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The First Order Autoregressive (AR(1)) Mixed Effects Zero Inflated Poisson (ZIP) 

Model was developed to analyze longitudinal zero inflated Poisson data through the 

Bayesian Approach.  The model describes the effect of covariates via regression and time 

varying correlations within subject.  Subjects are classified into a “perfect” state with 

response equal to zero and a Poisson state with response following a Poisson regression 

model.  The probability of belonging to the perfect state or Poisson state is governed by a 

logistic regression model.  Both models include autocorrelated random effects, and there 

is correlation between random effects in the logistic and Poisson regressions.   

Parameter estimation is investigated using simulation studies and analyses (both 

frequentist and Bayesian) of simpler mixed effect models.  In the large sample setting we 

investigate the Fisher information of the model.  The Fisher information matrix is then 

used to determine an adequate sample size for the AR(1) ZIP model.  Simulation studies 

demonstrate the capability of Bayesian methods to estimate the parameters of the AR(1) 



ZIP model for longitudinal zero inflated Poisson data.  However, a tremendous 

computation time and a huge sample size are required by the full AR(1) ZIP model.   

Simpler models were fitted to simulated AR(1) ZIP data to investigate whether 

simplifying the assumed random structure could permit accurate estimates of fixed effect 

parameters.  However, simulations showed that the bias of two nested models, ZIP model 

and mixed effects ZIP model, are too large to be acceptable.  The AR(1) ZIP model was 

fitted to data on numbers of cigarettes smoked, collected in the National Longitudinal 

Study of Youth.  It was found that decisions on whether to smoke and on the number of 

cigarettes to smoke were significantly related to age, sex, race and smoking behavior by 

peers.  The random effect variances, autocorrelation coefficients and correlation between 

logistic and Poisson random effect were all significant.               
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Chapter I 

Introduction 

1.1   Motivation 

It is commonly seen that a set of count data contains an excess of zeros relative to 

standard distributions for such data, so that data analyses encounter an over-dispersion 

problem.  Such zero inflated data appear in many fields, such as social science, medical 

research, and industrial processes.  Many researchers have studied this problem and 

developed various zero-inflated models in response.  This dissertation concerns 

extensions of the zero-inflated Poisson (ZIP) model.   

   

1.2    Theme of the Dissertation 

The ZIP model originally was introduced by Lambert (1992).  The ZIP model 

treated the zero inflated count data as coming from a mixture distribution: one component 

is a Poisson distribution, where y = 0, 1, 2, …, and the other component is a zero state, 

which generates zero counts only.  Note that, when a count is zero, it may have come 

from either the Poisson state or from the zero state.  This is why the ordinary Poisson 

model has an overdispersion problem when applied to ZIP data.  Sometimes, the zeros 

can be 60%, 70%, or higher in the data set, which introduces bias into an analysis using a 

standard model for counts, such as the Poisson.   

In the ZIP model, there are two Generalized Linear Models (GLMs): a logistic 

model and a Poisson model.  The logistic model yields a binary outcome and filters the 

count data into two classes, either from the Poisson class or from the zero class.  The 

Poisson model component works as an ordinary Poisson regression; that is, the log of the 
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Poisson rate parameter can be modeled as a linear function of covariates.  Note that these 

two models work simultaneously.  

Later the ZIP model was extended to the mixed effect ZIP model (Neelon 

O’Malley, & Normand,  2010) by introducing random effects in to the model; that is, a 

random intercept logistic model and a random intercept Poisson model (a General Linear 

Mixed Model, or GLMM).  With the random effects, the mixed effect ZIP model can 

address the correlation within subjects encountered in analyses of repeated measurements 

data, clustered data, or meta-analysis.   

In this study, the mixed effect ZIP model is extended to a first-order regressive or 

AR(1) mixed effect ZIP model.  That is, the ZIP model additionally has an AR(1) random 

intercept logistic model and an AR(1) random intercept Poisson model with respect to the 

time-ordered aspect of observations.  The AR(1) structure of the random effects thus 

serves to model the correlation arising from time waves in longitudinal data.  Moreover, 

the AR(1) random effects in the logistic and Poisson models can be correlated.  The 

AR(1) mixed effect ZIP model is an extremely general model such that previously 

published models are special cases of AR(1) mixed effect ZIP model.  A thorough 

literature review has shown no prior publication of work on an AR(1) mixed effect ZIP 

model. 

Our investigations of this new model have shown estimation within a Bayesian 

framework to be possible but arduous.  The focus of the dissertation research therefore is 

to understand the importance of including all random components, in the sense of 

robustness.  That is, if data have been generated by a process described by the full model, 

what are the qualities of estimates of fixed-effects parameters in the full model (which are 
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typically the effects of primary interest in applied work) in comparison with successively 

simpler sub-models? 

Table 1.1 presents a hierarchy of models that we will examine.  The Poisson 

Model is the simplest one, and the model structural complexity is increased from left to 

the right, to the AR(1) Mixed Effect ZIP model.  We want to investigate the robustness of 

the AR(1) model in terms of regression coefficient estimations.    

Table 1.1   Hierarchy of ZIP Models 
Components  Poisson Model ZIP Model Mixed Effect 

ZIP Model 
AR(1) Mixed 
Effect ZIP 
Model 

GLM (Poisson)  X X   
GLM (Logistic)  X   
GLMM(Poisson)    X X 
GLMM(Logistic)   X X 
Corr of GLMMs   X X 
AR(1)    X 

 

1.3    Contributions 

 This dissertation contains the following contributions: 

a) We develop a new model – the AR(1) ZIP model – which can better fit longitudinal 

count data. 

b) The AR(1) model is implemented by a Bayesian estimation method through BUGS 

software. 

c) The AR(1) ZIP model requires large samples.  We show how to approximate the 

Fisher Information of the model and use it to determine the needed sample size.   

d) For simulated data generated according to the AR(1) ZIP model, simulation studies 

show that simpler models (ZIP with no random effects or ZIP with random intercepts) 

do not yield valid estimates of regression parameters. 
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Chapter II  

Literature Review 

2.1   Development of Analyses of Zero Inflated Count Data  

Poisson regression models provide a standard framework for the analysis of count 

data.  However, in practice, count data are often overdispersed compared to the Poisson 

distribution with the same mean.  One cause of overdispersion is that the zero counts 

exceed the expected frequency in the Poisson distribution.  Examples of zero-inflated 

data appear in many fields, such as road safety (Miaou, 1994), sexual behavior (Heilbron, 

1994), and reading tests (Jansen, 1986).  The excessive zero counts happen when the data 

contains both structural zeros and sampling zeros (Ridout, Demetrio, & Hide, 1998).  

Suppose that the underlying population is a mixture of two groups, say perfect and 

imperfect.  Members of the perfect class will produce zero errors only.  That is, one 

mechanism generates only zeros, while the other process generates both zero and nonzero 

counts.  When this situation happens, the standard Poisson model will not describe this 

data well and will have an overdispersion problem.  In other words, there are too many 

counts at higher values in relation to the Poisson mean, and thus to the best-fitting 

Poisson.  An example comes from a manufacturing production process with the following 

characteristics: the production process is in a near perfect state so that zero defects are 

observed with high probability.  However when the environment changes to an imperfect 

state, defective units may be produced.  The environmental changes are unobservable and 

random.  In this practical case, the proportion of observed zeros exceeds what a Poisson 

model would predict.     
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Several classes of discrete mixture models have been proposed for zero-modified 

data. These include hurdle models (Mullahy, 1986; Heilbron, 1994) and zero-inflated 

models (Lambert, 1992).  The hurdle model is a two-stage model for count data. One part 

is a binary model for whether the response outcome is zero or positive. Conditional on a 

positive outcome, the second part uses a truncated count model that modifies an ordinary 

distribution by conditioning on a positive outcome. For instance, this might be a 

truncated Poisson distribution or a truncated negative binomial.  The hurdle model can 

handle zero inflation or deflation.  The zero-inflated model (Lambert, 1992) only handles 

zero inflation. Two types of zeros can occur: one comes from the zero state and the other 

from the ordinary count distribution state. That is, the distribution is a mixture of an 

ordinary count model, such as the Poisson or negative binomial, with one that is 

degenerate at zero.  Min and Agresti (2005) argue that zero-inflated count models are 

more natural than a hurdle model and that one should think of the population as a 

mixture. 

Lambert (1992) proposed the Zero Inflated Poisson (ZIP) model, which contains 

logistic regression and Poisson regression components, and additional applications 

appeared.  Based on the features of data, extended ZIP models were developed.  Ghosh, 

Mukhopadhyay, & Lu  (2006) extend the ZIP models to a broad class of distributions 

(e.g., power series distributions) to fit zero-inflated data with a relatively small to 

moderate sample size.  Some data observations are correlated, such as repeated 

measurements, spatially correlated data, or longitudinal data, so random effects were 

introduced into models.  Hall (2000) incorporated one random intercept effect into the 

Poisson regression only, but not in the logistic regression, to account for correlated 
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responses in a repeated measures designed experiment.  Neelon, O’Malley, & Normand  

(2010) included correlated random effects in both components of the model.   

Many authors took frequentist approaches to estimate the parameters in ZIP 

models.  In the case of a mixed effect ZIP model the computational techniques are 

complicated and require approximations of high dimensional integrals (Hall, 2000; Min 

& Agresti, 2005).  For applications in meta-analysis (as encountered in the author’s work; 

Weng, 2008), it was not until 2008 that Bates created the logistic random intercept 

computation function, glmer ( ), provided in R software (R, 2008).  Recent versions of 

SAS software can fit random effect GLM models using PROC GLMMIX.  Certain more 

general mixed effect regression models, but neither the ZIP model nor the mixed effect 

ZIP model can be estimated using SAS PROC NLMIXED.   

 

2.2   Poisson Model and Zero Inflated Poisson Model 

2.2.1   Generalized Linear Models: Poisson Model and Logistic Regression Model 

The unity of many statistical methods was demonstrated by Nelder and 

Wedderburn (1972) using the idea of the Generalized Linear Model (GLM).  GLMs 

extend ordinary regression models to encompass nonnormal response distributions and 

modeling functions of the mean (Agresti, 2002).  That is, response variables may have 

distributions other than the normal distribution – they may even be categorical rather than 

continuous.  Also, the relationship between the response and explanatory variables need 

not be of the linear form.  

Consider the Poisson regression model: in the Poisson distribution, the probability 

function for the discrete random variable Y is 𝑓(𝑦,𝜃) = 𝜃𝑦𝑒−𝜃

𝑦!
.  where 𝑦 takes the values 
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0, 1, 2, ….  This can be rewritten as 𝑓(𝑦,𝜃) = exp(𝑦 log𝜃 − 𝜃 − log(𝑦!)).  In a sample 

(𝑿𝑖 ,𝑌𝑖), 𝑖 = 1, … ,𝑁, the 𝑌𝑖 are independent Poisson random variables with expected 

value 𝐸[𝑌𝑖] = 𝜇𝑖 = exp(𝑿𝑖′𝜷),  where 𝑿𝑖 is a covariate vector and 𝜷 is an unknown 

parameter vector.  The link function, 𝜂𝑖 = 𝑔(𝜇𝑖) = 𝑿𝑖′𝜷, relates the mean response 𝜇𝑖 

to 𝑿𝑖. Consider the logistic regression model: the 𝑌𝑖 are independent Bernoulli random 

variables with expected values 𝐸[𝑌𝑖] = 𝜋𝑖 = exp (𝑿𝑖
′𝜷)

1+exp (𝑿𝑖
′𝜷)

.  There, the logit transformation, 

𝜂 = log � 𝜋
1−𝜋

�, serves to link the linear predictor, 𝜂𝑖 = 𝑿𝑖′𝜷, to the mean response: 

𝑔(𝜇𝑖) = 𝑔(𝜋𝑖) = log � 𝜋𝑖
1−𝜋𝑖

� = 𝑿𝑖′𝜷.  Note that 𝜋𝑖 lies in the interval [0, 1] and 𝜂𝑖 lies in 

(−∞, +∞).     

 

2.2.2   Zero Inflated Poisson Model 

One often assumes that a set of count data has a Poisson distribution.  In many 

practical cases, however, the proportion of observed zeros exceeds what a Poisson model 

would predict.  The zero inflated Poisson (ZIP)  model accounts for the excess zeros by 

assuming the data are drawn from a mixture of a Poisson population and a population 

producing zeros with probability one. 

In a ZIP model, there are two generalized linear models (GLM): a Poisson 

regression model and a logistic regression model. The ZIP model accounts for the excess 

zeros by assuming the data are drawn from a mixture of a Poisson population and a 

degenerate distribution at zero. That is, the random variable equals zero with probability 

one; there is no variation.  In ZIP regression, the responses Y are independent and can be 

written as: 
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                               Pr(𝑌 = 𝑦) = 𝑃𝑓1 (𝑦) +  (1 −  𝑃)𝑓2(𝑦; 𝜆),                                          (2.1)   

where 𝑓1  (𝑦) =  �1 𝑖𝑓 𝑦 = 0,
0 𝑖𝑓 𝑦 ≠ 0, 

          𝑓2(𝑦;  𝜆) = 𝑒−𝜆𝜆𝑦/𝑦!, 

          log(𝜆) = 𝛽𝑿,  

          logit(𝑃) = log � P
1− 𝑃

� =  𝛼𝒁.  

The function 𝑓2(𝑦; 𝜆) is a standard Poisson distribution for modeling counts with mean λ 

and support {0, 1, 2,…}, X and Z are covariate matrices, and 𝑃  is a mixture proportion 

with 0 ≤ 𝑃 ≤ 1.   Note that the covariate matrix X, that affects the Poisson mean, may or 

may not be the same as the covariate matrix Z, that affects the probability of perfect state 

membership.  

 

2.3.   Mixed Effect Zero Inflated Poisson Model  

Fixed Effect vs. Random Effect   

In a study, variable effects are either fixed or random depending on how the levels 

of the variables that appear in the study are determined.  If one imagines that an 

experiment is repeated and the levels of an effect are identical, that effect would be 

considered as a fixed effect.  If the levels of an effect change in an uncontrollable way 

when the experiment is repeated, the effect would be considered as a random effect.  The 

levels of a random effect are regarded as a sample from some distribution. 

An example of fixed effect occurs in a clinical trial analyzing the effectiveness of 

three drugs. Assume that the three drugs are the only candidates for the clinical trial, that 

the subjects are a representative sample from a population of interest and that the 

conclusions of the clinical trial are restricted to just those three drugs.  Then the effect of 
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the variable drug is a fixed effect, since the drug factor in the study represents all levels in 

which inferences are to be made.   

Suppose instead that the clinical trial was performed in ten clinics, that the 

subjects in a clinic are drawn from the population served by that clinic and that the ten 

clinics are a sample from a larger population of clinics.  A replication of the trial would 

use a different random sample of clinics.  The factor of interest is still drug, and clinic is a 

nuisance factor. The conclusions of the clinical trials are not restricted only to the patients 

served by the ten clinics but rather to the population of patients served by all clinics. The 

ten clinics are a random sample of the clinic population.  The variable clinic can be 

treated as a random effect variable and inferences are valid for the population of patients 

served by all clinics. 

In real world problems, there may be random subject-to-subject variation not 

explained by covariates.  So a random subject effect is introduced into models.  In a case 

of clinical meta-analysis data, the individual subject parameter is not of research interest 

and there may be many subjects; to eliminate nuisance subject parameters, a random 

subject effect is introduced into models.  In a clustered or repeated measures design, 

observations nested within subjects are correlated with each other while observations on 

different subjects are independent of each other.  So again a random subject effect is 

introduced into such models.  The resulting model is a mixed effect model; that is, the 

model includes both fixed effects for the covariates and the random effect for subjects 

typically with the assumption that the conditional responses are normally distributed.     
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2.3.1   Generalized Linear Mixed Model 

A random effect vector u is incorporated into the GLM as follows:  Assume 

𝑌𝑖𝑗|𝒖 ~𝑓𝑦𝑖𝑗|𝒖�𝑦𝑖𝑗 �𝒖𝑖�  are conditionally independent, given u, 

𝐸�𝑌𝑖𝑗�𝒖� = 𝜇𝑖𝑗, 

𝑔�𝜇𝑖𝑗� =  𝜂𝑖𝑗 = 𝑿𝑖𝑗′ 𝛽 + 𝑾𝑖𝑗
′ 𝑢𝑖, 

𝒖 ~ 𝑓𝑼(𝒖), 

where Wij represents a vector of covariates.  The so-called dispersion parameter 𝜏 is often 

known to be 1, as in binomial or Poisson models.  The resulting model is a generalized 

linear mixed model (GLMM).   

Note that the random effect in a GLMM can be a random intercept effect, a 

random slope effect, or both.  A growth model, which is often used in agricultural 

research studies, is an example of a GLMM having random intercept and random slope 

effects.  An example of a GLMM having random intercept effect only is the Rasch model 

in item response theory (IRT) (Rasch, 1960).  In the Rasch model, item responses 

(𝑗 = 1,2, … , 𝐽) are nested within subject(𝑖 = 1,2, … ,𝑛).  The probability of a correct 

response to the dichotomous item 𝑗 (𝑌𝑖𝑗 = 1) conditional on the random effect or 

“ability” of subject 𝑖 (𝜃𝑖) in terms of the logistic cdf is 𝑃�𝑌𝑖𝑗 = 1�𝜃𝑖� = Ω�𝜃𝑖 − 𝑏𝑗�, 

where Ω(∙) is the cumulative logistic function, and 𝑏𝑗 is the item parameter.  In the Rasch 

model, subjects are modeled as a random effect and items are included as covariates.  

Note that in IRT literature the subject ability usually is denoted as 𝜃 instead of 𝑢 

(Hedeker & Gibbons, 2006).  A special case of GLMM is no random effect at all.  That 

is, one drops the u term, so that the model reduces to a GLM. 
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The following is an example of a random intercept effect GLMM in a repeated 

measurement data setting.  Assume there are 𝑖 = 1, … ,𝑛 subjects and 𝑗 = 1, … , 𝐽 repeated 

observations nested within each subject.  A random-intercept model augments the linear 

predictor with a single random effect for subject i, 

𝜂𝑖𝑗 = 𝒙𝑖𝑗′ 𝜷 + 𝑢𝑖 

where 𝑢𝑖 is the random effect (one for each subject).  These random effects represent the 

influence of subject 𝑖 on his/her repeated observations that is not captured by the 

covariates.  These are treated as random effects because the sampled subjects are thought 

to represent a population, and their corresponding effect terms are assumed to be 

distributed as 𝑁(0,𝜎𝑢2).  The parameter 𝜎𝑢2 indicates the variance in the population 

distribution, and therefore the degree of heterogeneity of subjects.  The conditional mean 

of 𝑌𝑖𝑗 , denoted as 𝜇𝑖𝑗, is specified as 𝐸�𝑌𝑖𝑗�𝑢𝑖,𝒙𝑖𝑗�.  Note that the assumption of normal 

distributions for the random effects is not necessary; one can have some distribution other 

than normal.  However some prefer to use the normal distribution for ease of 

interpretation (Weng, 2008).       

 

2.3.2   Random Intercept Zero Inflated Poisson Model 

In the previous section we presented a basic fixed-effects ZIP model.  Now we 

expand the basic ZIP model by incorporating subject random effects.  For a random 

effect ZIP model, the two generalized linear models are extended to two generalized 

linear mixed models (GLMM): mixed effect Poisson regression model and mixed effect 

logistic regression model:   

                                           𝑙𝑜𝑔𝑖𝑡�𝑝𝑖𝑗� = log � 𝑝ij
1− 𝑝𝑖𝑗

� =  𝒁𝑖𝑗𝛼 +  𝑢𝑖                                      (2.2)  
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                                        log�𝜆𝑖𝑗� = 𝑿𝑖𝑗𝛽 + 𝑣𝑖                                                                      (2.3) 

where 𝛼  and 𝛽 are vectors of fixed effect coefficients and 𝑢𝑖  and  𝑣𝑖  denote random 

effects with  

                    𝑢𝑖  ~ 𝑁(0,𝜎𝑢2 ), 

                    𝑣𝑖  ~ 𝑁(0,𝜎𝑣2 ).  

The normal random intercepts (𝑢𝑖  and  𝑣𝑖) capture the heterogeneity of subjects.  The 

variances 𝜎𝑢2 and 𝜎𝑣2 measure the differences among subjects.  Note that here the subject 

effects do not change over time.  Neelon, O’Malley, & Mormand (2010) allowed 𝑢𝑖 and 

 𝑣𝑖 to be correlated. 

 

2.4    AR(1) Mixed Effects Model 

There are designs in which data are collected in such a way that data points are 

correlated, such as cluster sampling data, matched pair data, repeated measures data, time 

series data, and longitudinal data.  For repeated measures data, observations taken on the 

same subject tend to be more similar than observations taken on different subjects.  The 

assumptions of the repeated measures models used in psychological research are that the 

measurements have equal variances at all time points and that the correlation between 

measurements on the same subject is the same regardless of the time lag between 

measurements.  For time series data, observations taken close in time tend to be more 

similar than measurements taken far apart in time, so correlations decrease as the time lag 

increases.  Longitudinal data typically exhibits the features of time series data.   

In mixed models, the variance-covariance matrix of the observations involves the 

covariance structure of the random effects and the covariance structure of the random 
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errors.  We need to select an appropriate covariance structure for the random errors.  If 

one chooses a structure that is too simple, one risks increasing the Type I error rate; if too 

complex, one sacrifices power and efficiency. 

The first-order autoregressive covariance structure takes into account a common 

trend in longitudinal data.  The covariance pattern model with first order autoregressive 

[AR(1)] structure is commonly used in time series analysis to describe the correlation 

structure.  The AR(1) process only depends on two parameters.  The covariance for time 

points j and 𝑗′ is 

    𝜎𝑗𝑗′ = = 𝜎2𝜌|𝑗−𝑗′| , 

where 𝜌 is the AR(1) parameter and 𝜎2 is the error variance.  The basic idea is that 

random effects are autocorrelated over time and the correlations decrease as observations 

are further apart in time.  The assumption in the AR(1) model is that the longitudinal data 

are equally spaced. This means that the distance between time 1 and 2 is the same as time 

2 and 3, time 3 and 4, and so on.  

In the previous section, a GLMM model was described to handle repeated 

measures data.  For longitudinal data, AR(1) random effects are incorporated into GLMM 

to yield models that allow for subject heterogeneity and some form of time dependence of 

the errors (Sun, Speckman, & Tsutakawa , 2000).  Other correlation structures for time 

series data might have been chosen (e.g., AR(p) with p > 1 or moving average, MA(q), q 

> 0), but AR(1) is simple, is easy to simulate and captures the time series correlation 

structure.  See Chatfield (2009) for more details on time series models. 
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2.5   Bayesian Data Analyses 

2.5.1   Maximum Likelihood Estimation 

For a parametric statistical model ℋ, a common estimator is the maximum 

likelihood estimator.  Let 𝑋1,⋯ ,𝑋𝑛 be i.i.d. with PDF 𝑓(𝑥;𝜃) where 𝜃 ∈ Θ, and  Θ is 

the parameter space.  The likelihood function is 

𝐿𝑛(𝜃) = 𝑓(𝑋1,⋯ ,𝑋𝑛;𝜃) = �𝑓(𝑋𝑖;𝜃)
𝑛

𝑖=1

. 

The log likelihood function is 𝑙𝑛(𝜃) = log [𝐿𝑛(𝜃)].  The maximum likelihood estimator 

(MLE) 𝜃�𝑀𝐿  is a point in the parameter space such that 𝑙𝑛�𝜃�𝑀𝐿� = sup𝜃∈Θ 𝑙𝑛(𝜃).  

The MLE has several nice properties (Bickel & Doksum, 2007, pp. 331-332).  

They are stated here for a scalar parameter, but similar results are true in the 

multiparameter case. 

a) Consistency – When ℋ is identifiable, under general conditions, the MLE 

𝜃�𝑀𝐿
𝑝
→ 𝜃∗, where 𝜃∗ is the true value of the parameter 𝜃. 

b) Asymptotic Normality – Given n i.i.d. observations, the Fisher information 

(Bickel & Doksum, 2007, p. 180) is defined as 𝐼𝑛(𝜃) = 𝑛𝐸𝜃 ��
𝜕
𝜕𝜃
𝑙𝑜𝑔𝑓(𝑋;𝜃�

2
� , 

and under regularity conditions this is also equal to −𝑛𝐸𝜃 �
𝜕2

𝜕𝜃2
𝑙𝑜𝑔𝑓(𝑋;𝜃)�.  

Let 𝑠𝑒𝑛 = �𝑉𝑎𝑟𝜃(𝜃�𝑀𝐿).  Under appropriate regularity conditions, 𝑠𝑒𝑛 =

�1/𝐼𝑛(𝜃), and 𝜃
�𝑛−𝜃
𝑠𝑒𝑛

𝑑
→ 𝑁(0,1), as 𝑛 → ∞.  Furthermore, let 𝑠𝑒�𝑛 = �1/𝐼𝑛(𝜃�𝑀𝐿).  

Then 𝜃
�𝑛−𝜃
𝑠𝑒�𝑛

𝑑
→ 𝑁(0,1).   

14 
 



c) Cramer-Rao Lower Bound – Let 𝜃�𝑛 be any unbiased estimator of 𝜃.  Its variance 

is bounded below by the inverse Fisher information as 𝑛 → ∞: 𝑉𝑎𝑟𝜃�𝜃�𝑛� ≥
1

𝐼𝑛(𝜃).  

The limiting variance of the maximum likelihood estimator is equal to this lower 

bound under suitable regularity conditions (Bickel & Doksum, 2007, p. 331). 

The Fisher information plays a central role in maximum likelihood estimation.  

Let’s take a closer look at the Information Matrix.  The asymptotic variance-covariance 

matrix of the ML estimator of a vector valued parameter θ, is calculated as the inverse of 

the Fisher information matrix, [𝐈(𝜽)]−1 (Bickel & Doksum, 2007, pp. 331-332, pp. 386-

387; Shao, 2003, pp. 290-292) where 

           𝐈𝑁(𝜽) = 𝐸[{(
𝜕
𝜕𝜽

) log 𝐿(𝜽)}{(
𝜕
𝜕𝜽

) log 𝐿(𝜽)}′] 

                                                  = −𝐸[�
𝜕2

𝜕𝜽𝜕𝜽′
� log 𝐿(𝜽)].                                      (2.4) 

Thus, the asymptotic variance-covariance matrix of 𝜽�𝑀𝐿 is: 

a-var-cov�𝜽�𝑀𝐿� =  [𝐈𝑁(𝜽)]−1                                     

                                                                 = �−𝐸 �
𝜕2log𝐿(𝜽)
𝜕𝜽𝜕𝜽′

��
−1

                          (2.5) 

From above, we see that the inverse of the information matrix is exactly the same as the 

Cramer-Rao lower bound.     

Asymptotic Efficiency 

Suppose that 𝜃� is a consistent, asymptotically unbiased estimator of 𝜃.  Under 

regularity conditions the asymptotic variance of a suitably normalized version of 𝜃� is 

bounded below by the inverse Fisher information.  A multiparameter version of this 

bound is also available.  (This is an asymptotic version of the Cramer-Rao bound.)  An 
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estimator whose asymptotic variance achieves this lower bound is said to be 

asymptotically efficient. 

Eigenvalues and Eigenvectors of the Fisher Information Matrix 

Suppose that one has a sample of independent and identical observations 

(𝑿1, … ,𝑿𝑁)  whose distribution depends on a multidimensional parameter 𝜽 ∈ 𝓡𝒑.   

Let 𝑰1= Fisher information about 𝜽 in one observation, and let  

𝑰𝑁(𝜃) = 𝑰𝑁 = 𝑁𝑰1 = −𝐸𝜽 �
𝜕2

𝜕𝜽𝜕𝜽′
𝑙𝑜𝑔𝐿(𝜽)� = Fisher information in N observations.   

Under regularity conditions, asymptotically 

√𝑁�𝜽�𝑀𝐿 − 𝜽�
𝑑
→ 𝑁(𝟎, 𝑰1−1), 

∴ 𝜽�𝑀𝐿 ≅ 𝑁(𝜃,𝑁−1𝑰1−1). 

where 𝑁−1𝑰1−1 is the Cramer-Rao lower bound for an unbiased estimator. 

Furthermore, 𝑰1  can be written 

𝑰1 = 𝑸𝑫𝑸′ 

where 𝑫 = diag�𝜆1, 𝜆2,⋯ , 𝜆𝑝�,    𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 are eigenvalues, the matrix 

𝑸 = �𝒒1,𝒒2,⋯ ,𝒒𝑝�,  and its columns are eigenvectors.  Furthermore, 𝑸𝑸′ = 𝑸′𝑸 = 𝑰, so 

that 𝒒𝑗′ 𝒒𝑘 = �1   if 𝑗 = 𝑘
0   if 𝑗 ≠ 𝑘.  Since 𝑣𝑎𝑟�𝒒𝑘′ 𝜽�� ≅

1
𝑁
� 1
𝜆𝑘
�, for all k =1,…  ,p,  the “hardest” 

estimation problem in terms of variance is to estimate 𝒒𝑝′ 𝜽� (Shao, 2003, pp. 290-292). 

 

2.5.2   Bayesian Inference  

The frequentist statistical methods have the following features: 

a) Probability refers to limiting relative frequency. 

b) Data are random. 
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c) Estimators are functions of data, so they are random. 

d) Parameters are fixed, unknown constants.  They are not subject to probabilistic 

interpretation. 

e) Procedures are subject to probabilistic statements.  For example, a 95% 

confidence interval traps the true parameter value in 95% of all possible samples. 

An alternative is the Bayesian approach: 

a) Probability refers to degree of belief.  Therefore parameters are random and 

described probabilistically. 

b) Inference about a parameter 𝜃 is carried out by computing its probability 

distribution given the observed data.  One starts with a prior distribution 𝑝(𝜃) and 

also chooses a likelihood function 𝑝(𝑥|𝜃) – note this is a function of 𝜃, not 𝑥.  

After observing data 𝑥, one applies Bayes’ Theorem to obtain the posterior 

distribution 𝑝(𝜃|𝑥): 

𝑝(𝜃|𝑥) =
𝑝(𝜃)𝑝(𝑥|𝜃)

∫𝑝(𝜃 ′)𝑝(𝑥|𝜃 ′)𝑑𝜃 ′
∝ 𝑝(𝜃)𝑝(𝑥|𝜃), 

where 𝐶 ≡  ∫𝑝(𝜃 ′)𝑝(𝑥�𝜃 ′)𝑑𝜃 ′is known as the normalizing constant.  

c) For large n and under regularity conditions, posterior distributions are 

approximately normal.  Specifically 𝑝(𝜃|𝒙𝑛) ≈ 𝑁 �𝜃�𝑛, �− 𝜕2

𝜕𝜃2
 log𝑳𝑛�𝜃�𝑛��

−1

� 

(Bickel & Doksum, 2007, p. 339) where  𝜃�𝑛is the Bayesian estimate.  That is, the 

posterior distribution converges to this limiting normal distribution.  This is a 

consequence of the Bernstein-von Mises theorem stated in the next section. 
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Asymptotic Equivalence of Bayes and M.L. Estimators 

A precise statement of the large sample behavior of the posterior distribution is 

given in the Bernstein-von Mises theorem.  

Bernstein – von Mises (BvM) Theorem: Under suitable regularity conditions, the 

posterior distribution is asymptotically normal with asymptotic mean equal to the 

maximum likelihood estimator (MLE) and asymptotic variance equal to the inverse of the 

total Fisher information matrix, as for the MLE.  See Bickel & Doksum (2007, p. 339). 

This theorem has the following important consequences.  Let 𝜃�𝑛 be the MLE 

based on n observations, let 𝜃�𝑛 be the posterior mean based on n observations, and let 𝜃∗ 

be the true value of the parameter 𝜃.  Under general conditions that apply in exponential 

families: 

a) �𝜃�𝑛 − 𝜃∗� decreases to 0 in probability at rate 1
√𝑛

 , and �𝜃�𝑛 − 𝜃∗� decreases to 0 in 

probability at rate 1
√𝑛

.  Thus, the two estimators converge to the truth at the same 

rate.  

b) �𝜃�𝑛 − 𝜃�𝑛� decreases to 0 in probability at rate 1
𝑛
.  Therefore, for large n, the 

difference between the posterior mean and the MLE is of smaller order of 

magnitude than the error of estimation due to sampling as n goes to infinity. 

c) The asymptotic variance for the MLE is the inverse of the expected information:  

𝐼(𝜃)−1 = �−𝐸𝜃 �
𝜕2

𝜕𝜃2
log 𝐿𝑛(𝒙𝑛|𝜃)��

−1
.  This is the same as the variance of the 

asymptotic posterior distribution.  The variance of the approximate posterior 

distribution is the observed information:  

 𝐼𝑛�𝜃�� = − 𝜕2

𝜕𝜃2
ln 𝐿𝑛(𝒙𝑛|𝜃) |𝜃=𝜃� .   
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2.5.2.1   Prior Distribution 

A standard maximum likelihood inferential model is often formally identical to a 

Bayesian model in which the prior probability distribution is an appropriate uniform 

distribution function, although often the prior distribution is improper: its integral is 

infinite rather than equal to one.   

Under suitable regularity conditions, Bayes estimates and maximum likelihood 

estimates are asymptotically identical for any proper prior distribution (Chao, 1970) with 

support in a neighborhood of the true parameter values.  Therefore with sufficiently large 

sample size the choice of the prior has a negligible effect on the inference.   

A common frequentist criticism of the Bayesian approach is that “subjective” 

priors have great impact on the posterior distribution for problems with small sample 

sizes.  There is a developing literature on robust Bayesian inference that seeks to mitigate 

this problem by developing estimators that are relatively insensitive to a wide range of 

prior distributions (Berger, 1984).  The strongest argument for inclusion of priors is that 

there often exists scientific evidence at hand before the statistical model is developed and 

it would be foolish to ignore such previous knowledge.  Furthermore, a formal statement 

of the prior distribution is an overt, nonambiguous assertion within the model 

specification that the reader can accept or dismiss (Gelman et al. 2003, p. 14).  

 

2.5.2.2   MCMC Estimation 

The integral in the denominator of the formula for the posterior distribution  

𝑝(𝜃|𝑌) =  
𝑝(𝜃)𝐿(𝜃|𝑌)

∫ 𝑝(𝜃)𝐿(𝜃|𝑌)𝑑𝜃 
𝛩
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is often impossible to evaluate analytically even if  the integrand can be expressed in a 

simple form.  In such a case, one can not calculate the posterior distribution explicitly and 

therefore one can not calculate expressions such as the posterior mean in closed form.  

Moreover, in many cases, one can not draw samples directly from the posterior to 

approximate such quantities by simulation.  In such problems, Markov chain Monte Carlo 

(MCMC) enables one to draw samples which are approximately distributed according to 

𝑝(𝜃|𝑌) and thereby one can approximate quantities related to 𝑝(𝜃|𝑌) (Gelman et al., 

2003, pp. 285-287).  

Standard Monte Carlo simulation would generate independent random variables 

𝜃1, … ,𝜃𝑁 distributed exactly according to 𝑝(𝜃|𝑌).  These values would be used to 

approximate the posterior expectation of some function ℎ(𝜃), 𝐸[ℎ(𝜃)|𝑌],  as an average: 

𝐸[ℎ(𝜃)|𝑌] = �ℎ(𝜃)𝑝(𝜃|𝑌)𝑑𝜃 ≅
1
𝑁
�ℎ(𝜃𝑖)
𝑁

𝑖=1

. 

𝐸[ℎ(𝜃)|𝑌] might be a posterior mean or higher order moment of the parameter θ.  

MCMC methods approximate integral quantities by drawing a very long sequence 

of values 𝜃1, … , 𝜃𝑁 from a Markov chain whose limiting probability distribution exists 

and is equal to 𝑝(𝜃|𝑌).  The primary distinction between standard Monte Carlo 

simulation methods and MCMC methods is the dependence structure of consecutive 

simulated values.  Standard Monte Carlo methods produce a set of independent simulated 

values according to some desired probability distribution.  MCMC methods produce 

chains in which each of the simulated values is dependent on the preceding value.  The 

basic principle is that if a properly constructed chain has run long enough, it will produce 

an almost stationary time sequence of approximately identically distributed values whose 
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marginal distributions will be extremely close to the posterior distribution of interest.    

One can summarize this distribution by letting the chain wander around to generate a 

large approximately representative sample from the limiting distribution and then 

producing summary statistics from the simulated values (Gelman et al., 2003, pp. 285-

287). 

 

The Gibbs Sampler 

The Gibbs sampler is a widely used MCMC technique for producing useful chain 

values.  It requires specific knowledge about the nature of the conditional relationships 

among the variables of interest.  The basic idea is to generate a new realization of each 

variable from its so-called full conditional, which is defined as its conditional 

distribution, given the current values of all the other variables and the observed data.  

Then by cycling repeatedly through these conditional random draws, one parameter at a 

time, we can eventually approach the joint distribution of interest (Gelman et al., 2003, 

pp. 287-289).  

The Gibbs sampler generates a sequence of k dimensional random vectors 

𝜃𝑡 = [𝜃𝑡1 … ,𝜃𝑡𝑘], 𝑡 = 1,2, … using a transition mechanism based on sampling from the 

conditional distribution𝜋(𝜃𝑡𝑗|𝜃𝑡1 … ,𝜃𝑡,𝑗−1,𝜃𝑡−1,𝑗+1 … ,𝜃𝑡−1,𝑘, 𝑋).   This is a Markovian 

updating scheme based on sampling from the conditional probability distributions.  The 

limiting distribution of interest is the posterior distribution, p(θ|Y). Regularity conditions 

are needed to assure the convergence of the Gibbs sampler to the desired limiting 

distribution (Shao, 2003, pp. 247-248). 
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There should be an analytically definable full conditional distribution for each 

component of the θ vector and these probability distributions need to be written explicitly 

so that it is possible to draw samples from the described distribution.  However, Gibbs 

samplers can work also when the conditionals themselves are obtained by some 

simulation technique like a rejection method.  This requirement facilitates the iterative 

nature of the Gibbs sampling algorithm, which cycles through these full conditionals 

drawing parameter values based on the most recent version of all the previous parameters 

in the list.  The order does not matter, but it is essential that the most recent draws from 

the other samples be used.  The following is the procedure: 

a)  Choose a starting value 𝜽0 = [𝜃01, … ,𝜃0𝑘]. 

b) At time 𝑡, starting at j = 1, complete the single cycle by drawing values from the 

k conditional distributions given by: 

𝜃𝑡1~𝜋(𝜃1|𝜃𝑡−1,2, … ,𝜃𝑡−1,𝑘,𝑋)    

𝜃𝑡2~𝜋(𝜃2|𝜃𝑡1,𝜃𝑡−1,3, … ,𝜃𝑡−1,𝑘,𝑋) 

⋮ 

𝜃𝑡,𝑘−1~𝜋(𝜃𝑘−1|𝜃𝑡1, … ,𝜃𝑡,𝑘−2,𝜃𝑡−1,𝑘,𝑋) 

𝜃𝑡𝑘~𝜋�𝜃𝑘�𝜃𝑡1, … ,𝜃𝑡,𝑘−1,𝑋�. 

c) Increment t and repeat until a convergence criterion is satisfied (noting that 

convergence is to stationarity rather than to a point, as it would be for iteratively 

calculated randomization-based estimators). 

The Metropolis Algorithm 

Another Markov chain Monte Carlo tool is the Metropolis algorithm (Gelman et 

al., 2003, pp. 289-292; Shao, 2003, pp. 249-250 and references therein).  It works with 
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the joint distribution rather than the conditional distributions for the parameters in the 

model.  The idea behind the Metropolis algorithm is that, when we cannot easily generate 

values from the joint (posterior) distribution of interest, we can often find a “similar” 

distribution that is easy to sample from.  We need to make sure that this alternate 

distribution is defined over the same support as the target distribution and that it does not 

favor areas of low density of the target.  Once a candidate point in multivariate space has 

been produced by this candidate generating distribution we will accept or reject it based 

on the target distribution.  The resulting Markov chain wanders around and favors higher 

density regions.  It will also explore other lower density regions, but with lower 

probability as we would want.  Note that unlike the Gibbs sampler, the Metropolis 

algorithm does not necessarily have to move to a new position at each iteration; a 

candidate sample from the proposal distribution is accepted as the next value in the chain 

as a function of its relative density in the proposal distribution and the target distribution.  

It was noted in the preceding discussion of the Gibbs sampler that when it is not 

possible to draw directly from a parameter’s full conditional, a simulation method can be 

employed.  The family of related MCMC programs that are collectively called BUGS 

(Ntzoufras, 2009; Spiegelhalter, et al., 2003) uses Metropolis sampling to approximate 

draws for full conditionals when it is not possible to draw directly from full-conditionals.  

This is called Metropolis-within-Gibbs sampling. 

It is important, for the Gibbs samplers and the Metropolis algorithm, in real 

applications to run the Markov chain for some initial period to let it settle into the 

distribution of interest before recording values. This is called “burn in.” 
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Assessing the Convergence of Markov Chains 

The empirical results from a given MCMC analysis are not reliable until the chain 

has come close to its stationary distribution and has sufficiently mixed throughout.  Some 

convergence problems may come directly from badly chosen priors, which present 

difficult algorithmic challenges especially in fully-developed specifications with large 

numbers of parameters, near-collinearity, or parameters for which little information is 

available in the data. One common alternative is to use highly diffuse but proper priors; 

however, this alternative can sometimes lead to slow convergence of the Markov chain. 

There are basically three approaches to determining convergence for Markov 

chains: (1) assessing the theoretical and mathematical properties of particular chains, (2) 

diagnosing summary statistics from in-progress models, and (3) perfect sampling (Gill, 

2008).  In this chapter, only the second approach is discussed.  It is essential to remember 

that the convergence diagnostics described below are actually indicators of “non-

convergence.”  That is, failing to find evidence of non-convergence with these procedures 

does not imply convergence.  Also the information each diagnostic provides has 

limitations; thus, multiple diagnostics should be used. 

A simple way to monitor convergence is monitor the Monte Carlo error (MC 

error), which measures the variability of each estimate due to the simulation.  The MC 

error must be low in order to calculate the parameter of interest with increased precision 

(Ntzoufras, 2009).  Monitoring autocorrelations is useful and low values indicate fast 

convergence (although parameters that are not well determined from the data can have 

high autocorrelations even when the chains have converged to stationarity).  Another way 

is to monitor the trace plots, the plots of the generated values versus iteration number.  If 
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all values are within a zone without strong periodicities and trends, then convergence is 

more likely.  Another way is to run multiple chains with different starting points (Brooks 

& Gelman, 1998).  This strategy supports both visual checks and statistical checks.  

When we observe that the different chains mix, the convergence is very likely.  Finally, 

several statistical tests have been developed and used as convergence diagnostics.  

CODA (Best et al., 1996) and BOA (Smith, 2005) software have been developed to 

implement diagnostics to the output of BUGS and WinBUGS software.  We may 

improve the mixing of the chain, reducing the time to reach convergence, by 

implementing transformation of the parameters of the parameters of interest (Gilk & 

Roberts, 1996).    

 

2.5.2.3   Program Language of Bayesian Inference Using Gibbs Sampling (BUGS) 

Modeling for Nonstandard Distributions 

The zero inflated models introduce an extra probability parameter to capture an 

excess of zero values.  The zero inflated version of A random variable Y ~ ZID(𝜋0 ,𝜃), 

(where ZID denotes zero inflated distribution),  has a probability function of the form 

𝑓𝑍𝐼𝐷(𝑦) = 𝜋0𝐼(𝑦 = 0) + (1 −  𝜋0)𝑓𝐷(𝑦;  𝜃)                                          

where 𝑓𝐷(𝑦;  𝜃) is the probability function of distribution D with parameters 𝜃.  The 

distribution D could be Poisson, gamma, binomial, negative binomial, generalized 

Poisson, bivariate Poisson, or multivariate Poisson.  From the equation above, we can see 

that ZID is a nonstandard distribution which is not listed among BUGS’ prespecified 

distributions.  There is an approach to specify nonstandard prior and likelihood in BUGS: 

the zeros-ones trick (Spiegelhalter et al., 2003; Ntzoufras, 2009).  Thus the programs for 

25 
 



our three models all involve the zero-ones trick.  This trick allows arbitrary sampling 

distributions to be used.  However it has been shown that this method can be very 

inefficient and give a very high MC error. (Spiegelhalter et al., 2003).   

The idea of the zeros-ones trick is to use the Poisson distribution to indirectly 

specify an arbitrary model likelihood (Ntzoufras, 2009).  Assume a model with log-

likelihood ∑ 𝑙𝑖𝑛
𝑖=1 = ∑ log 𝑓(𝑦𝑖|𝜃)𝑛

𝑖=1 .  Then the log-likelihood can be re-written as 

𝑓(𝑦|𝜃) =  �𝑒𝑙𝑖 
𝑛

𝑖=1

= �
𝑒−(−𝑙𝑖)(−𝑙𝑖)0

0!

𝑛

𝑖=1

 =  �𝑓𝑝(0;−𝑙𝑖) 
𝑛

𝑖=1

                       

where 𝑓𝑝(𝑘; 𝜇) denotes a Poisson probability function with mean  μ.  Hence, 𝑓𝑝(0;−𝑙𝑖) =

𝑃[Ξ𝑖 = 0], where the new random variables Ξ𝑖 , 𝑖 = 1, … , 𝑛 follow the Poisson 

distribution with means equal to −𝑙𝑖 , and all observed values are set equal to zero.  To 

ensure the positivity of the mean of each new random variable, a positive constant term C 

is added to the mean.  This is equivalent to multiplying each likelihood factor by 𝑒−𝐶.  

This action does not affect the likelihood since it is equivalent to multiplying the resulting 

(unnormalized) posterior distribution by a constant term, 𝑒−𝑛𝐶.  The likelihood is equal to 

𝑓(𝑦|𝜃) =  
𝑒−(−𝑙𝑖+ 𝐶)(−𝑙𝑖 +  𝐶)0

0!
=  �𝑓𝑝(0;−𝑙𝑖 +  𝐶) 

𝑛

𝑖=1

                        

The constant C must be selected in such a way that −𝑙𝑖 +  𝐶 > 0 for all i = 1, 2, …, n.  

For example, the normal model can be fitted in WinBUGS using the following code 

(Ntzoufras, 2009, p. 276 ): 

C <- 10000 

for (i in 1:n) { 

      zeros[i] <- 0 

26 
 



      zeros[i] ~ dpois(zeros.mean[i]) 

      zeros.mean[i] <- -l[i] + C 

      l[i] <- -0.5*log(2*3.14) – 0.5log(s2) – 0.5*pow( y[i] – mu[i], 2)/(s2)       }  

Convergence Checking By Using Bugs Sample Monitor Tool 

To check convergence when running several MCMC chains, several built-in 

diagnostic / monitor tools are used while running BUGS.  As noted in the previous 

section on diagnosing convergence, these are diagnostic tools rather than certain evidence 

of convergence.  They are only capable of identifying nonconvergence. 

a) Trace plot: this is a plot of generated values against each iteration number.  Shown 

below are examples with two independent chains. 

a. This is an example where possible non-convergence evidence was found: 

The chains have not mixed well.  (The chains may be in fact moving 

around the same stationary distribution – i.e., may have converged – but 

are mixing very slowly.  Looking at a longer interval of the chain would 

be the next step to see if mixing occurs, but at a slower rate than could be 

discerned in this interval of about 200 cycles.)  

iteration
549505490054850

 

b. This is an example where “evidence of non-convergence” was not found: 

the chains have mixed well. 
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iteration
549505490054850

 

b) Posterior density: According to the Bernstein – von Mises theorem, the posterior 

distribution for continuous parameters is asymptotically normal under broadly 

satisfied conditions (although problems can be constructed in which the true 

posterior for a parameter is in fact bimodal).  BUGS produces an approximate 

visual kernel estimate of the posterior density or probability function. 

a. This is an example where possible “non-convergence evidence” was 

found. 

phi sample: 16000

phi
0.825 0.85 0.875 0.9 0.925

 

b. This is an example where evidence of “non-convergence evidence” was 

not found. 

gamma[2] sample: 16000

gamma[2]
5.5 5.75 6.0 6.25 6.5

 

c) History:  This is a full trace plot of all stored values.  Values within a zone without 

strong trends or periodicities are suggestive of convergence of the chain.   
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a. This is an Example where non-convergence evidence was found.  (Again, 

examining a longer run is important, since slow mixing can also produce 

the graph shown immediately below.  Viewed from a further distance in 

this sense the chain shown below might look essentially like the graph 

below it.) 

iteration
46000 47500 50000 52500

 

b. This is an example where “non-convergence evidence” was not found 

iteration
46000 47500 50000 52500

 

d) The plot of Gelman-Rubin diagnostic:  This is an ANOVA type diagnostic 

(Gelman & Rubin, 1992); multiple chains converging to the same stationary 

distribution should each show similar within-chain variation.  This common within-

chain variance should be equal to the pooled variance.  Values of R close to one 

(shown as the red line in the plots below) suggest convergence.  

a. This is an example where evidence of non-convergence was found. 
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sigma.u chains 1 : 2

start-iteration
15051 16000 17000 18000

 

b. This is an example where evidence of non-convergence was not found. 

gamma[2] chains 1 : 2

start-iteration
15051 16000 17000 18000

 

Monte Carlo Error and the Posterior Standard Deviation 

The BUGS output produces two error measures: the Monte Carlo (MC) error and 

the posterior standard deviation.  The MC error measures the variability of each 

variable’s average across the Monte Carlo chain.  This variability is due to running the 

chain for a finite number of cycles and can be made as small as desired by increasing the 

number of draws. On the other hand, the posterior standard deviation, the analog of the 

standard error in conventional statistical inference, represents genuine uncertainty due to 

having a finite set of data and cannot be reduced other than by obtaining additional real 

data.  Ideally, we would like to run the program until there is both no evidence of non-

convergence and negligible MC error, and then calculate the posterior means.  In BUGS, 

the batch mean method (Roberts, 1996, p.50) is used to estimate the MC error.  The 
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formula for the posterior standard deviation can be found in Carlin and Louis (2000, p. 

172) and in Ntzoufras (2009, pp. 39-40).  

Autocorrelation 

This is a plot of all autocorrelations using lags from 1 to 50.  If autocorrelations 

are low, then convergence tends to be obtained in a relatively lower number of iterations.  

Thus autocorrelation indicates how fast the convergence will be.  If autocorrelations are 

large, the sampler will need many iterations to get close to the target distribution.  Once it 

gets there, we will need to draw a very large number of additional iterations in order to 

get accurate estimation of features of the posterior.  The Monte Carlo sampling error will 

be high.   It might appear at first blush that there is a way to reduce the autocorrelation 

among repeated draws by using the “thin” tool.  For example, when thin = 10, then 

BUGS will generate 10 iterations but will store only the last one in every sequence of 10 

generated values.  The autocorrelation among the saved values will in fact be lower.  

However, the chain lengths needed to reach stationarity or to achieve a satisfactory 

approximation of posteriors are the same.  There is no real advantage in thinning except 

to reduce storage requirements and the cost of handling the simulations when very long 

runs are being carried out and subsequently analyzed.  Examples of autocorrelation plots 

are presented below: 

beta[1]

lag
0 50
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phi

lag
0 50

 

psi

lag
0 50
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Chapter III 

AR(1) Mixed Effects ZIP Model 

3.1    Data Example 

Before discussing the model, we would like to describe a data set which 

motivated the new model development.  The National Longitudinal Survey of Youth 

(NLSY97, 1997) data set consists of a national sample of youths who were 12 to 17 years 

old as of December 31, 1996.  Round 1 of the survey took place in 1997 and subsequent 

surveys were conducted annually.  Cigarette use is our target to measure.  Three 

questions were asked: 

a) Have you ever smoked a cigarette? 

b) During the past 30 days, on how many days did you smoke a cigarette? 

c) When you smoked a cigarette during the past 30 days, how many cigarettes did you 

    usually smoke each day?  

In the NLSY97 dataset, there are approximately 9,000 youths observed at 13 time 

points.  The observation “number of cigarettes smoked per day in the last 30 days” is 

denoted as 𝑌𝑖𝑗, for subject 𝑖 = 1, … ,𝑛, at time point 𝑗 = 1, … , 𝐽.  Assume the responses 

are independent distributed across subjects.  That is, Subject 1’s response doesn’t affect 

Subject 2’s response.  Since the individual subject parameters are not of research interest, 

the subject is treated as a random effect.  That is, subjects with same covariates may have 

different responses because of the randomness.  Within each individual, there is a random 

fluctuation at the 13 time points too.  It is very likely that a subject’s smoking status 

given the covariates will not remain a constant over the 13 time points.  So we can say 

that subject is a multidimensional random effect.  The fluctuations of each individual are 
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independent of the others.  The distributions of the randomness will be described in 

mathematical expressions in the following section.   

There are 13 time points in the data set, and a first-order autoregressive model is 

used to describe the autocorrelations across the time points (note that these 

autocorrelations are unrelated to the autocorrelations of draws in MCMC chains 

discussed earlier).  There are four covariates: sex (two levels), race (four levels), age (six 

levels), and peers (what percentage of your friends are smokers?; five levels), the effects 

associated with which are also treated as fixed effects.  Although there are many 

parameters in the model, the data set is big enough to estimate them.  In the population, 

we expect that there is an increasing tendency to smoke, which is a function of time point 

or age; that is, a positive Poisson regression coefficient on the age variable is expected.   

The survey question (a) “Have you ever smoked a cigarette?” can be a covariate 

too.  Question (a) presumably provides very good information about the latent zero-class 

indicator that the ZIP model must posit.   

The survey question (c) “When you smoked a cigarette during the past 30 days, 

how many cigarettes did you usually smoke each day?” yields the response variable, 𝑌𝑖𝑗.  

The 𝑌𝑖𝑗, the number of cigarettes a subject smokes, is a non-negative integer.  We will 

model 𝑌𝑖𝑗 with various forms of Poisson distributions.  The average number of cigarettes 

a subject smokes at time j is a quantity of interest.   

We looked the descriptive statistics of this data set before attempting any serious 

model building or analysis.  Take the responses at Time 1 as an example:  This data set 

shows excessive numbers of zeros so that a ZIP model is proposed instead of Poisson 

model.  From Table 3.1.1 the total number of data points is 5436 (non-smokers) + 3517 
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(smokers) = 8953.  We can think of the 146 smokers (smoking not observed) as sampling 

zeros; and think of the 5436 (non-smokers) as structural zeros.  If the whole data set is 

treated as a sample from a Poisson distribution without covariates, the mean of sample is 

0.9 [8106 (total number of cigarettes smoked) / 8953 = 0.9], we would expect 8953𝑒−0.9 

= 3640 zeros.  However there are 5582 (146 + 5436 = 5582) zeros (note that we did not 

count zeros from missing values) in the data set.  A ZIP model would better fit the data 

by having 5436 zeros as structural zeros or 5436 observations in the perfect class.      

Table 3.1   Description of Smoking Data in the NLSY97 at Time 1 
Smokers: 3517 Non-smokers: 5436 

Observed smokers: 1618 Missing values: 1899 Non-smokers:5436 
Zero cigarette 
smokers: 146 

Non-zero 
cigarette 
smokers: 1472 

 

3.2   AR(1) Mixed Effects ZIP Model  

In this section the proposed model, AR(1) mixed effect ZIP model, is presented in 

three steps.  In Subsection 3.2.1, a basic fixed-effects ZIP model is described with a 

rectangular data structure.  In Subsection 3.2.2, the basic ZIP model is extended to 

incorporate two random subject effects: one in the logistic model and the other in the 

Poisson model.  Also, in this mixed effect ZIP model correlation between the two random 

subject effects is incorporated.  In Subsection 3.2.3, the AR(1) mixed effect ZIP model, 

in which two time-varying random subject effects are incorporated in the ZIP model, is 

described.   

3.2.1   The Fixed Effect ZIP Model 

In a rectangular data set, let the discrete random variable 𝑌𝑖𝑗 be the j-th observed 

count on the i-th subject, 𝑖 = 1, … ,𝑛, 𝑗 = 1, … , 𝐽.  Assume that 𝑌𝑖𝑗 is distributed as a 
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mixture of two components: (1) responses are zero with probability one (perfect state); 

(2) responses follow a Poisson distribution (Poisson state).  Assume that an unobserved 

random variable, 𝑧𝑖𝑗, indicates the state membership of the subject, either the perfect state 

or the Poisson state.  Note that if 𝑦𝑖𝑗 > 0, the subject was in the Poisson state, but if 𝑦𝑖𝑗 = 

0, the subject may have been in either of the two states.  This key feature makes the ZIP 

model different from the Poisson model.  The 𝑧𝑖𝑗 are assumed to be from a Bernoulli 

distribution with parameter 𝑝𝑖𝑗, such that 𝑃�𝑧𝑖𝑗 = 1� =  𝑝𝑖𝑗 and  𝑃�𝑧𝑖𝑗 = 0� =  1 −  𝑝𝑖𝑗.   

If 𝑧𝑖𝑗 = 1  then 𝑌𝑖𝑗 = 0, coming from the perfect state  and if 𝑧𝑖𝑗 = 0 then  𝑌𝑖𝑗 = 𝑦, y = 

0, 1, 2, …, coming from a Poisson distribution.  Therefore, 𝑌𝑖𝑗 has the zero-inflated 

Poisson (ZIP) distribution: 

                          𝑌𝑖𝑗 ~ �
0,                                  with probability 𝑝𝑖𝑗                

Poisson�𝜆𝑖𝑗�,          with probability �1 −  𝑝𝑖𝑗�,
           (3.1) 

where Poisson (𝜆𝑖𝑗 ) is defined as P(𝑌𝑖𝑗 = 𝑦𝑖𝑗) = exp (−𝜆𝑖𝑗)𝜆𝑖𝑗
𝑦𝑖𝑗 𝑦𝑖𝑗!� . 

Covariates can enter into the model in two places: in the logistic regression model 

and in the Poisson regression model.    

a) The logistic regression model is for predicting the status, perfect state or Poisson 

state. The probability 𝑝𝑖𝑗 is expressed as  

                      logit�𝑝𝑖𝑗� = log �
𝑝ij

1 −  𝑝𝑖𝑗
� =  𝒁𝑖𝑗′𝛼 =  𝛼0 + 𝛼1𝑍𝑖𝑗1 + ⋯+ 𝛼ℎ𝑍𝑖𝑗ℎ .            (3.2) 

b) The log-linear  regression for the Poisson mean is expressed as  

                                           log�𝜆𝑖𝑗� = 𝑿𝑖𝑗′𝛽 = 𝛽0 + 𝛽1𝑋𝑖𝑗1 + ⋯+ 𝛽𝑘𝑋𝑖𝑗𝑘 .                           (3.3) 

where 𝒁𝑖𝑗 and 𝑋𝑖𝑗 are  covariate vectors and 𝛼 and β are vectors of regression coefficients 

for the logistic regression model and Poisson regression model, respectively.  The 
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components of 𝒁𝑖𝑗 and 𝑿𝑖𝑗 could be the same or different from each other.  This model 

was essentially proposed by Lambert (1992).  

 

3.2.2   The Mixed Effect ZIP Model 

In the previous paragraphs a basic ZIP model was presented.  In a repeated 

measures study, observations within a subject are correlated, and one might model this 

situation by adding a subject parameter to a regression model.  Now we extend the ZIP 

model by incorporating a subject random effect (or random intercept effect).  

For the mixed effect ZIP model, two random subject effects are introduced in the 

model so that 

       logit�𝑝𝑖𝑗� = log�
𝑝ij

1 −  𝑝𝑖𝑗
� =  𝒁𝑖𝑗′𝛼 +  𝑢𝑖                                           (3.4) 

         log�𝜆𝑖𝑗� = 𝑿𝑖𝑗′𝛽 +  𝑣𝑖                                                                              (3.5) 

where 𝛼  and 𝛽 are vectors of fixed effect coefficients and 𝑢𝑖  and  𝑣𝑖  denote random 

random effects with  

                    𝑢𝑖  ~ 𝑁(0,𝜎𝑢2 ), 

                    𝑣𝑖  ~ 𝑁(0,𝜎𝑣2 ).  

The normal random intercepts (𝑢𝑖  and  𝑣𝑖) capture the heterogeneity of subjects.  The 

variances 𝜎𝑢2 and 𝜎𝑣2 indicate the differences among subjects.  Note that here the subject 

effects do not change over time.  Time-varying random effects will be described later.        

Furthermore, assume that 𝑢𝑖  and  𝑣𝑖 are correlated because the same subject is 

modeled in the two regressions.  The random effects follow a bivariate normal 

distribution with zero means and covariance matrix 
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          �
𝑢𝑖
𝑣𝑖
�  ~ 𝑁(0, Σ),         Σ =  � 𝜎𝑢2 𝜌𝜎𝑢𝜎𝑣

𝜌𝜎𝑢𝜎𝑣 𝜎𝑣2 �                                        (3.6) 

where 𝜌 denotes corr(𝑢𝑖 ,  𝑣𝑖).  This is a mixed effect ZIP model for repeated measures 

data without involving time.  Finally, assume that 𝑦𝑖𝑗|{𝑢𝑖 , 𝑣𝑖: 𝑖 = 1, … ,𝑛} are 

conditionally independent and conditionally follow a ZIP distribution.  This model is 

presented by Neelon et al. (2010). 

 

3.2.3   AR(1) Mixed Effects ZIP Model 

It is assumed that a subject can move from the perfect state to the Poisson state 

and back again across time points j.  For example, a non-smoker at Time 1 might begin 

smoking at Time 2; and a smoker at Time 1, Time 2, and Time 3 might decide to quit at 

Time 4.  This is saying that any one cell in the person-by-occasions matrix can be a 

structural zero.  This is different from some latent class models, where a person who 

begins as a zero-class member necessarily remains there at all time future points.  To 

capture the variation across time points within a subject, first-order autoregressive 

(AR(1)) processes 𝑢𝑖𝑗 , 𝑣𝑖𝑗 are substituted for 𝑢𝑖, 𝑣𝑖 in equations (3.4) and (3.5).  This is 

our proposed model.   

Time-varying random effects are incorporated into the model as follows.  Let 

𝑢𝑖𝑗  and  𝑣𝑖𝑗 denote the random effects, where i indexes subject and j indexes time.  The 

other covariates remain as fixed effects.  Then write  

                               𝑢𝑖𝑗 =  𝜑𝑢𝑖,𝑗−1 +  𝑒𝑖𝑗,                                                                                (3.7) 

where 𝑗 = 2, … , 𝐽, and 𝑒𝑖𝑗 𝑖𝑖𝑑~  𝑁(0,𝜎𝑒2) , and 𝑒𝑖𝑗  are independent of 𝑢𝑖𝑗~𝑁(0,𝜎𝑢2).  The 

parameter 𝜑 is a first order autocorrelation coefficient with −1 < 𝜑 < 1.   
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Furthermore, 

                   𝑉𝑎𝑟�𝑢𝑖𝑗� =  𝜑2𝑉𝑎𝑟�𝑢𝑖,𝑗−1� +  𝜎𝑒2.                                                     (3.8) 

To make 𝑉𝑎𝑟�𝑢𝑖𝑗� independent of the time index j, assume   

𝜎𝑢2 =  𝜎𝑢2𝜑2 + 𝜎𝑒2       →      𝜎𝑒2 =  𝜎𝑢2(1 −  𝜑2) 

Then the variance-covariance matrix of 𝑢𝑖𝑗  is 

          𝑉𝑎𝑟 𝐶𝑜𝑣 �
𝑢𝑖1
⋮
𝑢𝑖𝑇

� = 𝜎𝑢2  

⎣
⎢
⎢
⎢
⎡ 1 𝜑 𝜑2 … 𝜑𝑇−1

⋮ ⋱ ⋱ ⋱
⋮
𝜑2

𝜑
𝜑𝑇−1 ⋯ 1 ⎦

⎥
⎥
⎥
⎤

,                                   (3.9)     

    𝐶𝑜𝑣�𝑢𝑖,𝑗−1,𝑢𝑖𝑗� =  𝐸�𝑢𝑖,𝑗−1�𝜑𝑢𝑖,𝑗−1 +  𝑒𝑖𝑗�� =  𝐸�𝜑𝑢𝑖𝑗2 � +  0 = 𝜑𝜎𝑢2,            (3.10) 

           𝐶𝑜𝑟𝑟�𝑢𝑖𝑗 , 𝑢𝑖,𝑗−1  � =  𝜑𝜎𝑢
2

𝜎𝑢2
=  𝜑 = first order autocorrelation.                          (3.11) 

Similarly, an AR(1) model is also assumed for the 𝑣𝑖𝑗 with variance 𝜎𝑣2 and first order 

autocorrelation 𝜓𝜓.  We also assume that 𝜌 = 𝑐𝑜𝑟𝑟�𝑢𝑖𝑗 , 𝑣𝑖𝑗� ≠ 0.  Let Φ be the 

autoregressive coefficient matrix such that Φ =  �𝜑 0
0 ψ� where 𝜑 is an autocorrelation 

coefficient for 𝑢𝑖𝑗 and ψ is an autocorrelation coefficient for 𝑣𝑖𝑗, that is, 

𝑣𝑖,𝑗 =  ψ𝑣𝑖,𝑗−1 +  𝑒′𝑖𝑗.   

The autoregressive model is thus 

                    �
𝑢𝑖𝑗
𝑣𝑖𝑗� =  Φ �

𝑢𝑖,𝑗−1
𝑣𝑖,𝑗−1� +  �

𝑒𝑖𝑗
𝑒′𝑖𝑗

�                                                             (3.12) 

where the terms on the right hand side are independent.  Then  

                                         𝑉 = 𝑣𝑎𝑟 𝑐𝑜𝑣 �
𝑢𝑖𝑗
𝑣𝑖𝑗�                                            

                                                                 =  � 𝜎𝑢2 𝜌𝑢𝑣𝜎𝑢𝜎𝑣
𝜌𝑢𝑣𝜎𝑢𝜎𝑣 𝜎𝑣2

� 

39 
 



                                                           = ΦVΦ + �
𝜎𝑒2 𝜌𝑒𝑒′𝜎𝑒𝜎𝑒′

𝜌𝑒𝑒′𝜎𝑒𝜎𝑒′ 𝜎𝑒′
2 �             (3.13) 

where        𝜌𝑢𝑣𝜎𝑢𝜎𝑣 =  φψ𝜌𝑢𝑣𝜎𝑢𝜎𝑣 + 𝜌𝑒𝑒′𝜎𝑒𝜎𝑒′ 

                                 =   φψ𝜌𝑢𝑣𝜎𝑢𝜎𝑣 +  𝜌𝑒𝑒′𝜎𝑢𝜎𝑣�(1 − 𝜑2)(1− ψ2)                (3.14)     

              𝜌𝑒𝑒′ =   (1 −  𝜑𝜓𝜓)𝜌𝑢𝑣 �(1 − 𝜑2)(1 − ψ2)⁄                                           (3.15)    

            𝜎𝑒2 =  𝜎𝑢2(1 − 𝜑2)                                                                                            (3.16)   

                  𝜎𝑒′2 = 𝜎𝑣2(1 − 𝜓𝜓2)                                                                                            (3.17)   

Interpretation of Mixed Effect Logistic Regression 

As in section 3.2.2, the 𝑦𝑖𝑗 are conditionally independent ZIP variables, given 

{𝑢𝑖𝑗 , 𝑣𝑖𝑗: 𝑖 = 1, … ,𝑛; 𝑗 = 1, … , 𝐽}.  Because the AR(1) model is conditioned on the 

random effects, the interpretation of results is not immediate.  The following is an 

example (Agresti, 2002; pp. 496-500) for a single covariate X1. 

In fixed effect logistic regression:  

𝑃[nonsmoker|X1] =
exp[𝛽0 + 𝛽1𝑋1]

1 + exp[𝛽0 + 𝛽1𝑋1] . 

In mixed effect logistic regression the subject specific probability is: 

𝑃[nonsmoker|U, X1] =
exp[𝛽0 + 𝛽1𝑋1 + 𝑈]

1 + exp[𝛽0 + 𝛽1𝑋1 + 𝑈] . 

The population average probability is: 

𝑃[nonsmoker|X1] = �
1

𝜎𝑈√2𝜋
𝑒−𝑢2/(2𝜎𝑈

2 )
∞

−∞

exp [𝛽0 + 𝛽1𝑋1 + 𝑢]
1 + exp [𝛽0 + 𝛽1𝑋1 + 𝑢]

𝑑𝑢 

where  𝑈~𝑁(0,𝜎𝑈2).   

In this random effect model the link function is no longer the logit.  If no random 
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Effects are present, the odds in favor of success increase by a factor exp(𝛽1) when 𝑋1 in 

creases by one unit. This statement is true for all subjects, regardless of the values of 𝑋1, 

and it is true when averaging over the population.  In the presence of random effects, the 

same statement is true of the conditional odds of success, given the u and 𝑋1. However, 

the average change in odds is no longer exp(𝛽1), but instead it is a nonconstant function 

of 𝑋1.  The link function no longer has the logistic shape and the effect of 𝑋1 is reduced 

(Agresti 2002, p.500).  Note also that the integral above can not be expressed 

analytically.  Analysis of the model will therefore be more computational.  
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Chapter IV 

Research Questions and Pilot Study 

4.1   Research Questions  

Sample Size For AR(1) Mixed Effect Zip Model 

In general, the more parameters a model has, the more data points are needed.  

Also, some parameters are harder than the other parameters to estimate; that is, some 

parameters need more data points to provide enough information for estimation.  The 

question arises:  How big a sample size is needed to estimate the AR(1) Mixed effect ZIP 

model?   

Importance of Random Effect Parameters  

The AR (1) model contains fixed effect parameters and extra five random effect 

parameters to describe a zero inflated Poisson longitudinal data set.  The five random 

effect parameters greatly increase the complexity of the model structure and hence the 

estimation difficulty (due in large part because the five parameters of the random effects 

and autoregression structure require in MCMC estimation the generation of correlated 

effect values for each sampled individual at each time point).  A practical concern arises: 

when the fixed effects parameters are the main interest, how do simpler submodels of the 

AR(1) model perform, in terms of magnitude of bias and estimation error?  In other 

words, when the full model is misspecified by ignoring some random effects, is 

estimation of fixed effects robust against this misspecification?  

Research Questions  

       The following research questions were studied in the pilot study in connection 

with the AR(1) mixed effect zip model. 
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a) Can we estimate this model using MCMC methods in a computationally 

efficient way? 

b) How do we determine the sample size to obtain sufficiently accurate estimates? 

c) Can a simpler model be fitted to actual AR(1) zip data with only minor bias and 

large computational savings? 

d) Which parameters in the AR(1) zip model can be estimated most accurately?  

Which are estimated least accurately? 

 

4.2   Pilot Study 

4.2.1   ZIP, MIXED, and AR(1) Model Features 

Full Model and Nested Models 

The ZIP model and MIXED model are nested in the AR(1) model, i.e., the full 

model.  We can interpret these two nested models in terms of the AR(1) model structure.  

Table 4.1   ZIP, MIXED, and AR(1) Model Structures 
Random Effect Parameter ZIP Model Mixed Model AR(1) Model 

𝜑 0 1 -1 < 𝜑 < 1 
𝜓𝜓 0 1 -1 < 𝜓𝜓 < 1 
𝜎𝑈 0 

[implies 𝑈𝑖𝑗 ≡ 0]  
> 0 

[and 𝑈𝑖𝑗 ≡ 𝑈𝑖] 
> 0 

𝜎𝑉 0 
[implies 𝑉𝑖𝑗 ≡ 0] 

      > 0 
[and 𝑉𝑖𝑗 ≡ 𝑉𝑖]   

      > 0  

𝜌𝑈𝑉 --- -1 ≤ 𝜌𝑈𝑉 ≤ 1 -1 < 𝜌𝑈𝑉 < 1 
 

Recall that the AR(1) model states 𝑈𝑖𝑗 = 𝜑𝑈𝑖,𝑗−1 + �1 − 𝜑2𝑍𝑖𝑗, where the random 

fluctuation term 𝑍𝑖𝑗 is independent of 𝑈𝑖,𝑗−1 and satisfies 𝐸�𝑍𝑖𝑗� = 0 and 𝑉𝑎𝑟�𝑍𝑖𝑗� =

𝜎𝑈2.  If  𝜑 = 1  then 𝑈𝑖𝑗 = 𝑈𝑖,𝑗−1 for all j.  If the AR(1) model is the true model, fitting the 

Mixed Model to a data set could cause biased estimates of fixed effect parameters 
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because of the misspecification of 𝜑 and 𝜓𝜓.  The ZIP model is only correct for 

independent data, and could cause bias when analyzing either longitudinal data or cluster 

data.      

Computation Requirements 

The complexity of these three models is different, so the requirements for their 

computation are different too.  The numbers of random quantities which must be 

generated at each MCMC iteration for the case of five time points are tabulated below. 

Table 4.2   ZIP, MIXED, AR(1) Model Computation Requirement at Each MCMC 
Iteration 
Data  𝑦𝑖𝑗, 𝑗 = 1,⋯ ,5.  𝑖 = 1,⋯ ,𝑁.  
Model Fixed effect parameters, random effect 

parameters, random effects in a model. 
Total computation 
requirement per MCMC 
iteration  

ZIP 5 Fixed effect parameters: 𝛽0,𝛽1,𝛽2,𝛾0, 𝛾1. 5 
Mixed 5 Fixed effect parameters: 𝛽0,𝛽1,𝛽2,𝛾0, 𝛾1. 

3 Random effect parameters: 𝜎𝑢,𝜎𝑣,𝜌𝑢𝑣. 
2 Random effects per subject: 𝑢𝑖 , 𝑣𝑖 . 

5 + 3 + 2*N 

AR(1) 5 Fixed effect parameters: 𝛽0,𝛽1,𝛽2,𝛾0, 𝛾1. 
5 Random effect parameters: 𝜎𝑢,𝜎𝑣,𝜌𝑢𝑣,𝜑,𝜓𝜓. 
10 Random effects per subject: 
𝑢𝑖1,⋯ ,𝑢𝑖5.      𝑣𝑖1,⋯ , 𝑣𝑖5.  

5 + 5 + 10*N 

 

From the table we see the AR(1) model requires much more computational work than 

ZIP and the Mixed model.  Thus if interest lies mainly in the fixed effects, it might be a 

better strategy to fit a simpler model that is a “correct model” or a “nearly correct model” 

for the data at the cost of some bias.   

Slowness and High Autocorrelation    

The ZIP, Mixed, and AR(1) models all suffer from the slowness of 

WinBUGS/OpenBUGS, especially the AR(1) model.  It is not surprising for it to take 60 
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hours to for the AR(1) model to converge with sample size N = 2000 and one predictor 

variable only.  Here are possible reasons: 

a) Model Complexity 

As shown in the previous paragraph, the AR(1) model requires computational 

work in proportion to  “5 + 5 + 10*N” for each MCMC iteration. 

b) Non-standard distributions 

All three models involve a ZIP distribution, which is a mixture of a Poisson 

distribution and a degenerate distribution at zero.  There is an approach to specify 

nonstandard prior and likelihoods in BUGS: the zeros-ones trick (Spiegelhalter et 

al., 2003d; Ntzoufras, 2009).  Thus our three models programs all employ the 

zero-ones trick.  This trick allows arbitrary sampling distributions to be used.  

However, it has been shown that this method can be very inefficient and give a 

very high MC error (Spiegelhalter et al., 2003). 

 

4.2.2   Generating Simulated Longitudinal Zero Inflated Poisson Data 

There are three subsections presented here.  First, we talk about the structure of 

NLSY97 data; second, the generation of simulated data motivated by the NLSY97 is 

presented; third, we discuss the sensitivity of parameter choices for the data. 

  

4.2.2.1   Data Structure of NLSY97 

In NLSY97, there are 8,953 subjects, who are aged from 12 to 16 in year 1997.  

The total number of subjects decreases every year, for example, from 8,953 (in year 

1997) to 7,851 (in year 2001).  Each AGE group is about 20% of the data.  For the SEX 
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variable, the males and females are equal proportions of the data.  For the RACE 

variable, there are four levels: black (26%), Hispanic (21%), mixed race (1%), and non 

black/Hispanic (non_b_h) (52%).  The PEER variable (What percent of your friends are 

smokers?) is in ordinal scale.   The levels are: "1" ="LE 10%", "2" ="ABT 25%", "3" 

="ABT 50%", "4" ="ABT 75%", and "5" ="GT 90%”.  Each subject reports whether he 

or she ever smoked.  Those who respond “yes” are the smoker or Poisson class.  Those 

who respond “no” are the nonsmoker or perfect class.  This is a longitudinal survey with 

14 annual waves starting in the year 1997.  The number of cigarettes smoked per day is 

the research interest in this dissertation.   

The following descriptive statistics were taken from smoker class (Poisson class) 

members only to present the important features of the NLSY97 data.  The descriptive 

statistics of the number of cigarettes smoked per day from year 1997 to year 2010 are 

presented in Table 4.3.  There is an increasing trend of number of cigarettes smoked per 

day, but it is not linear.    

Table 4.3   Number of Cigarette Smoked Per Day from Year 1997 to Year 2010 
Year Number of Cigarettes Smoked Per 

Day 
Year Number of Cigarettes Smoked Per 

Day 
1997 5.01 2004 9.05 
1998 6.24 2005 9.48 
1999 7.28 2006 9.16 
2000 8.01 2007 9.16 
2001 8.47 2008 9.35 
2002 8.63 2009 9.31 
2003 8.79 2010 9.36 
 

We will look more closely at data from Year 1997 to Year 2001 in Table 4.4.  In 

the NLSY97 data, the survey question “Have you ever smoked cigarettes before?” 

classified subjects into “Self-Indicated Smoker” and “Self-Indicated Non-Smoker” 
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groups.  We use this survey question as a proxy variable for the latent class-membership 

indicator variable, smoker (Poisson class) or non-smoker (perfect class).  Although they 

are not really Poisson class and perfect class, this breakdown is useful in designing our 

simulation study.  Based on this definition, we see the Poisson Class (the smokers) 

slightly increased from 39% up to 42%.  The perfect class (the nonsmokers, the structural 

zeros) remained at around 60% of the total population. Thus, despite the binning, the 

NLSY97 can plausibly be modeled as zero inflated Poisson data.  The Poisson zeros (the 

sampling zeros) are 4.1% of the Poisson class in 1997 and 3.2% of the Poisson class in 

2001.  The observed numbers of (indicated smoker) Poisson zeros from 1997 to 2001 are: 

146, 144, 103, 111, and 104.  However, the expected numbers of Poisson zeros from 

Year 1997 to Year 2001 are: 23, 6, 2, 1, and 0.7.  These expected numbers of Poisson 

zeros are obtained by using the observed means from Table 4.3 as λ in this equation: 

Expected Poisson Zeros = (size of Poisson class) * (probability of Poisson zero) 

                                       = 𝑛 �𝑒
−𝜆𝜆0

0!
� = 𝑛𝑒−𝜆.   

As we can see, there are big discrepancies between the numbers of observed Poisson 

zeros and expected Poisson zeros.  This is evidence of an over dispersion problem.  

Therefore, we will incorporate this real data feature into our simulated data.     

Table 4.4   Descriptive Statistics of NLSY97 from Year 1997 to Year 2001 
 

             

Year  1997 1998 1999 2000 2001 
Total subjects 8,953 8,358 8,148 8,027 7,851 
Mean of Poisson class Cigarettes  
Smoked Per Day 

5.01 6.24 7.28 8.01 8.47 

Perfect class (Self-Indicated Non-Smoker)  5,436 5,317 5,082 4,825 4,591 
Percentage of perfect class  62% 65% 64% 61% 60% 
Poisson class (Self-Indicated Smoker)  3,517 3,041 3,066 3,202 3,260 
Observed Zeros from Poisson Class 146 144 103 111 104 
Expected  Zeros from Poisson Class 23 6 2 1                   0.7 
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Furthermore, the distribution of the number of cigarettes smoked per day is not 

quite Poisson either.  In Table 4.5 we see some spikes at cigarette numbers 10, 15, 20, 

and 30.  We suspect that there are two latent classes of subjects: light smokers and heavy 

smokers.  The light smokers answered this question in units of numbers of cigarettes, 

while some heavy smokers answered this question in units of packages of cigarettes.   

Table 4.5   Number of Cigarettes Smoked Per Day in Year 1997  
Numbers of 
Cig. Smoked 
Per Day 

Numbers 
of smokers 

Numbers of 
Cig. Smoked 
Per Day 

Numbers 
of smokers 

Numbers of 
Cig. Smoked 
Per Day 

Numbers 
of smokers 

0 29 9 2 18 4 
1 94 10 50 19 1 
2 57 11 3 20 32 
3 50 12 4 22 0 
4 32 13 3 23 1 
5 36 14 0 24 2 
6 12 15 29 25 3 
7 16 16 5 26 1 
8 12 17 5 30 7 

 

As stated above, the distribution of observed numbers of counts does not seem to 

be Poisson and there is evidence of over dispersion.  Random effect models can deal with 

unmeasured predictors; that is, the random effects part would be treated as a fixed effects 

part if those explanatory variables had been observable.  Random effects also sometimes 

represent random measurement error in the explanatory variables (Agresti, 2002).  Thus, 

the random effect parameters, 𝜎𝑢 and 𝜎𝑣, are probably important for analyzing NLSY97 

data.      

Next, the correlation matrix of smoking status, non-smoker or smoker, is 

presented in Table 4.6.  These correlations provide a good idea what magnitude the 

correlation should be in logistic regression part when we generate simulated data.  Based 
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on Table 4.6, the first order autocorrelations are around 0.6.  We found by simulation 

experiments that such values corresponded to an AR(1) parameter 𝜙 of approximately 

0.85 to 0.90 in the logistic regression.          

Table 4.6   Correlations of Smoking Status, Non-smoker or Smoker, from 1997 to 2001  
Year  1997 1998 1999 2000 2001 
1997 1.00   .5   .43  .39  .35 
1998  .50 1.00   .61  .52  .47 
1999  .43  .61 1.00   .64  .55 
2000  .39  .52  .64 1.00   .65 
2001  .35  .47  .55 .65 1.00  
   

Next, the correlations of numbers of cigarettes smoked are presented in Table 4.7.  

The observed first order autocorrelation is about 0.5.  We found by simulation 

experiments that such values corresponded to an AR(1) parameter 𝜓𝜓 of approximately 

0.85 or 0.90 in the Poisson regression.          

Table 4.7   Correlations of Number of Cigarettes Smoked, from 1997 to 2001  
Year  1997 1998 1999 2000 2001 
1997 1.00  .45 .34 .35 .30 
1998 .45 1.00 .51 .44 .35 
1999 .34 .51 1.00  .55 .40 
2000 .35 .44 .55 1.00  .51 
2001 .3 .35 .40 .51 1.00  
   

The two autocorrelation matrices above showed that the autocorrelations (𝜙 and 

𝜓𝜓) are important in the structure of the NLSY97 data.  Analyzing the NLSY97 data but 

ignoring the AR(1) correlations and autocorrelation would be a mistake.  The practical 

question, and a key question addressed in this dissertation, is what impact omitting the 

autocorrelations (𝜙 and 𝜓𝜓) has on inferences about fixed effect parameters.    
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4.2.2.2   Generating Simulated Data 

This simulated data were generated based on a random effect AR(1) ZIP model.  

An R program for generating the data was written according the formulas in Chapter III:   

𝑝�𝑦𝑖𝑗 = 0� = 𝜋𝑖𝑗 + �1 − 𝜋𝑖𝑗��1 − exp�−𝜇𝑖𝑗�� 

𝑝�𝑦𝑖𝑗 = 𝑦:𝑦 > 0� = �1 − 𝜋𝑖𝑗�𝑒𝑥𝑝�−𝜇𝑖𝑗�𝜇𝑖𝑗
𝑦/𝑦! 

where 

                       logit 𝜋𝑖𝑗 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝑢𝑖𝑗 

           log 𝜇𝑖𝑗 = 𝛾0 + 𝛾1𝑋2 + 𝑣𝑖𝑗 

           𝑢𝑖𝑗~𝑁(0,𝜎𝑢2) 

           𝑣𝑖𝑗~𝑁(0,𝜎𝑣2) 

           𝐶𝑜𝑣�𝑢𝑖𝑗 , 𝑣𝑖𝑗� = 𝜌𝑢𝑣𝜎𝑢𝜎𝑣 

                        𝑢𝑖,𝑗+1 = 𝜙𝑢𝑖,𝑗 + 𝑧𝑖,𝑗+1 

  𝑣𝑖,𝑗+1 = 𝜓𝜓𝑣𝑖,𝑗 + 𝑧′𝑖,𝑗+1 

  𝑧𝑖𝑗~𝑁(0, (1 − 𝜙2)𝜎𝑢2) 

  𝑧′𝑖𝑗~𝑁(0, (1 − 𝜓𝜓2)𝜎𝑣2) 

  𝐶𝑜𝑟𝑟�𝑧𝑖𝑗 , 𝑧′𝑖𝑗� = 𝜌𝑢𝑣(1 − 𝜙𝜓𝜓)/�(1 − 𝜙2)(1 − 𝜓𝜓2) 

The subscript 𝑖, 𝑖 = 1,⋯ ,𝑁,  indexes subjects.  The subscript 𝑗, 𝑗 = 1,⋯ ,𝑇 = 5, indexes 

time points, which are equally spaced in this study.  There are two types of response 

variables: one is Bernoulli (in the logistic regression for class membership), and the other 

is counts (in the Poisson regression for members of the Poisson class only).  A binary 

covariate (𝑋1) with equiprobable values 1 and 0 was created to represent SEX.  A 

quadratic function of time was the second covariate (𝑋2).  The quadratic term is meant to 
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capture the nonlinear trend in the mean of number cigarettes smoked per day.  The two 

components in the simulated data are:      

Logistic regression:  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + 𝑢𝑖𝑗 . 

Poisson regression:  𝛾0 + 𝛾1𝑋2 + 𝑣𝑖𝑗. 

The parameter values are: 

Fixed Effect  True value Random Effect  True value 
𝛽0 .00 𝜎𝑢 3.50 
𝛽1 .50 𝜎𝑣 .80 
𝛽2 -3.00 𝜑 .85 
𝛾0 .50 𝜓𝜓 .85 
𝛾1 6.00 𝜌𝑢𝑣 .10 

 

By manipulating the ten parameter values, the simulated data presents all the 

features of NLSY97 data such as excessive zeros, excessive Poisson zeros, AR(1) 

correlations, and auto correlations.  Only the bumps in the histograms of the numbers of 

cigarettes smoked are not simulated.   

There are two sample sizes:  N = 2000 and N = 5000.  The N = 2000 and N = 5000 

are used in the section dealing with sample size determination.  In the section dealing 

with model comparison (ZIP, MIXED, and AR(1) models), N = 2000 is used. 

Table 4.8   Descriptive Statistics of Simulated Data 
Year  1 2 3 4 5 
Total subjects 5000 5000 5000 5000 5000 
Mean of Poisson class Cigarettes  
Smoked Per Day 

1.845 2.879 4.053 4.989 5.217 

Perfect class (Self-Indicated Non-Smoker) 2502 2414 2324 2278 2270 
Percentage of perfect class 50% 48% 46% 45% 45% 
Poisson class (Self-Indicated Smoker) 2498 2586 2676 2722 2730 
Observed Poisson Zeros 314 179 103 70              65 
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Table 4.9   Correlations of Zero Indicator, from Year 1 to Year 5  
Year  1 2 3 4 5 
1 1.00 .47 .39 .32 .27 
2 .47 1.00 .47 .39 .33 
3 .39 .47 1.00 .47 .40 
4 .32 .39 .47 1.00 .49 
5 .27 .33 .40 .49 1.00 
  

Table 4.10   Correlations of Poisson Counts, from Year 1 to Year 5 
Year  1 2 3 4 5 
1 1.00 .65 .56 .49 .41 
2 .65 1.00 .70 .58 .48 
3 .56 .70 1.00 .70 .59 
4 .49 .58 .70 1.00 .73 
5 .41 .48 .59 .73 1.00 
  

Choices of Parameter Values for Generating Simulated Data 

Recall that there is big discrepancy in the NLSY97 data set between the observed 

Poisson zeros and expected Poisson zeros – there are far more observed Poisson zeros in 

the data set than theoretical expected Poisson zeros.  From the first set of parameter 

values (see Table 4.11), we generated very few Poisson zeros.  This essentially means the 

logistic regression part is not necessary for ZIP model because there is no need to 

distinguish Poisson zeros and perfect zeros.    In other words, with such a large separation 

between the data for the two classes, we have nearly distinct data subsets for the two 

classes.  This is less interesting as a mixture problem.  By adjusting the parameter values 

we were able to generate data with nontrivial zeros for the Poisson class, and hence a 

nontrivial mixture problem. 
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Table 4.11   Parameter Values of Simulated Data                  
Fixed 
Effect  

1st set 
value 

Final set 
value 

Random 
Effect  

1st set 
value 

Final set 
value 

𝛽0 1.0 0 𝜎𝑢 3.5 3.5 
𝛽1 0.5 0.5 𝜎𝑣 0.4 0.8 
𝛽2 - 4.0 -3.0 𝜑 0.95 0.85 
𝛾0 2.0 0.5 𝜓𝜓 0.95 0.85 
𝛾1 1.0 6.0 𝜌𝑢,𝑣 0.7 0.1 

 

4.2.3   Program Language for Bayesian Inference Using Gibbs Sampling (BUGS) 

Estimation 

With the Bayesian approach, the distinction between fixed and random effects is 

less stark, as every effect has a probability distribution.  From a Bayesian perspective all 

parameters are seen as random quantities arising from proper probability distributions, 

thus all effects are random.  The key concept to distinguish between random and fixed 

terms is the implicit versus explicit prior distribution.   

Consider the OLS regression model 𝑌 = 𝑋𝛽 + 𝑒.  From a classical statistical 

point of view, X is considered a fixed variable matrix, and 𝛽 is considered as a fixed 

regression parameter vector, that is, a vector of fixed effects.  The only random quantity 

in this model is the vector e, which is the source of the randomness of Y.  However, from 

a Bayesian view, 𝛽 is considered as a vector of random variables, because it has an 

explicit prior in the formulation.  From a Bayesian point of view, the classical approach 

implicitly assumes an improper uniform prior distribution on 𝛽.  For more examples, see 

Lynch (2007).  For a Bayesian a variable with hyperpriors may be regarded as a random 

effect; that is, the effects are modeled as exchangeable before data are observed; others 

are treated as fixed effects.    
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Regarding the values of hyperpriors, there are Empirical Bayes (EB) and Full 

Bayes (FB) approaches.  EB estimates the highest-level hyperpriors, and then treats the 

resulting point estimates as known true values to estimate lower-level parameters.  This 

process controverts Bayesian philosophy by “using the data twice” (Lindley, 1969, p. 

421).   

If EB approach is used to estimate the hyperparameters, this can lead to 

overoptimistic estimates of precision of the estimated parameters of interest.  For 

example, in an analysis of traffic safety data, Carriquiry and Pawlovich (2004) concluded 

that “often EB analysts obtain unrealistically low standard errors.”  The Full Bayes (FB) 

approach is used in this pilot study.   

Choices of Priors and Initial Values  

In the simulation study we attempted to use reasonably informative priors for the 

unknown parameters, because we found that the BUGS program is very sensitive to the 

choice of the priors and initial values in the ZIP model, the MIXED model, especially in 

the AR(1) model.  For example in a Normal distribution, replacing 𝜏 = 1
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

= 0.1 

with 𝜏 = 0.01 will cause the failure of the BUGS program.  We believe that if the prior is 

too vague, extremely large parameter values may be drawn by the MCMC process and 

that these extreme values lead to numerical instability which cause BUGS to crash.  

Unfortunately, BUGS does not provide useful diagnostics to identify the cause of a crash. 

Since we have sample sizes of 2000 and 5000, we expect the prior effect to wash 

out because of the large sample size.  However, the BUGS program does not always 

behave in this way unless we use highly informative priors.  In simpler models, such as 

the GLMM logistic model, we arbitrarily chose prior values and the estimates were very 
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good.  For details, readers are referred to Section 4.2.4 dealing with Fisher information 

and sample size.  We present the parameter values, prior choices and initial values in 

Table 4.12.  Initial values of the random effects were selected by bugs from the assumed 

random effect distributions, given the initial values of the parameters listed in Table 4.12. 

Table 4.12   Parameter, Prior, and Initial Values of Simulated Data  
Fixed Effect True 

value 
Prior choices initial 

values(1) 
initial 

values(2) 
𝛽0 .00 ~dnorm(0, 0.1) .00 0.25 
𝛽1 .50 ~dnorm(0.5, 0.1) 0.50 0.25 
𝛽2 -3.00 ~dnorm(-3, 0.1) -3.00 -2.00 
𝛾0 .50 ~dnorm(0.5, 0.1) 0.50 0.20 
𝛾1 6.00 ~dnorm(6, 0.1) 6.00 5.00 

Random Effect      
𝜎𝑈 3.50 Tau.u ~gamma(0.1, 1.2) Tau.u =0.082 Tau.u =0.07 
𝜎𝑉 .80 Tau.v ~gamma(0.1, 0.006) Tau.v =1.6 Tau.v =1 
𝜑 .85 ~dbeta(2.4, 0.6) .85 .80 
𝜓𝜓 .85 ~dbeta(2.4, 0.6) .85 .80 
𝜌𝑢,𝑣 .10 Rho.z~ dbeta(.3, 2.7)   

 

A Constraint In Bugs Program For AR(1) Mixed Zip Model 

There is a parameter constraint in the AR(1) Mixed ZIP model.  It is not obvious 

to see this constraint when writing the model and corresponding BUGS program, so we 

mention it here:   

𝜌𝑢𝑣 = 𝜌𝑒𝑒′ ∗  𝑐 

where 𝜌𝑒𝑒′ =   (1 −  𝜑𝜓𝜓)𝜌𝑢𝑣 �(1 − 𝜑2)(1− ψ2)⁄  , and 

            𝑐 =
�(1−𝜑2)(1−ψ2)

1−𝜑𝜓𝜓 . 

The term c has a maximum of 1 when 𝜑 =  𝜓𝜓, and is smaller than 1 otherwise.  It is 

never negative if 𝜑 and 𝜓𝜓 are in (-1,1).  Since 𝜌𝑒𝑒′ has to be less than 1, then given 

particular values of 𝜑 and 𝜓𝜓, 𝜌𝑢𝑣 will be bounded usually by something less than 1.  
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Thus, if 𝜌𝑢𝑣 gets too big, the 𝜌𝑒𝑒′ is forced to be bigger than 1, which is mathematically 

invalid and will cause problems for the algorithm.  It is better to put the prior on 𝜌𝑒𝑒′ 

rather than  𝜌𝑢𝑣.   

 

4.2.4   Use of Fisher Information for Determining Sample Size 

The AR(1) Mixed effect ZIP model was developed in an attempt to incorporate all 

sources of variability in a longitudinal ZIP data set described in Chapter III; hence the 

model structure is quite complicated.  In general, the more parameters a model has, the 

more data points are needed.  Also, some parameters are harder than others to estimate; 

that is, some parameters need more data points to provide enough information for 

estimation.   

We are concerned about how many observations are needed to ensure the data 

contains enough information to carry out the estimation with desirable standard errors of 

estimates.  We approach this problem by generating empirical approximations of  Fisher 

information for submodels of the AR(1) model in order  to obtain lower bounds for 

sample sizes for the parameters of primary interest, namely the fixed-effect parameters in 

the regression models.  We then extend these results to obtain the full model sample size.   

In section 4.2.4.1, we discuss the ideas of using Fisher Information for 

determining sample size and the approach to this problem.  We start from GLMM: 

random intercept logistic regression and random intercept Poisson regression in Section 

4.2.4.2.  After that, we investigate the AR(1) mixed effect ZIP model in Section 4.2.4.3.  

The most difficult parameters to estimate in the AR(1) Model will be discussed in Section 

4.2.4.4. 
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4.2.4.1   Ideas and Approach for Determining Sample Size 

Ideas 

When observations are i.i.d., the diagonal elements of the inverse of the Fisher 

information matrix of the parameters in a model, divided by the sample size, are 

asymptotic sampling variances of the maximum likelihood estimators of the respective 

parameters.  Therefore they provide a gauge for determining how a large a sample is 

needed for the distribution of estimates of a given parameter to be concentrated near the 

true value.  A smaller sample would produce estimates with large dispersion and which 

would be indistinguishable from false values.  Thus correct parameter values would be 

difficult to identify.   

Recall that the expected negative second derivative of the log likelihood is the 

Fisher information matrix (Bickel & Doksum, 2007, pp. 179-188) in N observations: 

                    𝐸 �− 𝜕2

𝜕𝜃𝑟𝜕𝜃𝑠
𝑙𝑜𝑔𝐿(𝜽)�  = 𝓘𝑁  = Fisher information in N observations. 

According to large sample theory, if the observations are i.i.d., then  𝓘𝑁 → ∞  but   

1
𝑁
𝓘𝑁 → 𝓘1, a non-random matrix that depends on the parameters but is not dependent on 

sample size.  In large samples the distribution of the normalized maximum likelihood 

estimator is approximately √𝑁 (𝜽�𝑁 − 𝜽) ∼ 𝑁(𝟎,𝓘1−1)  where 𝜽�𝑁 is the MLE of 𝜽.  

Therefore in large samples the MLE has approximate covariance matrix  

𝑉𝑎𝑟𝐶𝑜𝑣 ( 𝜽�𝑁) ≐  1
𝑁

 𝓘1−1Note that 𝓘𝑁 = 𝑁𝓘1 and (𝓘𝑁)−1 = 𝓘𝑁−1 = 1
𝑁
𝓘1−1.   

In Bayesian estimation, if   𝜽�𝐵 is the Bayes estimator of 𝜽, then  

 √𝑁(𝜽�𝐵 − 𝜽�𝑁)
𝑃
→ 0      (by the Bernstein – von Mises theorem).  Therefore, by 

combining these facts we can say that 𝑉𝑎𝑟𝐶𝑜𝑣 ( 𝜽�𝐵) ≐  1
𝑁

 𝓘1−1  when N, is large but 
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finite.  Markov Chain Monte Carlo methods produce an estimator of the covariance 

matrix of 𝜽𝐵.  Therefore we can estimate 𝓘1−1 by 𝑁 �𝑉𝑎𝑟𝐶𝑜𝑣� � 𝜽�𝐵��.  The approximate 

relationship 𝓘1−1 ≈ 𝑁 �𝑉𝑎𝑟𝐶𝑜𝑣� � 𝜽�𝐵�� improves as N increases.  Furthermore, if 𝑁1 and 

𝑁2are both large enough, then  

𝑁1 �𝑉𝑎𝑟𝐶𝑜𝑣� � 𝜽�𝐵��  ≈  𝑁2 �𝑉𝑎𝑟𝐶𝑜𝑣� � 𝜽�𝐵�� ≈ 𝓘1−1. 

In a practical problem, we don’t know how big N has to be to get an accurate estimate of 

𝓘1−1.  In a simulation one can generate and analyze samples of two different (large) sizes. 

As a measure of the closeness of two estimated inverse Fisher information matrices 𝓘1,𝑁1
−1   

and 𝓘1,𝑁2
−1 , estimated from sample sizes N1 and N2, one can either look at  

�𝜆1�𝓘1,𝑁1
−1 − 𝓘1,𝑁2

−1 ��, 

where 𝜆1(𝑨) is the maximum eigenvalue of a matrix A. 

or look at  

��� |𝓘�1,𝑁1(𝑖, 𝑗) − 𝓘�1,𝑁2(𝑖, 𝑗)|2
𝑗𝑖

 

where 𝓘1,𝑁1
−1 (𝑖, 𝑗) is the (𝑖, 𝑗) element of 𝓘1,𝑁1

−1 .  If 𝓘1,𝑁1
−1 ≈ 𝓘1,𝑁2

−1  we can assume that we  

have estimated  𝓘1−1  with reasonable accuracy.  Thus, by monitoring the approximate  

Fisher information for different sample sizes we can determine the ideal sample size for  

the particular model and level of accuracy that we are interested in. 

 

Approach 

It is known that calculating the observed Fisher information can be 

computationally challenging, especially in a complicated model setting. At this time there 
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is no convenient way to get the observed Fisher Information in general for models as 

complex as the AR(1) Mixed Effect ZIP model.  Essentially we will use available 

empirical methods to approximate Fisher information of relevant submodels of the full 

model.  The GLMM model is simpler than the ZIP model with random effects (Mixed 

ZIP Model).  Examining the GLMM model (either Poisson or logistic) might give some 

insight about the Mixed ZIP Model.  The SAS PROC GLIMMIX software computes 

MLE's for GLMMs.   

First, we use the Hessian matrix (matrix of second derivatives of log likelihood, 

which estimates the negative Fisher information matrix) in the SAS output to 

approximate the Fisher information for the GLMM logistic model and GLMM Poisson 

model, respectively.  Secondly, we will get posterior samples from OpenBUGS software 

using the CODA output.  These posterior samples yield estimates of the Fisher 

Information and its eigenvalues using R software, for the GLMM Logistic model and 

GLMM Poisson model, respectively.  

Although the Fisher information plays a central role in MLE, we don’t know of 

any paper which computes the observed Fisher information in a Bayesian estimation 

setting.  According to theory, under regularity conditions the covariance matrices of the 

MLE and a Bayesian estimate are asymptotically equivalent.  However, we aren't sure 

how fast the Bayes estimates will converge to the MLE's because we don't know how 

strongly the prior information affects the Bayes estimates for finite sample sizes.   

We expect to see discrepancies between the Bayes estimates and MLE when the 

sample sizes are small.  The discrepancies are due to the assumed prior information, 

MCMC error, sampling error, plus the differences between the two methods.  Thus, in the 
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following step, we compare the Fisher Information estimates between MLE and Bayesian 

estimation.   

We will start from a smaller sample size and move to a larger sample size.  Using 

SAS helps to check on how close the Bayes computations are to the MLE computations 

when N is large.  In this way, we will approximate the theoretical quantity in a numerical 

example.  Also, we can make sure our approach to Fisher Information in Bayesian 

analysis is on the right track.  However, after examining estimates of Fisher information 

in smaller samples, using both SAS (MLE) and BUGS (MCMC), we will only use SAS 

in larger sample sizes because of the BUGS computational burden.  While SAS might 

need only a couple of seconds to obtain the Hessian matrix, BUGS might take several 

hours to reach model convergence with a sample size of 10,000.          

After our study of GLMM, we will investigate the sample size for the AR(1) 

Mixed effect model, which is our main interest.  Here we will use BUGS (MCMC) only 

but not MLE.  The reason is that we can’t compute the MLE in large samples because the 

MLE requires integrals which can not be calculated analytically: 

𝐿 = ��𝑓(𝒖𝑖,𝒗𝑖)𝑑𝒖𝑖𝑑𝒗𝑖  
𝑁

𝑖=1

× ���𝜋�𝒙𝑖𝑗𝑇 𝜷 + 𝑢𝑖𝑗�𝐼�𝑦𝑖𝑗 = 0�
𝑇

𝑗=1

+ �1 − 𝜋�𝑥𝑖𝑗 + 𝑢𝑖𝑗�� 𝑒𝑥𝑝�−𝑒𝑥𝑝�𝒙𝑖𝑗𝑇 𝜸 + 𝑣𝑖𝑗�� ×
𝑒𝑥𝑝�𝒙𝑖𝑗𝑇 𝜸 + 𝑣𝑖𝑗�𝑦𝑖𝑗

𝑦𝑖𝑗!
�� 

where 
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               𝜋�𝑥𝑖𝑗𝑇 𝛽 + 𝑢𝑖𝑗� =
𝑒𝑥𝑝�𝒙𝑖𝑗

𝑇 𝜷+𝑢𝑖𝑗�

1+�𝒙𝑖𝑗
𝑇 𝜷+𝑢𝑖𝑗�

  and 

               𝑓 depends on 𝜎𝑢,𝜎𝑣,𝜌𝑢𝑣,𝜑, and 𝜓𝜓. 

As in the previous step, we will start from a smaller sample size and move to 

larger sample sizes until the change of estimated Fisher information per observation 

becomes small.  For such a sample size, we conclude that the covariance matrix of the 

Bayes estimates are close to those of the MLE.  Such an N would appear to guarantee that 

the sample Fisher information and the theoretical information are nearly equal.          

 

4.2.4.2.   Analyses of Fisher Information of GLMMs on MLE and MCMC 

Generate Simulated Data  

We create repeated measure data with three covariates (𝑋1,𝑋2,𝑋3) and 𝑡 

responses (𝑌1~𝑌𝑡), where 𝑡 is the number of time points.  Each subject i shares its unique 

random effect, 𝑢𝑖, with each response and forms a cluster.  The response variable for 

logistic regression is a Bernoulli variable, and the response variable for Poisson 

regression is a count variable.  The two models are: 

Logistic regression:  𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1)] = 𝛽1 + 𝛽2𝑋≥1 + 𝛽3𝑋2 + 𝛽4𝑋4 + 𝑢𝑖. 

Poisson regression:  log[E(Y)] =𝛽1 +  𝛽2𝑋1 + 𝛽3𝑋2 + 𝛽4𝑋4 + 𝑣𝑖. 

The parameter values for these regressions are: 𝛽1 = −.5,    𝛽2 = .1,    𝛽3 = .2,    

 𝛽4 = −.3,    𝜎𝑢 = .5,    𝜎𝑣 = .5.    

Estimation and Sample Size of Simulated Data 

Two estimation methods are used.  One is MLE, in which SAS PROC GLIMMIX 

is used.  The Hessian matrix will be obtained from PROC GLIMMIX.  Then the matrix 

will be used to get the Fisher information and eigenvalues through R software.  The other 
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method is MCMC, in which OpenBUGS is used. The coda output in BUGS contains 

samples that MCMC draws from posterior distribution.  The sample covariance matrix of 

these estimates will be calculated using R software and inverted to approximate the 

Fisher information.  There are 3 sample sizes for both regressions:  

(1) 𝑁 = 300 , 𝑡 = 5.     (2) 𝑁 = 1200 , 𝑡 = 5.     (3) 𝑁 = 10000 , 𝑡 = 5. 

Results from Logistic Regression 

In this subsection three tables are presented with sample sizes 300 by 5, 1200 by 

5, and 10000 by 5, respectively.  Parameter estimates and their associated standard errors, 

Fisher Information matrices, and eigenvalues are provided in each table.  For sample 

sizes 300 and 1200, results from MLE and MCMC method are both presented; for sample 

size 10000, only results from MLE are presented.  

From Table 4.13, we see the MLE and MCMC estimations are in the right 

direction but not very accurate.  There are some discrepancies among the estimations 

from the two methods.  The small sample size (N=300) also makes these two methods 

unstable.  From Table 4.14, we see the MLE and MCMC estimations are getting more 

accurate and the discrepancies between the estimates from the two methods are getting 

smaller.  The bigger sample size (N=1200) makes the estimation better and brings MLE 

and MCMC results closer together.      

Next we compare the Fisher Information matrix per cluster (with fixed t) and 

eigenvalues from   MLE between Tables 4.14 and 4.15.  We consider the estimates from 

Table 4.13 unstable because of the small sample size and exclude them from the 

comparison.  The average Fisher Information matrix seems to tend to a limiting matrix as 

N gets large, as we move from the second to the third Binomial example (Tables 4.14 and 
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Table 4.15).  The Binomial-case limit is reached around N=1200 since we see there is not 

much change in the average information as N increases to N=10000.      

Table 4.13   Logistic Regression, 𝑁 = 300 , 𝑡 = 5 
Parameter True value Estimate (MLE) se (MLE) Estimate(MCMC) Se(MCMC) 
Intercept 𝛽1  -.5 -.4494 .1107 -.5328 .1185 

x1 𝛽2    .1 .0165 .1259 .0945 .1324 
x2 𝛽3   .2 .2916 .0687 .3587 .0724 
x3 𝛽4   -.3 -.3269 .0761 -.2957 .0801 
u 𝜎𝑢    .5 .4302 .0531 .5422 .0833 

Estimated Fisher information per subject/cluster from MLE 
 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑢 

𝜷𝟏  0.8667 0.3815 0.1392 0.8144 0.8144 
𝜷𝟐  0.3815 -0.0124 0.3694 0.0561 
𝜷𝟑   0.7480 0.0915 -0.0252 
𝜷𝟒    1.3475 0.1588 
𝝈𝒖         0.3183 

Eigenvalues from MLE 
𝝀 2.1552 0.7431 0.3218 0.2910 0.1508 

Estimated Fisher information per subject/cluster from MCMC 
 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑢 

𝜷𝟏  0.7343 0.3125 0.1072 0.6931 0.1069 
𝜷𝟐  0.3333 -0.0088 0.2959 0.0264 
𝜷𝟑   0.6943 0.0548 -0.0734 
𝜷𝟒    1.1730 0.1366 
𝝈𝒖         0.5189 

Eigenvalues from MCMC 
𝝀 1.8342 0.7243 0.4663 0.2917 0.1374 

 

 

Table 4.14:   Logistic Regression, N = 1200 , t = 5 
Parameter True value Estimate (MLE) S e (MLE) Estimate(MCMC) Se(MCMC) 
Intercept β1   -.5 -.4352 .0593 -.4800 .0631 

x1 β2    .1 .0662 .0642 .0805 .0679 
x2 β3    .2 .1755 .0322 .1884 .0344 
x3 β4   -.3 -.3156 .0417 -.3156 .0433 
u σu    .5 .5202 .0293 .6061 .0502 

 
Estimated Fisher information per subject/cluster from MLE 

 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑢 
𝛽1  .8092 .3846 .0085 .7620 .1107 
𝛽2  .3846 -.0041 .3624 .0509 
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𝛽3   .8049 .0354 -.0227 
𝛽4    1.2003 .1317 
𝜎𝑢     .2603 

 
Eigenvalues from MLE 

𝜆 1.9837 .8063 .2917 .2408 .1367 
 

Estimated Fisher information per subject/cluster from MCMC 
 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑢 

𝛽1  .7247 .3468 .0211 .7006 .1124 
𝛽2  .3463 -.0099 .3360 .0455 
𝛽3   .7034 .0381 -.0108 
𝛽4    1.1230 .1308 
𝜎𝑢     .3485 

 
Eigenvalues from MCMC 

𝜆 1.8315 .7019 .3279 .2633 .1214 
 

 

 

 

 

 

 

 

 

 

Table 4.15   Logistic Regression, 𝑁 = 10000 , 𝑡 = 5 
Parameter True value Estimate (MLE) Se (MLE) Estimate(MCMC) Se(MCMC) 
Intercept 𝛽1   -.5 -.5435 .0207   

x1 𝛽2    .1 .1407 .0222   
x2 𝛽3    .2 .2154 .0112   
x3 𝛽4   -.3 -.2944 .0139   
u 𝜎𝑢    .5 -.5435 .0207   

 
Estimated Fisher information per subject/cluster from MLE 

 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑢 
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𝛽1  .8061 .4062 .0421 .7691 .1176 
𝛽2  .4062 -.0106 .3872 .0551 
𝛽3   .7965 .0503 -.0259 
𝛽4    1.2510 .1408 
𝜎𝑢     .2628 

 
Eigenvalues from MLE 

𝜆 2.0434 .7955 .3089 .2412 .1335 
 

Results from Poisson Regression 

 We make comparisons for Poisson regression similar to those for Logistic 

regression.  Again, we compare the Fisher information matrix per cluster (with fixed t) 

and eigenvalues from MLE between Tables 4.17 and 4.18 only.  The convergence of the 

estimated average Fisher information matrices seems slower in the Poisson case.  As we 

move from the second to the third Poisson example (Tables 4.17 and 4.18), we still find 

noticeable differences between N=1200 and N=10000.   

 

 

 

 

 

 

Table 4.16   Poisson Regression, 𝑁 = 300 , 𝑡 = 5 

Parameter True value Estimate (MLE) S e (MLE)   
Intercept 𝛽1   -.5 -.4632 .0786   

x1 𝛽2    .1 .1086 .0896   
x2 𝛽3    .2 .0467 .0484   
x3 𝛽4   -.3 -.3148 .0539   
V 𝜎𝑢    .5 .4465 .0236   

 
Estimated Fisher information per subject/cluster from MLE 

 β1 β2 β3 β4 σv 
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𝛽1  1.7019 .7764 .2115 1.4731 .7197 
𝛽2  .7764 .0026 .7058 .3212 
𝛽3   1.4803 .0794 .0559 
𝛽4    2.4284 .6550 
𝜎𝑣     1.8087 

 
Eigenvalues from MLE 

𝜆 4.3453 1.4824 1.4227 .6476 .2978 
 

Table 4.17   Poisson Regression, N = 1200 , t = 5 
Parameter True value Estimate (MLE) S e (MLE) Estimate(MCMC) Se(MCMC) 
Intercept 𝛽1   -.5 -.5508 .0441   

x1 𝛽2    .1 .1353 .0476   
x2 𝛽3    .2 .2171 .0240   
x3 𝛽4   -.3 -.3033 .0307   
V 𝜎𝑣    .5 .5167 .0137   

 
Estimated Fisher information per subject/cluster from MLE 

 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑣 
𝛽1  1.4717 .7205 .1323 1.2998 .5818 
𝛽2  .7205 .0488 .6419 .2706 
𝛽3   1.4601 .1612 .0142 
𝛽4    2.0309 .5485 
𝜎𝑣     1.332 

 
Eigenvalues from MLE 

𝜆 3.7325 1.4502 1.0407 .5444 .2474 
 

 

 

Table 4.18   Poisson Regression, N = 10000 , t = 5 
Parameter True value Estimate (MLE) S e (MLE)   
Intercept 𝛽1   -.5 -.5023 .0149   

x1 𝛽2    .1 .1182 .0160   
x2 𝛽3    .2 .1886 .0080   
x3 𝛽4   -.3 -.2977 .0099   
V 𝜎𝑣    .5 .4994 .0044   

 
Estimated Fisher information per subject/cluster from MLE 

 𝛽1 𝛽2 𝛽3 𝛽4 𝜎𝑣 
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𝛽1  1.5553 .7962 .1662 1.3838 .6209 
𝛽2  .7962 .0653 .7066 .3139 
𝛽3   1.5551 .1551 .0351 
𝛽4    2.2331 .5832 
𝜎𝑣     1.5224 

 
Eigenvalues from MLE 

𝜆 4.0452 1.5400 1.2081 .6115 .2572 
 

Conclusions 

a) In both logistic regression and Poisson regression cases, the PROC GLIMMIX 

results look reasonably satisfactory and show that the logistic regression 

parameters can be well estimated once N gets as large as 1000 or 2000. 

b)  We see that Bayesian computations lead to reasonably good approximations of 

      the per observation Fisher Information matrix.  Furthermore, the Bayesian 

computations give good estimates of ML variance.  We expect that when we 

move to the larger samples, the posterior covariance matrix and MLE covariance 

matrix will be reasonably similar. 

 

 

 

 

4.2.4.3   MCMC Analyses of Fisher Information of AR(1) Model and Determining             

the Sample Size   

Simulated samples of sizes of 2000 and 5000 were analyzed under the AR(1) 

model for purpose of comparison.   The AR(1) model with sample size of 5000 was run 

with 50000 iterations.  A sample of 10000 sets of 10 estimates drawn from the 

67 
 



approximate posterior distribution (there are 10 parameters in the model) was obtained 

using BUGS’s coda function, which provides values drawn in the MCMC chains.  These 

values were used to compute an estimated variance-covariance matrix.  The inverse of 

this estimated covariance matrix is used to estimate the Fisher information, its 

eigenvalues, and its eigenvectors.    Results are shown in Tables 4.19 and 4.20.   

Table 4.19   AR(1) Model, 𝑁 = 2000 , 𝑡 = 5 
Parameter  True value Estimate  Sd MC_error val2.5pc val97.5pc 

𝛽1    0 -.0693 .1814 .0072 -.4252 .2914 
𝛽2     .50 .3985 .1481 .0061 .1059 .6855 
𝛽3     -3.00 -2.5690 .7912 .0320 -4.1960 -1.0170 
𝛾1    .50 .4994 .0560 .0034 .3919 .6113 
𝛾2 6.00 6.0580 .2108 .0089 5.6600 6.4760 
𝜑 .85 .8338 .0169 .0014 .7992 .8664 
𝜓𝜓 .85 .8504 .0086 5.339E-4 .8326 .8664 
𝜌𝑢𝑣 .10 .0995 .0650 .0058 6.694E-5 .2529 
𝜎𝑢     3.50 3.2140 .2313 .0204 2.7800 3.6800 
𝜎𝑣 .80 .8048 .0166 .0012 .7713 .8369 

Estimated Fisher information per subject/cluster from MCMC 
 𝛽1    𝛽2    𝛽3 𝛾1    𝛾2    𝜑 𝜓𝜓 𝜌𝑢𝑣 𝜎𝑢     𝜎𝑣     

𝛽1    .033 -.01 -.116 .001 -.007 .000 .000 -.001 .000 .000 
𝛽2      .022 -.004 .001 -.002 .000 .000 .001 .003 .000 
𝛽3       .626 -.009 .037 .002 .000 -.001 -.032 .000 
𝛾1       .003 -.01 .000 .000 .002 .002 .000 
𝛾2     .044 .000 .000 -.001 -.002 .000 
𝜑      .000 .000 .000 -.002 .000 
𝜓𝜓       .000 .000 .000 .000 
𝜌𝑢𝑣        .004 .004 .000 
𝜎𝑢             .054 .000 
𝜎𝑣          .000 

Eigenvalues from MCMC 
𝜆 8.813 2.926 2.073 1.418 .124 .109 .018 .011 .009 .000 

Table 4.20   AR(1) Model, 𝑁 = 5000 , 𝑡 = 5 
Parameter  True value Estimate  Sd MC_error val2.5pc val97.5pc 

𝛽1    0 -.0377 .1227 .0065 -.2856 .1963 
𝛽2     .50 .5484 .1015 .0053 .3547 .7515 
𝛽3     -3.00 -2.7250 .5148 .0265 -3.7500 -1.7150 
𝛾1    .50 .4864 .0347 .0023 .4146 .5516 
𝛾2 6.00 6.0970 .1282 .0061 5.8470 6.3590 
𝜑 .85 .8560 .0101 9.519E-4 .8352 .8746 
𝜓𝜓 .85 .8545 .0054 4.395E-4 .8435 .8643 
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𝜌𝑢𝑣 .10 .1204 .0424 .0040 .0217 .1942 
𝜎𝑢     3.50 3.5110 .1512 .0141 3.2250 3.7820 
𝜎𝑣 .80 .8094 .0097 8.988E-4 .7920 .8276 

 
The Fisher information per subject/cluster from MCMC 

 𝛽1    𝛽2    𝛽3 𝛾1    𝛾2    𝜑 𝜓𝜓 𝜌𝑢𝑣 𝜎𝑢     𝜎𝑢     
𝛽1    .072 .037 .014 -.055 -.012 .028 -.012 .023 .007 .046 
𝛽2      .040 .007 -.029 -.007 .020 .002 .018 .001 .007 
𝛽3       .004 -.008 -.002 .002 .000 .002 .002 .005 
𝛾1       1.318 .263 .016 -.184 -.607 -.008 .349 
𝛾2     .065 -.005 -.032 -.120 -.002 .059 
𝜑      3.498 .022 -.051 .157 -.050 
𝜓𝜓       7.659 .160 -.015 -1.606 
𝜌𝑢𝑣        .400 -.005 -.256 
𝜎𝑢             .018 -.007 
𝜎𝑣          2.658 

 
Eigenvalues from MCMC 

𝜆 8.150 3.508 2.357 1.487 .097 .095 .017 .012 .008 .001 
 

Discussion of Results 

a) Although 𝑁 = 2000 is sufficient for GLMM, it is obviously insufficient for the 

AR(1) model.  For example, some diagonal elements in the Fisher information 

matrix are smaller than 10−5 (coded as 0), which means almost no information 

for that particular parameter.  We see that the Fisher Information is much 

improved when 𝑁 = 5000.   

b) For this particular data, the Fisher information indicates some parameters are 

hard to estimate, in terms of variance.  These parameters are  𝛽3, 𝜎𝑢, 𝛽2, 𝛾2, 

𝛽1(see elements in the Fisher information matrix, N = 5000).    

 

4.2.4.4   The Most Difficult Parameters to Estimate in the AR(1) Model 
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In this section we use information from eigenvalues and eigenvectors of matrices 

related to the Fisher information matrix to obtain insight into the AR(1) model.  In 

principal component analysis, the eigenvector with the largest eigenvalue is the direction 

along which the data set has the maximum variance.  In our problem we use the 

eigenvalues and eigenvectors of the estimated Fisher information matrix in a similar way.  

The largest eigenvalue corresponds to a linear function of the parameters with maximum 

information, or equivalently the function estimated with the smallest asymptotic variance.  

Similarly, the smallest eigenvalue corresponds to a linear function estimated with the 

largest asymptotic variance.   

In Table 4.21 the ten eigenvalues of the estimated information matrix (based on 

N=5000) are presented.  Based on Table 4.21 we would say there are four large 

eigenvalues.  The other six eigenvalues are quite small, especially the last two 

eigenvalues. 

Table 4.21   The Ten Eigenvalues of AR(1) Model 
8.150428495 3.507783275 2.356704440 1.487195778 0.097264029 
0.094725558 0.016639069 0.012097777 0.008334560 0.000724701 
  

The eigenvectors are presented in Table 4.22.  This is a 10 by 10 matrix.  The 

rows correspond to the ten parameters and the columns present the ten eigenvectors 

corresponding to the eigenvalues from the largest to the smallest.  Here the smaller 

eigenvalues and eigenvectors are more important to investigate.  The elements/loadings 

in each eigenvector are normalized such that sum of squares of the loadings in each 

eigenvector is equal to one.  The regression coefficients and predictors in the two 

regression models are: 
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Logistic regression: 𝛽1 + 𝛽2 ∗ 𝑠𝑒𝑥 + 𝛽3 ∗ �
𝑡𝑖𝑚𝑒
5
� (1 − 𝑡𝑖𝑚𝑒

5
) + 𝑢𝑖𝑗  

Poisson regression:  𝛾1 + 𝛾2 ∗ �
𝑡𝑖𝑚𝑒
5
� (1 − 𝑡𝑖𝑚𝑒

5
) + 𝑣𝑖𝑗  

First, we highlight in yellow the large loadings in the first four eigenvectors.  We 

interpret these eigenvectors as the linear functions of parameters that are easiest to 

estimate.  These involve the parameters 𝛾1, 𝛾2, 𝜑, 𝜓𝜓, 𝜌𝑢𝑣, 𝜎𝑢, 𝜎𝑣.  The second 

eigenvector essentially identifies the parameter 𝜑.  Note that none of the three logistic 

regression coefficients have high loadings in the first four eigenvectors.   

Next, we highlight in blue the large loadings in the smaller six eigenvectors.  We 

conclude that linear functions of the three logistic regression coefficients were the hardest 

parameters to estimate, especially 𝛽3.  Note that the tenth eigenvector, which has an 

eigenvalue near zero, essentially identifies 𝛽3. In general, parameters related to logistic 

regression are harder to estimate.  We also notice that regression coefficients involving 

the quadratic predictor, 𝛽3  and 𝛾2, are harder to estimate.  These results are consistent 

with the discussion in Section 4.2.4.3.   

Let’s take 𝛽3 as an example.  In simulation, AR(1) model with N = 5000, the 

estimated s.e. was 0.5148, and  𝜆10 was 0.000724701.  If we want the estimated s.e. to be 

less than 0.5, the N has to be 5524: 

𝑠𝑒�𝑞10𝑇 𝜃�� = 1
�𝑁𝜆10

< 0.5  

𝑁 ≥ 1
(0.5)2(.000724)

 = 5524. 

 

Table 4.22   Parameters and Eigenvectors of AR(1) Model  
𝝀 8.150428495 3.5077832750 2.3567044400 1.487195778 0.097264029 
𝛽1 0.002627000     0.0078315629   0.0042732218   0.053230019    0.066761348 
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𝛽2 0.000215518  0.0055340834   0.0034163521 0.025205583   0.027109138 
𝛽3 0.000087200   0.0004505660   0.0002479095   0.006935629    0.020035937 
𝛾1 0.043540820   0.0088705441   0.3796528605    0.797113660   0.412493910 
𝛾2 0.007753001 0.0004909037    -0.0726045401    0.163163534    -0.099486900 
𝜑 -0.006987224   -0.9983729333 -0.0179533414 -0.024233796 -0.016183366 
𝜓𝜓 -0.957105300    0.0135031324 -0.2784509125 -0.078807726 0.002222653 
𝜌𝑢𝑣   -0.032675910 0.0167047758 0.2116909238 -0.372488909 -0.898067529 
𝜎𝑢 0.001366294 -0.0449497463 0.0038878937 -0.003488855 0.081163939 
𝜎𝑣 0.284373300 0.0244649188   0.8531570177  -0.434640681 -0.031272926 
      
𝝀 0.0947255580 0.0166390690 0.0120977770 0.008334560 0.0007247010 
𝛽1 0.8158251911 0.4707308382 -0.0025058171 0.268145184 -0.1831846257 
𝛽2 0.5466244745 -0.7718167730 0.0682756898 -0.315034824 -0.0133967069 
𝛽3 0.1643590362 0.0975165962 -0.0570951533 -0.008923131 0.9796363244 
𝛾1 0.0688304168   0.0100104426 -0.2075381777 0.018100629 -0.0104995302 
𝛾2 0.0004384083 0.1549497234 0.9486398717 -0.180315659 0.0413194493 
𝜑 -0.0127023489 -0.0153659508 0.0113242856 0.038553616 0.0043682125 
𝜓𝜓 -0.0029583784 0.0004382848 -0.0002940427 -0.002751346 -0.0001719452 
𝜌𝑢𝑣   0.0218496526   0.0733196724 -0.0333442856 -0.039944026   0.0025231199 
𝜎𝑢 0.0506938926   0.3787757157 -0.2187146712 -0.890368592 -0.0687715847 
𝜎𝑣 -0.0257264521 -0.0030187629 0.0025136791 -0.009193641   0.0020120047 
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Chapter V 

Data Analyses 

In Chapter V We present the results of two data analyses.  In Section 5.1 we 

compare three models using simulated data generated from the ZIP AR(1) MODEL.  In 

Section 5.2 we use the most promising model chosen from Section 5.1 to analyze the real 

data – NLSY97.      

 

5.1   Model Comparison 

We created simulated data from the AR(1) MODEL (see details in Section 4.2.4) 

with two sample sizes,  𝑁 =  2000 and 𝑁 =  5000, and fitted the ZIP, MIXED, and 

AR(1) models.  Recall that the ZIP model has no random effects and all observations are 

assumed to be independent.  The MIXED model has three random effect parameters, 

which describe within cluster random effects.  Subjects are independent but observations 

within subject are dependent.  The AR(1) model has five random parameters, which 

model longitudinal data with autocorrelated random effects.  The subjects are still 

independent. 

Since the data is simulated from an AR(1) model, we know all the true parameter 

values.  Thus, the DIC is not necessarily needed for the model comparison.  We expected 

that the AR(1) model would perform the best.  However, we would like to see if the two 

simpler models, ZIP and MIXED, can produce acceptable bias level on the fixed effects.  

In other words, we want to investigate how important the random effect parameters are 

for the estimation of the fixed effects.   
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Results and Discussion 

The results are presented in Table 5.1.  For sample size N = 2000, the results are 

summarized as follows:  in terms of bias, the AR(1) model is the best and the ZIP model 

is the worst one; in terms of variance, the ZIP model is the best and the AR(1) is the 

worst one; in terms of MSE, the MIXED model is the best.  We also present the 95% 

credible intervals (CI95) for these models (Figure 5.1.1--Figure 5.1.5).  For the ZIP 

model, four parameters were out of the CI95, and one parameter is on the boundary.  For 

MIXED model, three parameters were in the CI95, one parameter is on the boundary, and 

one parameter is outside the boundary.  For the AR(1) model, all five parameters were 

inside of the CI95.   

Since the AR(1) model is the true model, consequently its bias is smaller than the 

other two models.  Note that, although AR(1) is the true model, there is some bias in its 

parameter estimates because of the priors.  We expect these biases will decrease as the 

sample size increases.  These three models have the same amount of information (data) 

so that the ZIP model performs the best in variance estimation because there are fewer 

parameters to estimate.   

In the following, we present the posterior density of AR(1) model parameters 

(simulated data sample size N = 5000).  Evidence of nonconvergence was not found for 

fixed effect parameters; however, the random effect parameters need more time to reach 

their stationary distribution.   
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a) Fixed effect parameter: Beta (1) 
beta[1] sample: 9000

beta[1]
-0.75 -0.5 -0.25 0.0 0.25 0.5

 

b) Fixed effect parameter: Beta (2) 
beta[2] sample: 9000

beta[2]
0.0 0.25 0.5 0.75 1.0

 

c) Fixed effect parameter: Beta (3) 
beta[3] sample: 9000

beta[3]
-5.0 -4.0 -3.0 -2.0 -1.0 0.0

 

d) Fixed effect parameter: Gamma (1) 
gamma[1] sample: 9000

gamma[1]
0.3 0.4 0.5 0.6 0.7

 

e) Fixed effect parameter: Gamma (2) 
gamma[2] sample: 9000

gamma[2]
5.5 5.75 6.0 6.25 6.5
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f) Random effect parameter: Phi 
phi sample: 9000

phi
0.82 0.84 0.86 0.88 0.9

 

g) Random effect parameter: Psi 
psi sample: 9000

psi
0.83 0.84 0.85 0.86 0.87

 

h) Random effect parameter: Rho.uv 
rho.uv sample: 9000

rho.uv
-0.1 0.0 0.1 0.2 0.3

 

i) Random effect parameter: Sigma U 

  

sigma.u sample: 9000

sigma.u
3.0 3.25 3.5 3.75 4.0

 

j) Random effect parameter: Sigma V 
sigma.v sample: 9000

sigma.v
0.76 0.78 0.8 0.82 0.84
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For sample size N = 5000, the results are summarized as follows:  in terms of 

bias, the AR(1) model is better; in terms of variance, the MIXED model is the better; in 

terms of MSE, the AR(1) model is better.  We also present the 95% credible intervals 

(CI95) for these two models (Figure 5.1.1--Figure 5.1.5).  For the MIXED model, two 

parameters were in the CI95, two parameters are on the boundary, and one parameter is 

outside the boundary.  For AR(1) model, all five parameters were inside of the CI95.   

When N increases from 2000 to 5000, we see that the posterior standard deviation 

decreases by one third.  Recall the large sample theory for MLE, which states that the 

variance and sample size are related by: 

𝑉𝑎𝑟𝑁2�𝜃�� =
𝑁1
𝑁2

𝑉𝑎𝑟𝑁1�𝜃��. 

Thus, we expected the posterior standard deviation of sample size 5000 to be (2/5)1/2 = 

0.63 times that of the standard deviation when N=2000.  Our results appear consistent 

with the large sample theory. 

Is it possible that AR(1) model is the winner of MSE for all the five fixed effect 

parameters?  We think the answer is YES when the sample size N is large.  However we 

are unable to compute the sample size analytically.  Recall that, 

MSE =(𝑏𝑖𝑎𝑠)2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = [𝐸�𝜃�𝑛� − 𝜃]2 + 𝑉𝑎𝑟(𝜃�𝑛) 

Under regularity conditions and when the model is correctly specified, 

𝐸�𝜃�𝑛� = 𝜃 +
𝑏1
𝑛

+ 𝑜(1/𝑛) 

𝑉𝑎𝑟�𝜃�𝑛� =
𝑣1
𝑛

+ 𝑜(1/𝑛)  

where 𝑏1 and 𝑣1 are some functions of the parameters 

If the model is misspecified, 
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E�𝜃�𝑛𝑚𝑖𝑠� = 𝜃 + 𝑔(𝜃) + 𝑏2
𝑛

+ 𝑜(1/𝑛) 

𝑉𝑎𝑟�𝜃�𝑛𝑚𝑖𝑠� = 𝑣𝑚𝑖𝑠 + 𝑜(1/𝑛) 

where 𝑔(𝜃) is effect of misspecification: 𝑔(𝜃) ≠ 0 

We don’t know whether 𝑣𝑚𝑖𝑠 <  𝑣1,  

Then                𝑀𝑆𝐸�𝜃�𝑛� ≅ (𝑏1
𝑛

)2 + 𝑣1
𝑛

  

                        𝑀𝑆𝐸�𝜃�𝑛𝑚𝑖𝑠� ≅ (𝑔(𝜃) + 𝑏2
𝑛

)2 + 𝑣𝑚𝑖𝑠
𝑛

 

As 𝑛 → ∞,    𝑀𝑆𝐸�𝜃�𝑛𝑚𝑖𝑠� − 𝑀𝑆𝐸�𝜃�𝑛� ≅ 𝑔(𝜃)2 + 2𝑏2𝑔(𝜃)
𝑛

+ 𝑣𝑚𝑖𝑠
𝑛
− 𝑏1

𝑛
− 𝑣1

𝑛
→ 𝑔(𝜃)2 

 

Table 5.1   Estimates of Fixed Effect of ZIP, MIXED, and AR(1) Models 
    
Node  

True  
value 

ZIP (N=2000) MIXED (N=2000) AR(1) (N=2000)  
    

mean sd mse mean sd mse mean sd mse mse 
winner 

𝛽0 .00 .32 .07 .11  .07 .11 .02  -.07 .18 .04  MIX 
𝛽1 .50 .18 .04 .11  .27 .10 .06  .40 .15 .03  AR(1) 
𝛽2 -3.00 -2.33 .34 .57  -2.08 .46 1.06  -2.57 .79 .81  ZIP 
𝛾0 .50 

.92 .02 .18  .54 .03 . 00 .50 .06 . 00 
MIX& 
AR(1) 

𝛾1 6.00 5.53 .10 .24  6.02 .11 .01  6.17 .20 .05  MIX 
Node True  

value 
 MIXED (N=5000) AR(1) (N=5000)  

   
mean sd mse mean sd mse mse 

winner 
𝛽0 .00    0.089 0.08 0.014 -0.038 0.123 0.016 MIX 
𝛽1 .50    0.356 0.071 0.026 0.548 0.102 0.013 AR(1) 
𝛽2 -3.00    -2.132 0.313 0.852 -2.725 0.515 0.341 AR(1) 
𝛾0 .50    0.543 0.02 0.002 0.486 0.035 0.001 AR(1) 
𝛾1 6.00    5.953 0.072 0.007 6.097 0.128 0.026 MIX 
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Figure 5.1       95% Credible Interval of Beta_0 Fixed Effects  

 

 

 
Figure 5.2       95% Credible Interval of Beta_1 Fixed Effects 
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Figure 5.3       95% Credible Interval Beta_2 Fixed Effects  

 

 
Figure 5.4       95% Credible Interval Gamma_0 Fixed Effects  
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Figure 5.5       95% Credible Interval Gamma_1 Fixed Effects  

 

5.2   NLSY97 Data Analysis 

Imputation of Missing Values 

We choose the NLSY97 data to illustrate the models.  Note that the NLSY97 

survey personnel do not, in general, impute missing values or perform internal 

consistency checks across waves.  The following missing value conventions are used 

throughout the data: Noninterview, Valid Skip (respondent was not asked a question 

because it did not apply to him or her), Invalid Skip, Don’t Know, and Refusal.  Item 

nonresponse due to refusals, don’t knows, or invalid skips is usually quite small, so the 

degree to which the weights are incorrect is probably quite small (NLSY, 1997).  The 

weights are not considered here.  Even though the sample size is almost 9000 subjects, 

we have a serious missing value problem.  Only 600 self-reported smoking subjects 
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report cigarette consumption at all five observation times.  Since the ZIP models require 

large sample size, an imputation is needed.   

The following table is the NLSY97 coding for variables NUMBER OF 

CIGARETTES SMOKED 1997 and HAVE YOU EVER SMOKED 1997.  The entries 

are frequencies of responses to each combination of values. Blanks represent zeros. 

Table 5.2   NLSY97 Data Coding Example 
 Have you ever smoked in 1997 

D I R N V 0 (No) 1(Yes) 
Number of cigarettes  
smoked in 1997 

Don’t Know (D)       6 
Invalid skip (I)        
Refuse (R)        4 
Non interview (N)        
Valid skip (V) 5 2 24   5436 1899 
Cigarettes smoked (Y)      0 1608 
Valid total       8943 

 
Only the “Valid Skip” in “Number of Cigarettes Smoked” cell requires 

imputation. The other four types of missing values are deleted from the analysis.  Records 

with missing values in the covariates, e.g., “Have You Ever Smoked,” are also deleted 

from the analysis.   

The 5436 subjects who responded “NO” to “Have you ever smoked” are non-

smokers and their numbers of cigarettes smoked are simply imputed as Y = 0.  The 1899 

subjects who responded “YES” are smokers and we impute their numbers of cigarettes 

smoked as integers Y with Poisson distributions, given the covariates.  Note that the Y 

values of these 3057 subjects (1899 + 1608) do not follow a standard Poisson distribution 

but an overdispersed Poisson.  Since we don’t know how to impute overdispersed 

Poisson data, the use of the Poisson distribution for Y will yield smaller variances 

compared to the original unobserved data.     
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Because the missing pattern is “Swiss cheese” (e.g., a subject may respond in year 1, 

refuse  to respond in year 2, and then respond in year 3) and subjects do not always 

remain in the same class from year to year, we could not impute all five years at one time.  

Instead, we did the imputation year by year.  As a result, our imputation yields smaller 

time correlations compared to original unobserved data.   

For 1997 we used only the 1899 + 1608 = 3507 subjects who responded “YES” to 

“Have you ever smoked” to impute the missing values, using Poisson regression in 

WinBUGS.  The covariates are: AGE (ordinal scale), SEX, PEER (ordinal scale), and 

RACE (nominal scale).  If there were missing covariates, we deleted that case.  The 

priors for the regression coefficients were normal with mean and variance estimated from 

observed data and initial values of the regression coefficients were drawn from their 

priors.  No random effects were used in the imputation.  BUGS imputed the missing 

counts 𝑌𝑖 as random draws from their predictive distribution.  This analysis treats the 

missing data mechanism as ignorable, given the covariates (Gelman et al. 2003, pp. 517-

518).  For each of the later years we used exactly the same methods as described above.  

The imputations for each of the five years were performed independently. 

From the descriptive statistics in Tables 5.3 ~ 5.5, the imputation has some degree 

of bias: We observe slightly smaller means, smaller standard deviations, and lower 

correlations.  If we could provide information in the longitudinal zero inflated Poisson 

data setting--that is, AR(1) model imputation--the imputation might do a better job.  

However, this is beyond the scope of this research.     
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Table 5.3   Numbers of Cigarettes Smoked Per Day from Year 1997 to Year 2001 
Before imputation  After imputation  
Variable  N Mean  SD  Variable N Mean  SD 

cig97 1608 5.0 6.0  cig_97 3485 4.6 4.5 
cig98 2153 6.2 7.6  cig_98 2993 6.1 6.6 
cig99 2418 7.3 8.3  cig_99 3026 7.2 7.6 
cig00 2603 8.0 8.5  cig_00 3146 8.0 7.9 
cig01 2749 8.5 8.8  cig_01 3226 8.4 8.3 

 
Table 5.4   Correlations of Number of Cigarettes Smoked, from 1997 to 2001  
Before imputation After imputation 
Year  1997 1998 1999 2000 2001 Year  1997 1998 1999 2000 2001 
1997 1.00  .45 .34 .35 .30 1997 1.00 .38 .30 .27 .26 
1998  1.00 .51 .44 .35 1998  1.00 .47 .42 .31 
1999   1.00  .55 .40 1999   1.00 .50 .38 
2000    1.00  .51 2000    1.00 .47 
2001     1.00  2001     1.00 
 
Table 5.5   Numbers of Cigarettes Smoked Per Day in Year 1997 
Before imputation After imputation  Before imputation After imputation  
cig97 Frequency cig_97 Frequency cig97 Frequency cig_97 Frequency 

0 146 0 232 16 8 16 8 
1 450 1 609 17 8 17 9 
2 232 2 531 18 7 18 7 
3 139 3 467 19 1 19 1 
4 94 4 370 20 68 20 67 
5 95 5 301 21 0 21 0 
6 48 6 233 22 1 22 1 
7 30 7 146 23 1 23 1 
8 32 8 127 24 5 24 5 
9 8 9 71 25 7 25 7 
10 124 10 152 26 1 26 1 
11 5 11 18 27 0 27 0 
12 16 12 26 28 0 28 0 
13 5 13 14 29 0 29 0 
14 2 14 5 30 14 30 14 
15 61 15 62     
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NLSY97 Data Analysis 

The imputed NLSY97 data has N = 6932 complete cases, five time waves, and 

four covariates.  The RACE variable was coded using three dummy variables, the 

indicators of  “BLACK,” “HISPANIC,” and “MIXED.”  Now we have 19 parameters to 

estimate.  The SEX variable was coded using one dummy variable, the indicator of SEX 

= “female”.  We explored the unimputed NLSY data using a GLMM Poisson model and 

GLMM logistic model to get some idea about the data.  Then we used this knowledge to 

assign some of the priors (fixed effect, 𝜎𝑢, and 𝜎𝑣 priors) and initial values (fixed effect, 

𝜎𝑢, and 𝜎𝑣).  We also used the knowledge from our previous simulation studies to assign 

the priors and some of the initial values.  The remaining initial values were generated by 

BUGS from the prior distributions.  All the prior distributions and model structure are the 

same as the model used in the simulation study.  Only one chain is used in this analysis, 

but we still have some other tools to check convergence.  The model runs smoothly but 

extremely slowly.  Because of high autocorrelation, the iterations were thinned by a 

factor of 20.  In each 24 hours OpenBUGS could only run 5000 iterations, which with the 

thinning factor produced 250 saved values in the chains.  The AR(1) model ran for more 

than 15 days, performing 250 X 20 X 15 = 75000 (iterations) with a burn-in of 

60000 iterations.  The ratios (MC_error/Sd) are around 16%.  Ideally, we would like 

these ratios to be no more than 1%.   

Table 5.6 displays the results.  Based on the results, we highlight important 

random effect parameters in yellow and the most important covariate parameters in green 

in terms of statistical significance.  The random effect parameters, 𝜑, 𝜓𝜓, 𝜎𝑢, 𝜎𝑣, and 𝜌𝑢𝑣 

are overwhelmingly significant.  We conclude that the NLSY data are strongly influenced 
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by the random effects, which are highly correlated.  Evidently a simpler random effect 

structure would not adequately fit these data, so the ZIP model may produce serious bias 

for this NLSY data.  However, MIXED model might produce milder bias than we saw in 

the simulation study of Chapter 5.1, in which 𝜑 = .85 and 𝜓𝜓 =  .85.  The MIXED model 

will cause negligible bias and smaller variance when 𝜑 = 1 and 𝜓𝜓 =  1.     

Most of the covariates have a significant effect in the model.  Based on the 

logistic regression, which estimates the probability that a youth is a nonsmoker, Hispanic 

and mixed race youths are more likely than whites to smoke because their coefficients 

have negative signs; the older youths are more likely than younger youths to be smokers; 

the youth having more peers who are smokers is more likely be a smoker.    Based on the 

Poisson regression, which estimates the numbers of cigarettes that a youth smoked, black 

smokers smoke more cigarettes than white smokers; Hispanic and mixed smokers smoke 

fewer cigarettes than white smokers; the older youths are more likely than younger 

youths to smoke more cigarettes; the youth having more peers as smokers are more likely 

to smoke more cigarettes. 

Table 5.6   NLSY 1997 ~ 2001 Data Analysis Results (AR(1) Model) 
Logistic  Mean Sd MC_error Poisson  Mean Sd MC_error 
beta 5.282 .652 .115 gamma -.514 .063 .011 
age -.251 .021 .004 age_p .041 .002 .000 
peer -.438 .057 .008 peer_p .248 .015 .003 
sex .912 .209 .028 sex_p -.056 .042 .007 
black .860 .502 .088 black_p 1.949 .043 .007 
hisp -2.572 .219 .032 hisp_p -.741 .059 .011 
mixed -12.58 .236 .029 mixed_p -3.397 .030 .005 

𝜑 .949 .000 .000 𝜓𝜓 .868 .000 .000 
𝜎𝑢 7.223 .054 .009 𝜎𝑣 3.635 .006 .001 

        
𝜌𝑢𝑣 .886 .002 .000     
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Since we don’t know the true parameters of the NLSY97 data, we would like to 

use the deviance information criterion (DIC) in BUGS to make model fit comparisons.  

However the DIC assumes that the posterior mean can be used as a “good” summary of 

central location for description of the posterior distribution (Ntzoufras, 2009, pp 140-

141).  Since we did not run the model long enough to meet the model convergence 

assumption, we did not use DIC for these analyses.  We present the other two model 

results in the following.     

Table 5.7   NLSY 1997 ~ 2001 Data Analysis Results (MIXED Model) 
Logistic  Mean Sd MC_error Poisson  Mean Sd MC_error 
beta 4.027 2.174 0.339 gamma -0.909 0.338 0.052 
age -0.232 0.031 0.003 age_p 0.035 0.010 0.001 
peer -0.532 0.046 0.006 peer_p 0.199 0.022 0.003 
sex 0.155 0.069 0.004 sex_p -0.244 0.031 0.003 
black 2.708 2.236 0.351 black_p 0.873 0.359 0.055 
hisp -0.820 0.122 0.009 hisp_p 0.114 0.057 0.006 
mixed -0.754 0.108 0.009 mixed_p 0.540 0.032 0.001 

𝜎𝑢 2.464 0.255 0.038 𝜎𝑣 0.706 0.089 0.013 
𝜌𝑢𝑣 -0.472 0.081 0.012     

   

Table 5.8   NLSY 1997 ~ 2001 Data Analysis Results (ZIP Model) 
Logistic  Mean Sd MC_error Poisson  Mean Sd MC_error 
beta 3.578 .038 .008 gamma -.609 .018 .003 
age -.116 .008 .002 age_p .039 .001 .000 
peer -.308 .009 .001 peer_p .144 .003 .000 
sex .103 .023 .001 sex_p -.204 .007 .000 
black .108 .147 .032 black_p 1.299 .017 .004 
hisp -.472 .037 .004 hisp_p .049 .013 .002 
mixed -.491 .030 .003 mixed_p .427 .010 .001 

 

These three models all have ratio (MC_error / SD) around 16%.  Some parameters 

are not quite convergent yet; while some are not mixing well.  Running a longer time 

might be helpful.     
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Even the ZIP model needs an extra one or two weeks of running time.   Based on 

observing the trace plots and hist plots, we found that the estimation of Poisson 

regression is much worse than logistic regression in terms of the stability of the Markov 

chain.  This is opposite to the results we saw in the simulation study.  A possible reason is 

the bumps of numbers of cigarettes smoked, that the frequency of 5, 10, 15, or 20 

cigarettes smoked are especially higher than other numbers.  As for the estimation of 

variances, the ZIP model has smallest variances and the AR(1) model has largest 

variances.  This finding agrees with our simulation study.          

Although none of three models is the true model, we think AR(1) is closer to the 

truth.  None of the parameter estimates are close together values in the three models.  

Some of parameters have the same sign and the magnitudes of the values occur in 

decreasing order of AR(1), MIX, and ZIP.  For example, the estimated means of 𝛽̂ are 

5.282 (AR(1)), 4.027 (MIX),  and 3.578 (ZIP).  However, some parameters do even not 

meet this level of agreement (highlighted in Yellow).  We also found that more than half 

of the MIX model estimates (highlighted in red) have big discrepancies from those of the 

AR(1) model.  The prior in MIX model is one possible reason.     

Table 5.9   Comparison of AR(1), MIX, and ZIP Model Estimates of Means   
LOGISTIC  AR(1) MIX ZIP POISSON  AR(1) MIX ZIP 
beta 5.282 4.027 3.578 gamma -.514 -0.909 -.609 
age -.251 -0.232 -.116 age_p .041 0.035 .039 
peer -.438 -0.532 -.308 peer_p .248 0.199 .144 
sex .912 0.155 .103 sex_p -.056 -0.244 -.204 
black .860 2.708 .108 black_p 1.949 0.873 1.299 
hisp -2.572 -0.820 -.472 hisp_p -.741 0.114 .049 
mixed -12.58 -0.754 -.491 mixed_p -3.397 0.540 .427 

𝜎𝑢 7.223 2.464  𝜎𝑣 3.635 0.706  
𝜌𝑢𝑣 .886 -0.472      
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Chapter VI 

Conclusions and Future Research 

6.1   Summary 

In this study, we developed the AR(1) model to handle longitudinal zero inflated 

Poisson data.  We conducted simulation studies of the model and fitted the model to a 

real world data set, the National Longitudinal Survey of Youth.  We used the theory of 

maximum likelihood estimation and Fisher information to develop estimates of the 

necessary sample size for our simulations.  We compared the performance of the AR(1) 

model to simpler models to assess bias and sampling error.  

For the simulated AR(1) data, which had features of the NLSY97 data, the ZIP 

model and MIXED model produced seriously biased estimates of the fixed effect 

parameters. However, these simpler models had less sampling variability than the AR(1) 

model, because fewer parameters had to be estimated.  

The AR(1) model requires a large sample size to obtain adequate accuracy.  Also, 

the large sample size, complicated model structure, and slowness of BUGS software 

require a tremendous length of time to analyze data using MCMC methods.  The AR(1) 

model as implemented in BUGS, imposes a heavy computational burden.   

 

6.2   Topics for Future Research 

The AR(1) ZIP model entails a heavy computational burden.  A more 

sophisticated MCMC algorithm might potentially reduce the computational requirements 

and make the model more useful to practitioners.  Such algorithms might not be possible 

in BUGS and may require programming in more flexible languages, such as R or C++. 
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Maximum likelihood estimation does not seem like a practical way to analyze the 

model because of the need to compute high dimensional integrals for each subject in 

order to evaluate the likelihood.   

It is possible that a Generalized Estimating Equation (GEE) approach might be 

devised.  The GEE approach requires one to model the mean response accurately, but a 

correct model of the variance-covariance structure is not required (Agresti, 2002, Ch. 11).  

However, the mean response still involves integrals that can’t be evaluated in closed 

form.  Therefore GEE may also lead to computational difficulties. 

Fitting the GLMM model instead of the AR(1) model is another alternative 

method.  Our simulations suggest that estimates of regression coefficients may be biased 

under this model.  One can not be sure whether the smaller standard errors and 

computational savings would offset the bias in estimating regression coefficients.   
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