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Violation of Lorentz invariance in nature is a possibility suggested by vari-

ous candidate theories of quantum gravity and exotic extensions of the standard

model, and by general curiosity. Lorentz-violating effects in particle interactions

are strongly constrained, but effects involving gravity are not. Here, observational

constraints on, and theoretical aspects of, a certain class of gravitational theories

that violate Lorentz invariance are considered. “Einstein–aether” theory is a four-

parameter class of theories in which gravity couples to a dynamical, timelike, unit-

norm vector field: the “aether”. This family provides a means for studying Lorentz

violation in a generally covariant setting. Demonstrated first is the effect on the

four parameters, of stretching the metric along the aether direction. Next, the

Noether charge method for defining the Hamiltonian of a diffeomorphism invariant

field theory is applied to obtain expressions for the total energy, momentum, and

angular momentum of an Einstein-aether spacetime. The method is also used to



discuss the mechanics of Einstein–aether black holes. Next, the computation of the

theory’s post-Newtonian parameters are reported. Constraints on their values are

combined with other constraints concerning the properties of linearized wave modes

and Einstein–aether cosmology. All of these constraints are satisfied by parameters

in a large two-dimensional region in the theory’s four-dimensional parameter space.

Next, constraints from the motion of binary pulsar systems are considered. Derived

to lowest post-Newtonian order are wave forms for the metric and aether far from

a nearly Newtonian system and the rate of energy radiated by the system, in the

limit that effects due to strong fields are neglected. There exists a one-parameter

family of Einstein–aether theories for which the radiation rate expression is identical

to that of general relativity to the order worked to here. Finally, strong field effects

are included by treating the compact bodies as point particles with nonstandard,

velocity dependent interactions. Precise constraints cannot be stated for general

parameter values until the values of the coupling coefficients of the nonstandard

interactions can be calculated for a given stellar source. It is argued, though, that if

the parameters are smaller than roughly (0.1), then all current observational tests

impose just the three conditions that guarantee agreement in the weak field limit.

Thus, there exists a family of Einstein–aether theories, with one mildly bounded

free parameter, that satisfy the collected constraints.
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Chapter 1

Introduction

1.1 Lorentz non-invariance

It is possible that Lorentz invariance is not a fundamental symmetry of nature.

It is possible that it is fundamental, but is broken by some yet unknown effect.

However it might happen, it is a valid question to ask, does nature exhibit perfect

Lorentz symmetry? In recent years, this question has received increasing attention,

and the purpose of this dissertation is to report on investigations into this question

through the use of a particular class of theories that incorporate Lorentz violation

into a gravitational setting.

The increased attention to this question is sourced largely by hints of Lorentz

violation in popular candidate theories of quantum gravity and high energy ex-

tensions of the standard particle model. For example, a complete quantum field

theory of strings may permit fields that obtain tensor valued vacuum expectation

values [1]. These fields would then act as structures singling out preferred frames.

In a complete loop quantum gravity theory, in a natural semiclassical ground state

the effective spacetime may act as a dispersive medium that induces Lorentz-variant

photon propagators [2]. And in noncommutative field theories, the noncommuta-

tivity of spacetime coordinates is intrinsically Lorentz violating [3]. (By contrast,

in causal set theory, where spacetime is replaced by a discrete set of points, the
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random distribution of points and causal relations between them in a typical set

should preclude preferred directions [4]. In this way, discreteness does not imply

Lorentz variance.) The review [5] discusses various theoretical models that feature

Lorentz-symmetry violating effects and observational searches for violations.

So far no conclusive sign of Lorentz variance has been seen, and very strong

bounds exist on the size of couplings for Lorentz-violating effects in standard model

extensions [5, 6]. I mention, however, the issue of the Greisen [7], Zatsepin and

Kuzmin [8] (GZK) cutoff, as it is a strong motivator of interest in Lorentz violation.

A sharp drop is expected in the number of cosmic ray protons observed in the

Earth’s atmosphere that have energies above the GZK cutoff—about 1020 eV. This

drop is due to the surpassing of the threshold for pion production in interactions

between protons and the cosmic microwave background, together with the absence

of any known source for such ultra high energy cosmic rays that is both copious and

close-by.

The AGASA cosmic ray detector group has reported [9] that it does not see the

expected suppression of events above the cutoff. Their report has fueled enormous

interest in Lorentz violation since it was realized that the absence of the suppres-

sion could be caused by an absence of the symmetry (there are also a variety of

other explanations, see [10] for a review). Conversely, the HiRes experiment re-

ports confirmation of the cutoff [11, 12]. There still exists a great deal of systematic

and statistical uncertainty in the analysis of both groups. This is due to difficulty

in determining the energy of a given cosmic ray, and the small number of detected

events [13]: the AGASA report is based on just 11 events above the cutoff. Thus, the
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original report is not a reliable indication of Lorentz violation, but it has certainly

stimulated research on it.

There is an additional, deep motivation for interest in this topic, which happens

to be the main reason for my interest. The assumption of Lorentz invariance is

part of the bedrock of modern physics. It is just exciting to challenge the massive

authority of that assumption. And it is satisfying that we can do so with minimal

change to familiar tools, as evidenced in this dissertation. Studying Lorentz violation

is audacious, but tractable.

1.2 Lorentz violation and gravity

The effects of Lorentz violation in a gravitational context are not covered by

the bounds from particle interactions. This dissertation will consider theoretical and

observational aspects of a certain class of theories of gravity that contain a preferred

frame, with an emphasis on how current experimental tests of gravity constrain the

theory’s free parameters. Incorporating Lorentz violation into a gravitational set-

ting requires a mechanism that breaks this symmetry while preserving the distinct

symmetry of diffeomorphism invariance. “Einstein–aether” theory—or “ae-theory”

for short—is a classical metric theory of gravity that contains an additional dynam-

ical vector field. The vector field “aether” is constrained to be timelike everywhere

and of fixed norm. The aether can be thought of as a remnant of unknown, Planck-

scale, Lorentz-violating physics. It defines a preferred frame, while its status as a

dynamical field preserves diffeomorphism invariance. The condition on the vector

3



norm, which can always be scaled to unity, ensures that the aether just picks out a

preferred direction, and removes instabilities in the unconstrained theory [14].

1.2.1 A brief history of ae-theory

Vector-tensor theories were first studied in the early 70’s, but without the unit-

norm constraint; see for example [15, 16]. The theories were of interest primarily as

toy examples for newly developed methods of probing the post-Newtonian regime of

gravitational theories—vector-tensor was just the next simplest thing after scalar-

tensor. Results concerning the weak field form and the speeds and polarizations

of linearized vector-tensor plane waves were derived [17]. These theories suffered

from the problem that some of the degrees of freedom were always associated with

negative energies and thus instability, due to the fact that the vector field could

become spacelike. The instability is thus removed by the imposition of the unit

constraint. This constraint alters the theory’s dynamics so that the mentioned

results must be derived anew for ae-theory. Furthermore, expressions for the post-

Newtonian equations of motion of compact bodies in the presence of strong fields,

and the radiation damping rate were never determined.

In the 80’s, Gasperini [18] wrote down the first example of a unit-vector–tensor

theory of gravity, although in a tetrad formalism. The relationship between the pa-

rameters of Gasperini’s action and those of ae-theory have not been worked out,

because Gasperini’s results are not useful for placing observational constraints on

the parameter values. One phenomenological result worked out by Gasperini [19]
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was the fact that in a cosmological setting, certain values of the parameters lead

to a negative value of the effective gravitational coupling constant Gcosmo and thus

repulsive forces. This effect could then eliminate a big-bang singularity. Doing so

would require time-dependent parameters, since Gcosmo is positive today. The pres-

ence of dynamical parameters introduces complexities—such as how to determine

parameter dynamics—that I choose to leave for future work: in this dissertation,

strictly constant parameters are assumed.

In 1989, the argument of Kostelecky and Samuel [1] that string theory might

spontaneously violate Lorentz symmetry led them to investigate [20] an Einstein–

Maxwell system with a potential for the vector field that would induce symmetry

breaking. Their potential was a general function of the unit-norm condition that

would be minimized when the condition was satisfied, but they did examine the

special case in which the constraint was strictly enforced. Finally, the unit-vector–

tensor theory with the general action considered below was presented by Jacobson

and Mattingly [21] in 2000, following an unpublished idea of Jacobson and Dell.

1.2.2 Additional ae-theory studies

Aspects of ae-theory that have received notable study, but that I will not

focus on in this dissertation include ae-theory cosmology, ae-theory stellar solutions,

and violations of the second law of black hole thermodynamics in Lorentz-violating

theories. I will summarize this work here.

The field equations for a homogeneous, isotropic case were written down by
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Gasperini in the tetrad formalism [18], and by Carroll and Lim in the vector for-

malism [22]. They observed that the aether would have two effects: independent

renormalizations of Newton’s constant and the spatial curvature contribution to the

Einstein equation. Bounds from these effects are discussed in Chapter 4. The spec-

trum of primordial density perturbations generated by inflation in ae-theory have

been studied. Lim [23] and Kanno and Soda [24] have shown that vector modes do

not grow in ae-theory without a non-aether source, such as an inflaton field. The

studies of [23, 24] have not yet led to observational constraints on the theory. A

remaining task is to determine the evolution of perturbations to the surface of last

scattering. Zlosnik, Ferreira, and Starkman [25] have studied a more complicated

version of unit-vector–tensor theories, in which the Lagrangian can be an arbitrary

polynomial in the scalar that defines the aether portion of the Lagrangian used

here—see Eqn. (2.2). They have shown that for the aether to act as dark matter

in the flattening of galactic rotation curves requires a non-integer polynomial. Such

an action is very unusual from an effective field theory standpoint.

Investigations of ae-theory black holes and stars have been carried out, largely

by Eling, Jacobson, and coworkers. Eling and Jacobson [26, 27] have shown nu-

merically the existence of static, spherically symmetric ae-theory black hole and

stellar solutions. There exists a two-parameter family of such solutions that are

asymptotically flat, and a one-parameter subset that is regular on the horizon of

spin-0 gravity-aether waves (see Chap. 5 for more on ae-theory wave modes). With

Garfinkle [28], they have demonstrated the formation of an ae-theory black hole

by collapsing scalar matter. Their results support the conjecture [26, 27] that col-
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lapse will select the special subclass. With Miller [29], Eling and Jacobson have

begun examining properties of non-rotating neutron stars in ae-theory with varying

equations of state. A step that is necessary to reach conclusive constraints from

binary pulsar systems is to examine the form of non-static solutions—specifically,

stars translating with respect to the aether frame; this point is discussed in Chapter

6.

One property of vector-tensor theories and more general Lorentz-violating the-

ories of gravity is the existence of linearized field modes with differing characteristic

speeds. In ae-theory, this fact was first discovered by Jacobson and Mattingly [30],

and is demonstrated in Chapter 5. Dubovsky and Sibiryakov [31] have argued that

the differing propagation speeds imply that black holes in Lorentz-violating theories

will radiate the various modes at different Hawking temperatures, in such a way

that the generalized second law of black hole thermodynamics can be violated. Es-

sentially, the black hole is used as a perfect heat pump. Further analysis by myself

and colleagues [32] has lead to evidence in support of their findings, including an

additional, classical process that violates the law. The conclusion appears to be

that the generalized second law can only be preserved by the presence of higher or-

der effects that destroy the notion of a causally separated black hole interior—thus

removing black holes from the theory—or by the absence of Lorentz violation. It is

not yet known whether this second law violation has observational consequences.
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1.3 Outline of Thesis

In this dissertation, I will examine theoretical and observational aspects of

ae-theory. These include the effect of a rescaling of the metric along the aether

direction, the form of asymptotic quantities such as total energy and momentum,

the first law of ae-theory black hole mechanics, and observational constraints from

solar system experiments and binary pulsar systems.

To summarize the contents:

In Chapter 2, I demonstrate the effect on the ae-theory coupling constants,

defined as cn, (n = 1, . . . , 4), of rescaling the aether and the metric along the aether

direction.

In Chapter 3, I derive expressions for the total energy, momentum, and angular

momentum of an ae-theory spacetime via the Noether charge method. This work

is crucial for Chapters 5 and 6. I also use the Noether charges to write down the

first law of ae-theory black hole mechanics and discuss difficulties in giving the law

a thermodynamic interpretation.

In Chapter 4, I examine a variety of observational constraints on ae-theory.

These constraints include those that probe the post-Newtonian limit of the theory;

for that purpose, I calculate the parametrized post-Newtonian, or PPN, parameters.

I also consider constraints derived by other authors that follow from the nature of

linearized wave modes and from ae-theory cosmology.

In Chapter 5, I begin the examination of the motion of binary pulsar systems

in ae-theory, considering the limit in which effects due to strong internal fields of
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the compact bodies can be neglected. Treating the bodies as perfect fluid spheres,

I calculate the radiation damping rate, or the rate at which a system of compact

bodies loses energy due to gravity-aether radiation.

In Chapter 6, I include strong field effects by treating the compact bodies as

point particles with nonstandard, velocity dependent interactions. The interactions

are parametrized by dimensionless “sensitivities”. I determine the effective post-

Newtonian equations of motion for the bodies, and the radiation damping rate.

Additional work to calculate sensitivities for a given source is required to obtain

precise constraints for all values of the cn. I am able to estimate how small the cn

must be for the strong field effects to be negligible given current observational errors

in the measurement of pulsar systems. The class of ae-theories with “small-enough”

cn is then subject to just the PPN and weak field constraints.

In Chapter 7, I review my thesis and the results of the dissertation, and discuss

directions for future research.

1.3.1 Conventions

Throughout the dissertation, I follow the conventions of Wald [33]. In particu-

lar, I use units in which the flat space speed-of-light c = 1, and I use metric signature

(−,+,+,+). This signature is opposite to that employed in the previously published

versions of the dissertation chapters 2–5, but is in accord with nearly all of the work

on ae-theory conducted outside the “Maryland camp”, and with the canonical litera-

ture on post-Netownian expansions and binary pulsar tests. The translation between
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the results as reported in this dissertation and as reported in the published versions

of the chapters is made by substituting {c1, c2, c3} → −{c1, c2, c3}, c4 → +c4.

The following shorthand conventions for combinations of the ae-theory param-

eters cn;n = (1, . . . , 4) will be used:

c14 = c1 − c4, (1.1)

c123 = c1 + c2 + c3 (1.2)

c± = c1 ± c3. (1.3)

When covariant equations are expanded in Minkowskian coordinates, the fol-

lowing conventions are observed. Spatial indices will be indicated by lowercase Latin

letters from the middle of the alphabet: i, j, k, . . . . One exception is when the co-

efficients c1,2,3,4 are referred to collectively as cn, when no confusion should arise.

Indices will be raised and lowered with the flat metric ηab. Repeated spatial indices

will be summed over, regardless of vertical position: Tii =
∑

i=1...3 Tii. The flat-

space Laplacian will be denoted by △: △f ≡ f,ii. Time indices will be indicated by

a 0; time derivatives will be denoted by an overdot: ḟ ≡ ∂0f .
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Chapter 2

Field Redefinitions

2.1 Introduction

In this chapter, I will introduce the four-parameter ae-theory action, and then

demonstrate the effect on it of a field redefinition. The redefinition considered is of

the form gab → g′ab = A(gab + (1 − B)uaub), u
a → u′a = (1/

√
AB)ua, where gab is

a Lorentzian metric and ua is the “aether”. The action has the most general form

that is generally covariant, second order in derivatives, and in which the unit-norm

constraint is imposed. The redefinition preserves this most-general form, since it

preserves covariance, does not introduce higher derivatives, and preserves the unit-

norm constraint. The net effect is then a transformation of the coupling constants

in the action. The study of ae-theory systems can be simplified in certain cases by

invoking this transformation to give the couplings more convenient values; e.g. by

setting one of the constants to zero.

This work generalizes a result of Barbero and Villaseñor [34] that shows equiv-

alence between vacuum general relativity and an ae-theory system whose coupling

constants satisfy certain relations. The four coupling constants must be specific

functions of one free parameter for their result to apply. I consider here the general

case in which the constants have arbitrary values. This work also uses a simpler

parametrization of the redefinition than that of [34] and works with a now more
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common form of ae-theory action. The translation between this work and [34] will

be given below.

2.2 Transformation of the Action

The conventional, second-order ae-theory action S is defined as the most

general that is covariant, second-order in derivatives, and in which the constraint

uaua = −1 is enforced; thus:

S =

∫

d4x
√

|g| L, (2.1)

with Lagrangian L

L =
1

16πG

(

R+c1(∇aub)(∇aub) + c2(∇au
a)(∇bu

b)

+ c3(∇au
b)(∇bu

a) + c4(u
a∇au

c)(ub∇buc)
)

,

(2.2)

where R is the scalar curvature of the metric gab and the cn are dimensionless

constants.

I will assume that the fields are on-shell with respect to the constraint, rather

than incorporate it via a Lagrange multiplier. This approach is justified if one views

two actions as equivalent if they lead to the same equations of motion. I obtain the

same equations of motion either by subjecting the off-shell action with a multiplier

term to general variations, then solving for the multiplier in terms of the other fields,

or by subjecting the on-shell action to variations that preserve the constraint. It

follows that two actions are equivalent if they agree on-shell. The redefinition given

below preserves the constraint; thus, it preserves this sense of equivalence.
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I will begin by considering unprimed variables: metric gab and aether ua,

satisfying gabu
aub = −1. I then define primed fields:

g′ab = A
(

gab + (1 − B)uaub

)

u′a =
1√
AB

ua

(2.3)

where A and B are positive constants. The sign of A merely changes the signature

convention of the metric so is irrelevant. A negative value of B results in a primed

metric of Euclidean signature. I restrict to positive B to ensure comparison of

Lorentzian theories. The primed inverse-metric g′ab and the primed aether one-form

u′a ≡ g′abu
′b are then uniquely determined in terms of unprimed fields:

g′ab =
1

A

(

gab +
(

1 − 1

B

)

uaub
)

u′a =
√
AB ua.

(2.4)

It follows that u′ag′abu
′b = −1.

To demonstrate the effect of this redefinition on the action (2.1), I shall start

with the primed action and express it in terms of unprimed variables. I will show

that the form of the action is left invariant, with new parameters G, cn given as

functions of A,B, and the original G′, c′n. The calculation is straightforward but

lengthy—the demonstration will be explicit to ease the checking of the final results.

I will begin by considering the role of the parameter A, whose net effect is a

rescaling of the action. This occurs because A rescales the field variables in such

a way that each term in the Lagrangian (2.2) acquires the same factor. Writing

the Lagrangian in terms of primed variables, then invoking the substitutions (2.3)

and (2.4) reveals that each term in the un-primed Lagrangian carries an overall
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factor of 1/A. The ratio of primed-to-unprimed metric determinants will equal A4,

times a B-dependent factor given below. Thus, the un-primed action (2.1) will carry

a net factor of A and will have no other A-dependence. This factor can be absorbed

into a redefinition of G. Having thus accounted for the effect of A, I will set A = 1

in the calculations that follow.

The full relation between metric determinants g, g′ can be deduced by evalu-

ating them in a basis orthonormal with respect to gab, of which ua is a member. In

this basis, g = −1. From the expression gab = −uaub + hab, with habu
a = 0, we have

g′ab = −u′au′b + hab. It follows that g′ = −(uau′a)
2 = −B in this basis. Generalizing

to an arbitrary basis leads to

g′ = Bg. (2.5)

The action then re-scales: S ′ =
√
BS. The above rescalings effect a redefinition of

Newton’s constant:

G =
G′

A
√
B
, (2.6)

restoring A temporarily.

2.2.1 Curvature Term

I turn now to the curvature term in the Lagrangian (2.2). I will start by listing

properties of the redefined connection coefficients Γa
bc,

(Γa
bc)

′ = Γa
bc + gadDdbc, (2.7)

where

Dabc =
(1 − B)

2

(

δd
a + (1 − 1/B)udua

)[

∇b(uduc) + ∇c(udub) −∇d(ubuc)
]

. (2.8)
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Define the following quantities:

Sab = ∇aub + ∇bua

Fab = ∇aub −∇bua

u̇a = ub∇bu
a.

(2.9)

Dabc can be organized as follows:

Dabc =
(1 − B)

2

(

uaXbc + ubFca + ucFba

)

, (2.10)

where

Xbc =
1

B

(

Sbc + (1 − B)(u̇buc + ubu̇c)
)

, (2.11)

and the unit-constraint has been enforced.

I will now note some useful relations involving Dabc. To begin,

uaSab = uaXab = uaFab = u̇b. (2.12)

Then, contraction once with ua gives

uaDabc = −(1 −B)

2B

(

Sbc + u̇buc + ubu̇c

)

,

ucDabc =
(1 − B)

2

(

u̇aub + uau̇b + Fab

)

,

(2.13)

and contraction twice gives

ubucDabc = −(1 −B)u̇a,

uaubDabc = 0.

(2.14)

In addition,

XabucDabc = (1 −B)u̇au̇
a,

F abucDabc =
(1 − B)

2
FabF

ab.

(2.15)
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As for the trace of Dabc,

Db
bc ≡ gabDabc = 0. (2.16)

I now demonstrate the transformation of the scalar curvature. A short calcu-

lation reveals that

(R d
abc )′ = R d

abc + 2∇[bD
d
a]c + 2De

c[aD
d
b]e, (2.17)

so that

(Rab)
′ = Rab +Wab, (2.18)

where

Wab = ∇dD
d
ab −Dd

eaD
e
db. (2.19)

The scalar curvature R′ = R′
ab g

′ab takes the form

R′ = Rabg
ab − (1 − B)

B
Rabu

aub +Wab

(

gab − (1 − B)

B
uaub

)

. (2.20)

The second term on the right-hand-side can be re-expressed via the definition of the

curvature tensor:

Rabu
aub = ua∇b∇au

b − ua∇a∇bu
b

= (∇au
a)(∇bu

b) − (∇aub)(∇bua) + υ,

(2.21)

where υ represents a total divergence. This can be discarded with the same justi-

fication given above for taking the fields as on-shell. The symbol υ will continue

to represent other total divergences that appear in the calculations below, but the

specific form of the divergence will differ by equation. The third term on the right-
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hand-side of (2.20) has the form

Wabg
ab = −DcbaDabc + υ

= −(1 − B)

2

(

ucXab + ubF ac
)

Dabc + υ

=
−(1 − B)2

2

(

u̇au̇a +
1

2
FabF

ab

)

+ υ.

(2.22)

As for the last term in (2.20),

Wabu
aub = uaub(∇cDcab −DcdaD

dc
b)

= −Dabcu
c(2∇aub +Dbadud) + υ

= −(1 − B)

2

(

u̇aub + uau̇b + Fab

)

×
(

Sab +
1 −B

2
(u̇aub + uau̇b) +

(1 +B)

2
F ab

)

+ υ

= −(1 − B2)

2

(

u̇au̇a +
1

2
FabF

ab
)

+ υ.

(2.23)

Combining the above and suppressing a total divergence, the transformation of the

scalar curvature can be expressed as

R′ = R− (1 − B)

B

(

(∇au
a)(∇bu

b) − (∇aub)(∇bua)
)

+
(1 −B)2

2B

(

u̇au̇a +
1

2
FabF

ab
)

= R +
(1 −B)

2B

{

(1 −B)(∇aub)(∇aub) − 2(∇au
a)(∇bu

b)

+ (1 +B)(∇aub)(∇bua) + (1 −B)(u̇au̇a)
}

.

(2.24)

Contributions an to the redefined cn can be extracted from this expression:

a1 =
(1 − B)2

2B

a2 = −(1 −B)

B

a3 =
(1 − B2)

2B

a4 =
(1 − B)2

2B
.

(2.25)
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The constants an are characterized by the relations

0 = a1 − a4 = a1 + a2 + a3 = 2a1 + a2
1 − a2

3 (2.26)

and a1 > 0. Therefore, if the cn satisfy these conditions, the ae-theory system is

equivalent to pure gravity via a field redefinition. The translation from this result

in terms of A and B to that of [34] in terms of α and β is made by choosing

A =
√

|α(α+ β)|/2 and B = −α/(α + 2β). (Compare the first line of (2.24) with

Eqn. (6) of [34].)

2.2.2 Aether Term

I now proceed to examine the transformation of the aether portion of the

Lagrangian. From the form of the covariant derivative

(∇au
b)′ =

1√
B

(

∇au
b +Db

acu
c
)

, (2.27)

and the relations (2.16) and (2.14), the transformation of the c2 and c4 terms can

be deduced: (∇au
a)′ = (1/

√
B)(∇au

a), (u̇a)′ = u̇a and further (u̇a)
′ = u̇a. Thus,

(

(∇au
a)(∇bu

b)
)′

=
1

B

(

(∇au
a)(∇bu

b)
)

, (2.28)

and

(

u̇au̇a

)′
=

(

u̇au̇a

)

. (2.29)

These results indicate contributions of c′2/B to c2 and c′4 to c4.

It will be convenient to reorganize the c1 and c3 terms:

c1(∇aub)(∇aub) + c3(∇aub)(∇bua) =
c+
4
SabS

ab +
c−
4
FabF

ab, (2.30)
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where c± = c1 ± c3. Then the form of the covariant derivative of u′a is

(∇aub)
′ =

√
B

(

∇aub −Dcabu
c
)

=
1

2
√
B

(

Sab + (1 − B)(u̇aub + uau̇b) +BFab

)

.

(2.31)

Raising an index on the symmetrized derivative,

(Scbg
ac)′ =

1√
B

(

Sa
b + (1 − B)ubu̇

a
)

, (2.32)

there is indeed no u̇bu
a term—leads to

(SabS
ab)′ = (Sa

bS
b
a)

′ =
1

B

(

SabS
ab + 2(1 −B)u̇au̇a

)

, (2.33)

indicating contributions of c′+/B to c+ and (1 − B)c′+/2B to c4. Raising an index

on the anti-symmetrized derivative,

(Fcbg
ac)′ =

√
B

(

F a
b −

(1 − B)

B
uau̇b

)

, (2.34)

leads to

(FabF
ab)′ = −(F a

bF
b
a)

′ = B

(

FabF
ab − 2

(1 −B)

B
u̇au̇a

)

, (2.35)

indicating contributions of Bc′− to c− and −(1 −B)c′−/2 to c4.

Collecting the above results reveals contributions bn to the redefined cn:

b1 =
1

2B

(

c′+ +B2c′−
)

=
1

2B

(

(1 +B2)c′1 + (1 − B2)c′3
)

b2 =
c′2
B

b3 =
1

2B

(

c′+ −B2c′−
)

=
1

2B

(

(1 − B2)c′1 + (1 +B2)c′3
)

b4 = c′4 +
1 − B

2B

(

c′+ − Bc′−
)

= c′4 +
1 − B

2B

(

(1 −B)c′1 + (1 +B)c′3
)

.

(2.36)
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The redefined cn are given by the sum of an (2.25) and bn (2.36):

c1 =
1

2B

(

c′+ +B2c′− + (1 −B)2
)

=
1

2B

(

(1 +B2)c′1 + (1 −B2)c′3 + (1 − B)2
)

c2 =
1

B

(

c′2 − 1 +B
)

c3 =
1

2B

(

c′+ − B2c′− + (1 − B2)
)

=
1

2B

(

(1 −B2)c′1 + (1 +B2)c′3 + (1 − B2)
)

c4 = c′4 +
1 −B

2B

(

c′+ − Bc′− + (1 − B)
)

= c′4 +
1

2B

(

(1 − B)2c′1 + (1 −B2)c′3 + (1 − B)2
)

.

(2.37a)

In addition,

c+ =
1

B

(

c′+ + 1 − B
)

c− = Bc′− − 1 +B

(2.37b)

2.3 Discussion

The redefinition (2.3) can simplify the problem of characterizing solutions for

a specific set of cn. This is done by transforming that set into one in which the

cn take on more convenient values. This has been done, for example, by Eling and

Jacobson in their study of ae-theory black holes and stars [26, 27].

It was noted in [34] that a system with restricted values of the coefficients,

equivalent to cn that satisfy (2.26), can be transformed into aether-free general

relativity. The current work extends this result by allowing for general values of the

cn. Using this result, different sets of cn are seen to be equivalent. For example, it

follows from the relations (2.37) that a set of cn is equivalent to one in which one
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of c+, c−, or c2 vanishes if the original values satisfy, respectively, c′+ > −1, c′− >

−1, or c′2 < 1.

Certain combinations transform in convenient ways. In particular, it follows

from the relations (2.37) that

c14 = c′14, 1 + c− = B(1 + c−), c123 =
1

B
c′123, 1 + c+ =

1

B
(1 + c+). (2.38)

This fact is noteworthy as it gives the first hint in this dissertation that the above

combinations of coefficients are somehow special. Many of the results that follow

feature those combinations. Of course, any combination of the four cn could be

written in terms of four other independent combinations such as those above, but

the directness with which they appear seems significant. The reasons for their status

are not known to me.

An extra constant can be eliminated in the case of spherically symmetric

configurations [35]. In this case, the hypersurface orthogonality and unit norm

of the aether imply the vanishing of the twist ωa = ǫabcdu
b∇cud, so that

ωaω
a = u̇au̇a +

1

2
F abFab = 0. (2.39)

Redefinition of a particular configuration preserves any Killing symmetries shared by

the metric and aether fields, so it preserves the relation (2.39). Then, for instance,

c+ can be eliminated by redefinition and c4 by absorption into c−. The Lagrangian

reduces to the form

L =
1

16πG

(

R +
c−
4
FabF

ab + c2(∇au
a)2

)

. (2.40)

This is considerably simpler than the general form (2.2).
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Once non-aether matter is included, a metric redefinition not only changes the

cn coefficients, but also modifies the matter action. The fact that Lorentz-violating

effects in non-gravitational physics are already highly constrained [5, 6] means that,

to a very good approximation, there is a universal metric to which matter couples.

Within the validity of this approximation, the field gab can be identified with this

universal metric, thus excluding any aether dependence from the matter action.

This identification then eliminates the freedom to redefine the metric.
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Chapter 3

Noether Charges and Black Hole Mechanics

3.1 Introduction

Constraints on the acceptable values of the four cn appearing in the ae-theory

action are implied by observational evidence, but one can also argue for limits im-

posed by theoretical considerations. A possible requirement that motivates the work

of this chapter is that the theory should satisfy some form of energy positivity. It

may be that imposing positivity for all solutions is more restrictive than necessary,

or perhaps that one should only require positivity in the rest frame of the aether.

Whatever the argument, an expression for the energy is required to know how the

cn are constrained.

With this goal in mind, I give here an expression for the total energy of an

asymptotically flat ae-theory spacetime, as well as expressions for the total mo-

mentum and angular momentum. These are generated via the “Noether charge”

method [36, 37] of defining the value of the on-shell Hamiltonian for a diffeomor-

phism invariant field theory, directly from the theory’s Lagrangian. The conventional

ADM and Komar expressions [33], which have the form of integrals at spatial infin-

ity, acquire aether-dependent corrections due to the nonvanishing of the aether at

infinity. Constraints on the cn are not discussed. The results here complement those

of Eling [38], in which expressions for the total energy and the energy of linearized
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wave modes are derived via pseudotensor methods.

The Noether charge method also allows one to write down a differential identity

that governs variations of stationary, axisymmetric black hole solutions. As shown

by Wald [36] and Iyer and Wald [37], in a wide variety of theories this identity

can be massaged into the familiar form of the “first law” of black hole mechanics

and then interpreted as a law of thermodynamics. The discovery of ae-theory black

hole solutions [26, 27] motivates the study of the first law for ae-theory black holes.

Eling and Jacobson demonstrate existence of these solutions, but have not found

analytic expressions for the fields; therefore, the form of the first law cannot be

inferred directly from the solutions. One can, however, attempt to derive the law

via the Noether charge method. Unfortunately, the algorithms of [36, 37] fail for

ae-theory since the vector field cannot be regular on the bifurcation surface of the

horizon, where a crucial calculation is performed. Below, a law resembling the first

law is derived by less elegant means for static, spherically symmetric solutions, but

a thermodynamic interpretation of this expression is not given. In particular, a

definitive expression for the horizon entropy in ae-theory has not yet been found.

The Noether charge methodology is briefly reviewed in Section 3.2. The req-

uisite differential forms for ae-theory are derived in Section 3.3. These are used to

determine expressions for the total energy, momentum, and angular momentum of

an asymptotically flat ae-theory spacetime in Section 3.4. The first law of ae-theory

black holes is discussed in Section 3.5.
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3.2 Noether charge methodology

I will summarize here the application of the Noether charge method [36, 37]

to the definition of total energy, momentum, and angular momentum of an asymp-

totically flat spacetime. Given a diffeomorphism invariant field theory defined from

an action principle, one can construct a phase space with symplectic structure from

the space of field configurations and the theory’s Lagrangian. For the case of an ae-

theory system on a globally hyperbolic spacetime, the phase space structure permits

a well defined Hamiltonian formulation. For every diffeomorphism on spacetime,

generated by vector field ξa, there is a corresponding evolution in phase space, with

Hamiltonian generator Hξ. This generator is implicitly defined through Hamilton’s

equation, which takes the form [36, 37]

δH =

∫

C

(δJ − d(iξΘ)) (3.1)

where J and Θ are differential 3-forms that depend on the dynamical fields, a

variation of the fields, and the vector field ξa; the surface of integration is a spacelike

Cauchy surface C of the spacetime.

The forms Θ and J are obtained from the theory’s Lagrangian as follows.

Let the Lagrangian L be a 4-form constructed locally out of the dynamical fields,

denoted collectively by ψ. The 3-form Θ is defined by the variation of L due to a

variation of ψ:

δL = E[ψ] · δψ + dΘ[δψ], (3.2)

where E[ψ] are identified as the equations of motion for the fields, the dot repre-

senting contraction over appropriate indices.
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This definition only determines Θ up to the addition of a closed form, which

must be exact by the result of [39]. The contribution to δH (3.1) from an asymp-

totic boundary is typically not effected by such ambiguity, though, since the falloff

conditions on the dynamical fields that guarantee convergence of δH imply that

any covariant, exact 3-form added to Θ will give no asymptotic contribution to δH .

Such is the case for ae-theory with the conditions chosen below. A contribution

might arise given an inner boundary to the spacetime. Here (Sec. 3.5) I only con-

sider stationary configurations on such spacetimes, and one can then show that the

contribution to δH vanishes. I will therefore fix the definition of Θ by taking the

“most obvious” choice that emerges from variation of the Lagrangian.

To each vector field on spacetime ξa, associate the Noether current 3-form J[ξ],

J[ξ] = Θ[Lξψ] − iξL. (3.3)

This current is conserved, dJ = 0, for arbitrary ξa when ψ satisfies the equations of

motion. This fact implies [39] that J can be expressed in the form

J[ξ] = dQ[ξ] (3.4)

when E[ψ] = 0. If in addition δψ is such that the equations of motion linearized

about ψ are satisfied, then δJ = dδQ, where here and below I choose δξa = 0. Q is

only defined up to addition of a closed, hence exact [39], 2-form, but this ambiguity

does not effect δH . I will therefore fix the definition of Q by taking the “most

obvious” choice.

An additional ambiguity can arise if one thinks of the Lagrangian L as defined

only up to the addition of an exact 4-form, i.e. a boundary term. Adding such a
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form to L effects Θ, J, and Q individually but leads to no net effect on δH . I will

fix this ambiguity by again taking the “most obvious” choices for the forms.

The Hamiltonian differential evaluated on-shell—when the full and linearized

equations of motion are satisfied—is thus a surface term

δHξ =

∫

∂C

(δQ − iξΘ). (3.5)

I will restrict attention to the case where C is asymptotically flat at spatial infinity.

The boundary of C will consist of a surface “at infinity”—the limit of a two-sphere

whose radius is taken to infinity—and a possible inner surface, such as a black hole

horizon.

One can define a Hamiltonian function Hξ if there exists a 2-form B such that

∫

∂C

δ(iξB) =

∫

∂C

iξΘ. (3.6)

The Hamiltonian is then defined as

Hξ =

∫

∂C

(Q − iξB). (3.7)

I will assume that the fall-off conditions on the fields are such that at infinity,

d(Q− iξB) = 0. It follows that the value of the contribution to Hξ from the surface

at infinity is conserved and can be interpreted as the conserved quantity associated

with the symmetry generated by ξa.

The total energy E of the spacetime is defined to be the value of the asymptotic

Hamiltonian for the case where ξa is a time translation ta = (∂/∂t)a at infinity

E =

∫

∞

(Q[t] − itB). (3.8)
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Likewise, with xa
i = (∂/∂xi)

a a constant, spatial translation at infinity, the total

momentum in the xa
i -direction Pi is defined as

Pi = −
∫

∞

(Q[xi] − ixi
B). (3.9)

The total angular momentum J about a given axis is defined via a vector field ϕa

that is a rotation around that axis at infinity, tangent to the bounding 2-sphere.

The pull-back to the boundary of iϕB vanishes, giving

J = −
∫

∞

Q[ϕ]. (3.10)

I note parenthetically that it follows from this definition that the total angular

momentum must be zero for any axisymmetric configuration (one for which Lϕψ =

0), on C possessing no inner boundary. This follows from the vanishing of J[ϕ] =

dQ[ϕ], when evaluated on such a configuration and pulled back to C. This result

does not appear to have been stated explicitly with this generality before, although

an early application is found in the proof of Cohen and Wald [40] that there are no

rotating, axisymmetric geons, in work that predates the precise formulation of the

Noether charge method.

This result also provides a short proof that there can be no rotating, axisym-

metric boson stars in general relativity. This generalizes the known result [41, 42]

that there are no stationary, rotating, axisymmetric boson stars. Here, axisymmetry

must include any complex argument of the scalar field, as well as its modulus; this

is a stronger sense of “axisymmetric” than is common in the boson star literature.

In the presence of an inner boundary, such as an event horizon, the vanishing of dQ

implies that the total angular momentum, i.e. the integral of Q over the boundary
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at infinity, is equal to the integral of Q over the inner boundary. Consequently, this

result is not in conflict with the existence of rotating, axisymmetric black holes.

3.3 Ae-theory forms

In this section, I will give the explicit expressions of the differential forms

defined above, for ae-theory. The conventional, second order ae-theory Lagrangian

4-form L is

L =
1

16πG

(

R + c1(∇aub)(∇aub) + c2(∇au
a)(∇bu

b)

+ c3(∇au
b)(∇bu

a) + c4(u
a∇au

c)(ub∇buc)
)

ǫ

(3.11)

where R is the scalar curvature of the metric gab, the cn;n = 1, . . . , 4 are dimen-

sionless constants, and ǫ is the canonical volume form associated with gab. The

constraint can be accounted for by adding to L a term of the form

λ
(

uaubgab + 1
)

ǫ (3.12)

where λ is a Lagrange multiplier; such a term does not contribute to the forms

sought.

Varying L gives Θ:

Θabc =
1

16πG
ǫdabc

[

gdegfh (∇fδgeh −∇eδgfh)

+

(

2Kd
eδu

e +
(

Kefud +
(

Kdf −Kfd
)

ue
)

δgef

)

]

, (3.13)

where

Ka
c = (c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4uaubgcd)∇bu

d. (3.14)
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From this follows J (3.3):

Jabc =
1

16πG
ǫdabc

(

Adef
h∇(e∇f)ξ

h +Bde
h∇eξ

h + Cd
hξ

h
)

, (3.15)

where

Adef
h =

(

gefδd
h − gd(eδf)

h

)

, (3.16a)

Bde
h = −2

(

K [d
hu

e] +K [d
h ue] −K [de]uh

)

, (3.16b)

Cd
h =

3

2
Rd

h + 2Kd
e∇hu

e − δd
h(R +Ke

f∇eu
f). (3.16c)

The Noether charge Q (3.4) can be extracted via an algorithm of Wald [39],

yielding

Qab =
1

16πG
ǫabcd

[2

3
Acdf

h∇fξ
h +

1

2
Bcd

hξ
h
]

= − 1

16πG
ǫabcd

[

∇cξd +
(

(

Kc
h +K c

h

)

ud −Kcduh

)

ξh
]

.

(3.17)

3.4 Conserved quantities

I now consider the expressions for the total energy, momentum, and angu-

lar momentum of an asymptotically flat spacetime in ae-theory. For the requisite

integrals to be convergent, falloff conditions must be set for the fields and their

variations. I will assume that at spatial infinity, there exists an asymptotic Carte-

sian coordinate basis, with respect to which the components of the metric and its

derivatives are

gµν = ηµν +O(1/r), (3.18)

and

∂gµν

∂xα
= O(1/r2), (3.19)
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where ηab is the flat metric. The variations of the metric δgab must be O(1/r). For

the aether, I will require that

uµ = ūµ +O(1/r), (3.20)

where asymptotically, ∇aū
b = 0. The frame can always be chosen to be the aether

frame, so that ūa = ta at infinity. With respect to the asymptotic Cartesian basis,

∂uµ

∂xα
= O(1/r2). (3.21)

The variation δua will be assumed to be O(1/r).

I turn now to the total energy. For ae-theory with the above falloff conditions,

Θ = ΘG + O(1/r3) asymptotically, where ΘG is the form which arises for GR in

vacuum. Hence, B = BG, the vacuum GR form. The total energy can then be

written as E = EG + EAE, where EG is the standard ADM mass [33]

EG =
1

16πG

∫

∞

dS ri(∂jgij − ∂igjj), (3.22)

where dS is the spherical area element and ra = (∂/∂r)a. The aether portion EAE

is

EAE =
1

16πG

∫

∞

dS 2 t[crd]t
e
(

(

Kc
e +K c

e

)

ūd −Kcdūe

)

= − 1

8πG

∫

∞

dS (Kt
rū

t +Kt
tū

r).

(3.23)

Setting ūa = ta gives

EAE =
c14

8πG

∫

∞

dS tarb∇au
b

=
c14

8πG

∫

∞

dS
(

∂tu
r − ∂ru

t
)

,

(3.24)
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where I have used the unit constraint, which requires that ta∇bu
a = ua∇bu

a +

O(1/r3) and ∂µu
t = +(1/2)∂µgtt +O(1/r3).

This expression can be evaluated more explicitly for a static, spherically sym-

metric solution using the results of Chapter 4 (the necessary ingredients were first

reported in [35]). In isotropic coordinates, the line element has the form:

dS2 = −N(r)dt2 +B(r)(dr2 + r2dΩ) (3.25)

and ūa = ta. In the generic case c123 6= 0, to O(1/r), N = 1− (r0/r), B = 1+(r0/r),

and ut = 1 + (r0/2r), for arbitrary constant r0. The total energy is then

E =
r0
2G

(1 +
c14
2

). (3.26)

This result was previously found by Eling using pseudotensor methods [38]. The

quantity

GN = G(1 +
c14
2

)−1 (3.27)

has been identified in studies of the ae-theory Newtonian limit [22](see also Chapter

4) as the value of Newton’s constant that would be measured far from gravitating

matter, assuming no direct interaction between aether and non-aether matter. A

Newtonian gravitating mass M = 2r0/GN can be defined, in which case

E = M. (3.28)

The total momentum in the xa
i direction also has the form (PG)i + (PAE)i,

where (PG)i is the standard ADM momentum [33],

(PG)i = − 1

16πG

∫

dS rj
(

∂0gji − ∂jg0i − δij(∂0gkk − ∂kg0k)
)

. (3.29)
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The aether contribution, setting ūa = ta, is

(PAE)i = − 1

16πG

∫

∞

dS
(

c+(ra∇aui + ra∇iu
a) + 2c2ri∇bu

b
)

. (3.30)

The total angular momentum takes the form JG +JAE, where JG is the gen-

eralization to a non-axisymmetric spacetime of the conventional Komar expression

for vacuum GR [33],

JG =
1

16πG

∫

∞

dS nab∇aϕb, (3.31)

where nab is the binormal of the boundary of C. The aether contribution JAE is

JAE = − c+
16πG

∫

∞

dS 2 r(aφb)∇aub, (3.32)

having set ūa = ta.

3.5 First law of black hole mechanics

For a stationary black hole spacetime, the Noether charge formalism allows

one to write down a differential identity that relates variations in the total energy

and angular momentum to variations of integrals over a cross-section of the horizon.

It has been shown [36, 37] that this identity becomes the “first law” of black hole

mechanics/thermodynamics for a wide variety of generally covariant gravitational

theories.

A one-parameter family, for a fixed set of cn values, of static, spherically

symmetric ae-theory black hole solutions has been shown to exist [26, 27]. The

existence proof is based on numerical integration of the field equations, and analytic

expressions for the fields are only known asymptotically. Thus, a first law cannot be
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obtained by directly examining the solutions. Instead, the Noether charge method

can be applied and an attempt to massage the variational identity into a form

resembling the familiar first law. The closest I will come here will be for the static,

spherically symmetric case, for which I will show that the identity can be written

in the form

δM =
κ

8πG

[

(1 + φN)δA+ φAδO
]

, (3.33)

where M is the black hole mass (i.e. the total energy, c.f. (3.28)), A is the area of

the horizon, N and O are quantities depending on the metric, aether, and the local

geometry of the horizon, and κ and φ are parameters defined below. Although this

expression resembles the familiar first law, it does not lead to an obvious thermo-

dynamic interpretation; in particular, I do not obtain a definitive expression for the

horizon entropy.

The variational identity of interest is derived via the Noether charge method

by applying Hamilton’s equation (3.1) to perturbations of an asymptotically flat,

stationary, axisymmetric configuration containing a Killing horizon. A Killing hori-

zon is a null hypersurface to which a Killing field is normal—I take it to define the

black hole horizon. The Cauchy surface C is assigned a boundary consisting of the

2-sphere “at infinity” and the surface B where C meets the horizon H. I will assume

that B is compact. Choose ξa to be the horizon-normal Killing field χa, normalized

as

χa = ta + Ωφa, (3.34)

where ta is the stationary Killing field with unit norm at infinity, and φa is the
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axisymmetric Killing field; the constant Ω defines the angular velocity of the horizon.

As δJ[χ] − d(iχΘ) is linear in Lχψ, which vanishes, δHχ also vanishes. From the

definitions of the total energy (3.8) and angular momentum (3.10), the identity

emerges:

δE − ΩδJ =

∫

B

δQ − iχΘ. (3.35)

The vanishing of δJ[χ] − d(iχΘ) also implies that the choice of B is arbitrary.

There is no precise definition of a “first law form” of an expression; roughly

speaking, however, by analogy with the conventional thermodynamic expression,

a black hole first law should relate variations of “macroscopic” variables—global

variables and other parameters that describe the black hole spacetime. The explicit

form that the identity takes for ae-theory, where Θ (3.13) and Q (3.17) are as defined

above, suggests that further manipulation is required for the identity (3.35) to take

a first law form.

An algorithm for massaging (3.35) into such a form and defining the entropy

associated with the horizon was given by Wald [36] and improved upon by Iyer and

Wald [37]. For the algorithm to apply, it is necessary that the stationary spacetime

be extendible to one whose Killing horizon possesses a bifurcation surface—a cross-

section on which the horizon-normal Killing field vanishes—on which all dynamical

fields are regular. In that case, one can work with the extended spacetime and choose

B to be the bifurcation surface. The algorithm relies on the universal behavior of

χa in a neighborhood of the bifurcation surface and reduces the horizon terms to

the form (κ/2πG)δS. Here, κ is the surface gravity of the horizon, defined by
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κ2 = −1
2
∇aχb∇aχb, evaluated on the bifurcation surface, and

S = 2π

∫

B

Eabcdnabncd, (3.36)

where nab is the binormal of B, and Eabcd is the functional derivative of the La-

grangian with respect to the Riemann tensor Rabcd, treating it as a field independent

of the metric. General kinematical arguments [43] in the context of quantum field

theory in curved spacetime indicate that the temperature due to thermal radiation

associated with a Killing horizon is always κ/2π. The form of the horizon terms

then suggest that S/G be identified as the thermodynamic entropy associated with

the horizon.

Unfortunately, the above requirement cannot be met for any ae-theory config-

uration [44]. Racz and Wald [45] have shown that a spacetime containing a Killing

horizon can be extended smoothly to one containing a bifurcation surface if the hori-

zon has compact cross-sections and constant, non-vanishing surface gravity. Regular

extensions of matter fields on that spacetime are not guaranteed. In fact, no such

extension can exist for a vector field ua that is invariant under the Killing flow and

not tangent to a horizon cross-section. The Killing flow acts at the bifurcation sur-

face as a radially directed Lorentz boost, under which only vectors tangent to the

surface can be invariant. In particular, the aether cannot possess a regular exten-

sion, since it is constrained to be timelike, while a cross-section of a null surface

must be spacelike.

Progress must be made by less elegant and less general means. I will now

restrict attention to the case of a perturbation between spherically symmetric, static
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solutions, and show that in this case the variational identity (3.35) can be written

in the form (3.33).

Consider a variation between static, spherically symmetric solutions, each con-

taining a Killing horizon H. Identify the solutions such that the horizons coincide,

and so that the Killing orbits coincide in a neighborhood of the horizon. That this

can be done follows from the construction of “Kruskal-like” coordinates in ref. [45].

These coordinates can be further defined so that the variations of the non-angular

components of the metric vanish on H: the line element near H takes the form

ds2 = −GdUdV +R2dΩ2. (3.37)

where G and R are functions of the quantity UV , and H is defined by UV = 0;

then, U and V can be properly rescaled such that G(0) = 1 for each solution.

Another effect of this identification [46] is that near H, the Killing vector χa

with surface gravity κ0 in the unperturbed solution coincides with the Killing vector

with the same surface gravity κ0 in the perturbed solution. From this fact, it follows

that on H, δQ[χ] = κδQ[k], where ka = κ−1χa is the unit-surface-gravity Killing

field near H for both configurations, and is held fixed in the variation of δQ[k].

I will consider the portion of H defined by U = 0, V > 0, and a cross-section

B corresponding to some value of V . A null dyad on H can be defined consisting

of ka and k̄a, where k̄a is the unique null vector normal to B such that kak̄
a = −1.

From the vanishing on H of the variations of ka and the transverse components of

the metric, it follows that k̄a is the same vector field for both solutions; i.e. δk̄a = 0.
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The metric hab = gab + 2k(ak̄b) induced on B has a variation

δhab =
δA

A
hab (3.38)

where A is the area of B. The aether ua can be decomposed with respect to this

dyad:

ua =
1

2φ
ka + φk̄a. (3.39)

where φ = −uaka. Then on H,

δua = −δφ
φ

(
1

2φ
ka − φk̄a) ≡ −δφ

φ
ūa. (3.40)

A non-null dyad normal to B consists of ua and the orthogonal unit-vector ūa. The

bi-normal nab of B is defined as the natural volume element on the tangent space

normal to B, normalized such that T anabR
b > 0 for any future-pointing timelike T a

and spacelike Ra directed towards infinity. It can be expressed in various ways:

nab = 2k[ak̄b] = −2u[aūb] = −2

φ
k[aūb]. (3.41)

Now, the algorithm cited above can be used to evaluate the aether-independent

horizon terms, which give [36, 37] the standard contribution (κ/8πG)δA. Evaluating

the aether-dependent portion of Q[k] pulled-back to B gives

QAE [k] =
1

16πG
ǫnabk

c
(

ua(Kb
c +K b

c ) + ucK
ab

)

=
1

8πG
ǫkaūbK

ab

=
1

8πG
ǫφ

(

c14u
aūb + c+ū

aūb + c2δ
a
b

)

∇au
b

= − 1

8πG
ǫφ

(

c14n
a
b + c+h

a
b − c123δ

a
b

)

∇au
b,

(3.42)

where ǫ is the volume element of B, ha
b = gachcb.
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Next, the δua-dependent portion of ikΘAE pulled-back to B gives

1

8πG
ǫnabk

bKa
cδu

c =
1

8πG
ǫ

δφ

φ
kaūbK

ab =
δφ

φ
QAE[k]. (3.43)

For the portion containing metric variations, noting that δgab = δhab = δA/Ahab, so

that uaδgab = 0, leads to

1

16πG
ǫnabu

akbδhcdK
cd =

φ

16πG
ǫ

δA

A

(

c13h
a
b + 2c2δ

a
b

)

∇au
b. (3.44)

Thus,

∫

B

(δQ[χ] − iχΘ) =
κ

8πG

[(

1 − φ
(

c14n
a
b + c+(

3

2
ha

b − δa
b )

)

∇au
b

)

δA

− φAδ
(

(c14n
a
b + c+h

a
b − c123δ

a
b

)

∇au
b
)

]

, (3.45)

and the variational identity (3.35) can be written in the form (3.33).

Although this first law form has been obtained, a thermodynamic interpre-

tation of it has not emerged. In particular, a definitive expression for the horizon

entropy has not been found. For variations between members of a one-parameter

family of solutions, the horizon terms (3.45) must be reducible to (ακ/2πG)δA for

some dimensionless constant α. Even with the Noether charge approach, however,

the value of α cannot be discerned, nor is it known whether αA/G acts as the

entropy in the non-static case.

It is possible that this confusion is related to an obscurity in the notion of

a black hole horizon in ae-theory. Linearized perturbations about a flat spacetime

and constant aether background were investigated in [30] (see also Chapter 5 for the

results). It was found that there exist five independent wave modes that travel at
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three different cn-dependent speeds. These speeds generally differ from the “speed of

light” defined by the flat metric, and exceed it for certain cn values. The behavior of

perturbations about a curved background is not known, but a similar result probably

holds. If that is so, then a Killing horizon is not generally a causal horizon. On the

other hand, the perturbations about the flat background do all propagate on the

lightcones of the flat metric [30] in the special case c13 = c4 = 0, c2 = c1/(1 + 2c1),

but the expression (3.45) does not drastically simplify in this case.

Given the wide applicability of the principles of black hole thermodynamics in

generally covariant theories of gravity, it would be surprising if they did not apply

to ae-theory. Recent work [31, 32], however, provides further evidence that they do

not, in the form of a Lorentz-violating, black hole perpetual motion machine. It

is not yet clear whether a breakdown of the thermodynamic interpretation would

have observational consequences that could be used to constrain the theory. An

important theoretical implication, if the breakdown is unescapable, is that Lorentz

violation and black hole thermodynamics cannot both be windows into quantum

gravity, as has long been suspected. This is a topic for future work.
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Chapter 4

PPN Parameters and Collected Constraints

4.1 Introduction

Alternative theories of gravity have been systematically ruled out or severely

constrained as observations have improved [17, 47]. It is now time to subject ae-

theory to this scrutiny. In this chapter, I will discuss the complete collection of

currently available observational and theoretical constraints on ae-theory, except-

ing those that result from binary pulsar systems. I will combine my result for the

ae-theory post-Newtonian parameters with previously established constraints. Sur-

prisingly, all of these constraints are compatible with ranges of order unity for two

coefficients in the Lagrangian. I am aware of no other theory that comes this close

to so many predictions of general relativity and yet is fundamentally different.

The ae-theory action for the metric gab and aether ua contains four independent

terms parametrized by four dimensionless constants cn. Observations have already

severely constrained Lorentz-symmetry violation in the matter sector [5, 6], hence

to a very good approximation matter must couple universally to one metric, which I

take to be gab. My goal is to determine the observational and theoretical constraints

on the cn.
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4.1.1 Summary of PPN results

A standard way of beginning to compare an alternative gravity theory to

general relativity is to examine the first post-Newtonian corrections. For a gen-

eral metric theory of gravity there are ten ‘parametrized post-Newtonian’ (PPN)

parameters [17, 47] characterizing the lowest order effects in v2 and dimensionless

gravitational potential (GNM/r). Five of these parameters, ζ1,ζ2, ζ3, ζ4, and α3,

vanish identically for any “semi-conservative” theory, i.e. one derived from a co-

variant action principle. Two others, known as the Eddington–Robertson–Schiff

parameters β and γ, characterize respectively the nonlinearity and the spatial cur-

vature produced by gravity. Of the remaining three PPN parameters, two, α1, α2,

characterize preferred frame effects, and the third, ξ (sometimes called the White-

head parameter), characterizes a peculiar sort of three-body interaction.

In the weak field, slow motion limit, ae-theory reduces to Newtonian grav-

ity [22] with a value of Newton’s constant GN related to the constant G in the

ae-theory action (4.11) by

GN = G
(

1 +
c14
2

)−1

. (4.1)

It was previously shown in [35] that in ae-theory β = γ = 1, just as in general

relativity. The parameter α2 for ae-theory was computed in Ref. [48] to lowest

nontrivial order in the cn.

Below, I give a comprehensive computation of all the PPN parameters, which

confirms the previous results and determines the exact values of α2 and the pre-

viously unknown parameters α1 and ξ. The results indicate that the “time-time”
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and “space-space” components of the metric are the same in ae-theory and GR to

calculated post-Newtonian order, where I refer to a nearly globally Minkowskian

coordinate system with the aether aligned with the time direction at zeroth-order.

The “time-space” components of the metric g0i, i = 1, 2, 3, differ as

(g0i)ae − (g0i)GR =
α2 − α1

2
Vi −

α2

2
Wi, (4.2)

where α1,2 are the PPN parameters given explicitly below. The components of the

aether are

u0 = 1 + U (4.3)

ui = (1 +
α1

8
)
(c−
c1

)(

Vi +Wi

)

+
3c123 − 2c+ + c14

2c123

(

Vi −Wi

)

. (4.4)

The potentials U , Vi, and Wi are defined by
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= GN
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vj (xj−yj)(xi−yi)
|x−y|2































, (4.5)

where ρ(t,y) is the rest-mass energy density of the fluid source, and vµ(t,y) is the

fluid four-velocity.

The components of the perturbed metric show that the ae-theory PPN pa-
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rameters are given by

γ = β = 1 (4.6)

ξ = ζ1 = ζ2 = ζ3 = ζ4 = α3 = 0 (4.7)

α1 =
8(c23 − c1c4)

2c1 + c+c−
(4.8)

α2 =
α1

2
+

(2c+ − c14)(3c123 − 2c+ + c14)

(2 + c14)c123
(4.9)

(4.10)

The parameters α1 and α2 are both of linear order in cn when the coefficients are

small compared to unity and the ratios amongst them are of order unity.

I will now present the calculation of these results, followed in Sec. 4.3 by a

discussion of constraints on the theory.

4.2 Calculation of ae-theory PPN parameters

The following discussion provides details of the calculation of the Parametrized

Post-Newtonian (PPN) parameters, α1,α2,α3,β,γ,ζ1,ζ2,ζ3,ζ4,ξ, for ae-theory. The

PPN formalism is defined in a weak field, slow motion limit, and describes the next-

to-Newtonian order gravitational effects in terms of a standardized set of potentials

and these ten parameters. I will determine the PPN parameters by solving the field

equations order-by-order with a perfect fluid source in a standard coordinate gauge.

More detailed explanations of the procedure and the general PPN formalism can be

found in the classic reference of Will [17].
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The ae-theory field equations follow from the action

S =
1

16πG

∫

d4x
√

|g|
(

R +Kab
cd∇au

c∇bu
d + λ(uaubgab + 1)

)

, (4.11)

where

Kab
cd =

(

c1g
abgcd + c2δ

a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd

)

, (4.12)

with an additional perfect fluid source coupled in the standard way to the metric

gab and uncoupled to the aether ua. There are the Einstein equations, written here

in nonstandard form

Rab =
(

Scd + 8πGTcd

)(

δc
aδ

d
b −

1

2
gabg

cd
)

, (4.13)

where

Sab =∇c

(

K
c

(a ub) −Kc
(aub) −K(ab)u

c
)

+ c1
(

∇cua∇cub −∇auc∇bu
c
)

+ c4u
c∇cuau

d∇dub

+ λuaub +
1

2
gab(K

c
d∇cu

d),

(4.14)

with

Ka
c = Kab

cd∇bu
d. (4.15)

Also

T ab = (ρ+ ρΠ + p)vavb + pgab, (4.16)

where va is the four-velocity, ρ the rest-mass-energy density, Π the internal energy

density, and p the isotropic pressure of the fluid. There is the aether field equation

∇aK
a
b = c4u

c∇cua∇bu
a + λub; (4.17)
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and the constraint

gabu
aub = −1. (4.18)

Eqn. (4.17) can be used to eliminate λ, giving

λ = −uc∇aK
a
c + c4u

c∇cu
aud∇dua. (4.19)

I assume a nearly globally Minkowskian coordinate system and basis with

respect to which, at zeroth order, the metric is the Minkowski metric ηab and the

aether is purely timelike. The fluid variables are assigned orders of ρ ∼ Π ∼ p/ρ ∼

(vi)2 ∼ O(1). Taking the time-derivative of a quantity will effectively raise its order

by one-half: X ∼ O(N) → ∂X/∂t ∼ O(N + 1/2). The components of the metric

perturbations hab with respect to this basis will be assumed to be of orders

h00 ∼ O(1) +O(2), hij ∼ O(1), h0i ∼ O(1.5). (4.20)

This assignment preserves the Newtonian limit while allowing one to determine just

the first post-Newtonian corrections. The aether perturbations δua are assumed to

be of orders

δu0 ∼ O(1), δui ∼ O(1.5). (4.21)

Lower orders are disallowed by the field equations, given the above orders of hab. I

will assume that hab and δua satisfy boundary conditions such that they vanish at

spatial infinity.

The metric components are to be expanded in terms of particular potential
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functions, thus defining the PPN parameters:

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+ 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ζ)A,

gij = (1 + 2γU)δij ,

g0i = −2
(1 + γ

2
+
α1

8

)

(Vi +Wi) −
1

2

(

1 + 2γ +
α1

2
− α2 + ζ1 + 2ξ

)

(Vi −Wi).

(4.22)

The potentials are all of the form

F (x) = GN

∫

d3y
ρ(y)f

|x− y| , (4.23)

where GN is the current value of Newton’s constant, which I determine below in

terms of G and the cn. The correspondences F : f are given by

U : 1 Φ1 : vivi Φ2 : U Φ3 : Π Φ4 : p/ρ

ΦW :

∫

d3z ρ(z)
(x − y)j

|x− y|2
((y − z)j

|x− z| − (x− z)j

|y − z|
)

A :
(vi(x− y)i)

2

|x− y|2 (4.24)

Vi : vi Wi :
vj(xj − yj)(xi − yi)

|x− y|2 .

Note that for U , Φ1,2,3,4, and Vi,

∆F ≡ F,ii = −4πGN ρf. (4.25)

I will also make use of the “superpotential” χ:

χ = −GN

∫

d3y ρ|x− y|, (4.26)

which satisfies

∆χ = −2U. (4.27)
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I also note the relation

χ,i0 = Vi −Wi, (4.28)

which follows from the formula

∂

∂t

∫

d3y ρ(y, t)f(x,y) =

∫

d3y ρ(y, t)vi(y, t)
∂f

∂yi
[1 +O(1)], (4.29)

which follows from the continuity equation for the fluid

ρ,0 + (ρvi),i = 0, (4.30)

assumed to hold to O(1.5).

These potentials satisfy certain criteria of “reasonableness” and simplicity

(see [17], Sec. (4.1) for details), and are general enough to describe all known

viable theories of gravity. In particular, they suffice for ae-theory. The criteria per-

mit g00 to depend also on the potential χ,00, and gij to depend on χ,ij. Such terms,

however, can always be eliminated [17] by a suitable coordinate transformation that

preserves the zeroth-order form of the components. The “standard PPN” gauge is

thus defined as that post-Newtonian coordinate frame in which all dependence on

χ,00 and χ,ij has been removed from, respectively, g00 and gij. This fixing determines

the coordinate frame up to necessary order so that the standard forms of the metric

components are unambiguous.

In carrying out the calculations, I will impose the following gauge conditions:

hij,j =
1

2
(hjj,i − h00,i) (4.31)

h0i,i = 3U,0 . (4.32)
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These conditions are suggested by the standard conditions for general relativity. The

conditions (4.31) suffice to put gij in standard form. The fourth condition (4.32) does

not standardize g00 and must be adjusted at the end; it is convenient for calculation,

however.

The solving procedure is as follows:

Step 1: Solve the constraint (4.18) for u0 to O(1);

Step 2: Solve the “time-time” component of the Einstein equation (4.13)

for g00 to O(1);

Step 3: Solve the “space-space” components of (4.13) for gij to O(1);

Step 4: Solve the “space” components of the aether field equation (4.17)

for ui to O(1.5);

Step 5: Solve the “time-space” components of (4.13) for g0i to O(1.5);

Step 6: Solve the “time-time” component of (4.13) for g00 to O(2).

The cases in which c123 = 0, c14 + 2 = 0, or 2c1 + c+c− = 0 are special in that the

found solutions diverge. Presumably the post-Newtonian approximation is not valid

in these cases, and assume below that they do not hold. See the main text for more

discussion of this point.

4.2.1 u0 to O(1)

Solving the constraint (4.18) gives

u0 = 1 + (1/2)h00 (4.33)
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to O(1). The components of ua are

u0 ≡ uaga0 = −1 +
1

2
h00, (4.34)

and

ui = uagai = ui + h0i. (4.35)

I now express the covariant derivatives of ua for later convenience. The con-

straint (4.18) implies that

∇au0 = 0 (4.36)

to O(2). Also to O(2),

∇0ui = −1

2
h00,i(1 +

1

2
h00) + h0i,0 + ui

,0, (4.37)

and

uc∇cui = u0∇0ui = −1

2
h00,i(1 + h00) + h0i,0 + ui

,0. (4.38)

To O(1.5),

∇jui = ui
,j +

1

2
hij,0 + h0[i,j]. (4.39)

4.2.2 g00 to O(1)

I now solve the “time-time” component of the Einstein equation (4.13) for g00

to O(1). For the components of R00,

R00 = −1

2
h00,ii +

1

2
hijh00,ij +

1

2

(

hi0,i −
1

2
hii,0

)

,0
− 1

4
h00,ih00,i +

1

4
h00,j

(

2hij,i − hii,j

)

(4.40)
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to O(2). At O(1),

R00 = −1

2
∆h00, (4.41)

T00 = ρ, Tij = 0, (4.42)

S00 = −K c
0 ,c −K00,0 = −K0i,i = c14(∇0ui),i =

c14
2

∆h00, (4.43)

Sij = 0. (4.44)

The field equation becomes

(1 +
c14
2

)∆h00 = −8πGρ, (4.45)

which gives h00 to O(1),

h00 = 2U, (4.46)

with Newton’s constant

GN =
(

1 +
c14
2

)−1
G. (4.47)

4.2.3 gij to O(1)

I now solve the “space-space” components of (4.13) for gij to O(1). To O(1)

Rij = −1

2
(∆hij + hkk,ij − 2hk(i,j)k − h00,ij)

= −1

2
∆hij ,

(4.48)

where I have imposed the gauge condition (4.31). Using (4.42), (4.43), and (4.44),

the field equation becomes

∆hij = −8πGNρ δij , (4.49)

giving

hij = 2Uδij . (4.50)
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4.2.4 ui to O(1.5)

I now solve the “space” components of the aether field equation (4.17) for ui to

O(1.5), making use of the gauge condition (4.31) and the earlier results (4.34), (4.46),

and (4.50). At O(1.5) equation (4.17) has the form

Ka
i,a = −K0i,0 +Kji,j = 0. (4.51)

To O(1.5),

K0i,0 = c14(∇0ui),0 = −c14
2
h00,i0 =

c14
2

∆χ,0i, (4.52)

and

Kji,j =
(

c1∇jui + c2δij∇kuk + c3∇iuj

)

= c1∆u
i + c23u

j
,ji +

1

2

(

2c−h0[i,j]j − (c+ + 3c2)∆χ,0i

)

.

(4.53)

The aether field equation can then be written

∆
(

c1u
i +

c−
2
h0i −

1

2
(2c1 + 3c2 + c3 − c4)χ,i0

)

−
(c−

2
h0j,j − c23nj,j

)

,i
= 0. (4.54)

Taking the spatial divergence of the left-hand side gives the relation

∆ui
,i = A∆∆χ,0, (4.55)

where

A =
2c1 + 3c2 + c3 − c4

2c123
, (4.56)

which can be solved for ui
,i. Substituting into (4.54), imposing the gauge condi-

tion (4.32), and using earlier results gives

ui = − c−
2c1

(h0i +
3

2
χ,0i) + Aχ,0i. (4.57)
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4.2.5 g0i to O(1.5)

I now solve the “time-space” components of (4.13) for g0i to O(1.5), making use

of the gauge conditions (4.31) and (4.32) and the earlier results (4.34), (4.46), (4.50),

and (4.57). To O(1.5)

R0i = h0[j,i]j + hj[i,j]0

= −1

2
∆

(

h0i −
1

2
χ,0i

)

,

(4.58)

Also to O(1.5),

T0i = −ρvi, (4.59)

and

S0i = −K(i0),0 −
1

2
K c

i ,c = −1

2

(

K0i,0 +Kij,j

)

. (4.60)

This gives

Kij,j = (c1∇iuj + c2δij∇kuk + c3∇jui),j

= (c12u
j
,i + c3u

i
,j),j +

1

2
(2c−h0[j,i]j + c+hij,j0 + c2hjj,i0)

= −∆
(c−c+

2c1
(h0i +

3

2
χ,0i) −

c14
2
χ,0i

)

.

(4.61)

With (4.52), this gives

S0i =
1

2
∆

(c−c+
2c1

(h0i +
3

2
χ,0i) − c14χ,0i

)

. (4.62)

The field equation becomes

(1 +
c−c+
2c1

)∆(h0i +
3

2
χ,i0) = 16πGρvi + (2 + c14)∆χ,0i

= −(2 + c14)∆(Vi +Wi),

(4.63)

which gives

h0i = −2

(

1 +
(c23 − c1c4)

(2c1 + c+c−)

)

(Vi +Wi) −
3

2
χ,0i. (4.64)
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4.2.6 g00 to O(2)

I now solve the “time-time” component of (4.13) for g00 to O(2), making use of

the gauge conditions (4.31) and (4.32) and the results (4.34), (4.46), (4.50), (4.57),

and (4.64). Define h̃00 = g00 + 1 − 2U . Then, from eqn. (4.40),

R00 = −1

2
∆

(

2U + h̃00 + 2U2 − 8Φ2

)

. (4.65)

Also,

T00 = ρ(1 + v2 − 2U + Π), (4.66)

Tij = ρvivj + pδij . (4.67)

g00(Tabg
ab) = T00 − Tii, (4.68)

so that

T00 −
1

2
g00(Tabg

ab) =
1

2
(T00 + Tii)

=
1

2
ρ(1 + 2v2 − 2U + Π) +

3

2
p

=
−(2 + c14)

16πG
∆

(

U + 2Φ1 − 2Φ2 + Φ3 + 3Φ4

)

.

(4.69)

To aid the reader in sorting through the terms appearing in Sab, I note that to O(2)

in the chosen gauge,

∇iui = (A− 3

2
)∆χ,0 (4.70)

and

(∇0ui),i =
1

2
∆

(

2U + h̃00 + U2 + 2
(

A− 3

2

)

χ,00

)

. (4.71)

Some bookkeeping leads to

S00 =
c14
2

∆
(

2U + h̃00 +
5

2
U2 − 9Φ2

)

− c14(A− 3

2
)∆χ,00, (4.72)
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and

Sii = −c14
2

∆
(1

2
U2 − Φ2) − (c+ + 3c2)(A− 3

2
)∆χ,00. (4.73)

Thus,

S00 −
1

2
g00Sabg

ab =
1

2
(S00 + Sii)

=
c14
4

∆
(

2U + h̃00 + 2U2 − 8Φ2

)

− c123A(A− 3

2
)∆χ,00.

(4.74)

Combining (4.65),(4.69), and (4.74), and solving the field equation gives

h̃00 = −2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 +Qχ,00, (4.75)

where

Q =
4c123

(2 + c14)
(A− 3

2
)A

= −(3c123 − 2c+ + c14)(2c+ − c14)

(2 + c14)c123
.

(4.76)

Finally, the standard PPN gauge is obtained by subtracting Qχ,00 from h00. The

fields transform under a gauge transformation as

δhab = ξa,b + ξb,a, δua = −ξa
,0. (4.77)

Thus, the gauge is corrected by choosing ξi = 0, ξ0 = −(Q/2)χ,0, which leads

to δh0i = −(Q/2)χ,0i, and δua = 0 to leading order. The standard PPN gauge

condition that replaces (4.32) is thus

h0i,i = (3 +Q)U,0. (4.78)
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4.2.7 Summary

I now collect the results, eqns. (4.46), (4.50), (4.64), and (4.75) for the met-

ric components, and (4.33) and (4.57) for the aether, imposing the gauge condi-

tions (4.31) and (4.78), and using the relation (4.28). For the metric:

g00 = −1 + 2U − 2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 (4.79)

gij = (1 + 2U)δij (4.80)

g0i = −2
(

1 +
(c23 − c1c4)

(2c1 + c+c−)

)

(Vi +Wi) −
1

2
(3 +Q)(Vi −Wi). (4.81)

The PPN parameters follow from comparison with the standard forms (4.22). They

are

γ = β = 1 (4.82)

ξ = ζ1 = ζ2 = ζ3 = ζ4 = α3 = 0 (4.83)

α1 =
8(c23 − c1c4)

(2c1 + c+c−)
(4.84)

α2 =
α1

2
+

(3c123 − 2c+ + c14)(2c+ − c14)

(2 + c14)c123
. (4.85)

For the aether:

u0 = 1 + U (4.86)

ui =
(

1 +
α1

8

)

(
c−
c1

)(Vi +Wi) +
(3c123 − 2c+ + c14)

2c123
(Vi −Wi). (4.87)

The cases c123 = 0, c14 + 2 = 0, and 2c1 + c+c− = 0 are special, since α1 and/or

α2 diverges. Presumably the post-Newtonian approximation is not valid when the

coefficients are close to these values. The expressions for the wave speeds (4.91)

below indicate that the spin-0 speed vanishes in either of the first two cases and the
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spin-1 speed vanishes in the last case. This corresponds to the absence of spatial

gradient terms in the action [48]. The case c123 = 0 corresponds [35] to the vector-

tensor theory of Hellings and Nordtvedt [15] if the unit constraint on the aether is

dropped. This theory was shown by Will [17] to be dynamically over-determined

and thus observationally unacceptable.

4.3 Discussion of constraints

The current best constraints [47] on the preferred frame PPN parameters are

|α1| . 10−4 from an orbital polarization effect bounded by lunar laser ranging and

binary pulsar observations, and |α2| . 4×10−7 from a spin precession effect bounded

by the alignment of the solar spin with the ecliptic. These two conditions can be

met with two unrestricted parameters to spare, having begun with four free cn, by

imposing α1 = α2 = 0. The condition α1 = 0 implies c4 = c23/c1. Having put α1 = 0

in this way, α2 can be put to zero in two ways. One is with c+ = 0, which then

implies c14 = 0. This case is degenerate, and is briefly discussed at the end of the

chapter. The other way is to determine c2 and c4 in terms of c1 and c3 as

c2 = (−2c21 − c1c3 + c23)/3c1

c4 = c23/c1

(4.88)

Thus there is a two-parameter family of ae-theory Lagrangians for which all the

PPN parameters are identical to those of GR.

I now consider other constraints on ae-theory. In alternate gravity theories

including Brans–Dicke theory, the Newton constant GN need not be constant in
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time. Observational bounds on Ġ/G then constrain the theory. In the case of

ae-theory, there is the relation (4.1), hence GN is always constant.

Another constraint arises from the possible discrepancy between Newton’s

constant and the gravitational constant occurring in the equation for the dynamics

of the cosmological scale factor. In GR, the scale factor satisfies the Friedman

equation, which involves Newton’s constant. In ae-theory, when the metric has the

standard cosmological form (Robertson-Walker symmetry) and the aether is aligned

with the cosmological rest frame, the aether stress tensor can be constructed purely

from the spacetime metric with two derivatives, and must be identically divergence

free. It must therefore be a linear combination of the Einstein tensorGab and a tensor

constructed with the spatial curvature scalar (3)R, which turns out to be [22, 49]:

T aether
ab =

c+ + 3c2
2

[

Gab +
1

6
(3)R(gab − 2uaub)

]

. (4.89)

The effect of the cosmological aether is thus to renormalize the gravitational con-

stant and to add a stress tensor of perfect fluid type that in effect renormalizes the

spatial curvature contribution to the field equations. The renormalized, cosmological

gravitational constant is given by [22]

Gcosmo = G
(

1 +
2c+ − 3c123

2

)−1

. (4.90)

Since this is not the same as GN (4.1), the expansion rate of the universe differs from

what would have been expected in GR with the same matter content. The ratio

is constrained by the observed primordial 4He abundance to satisfy |Gcosmo/GN −

1| < 1/8, which imposes a constraint on the constants cn [22]. Remarkably, if the
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constants are restricted by (4.88) so that α1,2 = 0, then GN = Gcosmo. Primordial

nucleosynthesis then imposes no additional constraint.

Even when the two gravitational constants coincide, the “curvature fluid” term

in (4.89) represents a deviation from the Friedman equation in GR if the universe

has non-zero spatial curvature. Observations have shown that the spatial curvature

must be very small today, and it would have been even less important in the past

when the relative contribution of matter and radiation would have been even more

important. It thus seems unlikely that an interesting constraint can be obtained from

this term. Another potential source of cosmological constraint is the modification

of the primordial fluctuation spectrum [23], but this has not yet been worked out in

full detail.

A further constraint on ae-theory comes from the possibility that the gravity

and aether waves travel at less than the “speed of light”—that is, less than the

limiting speed determined by the metric gab governing the propagation of matter

fields. In this case, high energy matter moving inertially through the vacuum would

produce vacuum Čerenkov radiation of gravitational and aether shock waves. A

detailed analysis of this process and the corresponding observational constraints

from ultra-high-energy cosmic ray observations was carried out in Ref. [14]. The

constraints are characterized by very small numbers, ranging between 10−15 and

10−31, depending on the wave mode type and emission process. These are all one-

sided constraints, since they apply only when the wave speeds are smaller than the

speed of light. To a first approximation then, the constraints imply that the wave

speeds must be greater than the speed of light.
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Some authors [14, 22, 23] have suggested that superluminal propagation be

excluded a priori on the grounds that ae-theory should be viewed as an effective

description of an underlying Lorentz invariant theory in a configuration with broken

Lorentz symmetry. However, this is a theoretical bias, with no observational basis

that I can see. Moreover, superluminal propagation does not threaten causality,

as long as there is a limiting speed in at least one given reference frame, as there

is in ae-theory. I thus adopt a phenomenological stance, allowing for superluminal

propagation unless-and-until it is observationally ruled out.

There are five gravitational and aether wave modes in ae-theory: two corre-

spond to the usual spin-2 modes, two are a transverse spin-1 mode, and one is a

longitudinal spin-0 mode. The squared speeds of these modes are determined by

the constants cn, and are given by [30]

spin-2 1/(1 + c+)

spin-1 (2c1 + c+c−)/2c14(1 + c+)

spin-0 c123(2 + c14)/(2 − c+ − 3c2)(1 + c+)c14.

(4.91)

Imposing the α1,2 = 0 conditions (4.88), the Čerenkov constraint that the spin-2

and spin-0 wave speeds be superluminal restricts c1 and c3 to the region

− 1 < c+ < 0

c+/3(1 + c+) < c− < 0.

(4.92)

These conditions also ensure that the spin-1 wave speed is superluminal.

In addition to observational constraints, there are two theoretical constraints

that come from the requirement that the wave modes be stable—i.e. have real
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frequencies—and that the energy of the modes be positive. The first requirement

is already guaranteed by the condition that the speeds be greater than unity. The

signs of the energy densities of the wave modes averaged over a cycle are given

by [38]

spin-2 1

spin-1 − (2c1 + c+c−)/(1 + c+)

spin-0 − c14(2 + c14).

(4.93)

The spin-2 modes always carry positive energy. If the α1,2 = 0 conditions (4.88) and

the superluminal conditions (4.92) are satisfied, then the spin-1 and spin-0 modes

also carry positive energy. By contrast, if the speeds are subluminal, then the latter

two modes carry negative energy. Thus, both the Čerenkov constraints and the

positive energy requirement excludes the case of subluminal wave speeds.

I earlier pointed out that an alternate way to set α1 = α2 = 0 is if c+ = c14 = 0.

In this case GN/Gcosmo = (1− 3c2/2), so nucleosynthesis would impose a constraint

on c2. The spin-0 and spin-1 wave speeds (4.91) diverge in this case, because there

are no time derivative terms in the aether field equation [30]—equivalently, those

modes are non-propagating. The theory then contains only two spin-2 “gravitons”,

which propagate along the light cones of the metric. Furthermore as shown in

Chapter 5, the rate at which a system of weakly self-gravitating compact bodies loses

energy in gravity-aether radiation is identical to that of GR. There are differences

for strongly self-gravitating bodies, though. Further observational signatures of this

class of ae-theories have not been worked out.

61



It is nontrivial that the PPN parameters are identical to those of GR and that

the vacuum Čerenkov, nucleosynthesis, stability, and positive energy constraints are

all satisfied in a large two-dimensional region (4.88,4.92) in the four-dimensional cn

parameter space. To further constrain the parameters one should look to strong

field effects or radiative processes. This point is examined in the following chapters.

A strong field effect that I will not focus on is the existence and nature of black

hole solutions to the vacuum field equations. Some alternate theories of gravity

whose PPN parameters are equal or close to those of GR do not admit regular

black hole solutions [17]. In these theories, astrophysical collapse would produce

something other than a black hole—perhaps a naked singularity, or a bounce—

which may not be difficult to rule out observationally. It is known [26, 27], however,

that ae-theory does admit regular black hole solutions.
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Chapter 5

Radiation Damping in Binary Systems

5.1 Introduction

In the previous chapter, I discussed the form of ae-theory’s post-Newtonian

expansion and the nature of linear, source-free wave phenomena. I demonstrated

that the theory remains healthy with respect to the corresponding observational

constraints for a large range of cn values. In this chapter, I continue the examination

of constraints on ae-theory by considering observations of binary pulsar systems.

The central focus is the calculation of the generation of gravity-aether radiation by

a nearly Newtonian source and the subsequent energy loss, or radiation damping,

of the source. A formula is derived for the rate of change of energy:

dE
dt

= −GN

〈A
5

(d3Q

dt3

)2

+ B
(d3I

dt3

)2

+ C
(dΣ

dt

)2
〉

, (5.1)

where Qij is the trace-free quadrupole moment of the source, I is the trace of

the second moment, Σi is a dipolar quantity defined below, and A,B, and C are

dimensionless combinations of the cn; GN is the value of Newton’s constant that one

would measure far from an external gravitating source; the angular brackets indicate

a time average over a period of the system’s motion. This formula generalizes

the “quadrupole” formula of standard general relativity, which predicts a similar

expression but with A = 1, B = C = 0.
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In the case of a system of two compact bodies, this expression takes the form

dE
dt

= −GN

〈(GNµm

r2

)2( 8

15
A

(

12v2 − 11(
dr

dt
)2

)

+ 4B
(dr

dt

)2
+ C′D2

)〉

, (5.2)

where µ is the reduced mass of the system, m the total mass, v the relative velocity

of the bodies, and r their orbital separation, which I assume is much larger than

the size d of the bodies; D is the difference in self-gravitational binding energy per

unit mass of the bodies, and the coefficient C′ is another dimensionless combination

of the cn.

This expression gives the lowest-order effects in a post-Newtonian (PN), or

weak-field–slow-motion, expansion. Aside from the (GNµm/r
2)2 prefactor, the first

two terms areO(GNm/r) and the last is O((GNm/d)
2). It does not take into account

strong field effects that may be important when the fields are not weak inside a

given body. The strength of the field of a compact body can be characterized by

the quantity (GNm/d); this is “small” for the sun (∼ 10−6) or a typical white dwarf

(∼ 10−3), and “large” for a typical neutron star (∼ 10−1) or black hole (∼ 1).

Thus, the field should be strong within the systems actually used to measure the

damping rate. Strong field effects on the damping rate of a compact body can be

associated with a dependence of the body’s gravitating mass on the ambient non-

metric fields—that is, with a violation of the strong equivalence principle [47]. These

effects are not present in GR at lower post-Newtonian orders. Their presence in ae-

theory is examined in Chapter 6. Comments on the validity of the leading order

approximation applied to the binary pulsar systems actually observed are best made

in Chapter 6; see the concluding Sec. 6.6.
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The damping rate can be tested by observing the rate of change of the orbital

period P of various binary systems, since (dP/dt)/P = −(3/2)(dE/dt)/E , equating

the energy radiated to minus the change in mechanical energy of the system. In

practice, this test is conjoined with tests of other “post-Keplerian” (PK) param-

eters [47, 50], in particular the rate of advance of periastron (the point at which

the two objects are closest to each other) and the redshift or time delay due to

the gravitational field of the system. These “quasi-static” [50] parameters are de-

termined by the post-Newtonian forms of the fields and the effective equations of

motion for the compact bodies. The conjoint technique is necessary, because the

expressions for the PK parameters depend on the unknown masses of the systems’

bodies. The expressions for the parameters will depend on the two masses, other

measurable parameters, and a given theory’s free parameters. Measurement of three

mass dependent parameters, for fixed values of the theory parameters, gives three

bands with widths due to errors in the two-dimensional space of mass values. The

theory is consistent for those values of the free parameters if the bands overlap. The

predictions of GR have been validated in this way using data from various binary

systems containing pulsars, whose regular pulsing provides an accurate measuring

device; see the review [50] for details.

For ae-theory, I find that if one assumes the strong field effects are negligible so

that the results of this chapter are adequate, then there exists a one-parameter family

of theories that satisfy all of the constraints summarized in Chapter 4, and whose

predictions for the PK parameters match those of GR to the order worked to here.

This can be seen as follows. To lowest PN order and neglecting strong field effects,
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the quasi-static parameters can be determined within the PPN framework [17].

Consequently, when α1 and α2 are set to zero, so that all of the ae-theory PPN

parameters match those of GR, the two theories will make the same predictions for

the quasi-static parameters. In this case, the cn can be constrained by requiring

that the damping rate equal that of GR. In fact, when α1 and α2 are set to zero,

the radiated fields contain only quadrupolar contributions. The damping rates then

coincide when A is set to one, which can be done by imposing one condition on the

two remaining free cn. To be consistent with the observational tests summarized

in Chapter 4, this curve of theories must intersect with the allowed two-parameter

family demarcated there (and below in Sec. 5.5). This is the case all along the curve,

as long as c−, c+ ≤ 0.

The calculation will proceed as follows. In Sec. 5.2, a weak field expansion of

the field equations is performed. The perturbations are shown to satisfy the wave

equation, with matter terms and nonlinear terms acting as sources. In Sec. 5.3,

these equations are solved via integration of the sources with Green’s functions.

The source integrals are approximated in terms of time derivatives of moments of

the sources, and evaluated to order of interest using the PPN expansion of the fields.

In Sec. 5.4, an expression for the rate of change of energy contained within a volume

of space is defined, and evaluated in terms of the wave forms. I will conclude with a

discussion of the constraints on the cn implied by observations from binary pulsars,

in Sec. 5.5.
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5.2 Field equations

In this section, I will expand the ae-theory field equations about a flat metric,

constant aether background, obtaining a set of wave equations with matter terms

and nonlinear terms as sources.

5.2.1 Exact equations

I begin with the standard four-parameter ae-theory action S

S =
1

16πG

∫

d4x
√

|g|
(

R +Kab
cd∇au

c∇bu
d + λ(uaubgab + 1)

)

, (5.3)

where

Kab
cd =

(

c1g
abgcd + c2δ

a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd

)

, (5.4)

with an additional aether-independent matter action. The matter can be assumed to

couple universally to some metric since Lorentz-violating effects in nongravitational

interactions are already highly constrained [5, 6]. Aether couplings are then excluded

from the matter action and the field gab is identified as this universal metric.

The resulting equations of motion consist of the Einstein equations

Gab − Sab = 8πGTab, (5.5)

where

Gab = Rab −
1

2
Rgab, (5.6)

Sab =∇c

(

K
c

(a ub) −Kc
(aub) −K(ab)u

c
)

+ c1
(

∇cua∇cub −∇auc∇bu
c
)

+ c4(u
c∇cua)(u

d∇dub)

+ λuaub +
1

2
gab(K

c
d∇cu

d),

(5.7)
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with

Ka
c = Kab

cd∇bu
d, (5.8)

and Tab is the matter stress tensor. There are also the aether field equations,

∇bK
b
a = λua + c4(u

c∇cub)∇au
b, (5.9)

and the constraint

gabu
aub = −1. (5.10)

Eqn. (5.9) can be used to eliminate λ, giving

λ = −uc∇aK
a
c + c4(u

c∇cu
a)(ud∇dua). (5.11)

5.2.2 Linear-order variables

I will now expand the exact equations about a flat background. I assume a

Minkowskian coordinate system and basis with respect to which, at zeroth order,

the metric is the Minkowski metric ηab and the aether is purely timelike. I then

define variables hab and wa, with

hab = gab − ηab, w0 = u0 − 1, wi = ui. (5.12)

I assume that hab and wa fall off at spatial infinity like 1/r.

I will further define variables by decomposing the above into irreducible trans-

verse, or “divergence-free”, and longitudinal, or “curl-free”, pieces. The decom-

position is unique and well-defined in Euclidean space, having imposed the above

boundary conditions (one is essentially solving Laplace’s equation—see [51] for more
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discussion). First, consider the spatial vectors wi and h0i, and define the following

variables:

h0i = γi + γ,i wi = νi + ν,i, (5.13)

with γi,i = νi
,i = 0. Next, consider the spatial components of the metric hij . A

symmetric, 2-index tensor on Euclidean space can be uniquely decomposed into a

transverse-trace-free tensor, a transverse vector, and two scalar quantities represent-

ing the transverse and longitudinal traces:

hij = φij +
1

2
Pij[f ] + 2φ(i,j) + φ,ij, (5.14)

where

0 = φij,j = φjj = φi,i, (5.15)

and

Pij [f ] = δij△f − f,ij; (5.16)

hence, Pij[f ],j = 0, and hii = △(f + φ). The list of variables then consists of a

transverse-traceless spin-2 tensor φij, transverse spin-1 vectors γi, νi, φi, and spin-0

scalars h00, w
0, γ, ν, f, φ.

I will impose coordinate gauge conditions below, after expressing the field

equations in unfixed form. The standard gauge to impose when performing the

analogous calculation in conventional GR is the “harmonic” or “Lorentz” gauge,

2h ,b
ab = ηcdhcd,a, as this happens to reduce the field equations to a simple form when

they are expressed covariantly. Some variant of this condition has a similar effect

in several other alternative theories of gravity, as seen in [52]. Here, the increased
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complexity of the equations and the noncovariant decomposition of them and the

field variables means that no obvious extension of the harmonic gauge has such a

utility. Instead, the gauge will be chosen somewhat arbitrarily so as to eliminate

certain variables:

0 = wi,i = h0i,i = hi[j,k]i, (5.17)

or equivalently,

0 = ν = γ = φi. (5.18)

An infinitesimal coordinate gauge transformation has the linear-order form

δhab = ξa,b + ξb,a δwa = −ξ̇a. (5.19)

The conditions (5.18) can be realized while in an arbitrary gauge (a prime denotes

that the variables are evaluated in the original gauge) by choosing ξ0 = −(γ′ + ν ′)

and the transverse part of ξi as −φ′
i, and by solving for the longitudinal part ξ of

ξi via ξ̇ = ν ′. One constraint on the choice of gauge is that it must be a valid PPN

gauge, as defined in Chapter 4, so that the integrals of Sec. 5.3.3 can be evaluated

by expressing the variables in terms of their PPN expansion. The above is a valid,

albeit nonstandard, PPN gauge (in contrast to the gauge chosen in [30, 38]).
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5.2.3 Linearized equations

I now express the field equations (5.5) and (5.9) in terms of the above variables,

and arrange them in the form

Ḡab − S̄ab = 8πG
(

Tab + tab

)

, (5.20)

K̄b
a,b = 8πGσa, (5.21)

where the overbar denotes the portion of the tensor linear in hab and wa, and the

nonlinear source terms tab and σa are defined to a given order in the variables by

asserting that the above equations equal the exact equations to that order. It will

prove convenient to combine the equations in the form

Ḡab − S̄ab − δ0
[aK̄

c
b],c = 8πGτab, (5.22)

thus defining the source τab = Tab+tab−δ0
[aσb]. Identities satisfied by the linear-order

terms will imply conservation of τab.

The constraint (5.10) to linear order is

w0 =
1

2
h00. (5.23)

I will use this result to eliminate w0. The form of nonlinear terms will not be needed

as explained in Sec. 5.3.3.

Now,

Ḡab = −1

2
(△hab − ḧab) −

1

2
h,ab + h

c

c(a,b) +
1

2
ηab(△h− ḧ− h ,cd

cd ), (5.24)

where h = ηabhab. Hence,

Ḡij = −1

2

[

△φij−φ̈ij

]

+
[

φ̈(i,j)−γ̇(i,j)

]

+
1

4
Pij[△f− f̈−2h00−2φ̈+4γ̇]− 1

2
f̈,ij, (5.25)
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Ḡ0i = −1

2
△(γi − φ̇i) −

1

2
(Ḟ ),i, (5.26)

Ḡ00 = −1

2
△F, (5.27)

where F = △f .

The linear-order forms of the covariant derivatives of ua are

∇0ui = ẇi + ḣ0i −
1

2
h00,i

= ν̇i + γ̇i + (ν̇ + γ̇ − 1

2
h00),i,

(5.28)

∇iuj = wj
,i + h0[j,i] +

1

2
ḣij

=
1

2
φ̇ij + νj

,i + γ[j,i] + φ̇(j,i) +
1

4
Pij [ḟ ] + (ν +

1

2
φ̇),ij,

(5.29)

and ∇au0 = 0.

From

S̄ab = − ˙̄K(ab) + δ0
(aK̄

c

b) ,c
, (5.30)

follows

S̄ij = −∂0(c+∇(iuj) + c2δij∇kuk)

= −c+
2
φ̈ij − c+(ν̇(i,j) + φ̈(i,j)) −

1

2
Pij[c2(2ν̇ + φ̈+ f̈) +

c+
2
f̈ ]

− 1

2

(

(c2 + c+)(2ν̇ + φ̈) + c2f̈
)

,ij
,

(5.31)

S̄0i −
1

2
K̄ ,a

ai = −K̄(ij),j = −c+∂j(∇(iuj))

= −1

2
△

(

c+(νi + φ̇i) +
(

(c+ + c2)(2ν + φ̇) + c2ḟ
)

,i

)

,

(5.32)

S̄0i +
1

2
K̄ ,a

ai = − ˙̄K0i − K̄[ij],j = −c14∂0(∇0ui) − c−∂j(∇[iuj])

= −c14(ν̈i + γ̈i) +
c−
2
△(νi + γi) − c14

(

ν̈ + γ̈ − 1

2
ḣ00

)

,i

(5.33)

and

S̄00 = −c14∂j(∇0uj) = −△
(

c14(ν̇ + γ̇ − 1

2
h00)

)

. (5.34)
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The above expressions indicate that the linear-order terms satisfy the identity

(

Ḡab − S̄ab − δ0
[aK̄

c
b],c

),b
= 0. (5.35)

This implies that the source τab obeys a conservation law

τ ,b
ab = τai,i − τ̇a0 = 0. (5.36)

5.2.4 Wave equations

The above equations can now be decomposed as the variables. The field equa-

tions for variables of different spin will separate. I will impose below the gauge

conditions (5.18). The following results are equivalent to those of [30] expressed in

a different gauge when τab = 0; in particular, the count of independent plane wave

modes—two spin-2, two spin-1, and one spin-0—and the expressions for the wave

speeds are recovered.

I now consider the different spins in turn. Define the set of operators

2iψ ≡ △ψ − (si)
−2ψ̈, (5.37)

for i = 0, 1, 2.

Spin-2

The transverse-traceless part of the space-space components of (5.22) gives

22φij = −16πGτTT
ij , (5.38)

with

(s2)
2 =

1

1 + c+
, (5.39)

73



and where TT signifies the transverse-traceless projection.

Spin-1

Now the spin-1 variables. The transverse parts of (5.22) give

△(c+ν
i − γi) = 16πGτT

i0, (5.40)

and

c14(ν̈
i + γ̈i) −

1

2
△(c−ν

i + (1 + c−)γi) = 8πGτT
0i. (5.41)

where the T signifies the transverse projection. These relations imply

21(ν
i + γi) =

−16πG

2c1 + c+c−

(

c+τi0 − (1 + c+)σi
)T
, (5.42)

with

(s1)
2 =

2c1 + c+c−
2(1 + c+)c14

. (5.43)

Spin-0

Now consider the spin-0 variables. The transverse-trace and longitudinal-trace

portions of the space-space components of (5.22) give

(1 − 2c2 − c+)F̈ −△
(

F − 2h00 − 2(1 − c2)φ̈
)

= −16πGτT
ii , (5.44)

and

(1 − c2)F̈ − c123△φ̈ = −16πGτL
ii , (5.45)

where τL
ij = τij − τT

ij . The time-time component of (5.22) gives

△(F + c14h00) = −16πGτ00, (5.46)
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and the longitudinal space-time component of (5.22) gives

△
(

(1 − c2)ḟ − c123φ̇
)

,i
= −16πGτL

i0, (5.47)

where τL
i0 = τi0 − τT

i0. These equations imply

20F =
16πGc14
2 + c14

(τii +
2 − 3c2 − c+

c123
τL
ii −

2

c14
τ00), (5.48)

with

(s0)
2 =

(2 + c14)c123
(2 − 3c2 − c+)(1 + c+)c14

. (5.49)

Further implied by these and the untraced, transverse-trace part of (5.22) is the

equation

20f,ij = τ ′ij . (5.50)

The form of the source τ ′ij is unimportant; only the fact that f,ij satisfies a sourced

wave equation is needed so that later eqn. (5.95) can be applied when evaluating

the damping rate expression in Sec. 5.4.

5.3 Evaluation of source integrals

The above equations can be formally solved via integration of the sources

with the appropriate Green’s function, and the resulting integrals approximated in

terms of time derivatives of moments of the source. Upon doing so, the nonstatic

contributions to the fields to desired accuracy at points far from the material source

depend on two integral quantities, the second mass moment of the material source

Iij =

∫

d3xρ xixj , (5.51)
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where ρ = T00 to lowest order, and the integral

Σi =

∫

d3xσi, (5.52)

where σi are the quadratic terms from the aether field equation (5.21).

5.3.1 Approximation of source integrals

Equations of the form

△ψ − (s)−2ψ̈ = −16πτ, (5.53)

can be solved with outward-going disturbances at infinity by writing

ψ(t,x) = 4

∫

d3x′
τ(t− z/s,x′)

z
, (5.54)

where z = |x − x′|.

The source integral can be simplified with a standard approximation [17]. As

indicated by the energy loss rate expression (5.98), only the portion of the fields that

fall off as (1/r) are of interest. A weak field, slow motion assumption will be made:

the material source should be described by a mass m, a size L, and a time-scale T

such that (GNm/L) and (L/Ts) are small quantities. Then only terms of interesting

order are retained in the following expansion:

ψ(t,x) ≈ 4

R

(

∞
∑

m=0

1

m!sm

∂m

∂tm

∫

τ(t− R/s,x′)
(

x′ix̂i
)m

)

, (5.55)

where R = |x| and x̂ = x/R, and R ≫ L.

Now, the following sleight of hand justifies solving the decomposed ae-theory

equations by first approximating the integral on the right side of (5.54) using the full
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τ and then taking the projection. Introduce the notation [[τ(t,x′)]] ≡ τ(t− z/s,x′).

Because the quantity on the right side of (5.54) depends on x only through z, it

follows that

∂

∂xi

∫

[[τ(t,x′)]]

z
= −

∫

∂

∂x′i
( [[τ(t,x′)]]

z

)

+

∫

[[∂i
′τ(t,x′)]]

z
. (5.56)

It follows from this that, e.g.,

∫

[[τT
ij (t,x

′)]]

z
=

(
∫

[[τij(t,x
′)]]

z

)T

, (5.57)

after discarding integrals of total derivatives, where T on the left side signifies trans-

verse with respect to x′, and on the right side transverse with respect to x. As a

further convenience, it follows that to O(1/R), the transverse projection is equal to

the algebraic projection in the direction orthogonal to x̂.

Additionally, there are the Poissonnian equations (5.40), (5.46), and (5.47) of

the form

△ψ = −16πτ. (5.58)

Solving via Green’s function and expressing to O(1/R) far from the source gives

ψ(t,x) ≈ 4

R

∫

d3x′τ(t,x′). (5.59)

The integrals of the sources in these particular equations happen to be conserved

quantities. Thus, ignoring static terms in the wave forms, the equations are effec-

tively unsourced, and simply

ψ = 0. (5.60)
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5.3.2 Sorting of source integrals

To evaluate the integrals indicated by Eqn. (5.55), I will express the sources

in terms of their post-Newtonian expansions. I will further assume that the sys-

tem is composed of compact bodies of individual size d ≪ L that exert negli-

gible tidal forces on each other. The system will then have an orbital velocity

v ∼
√

GNm/L. Following the discussion in [17], the leading-order terms in the

fields will be O(GNm
2/L), which give the quadrupolar and monopolar contribu-

tions, and O((GNm
2/d)v), giving the dipolar contribution. Terms of these orders

can only result from integrals of terms that are, respectively, 2PN and 2.5PN order.

Integrals of interest can be identified by noting that since the rate of change of

the system is governed by its velocity, assumed to be .5PN order, taking the time

derivative of a quantity effectively multiplies it by a factor of v and raises it by .5PN

orders. Also, only nonstatic, or non-conserved, terms are of interest as only the time

derivatives of the fields will appear in the expression for the energy loss.

I begin by considering the moments of τij . First, the conservation law implies

∫

τij =
1

2

∫

τ̈00x
′
ix

′
j −

∫

σ̇(ix
′
j) =

1

2

∫

T̈00x
′
ix

′
j =

1

2
Ïij , (5.61)

where the last two equalities hold to desired order and for the last I have used the

Eulerian continuity equation for the fluid

ρ̇+ (ρvi),i = 0, (5.62)

assumed to hold at O(1.5). Then,

∫

τ̇ijx
′
k = −1

2

∫

(

τ̈i0xjxk + τ̈j0xkxi − τ̈k0xixj

)

, (5.63)
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which is of uninteresting order, as are remaining moments.

I now consider the moments of τi0. The integral of τi0 is conserved, so I ignore

it. Next,
∫

τ̇i0xj = −
∫

τij = −1

2
Ïij. (5.64)

The other moments are of uninteresting orders.

I now consider moments of τ00. First, the integral of τ00 is conserved, so I

ignore it. Then,
∫

τ̇00xi = −
∫

τ0i = Σi, (5.65)

where the second equality ignores the static integral of τi0. Finally,

∫

τ̈00xixj = Ïij, (5.66)

to desired order.

5.3.3 Evaluating Σi

I now consider the moments of σi. The terms in σi are at least 2.5PN order.

The only integral of interest is thus Σi =
∫

σi, which is O((GNm
2/d)v). At this

point, I can explain why the nonlinear terms in the unit constraint (5.10) can be

ignored. The previous subsection makes clear that we only their appearance in σi

need be considered. As follows from the post-Newtonian forms given in Chapter 4,

the nonlinear constraint terms are integer PN orders starting with 2PN and have no

free indices, and there are no field variables that are .5PN order. It follows that any

nonlinear constraint terms appearing at 2.5PN order in σi must do so in the form

(terms),0i. Total derivatives do not contribute to Σi, so these terms can be ignored.
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I will evaluate Σi explicitly by expressing the fields in terms of the PPN ex-

pansion, but in the nonstandard coordinate gauge (5.18). The PPN forms in the

standard PPN coordinate gauge are reported in Chapter 4 as

φij = 0 (5.67)

γi = −2c1
c−
νi = −8 + α1

4
(Vi +Wi), φi = 0 (5.68)

h00 = −△χ, f = 2φ = −2χ, (5.69)

γ = −1

4
(6 + α1 − 2α2)χ̇, ν =

2c1 + 3c2 + c3 − c4
2c123

χ̇, (5.70)

where

Vi(x) = GN

∫

d3x′
ρ(x′)vi

z
, Wi(x) = GN

∫

d3x′
ρ(x)vjzjz

i

z3
, (5.71)

χ(x) = Vi(x) −Wi(x) = −GN

∫

d3x′ ρ(x′) z, (5.72)

with zi = xi − x′i, and

GN =
G

1 + (c14/2)
, (5.73)

α1 =
8(c23 − c1c4)

2c1 + c+c−
, (5.74)

α2 =
α1

2
+

(c1 + 2c3 + c4)(2c1 + 3c2 + c3 − c4)

(2 + c14)c123
. (5.75)

Adjustment from the standard to the nonstandard gauge is done by defining a gauge

parameter ξa with ξ0 = −(γ′+ν ′), ξ̇i = ν ′,i, where γ′, ν ′ are the standard-gauge values.

Then in the nonstandard gauge, the variables are as above except ν = γ = 0 and

φ =
(c1 + 2c2 − c4)

c123
χ. (5.76)

With these forms, Σi can be evaluated, and after some algebra gives

Σi =
c14
2

∫

ρ
(

(α2 − α1)Vi − α2Wi

)

. (5.77)
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I will later consider the special cases of a single, compact, spherically symmetric

body and of a pair of compact bodies that are static and spherically symmetric

in their own rest frames. In the first case, spherical symmetry implies that Σi

vanishes—otherwise it would define a symmetry-breaking spatial vector. In the

second case, or more generally with n such bodies, Σi can be simplified via the

following observations. First, the Newtonian potential U felt at a given body con-

tains an O(GNm/L) contribution from the presence of the other bodies, plus an

O(GNm/d) self-contribution Ū ,

Ūa(xa) = GN

∫

a

d3x′
ρ

|xa − x′| , (5.78)

where the integral extends just over the “a-th” body. Second, spherical symmetry

of each body implies that (Ωa)ij = (1/3)Ωaδij, where

(Ωa)ij ≡ −1

2
GN

∫

a

d3x d3x′
ρ(x)ρ(x′)zizj

z3
, (5.79)

and

Ωa = (Ωa)ii = −1

2

∫

a

d3xρŪa. (5.80)

Third, staticity of each body implies that Vi =
∑

a(va)
iU , and similarly for Wi.

These facts imply that

∫

ρVi = 3

∫

ρWi = −2
∑

a

(va)
iΩa, (5.81)

plus terms of O(GNm
2v/L). Therefore, to interesting order,

Σi = c14(α1 −
2

3
α2)

∑

a

(va)
iΩa. (5.82)
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5.3.4 Wave forms

I can now express the nonstatic, radiation-zone fields, to desired accuracy. For

spin-2,

φij =
2G

R

(

Q̈ij

)TT
. (5.83)

where

Qij = Iij −
1

3
I, I = Iii. (5.84)

For spin-1,

νi =
−2G

R

1

2c1 + c+c−

( c+
(1 + c+)s1

Q̈ij x̂j + 2Σi

)T

, (5.85)

γi = c+ν
i, (5.86)

For spin-0,

F =
−2G

R

c14
2 + c14

(

3(Z − 1)x̂iQ̈ij x̂
j + ZÏ − 4

c14s0
Σix̂

i
)

, (5.87)

h00 = − 1

c14
F, (5.88)

φ̇,i =
(1 − c2)

c123
ḟ,i, (5.89)

where

Z =
2(2α2 − α1)(1 + c+)

3(2c+ − c14)
. (5.90)

5.4 Energy loss formulas

I now turn to the expression for the rate of change of energy contained within a

volume of space. Such an expression can be derived via the Noether charge method
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for defining the total energy of an asymptotically-flat space-time [37], using the ae-

theory Noether current derived in Chapter 3. One can equivalently work in terms

of pseudotensors, using the results of [38].

Following the discussion in the appendix of [37], an expression for the total

energy E contained in a volume of space, for a theory linearized about a flat back-

ground, is given by the integral over that volume of a certain differential 3-form

Jabc ≡ Jdǫdabc. J can be obtained from the quadratic-order ae-theory Lagrangian

modulo a boundary term. It will depend on the metric, aether, and an arbitrary

background vector field. To define the energy, choose the background vector field

as ta = (∂/∂t)a. Choose the volume V to be that contained within a sphere of

coordinate radius R. Then,

E ≡
∫

V

J[t] =

∫

d3xJ0[t], (5.91)

Ė ≡
∫

LtJ[t] =

∫

d(t · J[t]) = −
∫

R

dΩR2x̂iJ i[t], (5.92)

where in the second line I have used the formula LtJ = d(t · J) + t · dJ and the fact

that dJ = 0 when the dynamical fields satisfy the equations of motion [37].

I will define J with respect to the ae-theory Lagrangian L modulo a total

derivative:

L′ ≡L− 1

16πG

(

√

|g|
(

Γc
abg

ab − Γb
abg

ac
)

)

,c

=

√

|g|
16πG

(

gab
(

Γc
adΓ

d
cb − Γc

cdΓ
d
ab

)

+Ka
b∇au

b
)

.

(5.93)

The procedure of [37] gives:

Ja =
1

16πG

[

ḣbc

(

hab,c − 1

2
hbc,a +

1

2
ηbc(hd,a

d − had
,d) −

1

2
gd,b

d ηca

+ uaKbc + 2K [ab]uc
)

+ 2u̇bKa
b

]

− taL′,

(5.94)
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where all indices on hab are raised with the flat metric ηab.

I will presume that only the time average of the damping rate need be de-

termined. It is then crucial to note that the damping rate is calculated to lowest

nonvanishing PN order by treating the system as exactly Newtonian. The motion

of the system can then be decomposed into a uniform translation of the center

of mass–recall the conservation of
∫

τi0–and a fixed Keplerian orbit in the center-

of-mass frame. As indicated below, the field wave forms do not depend on the

center-of-mass motion. It then follows that if the time average is taken over an

orbital period, total time derivatives in (5.94) do not contribute.

It is also useful to note that approximation of the source integrals (5.55) implies

that to O(1/R),

ψ,j = −(1/s)ψ̇x̂j , (5.95)

for field ψ satisfying the sourced wave equation (5.53). This relation then implies

that

0 = x̂iφ̇ij(x) = x̂iν̇i(x) = x̂iPij[ḟ(x)]. (5.96)

These facts permit manipulation of terms within the integral, e.g.:

∫

< ḣjkφ,jki >=

∫

< − 1

s0

φ̇,jkφ̇,jix̂k >=

∫

< − 1

s0

△φ̇△φ̇x̂i >, (5.97)

where the angular brackets denote the time average.

The energy loss rate then evaluates to

Ė =
−1

16πG

∫

R

dΩR2
〈 1

2s2

φ̇jkφ̇jk −
(2c1 + c+c−)(1 + c+)

s1

ν̇j ν̇j − 2 + c14
4c14s0

Ḟ Ḟ
〉

. (5.98)

The sign of the coefficient of the term for each spin is opposite to the sign of the
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energy density associated with linearized plane waves, as found in [38]. Thus, a

positive-energy mode implies energy loss due to radiation of that mode.

The energy loss rate can be further evaluated by substituting in the expressions

for the fields given in Sec. 5.3.4, and performing the angular integral. With the

results:

1

4π

∫

dΩ φ̇ijφ̇ij =
8G2

5R2

(
...
Qij

...
Qij

)

, (5.99)

1

4π

∫

dΩν̇iν̇i =
4G2

R2

1

(2c1 + c+c−)2

(

1

5

( c+
(1 + c+)s1

)2(...
Qij

...
Qij

)

+
8

3

(

Σ̇iΣ̇i

)

)

,

(5.100)

1

4π

∫

dΩḞ Ḟ =
4G2

R2

( c14
2 + c14

)2(6(Z − 1)2

5

(
...
Qij

...
Qij

)

+ Z2
(...
I

...
I
)

+
16

3(c14s0)2

(

Σ̇iΣ̇i

)

)

,

(5.101)

substituted into expression (5.98) gives

Ė = −GN

〈A
5

(...
Qij

...
Qij

)

+ B
(...
I

...
I
)

+ C
(

Σ̇iΣ̇i

)

〉

, (5.102)

where

A =
(

1 +
c14
2

)( 1

s2
− 2c14c

2
+

(2c1 + c+c−)2

1

s1
− 3(Z − 1)2c14

2(2 + c14)

1

s0

)

, (5.103)

B = −Z
2c14
8

1

s0
, (5.104)

C = − 2

3c14

(2 + c14
s3
1

+
1

s3
0

)

, (5.105)

where Z is given in (5.90). This constitutes the generalization to ae-theory of the

quadrupole formula of general relativity, and contains additional contributions from

monopolar and dipolar sources.

The presence of the monopolar term means that a spherically symmetric

source, such as a spherically pulsating star, can radiate at this lowest nontrivial
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PN order in the presence of the aether, whereas it would not in pure GR. In this

case, Iij = (1/3)δijI, and as observed above, Σi = 0. Only the spin-0 radiation fields

are nonvanishing, and the energy loss rate is Ė = −GNB
〈

(
...
I )2

〉

. Bounds discussed

in Sec. 5.5, however, require that the PPN parameters α1 (5.74) and α2 (5.75), hence

B (5.104), vanish for observationally viable ae-theories to sufficient accuracy that

the monopole term is negligible. Thus, for instance, there should be no detectable

influence on the slowing of axial spin (“slow down rate”) of millisecond pulsars.

For a binary system, treating the two bodies as static and spherically sym-

metric in their own rest frames leads to

...
I ij = −2GNµm

r2
(4r̂(ivj) − 3r̂ir̂j ṙ), (5.106)

where m = m1 +m2, µ = m1m2/m, r = r1 − r2 is the relative separation and v = ṙ.

Then,

...
Qij

...
Qij =

8

3
(
GNµm

r2
)2(12v2 − 11ṙ2). (5.107)

Also,

Σ̇i = −c14(α1 −
2

3
α2)

GNµm

r2
Dx̂i, (5.108)

where D is the difference in binding energy per unit rest mass:

D =
Ωa

ma

− Ωb

mb

. (5.109)

Therefore,

Ė = −GN

〈(GNµm

r2

)2( 8

15
A

(

12v2 − 11(ṙ)2
)

+ 4B
(

ṙ
)2

+ c214(α1 −
2

3
α2)

2CD2
)〉

.

(5.110)
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5.5 Parameter constraints

I will now discuss bounds on the cn that can be derived by imposing the

observational constraints summarized in Chapter 4 and by comparing the damping

rate prediction (5.110) with measurements of binary pulsar systems. The four cn

can be reduced to one free parameter by requiring that the PPN parameters α1 and

α2 vanish, and that the damping rate coincide with that of GR to lowest order. The

theory will then satisfy all solar system based tests, but it is not correct to say that

it would pass the binary pulsar test. This is because the fields inside a neutron star

pulsar or black hole companion are not weak, and strong field corrections to the

quasi-static parameters may arise. Nevertheless, the weak field results are adequate

for small enough cn, as discussed in Chapter 6. Therefore, it is useful to check

whether this curve of ae-theories intersects the region allowed by positive-energy,

real-frequency, vacuum-Čerenkov, and nucleosynthesis constraints (Chapter 4).

The PPN parameters α1 (5.74) and α2 (5.75) for ae-theory were determined

in Chapter 4. It was shown that they can be set to zero, so that all of the ae-theory

PPN parameters coincide with those of GR, with the choices

c2 = −2c21 + c1c3 − c23
3c1

, c4 =
c23
c1
. (5.111)

The positive-energy, real-frequency, vacuum-Čerenkov, and nucleosynthesis con-

straints can then be satisfied if c1 and c3 lie within the region

−1 < c+ < 0,
c+

3(1 + c+)
< c− < 0 (5.112)

When α1 and α2 vanish, so does Z (5.90) hence B (5.104), and Σi. The fields
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then contain only a quadrupole contribution, and the ae-theory damping rate (5.110)

will match that of GR when A = 1. Solving numerically shows that a solution curve

exists in (c+, c−) space that intersects the allowed region (5.112) for all negative

values of c−. Thus, there exists a one-parameter family of ae-theories which satisfy

all of the constraints summarized in Chapter 4, and which predict a damping rate

identical in the weak field limit to that of GR.

Observational error allows this curve to be widened into a band. The standard

method of measuring radiation damping is to observe the rate of change of orbital

period Ṗ of a binary system [47, 50], which will be proportional to Ė ; some details

and subtleties are mentioned in Sec. 5.1. The smallest relative observational error in

Ṗ , which equates with the relative uncertainty in Ė , is of order 0.1% for the Hulse-

Taylor binary B1913+16 [47, 50]. This error permits the band |A − 1| ∼ 10−3.

Numerical results indicate that at least for small c±, this band corresponds roughly

to c± within about 10−3 of the A = 1 curve.
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Figure 5.1: Class of allowed ae-theories, if strong field effects in binary pulsar systems
can be ignored (for c+ & −(0.9)). The four-dimensional cn space has been restricted
to the (c+, c−) plane by setting the PPN parameters α1 and α2 to zero via the
conditions (5.111). The shaded region is the region allowed by collected non-binary
constraints considered in Chapter 4, demarcated in (5.112). The dashed curve is
the curve along which binary pulsar tests will be satisfied, assuming ae-theory weak
field expressions. Specifically, it is the curve along which the damping rate (5.102)
is identical to the quadrupole formula of GR—that is, along which A = 1 (5.103)
in the α1,2 = 0 case. Along both this curve and the boundary of the allowed region,
c− → −∞ as c+ → −1. The curve remains within the allowed region for all c+
between -1 and 0. As explained in Chapter 6, strong field effects may lead to
system-dependent corrections to the binary pulsar curve for large cn; however, all
such curves will coincide with the weak field curve for |cn| . (0.1) given current
observational errors (see Chapter 6).
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Chapter 6

Strong field effects on binary pulsar systems

6.1 Introduction

In Chapter 4, I showed how the four free ae-theory parameters cn are cut

down to two by the requirement that the PPN parameters match those of GR. In

Chapter 5, I demonstrated how observations of binary pulsar systems would lead to

one additional constraint on the cn, if there were justification for ignoring effects of

strong fields inside the binary bodies. This assumption is a dangerous one, since the

fields inside neutron star pulsars are expected to be very strong. That justification

requires an unclear assumption on the values of the cn.

In this chapter, I will incorporate strong field effects on binary pulsar systems,

by calculating the post-Newtonian (PN) equations of motion and the rate of ra-

diation damping of a system of strongly gravitating bodies. I will do this via an

effective approach in which the compact bodies are treated as point particles whose

action contains couplings that depend on the velocity of the particles in the preferred

frame. This approach introduces new dimensionless coefficients—“sensitivities”—

that parametrize the nonstandard couplings and can be calculated for a given stellar

source by matching the effective theory onto the exact, perfect fluid theory. This

work does not render Chapter 5 redundant; in fact, comparing the weak field limit

of the point particle approach with the perfect fluid approach serves as a check of
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the results, and reveals how the sensitivities scale in the weak field limit.

The expressions obtained can be used in principle to obtain precise bounds on

the allowed class of ae-theories, but taking this step will require work beyond the

scope of this dissertation. Specifically, precise bounds will require a methodology

for dealing with dependence on the system’s unknown center-of-mass velocity, and

a formula for the values of the sensitivities of a given source. The center-of-mass

velocity plays a role, because the theory is not Lorentz invariant at PN order when

strong field effects are included. The sensitivities describe perturbations of static

stellar solutions, about which very little is known at this time.

For the time being, a few comments can be made, which will be defended

in the text. A crucial piece of information learned by comparing the weak field

limit with the expressions of Chapter 5 is that the sensitivities will be “small”—at

least as small as (GNm/d)
2, where m is the body’s mass and d its size, times a

cn dependent coefficient that must scale at least quadratically with cn in the small

cn limit. For neutron stars in GR, (GNm/d) ∼ (.1 − .3) , and it is reasonable to

expect similar for ae-theory. Then, bounds on the magnitude of violations of the

strong equivalence principle [50] constrain the cn dependent factor to be less than

roughly (0.01). Also, if the three weak field conditions are imposed on the cn, then

the strong field corrections fall below the level of current observational error when

cn . (0.1). In that case, all current tests from binary pulsar systems will be passed.

I will now present the strong field formulas. First, the effective particle action is

constructed, and the exact field equations are defined in Sec. 6.2. The PN expansions

of the metric and aether fields are then determined in Sec. 6.3, and used to express
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the PN equations of motion for a binary system in Sec. 6.4. The rate of radiation

damping is then determined in Sec. 6.5. Comments on dealing with center-of-mass

velocity and sensitivity dependence are given in Sec. 6.6. Finally, an appendix

repeats the definitions of various quantities used throughout the paper.

6.2 Effective action and field equations

6.2.1 Particle action

I wish to treat within ae-theory a system of compact bodies that potentially

possess strong internal gravitational fields. I will deal with the complicated internal

workings of the bodies via an effective approach, since I am only interested in the

bulk motion of the bodies and in the fields far from them. I will thus assume

that a given body can be treated to sufficient accuracy as a point particle with the

composition dependent effects encapsulated in nonstandard couplings in the particle

action. Such a method was pioneered by Eardley [53] within the Brans–Dicke scalar-

tensor theory, and Will and Eardley [54] within Rosen’s “Bi-metric” theory. More

recently, Damour and Esposito–Farese [55] have applied it to a general class of

scalar-tensor models, and Goldberger and Rothstein [56] have used it to determine

higher PN order and spin dependent corrections in pure GR.

The action must be invariant under general diffeomorphisms and individual

reparametrizations of the particle worldlines. The one-particle action SA will thus

have the form SA = −m̃
∫

dtO, where m̃ has dimensions of mass, and O is a sum

of dimensionless local operators. The fundamental theory contains only one dimen-
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sionful parameter G; the particle theory will contain in addition the size d of the

underlying finite-sized bodies. I neglect the spin of the bodies. I will only consider

here operators that are not suppressed by powers of d; this excludes derivative cou-

plings, for example1. I will assume that the action reduces to the standard free

particle action if the particle is comoving with the local aether.

I thus arrive at the following one-particle action:

SA = −m̃A

∫

dτA
(

1 + σA(uava + 1) +
σ′

A

2
(uava + 1)2 + · · ·

)

. (6.1)

where A labels the body, τA is the proper time along the body’s curve, va is the

body’s unit four-velocity, and ua is the aether. The quantity uava expressed in a PN

expansion with the aether purely timelike at lowest order, will be of order v2, the

square of the velocity of the body in the aether frame, which is assumed to be first

PN order (1PN). In what follows, I will only be interested in terms that follow from

the part of the action that is (mA × 2PN), so I retain only the terms in SA written

above. For a system of N particles, the action is given by the sum of N copies of

SA.

This action can be thought of as a Taylor expansion of the standard worldline

action, but with a mass that is a function of γ ≡ −uava:

SA = −
∫

dτ m̃A[γ]. (6.2)

The expansion is made about γ = 1. The parameters σ, σ′ are then defined as

σA = −d ln m̃A

d ln γ
|γ=1 σ′

A = σA + σ2
A + σ̄A σ̄A =

d2 ln m̃A

d(ln γ)2
|γ=1. (6.3)

1I thank I. Rothstein for clarifying this point.
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This form of SA suggests that that σA, σ̄A can be determined by considering asymp-

totic properties of perturbations of static stellar solutions. Little work has been done

on such perturbations; hence little can be said about the values of σA, σ̄A. One thing

that is known and explained below is that they must scale as some combination of

the cn times (GNm̃/d)
2.

6.2.2 Field equations

The full action is the four-parameter ae-theory action S

S =
1

16πG

∫

d4x
√

|g|
(

R +Kab
cd∇au

c∇bu
d + λ(uaubgab + 1)

)

, (6.4)

where

Kab
cd =

(

c1g
abgcd + c2δ

a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd

)

, (6.5)

plus the sum of N copies of SA (6.1); only the terms written in (6.1) are retained in

SA. The field equations are then as follows. There are the Einstein equations

Gab − Sab = 8πGTab, (6.6)

where

Gab = Rab −
1

2
Rgab, (6.7)

Sab =∇c

(

K
c

(a ub) −Kc
(aub) −K(ab)u

c
)

+ c1
(

∇cua∇cub −∇auc∇bu
c
)

+ c4(u
c∇cua)(u

d∇dub)

+ λuaub +
1

2
gab(K

c
d∇cu

d),

(6.8)

with

Ka
c = Kab

cd∇bu
d, (6.9)
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and T ab is the particle stress tensor

T ab =
∑

A

m̃Aδ̃A
[

A1Av
a
Av

b
A + 2A2Au

(av
b)
A

]

, (6.10)

with the covariant delta-function

δ̃A =
δ3(~x− ~xA)

v0
A

√

|g|
, (6.11)

and

A1A = 1 + σA − σ′
A

2
((ucv

c
A)2 − 1) (6.12)

A2A = −σA − σ′
A(ucv

c
A + 1). (6.13)

The aether field equation is

∇bK
ba = c4(u

c∇cub)∇aub + λua + 8πGσa, (6.14)

where

σa =
∑

A

m̃Aδ̃AA2Av
a
A. (6.15)

Varying λ gives the constraint gabu
aub = −1. Eqn. (6.14) can be used to eliminate

λ, giving

λ = −ua
(

∇bK
b
a − c4(∇au

b)(uc∇cub) − 8πGσa

)

. (6.16)

The covariant equation of motion for a single particle has the form

∇bT
ab
A −∇b((σA)aub) − (σA)b∇aub = 0, (6.17)

where T ab
A and (σA)a are the one-particle summands in (6.10) and (6.15). This can

be written more explicitly as

vb
A∇b(A1Av

a
A + A2Au

a) − A2AvAb∇aub = 0. (6.18)
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6.3 Post-Newtonian fields

The PN expansion of the fields can be determined by iteratively solving the

field equations in a weak field, slow motion approximation, following the method of

Chapter 4. I assume a background in which to lowest order, the metric is flat and

the aether purely timelike. I find:

g00 = − 1 + 2
∑

A

GNm̃A

rA

− 2
∑

A,B

G2
Nm̃Am̃B

rArB

− 2
∑

A,B 6=A

G2
Nm̃Am̃B

rArAB

+ 3
∑

A

GNm̃A

rA

v2
A(1 + σA)

gij =δij(1 + 2
∑

A

GNm̃A

rA

)

g0i =
∑

A

(

B1A +B2A

)GNm̃A

rA

vi
A +

∑

A

(

B1A − B2A

)GNm̃A

r3
A

(vj
Ar

j
A)ri

A

(6.19)

where ri
A = xi − xi

A, ri
AB = xi

A − xi
B,

GN =
2

2 + c14
G (6.20)

α1 =
8(c23 − c1c4)

2c1 + c+c−
(6.21)

α2 =
α1

2
+

(c1 + 2c3 + c4)(2c1 + 3c2 + c3 − c4)

(2 + c14)c123
, (6.22)

and

B1A = −1

4
(8 + α1)(1 +

c−
2c1

σA) (6.23)

B2A = −3

2
− 1

4
(α1 − 2α2)(1 − 2 + c14

2c+ − c14
σA). (6.24)

The values of α1 and α2 are constrained to be very small by weak-field experiments,

via analysis that allows for a possible lack of Lorentz symmetry in the underlying

theory [47]. There are two independent pairs of conditions on the cn that will set
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them to zero. One choice is

c2 = −2c21 + c1c3 − c23
3c1

, c4 =
c23
c1
. (6.25)

The other is c14 = c+ = 0. From the results of Sec. 6.5, this choice gives a theory

with no propagating vector and scalar degrees of freedom in the linearized limit—the

theory contains just the two spin-2 “graviton” degrees of freedom, and these travel

at exactly the background speed-of-light. The weak field radiation damping rate is

identical to that of GR, but there are still strong field corrections to the N-body

equations of motion, as indicated below.

The aether to order of interest is

u0 =1 +
∑

A

GNm̃A

rA

ui =
∑

A

(

B3A +B4A

)GNm̃A

rA

(vA)i +
∑

A

(

B3A − B4A

)GNm̃A

r3
A

(vj
Ar

j
A)ri

A

(6.26)

where

B3A = (
8 + α1

8
)
1

c1
(c− + (1 + c−)σA) (6.27)

B4A =
1

2c123
((2c1 + 3c2 + c3 − c4) + (2 + c14)σA) (6.28)

The expressions above are equivalent to the weak-field expressions obtained in Chap-

ter 4 when σA is set to zero.

6.4 Post-Newtonian equations of motion

The equations of motion for the compact bodies follow by expressing the exact

result (6.17) in a PN expansion using the forms of the fields given above. The New-

tonian limit determines the relation between G and the effective two-body coupling
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G, and between m̃ and the “active” gravitational mass m. It is

v̇i
A =

∑

B 6=A

−GNm̃B

(1 + σA)r3
AB

ri
AB ≡

∑

B 6=A

−GABmB

r3
AB

ri
AB, (6.29)

with the two-body coupling

GAB =
GN

(1 + σA)(1 + σB)
(6.30)

and the active gravitational mass

mB = (1 + σB)m̃B. (6.31)

One can continue on to determine the 1PN order terms, making use of the New-

tonian result, then work backwards to determine the Einstein–Infeld–Hoffman [57]

form of the Lagrangian—that is, the Lagrangian expressed purely in terms of par-

ticle quantities—that gives rise to those equations of motion. I will give the result

here just for the case of a two body system. The Lagrangian is

L = − (m1 +m2) +
1

2
(m1v

2
1 +m2v

2
2)

+
1

8
((1 − σ′

1

1 + σ1
)v4

1 + (1 − σ′
2

1 + σ2
)v4

2)

+
Gm1m2

r

[

1 +
3

2
((1 + σ1)v

2
1 + (1 + σ2)v

2
2)

− 1

2
(
Gm1

r
(1 + σ2) +

Gm2

r
(1 + σ1))

+ C1(v
j
1v

j
2) + C2(v

j
1r̂

jvk
2 r̂

k)
]

,

(6.32)
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which leads to

v̇i
1 =

Gm2

r2
r̂i[−1 + 4

m̃2

r
+ (1 − 2

1 + σ2
C1)

m̃1

r

− 1

2
(2 + 3σ1 +

σ′
1

1 + σ1
)v2

1 − (
3

2
(1 + σ2) + (C2 − C1))v

2
2

− 2C1v
j
1v

j
2 + 3(C2 − C1)(v

j
2r̂

j)2]

+
Gm2

r2
[vi

1(v
j
1r̂

j(4 + 3σ1 −
σ′

1

1 + σ1
) − 3(1 + σ1)v

j
2r̂

j)

+ vi
2(2C1v

j
1r̂

j − 2C2v
j
2r̂

j)]

(6.33)

where G = G12, r
i = ri

1 − ri
2, and the coefficients C1 and C2 are

C1 = B12 − σ1B32 = B11 − σ2B31 (6.34)

C2 = B22 − σ1B42 = B21 − σ2B41. (6.35)

The expression for v̇i
2 is obtained by exchanging all body-1 quantities and body-2

quantities (which includes the switch ri → −ri).

The above Lagrangian is not Lorentz invariant unless σA = σ′
A = 0. This

follows from the analysis of Will [17] and the list of criteria therein. In particular,

the action and the equations of motion depend on the velocity of the system’s center

of mass in the aether frame.

6.5 Radiation damping rate

I now turn to the radiation damping rate—the rate at which the particle system

loses energy via gravity-aether radiation. This can be determined by adapting the

methods applied to the case of weakly gravitating perfect fluid bodies in Chapter

5. I will work solely with the “untilded” mass mA (6.31). It is also convenient to
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introduce the parameter

sA = σA/(1 + σA). (6.36)

To begin, I assume a Minkowskian coordinate system and basis with respect

to which, at zeroth order, the metric is the Minkowski metric ηab and the aether

is purely timelike. I then decompose these variables into irreducible transverse and

longitudinal pieces, as in Chapter 5. For convenience, I repeat the decomposition

here. The spatial vectors ui and h0i are written as:

h0i = γi + γ,i ui = νi + ν,i, (6.37)

with γi,i = νi
,i = 0. The spatial metric hij is decomposed into a transverse, trace-

free tensor, a transverse vector, and two scalar quantities giving the transverse and

longitudinal traces:

hij = φij +
1

2
Pij[f ] + 2φ(i,j) + φ,ij, (6.38)

where

0 = φij,j = φjj = φi,i, (6.39)

and

Pij [f ] = δijf,kk − f,ij ; (6.40)

hence, Pij[f ],j = 0, and hii = (f + φ),ii. I further define

F = f,jj. (6.41)

The list of variables then consists of a transverse-traceless spin-2 tensor φij, trans-

verse spin-1 vectors γi, ν
i, φi, and spin-0 scalars γ, ν, F, φ, h00, and u0. I will impose
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the gauge conditions

0 = ui
,i = h0i,i = hi[j,k]i, (6.42)

or equivalently,

0 = ν = γ = φi. (6.43)

The field equations can then be linearized and expressed in terms of the above

variables, and sorted to obtain a set of wave equations with matter terms and

nonlinear terms as sources. Having done this, it is relatively easy to note that the

linearized portions of the field equations satisfy a conservation law, thus implying

the existence of a conserved source τab constructed from the matter sources and

non-linear terms:

τab = T ab − σaδb
0 + τ̃ab (6.44)

where T ab and σa are as defined above and τ̃ab is constructed from nonlinear terms—

its precise form will not be needed. As defined, τab satisfies the conservation law

with respect to the right-index only: τab
,b = 0. The corresponding conserved total

energy E and momentum P i to lowest PN order are

E =

∫

d3x τ 00 =
∑

A

m̃A =
∑

A

(1 − sA)mA, (6.45)

P i =

∫

d3x τ i0 =
∑

A

mAv
i
A. (6.46)

Conservation of P i means that the system center of mass X i defined via mA

X i =
1

m

∑

A

mAx
i
A, (6.47)

where m =
∑

Ama, is unaccelerated to lowest order.
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The field equations reduce to the following. For spin-2,

1

w2
2

φ̈ij − φij,kk = 16πGτTT
ij , (6.48)

where TT signifies the transverse, trace-free components, and

w2
2 =

1

1 + c+
. (6.49)

For spin-1,

1

w2
1

(ν̈i + γ̈i) =
16πG

2c1 + c+c−
(c+τi0 − (1 + c+)σi)T (6.50)

(c+ν
i − γi),kk = 16πGτT

i0, (6.51)

where T signifies the transverse components, and

w2
1 =

2c1 + c+c−
2(1 + c+)c14

. (6.52)

For the spin-0 variables, the constraint gives to linear order

u0 = 1 +
1

2
h00. (6.53)

Non-linear terms are ultimately uninteresting, as explained in more detail in Chapter

5. For the rest,

1

w2
0

F̈ − F,kk =
−16πGc14

2 + c14
(τkk +

2 − 3c2 − c+
c123

τL
kk −

2

c14
τ00) (6.54)

(F + c14h00),kk = −16πGτ00 (6.55)

(1 − c2)Ḟ,i − c123φ̇,kki = −16πGτL
i0 (6.56)

where L signifies the longitudinal component, and

w2
0 =

(2 + c14)c123
(2 − 3c2 − c+)(1 + c+)c14

. (6.57)
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These equations can be solved formally via Greens function methods, and

the resulting integrals expanded in a far-field, slow-motion approximation. The

expressions can be further simplified using the conservation of τab. A result that

holds within the approximation scheme is that for a field ψ satisfying a wave equation

with speed w evaluated at field point xi ≡ |x|n̂i,

wψ,i = −ψ̇n̂i. (6.58)

Also, differentially transverse becomes equivalent to geometrically transverse to n̂i.

The results to lowest PN order and ignoring static contributions are as follows.

For spin-2,

φij(t, x
i) =

2G

|x| Q̈
TT
ij (6.59)

where I assume that the system is near the origin, the right-hand side is evaluated

at time (t − |x|/w2), and the quadrupole moment Qij is the trace-free part of the

system’s second mass moment Iij

Iij =
∑

A

mAx
i
Ax

j
A. (6.60)

For spin-1 variables,

νi(t, xi) =
−2G

|x|
1

2c1 + c+c−
(
n̂j

w1
(

c+
1 + c+

Q̈ij − Q̈ij) + 2Σi)T (6.61)

γi = c+ν
i, (6.62)

where the right-hand side of the first equation is evaluated at time (t− |x|/w1), Qij

is the trace-free part of the rescaled mass moment Iij:

Iij =
∑

A

sAmAx
i
Ax

j
A, (6.63)

103



and

Σi = −
∑

A

sAmAv
i
A. (6.64)

For spin-0 variables,

F (t, xi) =
−2G

|x|
c14

2 + c14
(n̂in̂j((Z − 3)Q̈+

2

w2
0c14

Q̈) + ZÏ +
2

3w2
0c14

Ï − 4

w0c14
n̂iΣi)

(6.65)

h00 =
−1

c14
F (6.66)

φ̇,i =
1 − c2
c123

ḟ,i, (6.67)

where the right-hand side of the first equation is evaluated at time (t− |x|/w0),

Z =
2c1 + 3c2 + c3 − c4

(2 + c14)c123
=

2α2 − α1

2(2c+ − c14)
(6.68)

and I = Iii, I = Iii.

At this point, I can explain the expected smallness of the sensitivities. I do

this by taking the weak-field (sA → “small”) limit of the above wave forms and

comparing them with the perfect fluid wave forms determined in Chapter 5. The

only sA-dependence that remains potentially leading-order is in Σi. Comparing with

Σi in Chapter 5, Eqn. (5.82) indicates that in the small sA limit,

sA = −c14(α1 −
2

3
α2)

ΩA

mA

+ O(
GNm

d
)2, (6.69)

where ΩA is the binding energy of the body—i.e. Ω/m ∼ (GNm/d), where d is the

characteristic size of the body. The implication is that when α1, α2 = 0, s must

scale as (GNm/d)
2, times a cn dependent coefficient. This coefficient should scale

in the small cn limit as c2n to avoid divergences in the wave forms; see for example

eqn. (6.61).
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Next, the wave forms are inserted into an expression for the rate of change of

energy. This expression can be derived via the Noether charge method as in Chap. 5,

with the result

Ė =
−1

16πG

∫

dΩR2(
1

2w2
φ̇ijφ̇ij −

(2c1 + c+c−)(1 + c+)

w1
ν̇iν̇i− 2 + c14

4w0c14
Ḟ Ḟ )+Ȯ (6.70)

where Ȯ is a total time-derivative, which will be argued away in a moment.

Using the above results for the wave forms, performing the angular integral,

and ignoring Ȯ gives

Ė = −GN (
A1

5

...
Qij

...
Qij +

A2

5

...
Qij

...
Qij +

A3

5

...
Qij

...
Qij + B1

...
I

...
I + B2

...
I

...
I + B3

...
I

...
I + CΣ̇iΣ̇i)

(6.71)

where

A1 = (1 +
c14
2

)(
1

w2
− 2c14c

2
+

(2c1 + c+c−)2

1

w1
− (3 − Z)2c14

6(2 + c14)

1

w0
) (6.72)

A2 = (
(2 + c14)c+
2c1 + c+c−

1

w3
1

+
(3 − Z)

3

1

w3
0

) (6.73)

A3 = − 1

c14
(
2 + c14

4

1

w5
1

− 1

3

1

w5
0

) (6.74)

B1 =
−Z2c14

72

1

w0
(6.75)

B2 =
−Z
6

1

w3
0

(6.76)

B3 =
−1

6c14

1

w5
0

(6.77)

C = − 2

3c14
(
2 + c14
w3

1

+
1

w3
0

), (6.78)

and Z is given in (6.68). The coefficient A1 is identical to A of Chap. 5, B1 identical

to B, and C identical to C.
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It is now crucial to note that the damping rate is calculated to lowest non-

vanishing PN order by treating the system as exactly Newtonian. The motion of the

system can then be decomposed into a uniform center-of-mass motion—recall the

conservation of P i—and a fixed Keplerian orbit in the center-of-mass frame. Since

the motion is steady-state, the damping rate must have no secular time dependence.

This observation implies that secular terms arising from
...
I ij , see below, must cancel

with secular terms in Ȯ. I will presume only the time average of the damping rate

over an orbital period need be calculated. I can then dispose of Ȯ, as remaining,

non-secular terms average to zero.

Thus restricting attention to a binary system, and taking a time average over

an orbital period, the expression reduces as follows. First, I define the quantities

m = m1 +m2, µA = mA/m, µ = m1m2/m, (6.79)

and the vectors

ri = xi
1 − xi

2, vi = ṙi, (6.80)

X i = µ1x
i
1 + µ2x

i
2, V i = Ẋ i. (6.81)

To Newtonian order, v̇i = −(Gm/r2)r̂i, and V̇ i = 0. Iij can be diagonlized:

Iij = µrirj +mX iXj, (6.82)

hence

...
I ij =

2Gµm
r2

(3r̂ir̂j ṙ − 4v(ir̂j)). (6.83)

As for Iij ,

Iij = µ(s1µ2 + s2µ1)r
irj +m(s1µ1 + s2µ2)X

iXj + 2µ(s1 − s2)r
(iXj), (6.84)
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and

...
I ij = S

...
I ij − 6V (iΣ̇j) + 2µ(s1 − s2)

...
r (iXj), (6.85)

where

S = s1µ2 + s2µ1, (6.86)

and

Σ̇i = (s1 − s2)
Gµm
r3

ri. (6.87)

Terms in
...
I ij with X i ≡ (X i

0 +V it) are secular; following the discussion above, they

can be discarded.

Substituting into Eqn. (6.71) and imposing the time average gives the final

expression

Ė = −GN

〈

(
Gµm
r2

)2

×
[ 8

15
(A1 + SA2 + S2A3)(12v2 − 11ṙ2)

+ 4(B1 + SB2 + S2B3)ṙ
2

+ (s1 − s2)
2
(

C +
6

5
(3A3V

2 + (A3 + 30B3)(V
ir̂i)2)

)

+ (s1 − s2)
(8

5
(A2 + 2SA3)(3v

iV i − 2V ir̂ivj r̂j) + 12(B2 + 2SB3)V
ir̂ivj r̂j

)

]〉

.

(6.88)

Taking the weak field limit corresponds to retaining only the three terms with coef-

ficients A1, B1, and C, and invoking the relation (6.69) for sA in the C term. In the

case that α1 = α2 = 0, Z and thus B1, and sA vanish. The damping rate then con-

tains only a quadrupole contribution and is identical to the GR rate when A1 = 1.

This remaining curve of cn values lies entirely within the range of values allowed by

107



collected constraints considered in Chapter 4. Thus, if the weak-field results were

exact, there would exist a one parameter family of viable ae-theories.

6.6 Discussion

6.6.1 Velocity and sensitivity dependence

The above formulas can be used to obtain constraints on the values of cn by

comparing with observations of binary pulsar systems. Stating a precise constraint

requires additional work beyond this dissertation, though. Specifically, what is

needed are methods of dealing with the center-of-mass velocity dependence and of

calculating the sensitivities sA and σ′
A for a given body.

Dependence on the center-of-mass velocity V should actually be beneficial,

since constraints on the theory can arise from a failure to observe V dependent

effects, such as a precession of the orbital plane of a binary system. Furthermore, it

may be possible to formulate such constraints without having to define the physical

frame, as in the manner of bounds on the PPN parameter α2. The presence of

alignment between the sun’s spin axis and the ecliptic plane signals the absence of

frame dependent effects, and leads to a strong bound of |α2| < 4 × 10−7 [47]. This

argument does require the assumption that the component of the preferred frame

in the sun’s rest frame is not conveniently aligned with the sun’s spin axis; such

an assumption may generally be required for similar arguments. For example, the

binary’s orbital plane will not precess if V i happens to be normal to it.

An assumption on the order of magnitude of V is necessary to justify the
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use of just the leading PN order expressions for the PK parameters when applied

to observed binary systems. The validity of the expressions depends on whether

corrections of relative order v2 and (V 4/v2) are smaller than observational error.

Terms of order v2 are negligible for all observed systems, for now, although the

“double pulsar” is pushing this limit. For all but the double pulsar, v2 ∼ 10−6, and

errors are at least 1000 times this [50]. The double pulsar [58] PSR J0737-3039A/B

is the so-far unique binary containing two pulsars. The orbital velocity is high,

v2 ∼ 10−5, and the presence of two pulsars happens to make measurement of system

parameters much easier and thus more precise—the smallest relative error is 10−4

on the rate of periastron advance. The v2 corrections are therefore small enough

for now, but it is expected that precision will increase to probe the next PN order

within the next 10-20 years [50].

The V dependent terms must feature cn dependent factors, since it is known

that there is no V dependence at next PN order in pure GR [47]. Ignoring those

factors for the moment, validity of leading PN order for the double pulsar requires

that (V 4/v2) . 10−4, giving V 2 . 10−4.5, or (V 2/v2) . 100.5 ≈ 3. For other systems,

given errors ranging from (10−1 ∼ 10−3), the conditions are (V 4/v2) . (10−1 ∼

10−3), giving V 2 . (10−3.5 ∼ 10−2.5), or (V 2/v2) . (102.5 ∼ 101.5) ≈ (300 ∼ 30).

Presumably, the cn dependent factor actually goes to zero as some positive power of

cn, so V can be larger in the small cn limit. A reasonable first guess for the aether

frame is the rest frame of the cosmic microwave background. A typical velocity

for compact objects in our galaxy, in this frame, is V 2 ∼ 10−6, so the required

assumption on V is reasonable.
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As for the sensitivities s and σ′, a formula for the sensitivities for a general

source should be obtainable by comparing the strong field results of this chapter

with the exact perfect fluid theory of Chapter 5. Higher order terms in the ex-

act theory must be calculated, though, since the leading order results only give

the O(GNm/d) part of s expressed in (6.69). The calculation can be done in the

quasi-static case, carrying on the iterative procedure used to determine the PPN

parameters in Chapter 4. The process may be lengthy, but straightforward.

6.6.2 Constraints

For now, two preliminary comments can be made. I have shown that the

sensitivity s will scale like f [cn](GNm/d)
2, where f is some cn-dependent coefficient

that scales like c2n in the small cn limit. Then, a constraint can be roughly stated:

f . (1 ∼ 0.1). And, the theory will pass all current constraints if the cn are less

than roughly (0.1) and the three weak field conditions are imposed. For in that case,

the strong field corrections will be smaller than current observational error. These

statements can be derived as follows.

First, that f . (.1 ∼ .3). This condition follows from constraints [50] on the

magnitude of violations of the strong equivalence principle (SEP)—that is, that a

body’s acceleration is independent of its composition. A violation would lead to a

polarization of the orbit of pulsar systems due to unequal acceleration of the binary

bodies in the gravitational field of the galaxy. The observed lack of polarization

in neutron star-white dwarf systems leads to a constraint that can be stated here
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as s < (0.01), where here s is the sensitivity of the neutron star in the considered

pulsars. Assuming that (GNm/d) ≈ (.1 ∼ .3) for the pulsar, as it is in GR, the

constraint on the size of f arises. It is possible that when the three weak field

conditions are imposed, f will automatically satisfy the above inequality; certainly

it will in the small cn regime when |cn| < (1 ∼ 0.3).

Now for the statement that current tests will be satisfied if the three weak field

conditions are imposed and the remaining degree of cn freedom satisfies |cn| . (0.1).

First consider tests that probe only the quasi-static PK parameters, i.e. all but the

damping rate. The size of the strong field corrections relative to the PN GR correc-

tions is simply sA. The tightest quasi-static test comes from the double pulsar [58].

The prediction of GR has been confirmed to within a relative observational error of

0.05%. Then, roughly enforcing s . (0.1) and assuming that (GNm/d) ≈ (.1 ∼ .3)

for the pulsars, the condition |cn| . (0.1) arises. Given this and the two conditions

that set the PPN parameters α1 and α2 to zero, all current quasi-static tests will be

passed.

Tests that incorporate the damping rate will also be satisfied by the above

condition and the weak field conditions. I note first that for systems in which the

damping rate is probed, error on its measurement dominates errors on quasi-static

parameters [47, 50]. Thus, it is conventional to use the measurements of the quasi-

static parameters to solve for the mass values of the binary bodies. When α1,2 = 0,

and |cn| . (0.1), so that the expressions for the quasi-static parameters are close to

those of GR, the predicted mass values will also be close.

In general, the dominant contribution to the damping rate comes from the
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dipole term

ĖDipole = −GN

〈

(
Gµm
r2

)2
〉

C(s1 − s2)
2 (6.89)

which is order (Cs2/10v2) compared to the quadrupole and monopole contribution,

if the difference in the binary bodies’ sensitivities is not too small. Constraints have

been derived [50] on the magnitude of dipole radiation from neutron star–white

dwarf binaries PSR B0655+64 and PSR J1012+5307 by requiring that the dipole

radiation rate be of the order of the observed rate. The analysis carries over here,

and roughly leads to the condition 1/C & (s2/10−4), where s is the sensitivity of the

neutron star, and 1/C ≈ |c14|. In the small cn regime, this translates again to the

condition |cn| . (0.1).

For double neutron star binaries, the dipole rate is further suppressed by the

similarities of the sensitivities, and the quadrupole and monopole contributions be-

come dominant. The tightest test involving radiation is associated with the Hulse–

Taylor binary PSR1913+16, with a relative error of (0.2)% [47, 50]. In the small

cn regime, the condition A1 = 1 matches the leading order damping rate to that

of GR. The strong field corrections are of relative order s ∼ c2n(GNm/d)
2. To be

smaller than the error requires cn . (0.1).

This upper limit will decrease as observational errors decrease. The most

promising candidate for lowering the limit is the double pulsar [58]—2PN-order and

spin-dependent effects should be observable within the next ten or twenty years.

Another type of system, yet undetected, for which high levels of accuracy could be

obtained is a neutron star–black hole binary, as the structureless black hole would
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decrease noise due to finite-size effects and mass transfer between the bodies. I wish

to emphasize, though, that the large cn values are not yet excluded—rather, there

is no conclusion on them as yet.

6.A Definitions

This appendix collects the definitions of various quantities used throughout

Chapter 6.

Metric and aether variables:

hab = gab − ηab w0 = u0 − 1 wi = ui (6.90)

h0i = γi + γ,i wi = νi + ν,i (6.91)

hij = φij +
1

2
Pij [f ] + 2φ(i,j) + φ,ij (6.92)

Pij[f ] = δij△f − f,ij (6.93)

0 = γi,i = νi,i = φij,j = φjj = φi,i (6.94)

Wave speeds:

(w2)
2 =

1

1 + c+
(6.95)

(w1)
2 =

2c1 + c+c−
2(1 + c+)c14

(6.96)

(w0)
2 =

(2 + c14)c123
(2 − 3c2 − c+)(1 + c+)c14

(6.97)
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Coefficients:

GN =
2G

2 + c14
(6.98)

α1 =
8(c23 − c1c4)

2c1 + c+c−
(6.99)

α2 =
α1

2
+

(c1 + 2c3 + c4)(2c1 + 3c2 + c3 − c4)

(2 + c14)c123
(6.100)

sA =
σA

(1 + σA)
(6.101)

mB = (1 + σB)m̃B =
m̃B

(1 − sB)
(6.102)

GAB =
GN

(1 + σA)(1 + σB)
= GN (1 − sA)(1 − sB) (6.103)

S = s1µ2 + s2µ1 (6.104)

A1A = 1 + σA − σ′
A

2
((ucv

c
A)2 − 1) (6.105)

A2A = −σA − σ′
A(ucv

c
A + 1) (6.106)

B1A = −1

4
(8 + α1)(1 +

c−
2c1

σA) (6.107)

B2A = −3

2
− 1

4
(α1 − 2α2)(1 − 2 + c14

2c+ − c14
σA) (6.108)

B3A = (
8 + α1

8
)
1

c1
(c− + (1 + c−)σA) (6.109)

B4A =
1

2c123
((2c1 + 3c2 + c3 − c4) + (2 + c14)σA) (6.110)

C1 = B12 − σ1B32 = B11 − σ2B31 (6.111)

C2 = B22 − σ1B42 = B21 − σ2B41 (6.112)

Z =
2c1 + 3c2 + c3 − c4

(2 + c14)c123
=

2α2 − α1

2(2c+ − c14)
(6.113)
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Chapter 7

Conclusion

7.1 Summary of results

I have shown that a one-parameter family of ae-theories whose coupling con-

stants cn satisfy a mild bound will satisfy all collected constraints. Given present

observational errors in the measurement of binary pulsar systems, the mild bound

is |cn| . (0.1). For the class of theories that does not satisfy this bound, the results

are inconclusive. Constraints on this class will follow from the above results once

more work has been done to determine the values of the sensitivities for a given

matter source.

To summarize the results of the individual chapters:

In Chapter 2, I demonstrated the effect on the cn of rescaling the aether and

the metric along the aether direction. I showed how one can use this redefinition to

set one cn to zero. Doing this can simplify study of solutions and has been put to use

by Eling and Jacobson [26, 27] in their work on stars and black holes in ae-theory.

In Chapter 3, I derived expressions for the total energy, momentum, and an-

gular momentum of an ae-theory spacetime. Because the aether does not vanish

at infinity, the canonical expressions of GR receive aether dependent corrections.

This work permits future study of conditions under which positivity of total energy

holds.
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Also in Chapter 3, I used the Noether charges to write down the first law

of ae-theory black hole mechanics. I encountered difficulties in giving the law a

thermodynamic interpretation. In particular, the algorithm of Wald and Iyer [37]

for defining the entropy of the horizon in a diffeomorphism invariant field theory

fails here due to the singular behavior of the aether on the horizon’s bifurcation

surface. Perhaps related to this difficulty is the apparent incompatibility of Lorentz

violation and the second law of black hole thermodynamics, examined in [32].

In Chapter 4, I examined a variety of observational constraints on ae-theory

and showed that the combined constraints are satisfied by a two-parameter family

of theories. To accommodate constraints that probe the post-Newtonian limit of the

theory, I calculated the “parametrized post-Newtonian” parameters. I showed that

all but two of the ten PPN parameters, α1 and α2, differ from the GR values, and

that these two can be set to the GR values by imposing two conditions on the cn.

I also considered constraints that follow from the nature of linearized wave modes

and from ae-theory cosmology and showed how they restrict this family, but still

permit an infinite region of cn space.

In Chapter 5, I considered the motion of binary pulsar systems in ae-theory

in the limit in which effects due to the strong internal fields of the compact bodies

can be neglected. Treating the bodies as perfect fluid spheres, I calculated the rate

at which a system of compact bodies loses energy to gravity-aether radiation. The

effective N -body equations of motion follow from the PPN results in this limit.

It follows that observational constraints from binary pulsars could be satisfied by

matching the PPN parameters and the damping rate to those of GR, if strong field
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effects can be neglected. There would be just three simply stated conditions on the

four cn, leaving a one-parameter family of ae-theories that also happens to satisfy

the additional constraints considered in Chapter 4.

In Chapter 6, I included strong field effects by treating the compact bodies as

point particles with nonstandard, velocity dependent interactions parametrized by

dimensionless “sensitivities”. I determined the effective post-Newtonian equations

of motion for the bodies and the radiation damping rate. More work is needed

to calculate the numerical value of the sensitivities for a given stellar model, so as

to be able to state precise constraints on the cn. However, taking the weak field

limit and comparing with the perfect fluid calculation of Chapter 5 reveals how the

sensitivities scale with a body’s mass and size, and regularity of the field equations

implies the scaling with the cn. I was then able to estimate that if the cn are less

than roughly (0.1) and the three weak field conditions are imposed, then the strong

field effects will be negligible given current observational errors in the measurement

of pulsar systems. This remaining one-parameter family of ae-theories passes all

current observational constraints.

7.2 Future directions

The primary goal for future research is to find a way to rule out this theory by

overconstraining the cn. One important task left to do is to calculate the sensitiv-

ities for a given stellar source. This should be doable by comparison of the strong

field results of Chapter 6 and higher order calculations in the perfect fluid theory of
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Chapter 5. It would be helpful, though, to think of a more efficient method than just

grinding out the next order terms. Whatever method used, it would permit deter-

mining how observations constrain the large cn regime. As errors on observational

constraints improve, the size of cn such that the strong field terms are negligible

will decrease—“large” cn will signify a larger portion of the parameter space—so

the need to determine the sensitivities will grow. Very precise constraints will also

require accounting for effects due to the spin and tidal deformations (“finite-size”

effects) of the binary bodies.

It would be useful to consider other methods of constraining the theory, espe-

cially since the binary pulsar constraints will always be beatable for small enough cn.

Given that the work here covers the range of standard tests of gravitational theories,

finding new constraints indeed means heading into new territory. One method that

should be viable in the future is the use of gravitational wave detectors: constraints

could come from failure to observe spin-1 or spin-0 wave modes, from measurement

of the speed of gravity waves, or from absence of anomalous effects on the phase of

detected waves 1. Constraints could also come by restricting parameter values that

violate positivity of total energy using the definition of energy found in Chapter 3;

this method requires formulating a positive-energy theorem for ae-theory. Perhaps

it would be useful to consider further cosmological effects of the aether—polarization

of the cosmic microwave background, for example. And perhaps constraints can be

generated from arguments [31, 32] that the second law of black hole thermodynamics

is violated in ae-theory.

1I thank A. Buonanno for pointing out this third possibility.
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The theory suggests many questions. Why are the combinations of cn that

beat the constraints so special? Is the aether good-for-something, such as a source

of dark matter (when suitably sourced by non-aether matter [25]) or dark energy, or

a solution to the problem of time in quantum gravity [59]? And finally, where might

the aether come from—what kind of quantum gravity theory would be so clever as

to have ae-theory as a classical limit, with just the right combination of parameters?

If anyone can tell me, I would like to know.
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