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ABSTRACT

Title of Thesis: Coding of Speech LSP Parameters Using Tree-Scarched

Vector Quantization .

Name of degree candidate: Nam Chan Phamdo

Degree and Year: Master of Science, 1989

Thesis directed by: Dr. Nariman Farvardin, Associate Professor,

Electrical Engineering Department

The Line Spectrum Pair (LSP) parameters have been established as one of the
most efficient method for representing the short-time speech spectra. The effective-
ness of this method is due to two main properties, namely, the intraframe and the
interframe correlation of the LSP parameters.

In this thesis, several innovative schemes are developed for encoding LSP param-
eters. These‘schemes are all based upon tree-searched vector gquantization (TSVQ),
which exploit the intraframe correlation. When there is no channel noise, a differ-
ential coding scheme, called interblock noiseless coding (IBNC), is used with TSVQ
to remove the interframe correlation. In order to achieve the desired reproduction
fidelity, scalar quantizers are used to further encode the TSVQ error vector. With an
encoding delay of only one frame, this technique achieves 1 dB? spectral distortion
at approximately 20 bits/frame, which is a noticeable improvement over previously
reported results.

In the case where the channel is noisy, two approaches are proposed for encoding
the LSP parameters. The first approach (Channel-Optimized TSVQ) is to redesign
the TSVQ encoder and decoder for the noisy channel. In the second approach (MAP
detection), the interframe correlation is utilized in combating channel errors. Both

of these methods have shown to be very effective.
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Chapter 1

Introduction

Linear Predictive Coding (LPC) is known to be one of the most powerful models
for narrowband speech coding. According to this model, the short-time spectral
information of speech can be fully represented by an all-pole filter whose coefficients
are defined as the LPC parameters. In most coding applications, however, these
parameters are not directly encoded. The reason for this is twofold: (1) the LPC
parameters have a wide dynamic range which makes them difficult to quantize and
(2) the stability of the synthesis filter is quite senéitive to quantization errors in the
LPC parameters [1,2].

As alternatives, the Partial Correlation (PARCOR) parameters and the Line
Spectrum Pair (LSP) parameters, both of which are mathematically equivalent to
the LPC parameters, have well-behaved dynamic ranges and simple stability criteria
for the synthesis filter [2,3]. The LSP parameters, however, have some additional
properties which separate them from the LPC and the PARCOR parameters. Specif-
ically, the LSP parameters have a special ordering property which implies intraframe
correlation and a nice interpolation property which can be interpreted as interframe
correlation [3,7]. These properties, if properly utilized, can significantly improve the
quantization of LSP parameters [4,5,7].

In [4] and [5], the intraframe correlation of the LSP parameters was exploited

by adaptive quantization and differential quantization, respectively. At a spectral



distortion of 1 dB* !, the adaptive quantizer and the differential quantizer achieved
rates of 34 bits/frame and 32 bits/frame, respectively. To utilize the interframe
correlation, two schemes which are based upon the discrete cosine transform (DC'T)
were developed in [7]. The first scheme, called 2D-DCT, ope;atcd at 21 bits/frame
with 1 dB? spectral distortion and the second scheme, called DCT-DPCM, operated
at 25 bits/frame with the same distortion.

All four schemes mentioned above incorporated scalar quantizers (SQs) in their
designs and hence tend to perform poorly at very low bit rates, i.e., at around 5 to
10 bits/frame. Furthermore, the 2D-DCT system has a certain drawback in that it
requires an encoding delay of ten frames (100 msec). In some applications, such as
in two-way communication systems, this long delay can not be tolerated.

It is the purpose of the thesis to deyelop a new scheme for encoding the LSP
- parameters which would operate efficiently at very low bit rates and with a small
encoding delay, achieve 1 dB? spectral distortion at 20 to 25 bits/frame. We will
show that these goals can be accomplished using ideas from wvector quantization
(VQ), which is known to operate very efficiently at very low rates. Specifically, to
exploit the intraframe correlation, tree-searched vector quantizers (TSVQs) are used
to encode the LSP parameters. It is observed that, due to the strong interframe
correlation of the LSP parameters, the TSVQ codewords or indexes (at the output of
the TSVQ encoder) also have a strong correlation from frame to frame, that is, the
binary codeword of the present frame tends to have a fairly long common prefix with
the one associated with the previous frame. To utilized this interframe correlation,
the TSVQ codewords are themselves encoded by a variable-length coding scheme
called inter-block noiseless coding (IBNC) [8]. In this coding scheme, only the length
of the common prefix (rather than the prefix itself) is transmitted along with the

suffix. A reduction of 30 to 50 % in rate can be achieved without introducing any

YA spectral distortion of 1 dB? is the established difference limen of spectral distortion [6]. It
was determined in [6] that the human ear cannot perceptually detect any distortion below 1 dB?.
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additional distortion [8].

One important observation that should be noted is the following: In [8], the
TSVQ and IBNC system is applied to speech data rather than LSP parameters.
When there is a long period of pauses, as is often the case i;l two-way speech com-
munication systems, effectively 1 bit is transmitted for each pause frame. In the case
of LSP parameters, however, this is no longer true. In fact, as we shall see later,
a long pause period can actually deteriorate the performance of the encoder. To
combat this problem, pause detection (PD) is incorporated into the system. When a
pause frame is detected, a fixed codeword, appropriately chosen to represent pause
frames, is passed to the IBNC encoder. Since pauses usually occur in consecutive
frames, this implies that the length of the common prefix in a pause frame is very
long (equal to the length of the codeword), resulting in an average bit rate of 1 bit
per pause frame. -

As an alternative to the PD method, whose performance depends on the amount
of pauses in the speech (iata, an algorithm called frame-repeat TSVQ (FR-TSVQ)
can be used [9]. In this system, if the Euclidean distance between LSP parameters
of the current and previous frames is less than a given threshold, then the previous
codeword is repeated. When used with IBNC, this scheme can reduce the bit rate
without significantly increasing the distortion. This will be shown by simulation
results given in Chapter 3 which also includes a detailed study of all the schemes
mentioned above for very low bit-rate coding of LSP parameters.

As mentioned earlier, vector quantizers are very efficient at very low bit rates.
Unfortunately, they are not applicable at higher bit rates (hence, low spectral dis-
tortion) due to their exponential complexity. In some applications, like Codebook
Excited Linear Predictive (CELP) coding, the LSP parameters are required to be
finely quantized to less than 1 dB? spectral distortion [14]. In this situation, SQs

are often used since their complexity is minimal. A more efficient scheme for high



fidelity coding is a hybrid of VQ and SQ. In a hybrid system, the source vector is
encoded by a VQ and the error vector (the difference between the VQ input and
output) is subsequently quantized using SQs. Using this idea, an efficient method
for cncoding LSP parameters at 1 dI3? spectral distortion isq developed. As before,
TSVQs are used in the first stage and the TSVQ codewords are encoded using
IBNC. Two types of SQs are considered for encoding the TSVQ error vector. The
first is a simple Lloyd-Max quantizer [10,11] and the second is an entropy-constraint,
uniform-threshold quantizer [12]. In addition, two schemes for allocating bits to the
SQs are considered: In the first scheme the bit allocation is fized while in the second
it is adaptive depending on the TSVQ output. Numerical results show that using
a hybrid coding scheme a 1 dB? spectral distortion can be achieved at 20 to 23
bits/frame (with an encoding delay of at most two frames).

As the final part of this thesis, the problem of encoding LSP parameters over
noisy channels is studied. Two approaches to this problem are considered: 1) To
redesign the quantizers for LSP parameters for the noisy channels and 2) to utilize
the interframe correlation to combat channel errors. In the first approach, the
channel-optimized vector quantizer (COVQ) design algorithm of [13] and [23] is
modified for TSVQ. Extensive numerical results of the modified algorithm are given
for Gauss-Markov sources as well as for LSP parameters. These results show that
significant improvements over ordinary TSVQ design can be obtained, especially
for a very-noisy channel. In the second approach, an algorithm, based upon the
mazimum a posteriori formulation, is developed for detecting the noise-corrupted
TSVQ codewords. The underlying assumption here is that the TSVQ codewords
form a discrete Markov chain and that the channel is a discrete memoryless channel.
Simulation results show that this approach yields an even greater improvement than
the first approach.

The rest of this thesis is organized as {ollows: A brief review of LSP parameters,



including a discussion on distortion measures and vector quantizers is provided in
Chapter 2. This is followed by Chapter 3 which describes several coding schemes
developed for the noiseless channel. These include the TSVQ and IBNC scheme,
the PD and FR-TSVQ schemes, and the hybrid VQ and SQ coding scheme. The
noisy channel problem is addressed in Chapter 4. Finally, Chapter 5 contains the

conclusions and several recommendations for future research.



Chapter 2

Preliminaries

This chapter gives an introduction to some of the basic tools that will be used
throughout the rest of the thesis. In the first two sections a brief summary of the
Linear Predictive Coding model and an introduction to the Line Spectrum Pair
method is provided. A discussion on distortion measures and the TSVQ coding

method is given in Sections 2.3 and 2.4.

2.1 LPC Model

The LPC model provides, in a concise form, a fairly precise representation of
the basic speech parameters [1,2]. The underlying assumption in this model is that
a speech sample, s(n), can be approximated by a linear combination of the past p

samples, i.e.,
P
§(n) = =Y ars(n — k), (2.1)
k=1
where 3(n) denotes the predicted value of s(n). The error in the approximation is
given by
p
e(n) = s(n) — 3(n) = s(n) + >_ axs(n — k). (2.2)
k=1
The signal, ¢(-), is sometimes referred to as the residual or the prediction crror.

Typically, e(-) is modeled as an ¢mpulse train for voiced speech and white noise for

unvoiced specch. From (2.2) it can be seen that the signal s(-) represents the output



of an all-pole filter with transfer function,

1
- 1 + 22:1 akzwk ’

H(z) (2.3)

and input e(-). Thercfore, according to the model, the spedch signal, s(-), can be
represented compactly by the parameters of e(+) (voiced/unvoiced, pitch and gain)
and the p (called the analysis order) coefficients of the filter, {ax}}-;, commonly
referred to as the LPC parameters.

For a given signal, s{-), the LPC parameters are chosen so as to minimize the

residual energy:

2

E=Y €n)=)_ |s(n)+ :Z: aps(n — k)| . (2.4)

n

This can be done by setting
: oFE
Bai -

fori =1,2,...,p. From (2.4) and (2.5), we get

0, (2.5)

k‘éast(n—k)s(n—i): Y " s(n)s(n — i), i=1,2,...,p (2.6)

T

Equation (2.6) above is equivalent to

p
S awR(i— k)= —R(),  i=1,2...,p, (2.7)
k=1

where
R(7) :Zs(n)s(n—i), 1=1,2,...,p, (2.8)

is the autocorrelation function of s(-). Often in LPC analysis, the autocorrelation
function, { R(1)}E_,, is first computed from equation (2.8) and then the LPC param-
eters are determined by solving equation (2.7). There are several fast algorithms
available for solving (2.7). These algorithms can be found in [2,17].

Since speech is stationary for only a short period of time, the above analysis is

only performed over a short segment of speech (10-30 msec). This segment is often
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referred to as a frame of specch. Every 10 to 30 msec, a new frame is analyzed
resulting in a new set of parameters.

As mentioned earlier, the LPC parameters have some undesirable characteristics
which make them unsuitable for quantization. First, notice tilat cach LPC parame-
ter can take values anywhere on the real line. This would make 1t difficult to design
“good” quantizers for them. Also, notice that a small error in one of the LPC pa-
rameters could possibly result in an unstable synthesis filter. Next, we give a more
attractive, and yet mathematically equivalent, set of parameters known as the line

spectrum pair parameters.

2.2 LSP Parameters

Suppose that the synthesis filter in equation (2.3) is given as follows:

1 1

Hiz) = Az T+ o, wzF

(2.9)

For a j-th order LPC analysis, the polynomial A;(z) can be shown to satisfy the

following,
AJ‘(Z) = Aj_l(z) - k'jz_jAj_l(z_l), ] = 1,2,...,]7, (2.10)

where Ag(z) = 1. The coefficients {k;}5., are known as the PARCOR coefficients.

These coeflicients have the property that
‘kj|<1? j=1,2,---,177 (2.11)

whenever H(z) is stable [17]. As it turns out, the PARCOR coeflicients are directly
related to the reflection coefficients of the concatenated lossless tubes model [17].
To derive the LSP parameters, consider the extension of (2.10) to the case when
j=p+1,
Apir(2) = Ap(2) — kpyrz~ @A (271). (2.12)



When p is even, consider the two extreme conditions: kyyy = 1 and k4 = —1.
These conditions correspond to the complete closure (ky,41 = 1) and the complete

opening (kyy1 = —1) of the glottis in the acoustic tube model [4]. Under these

4q
conditions, we have, for k,4q =1,

P(z) = Ay(z) - Z—(p_H)Ap(Z-l)y
= 14+ (a1 — ap)z‘] + ...+ (ap ~ay)z7? — z“(”H), (2.13)
and for k,yq = —1,

Qz) = Ap(z)+ 24, (=7,

i

= 1+ (e +a,)z 4 ... 4 (g, 4+ a)z7?P + 27D, (2.14)

Note from equations (2.13) and (2.14) that z = 1 and z = ~1 are fixed roots of P(z)
and Q(z), respectively. Furthermore, it can be shown that all the roots of P(z) and
Q(z) lie on the unit circle [3]. From these observations, it is clear that equations

(2.13) and (2.14) can be rewritten as

P(z)=(1-z" JI (1-2coswiz™" +27%), (2.15)
1=2,4,...,p
and
Qz)=(1+z") J] (1-2coswiz™ +27%), (2.16)
1=1,3,...,p~1

where z; = e 1 =1,2,...,p, are roots of P(z) (when 1 is even) and Q(z) (when
i is odd) on the unit circle. The coeflicients {w;}'.; are defined as the line spectrum
pair (LSP) parameters. Note that the fixed roots of P(z) and Q(z) correspond to
wo = 0 and wy4q = 7, respectively. Also, it should be mentioned that in (2.15) and
(2.16), it was assumed, without loss of generality, that wy < wy S wy < ... < w,
and w; w3z < ... Swpm1 S Wpia-

From a given set of LSP parameters, the LPC synthesis filter can be recovered
from the equation

1 2

=3 = Peree (217)

9




One other observation that was made in {3] is that the roots of P(z) and Q(z)

are distinct and they alternate with each other on the unit circle, i.e.,
0=wy <w <wy < ... <wpy <wp < Wppp =T, (2.18)

whenever H(z) is stable. Equation (2.18) is referred to as the ordering property
of the LSP parameters. In fact, it was shown in [3] that the ordering property is
actually a necessary and sufficient condition for the stability of the LPC synthesis
filter.

It is obvious that when the ordering property holds, the LSP parameters within
each frame are correlated with each other, i.e., they have an intraframe correlation.
To illustrate the interframe correlation, Figure 2.1 shows the plot of the LSP pa-
rameters for 100 frames of speech, corresponding to the phrase “The committee has
...”. Note, in Figure 2.1, the “smooth™ transition of the LSP parameters from frame
to frame. If, for example, an LSP parameter in a given frame is somehow “missing”,
then its value can be estimated by a linear interpolation of its past value and its
future value. For this reason, the interframe correlation is sometimes referred to as
the interpolation property of LSP parameters. Also, note in Figure 2.1 the ordering
property of the LSP parameters.

Several implications of the properties of LSP parameters to coding applications
are now presented. First, observe that the LSP parameters are all bounded between
0 and w. This means that quantizers for them can be designed relatively easily.
Second, since the LPC synthesis filter is guaranteed to be stable, the LSP parameters
obtained from this filter always satisfy the ordering property. Using this knowledge,
efficient methods can be developed for encoding these parameters. Examples of
these are the adaptive quantizers of [4] and the differential quantizers of [5]. If
the interpolation property is also utilized, then methods similar to the 2D-DCT

[7] can be used. Furthermore, the knowledge of the ordering property can be used

10



LSP PARAMETERS
4000 —— B L R B T T

Y]
O
O
]
|

et
o
)
)
|

Frequency (Hz)
20
S
S
S
<§i
i;§j>

0 2 4 .6 .8 1
Time (sec)

Figure 2.1: LSP Parameters for the Phrase “The committee has ...” (10 msec Frame
Rate).
to offset the effect of errors (due to either quantization or channel noise) in the
LSP parameters. To demonstrate this point, suppose that a set of LSP parameters
(which satisfies the ordering property) was distorted in such a way that the ordering
property no longer holds. Directly synthesizing these parameters would lead to an
unstable filter. In this case, the LSP parameters are simply reordered to satisfy the
ordering property. It has been established that by doing this, one can only reduce
the squared-error between the original parameters and the noise-corrupted ones [14].
In the next section, we provide a discussion on the distortion measures that will

be used for performance evaluation of various encoding schemes.
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2.3 Distortion Measures

One of the most commonly used objective measures for specch quality is the

spectral distortion measure, given by '

5D, = [ (10105 S,0) — 10log ()52, (dB?) (2.19)

where S, (w) and S, (w) are the original spectra and the quantized spectra, respec-
tively, associated with the n-th frame of speech and SD,, is the corresponding spec-
tral distortion. The average spectral distortion is given by,
1 X

SDgye = ng‘l SD,, (dB%), (2.20)
where Ny is the number of frames. The measure, given by equations (2.19) and
(2.20), is known to have a good correspondence with subjective tests. However, this
measure has a certain flaw in that it does not include the gain term in its calculation.
If, for example, the gain in a given frame, n, is very small, corresponding to a pause
frame, then the contribution of SD, to the overall distortion is insignificant from a
perceptual point of view. Since, in this work, some of the data used for simulations
contain a lot of pauses, a modified measure which only counts the non-pause frames

is introduced. First, let us define the indicator function, g,, as

1 ifo?>aq,
- 5= 2.9
Gn { 0 ifol<a, (2.21)

where o2 is the energy of the n-th frame and « is a pre-determined threshold. Here

« is chosen so that g, = 1 when the n-th frame is classified as speech and ¢, = 0

when it is classified as pause. Then the modified average spectral distortion is given

by

Ny
MSDgye = ——N}— > 9.SD,, (dB?). (2.22)
2on=19n n=1

Note that when there is no pause frame, then g, = 1 for all n and MSD,,e = SDgre.

Throughout the rest of this thesis, we will use the M SD,,. measure to evaluate the

12



performance of coding schemes developed for LSP parameters. For the quantization
of LSP parameters, however, a different distortion measure will be used, as described
below.

When designing quantizers for LSP parameters, ideally, 0;10 would like to use the
spectral distortion as an objective measure. Unfortunately, the spectral distortion,
as given in equation (2.19), can not be expressed in term of the LSP parameters in
any simple way. For this reason, most quantizers designed for LSP parameters use
the squared-error distortion measure,

P
dw, &) =) (w; —&;)?, (2.23)

i=1
where w and & are the original and the quantized LSP vector, respectively. The
squared-error distortion is much simpler to compute than the spectral distortion and
it is much more tractable mathematically. In this work, we shall use the squared-

error measure to design quantizers for LSP parameters.

2.4 VQ and TSVQ

Basic results in information theory state that coding sources as vectors always
yield better results than coding them as scalars. The theory, however, does not
provide any method for designing “good” vector quantizer. In 1980, Linde, Buzo
and Gray [15] came up with a method, known as the LBG algorithm, for designing
memoryless VQs. Since then, different variations of this algorithm, including TSVQ),
have been considered [16].

In this section, we will provide a brief summary of VQ and TSVQ. This shall
form the basic framework of all the coding schemes developed throughout this thesis.
The interested reader should refer to {16] for additional details.

A p-dimensional vector quantizer (VQ) of rate m is described by the following

13



two mappings:

with

and

with

'y:lR”‘——»]:(m)é{O,],...,M-—

() =

Hfae Si,

1y,

L]

Vi e Fim),

m m) & ™m m m
B Fm o )Z{Co’cl,---’CM—l}’

pli) = cp,

Vi € j;'(m),

where M = 2m, Ppim) 2 {S0,81,-..,Sm-1} is a partition of IR?, and c™ € IR,

Vi € F™). The set C(™ is called the reproduction alphabet (or codebook) and its

elements are called the codevectors. In this work, the vector & will be the vector of

LSP parameters. The mappings v and 3 can be thought of as an encoder-decoder

pair in a digital communication system. A block diagram of a typical VQ-based

encoding system is illustrated in Figure 2.2.

Figure 2.2: Block Diagram of a Typical VQ-based Encoding System.

Channel

Source z € RP Encoder | i¢ F(m)
7()

Sink ) < Decoder | j € F(m)
B(-)

In an LBG VQ design algorithm, a rate m = 1 bit/vector VQ is first designed.

This is done by iteratively updating the partition P and the codebook ¢V until

they converge. Then a VQ of rate m = 2 is designed. The initial codebook C(?)

14



is obtained by “splitting” the codevector ¢! (€ CV) into ¢! — & and c! + 6 and
likewise for ¢!, where 6 is a small perturbation vector. Now the partition P and
the codebook C) are iteratively updated. This process is continued until the desired
value of m is reached. ‘

In the case where the channel is a perfect (noiseless) channel, the encoder v can
also be described by the nearest neighbor rule:

y(x) = arg ien;%g) d(z,cl), (2.28)
where d(-,-) is some distortion measure defined on IR”. In this thesis, d(-,) is the
squared-error distortion given by equation (2.23). The encoder described by equa-
tion (2.28) requires M = 2™ distortion calculations and comparisons. Obviously,
the encoding complexity grows exponentially with the rate m.

Most practical VQ-based systems use sub-optimal search algorithms which have
less complexity. An example of this is the tree-searched vector quantization (TSVQ)
method. In a (binary) TSVQ design algorithm, the codebook C(1) is obtained in the
same way as in the LBG algorithm. After this, the training sequence is divided into
two subsequences depending on which of the two codevectors, €} and ¢!, it is closer
to. Each subsequence is then used to design another V() (with two codevectors in
each) and this process is continued until the desired rate is reached. An example
of a TSVQ of rate m = 3 bits/vector is illustrated in Figure 2.3. The encoding
is done by searching through the tree, making two distortion calculations and one
comparison at each node in the tree. In this case, the complexity grows only linearly
with the rate, requiring 2m distortion calculations and m comparisons. One disad-
vantage of this method is the increase in memory requirement. The TSVQ encoder
requires 2M — 2 memory elements (to store all the codevectors in each node of the
trce; each element contains one p-dimensional vector) as compared to A memory

elements for the VQ encoder. Another disadvantage of the TSVQ method is that the
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performance, in the rate-distortion sense, is degraded due to the sub-optimal scarch
and design. However, this degradation is small compared to the gain in lowered
complexity.

Throughout the rest of this thesis, TSVQ will be used as t‘he basic building block

for the coding schemes developed for LSP parameters.

Figure 2.3: Example of a Binary TSVQ with Rate m = 3 bits/vector.
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Chapter 3

Coding Schemes for Noiseless
Channels

This chapter deals with coding algorithms developed for the noiseless channel.
Two main themes are considered here: (1) Coding at very low bit rates (= 5 to
10 bits/frame) while still maintaining intelligible quality speech and (2) Coding for
high quality speech, specifically for 1 dB? spectral distortion, while keeping the bit
rate as low as possible. The latter has an important impact in Codebook Excited
Linear Predictive (CELP) coding applications [14], where it is essential to keep the
spectral distortion below 1 dB2. As mentioned earlier, TSVQ will be used as the
basic building block.

3.1 Very Low Bit-Rate Speech Coding

While TSVQs are inherently efficient at very low bit rates, they still do not re-
move the interframe correlation of the LSP parameters !. This implies that the LSP
parameters can be encoded more efficiently if this correlation is removed. Next,
we consider a method called interblock (or in our case interframe) noiseless cod-
ing (IBNC) [8] which uses the interframe correlation of LSP vectors to reduce the

encoding rate without increasing the spectral distortion.

n this work, we only deal with memoryless TSVQs.
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3.1.1 Interblock Noiseless Coding

Since LSP parameters have a strong frame-to-frame correlation, the paths that
arc taken through the tree (in adjacent frames) tend to coigcide throughout most
of the tree. Typically, the binary codeword is formed by the path taken through
the tree; a 0 or 1 is assigned to the codeword depending on which of the two paths
is taken at each node. This implies that the binary TSV(} codewords (in adjacent
frames) tend to have a fairly long common prefix with each other.

Given a TSVQ of rate m, let us define k as the length of the common prefix in
the current frame, i.e., the binary codeword of the present frame has k consecutive
bits (in the most significant places) in common with the codeword in the previous
frame, where 0 < £ < m. When k = m the two codewords exactly coincide. Note
that if the value of k is provided to the decoder, then only the information in the
suffix (the remaining bits) is needed to be transmitted — since the first k bits can
be obtained from the previously decoded codeword. Also note that if the value of &
is known, then the (k + 1)-st bit can be obtained by taking the complement of the
(k + 1)-st bit in the previous codeword. Hence only m — k — 1 bits are required for
encoding the suffix (except when k = m in which case no bit is required). The larger
the value of k is the fewer will be the number of bits needed to encode the suffix.
To encode k, either a fixed-length code or a variable-length code can be used. In
this work, we will concentrate on the variable-length code for encoding k since the
overall IBNC system is already variable-rate. Furthermore, as we shall see shortly,
different values of k occur with different probabilities and in such cases, variable-
length codes are preferred over fixed-length codes. The variable-length code used
here is a first-order Huffman code.

To determine the average rate, let us use K to denote the prefix-length random

variable and let I(k) be the length of the Huffman code associated with A" = k.
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Then the average rate using IBNC is

A= S Pe{K = k) I(R)+ (m = k= 1] 4+ Pr{K = m}[i(m)]  (3.1)
k=0

= E[(K)]+m—E[K]—1+Pr{K =m}. -+ (3.2)

An example of the distribution of K is provided in Table 3.1 for 61,804 frames of
speech (no pauses) and m = 13. In this case, a = 9.34 bits/frame implying a
rate reduction of 3.66 bits/frame or 28 %. Table 3.2 shows the rate reduction for

m = 6,8,10,12 and 13 for the same 61,804 frames.

k {Pr{K =k} | lk)|m—k-1

0 0.076 4 12

1 0.097 3 11

2 0.080 4 10

3 0.072 4 9 -

4 0.086 4 8

) 0.072 4 7

6 0.062 4 6

7 0.054 4 d

8 0.051 4 4

9 0.042 ] 3

10 0.040 ) 2

11 0.034 ) 1

12 0.033 3 0

13 0.203 2 0
Average 3.65 5.69

m = Average rate per frame = 9.34 bits

Table 3.1: Distribution of the Prefix Length K.

3.1.2 Pause Detection

One problem with the IBNC scheme, when applied to LSP parameters, is that

the overall system does not perform as well as one might expect when there is a long
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m | m Rate
Reduction

6 | 350 41.7%
8 15.06 36.8%
10 | 6.71 32.9 %
12 | 8.44 | 297 %
131934 282%

Table 3.2: Rate Reduction for Various Values of m.

period of pauses. To demonstrate this point, the distribution of the prefix length, K,
for a database containing only pauses (32,929 frames with 10 msec frame period), is
tabulated in Table 3.3. These results were obtained from a TSVQ that was designed
using 61, 804 frames of speech and 32,929 frames of pauses. Since pauses contain no
valuable spectral information, intuitively, one would expect the average bit rate to
be much lower in this case than when there is speech. As can be seen in Table 3.3,
this is not so; in fact, the‘ average rate is even higher than what was shown in
Table 3.1. This is because the LSP vectors corresponding to pauses lie in a region
that covers a number of TSVQ encoding regions and when there are just pauses,
there is little frame-to-frame correlation. Hence, the transitions from one of these
regions to any other one are almost equally likely.

In this section we address the problem of pause detection (PD) and then apply
this to the TSVQ-IBNC coding scheme. One approach to this problem is to look at
the energy of the signal and use the indicator function as in (2.21). This method
requires that a threshold, a, be pre-chosen and that the input SNR be relatively
high in order for the system to operate properly. A more interesting approach for
pause detection is to look at the LSP parameters.

To understand the behavior of the LSP parameters when there are pauses, ob-



E{Pr{K =k} |l(k)|m-Fk—1

0 0.046 4 12

1 0.045 ) 1 8

2 0.064 4 10

3 0.105 3 9

4 0.043 3 8

b} 0.140 3 7

6 0.117 3 6

7 0.103 3 5

8 0.080 4 4

9 0.068 4 3

10 0.052 4 2

11 0.037 5 1

12 0.028 5 0

13 0.073 4 0
Average 3.69 5.84

m = Average rate per frame = 9.53 bits

Table 3.3: Distribution of the Prefix Length K when the Data Contains Pause Only.

serve that a pause frame corresponds to a flat spectrum which implies that the roots
of the polynomials P(z) and @(z) (defined in Section 2.2) are uniformly spaced on
the unit circle. This, in turn, implies that the LSP parameters are uniformly spaced
between 0 and w. To illustrate this fact, the plot of the LSP parameters for the
utterance “...These shoes were black and brown...” is provided in Figure 3.1. In this
figure, the silence period is the first 800 msec and the last 1000 msec.

To detect the pauses, consider the following Bayesian hypothesis testing problem:
P(pause) : X;~MN(pg,5?), i=1,2,...,p, (3.3)
S(speech) :  X;~AMN(u,0?), i=1,2,...,p, (3.4)

where X = (X1,X3,...,X},) 1s the random LSP vector. When the data is pausc

(speech), X; is modeled as a Gaussian random variable with mean ji; (y;) and vari-
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Figure 3.1: LSP Parameters for the Utterance “...These shoes were black and
brown...”.

ance 5} (o}). Note that this model can not be exactly correct since LSP parameters

are bounded between 0 and 7 and Gaussian random variables are unbounded. How-
ever, the variances of the LSP parameters are small enough so that this model can
be well justified. The objective in this problem is to minimize the Bayes risk [18],

R, given by,

R = Cyps Pr{deciding P|S is true} Pr{S}

+Csp Pr{deciding S|P is true} Pr{P}, (3.5)

where Cps (Csp) is the cost of choosing pause (specch) when the data is actually

e

speech (pause). The solution to this problem is known as the likelihood-ratio test
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[18]:
fxip(
xs@S) § 7 T Pr(P)Cy,

2 (3.6)
where fxp(2|P) (fx|s(2]S)) is the conditional probability dcrmty function of X
(

Py £ A Pr{S}C,
19) 3 Pr{P}C,,

given that the data is pause (speech). Equation (3.6) can be rewritten as

p P
> log fx,p(z:|P) — log fx,s(zil9) % log 7, (3.7)
=1

if the components of X are assumed to be uncorrelated. This assumption, though
obviously incorrect, was made in order to reduce the complexity of the analysis.
Under the Gaussian assumption, the likelihood ratio test is equivalent to

? 52 2 -2

1 62 (ci—pm)? (mi—m)? L
Zlog —& — 2 log~. 3.8
; 58 o2 t 2072 26,2 § 87 (38)

A pause detector using equation (3.8) was implemented with Pr{P} = Pr{S} =
3. Since detecting speech as pause is much more costly than detecting pause as
speech, we set Cp,s = 1000C;,.

The PD algorithm can be incorporated with the TSVQ-IBNC codiﬁg scheme in
the following fashion: When speech is detected, the system operates as usual; but
if a pause is detected, then a fixed binary codeword is passed to the IBNC encoder.
When m is large, several TSVQ codewords occur with zero probability. In this case,
the-fixed codeword is chosen as one of these codewords. In other cases, it is chosen
as the one with the lowest probability. When the fixed codeword is received at the
output of the IBNC decoder, a fixed codevector, €, is taken as the quantized LSP

vector. The fixed codevector is given by the mean of the LSP parameters given that

the data is pause, i.e.,

¢ = (i, izs - » ip) (3.9)

A block diagram of the PD-TSVQ-IBNC encoding scheme is given in Figure 3.2.
When speech is detected, the switches in the diagram flip downward and they flip

upward when there is a pause. In the encoder, the switch is controlled by the pause
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detector; in the decoder, the switches are controlled by a digital logic which depends
on the output of the IBNC decoder. Typically, when pauses occur, they occur in
consccutive frames. This means that the length of the common prefix, &, equals to
m and no bit is required to encode the suffix. In this case, oanly one or two bits arc

needed to encode this value of k.

Fixed
Codeword I
o] E][BN(?
igi ncoder
i tsvg | J
Parameters Encoder
Channel
o Fixed |
t
Quantized L odevector l —
e ‘ Decoder
Parameters
TSVQ i
Decoder

Figure 3.2: Block Diagram of the PD-TSVQ-IBNC Encoding Scheme.

To illustrate the effectiveness of the PD scheme, a plot of the quantized LSP
parameters, corresponding to the phrase “...These shoes were black and brown...” is
provided in Figure 3.3. Other than a few “glitches”, the pause detection algorithm
can be seen to perform very well. Also, the average bit rate with and without pause
detection is given in Table 3.4 for 6654 frames of data consisting of 50 % specch and
50 % pauses. The rate reduction (from m to m with PD) is more than 50 % in all

cases.

3.1.3 Frame Repeat TSVQ

As can be seen in the previous section, a tremendous reduction in rate can be

obtained if the same binary codeword occurs in consecutive frames at the output
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Figure 3.3: Quantized LSP Parameters for the Utterance “...These shoes were black
and brown...”.

of the TSVQ ¢ncoder. Based upon this observation, a scheme is developed in this
section for the efficient encoding of LSP parameters at very low bit rates.

In the scheme considered here, the binary TSV(Q codeword of the previous frame
is forced to be repeated in the present frame if the squared-error distortion between
the LSP parameters in the current and previous frames is less than a threshold, A,
ie.,if

lwn — wn ]2 < A (3.10)
If (3.10) does not hold, then w, is encoded using the standard TSVQ.
This encoding scheme can be viewed as a TSVQ with built-in memory in the

sense that if S; is the encoding region for the (n — 1)-st frame, then in the n-th



m ™m m

without PD | with PD

6 3.02 2.46 .
8 5.00- 3.29
10 6.67 4.23
12 8.99 3.93
13 9.52 5.98

Table 3.4: Average Rate with and without PD.

frame, S; is enlarged. The effect of enlarging S; in the TSVQ is to reduce the bit
rate in the IBNC encoder. This will, however, contribute to the quantization error.

It should be noted that this scheme is particularly useful for encoding pause
frames. When A is big enough, the enlargement of the encoding region S; corre-
sponding to a pause frame will be large enough to cover all the LSP vectors c01-‘re—
sponding to pause frames. Hence, the same codeword is repeated for the next pause
frame resulting in a low transmission rate.

When the LSP vectors are slowly moving away from S, there is a possibility
that they are still encoded to that region (even though the LSP vectors are far from
S; as time goes by). To offset this problem, the LSP parameters, w,, is replaced by
Wy, if (3.10) is satisfied.

Simulation results for this coding scheme, hereafter referred to as FR-TSVQ-
IBNC, will be provided in Section 3.3.

3.2 High-Quality Speech Coding

In this section, a coding scheme, based upon TSVQ), is developed for high-fidelity
coding of the LSP parameters. As mentioned at the beginning of this chapter, this

has a very important application in the area of CELP coding, in which the LSP
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parameters arc always encoded at or below 1 dB? spectral distortion. In order to

reach this goal, we have used a hybrid of TSVQ and SQ.

3.2.1 Hybrid Coders

L

The main difficulty in designing VQs or TSVQs for lage rates is the limited size of
the available memory. The largest TSVQ) that we were able to design was one with
m = 13 (8192 codevectors). The spectral distortion in this case is approximately
4 dB? - well above our goal. To reduce the distortion further, scalar quantizers
(SQs) are used to represent the error vector of the TSVQ. Such a system is called a
hybrid coder. Before describing the SQs that are used in the hybrid coder, we briefly

discuss some properties of the TSVQ error vector.

i 1 2 3 | 4 5 6 7 8 9 | 10
1 |1.00 | 0.31 |-0.04 | 0.02 |-0.02| 0.02 |-0.01 | 0.00 |-0.02 | 0.00
2 1031 | 1.00 | 0.17 | -0.06 | 0.02 | -0.04 | 0.01 | -0.03 | 0.01 | -0.03
3 1-0.04] 017 | 1.00 | 0.03 |-0.05 | 0.02 | -0.03 | -0.02 | -0.03 | -0.01
4 |0.02|-0.06| 003 | 1.00 | 0.02 |-0.04 |-0.02|-0.03|-0.04 |-0.05
5 |-0.021 002 |-0.05] 002 | 1.00 | 0.01 |-0.05|-0.03 | -0.07 | -0.04
6 | 0.02 | -0.04 | 0.02 | -0.04 | 0.01 | 1.00 | -0.04 | -0.11 | -0.04 | -0.08
7 1-0.01 | 0.01 | -0.03 | -0.02{-0.05 | -0.04 | 1.00 | -0.04 | -0.13 | -0.09
8 | 0.00 {-0.03|-0.02 [-0.03|-0.03]-0.11 | -0.04 | 1.00 | -0.09 | -0.14
9 |-0.02| 0.01 |-0.03|-0.04|-0.07 | -0.04 | -0.13 | -0.09 | 1.00 | -0.13
10 | 0.00 |-0.03 | -0.01 | -0.05 | -0.04 | -0.08 | -0.09 | -0.14 | -0.13 | 1.00

Table 3.5: Correlation Coefficients of Components ¢ and j.

Since the error vector is jJust quantization noise, its components are more-or-less
uncorrelated. This is demonstrated in Table 3.5, where the correlation coeflicients
between the i-th and j-th components of the LSP error vector are tabulated. In
almost all cases, the error components are uncorrelated. This justifies using SQs

to encode the error vector. Furthermore, using the Kolmogorov-Smirnov (K-S) test

(8%
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[20], it is concluded that the error components are best, fitted by a gencralized Gans-
stan distribution with parameter o = 1.5 (sce [12] for the definition of generalized
Gaussian distribution). The K-S test gives a measure of how closely the empirical
distribution of the actual data approximates an assumed distribution. The results
of the K-S tests are plotted in Figure 3.4 for o = 0.4 up to o = 2.0. With the ex-
ception of the first component, all the components of the error vector can be closely

modeled by a generalized Gaussian distribution with ag = 1.5

-\ K-S Test Results =

— ------------------- Component j=1 -

Component j=2,3,..,10 —

05 —

55 1 1.5 2
Parameter a,

Figure 3.4: Kolmogorov-Smirnov Test for the Components of the Error Vector.

Two types of 5Qs, the Lloyd-Max quantizer (LMQ) and the uniform-threshold
quantizer (UTQ), are considered for the encoding of the error vector. The LMQ is

designed subject to the constraint that the number of quantization levels is fixed
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[10,11]. Typically, the output of the LMQ is encoded by a fixed-length code. In the
UTQ design, the constraint is that the entropy of the quantizer output is fixed [12].
In this work, the UTQ levels are always encoded by either a first- or sccond-order
Huffman code. Furthermore, the LMQ is designed for g =*2.0 and the UTQ for
ap = 1.5 (for all components). The reason for choosing «y = 2.0 for the LM is that
this case reduces to the Gaussian distribution and quantizers for this distribution
are readily available. Also, the LMQ will serve as a benchmark for evaluating the
performance of the UTQ. Next, methods for allocating bits to the SQs of the different
components are described.

Two bit-allocation schemes are considered: In the first scheme, the bit allocation
is fired while in the second it is adaptive depending on the TSV(Q output. In the fixed
case, the bits are allocated using Trushkin’s steepest descent method [19]. Simply
stated, this method assigns bits, one at a time, to that component {of the error
vector) which results in largest distortion reduction. This is simple in the case of
LMQ), whose rates are of integer values. In the case of UTQ), it is more complicated
since the (average) bit rates take on real values. In this case, the bits are allocated
0.1 bits at a time, starting from 0.5 bits 2.

Since the distribution of the error vector varies with the TSVQ outputs, ide-
ally, one would like to design optimal 5Qs for each of these outputs. But, due to
the limited size of the database, it is difficult, if not impossible, to determine these
distributions, especially when m is large. As an alternative, the distributions, nor-
malized to zero mean and unit variance, can be assumed to be the same {or all
TSVQ outputs. The mean and variance are allowed to vary with the TSVQ output.

In such case, an adaptive bit allocation scheme can be developed. Here we consider

Since we are only considering first- and second-order Huffman codes, it is impossible to operate
in the range (0,0.5) bits/sample.
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a generalization of Trushkin’s method, described as follows: Let

I = binary codeword of the TSVQ),

Var(jlt) = variance of component j given thate] =,
p(z) = Pr{l =1},
D(b) = average distortion when b bits are

used for the normalized distribution,
G(b) = D(b-1)— D(b)
= gain when b bits are used instead of b — 1 bits,
b(j,i) = number of bits assigned to component
j when I =1,

R = average bit rate per frame of SQ.

Generalized Bit-Allocation Algorithm:

(1) Set b(j,i) =0 for j =1,2,...,p, and i = 0,1,..., M — 1 (M = 2™);
(2) Let (j*,7*) = arg max Var(jl0)G(b(7,7) + 1);

() B ) =)+

(4) B=R—p(i");

(5) If (R >0) go to (2);

(6) Stop.

One problem with this algorithm is that the resulting bit rate may be slightly
larger than the designed rate. However, when the two are equalled, this algorithm

can be shown to be optimal [19,25]. The adaptive bit allocation algorithm is applied
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to the LMQ and numerical results are provided in Section 3.3. It can also be applicd
to the UTQ - with a little more complication since second-order Huffman codes are

sometimes used. However, we will not consider this case in this work.

.
3.2.2 IBNC and PD

The IBNC and PD schemes developed in Section 3.1.1 and 3.1.2 can also be
applied here. The IBNC used for encoding the binary TSV(Q) codewords operates in
the same manner. The pause detection is done exactly as before. However, in the
hybrid coder, if a pause is detected then no bits are used for scalar quantization.
This will reduce the bit rate tremendously. Simulation results of these systems are

presented in the next section.

3.3 Simulation Results

Four LSP databases were used for designing the quantizers. These databases
were all generated from one large database, consisting of approximately 15 minutes
of data (65 % speech and 35 % pause) sampled at 8 kHz. The first two, Database
1 and Database 2, were obtained from a 10-th order LSP analysis with a 10 msec
frame period. Database 3 and Database 4 were also obtained from a 10-th order
LSP analysis but with a frame period of 22.5 msec. Databases 1 and 3 contain both
speech and pauses. Databases 2 and 4 are subsets of Databases 1 and 3, respectively,
which contain speech only. A TSVQ is designed for each of the four databases.

The simulation was performed for six sets of test data. The first four, Test 1
through Test 4, are small subsets of Database 1 through Database 4. Test 1 and 3
contain 30 seconds of speech and 30 seconds of pauses while Test 2 and 4 contain
only 30 seconds of speech. Test 5 (10 msec frame period) and Test 6 (22.5 msec)
are the out-of-training sequences consisting of 40 seconds of speech and 10 seconds

of pauses. The TSVQs designed from Databases 1 and 3 are used to encode Tests 5
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and 6, respectively.

The first experiment is to compare the performances of the ordinary TSVQ,
the TSVQ-IBNC, the PD-TSVQ-IBNC and the FR-TSVQ-IBNC coding schemes.
These results are plotted in Figs. 3.5— 3.10. In the case of thé FR-TSVQ-IBNC, the
codebook size is fixed (m = 13) while the threshold, A, is varied. When there is
only speech (Figs. 3.6 and 3.8), the PD-TSVQ-IBNC curve coincides almost exactly
with the TSVQ-IBNC curve. Also, it can be seen from Figs. 3.9 and 3.10 that the
TSVQ coding scheme is quite sensitive to the out-of-training data. Of course, with
a larger database, this problem can be compensated.

Next, the performances of the hybrid coders are studied. In all cases, IBNC is
used to encode the binary TSVQ codewords. The experiments were performed for
the LMQ with fixed bit allocation (FBA) and adaptive bit allocation (ABA) and
the UTQ with FBA. Pause detection is introduced for one case — the LMQ) with
FBA. Also, comparisons are made with the 2D-DCT scheme. Figs. 3.11- 3.16 show
the results. In all case, the UTQ outperforms the LMQ, especially at around 1 dB?
spectral distortion. Also, the UTQ is more robust to the out-of-training data than
the LMQ. The adaptive bit allocation scheme gives a remarkagle improvement over
the fixed scheme, however, it is much more sensitive to out-of-training sequences.
In comparing the hybrid coding scheme with the 2D-DCT, it is concluded that the
hybrid scheme (using adaptive bit allocation) is more efficient than the 2D-DCT,
especially with a 22.5 msec frame period.

Finally, we study the distribution of the spectral distortion for several coding
schemes. In comparing these schemes, not only is the average spectral distortion
an important measure of performance, but the number of frames with high spectral
distortion is also important. Since the human ear can detect the distortion in these

frames, the scheme with the smallest number of such frames is preferred. The

histograms of the spectral distortion, taken from Test 2, are given in Figure 3.17
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for the following systems: (1) scalar quantization (using LMQ designed for the
Gaussian distribution), (2) the 2D-DCT scheme, (3) the hybrid scheme with UTQ
and FBA and (4) the hybrid scheme with LMQ and ABA. In all cases, the average
spectral distortion is around 1 dB? The hybrid scheme usi;lg UTQ and FBA has
the smallest number of frames with large spectral distortion and also the smallest

variance of spectral distortion.

3.4 Conclusions

We have presented in this chapter several schemes, based upon TSVQ, for en-
coding LSP parameters in a noiseless channel. The interframe correlation that
remained after TSVQ) is effectively removed using the inter-block noiseless coding
scheme. Two schemes, PD-TSVQ and FR-TSVQ, have been considered for encod-
ing data that have pauses. Both of these perform relatively well. Finally, several
schemes, which are hybrids of TSVQ and SQ, are proposed for encoding the LSP pa-
rameters at 1 dB? spectral distortion. Of these, the one which uses UTQ to encode
the error vector is the most attractive. Not only is it efficient and more robust to

the out-of-training sequence, but it also has a smaller variance of spectral distortion

at 1 dB°.
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Figure 3.5: Comparison of Very Low Bit-Rate Coding Schemes for Test 1.
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Figure 3.6: Comparison of Very Low Bit-Rate Coding Schemes for Test 2.
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Figure 3.7: Comparison of Very Low Bit-Rate Coding Schemes for Test 3.
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Figure 3.8: Comparison of Very Low Bit-Rate Coding Schemes for Test 4.
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Chapter 4

Coding Schemes for Noisy
Channels

4.1 Introduction

In this chapter, the problem of encoding LSP parameters in the presence of chan-
nel noise is addressed. As before, we will focus on VQ-based systems, specifically,
TSVQ systems.

The study of vector quantization in a noisy channel has spurred much research
activity in the past few years. Techniques for assigning binary codewords to the
codevectors have been developed in [21] and [22]. In [13] and [23], a generalization
of the LBG algorithm was given for designing VQs for the noisy channel; this algo-
rithm is called channel optimized VQ (COVQ) [13]. In the next section, the basic
formulation of the COVQ is applied to TSVQ. Here, the TSV(Q) design problem i1s
restated for the noisy channel and necessary conditions for optimality are given,
resulting in a modification of the standard TSVQ design algorithm.

Another approach to the noisy-channel problem is also considered. In Chapter 3,
the interframe correlation that remained after vector quantization was utilized by
the IBNC encoder to reduce the average bit rate. Due to error propagation, this
variable-rate coding scheme is not applied to the noisy channel. Instead, in Section

4.3, the interframe correlation is used to provide protection against channel errors.
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Specifically, the hinary codeword (at the output of the TSVQ encoder) is imodeled as
a discrete Markov chain and mazimum a posteriori (MAP) detection is performed al
the receiver. A similar formulation has been applied to image coding using DPCM
[24], where a large decoding delay is allowed. In this thesis, a simple analytical
solution is provided for the MAP detection problem with no decoding delay. Based

on this result, a recursive algorithm is given for the MAP decoder.

4.2 Channel Optimized TSVQ

4.2.1 Problem Statement

In an ordinary TSVQ design algorithm, the input vector space is partitioned
into two regions. Each of these is then split into two sub-regions, and so on. The
same 1dea can be applied to TSVQ) design for noisy channels. Here, it is assumed
that an (m — 1)-stage TSVQ encoder (with 2™~! encoding regions) is given. The
objective is to obtain an m-stage TSVQ that is in some sense “optimal”.

The (m — 1)-stage TSVQ encoder (dimensionality p) can be described by the

following mapping:
/7'(7”"1) :RP — f(m_l) _—é‘ {0727' . 'aM - 2}’ (41)
with
A gy =1 ifxesSr Ve FOmoU, (42)

where M = 2™ and Pim-1 £ {Sg=1, 8=t ..., ST} is a partition of IRP. The
codeword, 1, is an even integer; in binary representation, it consists of m bits with
the least significant bit being identically zero. Such an encoder is assumed to be
given. From this, we wish to obtain the next stage (i.e., the m-th stage) of the

encoder and the decoder. The next stage of the encoder is described as follows:
AU Fn=1) R FOM 20 1 M — 1), (4.3)
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with
(m)(: _ 7 face Sim . (m—1)
Y () =1 . . - Vie F ) (4.4
) { t+1 ifxe S, )
where P(™ & {Sg, ST ..., SH_1} is a partition of R?. The partition, P must

satisly the constraint,

Srush, =Srt Wie Fimel, (4.5)

3

that is, {S7, 57} must be a partition of S*~' for every even 7. Basically, the
mapping (™ assigns 0 or 1 to the least significant bit of the binary codeword,
depending on which of the two sub-partitions @ belongs to. The m-stage TSVQ

decoder is described as before:
B:Fm s ctm) 2 {err,e™, ... el L), (4.6)
with
By =cr, VieF™. (4.7)
Now consider the situation illustrated in Figure 2.2. The channel is assumed to be
a discrete memoryless channel (DMC) with transition probabilities:

QUl)=Pr{J =jlI =i}  VjieF™, (4.8)

where I and J denote the random variables at the input and outp'ut of the channel,
respectively. Also, let us use y to denote the output of the decoder and suppose
that d(e,y) is the distortion incurred when the source vector x is reproduced by
the codevector y. Then the design objective is to minimize, by suitable choices of

P and C(™), the average distortion,
D(P™, ctm) & E[d(X,Y)], (4.9)

subject to the constraint (4.5). Here, X and Y are random vectors representing the

source output vector and its decoded version, respectively.
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4.2.2 Necessary Conditions
The average distortion can be rewritten as:
D(P™ cmy = }_j E[d(X,Y) =4Pr{l =4} °
M1 M~
Z Z dX,Y)|J =j,I=i]Pr{J = | =i} Pr{l =1}. (4.10)

When Pr{l =i} # 0, the average distortion given that 7 was transmitted and j is
received is

1

Eld(X,Y)J =j,1=1]= Pr{l =i} Jsn

d(z, ) f(z)dz, (4.11)

where f(x) is the p-fold probability density function of the source. Combining
equations (4.8), (4.10) and (4.11) we get,

M-1M

DE™.™) = Y QU fon dlas ep)S (@)

i=0 j7=0
M-

Z/ {ZQJI)d:c c” )} f(=z)dz. (4.12)

The term in braces is defined as the modified distortion measure:
A M1
"(2ye7) = Y QUl)d(=,cT). (4.13)
=0
Then the average distortion,
M-1
D(P™ cmy = 3 /5 d(z, ) (a)dz, (4.14)

corresponds exactly to the average distortion in the case of the noiseless channel
with d' as the distortion measure.

For a fixed codebook, C{™) it is clear from above that the optimum partition
plm)® £ {Se*, 87", ..., 87" .}, subject to the constraint (4.5), must satisfy

Sro= {xze St d(wye) < d(wycl,)}
’ B Vie Fom=D (4.15)

Sny = {eesSPt: d(z,cl) < d(z,c)}
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m* m* 1

Similarly, for a fixed partition, P{™. the optimum codebook, (™" 2 fer,em ..., c’;’,._] |

must satisfy

*

mt i d'(z, de,  Vig F™. 4.16
= arg i, /S?, (2, y)f(2)de, Vig (4.16)

4.2.3 Design Algorithm

In this thesis, we are interested in designing the channel-optimized TSVQ under

the square-error criterion, i.e.,

d(z,y) = |z — y|* (4.17)

In this special case, the optimum codebook condition of (4.16) simplifies to

e ke (jli)fsjmwf(m)d‘”
c.

7T T QGN) Jsp f(@)de

Vi e Fim, (4.18)

Furthermore the modified distortion measure can be computed as,

d'(xyc™) = ||| - 2=, 2) + ¥, (4.19)
where,
M-1
zi = 3 QUlier,  Vie F™, (4.20)
7=0
M-1
P = QUlller?,  Vie F, (4.21)
Jj=0

are pre-computed [13]. This reduces the complexity of the encoder to a single inner-
product calculation at each node in the tree [13].
A locally optimal solution can be obtained by successively solving equations (4.15)

and (4.18). Such a scheme shall hereafter be referred to as the channel-optimized

TSVQ (COTSVQ). In what follows, we provide the COTSVQ design algorithm.
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COTSVQ Design Algorithm

(1) Given Plm=1) = {gm-1 gm-1 = gm-13
(2) Set k=0 and Dy = oo (k=iteration index).
(3) Find P{™ and €™ from the standard TSVQ design algorithm.
(4) Set k =k +1.

(5) Compute {z;}M5' and {1?}M5? from the codebook C’,(;ﬂ

(6) Set Dy =0.

(7) Vie Fim=1).
Ve e S™ 1.
{Set do = ||2||* —2(z, 2;) + 2.

Set dy = [|@ — 2, zip.) + P2
Set £ € S™ and Dy = Dy + dy if dy < d;.
Set « € S{:fl and Dy = Dy +dy if dy < dp. }

Compute [gm @ f(x)de and [sn f(z)de.

Compute fs{ﬁ’r: z f(x)de and fs.":',l flz)de. }.

(8) Compute C(™" from (4.18) and set €™ = (™", p{™ = p(m)",
(9) It (es2eml 5 65) go to (4).
(10) Stop.

At each stage of the tree, the initial codebook is obtained from the standard
TSVQ design. From this codebook, the vectors z; and the values 4?1 = 0,1,..., M —
1, are computed. This uniquely determines the modified distortion measure asso-

ciated with the initial codebook. From these, the optimum partition is obtained.
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Then a new codebook is computed using (4.18). This process is repeated until it
reaches a locally optimum solution.

To demonstrate the eflectiveness of this algorithm, the COTSVQ) is applied to
Gauss-Markov sources with correlation coeflicients p = 0.0‘(mcmory]ess Giaussian
source) and p = 0.9. The channels are assumed to be binary symmetric channels
(BSCs) with crossover probabilities e = 0.00,0.005,0.01,0.05 and 0.10. These results
are compared with the standard TSVQs, i.e., the TSVQs designed for the noiseless
channel, which we shall denote as LBGTSVQ. For p = 1,2,4 and 8, the Signal-to-
Noise Ratio (SNR) performance results are given in Tables 4.1 and 4.2. In all cases,
the bit rate is 1 bit/sample (m = p). For the sake of comparison, we have also
provided in Tables 4.3 and 4.4 the results of the LBGVQ (the VQ designed for the
noiseless channel) and the COVQ taken from [13]. The results in Tables 4.1 and 4.2
confirm the findings in [13], that is, the COTSVQ (COVQ) performs better than
the LBGTSVQ (LBGVQ) in all cases — and more so for noisier channels, higher-
correlated source and larger dimensions. This can also be seen from the simulation

results for LSP parameters, which are provided in Section 4.4.
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[€=10.00]e=0005] c=0.01 | e=005] c=0.10 |

m=p=1] LBGISVQ | 4.41 4.26 4.11 3.10 2.10
COTSVQ | 4.1 4.26 4.12 3.16 2.28
m=p=2| LBGISVQ | 4.37 415 3.94 2.60 1.41
COTSVQ | 4.37 4.15 3.95 3.71 1.75
m=p=4 | LBGISVQ | 4.4l 112 3.85 2.25 0.97
COTSVQ | 4.1 4.12 4.00 3.01 2.28
m=p=28 | LBGISVQ | 4.48 4.07 371 1.73 0.39
COTSVQ | 4.48 4.10 3.82 2.91 2.29

Table 4.1: SNR (in dB) Performance Results for Mémoryless Gaussian Source.

[ e=10.00]e=0.005]e=0.01 | e=0.05]e=0.10]

m=p=1| LBGTSVQ 4.41 4.26 4.11 3.10 2.10
COTSVQ 4.41 4.26 4.12 3.16 2.28
m=p=2{LBGTSVQ 1.87 7.31 - 6.81 4.13 2.18
COTSVQ 7.87 7.31 6.83 4.37 2.76
m=p=4 | LBGTSVQ | 10.15 8.99 8.09 4.11 1.73
COTSVQ 10.15 8.99 8.24 3.62 4.50
m=p=238| LBGTSVQ | 11.07 9.50 8.35 3.86 1.37
COTSVQ 11.07 9.64 8.97 7.10 5.65

Table 4.2: SNR (in dB) Performance Results for Gauss-Markov Source, p = 0.9.
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| €=0.00 | ¢=0.005| ¢=0.01 | e=0.05]¢=0.10|

m=p=1]|LBGVQ | 4.40 1.25 4.10 3.00 9.0
COVQ | 4.40 4.25 4.11 3.15 2.27
m=p=2|LBGVQ | 4.38 193 1.08 3.06 9.05
covQ | 4.38 4.23 4.11 3.15 2.26
m=p=4|LBGVQ | 4.58 1.36 115 2.82 1.64
COVQ | 4.8 4.43 4.24 3.17 2.28
m=p=8| LBGVQ | 5.08 1.64 125 2.15 0.70
COvVQ | 5.08 4.64 4.34 3.19 2.29

Table 4.3: SNR (in dB) Performance Results for Memoryless Gaussian Source [13].

[€=0.00 [ c=0.005 ] ¢=0.01 [ e=0.05] ¢ = 0.10 |

m=p=1] LBGVQ | 4.40 4.25 410 3.09 2.0
COVQ | 4.40 4.25 4.11 3.15 2.27
m=p=2|LBGVQ | 7.87 7.31 6.81 113 2.19
covQ | 1.87 7.31 6.83 4.37 2.76
m=p=4|LBGVQ | 10.18 9.10 8.24 437 2.00
CovVQ | 10.18 9.15 8.37 6.23 4.65
m=p=28|LBGVQ | 11.49 9.99 887 1.46 2.00
CovVQ | 11.49 10.31 9.70 7.44 5.73

Table 4.4: SNR (in dB) Performance Results for Gauss-Markov Source, p = 0.9 [13].
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4.3 MAP Detection

In Chapter 3, the interframe correlation of the LSP parameters was used to
reduce the bit rate. Here, this information will be utilizediin combating channel
errors. It should be mentioned that the result of this section not only can be applied
to TSVQ but it can also be applied to any other coding scheme which does not fully

remove the source correlation, for example, VQ, SQ, DPCM, etc..

Original TSVQ I,
Parameters Encoder i
DMC
Ilecoisglgucted TSVQ i, MAP 7
Parameters Decoder in Detector In

Figure 4.1: MAP Detection of the TSVQ Codewords.

4.3.1 Problem Statement

It is clear that the binary TSVQ codewords at the output of the encoder have a
strong frame-to-frame correlation. A sensible way of mathematically describing this
correlation is to model the codewords as a discrete Markov chain. Consider the sce-
nario depicted in Figure 4.1 where n is the time index, capital letters denote random
variables and lower-case letters denote specific realization of these random variables.
We assume that the TSVQ output, {I,}22,, is a Markov chain characterized by the

transition matrix:
P(inlina1) = Pr{l, = tn|ln-1 = tn1}
= Pr{l, =i, |I7" =", (1.22)
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where we use the notation
oY = (I I,..., 1), (4.23)
B = (G0, ey insy)- (4.24)
The traﬁsition matrix of the DMC is as follows,
Qinltn) = Pr{Jn = julln = i, }. (4.25)

Based on the observations at the output of the channel, the optimum detector, in

the minimum probability of error sense, is
tn = arg max Pr{l, = i,|J} = T} (4.26)

This detector is often referred to in communication literature as the maximum a

posteriori (MAP) detector.
4.3.2 Solution

Using. Bayes’ Theorem, the MAP detector can also be expressed as

Pr{J} = j7|In = in} Pr{l, = i}
Pr{J} = j7} '

(4.27)

in = arg max
n

Since the term in the denominator does not depend on i,, it is equivalent to just

maximizing the numerator:
1o = arg maxPr{J} = j?|I, = in} Pr{I, = i,}. (4.28)
The first term can be expressed as the sum of the joint probabilities:

in = arg max y_ Pr{J} = j7, I} = it 7|, = in} Pr{l, = i, }. (4.29)
Fr

The first term in the summation can be expanded using the definition of conditional

probability,
ip = arg max » Pr{J} = "I} =17 I = i)
X 2y z
2
=1

x Pr{I?' = 771, = i,,} Pr{l, = i,}. (1.30)
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Again using the definition of conditional probability on the last two terms, the MAP
detector becomes,

= arg max Z Pr{J} =7} =0} Pr{li = 1"} (1.31)

—1

By using the fact that the channel is memoryless and by successively applying
conditional probability and the Markovian property of the source, the above can be

rewritten as,

n = arg max ;[Q(jnlin) 2 QUi)][P(tnlin-a) - P(iali) P()], (4.32)

L

where P(i;) = Pr{l; = ¢;}. This gives an explicit solution to the MAP detection
problem. However, implementing the MAP detector using equation (4.32) requires
a tremendous amount of computation. In what follows, we describe a recursive

procedure for implementing the MAP detector.

4.3.3 Implementation

Note that equation (4.32) can also be written as

Zn = arg maxQ ]n]z Z P Zn|z'n—1)

th_1

X Z (Jnetlino1) -+ QU1IE)IP (In1lin2) - - - P(i2]t1) P(11)].  (4.33)

The second summation is equal to Pr{J}™! = ]l‘ll.fn 1 = a1} Pr{ln-1 = in_1},
the quantity that was maximized at time n — 1. This suggests a recursive procedure

for implementing the MAP detector. To this end, we shall denote

fGa) = Pr{J} =T, = 1.} Pr{l, = i,}

Z [Q(]nlzn) e Q(]l lzl)][P(anZn—l) tee P(Z2I21)P(Zl)]7 (431)

n—1
4

il

as the objective function that is to be maximized. The objective function, f(V(7,),

at time n can be determined from the objective function, f(*~V(z,_,), at time n — 1
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according to

FO(n) = QUnlin) D2 Plinlin-1) S (1) (4.35)

tn—1

Implementing the MAP detector using cquation (4.35) requir‘es 2M memory storage
elements, M? + M multiplications and M? additions, where M = 2™ is the size of
the codebook. This can be compared with the non-recursive form of equation (4.32),
which requires no memory element, but 2n M™ multiplications and M"™ additions.
Clearly, the complexity of the non-recursive form grows with the time index n.

In the simulation results provided in the following section, the value of f(™(s,)
is computed only when Q(jnlin) is greater than a threshold (107° in all cases).
Otherwise f(™) (i) is set to zero. By doing this, the number of multiplications and
additions can be reduced without a significant reduction in performance. Also, for
m > 8, the MAP detection is only performed on the first 8 bits of the codeword.
The justification for doing this is that an error in one of the remaining m — 8 bits
would not make a significant contribution to the average squared-error or the average
spectral distortion. Furthermore, to offset the effect of underflowing, the objective

function, f((s,), is normalized by its maximum value at each time n.

4.4 Simulation Results

Before presenting the simulation results of this chapter, an explanation of how
these results were obtained is in order. The database used for designing the TSVQs
and for estimating the source transition matrix is Database 2 of the previous chapter
(10 msec frame period and no pause). The test data is taken from Test 2. To
simulate the channel noise, ten sequences of binary noise were generated. Again,
the channel is assumed to be a BSC with crossover probability €. The reccived bit
is taken to be the exclusive-or of the transmitted bit and the noise bit. As before,
the modified average spectral distortion is used as the performance measure. The

minimum, the maximum and the average of the ten tests are tabulated in Tables 4.5
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through 4.8. A summary of Tables 4.5 through 4.8 is provided in Table 4.9 where
only the mean of the ten trials is given. Also, included in Table 4.9 are the results
of the noiseless channel (e = 0.00). Finally, the probability of error in the codeword
with and without MAP detection is given in Table 4.10.

The results in Table 4.5 to 4.9 indicate that a significant improvement in per-
formance can be obtained using either channel-optimized TSVQ or MAP detec-
tion. The second approach, using MAP detection, always yields better results than
the first approach, with the exception of the case when the channel is very noisy
(e = 0.10) and m = 10 or 12. This is explained by the fact that the MAP detection
1s only performed on the first 8 bits of the codeword. Errors in the remaining 2 bits

(when m = 10) or 4 bits (when m = 12) are not corrected.

4.5 Conclusions

In this Chapter, we have presented two schemes for encoding the LSP parameters
in noisy channels. In the first scheme (COTSVQ), the encoder and the decoder were
re-designed for the noisy channels and in the second scheme (MAP detection), the
interframe correlation that remained after source coding was used to detect channels
errors. Both of these schemes are shown to be effective. When the channel is very
noisy, as much as 20 dB? improvement in spectral distortion can be obtained using

either one of these two schemes.



[ Minimum I Mean ] Maximum I

m =6 LBGTSVQ 1510 | 15.38 | 15.70
COTSVQ 15.02 | 15.19 | 15.46
LBGTSVQ+MAP | 14.31 | 1455 | 14.92

m=8 LBGTSVQ 1177 | 1216 | 12.55
COTSVQ 11.69 | 12.09 | 12.46
LBGTSVQ+MAP | 10.81 |10.96 | 11.16

m = 10 LBGTSVQ 8§93 | 9.47 | 10.02
COTSVQ 877 | 9.17 9.53
LBGTSVQ+MAP | 7.98 | 8.10 8.25

m =12 LBGTSVQ 6.93 7.40 7.86
COTSVQ 6.64 | 7.00 7.39
LBGTSVQ+MAP | 580 | 6.01 6.39

Table 4.5: Modified Spectral Distortion (in dB?) for ¢ = 0.005.

| Minimum | Mean | Maximum |

m =6 TBGTSVQ 1640 ] 16.68 | L17.13
COTSVQ 16.11 | 16.34 | 16.82
LBGTSVQ+MAP | 1503 | 1519 15.57

m=28 ] LBGISVQ 1319 | 13.79 | 14.32
COTSVQ 12.82 | 13.15| 13.52
LBGTSVQ+MAP | 1120 | 11.40 | 11.60

m = 10 TBGTISVQ 1056 | 1152 | 12.40
COTSVQ 1014 | 10.67 | 11.67
LBGTSVQ+MAP | 855 | 8.78 8.96

m=12 LBGTSVQ 887 | 961 | 10.17
COTSVQ 8.08 | 8.73 9.24
LBGTSVQ+MAP |  6.70 6.89 7.31

Table 4.6: Modified Spectral Distortion (in dB?) for ¢ = 0.01.

L)



[ Minimum [ Mean ] Maximum |

m =6 LBGTSVQ 25.99 | 2724 ] 28.63
COTSVQ 21.38 | 21.92| 22.68
LBGTSVQ+MAP | 1924 |19.72| 20.25

m =8 LBGTSVQ 24,92 | 26.70 | 28.68
COTSVQ 18.74 | 19.05 | 19.44
LBGTSVQ+MAP | 1510 | 1550 | 15.69

m = 10 LBGTSVQ 24.35 | 26.32 | 28.43
COTSVQ 16.02 | 16.50 | 17.37
LBGTSVQ+MAP | 1348 | 14.51| 15.12

m =12 LBGTSVQ 92581 | 26.00 | 27.14
COTSVQ 13.74 | 14.30 | 14.78
LBGTSVQ+MAP | 1358 | 14.28 | 14.83

Table 4.7: Modified Spectral Distortion (in dB?) for ¢ = 0.05.

| Minimum | Mean | Maximum |

m =6 LBGTSVQ 3786 | 4020 | 42.71
COTSVQ 2574 | 26.44 | 27.24
LBGTSVQ+MAP | 2375 | 92515 926.25

m=3 LBGTSVQ 39.58 | 41.20 | 42.87
COTSVQ 22.99 | 2344 | 23.95
LBGTSVQ+MAP | 20.92 |21.82| 922.81

m = 10 LBGTSVQ 30.85 | 42.27 | 43.83
COTSVQ 20.02 | 2042 | 20.90
LBGTSVQ+MAP | 21.07 |22.23| 22.98

m =12 LBGTSVQ 4122 | 43.38 | 45.04
COTSVQ 17.93 | 1851 | 18.87
LBGTSVQ+MAP | 21.85 |[22.64 | 23.60

Table 4.8: Modified Spectral Distortion (in dB?) for ¢ = 0.10.
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[ e=0.00]e=0005]e=0.01]c=0.05]e=0.10]

m =6 LBGTSVQ 13.85 15.38 16.68 27.24 40.20
COTSVQ 13.85 15.19 16.34 21.92 26.44
LBGTSVQ+MAP 13.85 14.55 15.19 19.72 25.15

m=2~8 LBGTSVQ 10.45 12.16 13.79 26.70 41.20
COTSVQ 10.45 12.09 13.15 19.05 23.44
LBGTSVQ+MAP 10.45 10.96 11.40 15.50 21.82

m = 10 LBGTSVQ 7.45 9.47 11.52 26.32 42.27
COTSVQ 7.45 9.17 10.67 16.50 20.42
LBGTSVQ+MAP 7.45 8.10 8.78 14.51 22.23

m o= 12 LBGTSVQ 5.08 7.40 9.61 26.00 43.38
COTSVQ 5.08 7.00 8.73 14.30 18.51
LBGTSVQ+MAP 5.08 6.01 6.89 14.28 22.64

Table 4.9: Summary of Tables 4.5 Through 4.8.

[6:0.00[6:0.005[6::0.01lc:O.OS]e:().lO]

m=20 LBGTSVQ 0.60 0.031 0.059 0.266 0.470
LBGTSVQ+MAP 0.00 0.024 0.047 0.206 0.369
m = 8§ LBGTSVQ 0.00 0.040 0.078 0.336 0.570
LBGTSVQ+MAP 0.00 0.025 0.049 0.228 0.419
m =10 LBGTSVQ 0.00 0.050 0.097 0.401 0.651
LBGTSVQ+MAP 0.00 0.034 0.067 0.303 0.530
m == 12 LBGTSVQ 0.00 0.058 0.114 0.460 0.717
LBGTSVQ+MAP 0.00 0.043 0.087 0.374 0.619

Table 4.10: Probability of Codeword Error with and without MAP Detection.



Chapter 5

Conclusions and
Recommendations

Several coding schemes based upon tree-searched vector quantization have been
developed for encoding speech LSP parameters. In the case when the channel is
noiseless, an interblock noiseless coding scheme was used to reduced the bit rate.
Two schemes, PD-TSVQ and FR-TSVQ, have been considered for encoding speech
data that contain pauses. Both of these are shown to be effective. In order to achieve
1 dB? spectral distortion, scalar quantizers were used to encode the error vector.
Two type of SQs are considered: UTQs and LMQs. It is concluded that the uniform-
threshold quantizers are superior to the Lloyd-Max quantizers. Furthermore, the
adaptive bit allocation scheme is more efficient than the fixed bit allocation scheme,
though it is more sensitive to the out-of-training séquence. To encode the LSP
parameters at 1 dB? spectral distortion, it is shown that approximately 20 bits
per frame are needed. This is a significant improvement over the 2D-DCT scheme
considering the small encoding delay.

In coding the LSP parameters over noisy channels, two approaches have been
proposed. In the first approach, the encoder and the decoder were re-designed for
the noisy channel (an algorithm is given for channel-optimized TSVQ design); in the
second approach, the interframe correlation that remained after source coding was

used to detect channel errors and a recursive procedure is proposed for implementing



the MAP detector. Both approaches are shown to be useful, especially for noisier
channels and higher bit rates. It would be interesting to see whether or not both of
these can be combined to develop a more efficient scheme.

Also, the MAP detector in the second approach can be ex.tcnded into a Bayesian
detector. The cost between two codewords can be taken to be the Euclidean distance
between the codevectors associated with those two codewords. This will minimize
the mean squared-error between what was transmitted and what is received. Further
research can also be done to incorporate scalar quantizers with TSVQs for encoding

LSP parameters in noisy channels and still obtain 1 dB2 spectral distortion.
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