎5.1 shows the structure of the Main LabVIEW Data Acquisition 

program (main DAQ). The main DAQ consisted of six modules, which followed 

separate tasks and can be scheduled independently.  

The first module scheduled the data reduction process, the control of the 

cabin model, the visualization of all data in real time on screen, and the recording 

of data to an Excel spreadsheet. The data reduction process was introduced in 

Chapter ‎4.2, while the Cabin Model and associated controls will be introduced in 

Chapter ‎5.2. 

The second module was used to manually control the temperature, 

relative humidity, and air flow rate in the condenser wind tunnel and evaporator 

psychrometric loop, respectively.  
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The third module scheduled the drive cycle controls. Various components 

and parameters in the system can be controlled by predefined drive cycles, as 

opposed to constant control or PID control. Details of the drive cycle control will 

be introduced in Chapter ‎5.3 

Modules 4 through 6 controlled components in the system directly. While 

module 4 controled the compressor clutch and compressor speed, module 5 

controled the pump speed and it's actuation, and module 6 controled the opening 

of the EXVs, based on evaporator superheat. Component control modules will be 

introduced in Chapter ‎5.4. 

 

Figure ‎5.1: Main Data Acquisition Structure and Control in LabVIEW 

 

5.2 The Cabin Model 

The Cabin Model is a lumped model of the automotive passenger cabin to 

simulate thermal and psychrometric processes. The main function is real-time 

communication with the controller of the air-handling unit of the psychrometric 
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loop to control the state of the air upstream of the evaporator (DX) or cooler 

(2LP). 

The core of the model consists of a set of energy and mass balance 

equations, which are solved by the Gauss-Jordan Method. This method was first 

developed by Gado [12]. For details on the equations used in the model, the 

reader is referred to Gado [12]. Since the core of the model did not change, the 

current model was successfully validated against data from Huang [15], using the 

same procedures outlined by Gado. 

The Cabin Model enables transient testing by a process described in 

Figure ‎5.2. At every timestep, temperature, relative humidity, and air flow rate 

downstream of the evaporator (DX) or cooler (2LP) were measured. Based on 

physical and thermal characteristics of the cabin, as well as thermal loads, the 

cabin model determined temperature of the cabin air, temperature of interior 

mass, and relative humidity inside the cabin. The cabin air was then allowed to 

mix with ambient air, based on a pre-defined recirculation ratio, which lead to the 

state of the return air. The return temperature and relative humidity determined 

by the cabin model were subsequently used as set points for the PID control of 

the air handling unit (AHU), which controlled the condition of the air upstream of 

the evaporator (DX) or cooler (2LP). After the air was cooled down by the 

evaporator/cooler, the process was reiterated at the next timestep. All thermal 

and physical characteristics of the passenger cabin can be set by the user in the 

LabVIEW graphical user interface, which makes the Cabin Model a versatile 

instrument for testing MAC components in various automotive scenarios.  
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Figure ‎5.2: Cabin Model Operational Schematic 

 

A flow chart of the Cabin Model is shown in ‎Appendix B. Several control 

strategies used in automotive air-conditioning were implemented to increase 

versatility of the Cabin Model for simulation of subjective evaluation drives.  

 An evaporator fan speed control was implemented to decrease air flow 

rate across the evaporator/cooler as cabin temperature approaches comfort 

temperature, set by the user. A five step control was used to vary face velocity 

from 2.47 m/s for hot soaked conditions to 1.83 m/s for cabin temperatures within 

2°C of comfort setting. 

A thermostat control, using a virtual heater core, was added to be able to 

keep the cabin at comfort temperature once the air-conditioning system pulled 

the cabin temperature below comfort setpoint. In an actual automotive air-

conditioning unit, the total air stream would pass through the evaporator. After 

Energy / Mass Balance
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being cooled down and dehumidified, part of the air stream would be routed 

through a heater core for reheating in order to control for comfort temperature. 

The heater core utilizes hot engine coolant to reheat the air, while the supply 

temperature to the cabin is controlled by a mixing flap after the evaporator, which 

controls the fraction of flow rate passing through the heater core. As the current 

test facility lacked the ability to house a heater core and mixing chamber, a virtual 

heater core was added to the Cabin Model to enable thermostat functionality. 

The virtual heater core used a software side PID controller which added a certain 

magnitude to the actual, measured supply temperature downstream of the 

evaporator/cooler. The cabin model energy and mass balance equations 

therefore received an artificially higher supply temperature signal. This resulted in 

an increase of the calculated return temperature in the model, and therefore the 

upstream evaporator air temperature, controlled by the model. Therefore, within 

one timestep, the virtual heater core would lead to a real increase in process 

temperature, enabling the facility to work as if an actual heater core were present. 

Heater core load was subsequently determined by using the virtual temperature 

difference across the heater. 

Drive cycle controls, described in Chapter ‎5.3, were added to the Cabin 

Model. Instead of using a fixed ambient temperature, relative humidity, and solar 

insolation, the user could choose to use pre-determined drive cycles as input. 

This allowed for transient changes in ambient temperature, humidity and 

insolation, which is a key feature of a new drive cycle test, developed to 

showcase the versatility of the test facility. The development of drive cycles, as 
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well as system operation during a long term evaluation drive, the I-95 test, is 

explained in detail in ‎Appendix C. 

 

5.3 Drive Cycle Control 

Drive cycle modules were developed to control components of the test 

facility in a predefined way, using software side PID controls. The New European 

Drive Cycle (NEDC) is one example of a predefined sequence of vehicle speed 

over time. The cycle consists of several UN/ECE Elementary Urban Cycles and 

one UN/ECE Extra-Urban Driving Cycle, as provided by the USA Environmental 

Protection Agency[110]. This predefined sequence of vehicle speed was used to 

determine a compressor speed profile and condenser fan frequency 

profile. ‎Appendix C gives a more detailed overview about the conversion process. 

Inputs to a drive cycle module are: 

 Process value  

 Set point array  

 Time step 

 Cycle length  

The set point array is a text file, which holds an array of time vs. set points. 

The cycle length could be manually set by the user, to abort drive cycle operation 

after a set amount of time. The set point fed to the PID control is an adjusted set 

point, as a feed forward factor was implemented in all drive cycle modules for a 

tighter control of the process value. The feed forward factor can be tuned by the 

user, in a similar manner as tuning PID gains. For a feed forward factor of zero, 
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the set point of the PID control is the original set point, while for a feed forward 

factor of one, the adjusted set point will be the set point for the next time step in 

the set point array. This allowed the PID control to "know" a set point ahead of 

time and therefore helped to smooth out over- and undershooting.  

To simplify the task of reading in drive cycle profiles into LabVIEW, drive 

cycle modules included a reader which read out setpoint and time information 

from an Excel spreadsheet. For long drive cycles specifying each setpoint and 

time individually can get tedious, as drive cycles were typically controlled to a 0.5 

second timestep. Instead, only the corner points of a profile were specified in the 

Excel spreadsheet, as seen in Figure ‎5.3, and the drive cycle reader interpolated 

between these points. Based on the desired time step, the interpolation between 

the corner points of the profile was fine or coarse. 

 

Figure ‎5.3: NEDC Cycle Input to LabVIEW Cycle Reader 

 

Drive cycles modules could be turned on and off individually. The following 

parameters could be controlled by drive cycle modules: 
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 Compressor speed 

 Compressor clutch actuation 

 Condenser fan speed 

 Ambient temperature 

 Ambient relative humidity 

 Solar insolation 

For NEDC tests, only compressor rpm and condenser fan frequency 

cycles are necessary. For off-cycle Start/Stop and SS3xI tests a clutch actuation 

profile has to be added. A rather complex drive cycle was developed to simulate 

a car driving down the I-95 corridor from Maine to Florida on the United State 

east coast. The test facility was able to simulate changes in climate, day and 

night cycles, driving patterns, and rest stops, using fully automated drive cycle 

control. Towards this purpose, drive cycles for ambient temperature, relative 

humidity, and solar insolation were added, based on TMY2 data [111]. ‎Appendix 

C provides more detail about the I-95 test and associated test results.  

During shakedown tests, the NEDC compressor rpm profile was used in 

the compressor rpm drive cycle module to verify the fidelity of the setpoint 

following of drive cycle modules. Figure ‎5.4 shows compressor rpm, as well as 

condenser fan speed, and the discrepancy between set points (predetermined  

profile) and process value. The compressor rpm followed drive cycle set points 

with high fidelity. Deviations from the drive cycle profile occurred for a short time 

during fast acceleration and deceleration due to inertia of the compressor and the 

motor, as well as due to pressure balance across the compressor. The short 
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deviations had no significant effect on power consumption measurements. The 

condenser fan control showed a high fidelity, even during sharp transients.  

 

Figure ‎5.4: NEDC Cycle PID Control Verification 

 

5.4 Component Control 

Two electronic expansion valves (EXVs) were used for superheat control 

at the evaporator (DX) or the intermediate heat exchanger (2LP). The two valves 

were installed in parallel and fitted with separate controls, which allowed for a 
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continuous control of opening area of the smallest opening of one valve to the 

largest opening of both valves combined. This enabled the test facility to 

accommodate the different needs of various refrigerants and a wide range of 

operating conditions. ‎Appendix B provides more detailed information about the 

EXV control, which was developed for this research. 

The coolant pump was controlled in either manual or automatic control 

mode. In manual mode, pump speed could be set by the user, while automatic 

control employed a software side PID control. Automatic control was used mostly 

when controlling cabin temperature during comfort control tests utilizing ice 

storage. More detailed information on coolant pump control, as well as a control 

flow chart, is provided in ‎Appendix B. 

The control of compressor speed and clutch actuation was the most 

versatile, since each test needed a different control strategy. The different modes 

of compressor control are: 

 Manual 

 Pump - temperature control 

 Drive cycle 

 Pull down 

 Comfort (Frost cycling) 

 Comfort (Relative Humidity cycling) 

 Comfort (Relative Humidity continuous) 

A detailed summary of the compressor controls developed for this 

research, as well as their respective flow charts, is provided in ‎Appendix B. 
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6 Refrigerant Comparison 

One of the objectives of the present research was the evaluation of 

performance of alternative refrigerants, in both a direct expansion system, as well 

as in a secondary loop system. Before conclusions can be drawn from 

experimental results, the thermophysical characteristics of the refrigerants have 

to be compared to establish a foundation for their evaluation. Two alternative 

refrigerants were compared with the properties of R134a as reference. HFC-

134a has been used in MACs since the early 1990's as a replacement for the 

more environmentally harmful CFC-12. While it has been used for the past two 

decades, recent regulations (MAC directive) resulted in its ban in all new 

automotive units in the European Union, starting from 2011. As a possible 

alternative, HFC-152a was introduced by Ghodbane et al. in the late 1990's [39]. 

To mitigate the flammability of R152a, the use of a secondary loop system was 

proposed by Ghodbane et al. [112]. Due to a lack of incentives for the automotive 

industry, the use of R152a in secondary loop systems has not been investigated 

further until recently. Hydrocarbons, such as R290, R600a, or mixtures of the two, 

are yet another environmentally friendly alterative. R290 has been used by car 

owners in Australia, as well as USA, within the past decades for direct expansion 

system retrofits, which is illegal in some states. Both R152a, as well as R290, 

were investigated in this research for use in secondary loop systems MACs.  

A comparison of refrigerant properties is shown in Table ‎6.1. Both, R152a, 

as well as R290 (Propane) have an Ozone Depletion Potential (ODP) of zero. 
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The Global Warming Potential (GWP) of R152a GWPR152a=140 is significantly 

lower than R134a GWPR134a=1430, and is within the limits set forth for new 

refrigerants by the European Union (GWP < 150). R290 has an even lower GWP 

GWPR290=11, making it the most environmentally friendly choice amongst the 

three refrigerants used in this research.  

Table ‎6.1: Refrigerant Property Table 

Parameter R134a R152a R290 

ODP 0 0 0 

GWP 1400 140 11 

NBP -26.11 -24.0 -42.11 

Tcr 101.1 113.3 96.68 

Pcr 4059 4520 4247 

Cp(0°C) 0.894 1.147 1.779 

L (0°C) 198.7 306.6 374.5 

ρ vapor (0°C) 14.42 8.381 10.34 

ρ liquid (50°C) 1102 830.5 448.6 

μ (0°C) 1.09x10-5 9.045x10-6 7.79x10-6 

Molar Mass 102.03 66.051 44.096 

 

For use in MACs, the normal boiling point (NBP) of a refrigerant is a good 

indicator for its suitability of operating pressure. NBP, The normal boiling point of 

R134a is NBPR134a=-26.11°C. The normal boiling point of R152a is very similar 

NBPR152a=-24.0°C, indicating that R152a will work at similar, though somewhat 

lower pressures as R134a. R290 has a significantly lower NBP of  

NBPR290=-42.11°C. It is therefore expected that R290 operates at higher 

pressures compared to R134a. During drop-in tests in the direct expansion 

system, R290 operated at about 43% increased pressure at the evaporator, 

compared to R134a. 
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Specific heat of saturated vapor at 0°C of R152a is about 28% increased 

compared to R134a. Specific heat capacity of R290 at the same conditions is 

about 99% increased compared to R134a. Both, R152a, as well as R290, will 

have lower superheat, as well as lower subcooling, all other things considered 

equal. However, since the test facility uses EXVs, superheat stayed the same, 

but EXV opening was about 20% to 35% increased for R152a, and about 45% to 

60% increased for R290.  

A density comparison shows that R290 has a saturated liquid density 

which is about 60% reduced from the saturated liquid density of R134a. The 

liquid density of R152a is about 24% reduced compared to R134a at a 

temperature close to 50°C (liquid line). As a result, the refrigerant charges in the 

BSL facility of both, R152a and R290, were decreased by 20% and 56%, 

respectively. Saturated vapor density at 0°C is reduced 28% and 42% for R290 

and R152a, respectively. When operating a compressor with same displacement 

volume and same rpm, MFR for these refrigerants is expected to decrease 

accordingly, sans minor deviations based on changes in volumetric efficiency. 

Experimental results for the DX facility show a decrease in MFR of -29% for 

R290 and -41% for R152a, which supports the theoretical values. 

A comparison of viscosity shows that liquid line viscosity can be reduced 

by 10% to 15% for R152a and as much as 50% for R290. For saturated vapor, 

R152a viscosity can be reduced by 10% to 15% in comparison to R134a, while 

R290 viscosity can be reduced by 25%to 30%. A smaller frictional pressure drop 

can be expected throughout the system for both R152a and R290 when 
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compared to R134a. These magnitudes could not be verified experimentally, as 

the pressure drop in the vapor and liquid lines were mostly within measurement 

uncertainty

Figure ‎6.1 shows the P-h Diagram for R134a, R152a and R290. For the 

temperature range of interest (~ -10°C through +15°C), the latent heat of R152a 

is increased by roughly 55% compared to R134a, whereas the latent heat of 

R290 is increased by roughly 88%. Figure ‎6.1 also shows a comparison of 

isentropic lines (*) in the upper left corner of the figure. R290 isentropic lines 

show the smallest slope, possibly leading to an increase of discharge 

temperature and isentropic losses. 

 

Figure ‎6.1: Refrigerant P-h Diagram 

* 
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Figure ‎6.2 shows the T-s Diagram for R134a, R152a, and R290. The T-s 

Diagram can be very useful to compare expected refrigerant performance in 

terms of cooling capacity and efficiency. Didion [113] discussed the importance 

of the vapor dome shape in the T-s Diagram. An important characteristic location 

is the critical point. When comparing refrigerants, a high critical pressure typically 

indicates a decrease in cooling capacity due to a lower suction density, resulting 

in a decreased MFR and subsequently volumetric capacity. The theoretical 

volumetric capacity for R152a is decreased by 10%, while the volumetric 

capacity of R290 is increased 35% compared to R134a. Similarly, the normal 

boiling point (NBP) is related to the critical temperature and a good indicator for 

working pressure. Refrigerant property data, shown in Table ‎6.1 supports these 

indications. On the other hand, McLinden and Didion [114] point out that high 

critical temperatures often indicate increased COP. Since the condensation 

process is further removed from the critical point, excessive compressor 

superheat, as well as flash gas losses, can be avoided. While the specific heat 

capacity affects the shape of the vapor dome, it often has less of an effect on 

performance than NBP. However, since drop-in refrigerants, or refrigerants for 

the same application, are likely to be chosen to have similar NBPs, specific heat 

capacity can be a first indicator of cycle performance. Vapor-liquid lines featuring 

a smaller inclination angle are usually an indicator for better cycle performance. 

The slopes of vapor liquid lines are compared in the upper right corner of 

Figure ‎6.2 (**) for R134a, R152a, and R290. 
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An alternative way to compare cycle performance of different refrigerants 

was introduced by Alefeld [115]. Alefeld devised a method to determine 

theoretical cycle efficiency using the second law of thermodynamics. A more 

accurate statement of efficiency‎η2, based on enthalpy differences, as well as a 

highly simplified statement, η6, were introduced, as shown in Equations (22) and 

(23)  

     
     

     
     (22) 

         
   

  
)     (23) 

where gc is‎ compressor‎ isentropic‎ efficiency,‎ ηr is carnot efficiency, c is 

specific heat capacity, and r is latent heat. The simplified statement has the 

advantage that in fact only very little information about the refrigerant is needed 

and prior experimental testing to determine cycle efficiency can be omitted.  

Various assumptions and simplifications were introduced on the way from η2 to 

arrive at η6. Values for both are shown in Figure ‎6.3 for R152a and R290 with 

respect to R134a as function of evaporating temperature. It can be concluded 

that, assuming an isentropic efficiency of gc=0.75, R152a will result in a slightly 

increased COP, while the use of R290 will result in a slightly decreased COP. In 

both cases, the comparison of refrigerant efficiency based on Alefeld's method 

shows no significant variations beyond ± 5%. 



84 

 

Figure ‎6.2: Refrigerant T-s Diagram 

 

 

Figure ‎6.3: Alefeld Refrigerant Efficiency with Respect to R134a 

** 
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7 Experimental Results: Secondary Loop Versus Direct 

Expansion 

Chapter ‎7 presents experimental results, which provide a foundation to 

compare automotive secondary loop and direct expansion systems. Experimental 

results were obtained from steady state, as well as transient tests. Table ‎7.1 

shows a test matrix, including compressor speeds and ambient conditions, as 

well as air-side face velocities at the heat exchangers. Experimental tests on the 

direct expansion system were performed using R134a and R152a as refrigerants, 

while tests on the secondary loop system were performed using R152a. Test 

conditions were chosen based on typical conditions encountered in the industry. 

Table ‎7.1:Test Matrix - Secondary Loop Versus Direct Expansion System 

System/ 
Refrigerant 

Test 
Compr. 
Speed 

Ambient 
Temp/RH 

Evap. 
Face Vel. 

Cond. 
Face Vel. 

R134a DX 
/R152a DX 
/R152a 2LP  

Steady-state 
Performance 

idle 15°C/80% 

2.3 m/s 1.5 m/s 
idle 25°C/50% 

idle 35°C/40% 

idle 45°C/20% 

highway 15°C/80% 

2.3 m/s 3.0 m/s 
highway 25°C/50% 

highway 35°C/40% 

highway 45°C/20% 

NEDC 
NEDC 
profile 

30°C/50% 2.3 m/s 
NEDC 
profile 

Pulldown 
Performance 

idle 30°C/50% 
2.3 m/s 1.5 m/s 

idle 41°C/32% 

highway 30°C/50% 
2.3 m/s 3.0 m/s 

highway 41°C/32% 
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The variable speed coolant pump used in the experimental facility is a low 

efficiency gear pump. The pump, along with the three phase motor, was 

oversized to allow for a wide range of mass flow rates and pressure drop 

conditions. Electrical pump power consumption measured with a wattmeter was 

in the range of 330 W. A typical secondary loop pump, recently developed for 

research and pre-development of a new kind of automotive thermal management 

systems, shows a peak power consumption of 90 W and a rated power of 30 - 80 

W at mass flow rates similar to the present research for a 50wt% water-ethylene 

glycol solution. This value was confirmed through [116], as well as personal oral 

communication with a person working on the development of such pumps. Due 

to the pump in the present research being oversized for an actual automotive 

system, system COP suffered, especially at idling conditions where compressor 

power consumption was reduced and pump power consumption had a larger 

impact on total power. Therefore, experimental power consumption and COP 

results for the secondary loop system in the present research were adjusted to 

70 W coolant pump power consumption instead of the experimentally measured 

330 W (average) throughout all steady-state and transient performance results. 

 

7.1 Charge Optimization - Secondary Loop Versus Direct Expansion 

Charge optimization for the baseline direct expansion system (DX), as well 

as for the secondary loop system (2LP) was conducted according to the SAE 

International‎Surface‎Vehicle‎Standard‎for‎the‎“Procedure‎for‎Measuring‎System‎
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COP‎of‎a‎Mobile‎Air‎Conditioning‎System‎on‎a‎Test‎Bench” [117]. The operating 

conditions, detailed in the standard, are shown in Table ‎7.2. 

Table ‎7.2: Charge Optimization Operating Conditions 

Parameter Magnitude 

Ambient Temperature [°C] 40 

Ambient Relative Humidity [%] 40 

Compressor Speed [rpm] 2000 

Condenser Subcooling [K] >5 

Evaporator Face Velocity [m/s] 2.7 

Condenser Face Velocity [m/s] 3.5 

 

Charge optimization results for the baseline system are shown in 

Table ‎7.2 for the R134a direct expansion system (DX), R152a DX, and R152a 

2LP. For R134a, a charge of 1,730 g was found to results in the best system 

performance, balancing cooling capacity and COP. The use of R152a reduced 

the charge by roughly 19%. Changing the system to a secondary loop system 

decreased the charge 28% from the original R134a DX system. When comparing 

refrigerant charges in this research, it is implied that the refrigeration cycles, both 

for DX and 2LP systems, are larger compared to typical MAC cycles. In the 

present research, the layout of the laboratory facilities resulted in an increased 

length of vapor and liquid lines, compared to an original automotive vapor 

compression cycle. 

Table ‎7.3: Charge Optimization Results: 2LP Versus DX 

Refrigerant 
/System 

Optimized 
Charge [g] 

Charge 
(% R134a DX) 

R134a DX 1,730 0% 

R152a DX 1,400 -19% 

R152a 2LP 1,240 -28% 
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Figure ‎7.1 shows a theoretical estimate of a more realistic charge for 

direct expansion and secondary loop systems. It was assumed that an original 

MAC system would not include the liquid line MFR meter, and would feature a 

reduced receiver and filter dryer volume compared to the present test facility. 

Heat exchanger volume, compressor volume, and vapor line volumes were kept 

the same as in the present research. Liquid line size was varied within 

reasonable boundaries. It can be observed that R152a charge may be reduced 

by as much as 25%, if all other components remain the same.  

 

Figure ‎7.1:Estimated Charge Savings for R152a Secondary Loop Systems 
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7.2 Steady-state Performance - Secondary Loop Versus Direct 

Expansion 

Steady-state performance measurements were conducted to compare the 

2nd loop system to a DX system without the introduction of transient effects. 

Comparison of steady-state cooling capacity and power consumption are 

important measures to evaluate suitability of alternative refrigerants and 

operating systems.  

Figure ‎7.2 shows an illustration of the difference between the expected 

COP of a secondary loop system and a direct expansion system. Given the same 

refrigerant, primary loop components, and operating conditions, the COP of a 

secondary loop system is expected to be smaller compared to a DX system, due 

to the additional pump work, more surface area for heat losses (or heat 

introduction), and a small amount of heat introduced to the coolant by the pump. 

 

Figure ‎7.2: Secondary Loop Steady-state COP Illustration 
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Figure ‎7.3 shows system temperatures and pressures at various state 

points throughout the vapor compression system. R152a is working at a 

significantly decreased pressure compared to R134a. When switching from direct 

expansion to secondary loop system, pressure was elevated only slightly, mostly 

due to reduced pressure drop and different heat transfer area at the intermediate 

heat exchanger. Temperatures were changing only slightly when using R152a 

instead of R134a. Condensing temperature was elevated by 1 K, while 

evaporating temperature remained the same. When operating the secondary 

loop system, condensing temperature stayed the same within the uncertainty of 

measurement, while evaporating temperature decreased by 2.5 K, due to the 

replacement of the evaporator with the intermediate heat exchanger. 

 

Figure ‎7.3: System Temperature and Pressure State Point Profiles (2LP Versus DX) 
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Figure ‎7.4 shows a summary of steady-state results for the comparison of 

R152a direct expansion (R152a DX) and R152a secondary loop system (R152a 

2LP) to an R134a direct expansion system (R134a DX). Results are provided  

relative to R134a DX results. For reference, absolute steady-state data for the 

R134a DX system is provided in ‎Appendix I. R152a was used as a drop-in, 

effectively working under the same operating conditions in the same equipment. 

Measurements were recorded for a range of ambient temperatures from 15°C 

through 45°C. However, Figure ‎7.4 shows only 35°C data, while a more 

comprehensive summary of steady-state data for the 2LP versus DX comparison 

is given in ‎Appendix D. Compressor speed of 2,500 rpm was used to simulate 

highway driving, while a compressor speed of 900 rpm was used for idling tests. 

Figure ‎7.4 a) shows a comparison of performance metrics, specifically 

cooling capacity, power consumption, and COP. Cooling capacity of R152a in a 

direct expansion system was virtually the same as R134a for highway speed 

tests, and about 8% decreased for idle tests. At idle speed, the secondary loop 

system showed a capacity similar to the R152a DX system, while a slightly 

decreased capacity was observed at highway speed, possibly due to increased 

heat introduction at the coolant piping and increased heat introduction by the 

pump. Power consumption of R152a DX was reduced by more than 10% at 

highway speed and idle speed, respectively. R152a 2LP power consumption 

increased only slightly compared to R152a DX, mainly due to power consumed 

by the coolant pump, but decreased more than 10% compared to R134a DX. At 

idling speed, pump power maked up for a greater fraction of total power, resulting 
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in a slightly larger deviation from R152a DX power. COP of R152a DX was more 

than 10% increased above R134a DX COP, for both highway and idle tests. COP 

of secondary loop system was reduced, compared to R152a DX, but between 5% 

and 10% greater compared to R134a DX. Due to smaller absolute magnitudes 

and more fluctuation in superheat control, relative uncertainties were greater 

during idling speed tests compared to highway speed tests. 

Figure ‎7.4 b) shows a comparison of volumetric and isentropic efficiencies. 

While at idling speed the volumetric efficiencies for the R152a DX and R152a 

2LP were effectively the same compared to R134a DX, the volumetric efficiency 

of R152a was increased 5% and 12% for DX and 2LP, respectively. Isentropic 

efficiency of R152a DX wais about 10% increased while idling, while it was 

slightly decreased during highway driving. R152a 2LP isentropic efficiency was 

increased by 13% and 5% during idling and highway driving, respectively.  

Figure ‎7.4 c) shows a comparison of sensible and latent cooling 

performance at the evaporator (DX) and cooler (2LP). Sensible cooling capacity 

of R152a DX was within 5% of R134a DX for both, idling and highway driving. 

The R152a 2LP system showed a  similar sensible performance compared to the 

R134a DX system for idling and about 7% decreased for highway driving. Latent 

capacity for both, R152a DX and R152a 2LP was similar to the R134a DX case. 

During idling, both R152a DX and 2LP showed a significant decrease of -20%, 

albeit these measurements are associated with high uncertainties and a concrete 

conclusion cannot be drawn. The sensible heating factor (SHF), both at idling 

and highway speed, did not deviate from the R134a DX SHF.  



93 

 

Figure ‎7.4: Steady State Performance Results (2LP Versus DX) 
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7.3 Transient Performance - Secondary Loop Versus Direct 

Expansion 

Chapter ‎7.3 provides experimental results about the transient performance 

of the R152a secondary loop system with respect to a direct expansion system. 

Secondary loop systems have an inherent transient performance penalty, when 

compared to a direct expansion system. The performance penalty is explained by 

Figure ‎7.5, which illustrates typical transient trends of cooling capacity during a 

pull-down test. Cabin temperature is high initially, resulting in a high cooling 

capacity. As the cabin is cooled down temperature difference decreases, 

consequently resulting in a decrease in cooling capacity. Since thermal mass, 

such as pipes and heat exchangers, is being cooled down, only part of the total 

cooling capacity of  the refrigerant-side will be available to cool down the air. 

Eventually, as the system approaches steady-state, capacity available on the 

refrigerant-side is close to capacity delivered on the air-side. The area below the 

capacity curve is the total energy used for cooling over the test. Secondary loop 

systems have an increased thermal mass, due additional heat exchangers, 

coolant pipes, and the coolant itself. Therefore, an additional decrease of energy 

available to cool down the air can be expected.   

Figure ‎7.6 shows an illustration of  COP over time during a pull-down test. 

Due to high initial cooling capacity, COP is high when the passenger cabin is 

warmed up. As the cabin cools down, COP decreases according to the decrease 

in cooling capacity. Therefore, pull-down tests tend to show a higher average 

COP for short tests, while longer tests tend to show a lower average COP. 
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Figure ‎7.5: Secondary Loop Transient Cooling Capacity Illustration 

 

 

Figure ‎7.6: Secondary Loop Transient Capacity and COP Illustration 
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7.3.1 Pull-down Performance - 2LP Versus DX 

Pull-down tests were performed to evaluate cooling capacity and time 

needed to pull the cabin down to comfort temperature. Tests were started with 

the cabin in a soaked condition, meaning that cabin temperature was elevated 

above ambient temperature. As the air-conditioning system was turned on, the 

compressor delivered cooling capacity to start decrease the supply air 

temperature to the cabin. Depending on compressor speed, ambient condition, 

and cooling loads, the time taken to pull the cabin down to comfort setpoint 

varied. The comfort temperature, after reaching which a test was aborted, was 

defined as 24°C.  

Figure ‎7.7 shows a comparison of time taken to pull the cabin down to 

comfort temperature. Time is given relative to the time required by the R134a DX 

system. Using R152a as a drop-in in the direct expansion system either reduced 

or kept constant the time required to achieve comfort condition. At high ambient 

temperatures and highway speed, time to comfort was reduced by more than 

15%, while at 30°C time to comfort equaled the result for the R134a DX system. 

At 30°C ambient temperature idling, R152a DX decreases time to comfort by less 

than 10%. Using the secondary loop system increased time to comfort for 

highway driving speed. At 30°C, time increased by 22%, while at 40°C time 

increased by 12%. At 30°C idling, time to comfort for the secondary loop system 

was similar to the R152a DX system. The system under test lacked the capacity 

to pull the cabin down to comfort temperature while idling at 41°C ambient 
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temperature. Therefore, idling pull down at 41°C was aborted after 60 minutes for 

both systems and time to comfort showed no relative deviation. 

 

Figure ‎7.7: Pull-down - Time to Cabin Comfort (2LP Versus DX) 

 

Figure ‎7.8 shows accumulated pull-down performance results. As 

described in Chapter ‎4.2, capacity and power consumption were integrated over 

the time of testing and a transient performance factor was determined. The 

accumulated performance metrics are therefore not decoupled from the time to 

comfort (i.e. testing time). Figure ‎7.8 a) shows the total energy which is available 

to cool the cabin air, relative to the total cooling energy of the R134a DX system. 

For the R152a DX system, the trends directly correlate with the time to comfort 

results for the respective operating conditions. As less cooling energy is available 

on the air-side when using secondary loop systems, accumulated capacity 
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decreases compared to R134a DX and R152a DX when time to comfort is the 

same, i.e. when idling at 41°C ambient temperature. During other tests, it simply 

takes a longer time to pull down the cabin, which increases the total energy 

required to achieve comfort temperature. Figure ‎7.8 b) shows a comparison of 

total energy provided by the compressor (DX) or compressor and coolant pump 

(2LP) during pull down tests. Accumulated power consumption follows the time to 

comfort trend. The R152a DX system required significantly less energy, between 

15% and 28%, depending on compressor speed and ambient temperature. Due 

to additional coolant pump power, as well as increased time to comfort, the 

secondary loop system required a higher energy input compared to the R152a 

DX system. At idling speed, the energy input was 10% to 15% below R134a DX 

energy input, while at highway speed the energy input was 6% to 17% increased. 

Since time to comfort is short at highway speed as compared to idling speed, the 

relative difference in energy input between direct expansion and secondary loop 

systems was more pronounced. The relative transient performance factor, shown 

in Figure ‎7.8 c), was about 20% increased in all tests for R152a as a drop-in in 

direct expansion systems, when compared to R134a DX. For the R152a 

secondary loop system, TPF was within 5% of R134a DX TPF for both idling and 

highway speed, as well as for both ambient temperatures.  
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Figure ‎7.8: Pull-down Performance Results (2LP Versus DX) 
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Another way to evaluate pull-down performance is to normalize 

performance parameters with respect to time. When time-normalized, as shown 

in Figure ‎7.9 a) and b), transient performance factor of the secondary loop 

system was observed to be 20% and 13% lower at 30°C and 41°C ambient 

temperature, respectively. TPF of the R152a DX system was 25% and 38% 

increased above R134a DX TPF. 

 

Figure ‎7.9: Pull-down Time-normalized Performance Results (2LP Versus DX) 
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7.3.2 New European Drive Cycle Performance - 2LP Versus DX 

A comparison of transient behavior and performance during the New 

European Drive Cycle (NEDC) is provided in Chapter ‎7.3.2. The NEDC is used to 

evaluate power consumption of the air-conditioning unit at quasi-realistic, but 

standardized driving conditions. Due to large transients in compressor speed and 

condenser air flow rate, considerable fluctuations in cooling capacity, and 

consequently cabin supply temperature are introduced. As a secondary loop 

system has a larger thermal mass, drive cycle performance, as well as cabin air 

conditions may vary from the performance of a direct expansion systems. 

Transient trends, as well as accumulated performance data are discussed. 

Figure ‎7.10 shows a transient comparison of supply temperature. As can 

be observed, using R152a as a drop-in in the direct expansion system reduced 

cabin supply temperature slightly, but not significantly. Due to the additional 

thermal mass of the secondary loop system, initial cool down of supply 

temperature was hindered and can be increased as much as 8°C during the 

initial minutes of the cycle. Close to the end of the highway section of the NEDC, 

R152a 2LP supply temperature approached the supply temperature of the direct 

expansion system. At the same time, secondary loop supply temperature was not 

subject to the same fluctuations supply temperatures of the direct expansion 

system experiences. 

Further transient trends are shown in Figure ‎7.11, including trends in air-

side cooling capacity, system power consumption, and dehumidification. As can 

be observed in Figure ‎7.11 a), R152a DX transient cooling capacity profile is 
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similar to the R134a DX capacity profile. R152a 2LP air-side capacity was 

significantly decreased during the first minutes of the cycle. During the middle 

section of the NEDC, the average capacity was observed to be close to the direct 

expansion system average, while showing less fluctuations. During acceleration, 

the secondary loop system capacity was slower to respond, while during 

deceleration, cooling capacity was preserved above the magnitude observed for 

the direct expansion system. After an extended time into the test, during the 

highway section of the cycle, secondary loop system capacity was on par with 

the direct expansion system capacity. Figure ‎7.11 b) shows transient profiles of 

power consumption. R152a as a drop-in in the direct expansion system showed 

decreased power consumption throughout the drive cycle. The R152a 2LP 

system power consumption was strongly increased during the first minutes of the 

cycle, as the refrigerant-side capacity was significantly higher compared to the 

direct expansion system (although air-side capacity was decreased). The R152a 

2LP power consumption remained higher than power consumption of the R134a 

DX system throughout the drive cycle. 

 Figure ‎7.11 b) shows a comparison of transient dehumidification during 

the NEDC. Dehumidification profiles follow inverted profiles of cooling capacity, 

with R152a performing slightly worse than R134a DX, especially during the high 

speed portions of the cycle. During the mid section of the NEDC cycle, the direct 

expansion system experienced re-evaporation of condensate from the 

evaporator surface during idling. In comparison, the secondary loop system 
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performed worse in the beginning, but prevented re-evaporation during the mid 

section of the cycle for the most part.  

 

Figure ‎7.10: NEDC Supply Temperature Trend (2LP Versus DX) 

 

Figure ‎7.12 provides a comparison of accumulated NEDC performance 

data, as well as a comparison of sensible and latent performance. Figure ‎7.12 a) 

shows refrigerant-side, as well as air-side accumulated performance parameters. 

R152a DX refrigerant-side, as well as air-side energy available for cooling were 

similar to the R134a DX system. Due to a decreased energy input in terms of 

compressor power, transient performance factors of R152a DX were about 10% 

increased above R134a DX TPF. The secondary loop system showed a 

significant increase of 25% in the energy available for cooling on the refrigerant-

side. However, considerably less energy, -10%,  was available on the air-side. 
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Figure ‎7.11: NEDC Performance Metrics Trend (2LP Versus DX) 
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Since the NEDC cycle is only little more than 18 minutes long, a significant 

amount of total energy is spent on cooling thermal mass of the system. Since the 

total energy input to the secondary loop system was increased by about 5%, the 

air-side transient performance factor was decreased by 14%. Figure ‎7.12 b) 

shows accumulated sensible and latent capacity. It can be observed that the 

sensible performance of R152a DX was similar to R134a DX. 2LP accumulated 

sensible capacity was decreased by 10%, following the trend of the accumulated 

air-side capacity. Accumulated capacity for both the R152a DX and the R152a 

2LP system were reduced by 20%. The total amount of latent capacity integrated 

over the NEDC test time was small compared to sensible capacity. At the same 

time, measurement uncertainty of latent performance is high. The 

dehumidification performance follows the measurement of the latent capacity. 

The R152a DX as well as the R152a 2LP systems showed 20% reduced 

dehumidification performance as compared to R134a DX. 
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Figure ‎7.12: NEDC Accumulated Performance Metrics Results (2LP Versus DX) 
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When switching from R152a DX to R152a 2LP, an additional 25% of 

charge can be saved. 

 Steady-state results showed that the cooling capacity of secondary 

loop systems was similar to the direct expansion system using the 

same refrigerant. R152a power consumption was more than 10% 

reduced compared to R134a, which allowed the R152a 2LP system to 

have 5% to 10% higher COP compared to the R134a DX system. 

Compressor isentropic and volumetric efficiencies were determined to 

be similar or higher compared to R134a. Sensible and latent cooling 

performance was within 10% of the R134a DX system. At idling 

conditions, latent cooling capacity might be decreased, but high 

uncertainties prevent  a definite statement. 

 Transient pull-down results showed that as expected, time to pull down 

to comfort set point was increased for secondary loop systems. For the 

amount of coolant in the present research (~ 5.5 kg), the increase can 

be as much as 25% from R152a DX to R152a 2LP at highway driving 

conditions. Consequently, the accumulated power during a pull down 

was increased by about 30% from R152a DX to R152a 2LP, and 

therefore also increased above R134a DX results. The transient 

performance factor for pull-down was within 5% of R134a DX and 

about 20% decreased compared to R152a DX. 

 During NEDC operation, the energy provided to cool down the supply 

air was decreased by about 10% from R134a DX. At the same time, 

energy consumption was increased by about 5%. Consequently, air-

side TPF was decreased by more than 10%. Latent energy used for 

dehumidification was reduced by about 20% for both, R152a DX and 

R152a 2LP. Sensible energy for the secondary loop system was 

reduced by 10%, due to sensible cooling of the additional thermal 

mass.  
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8 Experimental Results: Propane in Secondary Loop Systems 

Chapter ‎8 shows experimental results which provide a basis for 

understanding the performance of Propane (R290) in mobile air-conditioning 

systems (MACs) as an alternative to R152a. As a low-GWP refrigerant with 

excellent thermophysical characteristics, Propane has been gaining attention in 

residential and commercial applications in recent years. Due to its high 

flammability, the use of an indirect system, such as the secondary loop system, 

is imperative for its use in automotive air-conditioning.  

The normal boiling point of R290, as shown in Table ‎6.1, is significantly 

lower compared to both, R134a and R152a. As a result, R290 operates at higher 

pressures. R290 shows a significant increase in compressor power consumption, 

as well as a significantly increased volumetric capacity. 

Figure ‎8.1 shows relative drop-in performance of R290 in the direct 

expansion system. Both at idling and highway driving, R290 showed an increase 

in power consumption by 40% above R134a results. Cooling capacity was 

increased by about 22%. In contrast, R152a showed a power consumption which 

was decreased by 12% - 18%, while cooling capacity was similar to R134a. As a 

result, COP of R290 was observed to be between 10% and 15% decreased 

compared to R134a, while COP of R152a was increased by about the same 

amount.  

As a result of increase of capacity and the decrease of COP during drop-in 

tests, subsequent tests with Propane in the secondary loop system were 
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performed with reduced compressor speeds. The compressor rpm for R290 2LP 

tests was modified to result in similar cooling capacities and transient cooling 

performance compared to R134a DX. R134a and R152a were operated at 

speeds of 2,500 and 900 for highway driving and idling. For R290, compressor 

speeds were reduced to 1,550 and 650 rpm for highway driving and idling, 

respectively. In an automobile this could be achieved by either using a 

compressor with smaller displacement volume, or by changing pulley size at the 

engine to adjust the gear ratio between engine and compressor.  

 

Figure ‎8.1: R290 Drop-in Performance in the Direct Expansion System 
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optimization results for the R290 secondary loop system in comparison to the 

R134a baseline and the R152a secondary loop system. A charge reduction of 60% 

was observed when changing the R134a DX system to a R290 2LP system. The 

decrease in charge is roughly twice the amount observed for the R152a 2LP 

system. This amounts to a 44% decrease in charge when replacing R152a with 

R290 in the secondary loop system. 

Table ‎8.1: Charge Optimization Results: R290 2LP 

Refrigerant 
/System 

Optimized 
Charge [g] 

Charge 
(% R134a DX) 

R134a DX 1,730 0% 

R152a 2LP 1,240 -28% 

R290 2LP 700 -60% 

 

Figure ‎8.2 shows the estimated charge savings, considering realistic pipe 

lengths in an automobile. For this estimation, vapor line lengths remained the 

same as in the 2LP test facility, but liquid line length was varied within 

reasonable boundaries, as shown in Figure ‎8.2. Additionally, the volume of the 

mass flow rate meter was omitted, and the volumes of filter-drier and receiver in 

the liquid line were reduced to fit commercially available products. Based on 

above assumptions, Propane charge could be reduced to as little as 380 g for 

baseline systems, and 320 g for secondary loop systems. It is estimated that a 

realistic charge of Propane in secondary loop systems could stay below 350 g. 

On average, this could result in a charge reduction of roughly 43% when 

replacing R152a in secondary loop systems.  
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Figure ‎8.2: Estimated Charge Savings for R290 Secondary Loop Systems 

 

8.2 Steady-state Performance: Propane in Secondary Loop Systems 

Chapter ‎8.2 shows relative steady-state performance results of R290 in 

the 2LP system, as compared to R134a DX and R152a 2LP results. System 

performance,  compressor efficiencies, and sensible/latent capacity are provided.  

Figure ‎8.3 shows temperature and pressure at several locations in the 

refrigeration cycle when operating at highway driving speed and ambient 

conditions of 35°C and 40% relative humidity. Temperature is shown on the first 

y-axis, while pressure is shown on the second y-axis. Propane operates at 

pressures well above R134a pressures. Suction pressure increased to about 500 

kPa, while high side pressure increased to about 1,750 kPa. Suction temperature 
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was very similar to suction temperature of R134a DX and R152a 2LP, while 

discharge temperature was significantly reduced (8 K) with respect to R134a DX. 

 

Figure ‎8.3: System Temperature and Pressure State Points (R290 2LP) 
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the reduction in rpm for R290 2LP, power consumption decreased accordingly, 

resulting in a decrease of roughly 15% and 5% for highway and idling conditions, 

respectively. At the same time, R152a 2LP showed a 5% smaller decrease at 

highway speed conditions and a significantly higher decrease of 15% at idling 

conditions. Consequently, COP for R290 was increased by more than 5% at 

highway driving condition. During idling, R290 2LP COP was observed to be 

decreased by about 15%, though measurement uncertainty was increased when 

operating at idling conditions. Figure ‎8.4 b) shows relative changes in isentropic 

and volumetric efficiency. R290 2LP displayed a 10% increase in both, isentropic, 

as well as volumetric efficiency with respect to R134a DX. However, during idling 

a significant decrease of 20% and 25% was observed for volumetric and 

isentropic efficiency, respectively. It was determined that if compressor 

efficiencies at idling were similar to R134a DX efficiencies, due to optimization of 

the compressor for R290, idling COP would be increased 15% above R134a DX. 

Figure ‎8.4 c) shows a comparison of sensible and latent cooling 

performance for idling and highway speed driving conditions. R290 2PL sensible 

capacity was similar to R134a DX and R152a 2LP sensible capacity during idling, 

while it was decreased by about 8% under highway driving conditions, much 

similar to R152a 2LP. Latent capacity for R290 2LP was measured to be zero 

during idling, while latent capacity of R134a DX and R152a 2LP were measured 

to be 280 W and 230 W, respectively. However, latent capacity during idling was 

associated with high measurement uncertainties, leaving the R290 2LP latent 

performance comparison without a definite conclusion.  
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Figure ‎8.4: Steady-state Performance Results (R290 2LP) 
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The sensible heat factor of R290 2LP was similar to R134a DX SHF when 

operating at highway conditions and increased by roughly 10% during idling. 

Based on the assumption that compressor design could be changed to 

achieve idling efficiencies similar to R134a DX efficiencies, a theoretical estimate 

on possible R290 2LP performance was performed using Engineering Equation 

Solver. It was furthermore assumed that suction state properties, as well as 

discharge pressure would not change from the previously measured values. With 

isentropic and volumetric efficiencies similar to the R134a DX experimental 

values, idling capacity would change significantly, while power consumption 

would stay nearly the same. As a result, R290 2LP idling COP would increase to 

about 15% above R134a DX COP, as observed in Figure ‎8.5, which would also 

translate into enhanced transient drive cycle performance.  

 

Figure ‎8.5: Theoretical R290 2LP Performance Results with Increased Idling 
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8.3 Transient Performance: Propane in Secondary Loop Systems 

Chapter ‎8.3 provides transient experimental results for the R290 

secondary loop system in comparison to the R134a DX and the R152a 2LP 

systems. Pull-down performance at several ambient conditions and compressor 

speeds, as well as NEDC drive cycle performance, are discussed.  

 

8.3.1 Pull-down Performance: Propane 2LP 

Figure ‎8.6 shows time to comfort information for R290 2LP, relative to the 

R134a DX system. At highway speed, time to comfort was increased by 30% and 

20% for 31°C ambient temperature and 41°C ambient temperature, respectively. 

At both conditions, the R290 2LP time to comfort was increased by about 10% 

with respect to R152a 2LP measurements. At 41°C idling, the air-conditioning 

system was not able to pull the cabin down to comfort setpoint, resulting in the 

abortion of the test for all systems after 60 minutes. Therefore, no difference in 

time to comfort can be observed at 41°C idling conditions. At 30°C idling, the 

R290 2LP system showed an increase of time to comfort above 60%. This was a 

result of the poor steady-state performance at low and moderate temperatures 

during idling. However, pull-down results may change, depending on how 

compressor rpm, compressor displacement, or pulley ratio are adjusted. The 

adjustment of compressor rpm for R290 2LP added to the increase in time to 

comfort. Therefore, time to comfort should not be taken as final result for the 

R290 2LP system, but rather as a parameter which can be adjusted. 
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Figure ‎8.6: Pull-down Time to Cabin Comfort (R290 2LP) 

 

Figure ‎8.7 shows relative results for accumulated performance metrics. 

Accumulated cooling capacity, power consumption, and transient performance 

factor results are shown. Due to accumulated capacity and power consumption 

being heavily influenced by time to comfort (i.e. length of the test), the rpm 

adjustment for R290 2LP affects capacity and power consumption. However, 

since both are affected in the same way, it can be expected that transient 

performance factor results retain their validity when rpm is adjusted within 

reasonable boundaries.  Figure ‎8.7 a) shows relative results of energy available 

for cooling cabin air over the time of a pull-down test. At highway driving 

conditions, the R290 2LP system showed a 20% and 15% increased capacity for 

30°C and 40°C ambient temperature, respectively. In both cases, cooling energy 

was elevated above R152a 2LP values. Accumulated cooling capacity trends 
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followed the trends for time to comfort. At idling conditions, accumulated cooling 

capacity was decreased by 16% at 41°C. As test time is constant for the three 

systems, trends resemble steady-state results. However, at 30°C, R290 2LP 

accumulated capacity was increased by more than 40%, due to the long testing 

time. Figure ‎8.7 b) shows relative results for a comparison of power consumption. 

At highway speeds, the R290 2LP system showed an increase in power 

consumption of about 25%. While the power consumption matched R152a 2LP 

power consumption at moderate temperatures, it increased by 10% over the 

R152a 2LP power consumption at 41°C ambient temperature. At idling conditions, 

R290 2LP power consumption was 15% higher compared to R134a DX for 41°C 

ambient temperature, while R152a 2LP consumption was about 9% increased. At 

30°C ambient temperature, R209 2LP power consumption is increased by about 

100% compared to R134a DX consumption. Figure ‎8.7 c) shows a relative 

comparison of air-side transient performance factor. At highway speed, R290 

2LP was performing as well (41°C) or better (30°C) as R134a DX and R152a DX. 

However, at idling speed transient performance was reduced by about 10% to 

15%.  

Figure ‎8.8 shows time-normalized results at highway driving conditions for 

ambient temperatures of 30°C and 41°C with respect to R134a DX performance. 

When time-normalized, accumulated cooling capacities were reduced by 9% 

(30°C) and 7% (41°C). The time-normalized R290 2LP results for cooling 

capacity were matching R152a 2LP results. Time-normalized energy 

consumption was decreased by 11% (30°C) and 6% (41°C).   



119 

 

Figure ‎8.7: Pull-down Performance Results (R290 2LP) 
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In the case of 30°C ambient temperature, R290 2LP time-normalized 

energy consumption was 7% lower compared to R152a 2LP. The time-

normalized transient performance factor of R290 2LP was decreased by about 

20% for both ambient temperatures. In the case of 41°C, R290 2LP time-

normalized TPF was about 6% lower compared to R152a 2LP. 

 

Figure ‎8.8: Pull-down Time-normalized Performance Results (R290 2LP) 
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8.3.2 New European Drive Cycle Performance - Propane 2LP 

Figure ‎8.9 shows transient trends for cabin supply temperature. The 

supply temperature profile of R290 2LP showed the same trends as the R152a 

2LP profile, but was elevated by about 1 K to 1.5 K. This was due to the adjusted 

compressor rpm for R290 2LP tests. Both for R152a 2LP and for R290 2LP the 

supply temperature profile showed less fluctuations compared to the R134a DX 

profile, due to the thermal mass of the coolant in the secondary loop. At the end 

of the drive cycle, supply temperature of R290 2LP was within 1 K of the supply 

temperature of the R134a DX profile. 

 

Figure ‎8.9: NEDC Supply Temperature Trend (R290 2LP) 
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R152a 2LP air-side cooling capacity was decreased significantly during the first 

minutes of the cycle, due to the thermal mass of the secondary loop system. 

R290 2LP power consumption, shown in Figure ‎8.10 b), followed the same 

profile as R134a DX power consumption. R290 2LP power consumption was 

lower than R152a 2LP power consumption during the high rpm sections of the 

cycle. The R290 2LP dehumidification profile, shown in Figure ‎8.10 c), showed 

the same trend as the R152a 2LP profile, though with a slightly increased 

dehumidification throughout the drive cycle. Again, the differences to the direct 

expansion dehumidification trend, specifically reduced fluctuation due to a 

decrease in re-evaporation, become apparent.  

Figure ‎8.11 introduces relative accumulated NEDC performance results 

for the R290 2LP system. Air-side capacity was reduced by 10%, similar to 

R152a 2LP air-side capacity. However, the power consumption was reduced by 

5%, resulting in a decrease of TPF of 5% with respect to R134a DX. This is a 

small improvement, +8%, with respect to R152a 2LP. As discussed in previous 

chapters, the refrigerant-side TPF was increased compared to R134a, while the 

air-side TPF was decreased. The largest contributors to this phenomenon are the 

thermal mass of the secondary loop, which reduces the accumulated air-side 

capacity, and the pump power, which steadily increases the accumulated total 

power consumption of the system. 
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Figure ‎8.10: NEDC Performance Metrics Trends (R290 2LP) 
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Figure ‎8.11: NEDC Accumulated Performance Metrics Results (R290 2LP) 
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to simulate a smaller compressor and decrease cooling capacity to 

comparable levels. 

 Charge optimization for R290 2LP reduced refrigerant charge by 60% 

in comparison to R134a DX. A theoretical estimation showed that 

R290 charge may be about 60% smaller compared to R134a, based 

on liquid density. In an air-conditioning system for a small to mid-size 

vehicle, charge may be reduced by an additional 20% for secondary 

loop systems in comparison to direct expansion systems.  

 Steady-state performance of R290 in secondary loop systems changed 

significantly with compressor speed. At highway driving conditions, 

R290 2LP COP was about 8% higher than R134a DX COP, and 

therefore similar to R152a 2LP COP. At idling conditions, R290 2LP 

COP was reduced by 15% from R134 DX COP. This was due to 

volumetric and isentropic compressor efficiencies, which were reduced 

by up to 25% compared to R134a DX. If compressor efficiencies could 

be increased to R134a DX levels by using a compressor which is 

optimized for R290, COP would be increased 14% above R134a DX. 

Sensible and latent cooling capacity were decreased slightly from 

R152a 2LP results, due to a decrease in overall cooling capacity 

caused by the reduction in compressor rpm. 

 Transient pull-down results showed that time to comfort increased by 

20% to 30% for highway driving in comparison to R134a DX. This was 

due to the choice of reduced rpm and the subsequent availability of 

cooling capacity. Therefore, experimental results for pull down 

accumulated cooling capacity will vary, based on which rpm (or in a car: 

which compressor size) is chosen. However, TPF results show that 

transient performance of R290 2LP was similar or better than R134a 

DX during highway driving conditions. At idling conditions, TPF was 

decreased by 10% to 15%. A compressor designed specifically for 

R290 can significantly increase TPF at low compressor speeds. 
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 NEDC results show that R290 2LP transient performance was 

decreased by 5% with respect to R134a DX, as opposed to nearly 15% 

for R152a 2LP. Sensible capacity was about 14% decreased, which 

was influenced by the reduction in rpm. Latent capacity was about the 

same as R134a DX results, although measurement uncertainty was 

significant.  

 It was shown that R290 2LP steady-state COP, as well as transient 

TPF could be similar or higher, compared to R134a DX. However, 

reduced COP at low compressor speeds prevent the R290 2LP NEDC 

TPF to increase above R134a DX TPF. If components were used, 

which were optimized for use with R290, steady-state, as well as 

transient performance could improve well above R134a DX 

performance. 

Based on measurements of the components used in the experimental test 

facility, as well as a reasonable estimate of refrigerant and coolant line lengths in 

an mid-size sedan, the mass of the secondary loop system was assumed to be 

increased by about 24%, compared to a DX system. The increase of mass is due 

to the adding of coolant, coolant tubing, and secondary loop components, such 

as the coolant pump and an intermediate heat exchanger. Fischer [118] 

estimated an annual increase in fuel consumption of about 3.4 gallons (12.7 liters) 

due to the mass of a regular air-conditioning system. Due to the estimated 

increase in mass by 24%, when switching to a secondary loop system (as 

discussed above), an additional 0.82 gallons (3.1 liters) of fuel consumption 

might be expected per year.  
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Green-Mac-LCCP [119], a software which was peer reviewed and globally 

accepted as a credible method of comparing the climate performance of mobile 

air conditioning systems, was used to estimate the impact of secondary loop 

systems on the Life Cycle The model takes into account the change of mass of 

the system, the change of charge due to different refrigerants and system layouts, 

as well as other characteristics associated with the change of life cycle climate 

performance when using different refrigerants. Figure ‎8.12 shows a comparison 

of CO2 equivalent emissions per lifetime per vehicle for a range of U.S cities in 

colder, as well as warmer climate. A secondary loop system using R152a or 

R290 as refrigerant will reduce the CO2 equivalent emissions per lifetime per 

vehicle by roughly 12% to 20% (R152a) or 13% to 22% (R290) as compared to a 

R134a DX system. The decrease in CO2 equivalent emissions is mainly due to 

decrease of direct contributions (i.e. due to the decrease in negative impact the 

refrigerant itself has on the environment). Inputs to the Green-MAC-LCCP model 

were based on experimentally measured cooling capacity and COP. A secondary 

loop system which is optimized for R290 as primary refrigerant would possibly 

reduce CO2 equivalent emissions even beyond the results shown in Figure ‎8.12. 

A theoretical comparison of refrigerants in Chapter ‎6 showed that the 

cycle efficiency, or COP, of R290 should be expected to be 0% to 5% decreased 

compared to an R134a system. However, experimental steady-state results 

showed an increase of 10% during highway driving conditions and a 15% 

decrease during idling conditions. During transient NEDC operation, where 

compressor speeds are much higher than idling speeds for a majority of the time, 
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the R290 2LP system faired similar to the R134a DX system despite capacity 

disadvantage due to increased thermal mass. This discrepancy can be explained 

by taking compressor efficiencies into account. Alefeld [115] distinguished 

irreversibilities into two categories: irreversibilities caused by fluid properties and 

by system design. System design irreversibilities are partially reflected in the 

isentropic compressor efficiency term in Equations (22) and (23) in Chapter ‎6. As 

observed in Chapter ‎8, R290 2LP isentropic efficiency during highway driving is 

10% increased compared to R134a DX. If this increase would have been 

included in the term gc in Equations (22) and (23), theoretical analysis and 

experiment would agree within 2%.   

 

Figure ‎8.12: Impact of Secondary Loop Systems on Life Cycle Climate 

Performance of a Mid-size Passenger Car 
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9 Thermal Storage During Off-Cycle Test Results 

Chapters ‎7 and ‎8 introduced transient performance results of the 

secondary loop system. Thermal lag during pull-down tests and NEDC drive 

cycle tests, due to an increased thermal mass, were characterized and discussed. 

While this can be a disadvantage for a fast cabin pull-down and consequently 

thermal comfort, it can be turned into an advantage during off-cycle operation. If 

the automobile idles and the compressor either runs with reduced rpm, or is 

turned off for short periods of time, cooling capacity is reduced. The thermal 

mass of the secondary loop system can preserve capacity and therefore thermal 

comfort during off-cycle periods.  

Chapter ‎9 provides experimental results to quantify the effect of thermal 

storage of a secondary loop system during off-cycle periods. Two experimental 

test procedures were developed, namely the Start/Stop drive cycle and the off-

cycle cabin warm-up after pull-down. The Start/Stop drive cycle is a modified 

version of the NEDC. The idling periods were replaced by off periods, simulating 

the start/stop operation of many modern cars. A further modification of the 

Start/Stop cycle is the Start/Stop 3x Idling drive cycle (SS3xI). All idling periods, 

or for that matter off-cycle periods, were tripled in length to determine how 

changes in off-cycle time affect the performance of secondary loop systems with 

respect to the performance of direct expansion systems. The second test 

procedure developed for thermal storage characterization is the cabin warm-up 

test. For this test, a regular pull-down test is performed. When the cabin 

temperature reaches are pre-determined comfort setpoint, the compressor is 
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turned off and the cabin is allowed to warm up. Cabin air and supply air 

temperature, as well as relative humidity, are measured during the warm-up 

period. ‎Appendix E provides more detailed information about the thermal storage 

test procedures.  

In addition to the secondary loops thermal storage, ice storage was 

investigated as part of advanced thermal storage options. To this end, an ice 

storage heat exchanger (IS), introduced in Chapter ‎3.3, was built and integrated 

into the secondary loop test facility. Chapter 3.3 also details the modifications 

made to the facility and resulting operating modes, such as IS charging, IS only 

cooling, and 2LP+IS cooling mode. Chapter ‎9.2 shows experimental results for 

pull-down with ice storage, and thermal storage cabin warm-up tests. 

 

9.1 Secondary Loop Thermal Storage Performance 

Chapter ‎9.1 provides experimental test results, which characterize the 

thermal storage effect of secondary loop systems. Start/Stop drive cycle results, 

as well as cabin warm-up after pull-down results are discussed.  Thermal storage 

tests were performed with 5.5 kg of ethylene glycol as coolant, as detailed in ‎3.2. 

In a commercial vehicle, results may vary based on the amount of coolant. A 

comparison of thermal storage performance based on coolant mass fraction and 

based on secondary loop coolant volume is provided in Chapter ‎11 as part of the 

transient simulation effort in Modelica.  
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9.1.1 Secondary Loop Start/Stop Drive Cycle Performance 

Start/Stop drive cycle tests are a modified version of the New European 

Drive Cycle (NEDC). Due to turning off the compressor, instead of running at 

idling speed, fluctuations in temperature and relative humidity during the city 

portion of the cycle are more pronounced. Over the course of the start/stop cycle, 

less energy is consumed compared to the NEDC, which was the reason why 

start/stop operation was introduced to commercial vehicles in the first place 

(though rather for fuel saving than for A/C energy saving). At the same time, less 

energy is available for cooling the cabin, due to the off-times of the compressor.  

Figure ‎9.1 shows a comparison of cabin supply air temperature and 

relative humidity profiles for R134a DX, R152a 2LP, and R290 2LP. Similar to the 

NEDC results, the secondary loop lagged behind in cooling down the supply air 

during the first minutes. The capacity, and subsequently the supply temperature, 

of the R290 2LP system were determined by the reduced rpm, which was chosen 

in order to give a similar transient performance to R134a DX systems. Although 

the supply temperature of R290 was shown to be 1 K - 1.5 K higher compared to 

R152a, this can be adjusted by choosing an appropriate compressor 

displacement or compressor speed (for internal combustion engine vehicles: 

engine/compressor gear ratio). Supply air temperature of the secondary loop was 

up to 5K higher during the course of the drive cycle. However, the thermal mass 

of the secondary loop stabilized supply air temperature, as well as relative 

humidity in comparison to the direct expansion (DX) system. In Figure ‎9.1 b), it 

can be observed that R134a DX supply relative humidity increased rapidly during 
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off-cycle periods, due to re-evaporation of condensate. At the end of the city 

portion of the cycle, supply air may be saturated or close to saturation, which 

might decrease the thermal comfort level of passengers and increase the threat 

of windshield fogging under certain operating conditions. Due to its thermal 

storage potential, the secondary loop could retain cooling capacity during off-

cycle periods, which prevented excessive re-evaporation and stabilized supply 

relative humidity.  

Figure ‎9.2 shows a comparison of accumulated performance results for 

the start/stop drive cycle with respect to R134a DX performance. Accumulated 

cooling capacity, as well as accumulated power consumption, and transient 

performance factor (TPF), are shown in Figure ‎9.2 a). While secondary loop 

system results, R152a 2LP and R290 2LP, show a 8% decrease in energy 

available for cooling, cooling energy increased 2% to 3% compared to NEDC 

results, discussed in Chapter ‎8.3.2. This is due to the secondary loop system 

retaining cooling capacity during off-cycle periods. Based on the energy input 

required for R152a 2LP and R290 2LP, TPF decreased by roughly 10% (R152a 

2LP), or was similar to R134a DX (R290 2LP). Although the secondary loop 

energy consumption was increased, due to the coolant pump operation during 

off-cycle periods, the cooling capacity advantage due to thermal storage resulted 

in a higher TPF, compared to NEDC operation. Figure ‎9.2 b) shows accumulated 

sensible and latent performance during the start/stop cycle. Energy available for 

sensibly cooling the air was up to 10% reduced (R290 2LP) as compared to 

R134a DX, while latent energy available to dehumidify the air was reduced by up 
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to 30% (R152a 2LP). Measurement uncertainty for latent performance was 

significantly increased compared to uncertainty of sensible performance and may 

distort the results for latent cooling and dehumidification.  

 

Figure ‎9.1: Start/Stop Drive Cycle Supply Air Profiles 
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Figure ‎9.2: Start/Stop Drive Cycle Accumulated Performance Results 
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periods were tripled, featuring a length of roughly 60 seconds. This was felt to be 

still within a realistic boundary for traffic light stops during city driving.  

   Figure ‎9.3 shows a comparison of transient supply temperature and 

relative humidity profiles for the SS3xI drive cycle operation. It can be observed 

that the fluctuations in supply temperature and relative humidity are more 

pronounced compared to regular start/stop operation. For a direct expansion 

system, increase in supply temperature during off-cycle periods could be as high 

as 10 K, while the secondary loop system was able to limit the fluctuations in 

supply temperature to about 2 K. The average increase of R152a 2LP or R290 

2LP supply temperature compared to R134a DX supply temperature was not as 

clear cut as observed in the NEDC or Start/Stop results. Figure ‎9.3 b) shows 

R134a DX supply humidity to increase well beyond the saturation limit during the 

second half of the city portion of the cycle. Although there was a significant 

increase for R152a 2LP and R290 2LP supply humidity as well, relative humidity 

never reached 100% throughout the SS3xI drive cycle.  

A comparison of accumulated performance parameters for the Start/Stop 

3x Idling drive cycle, as well as accumulated sensible and latent performance, 

are shown in Figure ‎9.4. As can be observed in Figure ‎9.4 a), the energy 

available for cooling the air was on par with R134a DX for R290 2LP and was 

increased by about 4% for R152a 2LP. In comparison to NEDC and Start/Stop 

drive cycle, the long off-cycle periods of the SS3xI allowed the secondary loop to 

catch up in air-side cooling energy, despite the disadvantage of having to cool 
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down more thermal mass. Consequently, R290 2LP TPF increased by 10% 

above R134a DX, and R152a 2LP TPF was measured to be similar to R134a DX. 

 

Figure ‎9.3: Start/Stop 3x Idling Drive Cycle Supply Air Profiles 
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was still reduced compared to the direct expansion system. R152a 2LP and 

R290 2LP latent cooling were reduced by about 40% and 25%, respectively. 

 

Figure ‎9.4: Start/Stop 3x Idling Drive Cycle Accumulated Performance Results 
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accumulated performance comparison between all three systems for both, 

Start/Stop with respect to NEDC performance, and SS3xI with respect to NEDC 

performance. It can be observed that the R134a DX system "loses" 12% of air-

side cooling energy when moving from regular NEDC operation to Start/Stop 

operation, while the secondary loop system accumulated cooling capacity 

decreases by 10%. The difference is well within measurement uncertainty. As 

off-cycle periods increase in length, as is the case for the SS3xI drive cycle, 

R134a DX "loses" nearly 40% of air-side cooling energy. At the same time, 

cooling energy of the secondary loop system decreased by only 33%. The 

reduction in energy consumption when switching from NEDC to Start/Stop 

operation is about 5% for both, direct expansion and secondary loop system. The 

reduction in energy for 2LP systems when switching to SS3xI is less compared to 

direct expansion system, due to the increased impact of pump work with 

increasing off-cycle periods. Nevertheless, decrease in TPF favors secondary 

loop systems, especially for longer off-cycle periods. It can be concluded that city 

driving with start/stop operation favors secondary loop systems with increasing 

off-cycle periods in terms of energy consumption and thermal comfort. 
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Figure ‎9.5: Drive Cycle Accumulated Performance Results Comparison 

 

9.1.2 Secondary Loop Off-Cycle Cabin Warm-up Performance 

Cabin warm-up tests evaluate the development of cabin temperature and 

relative humidity during extended off-cycle periods. To this end, the cabin was 

pulled down to comfort condition, at which point the compressor was turned off 

and the cabin was allowed to warm back up. The airflow over the evaporator (DX) 

or cooler (2LP) was kept constant and the coolant pump was kept running for the 

secondary loop system. 

Figure ‎9.6 shows a comparison of cabin and supply temperatures during 

an extended off-cycle period. Trends for the increase of cabin temperature are 

shown in Figure ‎9.6 a). While the cabin temperature increased immediately for 

the direct expansion system, 2LP cabin temperature stayed at comfort setting 

(24°C) for a period of about 2 - 2.5 minutes. After the first minute of compressor 

-40
-35
-30
-25
-20
-15
-10

-5
0

Q (air) E in TPF (air)

En
er

gy
 [%

] ;
 T

P
F 

[%
]

Performance Metrics

R134a DX (S/S) R152a 2LP (S/S) R290 2LP (S/S)
R134a DX (SS3xI) R152a 2LP (SS3xI) R290 2LP (SS3xI)

Drive Cycle Comparison (% NEDC Performance)



140 

shut down, the difference in cabin temperature between the direct expansion 

system and the secondary loop system was about 1 K. Further along the cabin 

warm-up, the temperature difference increased to about 2.5 K and 3 K at 5 

minutes and 15 minutes, respectively. The temperature difference between direct 

expansion and secondary loop system seemed to stay fairly constant thereafter 

for an extended period of  time. The difference in cabin temperature can be 

traced back to the difference in cabin supply temperature, shown in Figure ‎9.6 b). 

While the cabin supply temperature started to increase immediately after 

compressor shut down, due to loss of cooling capacity, the rate of increase was 

far higher for the direct expansion system. This was especially true for the first 

one to two minutes of the cabin warm-up process. The steep increase in supply 

temperature might partially be a result of condensation of refrigerant vapor inside 

the evaporator. While condensation might happen at the intermediate heat 

exchanger of the secondary loop system as well, the thermal mass of the coolant 

is able to compensate. During the initial minutes of the warm-up process, 2LP 

supply temperature was about 7 K lower compared to R134a DX supply 

temperature. During later stages of the warm-up process the temperature 

difference decreased to roughly 5 K.    

Another aspect of extended off-cycle periods is the re-evaporation of 

condensate off the outer surface of the evaporator (DX system) or cooler (2LP 

system). Figure ‎9.7 shows supply relative humidity profiles, as well as 

dehumidification at the heat exchanger. DX supply relative humidity rose fast and 

reached saturated conditions after about 30 seconds, while it took about 2 
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minutes for 2LP supply relative humidity to achieve saturation. It was observed 

that direct expansion re-evaporation humidified the air with approximately 5 gram 

of water per kg of moist air within the first three minutes of the cabin warm-up 

process. 

 

Figure ‎9.6: Secondary Loop Off-cycle Cabin Warm-up Profiles 
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Secondary loop thermal storage decelerated this process. A rate of 4 

gram of water per kg of moist air was reached after about 3 minutes. Starting 

from 6 minutes, the humidification for both the DX and 2LP system was reduced 

to about 2 g/kg and reduced slowly thereafter. The cabin was humidified at a 

slow rate for an extend period of time, mostly through the remaining condensate 

in the drain bin and drain pipe of the facility. Humidification during off-cycle 

periods should be avoided as much as possible, since the moisture results in an 

increased latent load when the compressor turns back on. At the same time, 

excessive humidity combined with rising temperatures might lead to reduced 

passenger comfort. The secondary loop system has a clear advantage compared 

to direct expansion systems in terms of decelerating re-evaporation and cabin 

humidification. However, even when employing a secondary loop system, off-

cycle periods longer than a few minutes will lead to undesirable humidification.  
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Figure ‎9.7: Secondary Loop Off-cycle Relative Humidity Profiles 
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vapor compression cycle during cabin pull-down, essentially reducing time to 

comfort. One of the least expensive and widely available phase change materials, 

operating within the acceptable temperature range, is water, H2O. While water in 

frozen form can assist the air-conditioning system during the cooling period in the 

summer, it may also assist as a low temperature reference point for automotive 

heat pump systems in the winter to increase cycle efficiency when outdoor 

temperatures are well below 0°C. In the present research, ice storage was used 

for cooling purposes as part of a secondary loop automotive air-conditioning 

system. A custom ice storage box, introduced in Chapter ‎3.3, was built and 

integrated into the coolant loop. In the present research it was assumed that the 

ice storage box would be used in an electric vehicle, which allows the charging of 

ice at reduced electricity rates during the night. The ice would subsequently be 

used during the day to decrease A/C power consumption and reduce the effect of 

air-conditioning on the range of electric vehicles. Several options of how to 

charge the ice box exist. In an actual vehicle, ice could be produced by a 

dedicated facility outside of the vehicle, or while the ice storage box is installed in 

the vehicle. In the present research the ice was produced by the R290 2LP 

system, while the storage box was installed in the secondary loop. 

Studies on driving patterns show that an average commute in the USA 

lasts about 25 minutes, while 80% of commutes fall within 34 minutes of travel 

time [120]. In European countries this might reduce significantly. In France, an 

average commute lasts less than 15 minutes, while about 95% of commutes fall 

within a 30 minute time frame [121]. Since a usual pull-down from soaked cabin 
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condition to comfort temperature lasts about 15 minutes, even at highway speed, 

a large part of the commute will be spent at an uncomfortably high cabin 

temperature. The ice storage box was built with experimental pull-down results 

from previous R134a DX pull-down tests in mind. The energy consumption of the 

A/C system during the first 20 minutes of a pull-down was measured to be  

between 4,500 and 5,000 kJ. The mass of ice in the ice storage box was chosen 

based on the assumption that the ice storage box might be able to either cool the 

cabin without the vapor compression cycle (VCC), or at least help increase 

thermal comfort and reduce VCC power consumption significantly during pull-

down. Consequently, a mass of 15 kg of ice was chosen, since this covered the 

energy needed for cooling during a 20 to 25 minute commute, as seen in 

Figure ‎9.8.  

 

Figure ‎9.8: Enthalpy of Fusion Based on Mass of Ice 
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While adding such a large mass to a vehicle will undoubtedly increase 

vehicle fuel consumption, the overall impact on fuel consumption might not be so 

clear cut when taking fuel consumption due to A/C power consumption into 

account. Reynolds [122] showed that the change in fuel consumption per 100kg 

for internal combustion engine vehicles (ICEVs) is about 0.7 l/100km, while it is 

0.4 l/100km for hybrid electric vehicles (HEVs). For the 15 kg ice storage box, 

this results in an increase in fuel consumption of roughly 0.1 l/100km for ICEVs 

and 0.06 l/100km for HEVs. For a ICEV which could drive 15 km per liter of fuel, 

this would result in a reduction of 0.22 km/l. At the same time, Clodic [121] and 

Johnson [123] determined that an A/C system typically uses 2,000 W to 3,000 W 

during steady-state cooling operation (peak power can be double). Farrington 

[124] shows that each vehicle experiences a fuel consumption penalty of roughly 

1 less mile per gallon per 400 W auxiliary load. For 2,400 W A/C load, this results 

in a 6 mpg fuel consumption penalty (2.55 km/l). If the ice storage box can cover 

only a third of the A/C load and gets used roughly a third of the year, it will have 

more than made up for the additional fuel consumption due to its mass, not 

speaking of the benefit of enhanced passenger comfort. 

 

9.2.1 Ice Storage Charging Performance 

Figure ‎9.9 details the performance of the vapor compression system when 

charging the ice storage box. To form ice, the cooler of the secondary loop was 

bypassed and the vapor compression cycle cooled part of the secondary loop to 

sub zero temperatures. The water-glycol mixture was routed through the ice 
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storage heat exchanger charge the ice storage box. Figure ‎9.9 a) shows 

charging time with respect to initial average temperature in the ice storage box. 

Six thermocouples were placed in the storage box to evaluate average 

temperature during the charging and the cooling processes. It can be observed 

that charging time for the ice storage box was about 60 minutes if the initial 

average temperature was above 10°C. Sensibly cooling the ice took a small 

portion of the overall time, so that charging time did not increase significantly at 

higher initial temperatures. At initial temperatures close to 0°C, the storage box 

may still hold ice, while the mass fraction of liquid water to frozen ice cannot be 

determined with certainty. Thus any correlation of charging time over initial 

temperature must be very weak at low initial temperatures. Figure ‎9.9 b) shows 

energy used for charging the ice storage box with respect to initial average 

storage box temperature. It was observed that about 1,500 Wh were needed to 

freeze the 15 L of water and subcool the ice to -6°C average storage box 

temperature. Transient performance factor, shown in Figure ‎9.9 c) did not 

change significantly with initial average temperature. On average, ice charging 

TPF was between 0.55 and 0.7. Ice charging TPF and charging time may be 

improved by optimizing the ice storage heat exchanger and designing the VCC 

for the conditions which are prevalent during the charging process.  
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Figure ‎9.9: Ice Storage Charging Performance 
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9.2.2 Ice Storage Pull-down Performance 

Chapter ‎9.2.2 ‎9.2.2provides an example of using ice storage during cabin 

pull-down to assist the secondary loop system. In this operation mode, the water-

glycol mixture is cooled by the VCC in the intermediate HX, subsequently routed 

through the ice storage box to be cooled down further, and finally cools down the 

cabin supply air at the cooler.  

Figure ‎9.10 through Figure ‎9.12 show a performance comparison of a 

cabin pull-down test with the R290 2LP system, labeled 2LP, and a pull-down 

test assisted by the ice storage box, labeled 2LP+IS. The test detailed in this 

chapter is a pull-down test at highway driving condition and ambient conditions of 

30°C/50% relative humidity. At the beginning of the test, the cabin was soaked to 

42°C, which is indicated by the label (S).  

Figure ‎9.10 shows the cabin and supply temperature profiles for the pull-

down comparison between 2LP and 2LP+IS system operation. It was observed 

that ice storage has the greatest effect during the first minutes of the pull-down 

test. Right from the start, the supply air temperature of the 2LP+IS system was 

significantly lower compared to the 2LP system supply air temperature. After 

about 8 minutes, the supply air temperatures of both systems approached a 

similar value. This is reflected in the cabin temperature, which was decreased by 

about 1.5 K in the initial minute and remained 2 K below 2LP cabin temperature 

throughout the remainder of the test. As a result, more than 2 minutes could be 

shaved off time to comfort by using the ice storage system.  
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Figure ‎9.10: Ice Storage Pull-down Cabin Air Profiles 
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shown. The trends for cooling capacity support the conclusions drawn from the 

supply air and cabin air temperature profiles. In the initial minutes, the ice storage 

heat exchanger added additional cooling capacity to the total capacity available 

on the air-side. However, after about 4 minutes the cooling capacities for 2LP 

and 2LP+IS became identical and 2LP+IS capacity continued to decrease below 

the cooling capacity of the 2LP only system. On one hand this was due to a 

faster decreasing temperature difference for the 2LP+IS system. On the other 

hand, it was also due to the evaporation temperature reaching low enough 

values, resulting in the ice storage system hindering a further rapid pull-down 

(due to the water/ice mixture remaining at 0°C). This was observed at an 

advanced stage after 10 minutes, when the value for ice storage cooling capacity 

becomes negative, indicating that the ice storage box was charged by the 2LP 

cycle, instead of assisting in cooling cabin supply air. Figure ‎9.11 b) shows a 

comparison of power consumption profiles for both 2LP and 2LP+IS. While 

power consumption was highest for the 2LP only system during the initial 

minutes of the test, when the compressor and the pump were started, power 

consumption of the 2LP+IS system was lowest during the start-up phase. After 

about 4 minutes, the trends of power consumption of both systems were the 

same, with the power consumption of the 2LP+IS system being slightly reduced 

by about 100 W. Overall, the ice storage system allowed for energy saving during 

cabin pull-down when assisting a vapor compression cycle, but energy savings 

did not add up to a significant amount.  
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Figure ‎9.11: Ice Storage Pull-down Transient Performance Profiles 
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available to cool cabin supply air was reduced by about 10%, due to the reduced 

testing time. The 2LP+IS system was able to save about 21% of power 

consumption with respect to the power consumption of the 2LP system. The 

overall TPF increased by 15%.  

 

Figure ‎9.12: Ice Storage Pull-down Accumulated Performance Results 
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at the start of the pull-down, which preceded the cabin warm-up portion of the 

test.  

Figure ‎9.13 shows cabin, as well as cabin supply temperature trends 

during the cabin warm-up test. Throughout the pull-down procedure enough ice 

remained frozen in the ice storage box to provide cooling capacity to keep the 

cabin temperature at comfort set point or slightly lower for an extended amount of 

time. Cabin temperature increased to 28°C and 31.5°C after 15 minutes for R290 

2LP and R134a 2LP, respectively. At the same time, R290 2LP+IS cabin 

temperature remained below 23.5°C at 15 minutes into the test. This was 

reflected in the cabin supply temperature profile, which did not increase above 

15°C 15 minutes into the test, remaining roughly 10 K and 15 K below R290 2LP 

and R134 DX supply temperature, respectively.  

The differences in thermal storage performance are illustrated by 

Figure ‎9.14, which shows a comparison of accumulated sensible capacity over 

the duration of a cabin warm-up test. Energy available for cooling was the same 

for the R134a DX, the R290 2LP, and the R290 2LP+IS system within the first 30 

seconds. After the first half minute the capacity of the direct expansion system 

started to decrease significantly compared to secondary loop system capacity, 

resulting in a decrease of slope of the R134a DX cooling energy, as shown in 

Figure ‎9.14. For the first three minutes the ice storage system (2LP+IS) showed 

no advantage in comparison to the regular secondary loop system. However, 

after three minutes the secondary loop system cooling capacity decreased, while 

the cooling capacity of the ice storage system stayed constant (resulting in a 
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steady increase of cooling energy with time). Consequently, the ice storage 

system had a significant advantage over the unmodified secondary loop systems 

in terms of thermal comfort for extended off-cycle periods.  

Figure ‎9.13 shows supply relative humidity trends, as well as 

dehumidification during off-cycle cabin warm-up.  

 

Figure ‎9.13: Ice Storage Off-cycle Cabin Warm-up Temperature Profiles 
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It was observed that the ice storage system retained enough latent 

capacity to reduce re-evaporation at the cooler to a degree which allowed the 

supply air to stay below 95% relative humidity for an extended period of time. 

This was supported by the dehumidification profile, which showed a severe 

decrease in humidification of cabin supply air during the first 7 minutes of the 

cabin warm-up test, compared to R290 2LP and R134a DX. The secondary loop, 

with the assistance of the ice storage box, was able to preserve passenger 

thermal comfort, as well as prevent excessive cabin air humidification for a period 

longer than 20 minutes after compressor shut down.  

 

Figure ‎9.14: Cabin Warm-up Accumulated Sensible Capacity Comparison 
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Figure ‎9.15: Ice Storage Off-cycle Cabin Warm-up Humidity Profiles 
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 During Start/Stop operation, a regular direct expansion system 

experiences large fluctuations in cabin supply temperature and relative 

humidity. Fluctuations in humidity are mostly due to re-evaporation of 

condensate from the evaporator (DX) or cooler (2LP) surface, once the 

compressor is turned off. The thermal mass of the secondary loop 

decreases fluctuations in supply temperature and humidity and 

therefore improves stability of supply and cabin conditions, which can 

be related to an increase in thermal comfort. 

 During Start/Stop operation, the energy available for cooling the supply 

air was reduced due to the larger thermal mass of the secondary loop. 

However, cooling energy was reduced by less than 10% in comparison 

to R134a DX, while R290 2LP TPF was equal to R134a TPF. 

 When the Start/Stop drive cycle was modified by increasing off-cycle 

periods by three times, the secondary loop system outperformed the 

direct expansion system in terms of dehumidification, as well as 

efficiency. With increasing idling (or off-cycle) periods, the direct 

expansion system was prone to re-humidifying the cabin while the 

compressor was turned off. The secondary loop system prevented 

excessive cabin humidification and kept cabin temperature stable 

during off-cycle periods. The energy available to cool the cabin supply 

air was the same compared to the R134a direct expansion system. 

Therefore, R290 2LP TPF increased to 9% above R134a DX TPF. The 

sensible energy available was the same compared to the R134a direct 

expansion system, while the latent energy was smaller, due to the 

increased dehumidification needed by the direct expansion system. 

When switching from a car without start/stop to a car with start/stop 

automatic operation, less cooling energy will be available over the 

course of the drive cycle. Due to thermal storage, secondary loop 

systems face less of a penalty compared to direct expansion systems.  
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  If the compressor is turned off after pull down to comfort temperature, 

the secondary loop reduces the heating up of the cabin. During an 

extended time of 20 minutes, secondary loop cabin temperature was 

consistently 2.5 to 3 K below direct expansion cabin temperature 

during cabin warm-up. At the same time, the secondary loop could not 

prevent excessive humidification of the cabin after the compressor was 

turned off, but it was able to delay it by about 1.5 minutes longer than 

the direct expansion system. Taking cabin humidification into 

consideration, the secondary loop can be useful for short off-cycle 

periods of a few minutes.  

  An ice storage box with an ice to water-glycol heat exchanger was 

designed and built. 15 L of water were used in the ice storage box, 

which resulted in a charging time of about one hour and a charging 

energy of about 1.5 kWh. Since the regular vapor compression system 

was used for charging, the unusually low temperature conditions 

resulted in an average TPF of 0.65 during charging. 

 Ice storage assisted in pulling down the cabin to comfort temperature 

by decreasing power consumption and decreasing time to comfort. 

However, ice storage was only advantageous during the first minutes 

of the pull-down test. With increasing time the ice storage system 

becomes less profitable, as evaporating temperature decreases and 

the ice storage system inhibits higher cooling capacity. TPF was 

increased by 15%. The biggest advantage of the ice storage system 

comes to bear during off-cycle cabin warm-up, where the ice storage 

system could keep the cabin at comfort temperature for periods of 20 

minutes, while preventing excessive cabin humidification.  
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10 Experimental Results - A/C Controls and Cabin 

Preconditioning 

Chapter ‎10 provides experimental results of research done in the area of 

air-conditioning systems control and cabin preconditioning in combination with 

secondary loop systems and ice storage. In previous chapters, pull-down tests 

were used to compare time to comfort and cooling energy available on the air-

side. The present chapter focuses on A/C energy consumption during tests of 60 

minutes, including the initial pull-down. The A/C control tests strive to determine 

energy savings when different control strategies for the compressor and coolant 

pump are used. Cabin preconditioning tests focus on energy savings which may 

be achieved when the cabin is prevented from soaking by pre-conditioning cabin 

air to either ambient temperature or comfort temperature. While the results of A/C 

control experiments and cabin preconditioning are universal to all types of cars, 

they have their biggest impact in electric vehicles (EVs). On the one hand, cabin 

preconditioning may be more conveniently realized in EVs, while some of the 

discussed compressor control strategies are applicable only to electric 

compressors. On the other hand, results for cabin preconditioning and 

compressor control strategies explicitly focus on reducing A/C power 

consumption during vehicle operation and therefore have an immediate effect on 

driving range of EVs. It will be discussed how cabin preconditioning and thermal 

storage (here ice storage) can work together with alternative control strategies to 

reduce overall A/C power consumption, including heater (or PTC element) power 

consumption. 
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Reducing A/C energy consumption is especially important for electric 

vehicles, as shown by Farrington and Rugh [124]. While an internal combustion 

vehicle ICEV) may have a fuel penalty of 5 mpg for 2,000 W auxiliary load -a very 

conservative estimate for A/C systems-, fuel consumption of an advanced 

electric hybrid vehicle could see a penalty of as much as 34 mpg and range 

could reduce by 27%. This analysis did not include the PTC heater or other 

heating device for dehumidifying and series reheating the air. As Clodic [121] 

showed, a PTC heater alone can reduce EV range to below 90% at 35°C 

ambient condition. At high ambient conditions of 45°C driving range could reduce 

to roughly 75%. Umezu and Noyama [125] gave some information on the air-

conditioning system and controls for the electric vehicle Mitsubishi i-MiEV in 2010. 

The i-MiEV uses a dedicated coolant cycle with a 5.0 kW PTC heating element to 

reheat the air after the evaporator. With A/C and heater on, A/C power 

consumption may increase by 30% to 40%, while cruising range may decrease 

from 160 km to 90 km (A/C and heater on, 35°C ambient temperature). The next 

important steps for Mitsubishi at the time were to look into cabin preconditioning 

and improving PTC control to reduce PTC energy usage.  

While the above paragraph clearly stated the importance of reducing 

energy consumption for EVs, the question remains how to do so. This chapter 

introduces two possibilities: alternative A/C compressor and heater controls, as 

well as cabin preconditioning. Both solutions have been evaluated under different 

circumstances by other researchers before. Forrest and Bhatti [126] looked into 

control of the recirculation ratio (or mixing ratio with fresh air), as well as series 
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reheat reduction. Instead of cycling the compressor to prevent frost at the 

evaporator, an externally controlled variable displacement compressor was used 

to decrease capacity when it was not needed. As a result, cabin relative humidity 

increased from about 30% steady-state value at comfort condition to 45% to 50%. 

It was estimated that the reheat reduction potential could reduce 28% of cooling 

capacity, which would not have to be delivered by the compressor. Experimental 

tests with the externally controlled compressor and series reheat reduction found 

a 60% (city) and 52% (highway) A/C fuel consumption reduction. However, the 

authors stated that due to the complexity of the test vehicles, tests were difficult 

to reproduce and there were high uncertainties due to an abundance in variables 

for vehicle conditioning. Furthermore, the study was focused on the reduction of 

ICEV fuel consumption, which does not translate well into energy savings an 

range preservation for EVs. Therefore, the current research focuses on a 

comprehensive investigation of energy saving potential due to alternative 

compressor and heater controls in a laboratory environment with high accuracy 

measurement capabilities.  

Cabin preconditioning was investigated by Roy et al. in 2003 and 2005. In 

a simulation study [127] and an experimental study [128] the influence of cabin 

preconditioning strategies on the soaking profile and cabin temperature profile 

during cool down was evaluated. The study focused on comparing different pre-

conditioning strategies, such as forced ventilation, vacuum panels, or special 

glazing for windows. It was found that combinations of various technologies could 

reduce soak and achieve energy savings of about 15% to 20%. The study did not 
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elaborate on how the energy savings were determined. Instead of focusing on 

temperature profiles and technologies to achieve preconditioning, the current 

research focuses on energy savings achievable during driving, given a certain 

preconditioning. Experimental results are focused on a combination of cabin 

preconditioning and alternative A/C controls to gain significant reductions in 

compressor and heater energy consumption for EVs and providing insight into 

the circumstances which make cabin preconditioning beneficial.  

 

10.1 A/C Control Performance and Benefits 

The A/C controls discussed in this chapter focus on the reduction of 

compressor power consumption and the reduction of re-heating during extended 

driving. The different control strategies are based on the assumption that a fixed 

displacement compressor, such as the compressor used in this research, can 

either be cycled, or can be speed-controlled externally. The latter assumption is 

true only for compressors which are not belt-driven by an internal combustion 

engine, and therefore is geared towards hybrid electric vehicles and full electric 

vehicles.  

For each control test the cabin is initially pulled down to comfort 

temperature and the different control strategies evolve around keeping cabin 

temperature at comfort set point during an extended amount of time. Traditionally, 

this was done by leaving the compressor turned on, while the air-side evaporator 

outlet temperature decreased below the temperature needed to preserve thermal 
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comfort. Consequently, air leaving the evaporator was reheated. The compressor 

is cycled off only to prevent frost at the evaporator. Hence, frost cycling (F cyc) 

tests serve as a reference point for the alternative control strategies discussed in 

this chapter, namely the relative humidity cycling (RH cyc) and relative humidity 

continuous control (RH ctn) tests. A more detailed introduction to the test 

procedures is given in ‎Appendix E. 

Figure ‎10.1 shows a comparison of power consumption, cabin 

temperature, and cabin supply relative humidity for the R290 2LP system, 

utilizing the three above mentioned control strategies. Tests were conducted with 

the R290 2LP system at ambient conditions of 30°C ambient temperature and 50% 

relative humidity at highway driving conditions. Power consumption profiles for F 

cyc, RH cyc, and RH ctn control are shown in Figure ‎10.1 a). It was observed 

that F cyc had the overall highest power consumption. Once cabin temperature 

reached the comfort set point, the compressor remained running at full speed 

and soon thereafter heater power had to be used to keep the cabin at thermal 

comfort. Several minutes thereafter, the compressor started to cycle to prevent 

frost at the evaporator. The cycles occurred in intervals of 3-4 minutes, with the 

compressor on time being significantly longer than the compressor off times. RH 

cyc power consumption was significantly reduced compared to F cyc power 

consumption. The compressor cycled faster, since it controlled cabin/supply 

humidity, rather than preventing frost. Compressor off times were longer than 

compressor on times. Additionally, heater power consumption was significantly 

reduced compared to F cyc control. RH ctn control had the overall lowest power 
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consumption. Once thermal comfort temperature was achieved, the compressor 

speed, as well as the coolant pump speed were controlled by a PID controller. 

The compressor and the pump kept running continuously, though the PID 

controller reduced compressor speed significantly. Figure ‎10.1 b) shows the 

cabin temperature for the three control tests. It was observed that all three 

strategies were able to keep cabin temperature within a very narrow range (< 0.3 

K) of comfort set point. F cyc supply relative humidity, shown in Figure ‎10.1 c), 

averaged at about 50% after thermal comfort was achieved. RH cyc, as well as 

RH ctn supply relative humidties were measured to be about 80% on average. At 

the same time, cabin relative humidty averaged at about 50%. While RH ctn 

supply relative humidity was more stable, compressor cycling during the RH cyc 

test introduced large fluctuations (< ±20%).  

Figure ‎10.2 shows a comparison of accumulated performance results for 

three different control strategies. While Figure ‎10.2 a) compares results for R290 

2LP only, Figure ‎10.2 b) compares accumulated performance results of the ice 

storage system. For 2LP only, A/C power consumption could be reduced about 

40% and 60% for RH cyc and RH ctn control, respectively. This includes 

compressor, pump, and heater power (E in C+P+H). When including only 

compressor and coolant pump power (E in C+P), power consumption was 

reduced by about 30% and 55% for RH cyc and RH ctn control strategies, 

respectively. Due to reduced capacity delivered by the compressor and a 

reduced need for reheating, the energy available to cool the cabin supply air 

decreased by about 35%. This resulted in an overall increase in TPF of about 55% 
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for RH ctn, while RH cyc TPF decreased by about 50%. When RH cyc and RH 

ctn strategies using the ice storage system (2LP+IS) were compared with frost 

cycling using only the secondary loop system (2LP), power consumption was 

reduced significantly only for the RH cyc control strategy. Through the use of ice 

storage, power consumption during RH cyc control decreased to a similar level 

as power consumption druing RH ctn control (55%). 
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Figure ‎10.1: A/C Controls Power Consumption and Cabin Air Profiles Comparison 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60

P
o

w
e
r 

C
o

n
s
u

m
p

ti
o

n
 [

W
]

Time [min]

F cyc (2LP) RH cyc (2LP) RH ctn (2LP)

Total Power Consumption (2LP, soaked)

20

25

30

35

40

45

0 10 20 30 40 50 60

T
e
m

p
e
ra

tu
re

 [
°C

]

Time [min]

F cyc (2LP) RH cyc (2LP) RH ctn (2LP)

Cabin Temperature (2LP, soaked)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

R
e
la

ti
v
e
 H

u
m

id
it

y
 [

%
]

Time [min]

F cyc (2LP) RH cyc (2LP) RH ctn (2LP)

Supply Relative Humidity (2LP, soaked)

a)

b)

c)



168 

Power consumption of the RH ctn control strategy did not benefit from the 

ice storage system. At the same time, ice storage adds cooling capacity, which 

improves TPF for both, RH cyc and RH ctn control strategies. It can be 

concluded that RH ctn control strategy has the potential to reduce A/C energy 

consumption by as much as 60% at the given ambient and driving conditions. RH 

cyc control was able to reduce power consumption by about 40%. However, the 

increased start up currents for electric compressors when cycling were not taken 

into account, since the compressor used in the present research was a belt drive 

compressor. Therefore, results for compressor power consumption may vary for 

RH cyc operation in electric vehicles. Using thermal storage systems can benefit 

cyclic control, while it is of little benefit for the power consumption of a continuous, 

reduced speed compressor control. In the extreme case, there would be no need 

for a PTC element or other form of electrical reheating of the cabin supply air. 

This could be achieved by using the condenser heat from an indirectly cooled 

A/C condenser for reheating. This would be possible, since the condenser 

transferred -on average- 2.0 - 2.5 kW of heat during the time when re-heating 

was needed, based on experimental measurements. A theoretical evaluation of 

this possibility was performed, assuming a heater power consumption of zero 

(free heating) for the RH cyc and RH ctn cases. If using an indirectly cooled 

condenser, this modification would yield another 5% (RH cyc) and 7.5% (RH ctn) 

reduction of total energy consumption compared to the F cyc control baseline. 

This would add up to a 46% (RH cyc) and 64% (RH ctn) decrease in total energy 
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consumption. TPF would consequently increase to 26% (RH cyc) and 82% (RH 

ctn) above F cyc baseline TPF, as seen in Figure ‎10.3. 

 

Figure ‎10.2: A/C Controls Accumulated Performance Results Comparison 
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Figure ‎10.3: Theoretical Change in A/C Ctrl Accumulated Performance when Using 

an Indirectly Cooled Condenser for Supply Air Reheating 
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an air-conditioned or well ventilated parking garage, by intermittently running the 

vehicle air-conditioning system (when the EV is plugged in), or by using a 

charged thermal storage device while parking in the shade or in a garage.  

A comparison of accumulated performance parameters for different cabin 

preconditioning settings is shown in Figure ‎10.4. The tests were performed at 

30°C/50% ambient conditions, 950 W solar load, highway driving conditions, and 

a test time of 60 minutes. Figure ‎10.4 a) shows a comparison for Frost cycling 

control, while Figure ‎10.4 b) shows a comparison for RH cycling control. It was 

observed that cabin preconditioning did not decrease overall power consumption, 

when utilizing frost cycling control. While preconditioning decreased compressor 

power consumption by about 5% (E in C+P), it increased heater power 

consumption significantly, since the heater had to be employed much earlier in 

the test. This resulted in an overall increase of power consumption (E in C+P+H) 

of about 5% and 10% for ambient preconditioning and comfort preconditioning, 

respectively. This trends can be observed in Figure ‎10.5.  It is assumed here that 

heating is not free, as it would be in the case of utilizing engine coolant from an 

internal combustion engine, which is at the same time the primary engine for the 

vehicle. The increase in heater energy over the course of a test resulted in a 

decrease of TPF of 4% for ambient preconditioning and 8% for comfort 

preconditioning. 

However, when utilizing control strategies which reduce the need for 

reheating and allow the compressor to cycle or reduce its capacity, cabin 

preconditioning can achieve significant energy savings. As shown in Figure ‎10.4 
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b), compressor and pump power consumption could be reduced by as much as 

30% for ambient preconditioning and 40% for comfort preconditioning. At the 

same time, overall power consumption, including heater power, was reduced by 

25% - 30%. Overall TPF was similar to the unconditioned cabin, as the available 

energy for cooling was reduced by reducing compressor capacity and heater 

power. 

Figure ‎10.5 shows transient profiles of system power consumption for 

cabin preconditioning scenarios while using frost cycling control in the R290 2LP 

system (no ice storage). The comparison of profiles explains the fact that cabin 

preconditioning does not help reduce power consumption when compressor and 

heater are used continuously, as is the case with frost cycling and reheating 

control. While initial compressor power decreases slightly when preconditioning 

the cabin to ambient and comfort temperature, the heater has to kick in earlier, 

since the cabin reaches thermal comfort condition faster. 

The heater power necessary to reheat the supply air could reach up to 1.4 

kW for comfort preconditioning. This resulted in a significant increase in overall 

power consumption during the initial 20 minutes of the test, until the compressor 

started to cycle to prevent frosting. At this point, thermal conditions were similar 

between tests and power consumption for the remainder of the cycle was alike.   

Figure ‎10.6 a) shows a comparison of the cabin temperature profiles, as 

well as power consumption profiles, when only the charged ice storage box 

without the vapor compression cycle was used for air-conditioning. For a soaked 
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cabin, a solar load of 950 W and the load of one passenger, the ice storage box 

alone was unable to pull the cabin down to comfort set point. 

 

Figure ‎10.4: Preconditioning - Accumulated Performance Results Comparison 
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A similar result was observed when preconditioning the cabin close to 

ambient temperature. However, when preconditioning the cabin close to comfort 

temperature, the ice storage box was able to pull the cabin down to comfort set 

point and retain thermal comfort for an extended period (> 60 minutes). 

 

Figure ‎10.5: Preconditioning - Power Consumption Transient Profile Comparison 
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This result has some interesting implications. First, there is no vapor 

compression system needed to keep the cabin at comfort temperature when the 

cabin is preconditioned. Second, although the ice storage box was not able to 

pull down the cabin from ambient preconditioning or higher initial starting 

temperatures, this is only a problem of heat exchanger optimization. The ice 

storage box provides enough energy for a cabin pull down in terms of fusion 

energy of the stored ice, but the heat transfer rate has to be increased by 

optimizing the ice storage heat exchanger for this application. Clodic [121] 

showed that the average commute in the US lasts about 25 minutes. A 

comparison of energy consumption relative to R290 2LP Frost cycle operation 

with soaked cabin preconditioning for a 25 minute commute is shown in 

Table ‎10.1. Approximately 15 minutes are spent on pull-down with the 

compressor permanently running, while the last 10 minutes are spent at comfort 

temperature with the compressor and heater controlling cabin temperature (and 

humidity in the RH cyc cases). As can be observed in Table ‎10.1, using 

alternative A/C controls (RH cyc) can reduce energy consumption by about 17%. 

Preconditioning the cabin at the same time to comfort condition results in 

combined energy savings of about 78% during the 25 minute commute. When 

using only ice storage and controlling cabin temperature by modulating coolant 

pump speed, energy savings of about 98% can be realized, which may preserve 

EV range to nearly the full extend. Essentially, nearly all of the A/C energy 

needed during a regular commute can be saved by preconditioning the cabin and 
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using latent storage without a VCC. The cabin relative humidity was fluctuating 

between 55% and 65%, which is at the high end of thermal comfort requirements.     

Table ‎10.1: Comparison of Energy Consumption for a 25 Minute Commute Relative 

to 2LP F cyc (S) 

2LP, F cyc (S) 2LP, RH cyc (S) 2LP, RH cyc (C) IS (C) 

0% -16.8% -77.7% -97.6% 

 

 

Figure ‎10.6: Preconditioning Ice Storage Performance Comparison 
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10.3 Summary: Benefits of A/C Controls and Cabin Pre-Conditioning 

 Compressor and pump controls to reduce A/C power consumption 

were implemented. The control of  humidity by the compressor, as well 

as the preconditioning of the passenger cabin were investigated as 

possible strategies to reduce power consumption. 

 All three control strategies, Frost cycling, Relative Humidity cycling, 

and Relative Humidity continuous operation, were able to keep the 

cabin temperature at comfort set point after pull down. Relative 

Humidity cycling and Relative Humidity continuous operation kept the 

cabin supply relative humidity at 80% and the cabin relative humidity at 

50% throughout the test.  

  Energy consumption of the R290 secondary loop system, including 

heater power, could be reduced by as much as 40% for relative 

humidity cycling, and as much as 60% for relative humidity continuous 

control when compared to Frost cycling control. When using ice 

storage, energy consumption of relative humidity continuous did not 

decrease further. However, relative humidity cycling reduced the 

energy consumption by about 55%. 

 Preconditioning the passenger cabin to ambient temperature or 

comfort temperature (instead of soaked condition) does not reduce 

overall power consumption (including heater power) for control 

strategies that rely on the compressor and heater being turned on for 

most of the time. However, when employing the relative humidity 

cycling control strategy, cabin preconditioning could reduce power 

consumption by 25% (A) and 30% (C). 

 When operating only the charged ice storage box and the coolant 

pump without the vapor compression cycle, the cabin could not be 

pulled down from an initial hot soaked condition. However, when pre-

conditioned to comfort temperature, the ice storage box was able to 
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keep the cabin at comfort temperature for one hour. Latent storage 

may therefore be used in combination with cabin preconditioning to 

either replace or significantly reduce the use of the vapor compression 

system during commutes.  
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11 Transient Simulation of Secondary Loop Systems 

Modelica® is an object-oriented, equation based language used to model a 

variety of physical systems. Modelica® is heavily used in the automotive industry 

to design energy efficient vehicles, as well as design thermal management and 

air-conditioning systems. The programming environment Dymola was used to 

develop the secondary loop system, as well as perform transient simulation. 

 

11.1 Cabin Model 

A lumped model of a passenger cabin was developed in Modelica® to 

allow transient simulation of automotive air-conditioning systems. The cabin 

model developed by Gado [12] was used as a starting point and modified for the 

present research. The structure of the passenger cabin model, as well as the 

equations and modifications applied to Gado's model are discussed in the 

following chapter.  

 

11.1.1 Cabin Model Equations and Structure 

The heart of the model are a set of energy, mass, and moisture balance 

equations, which compute the psychrometric processes in a passenger cabin. 

The relevant equations are explained in the following paragraph. Table ‎11.1 

provides an overview of the indices used in the cabin model equations.   
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Table ‎11.1: Cabin Model Equations - Index Explanation 

 

 

 

 

 

The set of equations contains a sensible sub set, as well as a subset for 

latent energy and mass balance. Equations (24) through (26) relate to the 

sensible portion, while Equations (27) through (29) related to the latent portion. 

Equation (24) describes the relation of cabin air and cabin interior thermal 

storage with the various loads on the cabin, such as solar insolation, sensible 

passenger load, and heat transfer with ambient. In comparison with Gado [12], 

the term which described the load on the evaporator, due to introduction of 

ambient air was left out, as it did not relate to load on the cabin itself. Equation 

(25) describes the change in interior temperature based on convective heat 

transfer with cabin air. Equation (26) describes the relation between the cabin air 

and the return air which leaves the cabin. The equation was modified from 

Gado's version by removing the influence of mixture with ambient air. In the 

present model, mixing with ambient air occurs after the air leaves the cabin and 

before it returns upstream to the evaporator (DX) or cooler (2LP). Energy, mass, 

and moisture balance for mixing are therefore not part of the cabin model. At the 

same time, an enthalpy balance was used due to a higher accuracy.  

Index Explanation 

c Cabin air 
i Cabin interior 
s Supply air 
r Return air 
m Mixed air 
a Ambient air 

sol Solar (insolation) 
ps Passenger, sensible 
pl Passenger, latent 
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                                         (24) 

    
   

  
                    (25) 

          (26)  

Equation (27) describes the moisture balance in the cabin, taking into 

account the storage of moisture in the cabin air, the introduction of moisture by 

the supply air, as well as the passengers, and the decrease of moisture due to 

the leaving return air. Equation (28) describes the relation between the humidity 

ratio of cabin air to the humidity ratio of return air leaving the cabin. As in 

previous equations, the influence of mixing with ambient air was omitted. 

     
   

  
                   (27)  

          (28) 

Parameters Xs and Xr are mass fractions of water vapor to total mass of air. 

There relation to humidity ratio, W,  is given by Equation (30). 

  
 

   
     (29) 

Finally, since there is no mixing with ambient air inside of the cabin, the 

mass flow rate of return air equals the mass flow rate of supply air, as shown in 

Equation (30). 

          (30)  

The air leaving the cabin is allowed to mix with ambient air, based on the 

recirculation ratio. To this end, an air splitter, as well as an air mixer were used. 

The air splitter splits up the air stream leaving the cabin into two streams, based 
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on a predefined recirculation ratio. One of the partial streams is mixed with 

ambient air, while the other is dumped to ambient. This is necessary to preserve 

mass balance with the added ambient air stream. Equations (31) through (33) 

determine the mass flow rate, energy flow rate, and moisture flow rate of the air 

stream which later mixes with ambient air and returning to the evaporator (out,2). 

Equations (34) through (36) shows the overall mass, energy and moisture 

conservation for the air splitter.  

                     (31) 

                           (32) 

                           (33) 

 

                    (34) 

                              (35) 

                              (36) 

The air mixer adiabatically mixes fresh, ambient air with the partial return 

air stream leaving the cabin, based on the recirculation ratio. The mass flow rate 

of ambient air is determined by Equation (37).  Equations (38) through (40) show 

the mass, energy and moisture balance for the mixing process. Following the 

adiabatic mixing process, the air is recirculated upstream of the evaporator.  

                     (37) 

                  (38) 

                          (39) 
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                          (40) 

Figure ‎11.1 shows the top level structure of the cabin model in Modelica®. 

Inlets for supply air, ambient air, solar insulation, as well as ambient temperature 

(for heat transfer) are present. Two air sinks serve as outlets in the bench test 

case. When combined with a direct expansion cycle, the supply air inlet would be 

connected to the outlet of the evaporator (DX) or cooler (2LP), while one of the 

outlets would be connected to the evaporator or cooler inlet. 

 

Figure ‎11.1: Modelica Passenger Cabin Model 
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11.1.2 Cabin Model Validation 

The cabin model was validated, based on the process outlined in Gado 

[12]. A supply air temperature profile from Huang [15] was used as input to the 

cabin model. Based on the physical properties of the cabin used for validation, 

shown in Table ‎11.2, the cabin model calculates the state of the cabin air. The 

resulting cabin air profile is compared to the experimental values from Huang [15], 

as well as to the cabin model validation profile from Gado [12]. Figure ‎11.2 

shows the comparison of cabin temperature profiles. It can be observed that the 

current cabin model (Eisele 2012) coincides with the validation results from Gado, 

despite the subtle differences introduced to the  equations. Following the 

validation, the cabin model was used in the transient simulation of the direct 

expansion, as well as the secondary loop system. 

Table ‎11.2: Cabin Model Validation Physical Parameters 

Parameter Magnitude Source 

Ambient Temperature [°C] 43.3 Huang (1998) 
Ambient Relative Humidity [%] 65 Huang (1998) 
Solar Insolation [W] 950 Huang (1998) 
Degree of Soak [K] 16.7 Huang (1998) 
Cabin Surface Area 30 Huang (1998) 
Overall Heat Transfer Coefficient [W/m2K] 2.5 Tuned 
Internal Cabin Volume [m3] 8 Huang (1998) 
Interior Mass [kg] 200 Huang (1998) 
Interior Specific Heat [J/kg K] 400 Huang (1998) 
Interior Surface Area [m2] 3 Typical Value 
Convection Coefficient (interior) [W/m2 K] 100 Tuned 
Number of Passengers 0 Huang (1998) 
Fresh Air Ratio 0 Huang (1998) 
Supply Air Temperature [°C] profile Huang (1998) 
Supply Air Relative Humidity [%] profile Typical Value 
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Figure ‎11.2: Cabin Model Validation Results 

 

11.2 Direct Expansion System 

As a first step towards transient simulation of secondary loop systems, an 

R134a direct expansion (DX) cycle was modeled and validated for steady-state, 

as well as transient operation. The direct expansion system was modeled after 

the experimental DX system, using microchannel refrigerant to air heat 

exchangers, a variable speed fixed displacement compressor, as well as a PID 

controlled electronic expansion valve. The refrigerant components were modeled 

by Qiao [129], a member of the Center for Environmental Energy Engineering 

(CEEE). For the present research, the components were combined to a direct 

expansion cycle and tuned to match experimental R134 DX system performance.   
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11.2.1 Direct Expansion Model and Components 

Figure ‎11.4 shows the structure of a R134a DX stationary (steady-state) 

model in Dymola. The stationary model consists of a variable speed fixed 

displacement compressor (1), a microchannel condenser (2), a PID controlled 

electronic expansion valve (3), and a two pass microchannel evaporator (4). 

Refrigerant lines (5) permit heat transfer with ambient to take heat loss into 

account. Two types of boundaries, an air sink (6), and an air inlet boundary (7) 

are used to fix air-side conditions in the stationary model.  The components of 

the direct expansion system were modeled by Qiao [129]. A brief description and 

summary of governing equations of the main direct expansion system component 

models is given in ‎Appendix H.  
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Figure ‎11.3: Direct Expansion Steady-state System Model 
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# Component 

1 Compressor, fixed displacement 
2 Condenser, microchannel 
3 Expansion Valve, PID controlled 
4 Evaporator, microchannel 
5 Refrigerant Piping 
6 Air Sink 
7 Air Boundary 
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Figure ‎11.4 shows the structure of the R134a DX transient system model. 

For the purpose of transient simulation, the DX model was combined with the 

automotive cabin model. The cabin model (6) replaces the air sink and inlet 

boundary of the stationary model evaporator, shown in Figure ‎11.3. The cabin 

model receives supply air from the second evaporator bank outlet. Ambient air 

for mixing is provided by an air inlet boundary (7), while heating by solar 

insolation is added through a heat transfer boundary (9). With this configuration, 

the R134a DX model is able to simulate transient pull-down, as well as drive 

cycle tests. While pull-down tests are performed at constant compressor speed 

and condenser air flow rate in the present research, drive cycle tests feature a 

predefined compressor speed and condenser air flow rate profile. Speed and air 

flow rate profiles are supplied to the compressor and the condenser model by 

time table modules, as shown in Figure ‎11.4. 

The following chapter discusses validation results of the R134a DX 

system model for steady-state, as well as transient operation.  
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Figure ‎11.4: R134a Direct Expansion Transient System Model 
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# Component 

1 Compressor, fixed displacement 
2 Condenser, microchannel 
3 Expansion Valve, PID controlled 
4 Evaporator, microchannel 
5 Refrigerant Piping 
6 Cabin Passenger Model 
7 Air Boundary 
8 Air Sink 
9 Heat Flow Boundary 
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11.2.2 R134a Direct Expansion Model Validation 

The R134a DX model was validated with experimental data for steady-

state, as well as transient operation. The inner geometry of heat exchangers, 

expansion valve, and compressor (flow channels) were unknown. Steady-state 

experimental data was used to tune the component geometries, as well as the 

refrigerant charge of the system. Initialization of the model requires initial 

temperature, pressure, as well as initial enthalpy in the refrigerant components to 

be known. While the pressure can be assumed to be saturation pressure at the 

initial temperature if the system is charged correctly, initial enthalpy requires the 

knowledge of system volume and refrigerant charge to determine initial density. 

Initial volume can be estimated by measuring the combined volume of all 

components in the experimental system. However, estimation of refrigerant 

charge for transient simulation poses a challenge, although the charge is known 

for the experimental system. Refrigerant charge while the compressor is running 

(i.e. while there is a mass flow rate through the components) varies from initial 

charge, due to the behavior of the mass derivatives in the component models. 

Therefore, all system models need to be tuned by adjusting initial enthalpy 

(which is a function of initial refrigerant charge).  

Table ‎11.3 shows the results of the steady state R134 DX model 

validation for two different ambient conditions, 25°C and 50% relative humidity, 

as well as 35°C and 40% relative humidity. At 35°C ambient temperature, the 

model was validated for idling conditions, as well as highway driving conditions. 

From Table ‎11.3 it can be observed that high side pressure is slightly 
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overpredicted at highway driving conditions, while low side pressure is slightly 

overpredicted at idling conditions. Discharge pressure is consistently 

underpredicted by as much as 7 K. However, cooling capacity is reasonably well 

predicted with an absolute deviation of as much as 50 W, which compares to a 1% 

relative difference compared to experimental data. Compressor power 

consumption was predicted by the model with a deviation of less than 1% 

throughout the three cases that were validated. As a result, system COP was 

predicted with less than a 1% deviation. Due to the excellent match of cooling 

capacity, compressor power consumption and consequently system COP, the 

tuned components were subsequently used in the transient simulation of pull-

down and NEDC tests.  

Table ‎11.3: R134a Direct Expansion Steady-state Model Validation Results 

Parameter Experiment Simulation Deviation [abs] 

25°C / 50% ; highway    
High Side Pressure [kPa] 945.5 983.0 37.5 

Low Side Pressure [kPa] 241.3 244.1 2.8 

Discharge Temperature [°C] 65.2 58.1 -7.1 

Cooling Capacity [W] 4724.2 4673.8 -50.4 

Compressor Power [W] 2578.5 2558.7 -19.8 

System COP [-] 1.83 1.83 0.0 

35°C / 40% ; idle    

High Side Pressure [kPa] 1235.6 1233.1 -2.5 

Low Side Pressure [kPa] 415.7 453.4 37.7 

Discharge Temperature [°C] 65.0 61.0 -4.0 

Cooling Capacity [W] 2965.6 3000.4 34.8 

Compressor Power [W] 1167.6 1171.9 4.3 

System COP [-] 2.55 2.56 0.4 

35°C / 40% ; highway    

High Side Pressure [kPa] 1341.8 1382.8 41 

Low Side Pressure [kPa] 306.9 310.0 3.1 

Discharge Temperature [°C] 78.6 71.3 -7.3 

Cooling Capacity [W] 5510.4 5456.3 -54.1 

Compressor Power [W] 3397.2 3379.6 -17.6 

System COP [-] 1.62 1.61 0.6 

 



192 

Figure ‎11.5 shows a comparison of simulation and experimental results of 

an NEDC drive cycle test, performed at 30°C/50% ambient condition and an 

initial soak of 5.6 K. Profiles of cabin temperature, cooling capacity, and power 

consumption are presented.  

Figure ‎11.5 a) shows a comparison of cabin temperature profiles. During 

model validation, it was observed that the model would constantly underpredict 

the cabin temperature at the beginning of a pull-down (or NEDC) test, while the 

curves would run parallel during the mid to late section of the comparison. This 

can be explained by the thermal storage of the evaporator (DX)/cooler (2LP) 

windtunnel. The thermal mass of the windtunnel  sensibly cools or heats the air 

between the point where it leaves the evaporator/cooler and the point where the 

thermocouple grid measures air-side outlet temperature. This thermal mass is 

unaccounted for in the Modelica® model. To adjust for this discrepancy, the cabin 

model physical parameters were tuned by adjusting the specific heat capacity of 

the interior, as well as the convection coefficient between the cabin air and the 

interior to reflect the behavior of the experimental system. From Figure ‎11.5 a) it 

can be concluded that after the tuning of the thermal mass of the interior, the 

model accurately predicts the cabin temperature profile during the NEDC test. 

Cabin temperature at the beginning of the cycle is still slightly lower compared to 

experimental results, but the overall profile is coherent. 

Figure ‎11.5 b) shows a comparison of cooling capacity profiles. The 

overall trends for cooling capacity match well between the simulation and the 

experimental profiles. However, it can be observed that during the later parts of 
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the city cycle, significant deviations between the experimental and the simulation 

trends occur. The specific parts of the cycle were highlighted with a dotted circle 

in Figure ‎11.5 b). The deviations can be explained by the lack re-evaporation of 

condensate off the evaporator/cooler fins in the model. The experimentally 

observed cooling capacity during idling at later parts of the NEDC cycle includes 

the effect of re-evaporation and subsequent changes in the latent capacity. The 

model is not able to predict re-evaporation and consequently determines an 

increased total cooling capacity during idling periods. 

  Figure ‎11.5 c) shows a comparison of NEDC power consumption profiles. 

The overall trend of power consumption is well observed by the model. Small 

deviations occur at the points of load shifting at the end of an acceleration or 

deceleration phase. The model does not take the effects of inertia in the 

compressor, as well as in the electric motor which drives the compressor, into 

account.  

Table ‎11.4 shows a comparison of accumulated performance parameters. 

Based on the comparison, the model is able to predict the total energy available 

for cooling the air within a deviation of 6.7%. The total energy put into the direct 

expansion system in the form of compressor power consumption was predicted 

with a deviation of 4.2%. The difference between the simulated and the 

experimental transient performance factor was observed to be 2.0%. 
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Figure ‎11.5: R134a Direct Expansion NEDC Validation Results 
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Table ‎11.4: R134a Direct Expansion NEDC Accumulated Performance Validation 

Parameter Experiment Simulation Deviation [%] 

NEDC, 35°C/50%, 5.6 K soak     
Accumulated Capacity (air) [kWh] 1.04 1.11 6.7 
Accumulated Compr. Power [kWh] 0.72 0.75 4.2 
Transient Performance Factor [-] 1.45 1.48 2.0 

 

 

Figure ‎11.6 shows a transient comparison of cabin temperature, cooling 

capacity, and power consumption for a pull-down test at 30°C/50% ambient 

condition and 2,500 rpm compressor speed, with an initial degree of soak of 12 K. 

With the tuning of components and cabin model, described in above paragraph, 

the model is able to predict pull-down performance reasonably well.  

Figure ‎11.6 a) shows a comparison of cabin temperature profiles. The 

model predicted cabin temperature within 0.5 K, except during the initial minutes 

of the pull-down test.  Figure ‎11.6 b) compares the experimental and simulated 

cooling capacity profiles. The initial transients in capacity are not well captured, 

possibly due to a difference in electronic expansion valve (EXV) behavior. During 

the remainder of the pull-down test cooling capacity is slightly overpredicted by 

the model. Experimental compressor power, shown in Figure ‎11.6 c), is well 

matched by the model. Again, initial transients are not captured, and the model 

slightly underpredicts compressor power consumption during the pulldown 

process.  
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Figure ‎11.6: R134a Direct Expansion Pull-down Validation Results 
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Accumulated performance results are compared in Table ‎11.5. The model 

predicted accumulated capacity and accumulated power consumption to within 

6%. Since cooling capacity was overpredicted and power consumption was 

underpredicted, the simulation TPF increased by 10.5% over experimentally 

measured TPF. 

Table ‎11.5: R134a Direct Expansion Pull-down Acc. Performance Validation 

Parameter Experiment Simulation Deviation [%] 

Plldn, 30°C/50%, 12K soak, 1550rpm     
Accumulated Capacity (air) [kWh] 0.744 0.788 5.9 
Accumulated Compr. Power [kWh] 0.559 0.536 -4.1 
Transient Performance Factor [-] 1.33 1.47 10.5 

 

11.3 Secondary Loop System 

To model the secondary loop system, several components had to be 

introduced in addition to the direct expansion cycle components. As part of this 

research, a generic glycol media package has been developed, as well as a 

coolant pump, coolant tubes, an intermediate heat exchanger, as well as a 

coolant to air heat exchanger. The following chapters introduce the coolant  

components and the validation of the secondary loop system model.  

 

11.3.1 Coolant Cycle Model and Components 

Figure ‎11.7 shows the secondary loop steady-state system model. 

Components previously described for the direct expansion system, such as 

compressor (1), condenser (2), expansion valve (3), and refrigerant lines (5) don't 

change. The length of the refrigerant lines was changed according to the 
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changes observed when the experimental test facility was switched from direct 

expansion to a secondary loop system layout. The evaporator was replaced by a 

refrigerant to coolant plate type heat exchanger (4). A coolant to air heat 

exchanger (6) was used to cool down the supply air. The coolant was circulated 

through the secondary loop by a coolant pump (7). Coolant lines (8) were used to 

connect the secondary loop components.  

The glycol media package for aqueous solutions of ethylene glycol was 

developed based on equations from M. Conde Engineering [109]. Property 

equations and coefficients used for the present research are restated 

in ‎Appendix G.  

Governing equations for the coolant tubing are given by Equations (41), 

(42), (43), (44) and (45). Equation (41) provides information about the 

determination of the forced convection heat transfer coefficient for liquid coolant. 

The heat transfer coefficient for each segment i is a function of the inner diameter 

of the tube, thermal conductivity, dynamic viscosity, mass flow rate, and specific 

heat capacity. Equation (42) provides information about the pressure drop 

correlation used for the coolant tubing. The pressure drop for each segment in 

the Blasius type solution is a function internal tube diameter, segment length, 

mass flow rate, density and dynamic viscosity.  

                                       (41) [130] 

               
  

    
               (42) [131] 
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Forced convection heat transfer in each tube segment was determined by 

Equation (43), where As was surface area, n the number of segments, Tw was 

wall temperature and T was the temperature of the coolant. 

       
  

    
              (43) 

 Mass and energy conservation equations were used for the coolant tube 

control volume, as shown in Equations (44) and (45). Equation (45) allows for 

thermal storage in the secondary loop components. 

               (44) 

      
   

  
                    (45) 

The above equations used for the coolant tube control volume were 

employed for the coolant-side control volumes of the intermediate heat 

exchanger and the air cooler as well. Flow splitters and mixers were added 

before and after the control volume to model microchannel and plate type heat 

exchanger behavior.  

A quasi-steady state, efficiency based model was used for the coolant 

pump. Equation (46) shows the energy equation for a generic pump, where p is 

pressure,‎ρ‎is‎density,‎v‎is‎velocity,‎g‎is‎gravitational‎acceleration‎and‎ht‎is‎height.‎ 

   
        

 
 

    
     

 

 
                   (46) 

The electrical power consumed by the pump, depending on volumetric, 

hydraulic, and motor efficiency, is given by Equation (47). It was assumed that 
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half of the heat produced due to motor inefficiencies was introduced as heat gain 

into the fluid.    

   
       

               
     (47) 

To simulate transient operation, the secondary loop model was combined 

with the cabin model (9) to enable pull-down and drive cycle testing, as shown in 

Figure ‎11.8. The cabin model receives supply air from the cooler air-side outlet, 

while the mixed air is returned back to the inlet of the cooler. Similar to the direct 

expansion cycle transient model, ambient air is introduced to the cabin model by 

an air inlet boundary (10).  

The following chapter discusses the validation of the secondary loop 

model with experimental data for steady-state, as well as transient operation. 
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Figure ‎11.7: Secondary Loop Steady-state System Model 
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# Component 

1 Compressor, fixed displacement 
2 Condenser, microchannel 
3 Expansion Valve, PID controlled 
4 Intermediate Heat Exchanger, plate type 
5 Refrigerant Piping 
6 Air Cooler, microchannel 
7 Coolant Pump 
8 Coolant Tubing 
9 Air Boundary 

10 Air Sink 
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Figure ‎11.8: Secondary Loop Transient System Model 
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# Component 

1 Compressor, fixed displacement 
2 Condenser, microchannel 
3 Expansion Valve, PID controlled 
4 Intermediate Heat Exchanger, plate type 
5 Refrigerant Piping 
6 Air Cooler, microchannel 
7 Coolant Pump 
8 Coolant Tubing 
9 Cabin Model 

10 Air Sink 
11 Air Boundary 
12 Heat Flow Boundary 
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11.3.2 R290 Secondary Loop Model Validation 

The operation of the secondary loop system model was validated for 

steady-state, as well as transient operation. Table ‎11.6 shows the validation 

results for steady-state operation at different ambient temperature and idling, as 

well as highway driving conditions. As for the direct expansion system model, the 

secondary loop components were tuned, since the interior geometry of the 

intermediate heat exchanger and the air cooler were unknown. Across different 

ambient conditions, as well as driving conditions, high side pressure in the vapor 

compression cycle is very well predicted. However, low side pressure is 

overpredicted at highway driving conditions, while it is slightly underpredicted at 

idling conditions. Discharge pressure is within 2 K of the experimentally 

measured value during highway driving conditions, while it is underpredicted by 

about 5.66 K at idling conditions. Cooling capacity is underpredicted by less than 

6% for highway driving, while it is overpredicted by about 6% for idling conditions. 

Simulated results for compressor power consumption are within 2% of the 

experimentally measured values for the examined operating conditions. Air-side 

COP was captured within deviations of 0.2 absolute, which corresponds to a 7.5% 

relative deviation at 25°C highway driving. Air-side cooler outlet temperature 

matches with measured results within less than 2 K. Following steady-state 

validation, the secondary loop model was used in conjunction with the cabin 

model to simulate transient pull-down and drive cycle operation. 
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Table ‎11.6: Secondary Loop Stationary System Validation Results 

Parameter Experiment Simulation Deviation [abs] 

25°C / 50% ; highway    
High Side Pressure [kPa] 1326.8 1334.7 7.9 
Low Side Pressure [kPa] 412.2 449.1 36.9 
Discharge Temperature [°C] 58.8 57.4 -1.4 
Cooling Capacity [W] 4425.7 4181 -244.7 
Compressor Power [W] 2161.1 2143 -18.1 
System COP [-] 1.98 1.83 -0.2 
Cooler Outlet Temp. (col) [°C] 7.5 4.6 -2.9 
Cooler Outlet Temp. (air) [°C] 7.7 7.7 0.0 

30°C / 40% ; idle    
High Side Pressure [kPa] 1571.9 1572.6 0.7 
Low Side Pressure [kPa] 720.2 700.2 -20.0 
Discharge Temperature [°C] 66.3 60.8 -5.6 
Cooling Capacity [W] 2390.6 2541.5 150.9 
Compressor Power [W] 1032.5 1019.9 -12.6 
System COP [-] 2.17 2.29 0.1 
Cooler Outlet Temp. (col) [°C] 20.1 21.3 1.2 
Cooler Outlet Temp. (air) [°C] 20.0 18.5 -1.5 

30°C / 40% ; highway    
High Side Pressure [kPa] 1732.5 1744.7 12.2 
Low Side Pressure [kPa] 506.7 574.0 67.3 
Discharge Temperature [°C] 71.5 69.8 -1.7 
Cooling Capacity [W] 5022.8 4889.2 -133.6 
Compressor Power [W] 2809.4 2766.0 -43.4 
System COP [-] 1.7 1.7 0.0 
Cooler Outlet Temp. (col) [°C] 14.3 13.2 -1.1 
Cooler Outlet Temp. (air) [°C] 14.9 15.2 0.3 

 

Figure ‎11.9 shows a comparison of NEDC performance between the R290 

2LP Modelica model and experimental results. Figure ‎11.9 a) shows the 

validation of the cabin temperature profile over time. The model underpredicts 

cabin temperature by about 1 K throughout the NEDC cycle, but captures the 

general trends very well. The validation results for cooling capacity, shown in 

Figure ‎11.9 b) present a similar conclusion as the R134a DX validation results. 

While the initial transients within the first minute were not captured well, the 

simulated results stay fairly true to experimentally measure results throughout the 
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latter stages of the cycle. Towards the middle of the NEDC, a slight 

overprediction of cooling capacity was observed, since the model cannot capture 

the re-evaporation of condensate during idling periods. Compressor power 

consumption, shown in Figure ‎11.9 c), followed the trend of the experimental 

data. However, power consumption was slightly overpredicted throughout the 

cycle, which was especially prominent during the idling periods.  

A comparison of the total energy available for air-side cooling, the total 

input to the system, and the transient performance factor during the NEDC is 

shown in Table ‎11.7. Deviations of accumulated capacity and accumulated 

compressor power are within 6%. Due to an overprediction of capacity, as well as 

compressor power, the simulated TPF shows only a very small deviation (-0.7%) 

from experimental TPF.  

Table ‎11.7: Secondary Loop NEDC Acc. Performance Validation 

Parameter Experiment Simulation Deviation [%] 

NEDC, 35°C/50%, 5.6 K soak    
Accumulated Capacity (air) [kWh] 0.946 0.989 4.5 
Accumulated Compr. Power [kWh] 0.689 0.727 5.5 
Transient Performance Factor [-] 1.37 1.36 -0.7 

 

Figure ‎11.10 shows a comparison of performance parameters during a 

pull-down test at 30°C/50% ambient condition and an initial degree of soak of 12 

K. The cabin temperature profiles during pull-down are compared in Figure ‎11.10 

a). During the initial minutes, the Modelica model predicts a cabin temperature, 

which is decreased by about 1 K from the experimentally measured value. 
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Figure ‎11.9: Secondary Loop NEDC Validation Results 
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This can be attributed to the thermal storage associated with the 

windtunnel in the experimental measurements. During the later part of the pull-

down, simulated cabin temperature follows experimental cabin temperature very 

closely. A comparison of air-side cooling capacity is shown in Figure ‎11.10 b). As 

observed in the direct expansion system results, capturing the initial transients 

due to the electronic expansion valve adjustments is challenging for the model. 

However, the general trends throughout the pull-down tests are observed, with a 

slight overprediction of cooling capacity by the model. Figure ‎11.10 c) compares 

power consumption profiles for experimental and simulated compressor data. 

Much similar to the cooling capacity results, initial transients during the first 

minute of the pull-down test are not captured precisely. However, power 

consumption during the remainder of the test follows experimentally measured 

power consumption closely. 

Table ‎11.8 shows the a comparison of accumulated pull-down 

performance. Total energy available for cooling cabin supply air was predicted 

with a deviation of 1.8% by the model. Energy consumed by the compressor over 

the duration of the test was captured by the model with a deviation of 2.4%. 

Simulated TPF decreased by 0.6% compared to experimental TPF. 

Table ‎11.8: Secondary Loop Pull-down Acc. Performance Validation 

Parameter Experiment Simulation Deviation [%] 

Plldn, 30°C/50%, 12 K soak, 1550rpm     
Accumulated Capacity (air) [kWh] 0.892 0.876 1.8 
Accumulated Compr. Power [kWh] 0.631 0.616 2.4 
Transient Performance Factor [-] 1.41 1.42 -0.6 
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Figure ‎11.10: Secondary Loop Pull-down Validation Results 
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11.4 Influence of Coolant Volume on Transient Performance 

The current experimental system had a coolant charge of about 5 liters. 

The coolant charge was heavily dependent on the facility layout and the 

components and space available. It is to be expected that a smaller charge may 

result in faster cool down of the cabin and a better system efficiency. On the 

other hand, a larger coolant charge may be beneficial for thermal comfort during 

off-cycle periods. The R290 2LP Modelica® model, introduced in Chapter ‎11.3, 

was used to perform a parametric study investigating the influence of coolant 

volume in the secondary loop on cabin pull-down and cabin warm-up 

performance. To this end, the length of coolant tubing in the model was varied. 

This approach was chosen, due to the possibility of secondary loop systems 

being used for electronics and battery cooling, as well as seat cooling/heating or 

radiative surfaces. A water-ethylene glycol mixture of 32wt% ethylene glycol was 

used, which equals the coolant used in the experimental study. The pull-down 

test was simulated using an ambient condition of 30°C and 50% relative humidity. 

At the start of the simulation the cabin was soaked to 42°C. The R290 2LP 

highway compressor speed of 1,550 rpm was chosen, as well as the R209 2LP 

coolant mass flow rate of 250 g/s. After reaching comfort temperature (24°C), the 

compressor was turned off and the cabin was allowed to warm up, while the 

coolant pump was still running to employ the thermal storage of the secondary 

loop for cooling during the off-cycle period. 

 Figure ‎11.11 shows the influence of coolant volume on cabin pull-down 

performance. Figure ‎11.11 a) shows supply temperature profiles for different 
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coolant charges. As expected, increasing coolant charge added thermal mass 

and increased supply temperature. Consequently, time to comfort increased with 

increasing coolant volume. Throughout most of the pull-down period, an increase 

in one liter of coolant resulted in roughly a 0.6 K increase in cabin supply 

temperature. Cooling capacity profiles are compared in Figure ‎11.11 b). It was 

observed that the influence of coolant volume on capacity is largest during the 

initial minutes of the pull-down test. At the point of largest divergence, every 

additional liter of coolant decreases capacity by roughly 150 W. However, the 

significance of coolant charge diminishes after the initial minutes. Figure ‎11.11 c) 

shows the system power (compressor + pump). Pump power consumption is 

dependent on coolant density and viscosity. Despite the increase in pipe length, 

it was found that pump power slightly decreased with increasing coolant charge, 

since the coolant stayed at a higher temperature and viscosity was reduced. The 

effects were negligible when compared to the overall  system power consumption. 

From Figure ‎11.11 c) it was observed that changes in system power 

consumption resulting from variation of coolant charge were small.  

Figure ‎11.12 shows the influence of coolant volume on cabin warm-up 

behavior during off-cycle periods. During the initial minutes, the addition of one 

liter of coolant may decrease the cabin supply temperature by about 0.7 K. The 

influence of coolant volume decreases with increasing warm-up time. After 15 

minutes, the effect of an additional liter of coolant volume on the supply 

temperature became negligible. Figure ‎11.12 b) shows a comparison of cooling 

capacity, which is preserved by the thermal mass of the secondary loop system.  



211 

 

Figure ‎11.11: Influence of Coolant Volume on Cabin Pull-down  

(R290 2LP, T30/RH50, 12 K soak, 1550 rpm, 250 g/s) 
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The influence of coolant volume on the system power during cabin warm-

up is presented in Figure ‎11.12 c). Since the compressor is turned off, only the 

coolant pump is contributing to power consumption. A larger coolant volume 

results in longer tubing, as well as a lower coolant temperature during cabin 

warm-up. Consequently, power consumption during off-cycle periods increases 

with increasing coolant volume. The relative increase can be as much as 3%-4% 

per additional liter of coolant, but the absolute increase is small. 

Figure ‎11.13 shows the influence of coolant charge on typical pull-down 

performance metrics, such as time to comfort, energy consumption during the 

course of the cabin pull-down, and transient performance factor. It can be 

observed that time to comfort increases by about 22 seconds per additional liter 

of coolant. At the same time, energy consumption increases by about 17 Wh per 

additional liter of coolant, as observed in Figure ‎11.13 b). Figure ‎11.13 c) shows 

the influence of coolant volume on transient performance factor. It was found that 

each additional liter of coolant decreases TPF by about 0.03.  

While some of the above mentioned results may vary based on system 

configuration and operating conditions, this parametric study provided a 

qualitative answer to the question of influence of coolant volume on transient 

system performance. In summary, it can be stated that small variations in coolant 

charge below 1 to 2 liters may not result in significant changes of thermal 

performance and passenger comfort.  
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Figure ‎11.12: Influence of Coolant Volume on Cabin Warm-up  

(R290 2LP, T30RH50, 12 K soak, 1550 rpm, 250 g/s) 
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Figure ‎11.13: Influence of Coolant Volume on Performance Metrics  

(R290 2LP, T35RH50, 12 K soak, 1550 rpm, 250 g/s) 
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11.5 Influence of Coolant Concentration on Transient Performance 

Previous research on secondary loop systems by Ghodbane [104] used a 

coolant mass fraction of 32wt% ethylene glycol in water. It was accepted that the 

mixture could freeze in harsh winter conditions, but the pressure would stay 

below the burst pressure of the tubing. The research was performed under the 

assumption that the secondary loop system would be used for cabin cooling in 

the summer only. However, recent developments (Eilemann [132], Battista [133], 

Di Sciullo [134], Petitjean [135], Seccardini [136], etc.) show that secondary loop 

systems (also called indirect systems) may be used for general thermal 

management in future vehicles. Possibly, engine thermal management, thermal 

management of batteries and auxiliary systems, as well as passenger cabin 

thermal management could be combined into one compact, smart thermal 

management system. Since this system would need to be operated in low 

ambient winter conditions as well, a coolant mass fraction of 32wt% ethylene 

glycol may not be permissible. Based on the freezing temperature of water-

ethylene glycol mixtures with varying concentration, shown in Figure ‎11.14, a 

32wt% mixture will freeze at roughly -15°C. For countries with a strong winter, 

coolant concentration may need to be increased to 50wt% or above. In countries 

with a yearlong hot climate, it may be beneficial to reduce coolant concentration 

to 20wt% or below to take advantage of the better heat transfer properties of 

pure water. The R290 2LP Modelica® model was used to investigate the 

influence of coolant concentration on the transient performance of a secondary 

loop system during cabin pull-down and cabin warm-up. 
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Figure ‎11.14: Change of Freezing Temperature of an Aqueous Ethylene Glycol 

Mixture based on Mass Fraction 
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Cooling capacity, shown in Figure ‎11.15 b), is not significantly affected by coolant 

mass fraction past the first two minutes into the pull-down process. However, 

system power consumption, shown in Figure ‎11.15 c), changes significantly due 

to the change in coolant pump power consumption. As the glycol mass fraction 

increases, viscosity and density increase, resulting in an increase in pressure 

drop and pressure head. At the end of the pull-down process, instantaneous 

system power consumption may be increased by as much as 2.4% per 10% 

increase in coolant mass fraction.   

Figure ‎11.16 presents the influence of coolant mass fraction on the warm-

up process of the cabin during an off-cycle period. As can be observed in 

Figure ‎11.16 a), the influence of coolant mass fraction on supply temperature 

during cabin warm-up is nearly constant throughout the first 15 minutes of the off-

cycle period. Supply temperature increases by about 0.4 K for every 10% 

increase of glycol mass fraction. This is due to the additional capacity available 

for low mass fraction coolants, as observed in Figure ‎11.16 b). While the change 

in mass fraction represents a significant change in cooling capacity during the 

later stages of the off-cycle period, when cooling capacity is low, the influence on 

power consumption is significant. Due to the increased pump power at high 

glycol mass fractions, instantaneous off-cycle period power consumption may 

increase -on average- by about 15 W per 10% increase in glycol mass fraction.  
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Figure ‎11.15: Influence of Coolant Concentration on Cabin Pull-down  

(R290 2LP, T30RH50, 12 K soak, 1550 rpm, 250 g/s) 
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Figure ‎11.16: Influence of Coolant Concentration on Cabin Warm-up  

(R290 2LP, T30RH50, 12 K soak, 1550 rpm, 250 g/s) 
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Figure ‎11.17 shows the effect of coolant concentration on typical 

performance metrics for a pull-down process. Time to comfort is nearly linearly 

dependent on the glycol mass fraction and increases by roughly 12 seconds per 

10% increase in mass fraction. As shown in Figure ‎11.17 b), a 10% increase in 

coolant mass fraction result in a 18 Wh increase of energy consumption (~2.8% 

relative increase). TPF decreases by about 0.035 for a 10% increase in coolant 

concentration.  

The mass fraction range of interest is marked by a shaded area in 

Figure ‎11.17 a) through c). It was found that when changing from a 30% glycol 

mass fraction to a 60% mass fraction time to comfort is expected to increase by 

about half a minute. Energy consumption during a pull-down would be increased 

by about 7.8%, while TPF is expected to decrease by about 0.1. 

It can be concluded that glycol mass fraction has only little influence on 

time to comfort, while it has a more significant influence on thermal comfort 

during off-cycle periods. To save energy and reduce pull-down-time, it would be 

advantageous to reduce glycol mass fraction, possibly below 30%. However, 

increasing mass fraction to 50% or 60% may result in an increase of energy 

consumption of about 8% or less and a small increase in time to comfort.   
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Figure ‎11.17: Influence of Coolant Concentration on Performance Metrics  

(R290 2LP, T30RH50, 12 K soak, 1550 rpm, 250 g/s) 
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12 Summary and Future Work 

The present research focused on the performance evaluation of 

secondary loop systems for automotive air-conditioning. The use of efficient and 

inexpensive refrigerants, as well as the potential to reduce A/C energy 

consumption by applying thermal storage alternatives were investigated.  

 

12.1  Research Contributions 

The present research resulted in the following contributions: 

 Development and operation of a dynamic laboratory-scale test bench, 

which allows for testing of drive cycles in changing climates and 

enables the testing of A/C control algorithms 

 Conclusive characterization of transient performance of secondary 

loop systems during pull-down and drive cycle tests 

 Experimental evaluation of Propane in automotive secondary loop air-

conditioning systems with respect to energy consumption and transient 

performance 

 Quantification of benefits from secondary loop thermal storage during 

short off-cycle periods in drive cycles and prolonged off-cycle cabin 

warm-up 

 Experimental characterization of the benefits of ice storage in 

secondary loop systems 

 Evaluation of alternative control strategies and cabin pre-conditioning 

in electric vehicles with regard to reducing A/C energy consumption for 

secondary loop systems with thermal storage 
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 Development of a validated model to perform transient simulation of 

secondary loop systems in Modelica 

 

12.2 Summary of Research Outcomes 

A summary of outcomes for the present research is given as follows: 

 A test facility was built to test direct expansion, as well as secondary 

loop systems. Controls were implemented to allow for drive cycle 

testing and investigation of A/C control strategies. A passenger cabin 

model, first developed in previous research, was modified to include 

typical A/C controls, as well as the ability to use ambient drive cycles 

(temperature, relative humidity, and solar insolation) 

 A secondary loop system using R152a as primary refrigerant was 

tested in steady-state, as well as transient operation. Using the same 

components as a baseline R134a direct expansion system, the R152a 

2LP system showed a reduced power consumption at about the same 

capacity. Steady-state COP was increased by up to 10%. During 

transient pull-down tests, the secondary loop system showed some 

thermal lag, as well as increased power consumption. Although time to 

comfort was increased, the transient performance factor was within 5% 

of R134a DX results. Due to increased thermal mass, the energy 

available to cool the air during an NEDC test decreased by about 10%. 

Due to a slight increase in power consumption (5%), TPF decreased 

by 10%.  

 R290 was investigated as possible refrigerant in the VCC of secondary 

loop systems. Regular R134a components were used in the VCC. 

Compressor speed was adjusted to simulate a smaller compressor and 

reduce high cooling capacity and compressor power consumption. The 

R290 2LP system was found to perform well with an increase in COP 
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of 8% in comparison to R134a DX during highway driving operation. 

When idling, COP decreased by 15% from R134a DX. The decrease in 

efficiency was attributed to low compressor isentropic and volumetric 

efficiencies at idling conditions. Due to the adjustment of compressor 

rpm, the comparison of transient accumulated capacity and power 

consumption was somewhat ambiguous. However, TPF for pull-down 

at highway driving conditions was similar or better than R134a DX TPF. 

For NEDC testing, R290 2LP TPF was decreased by 5% with respect 

to R134a DX, showing a better performance than R152a 2LP. It was 

concluded that if the cycle, primarily the compressor, would be 

optimized for R290, the R290 2LP system could achieve a 

performance significantly better than an R134a direct expansion 

system. 

 The thermal storage potential of secondary loop systems and it's 

benefits for thermal comfort and energy consumption were investigated. 

New test procedures were defined for this research. During Start/Stop 

operation R290 2LP TPF was equal to R134a DX TPF.  When tripling 

the off-cycle periods in the cycle (traffic light stops), R290 2LP TPF 

increased by roughly 10% over R134a DX TPF. While preserving 

thermal comfort, the secondary loop system also achieved a better 

thermal performance with increasing length of off-cycle periods. For 

cabin warm-up during extended off-cycle periods, the secondary loop 

system was able to keep the cabin 3 K lower, while cabin 

humidification due to re-evaporation was reduced. 

 The possibility of using ice storage for added thermal comfort and 

reduced power consumption during commutes was evaluated. The 

present research used a custom made heat exchanger in a 15 L ice 

storage tank, which was charged by the R290 vapor compression 

cycle. It was observed that ice storage could reduce time to comfort by 

more than 15%, while reducing the power consumption of the 
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compressor. However, for long periods a bypass should be used once 

evaporating temperature decreased to the point where ice storage 

prevents a faster pull-down. During off-cycle periods after a pull-down 

to comfort temperature, the present ice storage box was able to 

sustain thermal comfort and prevent excessive cabin humidification for 

more than 20 minutes.  

 The benefits of alternative compressor controls and cabin pre-

conditioning with regards to reducing power consumption in electric 

vehicles were investigated. It was found that total energy consumption, 

including re-heating, can be reduced by as much as 60% when 

controlling cabin supply humidity with either compressor speed or by 

cycling. Using ice storage together with alternative control strategies 

showed the most benefits for cyclic operation, rather than continuous 

operation. Cabin pre-conditioning was found to be detrimental for the 

traditional concept of compressor cycling for frost prevention and re-

heating for temperature control. In contrast, when employing 

alternative control strategies where the compressor cycles to control 

cabin supply humidity while cabin temperature is close to the comfort 

setpoint, energy savings of up to 30% were observed by pre-

conditioning the cabin.  

 Models of the passenger cabin and the secondary loop system were 

developed in the Modelica language. Models of an automotive direct 

expansion system, the secondary loop system, and the passenger 

cabin were validated with experimental data for steady-state operation, 

as well as transient pull-down and drive cycle operation. The models 

were further used to evaluate the influence of coolant volume and 

coolant concentration on transient system performance.      
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12.3 Recommendations for Future Work 

Based on experience from the present research, current developments in 

the area of automotive air-conditioning, and insights from reviewed literature, the 

following recommendations are given for possible future work: 

 The automotive air-conditioning industry is moving towards an 

integrative approach, in which the thermal management system of the 

front end is partially integrated with the climate system and auxiliary 

thermal management tasks, such as battery or electronics cooling. It is 

recommended to focus future research on completely indirect systems, 

where both, the A/C condenser, as well as the cabin air cooler are 

cooled by a secondary (indirect) coolant loop. 

 With the alternative cooling strategies discussed in the present 

research, it was possible to reduce total power consumption in electric 

vehicles considerably. Another big step in reducing power consumption 

could be achieved by removing the need of some kind of heater power 

for re-heating. To this end, the indirect loop which cools the A/C 

condenser could be used for re-heating the cabin air. Re-heating for 

summer cooling operation is typically only needed 10+ minutes after 

the air-conditioning is turned on and enough heating capacity is 

available at the condenser. Energy savings and implications of this 

solution should be quantified by experiment.   

 In addition to cooling, heating for winter operation is a challenging task 

for electric vehicles. The use of secondary loop systems for heat 

pumping needs to be investigated. Thermal storage, possibly ice 

storage, could be used to provide a relatively high fixed temperature 

for the heat pump when operating in sub zero ambient conditions. 

Transient simulations, as well as experiments should be performed to 

quantify benefits and challenges 
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 Thermal storage may be a key technology in electric vehicles, both for 

summer time cooling, as well as winter time heating. In the present 

research, the use of ice storage was investigated, using a custom 

made heat exchanger. A second generation heat exchanger, optimized 

for the task at hand could improve the performance of such a system. 

While ice as a phase change material is conveniently available, well 

understood and ready to use, the present research should be extended 

to include other phase change materials, which can be integrated more 

seamlessly into the existing thermal management system.  

 The present cabin passenger model is a lumped model, working with 

energy and mass balances. A more sophisticated, multi-dimensional 

model of the passenger cabin would open the door to thermal comfort 

research. The use of indirect cooling loops in the summer, as well as in 

the winter would lend itself to the operation of radiant heat exchangers 

in the cabin, as well as seat cooling and heating. Numerous studies in 

the residential and commercial air-conditioning area show that the use 

of radiant hydronic systems increases energy efficiency and reduces 

the need for extremely low (or high) cabin air temperatures. A multi-

dimensional model of the cabin in Dymola, as well as a thermal 

comfort model will be needed for this research. 
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Appendix A Specification of Test Facility Components 

 
Appendix A provides the specifications of the main components, used in 

the experimental test facility. Parameters and dimensions are given to the best 

knowledge of the author. Heat exchanger outer dimensions were measured 

where possible, and inner dimensions were estimated based on outer 

dimensions. Specifications of compressor, pump, and valve are given based on 

manufacturer's data. 

Table ‎A.1 provides specifications for the automotive evaporator used only 

in the direct expansion baseline system. The evaporator was a plate and fin heat 

exchanger with louver fins and unknown inner geometry.  

Table ‎A.1: Evaporator Specifications 

Parameter Magnitude Unit 

Number of passes 2 [-] 
Number of tubes per pass 20 [-] 
Number of ports per tube* 8 [-] 
Tube pitch 0.01358 [m] 
Tube length 0.2125 [m] 
Tube depth 0.035 [m] 
Tube height 0.00333 [m] 
Fin depth 0.035 [m] 
Fin density 12.9 [1/in] 
Fin thickness 0.00008 [m] 
Port hydraulic diameter* 0.001814 [m] 
Inner Volume 0.000711 [m3] 
*values estimated based on outer dimensions 

 

Table ‎A.2 provides specifications for the automotive condenser used in all 

system configurations throughout this study. The condenser was a micro channel 
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heat exchanger with louver fins and unknown port geometry. It did not feature an 

integrated receiver-dryer, as some other models do.  

Table ‎A.2: Condenser Specifications 

Parameter Magnitude Unit 

Number of passes 1 [-] 
Number of tubes per pass 35 [-] 
Number of ports per tube* 12 [-] 
Tube pitch 0.01095  [m] 
Tube length 0.66 [m] 
Tube depth 0.0185 [m] 
Tube height 0.002 [m] 
Fin depth 0.0185 [m] 
Fin density 17 [1/in] 
Fin thickness 0.00008 [m] 
Port hydraulic diameter* 0.00075 [m] 
Inner Volume 0.000292 [m3] 
*values estimated based on outside dimensions 

 

Table ‎A.3 provides specifications for the intermediate heat exchanger 

used in the secondary loop system. The intermediate heat exchanger was a 

commercially available plate type heat exchanger with unknown inner geometry. 

Table ‎A.3: Intermediate Heat Exchanger Specifications 

Parameter Magnitude Unit 

Rated capacity (R134a) 6.1 [kW] 
Rated pressure drop 7.6/3.7 [kPa] 
Number of channels 11/12 [-] 
Refrigerant-side volume 0.000935 [m3] 
Refrigerant-side volume 0.00102 [m3] 

 

Table ‎A.4 provides specifications for the cooler used in the secondary loop 

system. The cooler was a micro channel heat exchanger with louver fins and 

unknown port geometry.  
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Table ‎A.4: Cooler Specifications 

Parameter Magnitude Unit 

Number of passes 2 [-] 
Number of tubes per pass 36 [-] 
Number of ports per tube* 12 [-] 
Tube pitch 0.00675 [m] 
Tube length 0.216 [m] 
Tube depth 0.028 [m] 
Tube height 0.0015 [m] 
Fin depth 0.028 [m] 
Fin density 18 [1/in] 
Fin thickness 0.00009 [m] 
Port hydraulic diameter* 0.00123 [m] 
Inner Volume 0.000877 [m3] 
*values estimated based on outside dimensions 

 

Table ‎A.5 provides specifications for the compressor used in all system 

configurations throughout this study. The compressor is a variable speed, fixed 

displacement compressor. The efficiency information given in the table was back 

calculated from experimentally measured data and is a rounded average over a 

several ambient conditions and compressor speeds. 

Table ‎A.5: Compressor Specifications 

Parameter Magnitude Unit 

Displacement  75 [cm3] 
Maximum speed 6500 [rpm] 
Volumetric efficiency* 0.9 [-] 
Isentropic efficiency* 0.8  [-] 
*average values, determined from experimental measurement 

 

Table ‎A.6 provides the specifications for the electronic expansion valve 

used in all system configurations throughout this study.  
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Table ‎A.6: Expansion Valve Specifications 

Parameter Magnitude Unit 

Rated evaporating temperature  4.44 [°C] 
Rated differential pressure 650 [kPa] 
Rated Capacity (R134a) 7.53 [kW] 
Number of steps 500 [-] 

 

Table ‎A.7 provides specifications for the coolant pump used in the 

secondary loop system. The coolant pump is a  gear pump.  

Table ‎A.7: Coolant Pump Specifications 

Parameter Magnitude Unit 

Maximum differential pressure  690 [kPa] 
Motor rated power 0.33 [hp] 
Motor rated rpm 1725 [rpm] 
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Appendix B Control Flow Charts 

Appendix B provides flow charts for the controls of the facility and facility 

components. 

Figure ‎B.1 shows the flow chart of the Cabin Model. The flow chart 

describes the various controls embedded in the Cabin Model, including the 

option to use pre-defined ambient drive cycles, the option to use a virtual heater 

core to artificially raise supply temperature, and the option to either turn off or 

enable the continuous measurement of evaporator/cooler air flow rate after the 

compressor is turned off (used during off-cycle testing). The Cabin Model is 

turned on and off by a switch, embedded in the LabVIEW GUI of the Main DAQ 

Ctrl. 

A more detailed description of the virtual heater core is given in the 

thermostat control flow chart, Figure ‎B.2. The flow chart describes the operation 

of the virtual heater core, once thermostat control was activated. The heater is 

typically only used when the compressor is running, otherwise the original supply 

temperature is not altered. If heating functionality is needed to preserve comfort 

temperature, an artificially heightened supply temperature signal, controlled by a 

software PID control, is fed to the Cabin Model equations.  
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Figure ‎B.1: Cabin Model Flow Chart 
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Figure ‎B.2: Thermostat Control Flow Chart 

 

The drive cycle module, shown in Figure ‎B.3, uses PID control to operate 

components of the test facility. Since the setpoint profile is known, setpoints of 

future time steps can be used to control components more accurately (feed 

forward control). The output signal can be confined to a minimum and maximum 

magnitude to stay within safe operating conditions (e.g.: to prevent a full closing 

of the EXV). The drive cycle module moves forward to the next entry in the 

respective drive cycle file, until the last entry of the profile. 
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Figure ‎B.3: Drive Cycle Control Flow Chart 

 

Two electronic expansion valves were used in the test facility to control 

superheat. The EXV flow chart, shown in Figure ‎B.4, provides information about 

control on the top level (one valve used vs. both valves used), and on the valve 

level. Valves can be controlled either manually, by emergency override, or by 

PID control, which is the usual operation mode. Manual control, as well as the 
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emergency override function are used mainly during tuning of the PID control to 

prevent erratic behavior, which could damage the compressor. To prevent loss of 

superheat for an extended time, a sub function, which reduces EXV opening in 

pre-defined increments, was added.  

 

Figure ‎B.4: Electronic Expansion Valve Flow Chart 



237 

Figure ‎B.5 shows the flow chart of the coolant pump control. The pump 

can either be controlled manually, or by PID control. In the latter case, the control 

variable can be either MFR, or cabin temperature. During temperature control 

mode, the pump can be cycled on and off to keep cabin temperature close to the 

comfort setting. Similarly, pump speed can be reduced using PID control to 

reduce power consumption as much as possible, while cabin temperature is 

close to or lower than comfort setpoint. 

Figure ‎B.6 shows the flow chart for the control of compressor clutch and 

compressor rpm. The compressor can be controlled in seven ways, six of which 

are shown in Figure ‎B.6. The seventh is drive cycle control, with a pre-

determined compressor speed and clutch actuation profile. The first operation 

mode is manual operation, in which the compressor rpm and the clutch actuation 

can be chosen from the GUI of the Main DAQ Ctrl. The pump temperature 

control mode turns off the compressor clutch, precluding the VCC from cooling 

the cabin. Pull-down off-cycle mode turns off the compressor clutch, once a pre-

defined comfort temperature is reached in the passenger cabin. The temperature 

in the cabin will subsequently rise, without the compressor turning back on. 

Compressor defrost cycling, relative humidity cycling, and continuous 

compressor control are modes used for air-conditioning controls research. All 

three modes of operation are used to keep the cabin at a stable temperature, 

once comfort conditions have been achieved. In relative humidity cycling and 

continuous mode, relative humidity is controlled in addition to cabin temperature. 
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Figure ‎B.5: Coolant Pump Control Flow Chart 
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Figure ‎B.6: Compressor Control Flow Chart 

 

The controls outlined in Figure ‎B.6 are shown in detail in the following flow 

charts. 

Figure ‎B.7 shows the manual control flow chart. In the Main Ctrl DAQ GUI, 

the user can set the desired rpm, as well as turn on and off the compressor 

clutch.  
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Figure ‎B.7: Manual Compressor Control Flow Chart 

 

Figure ‎B.8  shows the control chart for temperature control mode of the 

pump. This control mode is used when only ice storage is used to cool the cabin. 

Consequently, the compressor clutch remains turned off while in this mode and 

the thermostat function remains disabled. 

 

Figure ‎B.8: Pump Temperature Control Flow Chart 
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The pull down control, shown in Figure ‎B.9, enables the recording of off-

cycle pull down data. The control turns off the compressor clutch, once comfort 

temperatures are achieved during a pull down test. A flag is set to prevent the 

compressor from turning on once the cabin temperature starts increasing during 

the off cycle. 

 

Figure ‎B.9: Compressor Pulldown Control Flow Chart 

 

Figure ‎B.10 shows the defrost cycling control chart. Once air-side 

evaporator outlet temperature decreases below a certain set point, the 

compressor shuts odd to prevent frosting. 
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Figure ‎B.10: Defrost Cycling Control Flow Chart 

 

Figure ‎B.11 shows the flow chart for relative humidity cycling control. If 

cabin temperature gets close to comfort temperature, the compressor starts 

controlling relative humidity of the cabin supply air stream, rather than prioritizing 

to pull the cabin temperature down further. The thermostat control is used to 

prevent cabin temperature from dropping below comfort setpoint. If the cabin 

temperature is close to comfort conditions and the relative humidity of the supply 

air is low enough, the compressor is turned off to save energy. 
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Figure ‎B.11: Relative Humidity Cycling Control Flow Chart 

 

The continuous relative humidity control, shown in Figure ‎B.12, controls 

the compressor speed and coolant pump speed, using a PID control, once cabin 

temperature is close to setpoint. Thermostat control is used to retain cabin 

temperature close to the comfort setting.  
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Figure ‎B.12: Relative Humidity Continuous Control Flow Chart 
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Appendix C Drive Cycle Development 

‎Appendix C provides more details how the conversion of the NEDC drive 

cycle (and similar drive cycles) from vehicle speed to compressor speed. In 

addition, the implementation of drive cycle into LabVIEW, and the development 

of a novel drive cycle to showcase the versatility of the test facility, are discussed

development of drive cycles and drive cycle control in the data acquisition system, 

which was performed to gain the ability to run drive cycle, such as the NEDC and 

the I-95 cycle. 

The NEDC drive cycle, as well as other drive cycles, such as the USA 

urban or extra-urban cycle, are given by a vehicle speed versus time profile. In 

the current study MAC components are tested on a test bench, while the vehicle 

is replaced by a cabin model. This results in the need to convert the original drive 

cycle profiles to compressor rpm versus time profiles. Table ‎C.1 shows 

specifications for a medium size, 2.2L engine 5-speed manual car. The shown 

parameters are used to convert vehicle speed to engine rpm, based on gear 

choice. 
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Table ‎C.1: Automobile Parameters for Speed to RPM Conversion 

Gear 
Gear Ratio 

(5-speed manual) 

1. 3.58 
2. 2.02 
3. 1.35 
4. 0.98 
5. 0.69 
Final Drive Ratio 3.94 
Pulley Ratio 0.786 
  

Tire Specifications 

Tire Type P195/70R14 
Rolling Circumference [m] 1.9748 

 

Figure ‎C.1 shows the conversion results in form of graphs. For each gear, 

a linear relationship between vehicle speed and A/C compressor rpm was 

determined. The conversion equations, shown next to the respective gear curves, 

were used in the conversion fo the NEDC drive cycle and the I-95 cycle. 

 

Figure ‎C.1: Gear Equations for vehicle speed to compressor rpm conversion 
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To make above conversion equations useful, gear selection at every point 

during the drive cycle needs to be known. To this end, an urban drive cycle and 

an urban shift cycle, based on EPA data [110], were superimposed. Figure ‎C.2 

shows gear selection, based on superposition of the two cycles, which allows the 

correlation of speed and gear choice. 

 

Figure ‎C.2: Superimposed EPA FTP Drive Cycle and Shift Cycle 

 

However, the superposition reveals only a gear selection at a specific 

speed along the drive cycle and not the exact speed at which gears are shifted. 

Since gear shifts in practice vary between acceleration and deceleration, shift 

points need to be chosen according to driving situation. During acceleration, the 

driver usually shifts up at higher rpm, while during deceleration the driver usually 

shifts down at lower rpm. This was taken in consideration in Table ‎C.2. 

Table ‎C.2: Shift Point Table for Vehicle Acceleration and Deceleration 

Gear 
Gear Selection 

(EPA) [kph] 
Accel.Shift 

Pt. [kph] 
Decel. Shift 

Pt. [kph] 

1. 24 22.5 16 
2. 40 38.5 32 
3. 64 62.5 54 
4. 72 71 64 
5. - - - 
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The resulting compressor rpm profile for the NEDC drive cycle is shown in 

Figure ‎C.3, along with the original vehicle speed profile for comparison. Idle 

compressor speed is 850 rpm, while maximum compressor speed increases up 

to 3600 rpm. At shift points, changes in compressor rpm can be abrupt and result 

in severe transients. To prevent excessive load on the electric motor, which 

drives the compressor, the rpm profile was smoothed to prevent excessive 

transients.  

 

Figure ‎C.3: NEDC Compressor Speed Profile 
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variable setting, which includes multiple climate zones. The I-95 cycle simulates 

a car driving down the I-95 corridor from Maine to Florida on the United States 

east coast. Climate data along the route was acquired in form of TMY2 data from 

the National Renewable Energy Laboratory (NREL) [111]. As TMY2 data was 

available only for a limited number of cities, the respective cities were used to 

pinpoint locations along the route. Google maps was used to determine 

distances between locations and travel time during regular traffic hours. 

Table ‎C.3 provides the I-95 route locations, as well as distances and average 

speed in between locations. 

Table ‎C.3: I-95 Cycle - Route and Travel Information 

# City (State) 
Travel 

time [s] 
Distance 

[km] 
Avg. Speed 

[km/h] 

1 Caribou (ME) 18600 481.2 93.1 
2 Portland (ME) 7800 172.2 79.5 
3 Boston (MA) 3900 80.8 74.6 
4 Providence (RI) 7800 196.3 90.6 
5 Bridgeport (CT) 5400 97.2 64.8 
6 New York City (NY) 1800 16.7 33.5 
7 Newark (NJ) 6300 147.4 84.2 
8 Philadelphia (PA) 2100 46.5 79.7 
9 Wilmington (DE) 5400 112.3 74.9 
10 Baltimore (MD) 20400 495.7 87.5 
11 Raleigh (NC) 8100 210.8 93.7 
12 Wilmington (NC) 13200 331.5 90.4 
13 Columbia (SC) 10200 255.9 90.3 
14 Savannah (GA) 9300 223.7 86.6 
15 Jacksonville (FL) 6300 143.6 82.0 
16 Daytona Beach (FL) 12300 318.6 93.3 
17 West Palm Beach (FL) 4800 114.3 85.7 
18 Miami (FL) - - - 

 

For simplicity, it was assumed that the driver would start at 8:00am every 

morning and drive until 12:00pm. There would be a rest time of one hour during 

which the engine would be turned off. Following the rest time, the driver would 
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drive from 1:00pm through 9:00pm. The driver would then stop for the night to 

take 11 hours rest. The average speed can vary in between cities, based on 

speed limits and traffic situation that is usually encountered in the respective 

locations. 

Dry bulb temperature, relative humidity, and solar insolation profiles were 

determined using TMY2 weather data. TMY2 weather data is available as hourly 

data for one location. The data is available averaged over the last 30 years, for 

the chosen month at the specified day, hour, and location. As the data is 

available only for a limited number of locations along the route, the data needs to 

be interpolated in steps of one hour between locations. This creates transient 

profiles which change temporally and spatially. The developed profiles for dry 

bulb temperature, relative humidity, and solar insolation, are shown in Figure ‎C.4 

a) through c). The profiles were used as drive cycle input to the cabin model, and 

the controls of the environmental chamber. 

During each start and stop of the car, the car was assumed to leave the I-

95 to stop at a restaurant or inn. One set of the urban drive cycle portion of the 

NEDC was chosen to be performed during each start and stop operation. The 

compressor speed profile was developed with the method outlined above. The 

clutch profile follows the starts and stops for rest and night stops.  

Operation of one complete I-95 cycle lasted about 88 h, which is the time 

a car would need to drive from Caribou, Maine, to Miami, Florida, under the 
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assumptions previously mentioned. The test facility was controlled in time steps 

of 2 seconds. 

 

Figure ‎C.4: I-95 Cycle TMY2 Interpolated Climate Data 

 

Figure ‎C.5 shows performance parameters which were measured during 

the I-95 cycle test, such as cooling capacity and compressor power. It can be 

observed that cooling capacity is smallest, around 1.65 kW in the colder climate 

of Maine, during the beginning of the first day. The capacity remains nearly 

constant at about 1.9 kW during the remaining days of the I-95 test. Compressor 

power increases with ambient temperature. At the same time, compressor power 

follows the compressor speed profile. Compressor power in Maine was on 
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average about 0.75 kW, while the average compressor power was about 1.25 

kW in Florida. 

Figure ‎C.6 shows the profile of cabin temperature during the entire I-95 

cycle. The ambient temperature, as well as the solar insolation, are shown for 

better explanation of the cabin temperature behavior. It can clearly be observed 

that the cabin model was able to control the cabin temperature at a comfort 

setting around 25°C for the entire on-cycle portion of the I-95 test. During 

afternoon stops and early evening stops, the cabin soaks due to solar insolation. 

This can most prominently be observed during the last afternoon stop in Florida, 

around 4,600 minutes into the test, where the strongest soaking was determined 

to be about 14 K. At night, when the A/C is turned off, the cabin temperature 

follows the outdoor temperature. This can be observed well at around 1,000 

minutes or 2,500 minutes.  

Cabin relative humidity is shown in Figure ‎C.7. The relative humidity 

remains constant at about 32% after a short start-up period. At night the cabin 

relative humidity increases up to a relative humidity of 53%, due to the decrease 

in cabin temperature and the exchange with colder ambient air. During afternoon 

stops, the relative humidity decreases, due to the soaking of the cabin. 

From above results it can be concluded that the existing test facility is 

capable of controlling all parameters relevant to capture transient performance of 

a MAC system for a driving vehicle, including varying climate conditions and day 

and night cycles.  
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Figure ‎C.5: I-95 Cycle - Cooling Capacity and Power Consumption 

 

 

Figure ‎C.6: I-95 Cycle - Cabin Temperature 

 

 

Figure ‎C.7: I-95 Cycle - Cabin Relative Humidity 
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Appendix D Steady-state Results Summary: Secondary Loop 

Versus Direct Expansion 

‎Appendix D provides a summary of steady-state experimental results for 

the comparison of secondary loop system to direct expansion system, using 

R152a as refrigerant.  

Figure ‎D.1 shows steady-state trends for relative magnitude of 

performance metrics over a range of ambient temperatures and relative 

humidities for idling and highway driving conditions, with respect to R134a DX 

magnitudes. The relative humidities which accompany respective ambient 

temperatures is shown in Table ‎7.1.  

Figure ‎D.1 a) shows variation of cooling capacity, while Figure ‎D.1 b) 

shows variation of power consumption, and Figure ‎D.1 c) shows variation of 

cycle COP.  As a general trend, cooling capacity of both, R152a DX and R152a 

2LP are similar to R134a DX at highway speed. During idling, cooling capacity 

decreases by about 5% to 10% for R152a 2LP systems. A comparison of power 

consumption shows that R152a DX consumes 10% to 15% less power compared 

to R134a DX at highway conditions. 2LP power consumption is increased, due to 

additional power consumption by the coolant pump. This is especially felt during 

idling at low temperatures, as the compressor consumes the least power in these 

conditions and pump power is a higher fraction of total power. However, power 

consumption does not rise above R134a DX power consumption even at low 

temperature idling. COP of R152a DX is generally higher than for R152a 2LP 
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systems. R152a 2LP COP is typically increased by 5% to 10% above R134a DX, 

except for idling at low ambient temperatures. 

Figure ‎D.2 provides a summary of sensible and latent performance for a 

range of ambient conditions. From Figure ‎D.2 a) it can be observed that sensible 

cooling capacity of the R152a DX and 2LP systems are close to the capacity of 

the R134a DX system. At idling, sensible capacity of the R152a 2LP system 

seems to be slightly increased to the R152a DX system. In comparison to the 

R134a DX system, the secondary loop system seems to have a similar sensible 

capacity at moderate temperatures, while it is reduced by more than 10% at low 

and high ambient temperature. Latent capacity, shown in Figure ‎D.2 b), is less 

conclusive, as high measurement uncertainties apply. However, at highway 

speeds, the latent capacity of R152a 2LP is similar to R134a DX capacity. At 

idling, trends seem to be unclear, except of at high ambient temperature of 45°C, 

where latent capacity is zero for all systems. A summary of sensible heating 

factor (SHF) values, not commonly reported in the automotive area, is shown in 

Figure ‎D.2 b). Both for R152a DX, as well as for R152a 2LP, the SHF stays 

within 5% of its value for R134a DX, except of during idling at low ambient 

temperatures.  

R152a compressor volumetric efficiencies, both for the DX and the 2LP 

system, shown in Figure ‎D.3 a), are observed to be higher than R134a DX at 

highway speeds. At idling speeds, R152a DX volumetric efficiencies are the 

same as R134a DX efficiencies, while R152a 2LP efficiencies are up to 10% 

decreased at low ambient temperatures. 
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Figure ‎D.1: Steady-state Performance Metrics Summary (2LP Versus DX) 
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Figure ‎D.2: Steady-state Sensible/Latent Performance Summary (2LP Versus DX) 

-20

-15

-10

-5

0

5

10

15

20

T15       
idle

T25       
idle

T35       
idle

T45       
idle

T15 
hwy

T25 
hwy

T35 
hwy

T45 
hwy

SH
F 

[%
]

Ambient Temperature [°C] ; Compressor Speed [rpm]

R134a DX R152a DX R152a 2LP

Sensible Heat Factor (% R134a DX)

-60

-40

-20

0

20

40

60

T15       
idle

T25       
idle

T35       
idle

T45       
idle

T15 
hwy

T25 
hwy

T35 
hwy

T45 
hwy

C
ap

ac
it

y
 [%

]

Ambient Temperature [°C] ; Compressor Speed [rpm]

R134a DX R152a DX R152a 2LP

Latent Capacity Comparison (% R134a DX)

-20

-15

-10

-5

0

5

10

15

20

T15       
idle

T25       
idle

T35       
idle

T45       
idle

T15 
hwy

T25 
hwy

T35 
hwy

T45 
hwy

SH
F 

[%
]

Ambient Temperature [°C] ; Compressor Speed [rpm]

R134a DX R152a DX R152a 2LP

Sensible Heat Factor (% R134a DX)

a)

b)

c)



258 

Isentropic efficiencies, shown in Figure ‎D.3, are increased by about 10% 

when using R152a as drop-in in the direct expansion system during highway 

driving. An increase of about 20% can be observed for the R152a secondary 

loop system. During idling, the R152a DX system shows an increase of up to  

10% in isentropic efficiency, decreasing with ambient temperature. The R152a 

2LP system showed isentropic efficiencies similar to R134a DX at low ambient 

temperature and increases of about 10% at higher ambient temperature.   

 

Figure ‎D.3: Steady-state Compressor Efficiency Summary (2LP Versus DX) 

-30

-20

-10

0

10

20

30

T15       
idle

T25       
idle

T35       
idle

T45       
idle

T15 
hwy

T25 
hwy

T35 
hwy

T45 
hwy

Ef
fi

ci
en

cy
 [

%
]

Ambient Temperature [°C] ; Compressor Speed [rpm]

R134a DX R152a DX R152a 2LP

Isentropic Efficiency (% R134a DX) 

-30

-20

-10

0

10

20

30

T15       
idle

T25       
idle

T35       
idle

T45       
idle

T15 
hwy

T25 
hwy

T35 
hwy

T45 
hwy

Ef
fi

ci
e

n
cy

 [
%

]

Ambient Temperature [°C] ; Compressor Speed [rpm]

R134a DX R152a DX R152a 2LP

Volumetric Efficiency (% R134a DX) a)

b)



259 

Appendix E Transient Test Procedure Illustrations 

‎Appendix E provides illustrations of all transient test procedures used in 

the present study. The illustrations show profiles of controlled parameters, such 

as compressor speed and heater core load, as well as their effect on cabin 

temperature and relative humidity. All illustrations show the progress of time over 

the length of a test on the x-axis. The magnitude of parameters is not identified at 

the axis, as the illustrations are meant to merely facilitate understanding of test 

procedures and resulting trends in cabin parameters.  

Figure ‎E.1 shows the test procedure for a pull-down test. Pull-down tests 

are performed at fixed compressor speeds and fixed condenser air flow rates, 

corresponding to an automobile driving at a steady speed. The compressor is 

turned on at time zero, providing cooling capacity to pull down the cabin to a pre-

defined comfort temperature. Once the cabin has reached comfort temperature, 

the test is stopped. 
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Figure ‎E.1: Pull-down Test Procedure Illustration 

 

Figure ‎E.2 provides an illustration of the New European Drive Cycle 

(NEDC) test procedure. The NEDC is a fixed profile of vehicle speed over time. 

The vehicle speed profile was converted into the compressor speed profile (rpm), 

shown in the figure. The condenser air flow rate still follows the original outline of 

the vehicle speed profile, since it is directly correlated with vehicle speed. The 

general trends of supply and cabin temperature and their fluctuation with 

compressor speed are shown.   
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Figure ‎E.2: NEDC Test Procedure Illustration 



To test thermal storage characteristics of secondary loop systems, off-

cycle test procedures were developed. The pull-down off-cycle test, shown in 

Figure ‎E.3, is a variation of the original pull-down test. Once cabin temperature 

corresponds to the comfort setting, the compressor is turned off and the cabin is 

allowed to heat up again. Temperature and relative humidity trends are recorded 

to allow the comparison between secondary loop and direct expansion systems.  
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Figure ‎E.3: Pull-down Off-cycle Test Procedure Illustration 

 

A second test procedure for off-cycle testing, the Start/Stop cycle, is 

shown in Figure ‎E.4. The Start/Stop cycle is an NEDC, modified to the extent that 

idling sections were replaced by compressor off sections. This simulates the 

start/stop automatic mechanism, used in modern cars, which turns off the engine  

instead of idling when waiting for a  traffic light.  



263 

 

Figure ‎E.4: Start/Stop Test Procedure Illustration 

 

The start/stop cycle was further modified to increase engine-off time. 

Figure ‎E.5 shows the Start/Stop three times idling (SS3xI) test procedure. The 

engine-off times were tripled with respect to the Start/Stop engine-off times (and 

NEDC idling sections), thereby introducing greater fluctuations in supply 

temperature and relative humidity. The thermal storage advantage of secondary 

loop systems can be observed better with increasing engine-off times. 
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Figure ‎E.5: Start/Stop 3x Idling Test Procedure Illustration 

 

Figure ‎E.6 through Figure ‎E.8 introduces three test procedures for A/C 

controls research. Figure ‎E.6 shows the procedure for frost cycling tests. A 

regular pull-down procedure decreases cabin temperature to comfort setting. 

After comfort temperature is achieved, the compressor continues to run, while a 

heater core is employed to keep the cabin at comfort temperature. Since the 

compressor is still running, supply temperature will eventually decrease until 

evaporator outlet temperature is close to frost condition. At this point the 
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compressor is cycled to prevent frosting. As a result, power consumption of 

compressor and heater are high, while supply relative humidity is low. 

 

Figure ‎E.6: A/C Ctrl - Frost Cycling Test Procedure Illustration 
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Figure ‎E.7 shows the test procedure for relative humidity cycling control. 

The relative humidity cycling control procedure is similar to the frost cycling 

procedure, though the cycling trigger is changed. Instead of cycling at the onset 

of frost at the evaporator, the compressor is mainly turned off when the cabin 

temperature is close to comfort setting. As long as relative humidity of the supply 

air does not increase above a pre-defined setpoint, the compressor remains 

turned off. This allows to expend less heater power and reduces power 

compressor consumption, though fluctuations in supply temperature and relative 

humidity are increased. 

Figure ‎E.8 introduces the continuous relative humidity control procedure. 

Similar to the relative humidity cycling, the compressor is used to control relative 

humidity. However, instead of cycling, compressor speed is controlled by a PID 

controller to keep supply relative humidity at a pre-defined setpoint, as long as 

cabin temperature does not warrant higher compressor speeds to gain additional 

cooling capacity.   
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Figure ‎E.7: A/C Ctrl - RH Cycling Test Procedure Illustration 
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Figure ‎E.8: A/C Ctrl - RH Continuous Test Procedure Illustration 
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Appendix F Steady-state Results Summary: Propane 2LP 

‎Appendix F provides a summary of R290 2LP steady-state results over a 

range of ambient temperatures for idling, as well as highway driving conditions 

with respect to R134a DX. Figure ‎F.1 shows am summary of cooling capacity, 

total power consumption, and transient performance factor (TPF), while 

Figure ‎F.2 focuses on sensible versus latent performance, and Figure ‎F.3 

provides information on compressor efficiencies. 

Figure ‎F.1 a) shows the cooling capacity of R290 2LP with respect to 

R134a DX. When operating under highway driving conditions, the R290 2LP 

capacity was decreased by less than 10%. During idling, the capacity was about 

20% decreased. As discussed in Chapter ‎8, R290 2LP compressor speed was 

reduced for both, idling and highway driving, which decreased cooling capacity. 

Therefore, cooling capacity results can be varied actively by adjusting 

compressor rpm. In an automobile, a compressor with a different displacement 

might be used. A comparison of power consumption, shown in Figure ‎F.1 b), 

shows that power consumption was up to 16% reduced at high speed conditions. 

At idling conditions, power consumption was reduced up to 11%. COP of R290 

2LP, shown in Figure ‎F.1 c), was increased by up to 9% at highway driving and 

moderate ambient temperatures. At idling conditions, power consumption was 

reduced between 10% and 15%. Although uncertainty during idling is increased,  

it can be observed that R290 2LP COP is generally decreased as compared to 

R152a 2LP COP. During highway driving, COP of R290 2LP is similar or higher 

than COP of R152a 2LP.   
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Figure ‎F.1: Steady-state Performance Metrics Summary (Propane 2LP) 
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Figure ‎F.2 shows a relative comparison of sensible and latent capacity, as 

well as the sensible heating factor (SHF). Figure ‎F.2 a) shows a comparison of 

accumulated sensible capacity. It can be found that R290 2LP sensible capacity 

is similar to R152a sensible capacity. The impact factor for is the secondary loop 

and the need to sensibly cool the additional thermal mass. At low temperature 

idling conditions, sensible capacity is reduced by 25%, though measurement 

uncertainty prevents a clear cut conclusion. Figure ‎F.2 b) shows a comparison of 

accumulated latent capacity. Latent capacity is associated with high 

measurement uncertainties, especially at idling conditions, since absolute latent 

capacity is very low. In general latent capacity at highway driving conditions is 

similar to latent capacity of R134a DX. A clear trend cannot be observed at idling 

conditions. Figure ‎F.2 c) shows a comparison of SHF. At highway driving 

conditions, SHF of R134a DX, R152a 2LP and R290 2LP compare with each 

other within 5%. At idling speed, R290 2LP latent capacity is increased by 10% at 

moderate ambient temperatures, while it is slightly decreased at low ambient 

temperatures.  

Figure ‎F.3 shows a comparison of volumetric and isentropic compressor 

efficiencies at different ambient and driving conditions. In general, it can be 

observed that R290 2LP compressor efficiencies are increased by about 10% at 

highway driving conditions. At idling conditions, both volumetric and isentropic 

efficiencies, are decreased by about 20% at moderate to high ambient 

temperatures. At low ambient temperatures, compressor efficiency decreases 

significantly by more than 30%.  
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Figure ‎F.2: Steady-state Sensible/Latent Performance Summary (Propane 2LP) 
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Figure ‎F.3: Steady-state Compressor Efficiency Summary (Propane 2LP) 
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Appendix G Glycol Property Equations 

The properties of the secondary working fluid, ethylene glycol, were 

calculated using property equations from M. Conde Engineering [109]. The 

respective equations were used in LabView, as well as in the Modelica glycol 

media package and are restated below for completeness.  

The properties (P) density, thermal conductivity, and specific heat capacity 

can be determined for an aqueous ethylene glycol mixture by Equation (G1), 

while dynamic viscosity and Prandtl number can be calculated with the help of 

Equation (G2). T is the temperature in [°C] at which properties are evaluated, 

while x is the mass fraction of glycol in water. Coefficients used in the following 

equations are detailed in XXX. 

           
      

 
    

      

 
    

      

 
 
 

     (G1) 

               
      

 
    

      

 
    

      

 
 
 

     (G2) 

 

Table ‎G.1: Ethylene Glycol Property Equation Coefficients 

Parameter ρ Cp k μ Pr 
Order [kg/m3] [kJ/kg K] [W/m K] [Pa s] [-] 

0     1.0 
1 658.49825 5.36449 0.83818 -4.63024 -0.06982 
2 -54.81501 0.78863 -1.37620 -2.14817 -0.35780 
3 664.71643 -2.59001 -0.07629 -12.70106  
4 232.72605 -2.73187 1.07720 5.40536  
5 -322.61661 1.43759 -0.20174 10.98990  
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Appendix H Modelica Direct Expansion System Equations 

‎Appendix H provides information about the general equations used in the 

modeling of the direct expansion system components. The modeling work for the 

direct expansion components was done by Hongtao Qiao. The following 

equations can be found together with a more detailed discussion in Qiao [129].  

The expansion cycle consists of four components, namely the compressor, 

expansion device, and the two heat exchangers.  

The compressor was modeled as a quasi-steady state, efficiency-based 

component, where refrigerant mass flow rate was computed as a function of 

displacement, revolutions per minute, suction density and volumetric efficiency, 

given by Equation (H1). Discharge enthalpy as a function of isentropic efficiency 

was computed according to Equation (H2). The power due to adiabatic 

compression work was determined by Equation (H3). 

                  (H1) 

   
        

   
     (H2) 

                (H3) 

Similar to the compressor model, the expansion valve was modeled as a 

quasi-steady state isenthalpic throttling process. Mass flow rate through the valve 

was determined by flow coefficient, flow area, inlet density and pressure drop 

across the valve, as shown in Equation (H4). 

                   (H4) 
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Heat exchanger models are composed of three control volumes, which are 

connected by heat transfer mechanisms. The control volumes are the refrigerant 

control volume, the finned wall, and the air-side control volume. The following 

conservation laws apply to the control volumes: 

Refrigerant-side 

   
   

   
 
 

   

  
  

   

   
 
 

   

  
                  (H5) 

     
   

   
 
 
   

   

  
      

   

   
 
 
    

   

  
                         (H6) 

                    (H7) 

Finned Wall 

     
   

  
             (H8) 

Air-side 

                      
      

       
      (H9) 

Mass and energy balance are calculated in control volumes, whereas the 

momentum balance is calculated between control volumes (through connectors). 

For the microchannel heat exchanger models, air and refrigerant splitter models, 

as well as air and refrigerant mixer models were added before and after the 

respective control volumes.  
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Appendix I  R134a DX Steady-state Reference Data 

Chapters ‎7, ‎8, and ‎9 show experimental results of the secondary loop 

system using various primary refrigerants relative to the results of the R134a DX 

system. ‎Appendix I provides absolute R134a DX data as a reference point for 

these comparisons. 

Figure ‎I.1 shows a summary of steady-state performance metrics data for 

a variety of ambient temperatures during idling and highway driving conditions. 

Cooling capacity, shown in Figure ‎I.1 a), was lowest, about 2 kW, during idling at 

15°C ambient temperature. The highest cooling capacities, 5.5 kW, were 

measured at highway driving (high compressor rpm) and high ambient 

temperatures of 35°C and 45°C. Figure ‎I.1 b) shows compressor power 

consumption  over a range of ambient temperatures for idle, as well as highway 

driving conditions. Power consumption  varied from as low as 0.6 kW during 

idling at 15°C ambient temperature to 4.3 kW during highway driving at 45°C 

ambient temperature. R134a DX coefficient of performance, shown in Figure ‎I.1 c) 

decreases with increasing compressor rpm, as well as with increasing ambient 

temperature.  

A summary of sensible and latent performance data is shown in Figure ‎I.2. 

Sensible capacity, shown in Figure ‎I.2 a), increases with ambient temperature. 

The lowest sensible capacity, 1.5 kW, was measured at 15°C ambient 

temperature during idling. The highest sensible capacity was measured to be 4.6 

kW at 45°C ambient temperature during highway driving.   
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Figure ‎I.1: Steady-state Performance Metrics Summary (R134a DX) 
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Figure ‎I.2 b) presents latent capacity results. In general, latent capacity 

was decreased compared to sensible capacity. During idling, latent capacity 

decreased with increasing ambient temperature from 0.5 kW (15°C) to 0 kW 

(45°C). Latent capacity increased significantly during highway driving with the 

highest latent capacity measured to be 2.0 kW at 35°C. Figure ‎I.2 c) presents the 

variation of sensible heat factor (SHF) with ambient temperature under idling and 

highway driving condition. During idling the sensible heat factor is continuously 

increasing from 0.73 at 15°C ambient temperature to 1.0 at 45°C. During 

highway driving, the lowest SHF was measured at 35°C with 0.64, while the 

highest SHF was measured at 45°C with 0.88. 

Figure ‎I.3 shows a summary of steady-state compressor efficiencies for 

the R134a DX system. Volumetric efficiency, shown in Figure ‎I.3 a), decreases 

with increasing ambient temperature. On average, idling volumetric efficiency 

was calculated to be 0.91, while volumetric efficiency during highway driving 

conditions was calculated to be 0.84. Figure ‎I.3 b) presents isentropic efficiency 

results. Isentropic efficiency decreased with increasing ambient temperature. 

During idling conditions, isentropic efficiency decreased from 0.85 (15°C) to 0.77 

(45°C). During highway driving conditions, isentropic efficiency decreases from 

0.69 (25°C) to 0.66 (45°C).  
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Figure ‎I.2: Steady-state Sensible/Latent Performance Summary (R134a DX) 
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Figure ‎I.3: Steady-state Compressor Efficiency Summary (R134a DX) 
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