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This thesis is intended to provide a theoretical analysis of magnetization dynamics in 

nanometer scale structures over picosecond time scales. This research has been 

motivated by promising technological applications in the area of magnetic data 

storage, as well as by pure scientific quest for ultra-fast spin dynamics in 

nanostructures. 

The present paradigm of magnetic data storage is approaching its fundamental 

limits for areal storage density, as well as for speed in data processing.  As a result, 

there is an urgent need for reliable alternatives to current magnetic recording media, 

which are based on longitudinal thin film, and to the conventional mechanism of 

magnetization reversal, based on damping switching.  In this dissertation, faster 

modes of magnetization reversals, using precessional magnetization motion, are 

analyzed in traditional longitudinal media and in its promising alternatives: 

perpendicular and patterned media.  This analysis uses multi-spin description of 



magnetic nanoparticles and continuum micromagnetics for thin film media.  The 

spins dynamics in both discrete and continuum versions is modeled by Landau 

Lifshitz type equations.  These models are introduced in Chapter 2, subsequent to an 

overview of magnetic recording media offered in Chapter 1. 

The analytical study of precessional switching in perpendicular thin film media 

is presented in Chapter 3.  The features of precessional magnetization switching and 

conventional magnetization reversal are compared, and the design of magnetic field 

pulses that guarantee precessional switching is discussed.  In Chapter 4, the study of 

precessional magnetization switching in longitudinal thin film media is undertaken.  

After a short summary of the research studies on this topic, the inverse problem 

approach to the analysis of precessional switching in these media is presented.  This 

approach leads to explicit expressions for the magnetic field pulses that guarantee the 

precessional switching. 

The study of surface anisotropy effects on magnetization reversals in 

nanoparticles is presented in Chapter 5.  The expressions for critical magnetic fields 

that guarantee the quasi-static and precessional reversals are analytically derived for 

the case of very strong exchange and weak surface anisotropy.  These analytical 

results are also used to test the numerical approach, which is applied to the general 

case of the problem. 
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1. Introduction 

“To see a world in a grain of sand, 

And a heaven in a wild flower, 

Hold infinity in the palm of your hand, 

And eternity in an hour.” 

Auguries of Innocence, William Blake  

 

This thesis is intended to provide a theoretical analysis of magnetization dynamics in 

nanometer scale magnetic structures over picosecond time scales.  This research has 

been motivated by promising technological applications in the area of magnetic data 

storage, as well as by pure scientific quest for ultra-fast spin dynamics in 

nanostructures.  

The prevalent objectives in data storage technology are to increase the storage 

capacity in memory devices and to decrease the access time to any given bit inside 

the device.  It is apparent that these two objectives cannot be optimized 

simultaneously, and for any specific application a trade-off should be accepted.  For 

example, terabit capacities are correlated with millisecond access times in hard-disk 

drives (HDD) [1-4], while megabit capacities are correlated with ten-nanosecond 

access times in magnetoresitive random access memories (MRAM) [5-8]. 

The evolution of data storage technology has been impressive since 1955, when 

IBM built the first hard disk drive featuring a storage capacity of 5MB with areal 

recording density of 2 kbit/in2.  The barrier of 100 Gbit/in2 has already been passed in 

2002 and demonstrations with area recording densities as high as 1 Tbit/in2 are 
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expected.  It is apparent from these data that the storage of an information bit is 

related to nanometer scale magnetic thin film structures.  Moreover, magnetic 

patterned media with a single-bit-per-island recording methodology have also been 

considered as recording media and have successfully passed preliminary tests [9-10].  

These patterned media use nanoparticles with diameters from 3 to 12 nanometers.  In 

addition to the interest in the areal storage densities, a special emphasis is placed on 

the data rate of the disk drive, which is also continuously increasing at a fast pace.  

The current disk drives operate at a maximum internal data transfer rate of 

approximately 130 MB/s, which corresponds to a channel data rate of 1.17 Gbit/s 

(using an 8/9 modulation code).  Therefore, the writing time for a single bit, or 

equivalently the magnetization reversal time in a bit nanostructure cell, is below 1 ns. 

Another tremendous research effort in the magnetic data storage has been 

devoted in the recent years to magnetoresistive random access memory.  MRAM has 

the potential to store data at a high density, to access them with a high speed, and to 

be a low power consumer [6].  Once the performances in these directions become 

comparable with the ones of the semiconductors based memory, the nonvolatility 

property could determine the use of MRAM as a ‘universal memory’.  In 2004, 

Infineon Technology and IBM have produced the first 16 MB MRAM chip with read 

and write cycles less than 30 ns.  The most common design for MRAM uses a 

magnetic tunnel junction: two ferromagnetic thin films play the role of electrodes and 

a thin tunneling barrier separates them.  The resistance of the tunneling junction is 

significantly modified as the magnetic moments of the ferromagnetic layers change 

their relative orientation.  The difference in junction resistances corresponding to the 
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stable parallel and anti-parallel orientations, respectively, makes possible the 

definition of the binary memory states (see Section 1.1).  The ferromagnetic thin 

films electrodes have nanometer dimensions and the magnetization reversal time in 

these devices is in nanosecond regime.  In conclusion, the understanding and 

controlling the behavior of magnetic nanoparticles and nanostructures over 

picosecond time scales are of great present and future interest in the hard disk drive 

area, as well as in MRAM technology. 

The traditional mechanism of magnetization reversal (so called damping 

switching) is in nanosecond regime.  In principle, this reversal time can be reduced to 

picosecond regime by applying higher writing magnetic fields.  However, the modern 

write poles are approaching their maximum achievable writing field.  In addition, the 

increase of storage density is done with the cost of increasing the anisotropy field in 

order to meet the requirements for long-term stability of the stored bit (see Section 

1.1).  Since the reversal time is actually proportional with the difference between the 

writing field and the anisotropy field, a trade-off problem appears between the storage 

density and the reversal time.  In conclusion, there is an urgent need for much faster 

modes of reversals in order to match the demand for speed in data processing, both in 

HDD and MRAM.  A promising idea in this direction is to exploit fast precessional 

magnetization dynamics, which belongs to picosecond regime (precessional 

switching) [11-13]. 

In this thesis, the study of precessional switching is the Ariadne’s thread that 

will guide us through the labyrinth of nonlinear spin dynamics in magnetic 

nanostructures. 
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1.1. Overview of the magnetic recording media: present and promises 

In this section, we review a few fundamental aspects of the traditional magnetic 

recording media and analyze novel architectures that are or promise to become 

alternative solutions to the current media.  Some of these discussions will be extended 

in the next chapters according to the specific topic of each chapter. 

The evolution of the data storage technology in the last fifty years can be 

framed into one paradigm, namely the longitudinal recording. In the longitudinal 

recording, the magnetization lies in the plane of the recording media and it is flipped 

between the two stable orientations along the head-medium motion.  The recording 

process is sketched in Figure 1.1.  The writing head is composed of a soft magnetic 

circuit (yoke) and a wire winding around it connected to a signal current source.  

When a current passes through the wire, the yoke is magnetized and a fringing 

magnetic field appears from the gap.  The appropriate choice of the current leads to a 

magnetic field orientated opposite to the cell magnetization, high enough to switch 

the magnetization orientation.  Afterward, either the recoding medium (in tape, floppy 

disk) or the write-head (in HDD) is moving, and another layer cell is written, if 

necessary.  The reading process in the longitudinal recording is based on sensing the 

gradient of the magnetic field created by the recording layer at the transition between 

two opposite magnetized cells.  Thus, the existence of opposite magnetization states 

in two adjacent cells is translated into digit 1, while the absence of such transition is 

interpreted as 0.  The read-head is either similar to the description of the write-head, 

or it has a spin valves sensor based on giant magnetoresistive effect [14]. 
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Figure 1.1:  Schematic representation of a typical longitudinal recording system, 

including a ring head and a magnetic recording layer. 

 

      
             (a)       (b) 

Figure 1.2:  (a) Schematic representation of written tracks in a thin film media with 

63 Gb/in2 storage density. (b) A typical zigzag shape transition between cells 

magnetized in opposite directions. 
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Regarding the magnetic layers used in the previously described recording 

process, there are two possible structures: particulate and thin film media.  The 

former have a discrete structure and are generally composed of ferri or ferromagnetic 

oxide particles deposited on a rigid or flexible substrate.  The particles are usually 

aciculate (which leads to a pronounced shape anisotropy), with the length between 

200 and 700 nm and a thickness 5-7 times smaller, and have uniaxial 

magnetocrystaline anisotropy constant Ku varying from 1-100 kJ/m3 depending on the 

chemical composition.  The particulate media are used in tapes, floppy disks, and zip 

disks.  The thin film medium has a continuous granular structure (see Figure 1.2 (b)) 

and consists of Co-alloy sputtered on a suitable growth enhancing underlayer.  The 

grain diameter can go as low as a few nanometers and the magnetic anisotropy is 

mainly of crystalline origin with anisotropy constant Ku varying from 0.1-10 MJ/m3.  

The small grain size and the continuous structure (packing factor is almost 100%, 

while in particulate media it is between 25 and 40%) make them appropriate to high 

density storage.  Thin film media replaced the particulate media in hard disk drives in 

early 1990’s and had been the main contributor to the swift increase in the hard disk 

drives performances over the last decade. 

The basic physical principle along this evolutionary path was the scaling law of 

the magnetostatic problems:  Maxwell equations for magnetostatic case are invariant 

to the scaling of spatial dimensions by a factor f, as long as current densities are 

scaled by 1/f (or equivalently, the current intensities are scaled by f ).  Thus, the 

magnetic field configuration and magnitudes remain unchanged, and the main 

challenge is to maintain the magnetic properties of the materials at smaller 
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dimensions.  It is clear that this principle is only an ideal representation of the real 

situation and consequently, there are many other technological or scientific problems 

to be solved for a successful scaling procedure [15].  Nevertheless, this principle has 

been successfully implemented for the last fifty years without fundamental changes of 

magnetic recording paradigm.  Next, we intend to analyze if this development process 

can be successfully continued or it is obstructed by some fundamental limits related 

to the preservation of the magnetic properties of the materials at smaller scales. 

It is probably common to imagine a recording layer as a collection of magnetic 

particles or grains, each one of them containing a bit of information.  However, the 

reality is far more complicated: a single memory cell has to contain a few hundreds 

particles or grains and the bit of information is actually stored in the magnetic field 

gradient at the transition between two adjacent cells.  This situation is mostly due to 

the limited technological capabilities of creating uniform size magnetic particles and 

assembling them in a periodic structure.  Nevertheless, with the recent advances in 

nanotechnology, these limitations might be overcome and it is most likely that data 

storage will be based on a single bit per nanoparticle technology in the future.  The 

costs of manufacturing them on a large scale and implementing new write-read 

technologies are still much higher than the ones in particulate and thin film magnetic 

media [16], and consequently, the latter will still be dominating the magnetic data 

storage industry in the next few years. 

The existing HDDs provide a recording areal density of 20-40 Gb/in2 and, as we 

mentioned above, 100-200 Gb/in2 have been achieved in various research laboratories 

[17-19].  In Figure 1.2 we present a schematic geometrical configuration for a thin 
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film used in Read-Rite Corporation Laboratories to obtain a density of 63 Gb/in2 [17].  

Each cell contains about 200 grains, with an average grain diameter of approximately 

10 nm.  The nonuniformity of the grains, as well as their random locations with 

respect to cell boundaries lead to the zigzag shape of the transition between the cells, 

as it is illustrated in Figure 1.2 (b).  This nonuniform transition between cells leads to 

nonuniformities in the field gradient, which generates disturbances in the signal 

produced by the reading sensor.  This is the main source of noise due to the magnetic 

layer in the magnetic recording.  An acceptable signal-to-noise ratio requires at least 

hundreds of grains in a memory cell.  It is now clear that the scaling procedure for 

higher storage densities also requires scaling the magnetic grains forming the memory 

cell.  As we will see in a subsequent discussion, the further decrease in the grains 

dimension encounters fundamental limitations due to the thermal perturbations that 

affect the stability of the grain magnetization orientation. 

The behavior of the grains magnetic moments under the applied magnetic field 

is affected by: exchange interactions, which favor the parallel alignment of the 

neighboring moments; dipole-dipole interactions, which lead to a demagnetizing field 

that forces the magnetic moments of the grains to lie in the thin film plane; and the 

magnetocrystalline uniaxial anisotropy that favors the magnetization orientation along 

easy anisotropy axis.  By using a nonmagnetic alloy to separate the grains, the 

exchange interactions between the grains are significantly reduced.  As a result, the 

thin film medium acts as a collection of partially independent magnetic particles with 

random easy anisotropy axes subject to a strong demagnetizing field that forces 

magnetic moments to lie in the thin film plane.  Although the randomness of the easy 



 9

axes is not a desirable property of the recording media, it is technologically difficult 

to grow thin films with grains magnetic anisotropy axis tangent to the circular track.  

The qualitative behavior of a memory cell magnetization during the reversal process 

produced by a slowly varying applied field is illustrated in Figure 1.3 (the external 

field varies “slowly” as compared to the magnetization relaxation).  The characteristic 

quantities of the magnetization curve are: remanent magnetization Mr (the cell 

magnetization after the field is switched off), coercive field Hc (the value of the 

applied field at which magnetization crosses zero), and saturation magnetization Ms 

(the maximum value of the magnetization cell, which corresponds to the perfect 

alignment of the grains magnetic moments along the applied field direction).   

 

Figure 1.3:  Conventional magnetization reversal curve produced by a slowly varying 

applied magnetic field. A typical variation of the external applied field is presented in 

the lower right corner. 
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Let us remark that if all easy axes of the grains were oriented along the track 

then the corresponding magnetic curve would have a rectangular shape with Mr=Ms, 

while in the case of non-interacting grains with randomly oriented easy axis the 

magnetization evolution would have a more curved shape with Mr=(1/2)Ms.  The 

compromise between the randomness of the anisotropy axis and the interactions 

between grains leads to the behavior presented in the Figure with the remanent 

magnetization usually related to the saturation magnetization be a factor of 0.8-0.85.  

On the other hand, coercive field Hc of the magnetic layer is related to the 

magnetocrytalline anisotropy field (=2Ku/µ0Ms) and the shape anisotropy of the 

grains, but it is also greatly affected by extrinsic effects such as film stress or thin 

film surface. The relation between coercive and anisotropy fields varies from one 

case to another and raises many controversies due to the discrepancy between the 

experimental results and theoretical predictions [20].   

Next, we will focus on the behavior of a single grain inside the assembly, rather 

than the assembly as a whole.  For the sake of discussion, let us consider a magnetic 

nanoparticle of spherical shape.  According to the fundamental theorem of fine-

ferromagnetic-particle theory proved by Brown [21], there is a critical diameter, 

below which the nanoparticle is uniformly magnetized and the magnetization reversal 

occurs by uniform mode.  For somewhat larger ones, nonlinear reversal modes (such 

as curling mode and buckling mode) are expected but the particle can still be 

considered as a monodomain; for even larger samples the magnetization has a multi-

domain structure and magnetization reversal may occur via domain wall propagation 

process [21, 22].  The numerical and experimental results published over the last 
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decade in this area [23]-[25] have partially confirmed this scenario.  The large 

majority of grains in magnetic layers with storage densities above 20 Gb/in2 have 

diameters below 20nm.  Since the critical diameter for a cobalt sphere is above 20nm 

(analytical calculations [26] lead to a critical diameter equal to 23.4 nm), we can 

conclude that each grain behaves as a magnetic monodomain and the magnetization 

rotates in unison across the grain. 

The basic principles of the quasi-static magnetization reversals in single 

magnetic domain particles can be found in the seminal works of Stoner and 

Wohlfarth [27], and Neel [28] in late 1940’s.  This physical system exhibits multiple 

metastable states. The magnetization can persist in a metastable state for some time, 

but thermal perturbations may drive it to other metastable states.  As it is presented in 

Figure 1.4, the energy of uniaxial anisotropy magnetic particle has two minima and 

the magnetization orientation lies initially into one energy minimum. 

 

 

Figure 1.4:  Energy variation as a function of angle θ between the direction of 

magnetization and easy anisotropy axis.  The dotted lines represent different 

mechanisms of switching in the presence of an energy barrier. 
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The energy barrier for the magnetization reversal of an isolated spherical grain 

in the absence of the applied field is simply given by: 

 uE K V∆ = , (1.1) 

where Ku is the magnetocrystalline anisotropy constant, and V is the volume of the 

nanoparticle.  According to the Arrhennius-Neel law [3, 28], the mean time for the 

thermally activated magnetization reversal (so called superparamagnetic effect) to 

occur can be expressed in the following form: 

 0 exp
B

E
k T

τ τ
 ∆

=  
 

, (1.2) 

where kB ~ 1.38x10-23 m2kg/(s2K) is the Boltzmann’s constant, T is the absolute 

temperature of the system, and the constant τ0 is on the order of nanosecond.  It is 

apparent now that the condition of the stability for the recording media can be 

translated in a condition for the energy barrier between the energy minima.  

Consequently, in order to assure the magnetization orientation stability for a longer 

time than τ, the diameter of the nanoparticle should satisfy the following condition: 

 ( )03
6 lnB

u

k T
d

K
τ τ

π
> . (1.3) 

Since the reliability of the hard disk drives requires a time τ larger than 10 years, the 

previous condition gives d>9nm, when the anisotropy constant Ku=0.5 MJ/m3 (for 

cobalt) and temperature T=350 K are considered.  As we mentioned above and it is 

represented in Figure 1.2, the average nanoparticle diameter in thin film layer with 

63Gb/in2 storage density is approximately 10 nm.  In conclusion, the 

superparamagnetic effect imposes a fundamental limit to the scaling principle. 
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The previous analysis of superparamagnetic limit was done for an isolated 

spherical grain.  As we mentioned above, the grain is actually part of a thin film 

medium and consequently, it senses the interactions with other grains of the 

assembly.  In addition, variations from the spherical shape, as well as from the 

chemical composition of the grain are involved in a real thin film.  These facts make 

the study of thermal effects a much more complex problem.  There exist a few recent 

attempts to offer a more appropriate description of these limits (see [29-31]).  

However, the final results are not essentially different from the ones computed using 

formula (1.3), and the corrections mainly contribute to the increase in the critical 

diameter making the superparamagnetic problem even more critical.  In conclusion, 

the traditional magnetic recording procedures, as well as the improving principle, 

seem to reach their own saturation.  In spite of these fundamental difficulties, it is too 

early to predict the “death” of magnetic recording as it has been suggested in the last 

years.  There exist numerous less-explored paths that can provide alternative solutions 

to overcome these limitations. 

One of the simplest ideas to overcome the current superparamagnetic limit is 

revealed in formula (1.3).  By using magnetic materials with higher anisotropy 

constant Ku, the critical radius can be reduced.  It has been showed in [9] and [32] that 

a specially prepared FePt and CoPt alloys, respectively, possess anisotropy constants 

up to one order of magnitude higher than the ones currently in use.  Another direction 

is to improve the signal-to-noise characteristics of the recording media and, 

consequently, the total number of grains required in each memory cell can be 

decreased.  A solution in this direction is to grow thin film with grains anisotropy axis 
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oriented as close as possible along the track.  A measure of this feature is given by the 

orientation ratio /r rOR M M ⊥= , where Mr and rM ⊥  represent the remanent 

magnetization along and perpendicular to the track, respectively.  The current media 

have a random distribution of the easy axis that leads to an orientation factor close to 

one. Highly oriented media have been reported in the last three years and used to 

achieve recording densities of 100-200 Gb/in2 [19, 33].   

The solutions for further improving storage density can also be found outside 

the current paradigm of magnetic storage that uses longitudinal recording.  Thus, the 

perpendicular oriented media have been introduced in HDDs since 2004, and they are 

expected to push areal densities beyond 1Tb/in2 in the next few years.  Although 

these media have been studied for more than thirty years, the cost of implementing 

them was not justified as long as the longitudinal media were developing at a very 

fast pace and a low cost.  A perpendicular recording system is sketched in Figure 1.5.  

As opposed to the longitudinal recording, the magnetization stands 

perpendicular to the thin film plane.  This situation is realized using materials with 

high anisotropy constants Ku (such as cobalt) in combination with other metals (for 

example, chromium) that reduce the saturation magnetization Ms while keeping 

relatively stables the easy-axis and the anisotropy constant.  As a result, the 

anisotropy field (proportional to Ks) becomes greater than the demagnetizing field 

(proportional to Ms) and consequently, the orientation perpendicular to the thin film 

plane is favorable for the magnetization [34-36].  The write field is generated by a 

single pole head and a soft magnetic underlayer located below the recording layer.  

The soft magnetic underlayer “creates” a mirror image of the recording head.  
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Figure 1.5:  Schematic representation of a typical perpendicular recording system, 

including a single-pole head, a magnetic recording layer, and a soft magnetic 

underlayer. 

 

 

 

Figure 1.6:  Schematic representation of longitudinal (left) and perpendicular (right) 

patterned media. 
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Consequently, the magnetic recording layer is situated in the gap formed by the real 

pole and its mirror image.  As opposed to longitudinal recording, which is performed 

by the fringing fields emanating from the gap region between the write-poles of a 

conventional ring-type head (see Figure 1.1), the writing field for perpendicular 

recording is the magnetic field created in the gap.  This observation reveals an 

immediate advantage of the perpendicular recording over the longitudinal one: the 

upper limit of the writing gap field (given by 4πMs) is two times higher than the 

highest achievable with fringing field (given by 2πMs).  As a consequence, higher 

write fields allow using magnetic materials with higher anisotropy constants, which 

decrease the critical diameter (1.3) required for thermal stability.  Moreover, the 

perpendicular recording also benefits from its naturally high orientation ratio, which 

allows reliable signal-to-noise ratio in the condition of a smaller number of grains per 

memory cell (recall the previous discussion of the orientation ratio for the case of 

longitudinal media). In addition, a key advantage of perpendicular over the 

longitudinal one is the behavior of the demagnetizing field at high density.  While in 

longitudinal media the demagnetizing fields destabilize the domain structures at high 

densities, in perpendicular media the demagnetizing field improves the bit pattern 

stability.  In conclusion, the perpendicular recording offers many advantages over 

traditional longitudinal recording but, in order to fully benefit from this potential, 

further improvements are needed. 

Magnetic patterned media with a single-bit-per-island recording methodology 

have also been considered as possible solutions to overcome the superparamagnetic 

limit encountered by the current longitudinal thin film media.  A schematic 
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representation of these media is presented in Figure 1.6.  These patterned media use 

nanoparticles with diameters from 3 to 12 nanometers. In contrast to thin film media 

that use hundreds of nanograins to store a bit of information, the patterned media use 

only one nanoparticle for this purpose.  However, there exist many technological 

challenges to manufacture uniformly size magnetic particles and assemble them in a 

periodic structure, at a low cost [16].  Apart from the fabrication problem, there is a 

major difficulty of synchronizing the write pulse to the bit pattern, as compared to the 

thin film media, where slight variations in write head speed are permissible [37]. 

In addition to the strong interest in the hard disk drive development, a 

tremendous research effort in magnetic data storage industry has been devoted to the 

magnetoresistive random access memory over the last five years.  A schematic 

representation of a memory cell in the MRAM is presented in Figure 1.7.  Each 

memory cell has a submicron multilayer magnetic structure formed by: an 

antiferomagnetic layer at the bottom, an artificial antiferromagnetic layer in the 

middle with the direction of magnetization fixed (so-called pined layer), a soft 

ferromagnetic layer on the top that has the magnetization moving freely (so called 

free layer), and a tunneling insulating barrier between the free and pined layer.  This 

magnetic structure is connected to two electrodes (top and bottom electrodes) used for 

read process.  In addition, another electric track is located at the bottom (write word 

line) and it is used for the writing process.  The free magnetic layer has two 

equilibrium positions (“left” and “right”), which correspond to the data values “1” 

and “0”.  The writing and reading processes are quite different from the one in HDD 

and are described in the next paragraph. 
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This image is used with the permission of IBM Corporation. 

Figure 1.7:  Schematic representation of a MRAM cell: the magnetic multilayer 

structure, the top and bottom electrodes, and the write word line. 

 

In order to explain the writing process, let us denote by y the direction of write 

word line and by x the bit line direction.  When a current is flowing through the write 

word line a magnetic field is created in the x direction.  This field is sensed by all 

magnetic cells situated on that word line, but is not high enough to switch the 

magnetization of the free layer in any one of them.  An analog situation occurs when 

an additional current is sent trough the bit line creating a magnetic field in the y 

direction.  However, the superposition of these two fields, mainly concentrated on the 

cell located at the intersection of the bit and write-word lines, has enough amplitude 

to switch the magnetization of the free layer belonging to the discussed cell.  The 

resistance of the tunneling junction is significantly modified as the magnetic moments 

of the ferromagnetic layers change their relative orientation.  The difference in 

junction resistances corresponding to the stable parallel and anti-parallel orientations, 
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respectively, makes possible the definition of the binary memory states.  In the 

reading process, a current is sent from the bottom to the top electrode and a low or 

high resistance is thus detected, corresponding to the data value “1” or “0”, 

respectively. 

The magnetic memory combines high-speed data processing and high storage 

density with nonvolatility property.  The immediate goal of MRAM industry is to 

replace the current nonvolatile flash memory, which has a much lower operational 

speed and a higher fabrication cost.  The long-term objective is to approach the 

processing speed of the static random access memory (SRAM) and the density of the 

dynamic random access memory (DRAM).  Once the performances in these 

directions become comparable with the ones of the semiconductors based memory, 

the nonvolatility property could determine the use of MRAM as a ‘universal 

memory’.  However, both density and speed improvements face fundamental limits 

similar to the ones discussed in HDD case. Consequently, there is an urgent need for 

new recording and storage techniques to overcome these limitations. 

In this section, a few basic aspects of the traditional magnetic recording media 

were reviewed and the fundamental limitations to this approach were presented. In 

addition, novel architectures that are or promise to become alternative solutions to the 

current longitudinal recording were discussed.  In this thesis, the conventional, as 

well as the alternative recording media are analyzed on ultra-short (picosecond) time 

scales complementing the traditional studies focused on larger time scales. 
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1.2. Outline of the ultra-fast magnetization reversal studies 

The experimental research in the magnetization dynamics has been essentially limited 

to the quasi-static range until recently.  The situation has been substantially changed 

by the ongoing development of femtosecond laser technologies that made 

stroboscopic imaging of the magnetization dynamics in microscopic structures very 

convenient.  In addition, this development has offered the opportunity to create 

ultrashort magnetic pulses needed for the study of magnetization dynamics on the 

picosecond time scale. 

Freeman et al., from the IBM Research Division, have presented the basic ideas 

of these techniques and some preliminary results in early 1990’s [38-41].  However, 

the possibility of writing a magnetic pattern into magnetic recording media using 

ultrashort magnetic pulses was demonstrated using a completely different 

experimental set-up designed by Siegmann et al., at the Stanford University in 1995 

[11].  In this method, the field was produced by an electron beam focused on a few 

square microns of a perpendicularly oriented film of CoPt.  Doyle and He presented a 

numerical description of these experiments using Landau-Lifshitz equation approach 

and clarified the precessional origin of this ultrafast magnetization switching [42-43].  

In the late 1990’s, new experimental results were published and proved to be in 

quantitative agreement with Landau-Lifshitz equation in macrospin approximation 

[44-45]. Although beautifully conceived, the method of Siegmann et al. requires a 

special current source, namely the Stanford Linear Accelerator, which rather limits 

the technological applicability. 
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In the last five years, many experimental techniques [46-49] have emerged in 

this area, impelled by the promising applications in HDD and MRAM technologies, 

each of them having its own advantages and disadvantages (see also monographs [12-

13] for extensive discussions).  A common idea in these recent developments is to use 

soft magnetic materials (such as permalloy) for this study. These thin film media are 

susceptible to switch at much smaller applied magnetic fields as compared to the hard 

magnetic materials used in the experiments of Siegmann et al. Consequently, it is 

much easier to design technologically realizable magnetic field pulses with 

reasonable high amplitude and short time duration.  However, this condition limits the 

applicability of these techniques to magnetoresistive random access memories, and do 

not offer any alternative to the Stanford Linear Accelerator source for the case of hard 

magnetic materials used in hard disk drives.   

The present state of the art in the magnetization reversal area could be best 

described by the following words: “The foregoing types of pulsed experiments have 

been the basis of a large proportion of the advances in understanding magnetization 

reversal, but nevertheless carry with them the sense that one is missing the complete 

picture.” (M.R. Freeman and W.K. Hiebert [13]) 

 

In conclusion, a theoretical analysis of spin dynamics in nanometer scale 

magnetic structure over picosecond time scale is motivated by promising 

technological applications in the area of magnetic data storage, as well as by pure 

scientific interest in filling the gaps that exist in understanding ultrafast magnetization 

reversals in nanostructures. 
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1.3. Dissertation Organization 

The remaining part of this dissertation is organized as follows: 

In Chapter 2, two phenomenological models of spin dynamics in magnetic 

materials are presented.  In the first section of this chapter, some insights in the origin 

of the precessional spin motion are offered, and various relaxation mechanisms are 

discussed.  These considerations may suggest some justifications for the Landau-

Lifshitz-type equations of multi-spin dynamics and continuum micromagnetics 

dynamics introduced in the second and third sections, respectively. 

The analytical study of precessional switching in perpendicular thin film media 

is presented in Chapter 3.  This study is based on the Landau-Lifshitz equation to 

describe the magnetization dynamics in these media.  The case of the perpendicular 

media subject to rectangular magnetic field pulses is first analyzed.  The features of 

the precessional magnetization switching and the conventional mechanism of 

magnetization reversal are compared in the first section.  By using integrals of 

motions and the “unit disk representation” of undamped magnetization dynamics, the 

expressions for critical field and pulse durations that guarantee precessional 

magnetization reversals are derived in the second section.  This study is extended to 

non-rectangular magnetic field pulses in the third section, where the inverse problem 

approach is used to design magnetic field pulses that guarantee precessional 

switching.  This chapter partially replicates the materials published in following 

forms: 
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• I. D. Mayergoyz, M. Dimian, G. Bertotti, and C. Serpico, “Critical 

fields and pulse durations for precessional switching of perpendicular 

media,” to appear in J. Appl. Phys., May 2005. 

• I. D. Mayergoyz, M. Dimian, G. Bertotti, and C. Serpico, “Inverse 

problem approach to precessional switching in perpendicular media,” 

to appear in J. Appl. Phys., May 2005. 

• G. Bertotti, I. D. Mayergoyz, C. Serpico, and M. Dimian, 

“Comparison of analytical solutions of Landau-Lifshitz equation for 

damping and precessional switching,” J. Appl. Phys., vol. 93, no. 10, 

2003, pp. 6811-6813.. 

In Chapter 4, the precessional magnetization switching in longitudinal thin film 

media is discussed.  After a short summary of the research studies existent on this 

topic, the inverse problem approach to the analysis of precessional switching in these 

media is presented.  This approach leads to explicit expressions for the magnetic field 

pulses that guarantee the precessional switching.  The effectiveness of the developed 

technique is illustrated by examples.  This chapter partially replicates the materials 

published in the following form: 

• I. D. Mayergoyz, M. Dimian, G. Bertotti and C. Serpico, “Inverse 

problem approach to the design of magnetic field pulses for 

precessional switching,” J. Appl. Phys., vol. 95, no. 11, 2004, pp. 

7004-7006. 

The study of surface anisotropy effects on magnetization reversals in 

nanoparticles is presented in Chapter 5.  The multi-spin dynamics in magnetic 
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nanoparticles is found by using Landau-Lifshitz equation with the effective field 

derived from Heisenberg-type Hamiltonian.  The expressions for critical magnetic 

fields that guarantee the quasi-static and precessional reversals are analytically 

derived for the case of very strong exchange and weak surface anisotropy.  These 

analytical results are also used to test the numerical approach, which is applied to the 

general case of the problem.  The distinct features of the quasi-static and precessional 

reversals in nanoparticles are examined and their dependence on various parameters 

of the problem is discussed.  This chapter partially replicates the materials published 

in following forms:  

• M. Dimian and I. D. Mayergoyz, “Influence of surface anisotropy on 

magnetization precessional switching in nanoparticles,” to appear in J. 

Appl. Phys., May 2005. 

• H. Kachkachi and M. Dimian, “Hysteretic properties of a magnetic 

particle with strong surface anisotropy,” Phys. Rev. B, vol. 66, no. 17, 

2002, art. no. 174419. 

• M. Dimian and H. Kachkachi, “Effect of surface anisotropy on the 

hysteretic properties of a magnetic particle” J. Appl. Phys., vol. 91, no 

10, 2002, pp. 7625-7627. 

Finally, conclusions are drawn in Chapter 6. 
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2. Landau-Lifshitz equation approach to spin dynamics 

“My work always tried to unite the truth 

with the beautiful, but when I had to choose 

one or the other, I usually chose the 

beautiful.” Herman Weyl [50] 

 

In this chapter, two phenomenological models of spin dynamics in magnetic materials 

are presented.  In the first section, some insights in the origin of the precessional spin 

motion are offered, and various relaxation mechanisms are discussed.  These 

considerations may suggest some justifications for the Landau-Lifshitz-type equations 

of multi-spin dynamics and continuum micromagnetics dynamics introduced in the 

second and third sections, respectively. 

The origin of the magnetic properties in various materials has been a fascinating 

and intense studied topic in the last two centuries.  Nevertheless, there is no unitary 

theory to completely explain the magnetic phenomena in a fundamental manner.  On 

the one hand, the famous theorem of Bohr and van Leeuwen eliminates any 

possibility of elucidating the magnetic properties of the materials in pure classical 

terms [51].  On the other hand, the pure quantum theory may offer some qualitative 

explanations, but its quantitative descriptions of the magnetic experiments fail beyond 

“simple” cases.  Thus, a semi-classical theory of magnetism was constructed, a theory 

that offers quantitative descriptions of the magnetic materials behavior with the price 

of some inconsistency.  Although it seems discreditable, the situation is somehow 

similar to the largely accepted case of the Cantor theory of sets used as a foundation 
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of modern mathematics. Quantum mechanics and Zermelo-Fraenkel system, 

respectively, are certainly preferable from the consistency point of view, but they are 

almost impractical for the above mentioned purposes.  These circumstances may 

explain our preference for postulating Landau-Lifshitz-type equations rather than 

offering long and inconsistent derivations of them starting from fundamental 

principles.  

2.1. Magnetic moment dynamics in uniform magnetic fields 

In this section, some insights in the origin of the precessional spin motion are offered 

and various relaxation dynamics are discussed. 

The motion of magnetic moment M in a uniform magnetic field, described by 

its intensity H, can be intuitively decomposed into two components: a precessional 

motion about the direction of the magnetic field and a relaxation motion that tends to 

orient the magnetic moment along the direction of the field. 

First, let us consider the precessional motion, which can be mathematically 

expressed in the following form: 

 d
dt

γ= − ×
M M H , (2.1) 

where 0 0γ µ γ= , with [ ]7
0 4 10 /H mµ π −=  is the permeability of the vacuum and 0γ  is a 

quantity characteristic to the magnetic moment that can be either regarded as a 

parameter whose value should be found from experiments, or computed considering 

the physical origin of the magnetic moment.  Thus, when the magnetic moment 

originates from the orbital motion of a particle with mass m0 and charge q0 the 
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absolute value of gyromagnetic ratio 0 0 0/ 2g q mγ = , where g is the gyromagnetic 

factor (g~2 for a free electron). 

The equation for the precessional motion can be theoretically justified either on 

quantum or classical grounds.  By considering a “static” particle with spin in a 

uniform magnetic field, the time evolution for the mean value of the spin operator can 

be derived using either Schrödinger equation (see [52]) or equivalently, Von 

Neumann equation (see [53]).  On the classical ground, Equation (2.1) can be justified 

assuming that the magnetic moment arises from a “circular” motion of an electron 

and using Newton’s law for the angular momentum, as well as the relation between 

the magnetic moment and angular momentum (see [54]).  The idea of this classical 

explanation was first given by Sir Joseph Larmor, and that is why the precessional 

motion of the magnetic moment about the magnetic field is often called Larmor 

precession.  One may also think of deriving Equation (2.1) from a variational 

principle.  The magnetic moment M can be regarded as a “classical top” with 

principal moments of inertia (0, 0, C), and the Lagrangian formulation of this top case 

leads to Equation (2.1) (see [22]).  However, each one of these derivations contains 

assumptions (indicated by quotation marks), which are physically inconsistent.  

Consequently, they cannot be considered as derivations of Equation (2.1), but rather 

as justifications of this equation.  In spite of these difficulties, Larmor precession 

offers accurate explanations of numerous experiments involving the magnetic 

moment behavior in a uniform magnetic field, such as nuclear magnetic resonance, 

paramagnetic and ferromagnetic resonance [54], and magnetization reversals [12-13]. 



 28

Next, we consider the relaxation motion of the magnetic moment, which can be 

quantitatively described by adding a dissipative (damping) correction term to 

Equation (2.1).  The “dissipated” energy is actually transformed by various 

mechanisms into the thermal energy of a system.  Although these mechanisms are 

partially known [55-56], they are too complex to be taken into account in an explicit 

derivation of the damping correction term at a macroscopic level.  In order to describe 

the experimental results, various phenomenological expressions are employed. Most 

notable ones were given by Landau and Lifshitz for the description of energy losses 

in the magnetic domain wall motion in ferromagnetic materials [57], and by Bloch for 

the description of nuclear magnetic relaxation [58].  Since then, these expressions 

have been successfully applied to various physical phenomena involving dissipation 

of the magnetic energy.  The Landau-Lifshitz expression is mostly used for the 

description of various dissipative processes in which the norm of the magnetic 

moment is conserved, while the Bloch expression is appropriate to complementary 

cases. 

The Landau-Lifshitz expression for the damping term reads: 

 ( )2
L

M
γα

− × ×Μ M H , (2.2) 

where Lα  is a damping parameter with the dimensionality of the magnetic field, and 

M is the norm of the magnetic moment M.  Nowadays, it is preferred to call 

dimensionless parameter /L Mα α=  as the damping parameter, and this convention is 

used throughout this thesis.  This damping parameter may take a large interval of 

values depending on the various types of magnetic materials and experiments 

involved.  The experiments involving magnetization reversals in ferromagnetic thin 
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films and nanoparticles used in magnetic data storage indicate rather small values for 

the damping parameter on the order of 10-3 up to10-1. 

Bloch used the following expression for the damping term:  

 
2 2 1

, ,yx s zmm m m
τ τ τ

 −
− − 
 

, (2.3) 

where z is the direction of the applied magnetic field, ms is the magnetization 

saturation value in the equilibrium state, and the parameters τ1 and τ2 account for the 

relaxation times in the longitudinal (z) and transverse directions, respectively.  Since 

our interest is in magnetization dynamics that conserves the norm of the magnetic 

moment, we do not extend further the discussion of Bloch equation. 

The dissipative term given by formula (2.2) is somehow atypical, in the sense 

that it cannot be derived in terms of the standard Rayleigh dissipation function.  By 

using the standard Rayleigh function to introduce the dissipative effects in the 

Lagrangian formulation for the conservative precessional motion, Gilbert [59] derived 

the following damping term: 

 G d
M dt
γα

− ×
MM , (2.4) 

where Gα >0 denotes the Gilbert dimensionless damping parameter. 

In conclusion, the general equation of motion for a magnetic moment in 

homogeneous applied field can be written as: 

 G G
G

d d
dt M dt

γ α
γ= − × − ×

M MM H M , (2.5) 
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in the Gilbert form, known as Landau-Lifshitz-Gilbert equation.  Here, Gγ  is identical 

to γ , but the G index is used for the clarity of future considerations.  By using the 

damping term given by formula (2.2), the equation of motion has the following form: 

 ( )d
dt M

γαγ= − × − × ×
M M H Μ M H . (2.6) 

This equation is known as Landau-Lifshitz equation.  It turns out that Equations (2.5) 

and (2.6) are mathematically equivalent.  This fact can be simply proved by 

evaluating the expression d
dt

×
MM  using Equation (2.6).  Thus,   

 
( ) ( )( )

( )

d
dt M

M d M
dt

γαγ

γ γα
α

× = − × × − × × ×

 = + × + ×  

MM Μ M H M Μ M H

M M H M H
, (2.7) 

and by rearranging the terms, one finds: 

 ( )21d d
dt M dt

αγ α= − + × − ×
M MM H M  (2.8) 

It is clear now that substitutions ( )21 Gγ α γ+ →  and ( )21 G
α α
γ α

→
+

 transform the 

Landau-Lifshitz equation exactly into the Landau-Lifshitz-Gilbert equation.  

However, there is some physical discrepancy between them if one thinks of γ as a 

physical constant with its value given by the physical origin of the magnetic moment.  

Nevertheless, this discrepancy is considerable diminished when α  is a small 

parameter, as it is considered in this thesis.  Recently, it was found that dissipation 

terms can also be introduced into a variational formalism by using generalized 

Rayleigh functions and the Landau-Lifshitz damping term was proved to be of this 

type [60].  Another notable result is given in [61], where the Landau-Lifshitz equation 
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is derived as a dynamic equation compatible with micromagnetics constraints (the 

preservation of the magnetization norm and the equilibrium condition given by 

equation 0× =M H ). 

The Landau-Lifshitz equation can be easily generalized to describe the behavior 

of the magnetic moment in complex environments substituting in equation (2.6) the 

magnetic field H by the effective field Heff, which is derived from the potential 

energy U(M) associated with the environment. 

2.2. Landau-Lifshitz type equations for multi-spin dynamics 

In this section, the Landau-Lifshitz equations for multi-spin dynamics are presented.  

A simplified version of these semi-classical multi-spin equations was first used to 

study spin wave modes in ferromagnetic materials [62].  We used these equations in 

order to investigate surface anisotropy effects on quasi-static and dynamic 

magnetization reversals in nanoparticles (See Chapter 5). 

Consider a set of n three-component vectors Si (representing the spin moment), 

each one located at the fixed point i of a three-dimensional lattice.  The total energy 

of interaction for this system is given by:  
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. (2.9) 

Here, ri denotes the position vector of the point i, eij is the unit vector of the direction 

ri-rj, constants Jij (>0, for ferromagnetic materials) accounts for the strength of the 

exchange interactions between spins, 24 2~ 9.27 10B A mµ −× ⋅  is the Bohr magneton. The 
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constants g and 0µ  are defined in the previous section.  The vector Hi denotes the 

magnetic field at the site i, and the magnetocrystalline uniaxial anisotropy is 

described by easy axis ui and anisotropy constants Ki. The si denotes the unit vector 

along the direction Si, and it is usually preferred to Si for the definition of the 

anisotropy energy.  The first term in energy expression (2.9): 

 
,

1
2ex ij i j

i j

U J= − ⋅∑ S S , (2.10) 

is known as the exchange energy.  This expression was proposed by Heisenberg and 

Dirac, independently, in the context of quantum mechanics and its physical origin is 

the overlap of electronic wave functions.  Although these interactions are short-

ranged, they are very strong compared to the other interactions considered in this 

problem.  As a consequence, they favor long-ranged spin ordering and represent the 

main ingredient for explaining the existence of the spontaneous magnetization in 

ferromagnetic materials.  The second term in the energy expression: 

 0
1

( )
n

z B i i
i

U gµ µ
=

= − ⋅∑H S , (2.11) 

is identified as Zeeman energy and originates from the classical interaction of the 

magnetic moment associated to the spin, i. e. i B igµ= −M S , with the external magnetic 

field Hi.  Its effect on the magnetic moment was discussed in the previous section.  

The third term: 

 ( )2

1

n

an i i i
i

U K
=

= − ⋅∑ s u , (2.12) 

is related to the spin interaction with the physical hosting lattice, and it is known as 

magneto-crystalline anisotropy energy.  This term may have various expressions 
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depending on the symmetry of the corresponding physical system, but we restrict our 

discussion to the uniaxial anisotropy case.  This interaction favors the spin orientation 

along the easy axis (for Ki>0) or along the plane perpendicular to the easy axis (for 

Ki<0).  Finally, the last term in equation (2.9): 

 20
3

,

3( )( )
( )

8
i j i ij j ij

d B
i j i j

U gµ
µ

π
⋅ − ⋅ ⋅

=
−

∑
S S S e S e

r r
, (2.13) 

accounts for dipole interactions between the magnetic moments associated with the 

spins.  The individual dipole-dipole interaction is typically much smaller than the 

exchange interaction between neighboring spins.  However, their range of interaction 

is much longer than the one of the exchange interaction.  Therefore, the cumulative 

effect of dipole-dipole interactions becomes comparable to the exchange influence in 

systems with a large number of spins. The competition between these two energies 

results in the appearance of well-known magnetization domain structures in 

ferromagnetic materials. 

The Landau-Lifshitz equation of motion for each spin Si reads:  

 eff effi
i i i i i

d
dt

α= − × − × ×
S S H S S H , (2.14) 

where eff
iH  is the effective field acting on the spin Si and it is given by: 

 
0

1
i

eff
i U

µ
= − ∇SH . (2.15) 

By giving the exchange constants, as well as the anisotropy axes and constants for the 

spin system, we arrive at 3n coupled nonlinear differential equations that describe the 

multi-spin dynamics of the magnetic system with the appropriate initial conditions 

( ) 00 i
i =S S  chosen for each spin.  Ab initio evaluations of exchange constants [63-65], 
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as well as anisotropy constants [66-67], are possible, but the accuracy of these 

calculations is still inadequate.  However, the continuous improvement of 

computational capabilities may lead to acceptable results in the near future.  In this 

thesis, the exchange and anisotropy constants are treated as parameters of the model.  

This model is applied in Chapter 5 for the study of surface anisotropy effects on 

hysteretic and dynamical properties of magnetic nanoparticles. 

2.3. Landau-Lifshitz type equations for continuum magnetic media 

In this section, the framework of the continuum-magnetization dynamics is presented.  

The multi-spin description of magnetic nanoparticles presented in the previous 

section leads to complex many-body problems, which are normally tractable only by 

numerical methods. Due to the computer limitations, the investigations are restricted 

to very small systems with diameters of a few nanometers.  Therefore, the only way 

to approach larger magnetic systems is to ignore the atomic nature of matter and to 

use a continuum approximation.  

The continuum-mechanics approach to the spin dynamics can be traced back to 

the works of Landau and Lifshitz, Brown, and Aharoni, and it is known as 

micromagnetics.  A general presentation of the micromagnetics can be found in the 

classical book of Brown [22] and in the one edited by Rado and Suhl [68].  An up-to-

date critical analysis of this domain is presented in the book of Aharoni [20], while 

the most recent reviews of analytic and numerical micromagnetics, compared to 

experimental results, can be found in the books of Kronmuller and Fahnle [24], and 

Hubert and Schafer [23].  
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Micromagnetics theory has been mainly applied to the calculation of quasi-

static magnetization processes.  The classical approach was based on the analytical 

and numerical study of the static Brown equation and its linearized form.  The 

increasing computational capabilities made possible a new approach based on the 

dynamic Landau-Lifshitz type equation.  However, the complexity of the dynamic 

approach may generate unacceptable large errors in describing long-time scale 

processes.  For example, a standard problem proposed by the National Institute for 

Standards and Technology (NIST) was simulated by various computational groups 

and the numerical results had been submitted during 1997-1998 [69].  The wide 

distribution of these results raised many doubts concerning the reliability of the 

numerical methods applied to solve this complex problem.  As a consequence, NIST 

proposed simpler standard problems related to the short time scale processes.  In this 

case, the submitted numerical results tend to agree with each other on a time scale 

below 1 ns [69].  A large number of research articles and PhD theses (see, for 

example, [12-13], [70-76] and references therein) concentrate nowadays in this area, 

providing valuable numerical algorithms to approach Landau-Lifshitz type equations 

for continuum media.  On the other hand, the recent developments in experimental 

magnetization dynamics (recall Section 1.2) made also possible the experimental 

confirmation of the computational micromagnetics dynamics, as far as short-time 

scale phenomena are concerned.  In conclusion, the micromagnetics dynamics offers 

a valuable tool for describing the magnetization motion in magnetic materials, but the 

robustness of the numerical methods applied to this dynamics is still limited to short-

time scale processes.  
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Chapters 3 and 4 of this dissertation will focus on analytical rather than 

computational approach to magnetization dynamics on short time scale, but members 

of our group are also involved in developing computational methods for this problem 

[75, 76]. 

Next, let us postulate Landau-Lifshitz type equations for magnetization 

dynamics in continuum media.  Consider a time-dependent continuous vector field 

M(r,t) defined over the volume V.  This vector field represents the magnetization 

field understood as a magnetic moment per unit volume.  Let us assume that 

magnetization norm Ms is constant over the volume as well as in time, and 

consequently M(r,t) can be written as Msm(r,t), where m(r,t) is the unit vector field 

along the magnetization vector field.  The total energy of interaction of the system is 

given by the following sum:  

 ( ) ( ) ( ) ( ) ( )( ); ( ); ( ) ( ) ( )Z an ex demG t G t G G G⋅ = ⋅ + ⋅ + ⋅ + ⋅M M M M M . (2.16) 

It is more appropriate to call this energy as free energy (or even more precisely Gibbs 

function) since it represents the thermodynamic potential associated to the problem 

under study (the temperature, volume and density are considered invariable in the 

physical process associated to this model). 

The first term reads: 

 ( ) 0( ); ( , ) ( , )Z app
V

G t t t dµ τ⋅ = − ⋅∫M M r H r , (2.17) 

where Happ is the external applied magnetic field. This term is known as Zeeman 

energy, and it can be seen as a straightforward generalization to the continuum case 

of the Zeeman energy for a discrete spin system given by formula (2.11).  The second 
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term accounts for the magnetocrystalline anisotropy energy and is given by the 

following formula: 

 ( ) ( ) ( )( )2
( ) ( , )an u

V

G K t dτ⋅ = − ⋅∫M r m r u r , (2.18) 

with Ku(r) being the magnetocrystalline anisotropy distribution function.  It is 

apparent that this formula is a generalization for the continuum case of the 

magnetocrystalline energy for a discrete system of spins given by formula (2.12).  

The next term in energy formula (2.16) is: 

 ( ) ( ) ( ) ( )( )22 2
( ) ( , ) ( , ) ( , )ex x y z

V

G A M t M t M t dτ⋅ = ∇ + ∇ + ∇∫M r r r , (2.19) 

where A is the exchange constant, and || || simply denotes the Euclidian norm.  This 

expression for exchange energy seems somehow intrigued if one tries to relate it to 

the exchange energy for a discrete system given by formula (2.10).  A straight 

generalization of the discrete case would give: 

 ( ) ( ) ( )2

1
2( )ex

B V V

G J d d
g

τ τ
µ

′ ′ ′= − − ⋅∫∫ r r M r M r , (2.20) 

if one consider that constants Jij are actually only dependent on the relative distance 

of the spin vectors. Because the exchange is a short range interaction, the function 

J(||r-r'||) can also be considered negligible outside a sphere S(r,ε) of center r and 

small radius ε.  Inside this sphere we can expand the magnetization M(r') about the 

center point r in a Taylor series: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )21 ...
2

′ ′ ′= + − ⋅∇ + − ⋅∇ +r rM r M r r r M r r r M r  (2.21) 

By retaining only terms up to the second order, and introduce them in formula (2.20) 

the exchange energy exG  can be written as: 
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 ( ) ( )
2

2
,

1
2( )

s
ex ij

i jB i jV

M VG d
g J r r

λ τ
µ

 ∂ ∂ ≈ − + ⋅ ∂ ∂  
∑ ∫

M Mr r , (2.22) 

where ( )
(0, )S

J J d
ε

τ= ∫ x  and 
( )0,

1 (|| ||)
2ij i j

S

J x x d
ε

λ τ= ∫ x .  The second term from 

expansion (2.21) does not lead to any contribution since its scalar product with M can 

be written as the derivative of Ms, which is zero.  The third term in (2.21) leads to the 

second term in (2.22), when the integration by parts and uniformity of the norm are 

used.  For the points close to the surface, the ( , )S εr  may not be completely inside the 

volume V.  These effects are neglected here, but they are included in the boundary 

conditions of the problem.  By using symmetry arguments, the off-diagonal elements 

of ijλ  are proved to be zero and the diagonal ones equal.  Since a constant term is 

irrelevant to an energy formula, expression (2.19) for the exchange energy can be 

now seen as a generalization of the exchange formula for discrete spin systems.  The 

justification presented here uses similar arguments to the one presented in classical 

micromagnetics books [20, 22], but we hope it is improving the clarity and rigor of 

the above mentioned ones.  Nevertheless, this derivation may be considered as a 

simple remark to the postulation of the exchange energy term given by (2.19). 

To complete the description of energy formula (2.16), the last term, known as 

the demagnetizing (or magnetostatic) energy, is given by: 

 ( ) ( )0
1( ) ( , ) ( )
2dem dem

V

G t dµ τ⋅ = − ⋅ ⋅∫M M r H M , (2.23) 

where: 

 ( )( ){ }( ) ( )( ) ( )( )
3 3

, ,1,
4dem

S V

t t
t ds dτ

π
′ ′

 ′ ′ ′ ′⋅ − ∇ ⋅ − ′ ′⋅ = − 
′ ′− −  

∫ ∫r rn M r r r M r r r
H Μ r

r r r r
, (2.24) 
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where S is the surface embedding the volume V and nr' is unit vector normal to the 

surface S at the point r'.  This term is related to the dipole-dipole interactions 

considered in the discrete case, but this justification is much more complicated than 

the one given for the exchange case.  However, this term is well-known from classical 

magnetostatic problems based on Maxwell equations, and consequently, it is usually 

tacitly accepted. 

The Landau-Lifshitz equations for the magnetization vector field dynamics can 

be written in the following form: 

 ( ) ( )( ), ,eff eff
s

t t
t M

γαγ∂
= − × − × ×

∂
M M H M M M H M , (2.25) 

where the effective field is given by the Fréchet derivatives of the energy functional: 

 
0

1
( )eff Z an ex dem

Gδ
µ δ

= − = + + +
⋅

H H H H H
M

. (2.26) 

The constants γ and α coincide with the ones defined in the Section 2.1.  The 

boundary conditions associated with this problem are: 

 ( ) ( ), 0,t S⋅∇ = ∈n M r r , (2.27) 

and the initial conditions read: 

 0( ,0) ( )=M r M r . (2.28) 

with M0(.) being a given vector function that has to satisfy the time-independent 

boundary condition associated to (2.27). 

The effective field terms have the following explicit forms: 

 ( ) ( ) ( )
0

2, ( , )u
an

s

Kt t
Mµ

= ⋅H r m r u r u r , (2.29) 

 
0

2( , ) ( , )ex
At t
µ

= ∆H r M r , (2.30) 
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 ( , ) ( , )Z appt t=H r H r , (2.31) 

while the demagnetizing field has being already defined by Formula (2.24). 

The complexity of the problem can be substantially reduced in the case of 

homogeneous ferromagnetic objects with uniform uniaxial anisotropy u(r)=u and 

regular shape. Let us consider that a uniform magnetic field is applied to such an 

object.  A fundamental result from magnetostatic theory states that the corresponding 

demagnetizing field is also uniform (not necessary in the same direction as H) if the 

surface of the object is of the second degree.  The proof of this result was revealed by 

Poisson for the case of ellipsoidal bodies, and the discussion of the general case can 

be found in the classical book of Maxwell [78].  This result gives us the idea to 

consider a uniform magnetization vector field M0(r)=M0 as an initial condition and 

check the potentiality of the uniform modes as solutions for the integro-differential 

problem considered above.  Thus, for a potentially uniform solution M(r,t)=M(t), the 

demagnetizing field is simply given by ( ) ( ) ( ),dem demt t D t= = −H r H M , where D  is 

known as demagnetizating tensor, the exchange field is zero, and for the anisotropy 

field we have ( ) ( ) ( )0, 2 ( )an an u st t K M tµ= = ⋅H r H m u u .  It is now apparent, that the 

solution of the following system of differential equations: 

 ( ) ( )( ), ,eff eff
s

d t t
dt M

γαγ= − × − × ×
M M H M M M H M , (2.32) 

where 

 ( ) ( )02 ( )eff u sD t K M tµ= − + ⋅H H M m u u , (2.33) 

that satisfies the initial condition M(0)=M0, leads to the spatially uniform solution 

M(r,t)=M(t) of the integro-differential problem corresponding to the applied field H 
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and the initial condition M(r,0)=M0.  The coordinate axes can be chosen such that the 

demagnetizating matrix has a diagonal form. In addition, let us assume that the 

magneto-crystalline anisotropy axis is along one of the principle demagnetizing axes, 

denoted by x.  Consequently, the effective field formula can be rewritten as: 

 eff x x x y y y z z zD M D M D M= + − −H H e e e , (2.34) 

where Dx accounts for demagnetizing and anisotropy field in x direction, while Dy and 

Dz account for demagnetizing field in y and z direction, respectively.  It should be 

kept in mind the essential restriction on the surface geometry, which has to be of 

second order degree (for example ellipsoid).  It is also important to be aware of the 

potential instability of the spatially uniform solution, which would make it less useful 

for the practical purposes.  

However, the simplified Landau-Lifshitz equation (2.32)-(2.33) can also be 

used for ferromagnetic objects that do not satisfy the surface requirements, instead 

their dimensions are in nanometer range.  This possibility is due to the strength of the 

exchange interaction, which imposes the alignment of the magnetic moments at such 

small dimensions.  By using this simplifying assumption, we obtained spatially 

uniform magnetization fields that may not be exact solutions of the integro-

differentiable problem, as in the previous discussion, but may offer a very good 

physical approximation of those spatially non-uniform solutions.  The model obtained 

using this assumption is usually called macrospin model.  It is clear that the 

macrospin model should be applied for “small enough” magnetic structures.  There 

also exists an inferior limit to this assumption related to surface effects, which appear 

in small magnetic structures with dimensions on the order of a few nanometers. 
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There exists extensive evidence for the quantitative agreement between the 

experimental results on precessional magnetization reversals and Landau-Lifshitz 

equations for uniform cases (see [11-13, 41-48] and references therein).  These 

comparisons are usually based on “snapshots” of the magnetization dynamics 

obtained by the numerical integration of Landau-Lifshitz equations (2.32)-(2.34).  

The aim of the next two chapters is to offer a systematic analytical study of 

precessional magnetization reversals based on these equations. 

In conclusion, the framework of the continuum-magnetization dynamics was 

presented in this section.  The complexity of the general nonlinear integro-differential 

problem requires numerical approaches to study the magnetization dynamics.  In spite 

of the tremendous research efforts in this area, the current numerical algorithms offer 

good results for the short-time scale dynamics, but they generate considerable errors 

for longer time scales.  Two cases that substantially reduce the complexity of the 

problem were discussed and they led to equations (2.32)-(2.34).  The analytical study 

of this system is undertaken in the next two chapters in order to give a theoretical 

description of the precessional magnetization reversals in thin film media.  
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3. Precessional magnetization reversal in perpendicular media 

“Now, here, you see, it takes all the running 

you can do, to keep in the same place. If you 

want to get somewhere else, you must run at 

least twice as fast as that!” Lewis Carroll [78] 

 

In this chapter, the analytical study of precessional switching in perpendicular thin 

film media is undertaken.  This study is based on the Landau-Lifshitz equation to 

describe the magnetization dynamics in these media.  The case of the perpendicular 

media subject to rectangular magnetic field pulses is first analyzed.  The features of 

precessional magnetization switching and conventional mechanism of magnetization 

reversal are compared in the first section.  By using integrals of motions and the “unit 

disk representation” of undamped magnetization dynamics, the expressions for 

critical field and pulse durations that guarantee precessional magnetization reversals 

are derived in the second section.  This study is extended to non-rectangular magnetic 

field pulses in the third section, where the inverse problem approach is used to design 

magnetic field pulses that guarantee precessional switching. 

The perpendicular oriented media have been introduced in HDDs in 2004 as an 

alternative solution to the longitudinal recording media for further improving areal 

density in the magnetic storage.  They are expected to push areal densities beyond 

1Tb/in2 in the next few years.  Although these media have been studied for more than 

thirty years [34-36], the costs of implementing them were not justified as long as the 

longitudinal media were developing at a very fast pace and a low cost.  The current 
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fundamental limitations of the longitudinal recording technology shift the research 

and technology interests towards the perpendicular recording.  A short discussion of 

perpendicular media is presented in Chapter 1.  The experiments indicating the 

recording of magnetic patterns into perpendicular thin film media using ultrashort 

magnetic pulses, as well as the numerical simulations confirming the validity of 

Landau-Lifshitz equation approach to quantitatively describe these phenomena, can 

be found in References [8, 42-45].  In order to find the general features of 

precessional switching, as opposed to the selective snapshots offered by numerical 

simulations, the analytical treatment of the precessional switching in perpendicular 

media is considered in this chapter.  

Traditionally, the magnetization reversal is produced by applying the magnetic 

field almost antiparallel with respect to the initial magnetization direction (see Figure 

3.1 (a)).  These reversals are initially relatively slow and are realized through 

numerous precessional oscillations (see Figure 3.2 (a)).  They are driven by the 

relaxation (damping) processes and, for this reason they can be termed as “damping” 

switchings.  When the field is applied in the perpendicular direction (see Figure 3.1 

(b)), the reversal can be obtained employing the precessional magnetization 

dynamics, and that is why the corresponding reversal is called “precessional” 

switching (see Figure 3.2 (b)).  This non-conventional switching is much faster than 

the traditional one, but it is much more sensitive to shapes and durations of magnetic 

field pulses.  For example, the magnetic field should be switched off in some precise 

time windows when the magnetization component along the anisotropy axis (mx) has 

negative values (see Figure 3.3 (b)).  Otherwise, the magnetization will relax to the 
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initial position after the magnetic field is switched off (see Figure 3.4), and 

consequently, no switching of the magnetization orientation takes place.  This is not 

the case in the conventional switching, where the magnetic field pulse has only a 

lower limit, as far as the timing of switching-off is concerned (see Figure 3.3 (a)).  

These discussions have their rigorous explanations presented in the next section. 

It is clear from the above considerations that the price paid to obtain faster 

modes of magnetization reversals is the increased complexity of magnetic field 

design.  In the second and third sections, this problem is addressed for rectangular and 

non-rectangular magnetic field pulses, respectively.  

A remark should be made concerning the granular structure of the magnetic thin 

film media.  First of all, the perpendicular media have a very high orientation ratio 

(see Chapter 1), i.e. the grains have approximately the same anisotropy axis that is 

oriented perpendicular to the thin film plane.  This suggests that even if the exchange 

interactions between grains are completely neglected, the unison motion of the 

magnetization grains is expected to be a good approximation of the real 

magnetization dynamics in a memory cell.  Second, the small dimensions of memory 

cells in the current recording media also suggest the use of simplified equations 

(2.35)-(2.37) in the macrospin interpretation due to the exchange interactions (see 

Chapter 2).  These considerations, along with the agreement between experiments and 

numerical simulations, allow us to conclude that the results obtained for this 

simplified model represents not only a pure mathematical analysis, but also a reliable 

description of the physical precessional switchings. 
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(a)       (b)  

Figure 3.1:  Configurations for magnetization reversals in perpendicular thin film 

media: (a) damping switching and (b) precessional switching.   

 

 

 

(a)       (b)  

Figure 3.2:  Magnetization trajectories for the configurations presented in Figure 3.1.  

Parts (a) and (b) are corresponding to part (a), respectively (b), of Figure 3.1.  
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(a)       (b) 

Figure 3.3:  Projections on the (mx, my) plane of the magnetization trajectories presented 

in Figure 3.2.  The points of the trajectory intersections with the plane mx=0 are marked.  

 

 

Figure 3.4:  Magnetization relaxations in the absence on the applied field.  When the 

initial magnetization is in the upper semispace, magnetization relaxes to the equilibrium 

point mx=1 (upper curve).  When the initial magnetization is in the lower semispace, it 

relaxes to the equilibrium mx=-1 (lower curve).  
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3.1. Theoretical comparison of damping and precessional switchings 

In this section, the analytical solutions to Landau-Lifshitz equations for “damping” 

and “precessional” switchings of magnetization in perpendicular media are found.  

These solutions lead to the expressions for switching times and critical fields. The 

comparison of these two distinct modes of switching is presented. 

Consider “damping” switching in perpendicular media caused by a spatially 

uniform magnetic pulsed magnetic field applied along the anisotropy axis (see Figure 

3.1 (a)).  The Landau-Lifshitz equation can be written in the following dimensionless 

form: 

 eff eff
d
dt

α= − × − × ×
m m h m m h , (3.1) 

where m=M/Ms, heff =Heff/Ms, time is measured in units of (γMs)-1.  As it is defined in 

the previous chapter, Ms is the saturation magnetization, 5 1 12.21 10 mA sγ − −= ×  is the 

product of the vacuum permeability and the absolute value of gyromagnetic ratio, and 

α is the dimensionless damping constant. The effective magnetic field corresponding 

to the above considered damping switching is given by: 

 0( )eff z z y y x x xD m m D m h= − + + −h e e e e . (3.2) 

Here, the positive coefficients D and D0 account for demagnetizing field and 

magnetocrystalline anisotropy, while h is the magnitude of applied field h, which is 

assumed to be constant during the pulse duration (so-called rectangular field pulse). 

Kikuchi [79] considered a similar problem for the case of an isotropic 

ferromagnetic sphere when the effective field is defined by eff xD h= − −h m e .  The 

difference in the mathematical forms of this effective field and the effective field 
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(3.2), results in profound differences in the physical phenomena of magnetization 

switching.  In the case of effective field considered by Kikuchi, there exists an infinite 

set of equilibrium states for h=0 and no critical field is required to switch from one 

state to another.  In our case of effective field (3.2), there are only two equilibrium 

states at h=0 with mx=1 and mx=-1, respectively, and the switching from one 

equilibrium state to another is only possible if applied field exceeds some critical 

field h0. 

Mallinson [80] studied the problem with the effective field given by formula 

(3.2).  His analysis is based on the expression of Landau-Lifshitz-Gilbert equation in 

spherical coordinates.  Our approach exploits the rotational symmetry of the problem. 

It is apparent that the mathematical form of equations (3.1) and (3.2) is invariant 

with the respect to rotations of coordinates axes z and y around x axis.  As a result of 

this rotational symmetry, it is expected that dmx/dt depends only on the x component 

of m.  Indeed, by simple algebra, it is easy to find that: 

 2
0( ) 0,     ( ) ( )(1 ),eff x eff x x xh h m m× = × × = − −m h m m h  (3.3) 

where h0=D0+D.  Thus, from equations (3.1) and (3.3), we derive: 

 2
0( )(1 ).x

x x
dm h m h m
dt

α= − −  (3.4) 

It is clear from equation (3.4) that the magnetization switching from the state 

mx=1 to the state mx=-1 (or vice versa) is driven exclusively by damping.  In this 

sense this switching can be regarded as damping switching.  It seems from equation 

(3.4) that no switching is possible if magnetization is in equilibrium state mx=1.  

However, due to thermal effects, magnetization m slightly fluctuates around the 

above equilibrium state.  As a result, the value of mx at the instant when the applied 
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field is turned on may be slightly different from 1, and consequently, the switching 

process is initiated.  This argument justifies the solution of equation (3.4) with the 

initial condition (see Figure 3.1 (a)): 

 
00|x t xm m= = , (3.5) 

where 
0xm  is close to 1.  

It is apparent from equation (3.4) that if h>h0 then dmx/dt<0 and the switching 

to the equilibrium state mx= –1 will proceed for any 
0xm .  On the other hand, if h<h0 

then we find from equation (3.4) that dmx/dt>0 for 
0xm  sufficiently close to 1, and 

consequently, no switching is possible.  This reveals that h0 has the meaning of 

critical field.  The problem of critical field will be discussed in a more general case in 

Section 3.2.  In the sequel, it is assumed that h>h0. 

By separating variables in equation (3.4) and performing the integration, we 

arrive at the following solution: 

 
0 0 0

0 0
2 2

0 0 0 0

1 11 1ln ln ln
2( ) 1 2( ) 1

x x x

x x x

m m h h h m t
h h m h h m h h h h m

α− + −
− + =

− − + + − −
. (3.6) 

From the last equation, the minimal pulse time needed for switching can be found.  

Indeed, if the duration of magnetic field pulse is such that a negative value of mx is 

reached, then the magnetization will be in the basin of attraction of the equilibrium 

state mx= –1, and the switching will be achieved.  Thus, the minimal time can be 

found from equation (3.6) and the condition mx=0.  By taking into account formula 

(3.6) and normalizations considered for equation (3.1) we derive the following 

expression for the minimal pulse time: 



 51

 ( ) ( )0 0 0
2 2

0 0 0 0 0

ln 1 cos ln 1 cos1 ln
2( ) 2( ) cos

H H
H H H H H H H H

θ θ
τ

αγ θ
− + 

= + + − + − − 
. (3.7) 

Here, H0=(D0+D)Ms and 
0xm = cosθ0, where θ0 is the angle formed by the initial 

magnetization with x-axis.  The graphical illustration of this formula is shown in 

Figure 3.5 (a) for θ0=0.50. 

It is interesting to point out that for the typical case of small angles θ0, the 

minimal pulse time τ is very close to the actual switching time at which mx reaches a 

value almost equal to –1.  This is because mx decreases much faster for sufficiently 

small mx (see equation (3.4)) than when mx is close to its equilibrium values.  This 

assertion is supported by our calculations, performed by using the analytical 

expression for mx extracted from formula (3.6) and shown in Figure 3.6.  It is 

apparent from this figure that the initial dynamics of mx is very slow and takes most 

of the time, while the magnetization dynamics away from equilibrium is very fast.  

Thus, the switching time is close to the minimal pulse field time τ, calculated above. 

It is apparent from formula (3.7) that for the typical case of very small initial 

angles θ0, the first term in the right hand side of formula (3.7) is dominant.  Thus, by 

neglecting two other terms and using simple trigonometry, we arrived at the 

following expression for the minimal pulse time (switching time): 

 0

0

1 ( )
2ln

H Hαγ
τ

θ

= − . (3.8) 
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(a)      (b) 

Figure 3.5:  (a) Dependence of switching time on magnetic field for damping case, for 

θ0=0.50. (b) Dependence of switching time on magnetic field for precessional 

switching. 

 

 

Figure 3.6:  Evolution of mx with time for different initial angles θ0=0.30, 10, and 30. 

Field ratio H/H0=h/h0=1.2, product γH0 is considered to be 11 14 10 s−× , and damping 

constant α=0.01. 
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For short pulse duration, the value of applied field needed for switching 

increases inversely proportional to pulse duration: H~1/τ (which is consistent with 

Figure 3.5).  In this sense, one may say that the dynamic (short-time) coercivity 

appreciably exceeds the static coercivity H0.  The last formula is also similar to the 

one that has been observed in numerous experiments [81]-[84].  It is usually written 

in the form: 

 0
1 1 ( ).H H

Sτ
= −  (3.9) 

As it is visible from the above derivation, there is no need to resolve mz or my 

dynamics in order to find the reversal time and the critical field corresponding to the 

damping switching.  Nevertheless, the analysis of the precessional magnetization 

motion during the damping switching would be very instrumental for a deeper 

understanding of this magnetization reversal mechanism. 

First, let us observe that effective field (3.2) can be written in the following 

form: ( )0eff x xD D D m h = − + + − h m e . Since the term proportional with the 

magnetization vector gives no contribution to equation (3.1) due to the vector product 

with the magnetization vector itself, this term can be dropped off from the expression 

of the effective field. As a consequence, the free energy corresponding to the reduced 

form of the effective field driving the magnetization dynamics is given by the 

following expression: 

 20

2 x x
D Dg m hm+

= − + . (3.10) 
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Because the energy is independent of the azimuthal angle φ and polar radius ρ, 

Landau-Lifshitz dynamics (3.1)-(3.2) can be written using cylindrical coordinates in 

the subsequent form: 

 

( )2

2

1

1

x x
x

x

x

dgm m
dm

dg
dm

m

α

ϕ

ρ

 = − −



= −

 = −


. (3.11) 

Since α is regarded as a small parameter, the above representation clearly illustrates 

the two-time scale of the magnetization dynamics in the case of damping switching:  

the fast time scale of precessional motion described by the azimuthal angle φ and the 

relatively slow time scale of relaxation dynamics described by the height component 

mx.  The relaxation rate is ( )21 xmα −  times slower than the precessional rate, this ratio 

being extremely low at the beginning and the final stages of the damping switching 

when the mx is close to +1 and -1, respectively. 

The precessional dynamics can be explicitly found as a function of the known 

mx component. Indeed, expressing the precessional rate as: 

 
( )21

x

x

m
m

ϕ
α

=
−

, (3.12) 

the integration is straightforward and leads to the explicit formula: 

 ( ) ( )
( )

11 ln 2
2 1

x

x

m t
t c

m t
ϕ

α
 +

= +  − 
, (3.13) 

where constant ( ) ( ) ( )0 001 2 1 4 ln (1 ) (1 )x xc m mϕ α= + − + .  Since the 

magnetization motion takes place on the unit sphere, formulae (3.6) and (3.13) 
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completely describe in an analytical form the damping magnetization switching in 

perpendicular media.  The time evolutions of magnetization components computed 

using analytical formulae (3.6) and (3.13) are presented in Figures 3.7 and 3.8. 

An instructive quantity that can be immediately evaluated from formula (3.13) 

is the number of full precessional cycles elapsed during switching time τ: 

 ( ) 0

0

0 11 ln
2 4 1

x

x

m
N

m
ϕ ϕ τ

π πα

  +− 
= =      −     

. (3.14) 

Here, parentheses [.] denote the integer part of a real number.  In order to offer some 

idea about the magnitude of this number, we mention that it is on order of [1/α] for 

relatively large interval of initial conditions (0.050<θ0<50).  Since typical values for α 

are on the order of 10-3 up to 10-1, it can be inferred that numerous (tens up to 

thousands) precessional cycles are traversed during the damping switching. 

By inverting relation (3.13) and using simple algebra manipulations the 

trajectory equation for the damping switching can be written in the following form: 

 
( )
( )

tanh

sech
xm c

c

αϕ

ρ αϕ

= −


= −
. (3.15) 

Graphical illustrations of the formula (3.15) are given in the Figure 3.9 and 3.10.  It is 

interesting to point out the absence of the magnetic field magnitude from this 

equation.  Therefore, the magnetization trajectory is not dependent on the magnitude 

of applied field, which only establishes the orientation and the speed at which this 

trajectory is traversed.  Moreover, when the field is turned off the magnetization 

follows the same trajectory as in the presence of the field, but at a slower pace. 
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Figure 3.7:  Analytical solutions for the damping switching. 0.1α = , 0
0 0.5θ = , 

0
0 0ϕ = , 0/ 2H H = , and time is measured in units of ( ) 1

0Hγ − . 

 

Figure 3.8:  Analytical solutions for the damping switching. 0.02α = , 0
0 0.5θ = , 

0
0 0ϕ = , 0/ 2H H = , and time is measured in units of ( ) 1

0Hγ − .   
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Figure 3.9:  Magnetization trajectory for the damping switching computed using 

formula (3.15) and represented in cartesian coordinates; 0.1α = , 0
0 0.5θ = , 0

0 0ϕ = . 

 
Figure 3.10:  Magnetization trajectory for the damping switching computed using 

formula (3.15) and represented in cartesian coordinates; 0.02α = , 0
0 0.5θ = , 0

0 0ϕ = . 
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Next, we consider the “precessional” mode of switching when the field is 

applied along y-axis, i.e. perpendicular to the anisotropy axis (see Figure 3.1 (b)).  As 

we learned from the description of the damping switching, the magnetization motion 

can be seen as a two time scales dynamics: the fast time scale of the precessional 

motion and the relatively slow time scale of magnetization relaxation.  We have also 

observed that the damping switching is taking place on the slow time scale.  It is then 

clear that a promising idea for decreasing the switching time of the magnetization 

reversal is to take advantage of the fast time scale of precessional motion. 

We recall that in the case of zero applied field there are two stable equilibria 

x= ±m e  surrounded by two energy wells, which are separated by boundary plane 

mx=0.  Since the dissipation results in the decrease in magnetic free energy, it can be 

concluded that the time evolution of magnetization within each energy well inevitably 

leads to the stable equilibrium inside this well (see Figure 3.4).  Thus, the essence of 

the precessional switching is to move the magnetization from one energy well to 

another using the precessional motion of magnetization.  As soon as the 

magnetization reaches the second energy well, the applied field can be switched off 

and magnetization will relax to a new equilibrium as a result of damping. 

The precessional switching is driven by the precessional torque (the first term in 

the right hand side of equation (3.1)), while the second term (damping) can be 

neglected during the time when the magnetic field is applied.  This is justified on the 

grounds that the precessional switching occurs on very fast time scale on which 

dissipative effects are not appreciably pronounced.  Thus, the analysis of precessional 

switching dynamics is reduced to the solution of the following equation: 
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 eff
d
dt

= − ×
m m h , (3.16) 

where the effective field is given by: 

 0( )eff z z y y x x yD m m D m h= − + + +h e e e e . (3.17) 

The explicit analytical solution of equations (3.16)-(3.17) can be obtained by 

using two integrals of motion that express the conservation of magnetization 

magnitude: 

 2 2 2 1x y zm m m+ + = , (3.18) 

and the conservation of magnetic free energy: 

 2 2 2
0 0

1 1 1( )
2 2 2z y x yD m m D m hm D+ − − = − . (3.19) 

Due to constraint (3.18) the energy conservation law can be written in a simpler form: 

 ( ) ( )2
0 0

1 1
2 2x yD D m hm D D+ + = +  (3.20) 

The above conservation laws implicitly define the trajectory of the precessional 

switching that can be geometrically represented as the intersection curve of the sphere 

(3.18) with the parabolic cylinder (3.20).  The explicit equations for the trajectory of 

precessional switching can be written as: 

 2 2 2

0 0

2 2, 1z y y x y
h hm m m m m

D D D D
= − = −

+ +
. (3.21) 

By using (3.16), (3.17), and (3.21), we arrive at the following differential equation with 

separable variables: 

 2
0 0

0 0

2 2 1y p p
x z y y yp p

dm h hh m m h m m m
dt h h

  
= = ± − −  

  
, (3.22) 
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where 0 0
0 2 2
p D D hh +
= = .  It is clear from the second equation in formula (3.21) that 

my can only take positive values because mx can not be larger than 1.  According to 

the initial conditions my(0) is equal to 0 and consequently, we can choose the positive 

sign in equation (3.22) for the first stage of the precessional motion.  Since mx has to 

reach negative values (basin of attraction of the equilibrium state mx= –1), it can be 

proved that 0
ph  has the meaning of the critical field for precessional switching (see 

Section 3.2).  For 0
ph h> , the integration of equation (3.22) yields: 

 
( )( )0

1
2 1

ym
dsht

ks k s s
=

− −∫ , for 0 ym k≤ ≤ , (3.23) 

where 0 /pk h h= .  The right hand side represents an elliptic type integral which can 

be inverted in terms of elliptic functions [85, 86].  Therefore, the solution of equation 

(3.22) can be written as follows: 

 2( ) ( , )ym t k sn ht k= ⋅ , (3.24) 

where sn(u,k) is the “sine-type” Jacobi elliptic function.  Although this formula was 

derived only for the first stage of the precessional motion, it can be proved that it is 

valid at any instant of time.  By plugging this expression into formula (3.21) and 

making use of the fundamental relation for elliptic functions, the analytical solutions 

for mx and mz components are found to have the following expressions: 

 
( ),
( , ) ( , )

x

z

m cn ht k
m sn ht k dn ht k
 =


=
, (3.25) 

where cn(u,k) and dn(u,k) denotes “cosine-type” and “delta-type” Jacobi elliptic 

functions.  A graphical illustration of these analytical solutions is shown in Figure 
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3.11 for the same parameters used in the representation of damping switching in 

Figure 3.6.  Since the precessional switching is not sensible to small variations of 

angle θ, the initial condition for the precessional switching is taken θ0=0o.  By using 

the numerical method presented by Serpico, Mayergoyz and Bertotti, in [75], we have 

solved equation (3.1) and found the precessional switching trajectories corresponding 

to various values of the damping constant. Selected numerical results are presented in 

Figure 3.12.  It is apparent from this figure that the “undamped” trajectory offers 

indeed a good approximation of the precessional switchings corresponding to 

damping parameters of physical interest ( ( )3 110 ,10α − −∈ ).  An analytical approach to 

compute the damping corrections can be found in Section 3.2.  We stress that Figures 

3.6 and 3.12 have their time scales offered in nanoseconds and picoseconds, 

respectively.  It is apparent from these figures that the precessional switchings are 

substantially faster than the damping ones.  This aspect is next analyzed in a 

systematic way. 

It is clear from the first formula in (3.25) that mx will reach the value of –1 at 

the time pτ  equal to half period of ( ),cn ht k .  Thus, the switching time for the 

precessional mode of magnetization reversal is given by the formula: 

 02 ( / )2 ( ) p
p K H HK k

H H
τ

γ γ
= = , (3.26) 

where K(k) is the first kind complete elliptical integral, and 0 0 / 2pH H= .  The 

dependence of 1/ pτ  on H, as follows from formula (3.26), is presented in Figure 3.5 

(b). It is apparent that 1/ pτ  can be considered linearly dependent on H for sufficiently 

large H. 
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It is important to stress that in the case of the precessional switching the timing 

of switching-off the applied magnetic field is crucial, in the sense that there is a 

certain time-window during which switching-off must occur.  It is easy to see that this 

time-window is defined by the formula: 

 ( ) 3 ( )pK k K k
H H

τ
γ γ

< < , (3.27) 

that guarantees that after switching-off the magnetization will be in the basin of the 

attractor mx=-1.  We recall that the damping switching is sensitive to the minimum 

pulse time and “insensitive” to the maximum pulse time.  Despite this disadvantage, 

the precessional switching has clear advantages over the damping switching.  

Namely, the critical field 0
pH is half of the critical field H0 for the “damping” case and 

the switching is much faster than in the “damping” case.  The ratio between the two 

switching times computed by using formulae (3.7) and (3.26) gives: 

 ( )1

p

f bτ α
τ

= , (3.28) 

where 1
0 0 0

2

2 (1/ 2 )( )
ln(1 cos ) ln(1 cos ) cos1 ln

2(1 ) 2(1 ) 1

K bf b
bb

b b b b
θ θ θ

=
 − + −

+ − − + − 

 and 0/b H H= . 

The graph of 2 ( )f b  for selected values of θ0 is shown in Figure 3.13.  It is clear from 

this Figure and formula (3.28) that the precessional switching is on the order of 1/α 

times faster than the damping switching.  For applied fields close to respective 

damping critical fields (β close to 1), this advantage is even more pronounced. 
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It is instructive to compare switching times for precessional and damping 

switchings for the same ratio of applied fields to respective critical fields: 

0 0/ /p ph h h hβ = = .  By using formulas (3.7) and (3.26), we find: 

 2 ( )
p

fτ α β
τ

= , (3.29) 

where 2
0 0 0

2

4 (1/ )( )
ln(1 cos ) ln(1 cos ) cos1 ln

2(1 ) 2(1 ) 1

Kf ββ
θ θ β θβ

β β β β

=
 − + −

+ − − + − 

. 

The graph of 2 ( )f β  for selected values of θ0 is shown in Figure 3.14.   

Even though the switching is guaranteed if the applied magnetic field is 

switched-off during the time-window given in formula (3.27), some additional time is 

needed for magnetization to relax to the new equilibrium state.  This aspect is known 

as “ringing” phenomena associated to precessional switching.  The additional time 

can be computed using formula (3.6) in which h=0, 
0xm  will be the value of x-

component of magnetization at the switching-off moment, and mx is the desired final 

value sufficiently close to the equilibrium state mx=-1. 
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Figure 3.11:  Evolution of magnetization components with time for precessional 

switching corresponding to field ratio H/H0=h/h0=1.2. The initial condition is mx=1, 

product γH0 is considered to be 11 14 10 s−× , and the damping is neglected. 

 

Figure 3.12:  Numerical solutions for mx dynamics of precessional switching for field 

ratio H/H0=h/h0=1.2 and selected values of α. The initial condition is mx=1, and 

product γH0 is considered to be 11 14 10 s−× . 
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Figure 3.13:  Dependence of function f1 on ratio b=h/h0 for selected values of initial 

angle θ0. 

 

Figure 3.14: Dependence of function f2 on ratio 0 0/ /p ph h h hβ = =  for selected values 

of initial angle θ0. 
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3.2. Dynamical critical field curve for precessional switchings 

In this section, explicit expressions for critical fields and field pulse durations, which 

guarantee the magnetization switching for arbitrary orientations of the applied field, 

are derived.  In the end, the effect of damping on the critical field is discussed. 

The efficiency of magnetization switching process in uniformly magnetized thin 

films and nanoparticles subject to a rectangular pulsed magnetic field can be mainly 

characterized by the critical field pulse duration of the magnetic field that guarantee 

the switching.  In the previous section we have derived the expressions for these 

quantities in the case of perpendicular media having the pulsed magnetic fields 

applied along and perpendicular to the easy axis.  Here, we extend these results to 

arbitrary orientations of the applied field.  

Consider a uniformly magnetized perpendicular thin film subject to a 

rectangular pulse of spatially uniform magnetic field applied at some obtuse angle 

with respect to x-axis (See Figure 3.15).  As discussed in the previous section, the 

essence of the precessional switching is to move the magnetization from the 

equilibrium point x=m e  to the basin of attraction corresponding to the other 

equilibrium point x= −m e  using the precessional component of the magnetization 

dynamics.  This process is driven by a short pulsed magnetic field that should be 

switched off during the time when the magnetization motion occurs in the basin of 

attraction of x−e .  If this condition is satisfied the magnetization will relax, as a result 

of damping, to the new equilibrium position. 
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Figure 3.15: Configuration for precessional switching in perpendicular media. 

 

As discussed in the previous section, the precession of magnetization is very 

fast, and consequently, the dissipative effects can be neglected during the time when 

the external magnetic field is applied.  This means that the dynamics of magnetization 

under the applied magnetic field can be studied using the “reduced” equation: 

 ( )eff
d
dt

= − ×
m m h m . (3.30) 

where 0( )eff z z y y x x x x y y x x x x x y yD m m D m h h D D m h h= − + + − + = − + − +h e e e e e m e e e  

with 0xD D D= + .  Since the term proportional with m has no influence on the 

magnetization dynamics, an equivalent equation is obtained by dropping off this term 

from the expression of effective field.  Thus, the effective field can be written as: 

 eff x x x x x y yD m h h= − +h e e e . (3.31) 

Because the magnetic field is applied at some obtuse angle with respect to x-axis, the 

possible values taken by hx are all positive.  The free energy associated to this 

effective field reads: 
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 ( ) 2/ 2x x x x y yg D m h m h m= − + −  (3.32) 

In the case of rectangular pulses, this equation admits two integrals of motion 

that express the conservation of magnetization magnitude: 

 2 2 2 1x y zm m m+ + = , (3.33) 

and the conservation of magnetic free energy: 

 ( ) ( )2/ 2 / 2x x x x y y x xD m h m h m D h− + − = − + . (3.34) 

These two conservation laws define the trajectory of the magnetization that can be 

geometrically represented as the intersection curve between the sphere (3.33) and the 

parabolic cylinder (3.34).  The projection of precessional magnetization motion on 

the (mx,my)-plane occurs along the parabola (3.34) that is confined within the unit disk 

2 2 1x ym m+ ≤ .  Depending on the values of hx and hy, there are two distinct classes of 

parabolic trajectories.  Trajectories of the first class consist of a single piece of 

parabola (for instance, O-B in Figure 3.16) while trajectories of the second class 

consist of two disjoint pieces of the parabola (for instance, O-E and F-G in Figure 

3.16).  It is apparent that every piece of the parabola inside the unit circle corresponds 

to recurrent (periodic) motion on the unit sphere.  This back-and-forth motion occurs 

along the curves located on positive (mz>0) and negative (mz<0) hemispheres, and 

these curves are symmetric with respect to the (mx,my)-plane.  As a consequence of 

this symmetry these back-and-forth pieces of actual magnetization trajectories are 

orthogonally projected into the same pieces of parabolic trajectories on the (mx,my)-

plane. 
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Figure 3.16:  Orthogonal projections of magnetization trajectories on (mx,my)-plane. 

 

Figure 3.17:  “Separating” curve (3.38) and regions in (hx,hy)-plane corresponding to 

the first and second classes of parabolic trajectories. 
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It is clear from the above discussion that the precessional switching may only 

take place along the “single-piece” trajectories that intersect the unit circle: 

 2 2 1x ym m+ = , (3.35) 

at negative values of mx.  The “disjoint” parabolic trajectories are separated from 

single-piece parabolic trajectories by the parabola O-C-D that is tangent to the unit 

circle.  By using the implicit differentiation, one can find from (3.34) and (3.35) that 

the condition of tangency of parabolic trajectory to the unit circle leads to the 

following relation: 

 0x x y x y y xD m m h m h m− − = . (3.36) 

At point C (Figure 3.16), three equations (3.34), (3.35), and (3.36) are satisfied.  

These three equations define the curve hy versus hx that separates the values of hx and 

hy which correspond to the first and second classes of parabolic trajectories, 

respectively.  This hy versus hx curve can be easily found in parametric form by 

introducing the polar angle θ such that: 

 cos , sinx ym mθ θ= = . (3.37) 

By substituting (3.37) into (3.34) and (3.36), and solving these equations with 

respect to hx and hy, we arrive at the following parametric equation for the 

“separating” curve: 

 ( ) ( )2 2cos cos / 2 , sin sin / 2x x y xh D h Dθ θ θ θ= = , (3.38) 

which is represented in Figure 3.17. 

The separating curve (3.38) is valid only for positive values of hx.  For negative 

values of hx, all the parabolic trajectories emanating from point O (see Figure 3.16) 

intersect the unit circle only once.  Formulas similar to (3.38) were derived using a 
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different reasoning in [87].  Curves similar to the ones obtained using formula (3.38) 

were also numerically found by using a “trial and error” method to determine the 

critical fields for precessional switching [42]. 

Next, we shall find the conditions on hx and hy that guarantee that single-piece 

parabolic trajectories intersect the unit circle (3.35) at negative values of mx.  By 

using (3.34) and (3.35), we find that mx corresponding to the above intersection 

satisfies the following cubic equation: 

 ( ) ( ) ( )22 3 2 2 2 2 24 4 4 4 2 0x x x x x x x x y x y x xD m D D h m D h h m h h D+ − − − − + − − = . (3.39) 

For a single-piece parabolic trajectory intersecting the unit circle (3.35) at a negative 

value of mx, the last equation must have two complex conjugate roots and one 

negative root.  This implies that: 

 ( )224 2y x xh h D< − . (3.40) 

This region is bounded by the intersecting lines given by the following formula: 

 [ ]( / 2)y x xh h D= ± − . (3.41) 

By combining this region with the single-piece trajectory region bounded by 

“separating” curve (3.38), we conclude that the values of hx and hy that guarantee the 

precessional switching correspond to the (hx,hy)-points outside the shaded area shown 

in Figure 3.18.  The boundary of this region corresponds to the critical fields for 

precessional switching of perpendicular media (“dynamical critical curve”).  The 

minimum field amplitude for switching is 0.385Dx, and it corresponds to the field 

orientation / 2y xh h = . 
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Figure 3.18:  Critical field curve for precessional switching and quasi-static critical 

curve for the conventional magnetization reversal.  

 

In Figure 3.18, the dynamical critical curve computed above is plotted against 

the quasi-static critical field curve which represents the limit of the present approach 

to magnetization reversal in magnetic recording.  The analytical expressions for the 

quasi-static case can be derived by analyzing the stability conditions for the free 

energy minima.  This analysis was first published in the seminal article of Stoner and 

Wohlfarth [27] along with the computation of hysteresis cycles for various orientation 

of the applied field.  It is proved that the quasi-static critical field curve is an astroid, 

known as Stoner-Wohlfarth astroid in magnetic recording. This curve has its implicit 
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expression given by ( ) ( ) ( )2 / 32 / 3 2 / 3
x y xh h D+ = , which can be explicitly described in the 

following form: 

 
3

3

cos

sin
x x

y x

h D

h D

ϕ

ϕ

 =


=
, (3.42) 

where φ is the curve parameter, which takes values from 0 to π/2 in order to 

completely describe the curve plotted in Figures 3.17 and 3.18 

For magnetic fields corresponding to the points located below the astroid (see 

Figure 3.18), the energy expression has two minima, while for the points located 

above the astroid, the corresponding energy has only one minimum.  In the case of 

the quasi-static magnetization reversal, the external magnetic field applied at some 

obtuse angle with respect to x-axis is “slowly” increased from zero to some given 

value. The magnetization, initially oriented along x+e , is simply following the 

metastable state continuously related to its initial equilibrium state.  When the field is 

reaching its critical value the corresponding magnetization state becomes unstable 

and the magnetization “jumps” to the stable state.  During this jump, the 

magnetization is reversing its orientation with respect to x-axis.  Once the transition to 

the new equilibrium state is completed, the applied field can be slowly decreased to 

the zero value, and the magnetization will be finally oriented along x−e . 

Since the whole process may take place on a microsecond time scale, the use of 

the word “slow” for the previous description of the external field evolution may be 

found somehow confusing.  That is why we mention that this term is used with 

respect to energy relaxation time scale (nanosecond scale). 
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In the case of precessional switching, the timing of switching off the magnetic 

field is crucial, in the sense there exists a periodic sequence of time windows during 

which the switching-off must occur.  These time-windows correspond to the time 

intervals when the magnetization moves back-and-forth between the points A and B 

on the generic trajectory O-A-B shown in Figure 3.16.  To find these time windows, 

we shall recall equation (3.30), whose x-component can be written as follows: 

 x
y z

dm h m
dt

= . (3.43) 

By using equations (3.33) and (3.34), one can easily find: 

 ( ) ( ) ( )22 2 21 ( / 2) ( / 2)y z x y x x x x x x xh m m h m D m h m D h= ± − − − + + − . (3.44) 

From equations (3.43) and (3.44), the time-windows for switching the field off can be 

expressed as:  

 ( ) ( )i f i i f fn t t t t n t t t+ + < < + + ,  (n=0,1,2 …), (3.45) 

where: 

 
( )

1

0

x
i

y z x

dmt
h m m

= ∫ , (3.46) 

 
( )

0

2
x

x
f i

m y z x

dmt t
h m m

= + ∫ , (3.47) 

and mx=1, mx=0 and mx= xm  correspond to points O, A and B, respectively.  The value 

of xm  can be found by solving simultaneous equations (3.34) and (3.35).  It can be 

also remarked that integrals (3.46) and (3.47) can be reduced to elliptic integrals.  We 

stress that the accuracy of the equation (3.45) decreases with the number of 

precessional cycles n as a result of damping, which was neglected in this derivation. 
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Examples of constant ti field lines calculated from equations (3.45) and (3.46), 

are shown in Figure 3.19.  These lines give the field threshold that must be exceeded 

if one wants to force switching in time shorter than the indicated values of ti.  The 

normalized constant ( )x sD Mγ  is on order of 1011 s-1, and usually, it takes values 

between 2 and 6 on this scale.  As an example, let us consider 11 14 10x sD M sγ −= ×  

and consequently, the normalized time presented in this Figure should be multiplied 

by 2.5 ps, in order to obtain the real initial time.  As the “dynamical critical curve” is 

approached, the corresponding switching time tends to infinity.   

 

Figure 3.19:  Lines of constant minimum switching times ti calculated from equations 

(3.44) and (3.46). The corresponding values of ti are expressed in units of ( ) 1
x sD Mγ − . 
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Next, we shall discuss the effect of damping on critical fields for the 

precessional switching in perpendicular media.  Using the numerical method 

previously mentioned and presented in [86] we have solved equation (3.1), coupled to 

the effective field (3.31), and found the critical field for precessional switching as a 

function of damping parameter α. This has been done for various orientations of the 

applied field.  We have observed that the critical field is linearly increasing with α as 

it is illustrated by the Figure 3.20. 

In order to explain this linear behavior and to derive an analytical formula for 

these “damping corrections”, we first extract from equations (3.1), (3.31), and (3.32), 

the following equation for the rate of the energy dissipation: 

 ( ) ( ) ( )( ) 2

eff
dg t t t
dt

α= − ×m h m . (3.48) 

For the sake of presentation, let us consider the case when the field is applied 

along y direction.  Thus, at the beginning of the motion the energy is equal to –Dx/2 

and the condition of switching requires that mx should reach zero, and consequently, 

the energy should be equal with - y yh m  at that instant of time.  The minimum applied 

field required to switch the magnetization corresponds to the magnetization trajectory 

that passes through the points ( 1, 0)x ym m= =  and ( 0, 1)x ym m= = .  By using 

equation (3.48), the following relation is found for the critical field associated to this 

“critical” trajectory: 

 ( ) ( )( )
1 2

0

/ 2
T

cr x effh D t t dtα αα− = ×∫ m h m , (3.49) 

where T1 represents the instant of time when mx reaches zero.  Although the analytical 

expressions for the solutions of equation (3.1), coupled to (3.31), are not readily 
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available, the above critical trajectory can be well approximated by the trajectory of 

the undamped motion (equations (3.30)-(3.31)) passing through the same limit points.  

The analytical expressions for these undamped solutions have been presented in the 

previous section.  Thus,  

 
(1) 4

0

1 1 1 ,1 0.667
2 4 2

Kcr

x

h tsn dt
D

α

α α  − ≈ − ≈ ⋅    
∫ , (3.50) 

where K and sn denote the first kind complete elliptic integral and “sine-type” Jacobi 

elliptic function, respectively.  The linear dependence of critical field crhα  on α is now 

apparent.  

 

Figure 3.20:  Damping corrections for critical fields; numerical results are represented 

by symbols and the analytical result given by formula (3.50) is plotted by solid line.  

The angle between the direction of applied field and x-axis is denoted by φ . 
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3.3. Inverse problem approach to the design of magnetic field pulses for 

precessional switching 

In this section the inverse problem approach to the analysis of precessional switching 

in perpendicular thin films subject to time varying magnetic field is presented.  This 

approach leads to direct calculations of expressions for magnetic field pulses that 

guarantee the precessional switching.  The effectiveness of the developed technique is 

illustrated by examples. 

A central problem of the research studies on precessional magnetization 

reversals is the design of magnetic field pulses that guarantee the precessional 

switching.  This problem has been addressed experimentally and numerically by 

using a “trial and error” method.  Next, the “inverse problem” approach is developed. 

This approach is purely algebraic in nature and leads to the direct calculations of 

expressions for the magnetic field pulses that guarantee precessional switching. 

 
Figure 3.21:  Configuration for precessional switching in perpendicular media. 
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To start the discussion, consider a thin film that is uniformly magnetized along 

anisotropy x-axis and subject to a spatially uniform pulsed magnetic field applied at 

some angle π/2+θ with respect to anisotropy axis (see Figure 3.21).  The precessional 

switching is usually so fast that damping effects can be neglected during the time 

when the magnetic field pulse is applied.  Therefore, this switching can be studied by 

using the “reduced” form of Landau-Lifshitz equation, which has the following 

dimensionless expression: 

 ( ),eff
d t
dt

= − ×
m m h m , (3.51) 

where the effective field is given by: 

 ( )( , ) ( )sin ( ) coseff x x x yt D m h t h tθ θ= − +h m e e . (3.52) 

Positive constant Dx accounts for perpendicular x-anisotropy and demagnetizing field. 

Vector dynamic equation (3.51) is equivalent to three coupled scalar dynamic 

equations for cartesian components of m.  Since vector dynamic equation (3.51) has 

the integral of motion 

 ( ) 1t =m , (3.53) 

this equation can be used instead of the scalar equation for /zdm dt .  This leads to the 

following coupled equations: 

 ( )cosx
z

dm m h t
dt

θ= , (3.54) 

 ( )( )siny
x x z

dm
D m h t m

dt
θ= − − , (3.55) 

 2 2 2 1x y zm m m+ + = . (3.56) 
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An inverse problem approach to this problem consists of choosing the desired 

dynamics for one component of the magnetization and finding the other components 

and the magnetic field pulse from equations (3.54)-(3.56).  Since our goal is to find 

magnetic field pulses that guarantee precessional switchings of magnetization, the 

most appealing choice is the dynamics of mx component.  From equations (3.54)-

(3.56) the following relation can be derived: 

 2 21 tany x
x x x y

dm dmD m m m
dt dt

θ= − − + , (3.57) 

where the negative sign of the square root is chosen in the expression of mz and, 

without essentially limiting the generality of the solution, this sign is maintained 

constant during the precessional switching.  Since ( )xm t  is given, formula (3.57) can 

be treated as a differential equation with respect to ( )ym t . By solving this equation 

and using equation (3.54), we can recover the pulsed magnetic field: 

 ( )
2 2

1/ cos
1

x

x y

dmh t
dtm m

θ−
=

− −
, (3.58) 

which will guarantee the desired precessional switching. 

Although the “desired” inverse problem approach is straightforward, it has two 

drawbacks.  First, the dynamics of mx should be chosen such that the existence and 

uniqueness of the solution for equation (3.57) is guaranteed.  Second, this approach 

requires numerical integration of differential equation (3.57) and does not lead to 

analytical expressions for h(t).  However, the mathematical structures of equations 

(3.54)-(3.56) are such that an alternative approach to the solution of inverse problem 

of finding h(t), which leads the magnetization switching, can be developed. 
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The alternative inverse approach, which is purely algebraic in nature, is 

facilitated by the elimination of magnetic field h(t) from equation (3.55).  This is 

achieved by introducing the component ( )ym t  of magnetization along the field 

direction: 

 sin cosy x ym m mθ θ= − + , (3.59) 

and writing coupled equation (3.54)-(3.56) in terms of ( )xm t , ( )ym t  and ( )zm t : 

 1
cos

y
x z

x

dm
m m

D dtθ
= − , (3.60) 

 ( ) ( )2 2 2 2 2sin cos 1 cosx y z ym m m mθ θ θ+ + = − . (3.61) 

In this inverse problem approach, the dynamics of ( )ym t  that leads to the 

precessional switching must be first chosen.  Then, equations (3.60) and (3.61) can be 

treated as coupled algebraic equations with respect to xm  and zm .  Solving this 

system, ( )xm t  and ( )zm t  are found as functions of ( )ym t  and its derivative.  In 

addition, by differentiating equations (3.60) and (3.61) with respect to time we 

arrived at coupled linear equations for xdm dt  and zdm dt .  The solution of these 

equations yields the formula for xdm dt  as an algebraic function of ( )ym t  and its 

first two derivatives.  Then, the pulsed magnetic field h(t) is found from equation 

(3.54) as an algebraic expression of ( )ym t  and its first two derivatives.  The main 

difficulty in this approach is the choice of appropriate ( )ym t  that guarantees the 

precessional switching.  Next, it is discussed how this difficulty can be dealt with. 
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First, it can be observed that the solution of coupled algebraic equations (3.60) 

and (3.61) can be illustrated geometrically as the points of intersections of a 

hyperbola represented by equation (3.60) and an ellipse represented by equation 

(3.61) (see Figure 3.22).  These hyperbola and ellipse are changed as ( )ym t  evolves 

with time.  The main stages in a scenario for precessional switching are qualitatively 

illustrated by “bold dots” on Figure 3.22.  At the initial instant of time, 0ydm dt =  

and the hyperbola “coincides” with axes 0xm =  and 0zm = . Point (1,0)  of 

intersection of the ellipse with these axes corresponds to the initial state of the 

magnetization (see Figure 3.22(a)). 

 
Figure 3.22 (a)-(f): Geometrical scenario for the solutions of the system (3.60)-(3.61) 

at selected instants of time. 
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As ( )ym t  is monotonically increased, the initial magnetization evolution 

corresponds to the solution of equations (3.60)-(3.61) with the largest positive value 

of xm  (see Figure 3.22(b)).  At some point of time t0, the two solutions of equations 

(3.60)-(3.61) with positive values of xm  coincide (Figure 3.22(c)).  As ( )ym t  is 

further increased, the magnetization evolution follows the solution of equations (3.60)

-(3.61) with the smallest positive value of xm  (Figure 3.22(d)).  When the maximum 

value of ( )ym t  is reached ( 0ydm dt = ), xm  is equal to zero (Figure 3.22(e)).  As 

( )ym t  is monotonically decreased, xm  takes negative values (Figure 3.22(f)).  It is 

clear from the discussions presented in the previous sections that if xm  has a negative 

value when the magnetic field pulse is stopped, magnetization will relax to the 

equilibrium state 1xm = − . 

It can be inferred from the above discussion that the precessional switching of 

magnetization will occur if during the monotonic increase of ( )ym t  there are two 

solutions of equations (3.60)-(3.61) with positive values of xm  and at some 

intermediate instant of time t0 these two solutions coincide.  Next, this assertion is 

rigorously proved and the above conditions are framed in purely algebraic terms.  To 

this end, we reduce the coupled algebraic equations (3.60)-(3.61) to the following 

quartic equation: 

 ( ) ( ) ( ) ( )22 2 2, 0x x x xF m t m m a t b t m c t= + − + =   , (3.62) 

 ( ) ( )sinya t m t θ= ,   ( ) ( )2 21 cosyb t m t θ = −  ,   ( ) ( )1 x yc t D dm dt= . (3.63) 
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During the monotonic increase of ( )ym t , positive solutions of quartic equation (3.62) 

are of interest.  It can be inferred from equation (3.61) that positive xm -solutions are 

only possible if ( ) θcos~ <tmy .  Thus, we restrict our attention to ( )ym t  trajectories 

that satisfy this condition. 

From (3.62)-(3.63), we derive: 

 ( ) ( ) ( )2 22 2 3x x x
x

dF m m a t m a t b t
dm

 = + + −  , (3.64) 

 ( ) ( ) ( )2 2 2cosya t b t m t θ− = − . (3.65) 

Since the discriminant of the second order polynomial found inside the square 

brackets ( ) ( ) ( )2 8 0t a t b t∆ = + ≥ , the function 
x

dF
dm  has three real zeros: 0, ( )s

xm , 

and ( )l
xm , where the superscripts (s) and (l) imply that ( ) ( )s l

x xm m≤ .  According to the 

Viète’s relations for the roots of polynomial (3.64), ( )s
xm  and ( )l

xm  satisfy: 

 
( )

( )( )

( ) ( )

( ) ( ) 2 2

3 sin
2

1 cos
2

s l
x x y

s l
x x y

m m m t

m m m t

θ

θ

 + = −

 ⋅ = −


, (3.66) 

It is clear form these formulae that ( )s
xm  is negative and ( )l

xm  is positive for 

cos cosymθ θ− ≤ ≤ , while for 1 cosym θ− ≤ ≤ − , both roots are positive.  The Rolle 

sequences associated to equation (3.62) for these two cases are given in Tables 1 and 

2.  Results ( )lim
x

x
m

F m
→±∞

= +∞  and ( ) ( )20 0F c t= ≥  are apparent from formula (3.62).  

Moreover, when 1 cosym θ− ≤ ≤ − , and consequently ( )s
xm  is positive, ( )( )s

xF m  can 

be written: 



 85

 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

3( ) ( ) ( ) 2

2
3( ) 28

4

s s s
x x x

s
x

F m m m a t c t

a t b t a t
m c t

= + +

 + −
 = +
  

.  (3.67) 

Since b(t) is positive the expression found inside square brackets is positive, and 

consequently, ( )( )s
xF m  is positive.  These remarks justify the signs presented in 

Tables 1 and 2. 

 

x  −∞  
( )s
xm  0  

( )l
xm  +∞  

( )F x  +  
( )( )s
xF m  +  

( )( )l
xF m  +  

 

Table 1:  The Rolle sequence associated to equation (3.62) for cos cosymθ θ− ≤ ≤ . 

 

x  −∞  0  
( )s
xm  

( )l
xm  +∞  

( )F x  +  +  +  
( )( )l
xF m  +  

 

Table 2:  The Rolle sequence associated to equation (3.62) for 1 cosym θ− ≤ ≤ − . 

 

According the Rolle theorem from the basic calculus, the results presented in these 

tables imply that quartic equation (3.62) has two positive solutions if and only if: 

 ( )( )( ) , 0l
xF m t t ≤ . (3.68) 
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These two solutions are distinct and separated by ( )l
xm  in the case of strict inequality 

in formula (3.68).  On the other hand, these two positive solutions coincide with one 

another and with ( )l
xm  when the equality is achieved in formula (3.68). 

Moreover, since we are interested in positive solutions which are smaller than 

one, let us notice that ( ) ( ) ( )2 21, sin 0yF t m t c tθ = + + >   and the relation ( ) 1l
xm ≤  is 

finally equivalent to ( ) ( )2 2sin 1 0y ym mθ+ + − ≥  which is obviously true.  Therefore 

the condition (3.68) is tantamount to the fact that function ( )tmF x ,  has two positive 

solutions on the interval [0, 1]. 

Since ( )( )l
xm t  is a function of ( )ym t , inequality (3.68) can be phrased as the 

algebraic condition on ( )ym t  that guarantees the switching of magnetization from the 

state when 1xm =  to the state when 0xm = .  Namely, the above switching will occur 

for any monotonically increasing function ( )ym t  on the interval [0, T1], such that 

formula (3.68) is valid and the equality in this formula is achieved at some instant of 

time belonging to [ ]10,T , denoted by 0t .  Indeed, during the time interval [0, t0] the 

evolution of xm  coincides with the evolution of the largest positive solution of quartic 

equation.  This is because ( )0 1xm = .  During the time interval [t0, T1] the evolution 

of xm  coincides with the evolution of the smallest positive solution of quartic 

equation (3.62), and in this way, xm  reaches zero.  It can be proved that this “switch” 

at time t0 between the largest and the smallest positive solutions of equation (3.62) is 

imposed by the differentiability of xm  at t= t0, as it is required by the Landau-Lifshitz 
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equation.  This proof is quite involved and for the sake of presentation is not given 

here.  For the particular case of symmetric switching (θ=0o), the proof is similar to 

the one presented in the next chapter for precessional switching in longitudinal media. 

By substituting ( )( )l
xm t  in terms of ( )ym t , the function ( )( )( ) ,l

xF m t t  can be 

represented in the following form:  

 ( )( ) ( )( ) ( )( ) 2,l
x yF m t t m t c t= Φ + . (3.69) 

As a conclusion, the conditions imposed on ( )ym t  in order to guarantee the switching 

can be written in the following concise form:  

 
[ ]

( )( )
1

2

0,

1max 0y
yt T

x

dm
m t

D dt∈

   Φ + =  
   

. (3.70) 

Next, we discuss a technique of how to choose functions ( )ym t  that guarantee 

the switching of magnetization from 1xm =  to 0xm = .  To this end, consider a class 

of functions 

 ( ) ( )sinym t f tθ λ= − + , (3.71) 

where: 

 0 sin cosλ θ θ≤ ≤ + , (3.72) 

while monotonically increasing function f(t) is subject to the conditions 

 ( )0 0f = ,   ( )0 0f ′ = ,   ( )1 1f T = ,   ( )1 0f T′ = . (3.73) 

Next, we demonstrate that λ can be chosen in such a way that condition (3.70) is 

satisfied.  By using the above representation of ( )ym t , relation (3.70) can be reduced 

to the following equation with respect to λ: 
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 ( )
[ ]

( ) ( ) ( ){ }
1

2

0,
max sin 0xt T

f t D f tλ θ λ λ
∈

′Ψ = Φ − + + =       . (3.74) 

It is easy to see that ( )λΨ  is a continuous function of λ.  It can be also shown that: 

 ( )0 0Ψ < ,          ( )sin cos 0θ θΨ + ≥ . (3.75) 

This implies the existence of a solution of equation (3.74) on the interval 

[ ]0,sin cosθ θ+ .  Thus, appropriate values of λ can be found by solving one-

dimensional nonlinear algebraic equation (3.74). 

The effectiveness of the inverse problem technique for the design of magnetic 

field pulses that lead to precessional switching in perpendicular media is illustrated by 

Figures 3.23 and 3.24.  In these figures, magnetization components are normalized by 

Ms, / x sh H D M= , and time is measured in units of ( ) 1
s xM Dγ − .  Figure 3.23 presents 

the case when the direction of the applied magnetic field is perpendicular to the 

anisotropy axis (θ=0o).  The chosen dynamics for ( )ym t  is plotted by continuous line 

while the corresponding ( )xm t and the shape of the pulsed field h(t) found by using 

inverse problem approach are plotted by dash and dot lines, respectively.  As a test 

for our method, we have numerically solved the direct problem (3.51) corresponding 

to the magnetic field found by inverse problem approach and we have compared the 

results.  The numerical solutions of the direct problem (3.51),  ( )( )n
ym t  and ( )( )n

xm t , 

are plotted by symbols in Figure 3.23.  The case of θ=20o is illustrated in Figure 3.24.  
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Figure 3.23:  Chosen dynamics for ( )ym t  (plotted by continuous line), and 

corresponding mx(t) and normalized magnetic field h(t) found by using inverse 

problem approach (plotted as dash and dot lines, respectively); numerical solutions 

(plotted as symbols) for the direct problem when magnetic field h is given; (θ=0o). 

 
Figure 3.24:  Chosen dynamics for ( )ym t  (plotted by continuous line), and 

corresponding mx(t) and normalized magnetic field h(t) found by using inverse 

problem approach (plotted as dash and dot lines, respectively); numerical solutions 

(plotted as symbols) for the direct problem when magnetic field h is given; (θ=20o). 
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The assumption that damping effects play a negligible role in the design of 

magnetic field pulses that generate precessional switching has been tested by 

introducing the classical Landau-Lifshitz damping term in equation (3.51) and by 

solving numerically this equation for the magnetic fields found by inverse problem 

approach.  The resulting ( )damp
xm t  dynamics and the non-damp dynamics ( )xm t  were 

sufficiently close even for high values of damping coefficient α, such as α=0.1.  

Figure 3.25 presents the results of this comparison for the magnetic field pulses found 

by inverse problem approach and presented in Figures 3.23 and 3.24.  This 

comparison suggests that dissipative effects can be neglected for the design of the 

magnetic field pulses. 

 

 

Figure 3.25: Evolution of mx in the case of precessional switching for α=0 (denoted by 

mx) and α=0.1 (denoted by mx
damp), and the corresponding magnetic field pulses. 

Magnetization component is normalized by Ms, h=H/DxMs, and time is measured in 

units of 1( )x sD Mγ − . 
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4. Inverse problem approach to the analysis of precessional 

magnetization reversals in longitudinal media 

“A thing appears random only through the 

incompleteness of our knowledge.” 

Benedict de Spinoza [88] 

 

In this chapter, the precessional magnetization switching in longitudinal thin film 

media is discussed.  After a short summary of the research studies existent on this 

topic, the inverse problem approach to the analysis of precessional switching in these 

media is presented.  This approach leads to explicit expressions for the magnetic field 

pulses that guarantee the precessional switching.  The effectiveness of the developed 

technique is illustrated by examples.   

The precessional switching in longitudinal thin film media has been the focus of 

considerable research in recent years.  This research can be divided into two main 

directions oriented to the hard and soft magnetic materials, respectively.  In the case 

of hard magnetic materials, the coercive field is very large (on the order of 105-106 

A/m), which makes it very difficult to produce short magnetic pulses with such high 

amplitude.  The experiments done in this direction [11, 44-45, 89] are similar to the 

ones for perpendicular media mentioned in the previous chapter and are of direct 

relevance to the increase in speed data processing in hard disk drives.  However, the 

current experimental techniques used for these studies are based on a special current 

source, namely Stanford Linear Accelerator, which rather limits the technological 
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applicability of this method.  Impelled by the recent developments in magnetic 

random access memories, the second direction of research is being flourishing for the 

last five years.  The soft thin film media have much smaller coercive fields (on the 

order of 10-102 A/m) and consequently, they are susceptible to switch their 

magnetization at much smaller applied magnetic fields, as compared to the hard 

magnetic materials case.  As a result, it is much easier to design technologically 

realizable field pulses with reasonable high amplitude and short time duration.  

Various experimental set-ups for this case can be found in References [12-13, 46-49].  

Numerous comparisons of experimental techniques and numerical simulations have 

confirmed the validity of Landau-Lifshitz equation approach to quantitatively 

describe precessional switching phenomena both in hard and soft magnetic materials 

[11-13, 42-49]. 

Over the last three years, the analytical analysis of the precessional switching in 

longitudinal thin film media has been successfully developed by Bertotti, Mayergoyz, 

and Serpico, and their results are presented in References [90-94].  Interesting 

analytical results on this topic have also been published by Devolder and Chappert in 

References [95-97].  Here, the inverse problem approach to the analysis of 

precessional switching in these media is presented. 

The magnetization dynamics in longitudinal thin film media is governed by the 

competition between the applied field, the in-plane anisotropy field and the 

demagnetizing field perpendicular to the plane.  While in hard magnetic materials the 

strength of the anisotropy field is comparable to the one of the demagnetizing field, in 

soft magnetic materials the latter is much stronger.  In the absence of the applied 
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field, there are two stable equilibrium directions, and the magnetization lies along one 

of them.  The precessional switching between these two minima can be produced by a 

short magnetic field pulse applied in the thin film plane at some angle with the 

anisotropy axis.  In longitudinal soft magnetic materials, this reversal mode can be 

essentially described as a two-phase process: first, the applied magnetic field tilts the 

magnetization out of the thin film plane and, as a result, it creates a strong 

demagnetizing field, oriented perpendicular to the plane; in the second phase, 

magnetization starts to precess about the demagnetizing field and moves from the 

basin of attraction of one energy minima to the one of the other energy minima.  If the 

magnetic field pulse is properly designed, the magnetization would be in the basin of 

attraction of the latter energy minima by the time when the magnetic field is switched 

off.  Therefore, a central problem of this direction of research is the design of 

magnetic field pulses that will guarantee the precessional switching.  This problem 

has been addressed experimentally and numerically by using a “trial-and-error” 

method.  In this section, the “inverse problem” approach is developed that leads to the 

explicit expressions for magnetic field pulses that guarantee the precessional 

switching of magnetization in thin magnetic films. 

An important remark should be made before starting this analysis.  In contrast to 

the perpendicular media case, presented in the previous chapter, the experiments on 

soft longitudinal media reveal a “stochastic” behavior of magnetization precessional 

switchings [48].  A possible explanation of this seemingly stochastic nature of the 

precessional switching is given in [91] and is based on the approximately “riddled” 

basins of attraction property [98-99] exhibited by Landau-Lifshitz equation.   Thus, 
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the phase portraits of Landau-Lifshitz equation in the absence of the applied field 

present three distinct regions.  Two clearly separated regions surround the two energy 

minima, and the time evolution of the magnetization inside each one of them 

inevitable leads to the corresponding energy minimum.  In the third region, 

magnetization trajectories leading to different energy minima are closely entangled 

resulting in approximately “riddled” basins of attractions.  If the magnetic field is 

switched off when the magnetization is in latter region, the result of subsequent 

damping driven relaxation is practically uncertain, as a consequence of the very close 

entanglement of magnetization trajectories leading to different equilibria.  In 

conclusion, the applied magnetic field pulse applied should not only change the 

orientations of the magnetization from positive mx to negative mx (see perpendicular 

media case), but also move the magnetization into a specific region surrounding –ex, 

which finally ensures the relaxation to this equilibrium position.   

 

 

 
Figure 4.1:  Configuration for precessional switching in longitudinal thin films. 
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To start the discussion, consider a uniformly magnetized longitudinal thin film 

subject to spatially uniform pulsed magnetic fields applied along y-axis (see Figure 

4.1).  The magnetization dynamics is described by the Landau-Lifshitz (LL) equation.  

This equation will be used in the following dimensionless form: 

 eff eff
d
dt

α= − × − × ×
m m h m m h . (4.1) 

Here, m=M/Ms, heff =Heff/Ms (normalized effective field), and time t is measured in 

units of (γMs)-1.  As considered in the previous chapters, Ms is the saturation 

magnetization, γ and α are the precessional and damping constants. 

Since the film is assumed to be very thin, the demagnetizing factors in the film 

plane and perpendicular to the film plane are practically equal to zero and 1, 

respectively.  This leads to the following expression for the effective field: 

 eff x x y y z zDm h m= + −h e e e , (4.2) 

where D accounts for the in-plane x-axis anisotropy. 

The precessional switching is so fast that dissipative effects can be neglected 

and the switching can be studied by using the equation: 

 eff
d
dt

= − ×
m m h . (4.3) 

In the absence of the applied field, there are two stable equilibrium points with 

x= ±m e , respectively.  Suppose that the magnetization is initially at the equilibrium 

point x=m e , and we want to find such a pulse magnetic field hy(t) that will result in 

the precessional switching of magnetization to the equilibrium state x= −m e . 

In the “inverse problem” approach, the desired monotonic dynamics of mx(t) 

between equilibrium points mx=1 and mx=-1 is chosen and then equations (4.2) and 
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(4.3) are used to find the appropriate hy(t).  Since the vector dynamic equation (4.3) 

has the integral of motion ( ) 1t =m , this equation can be used instead of the scalar 

equation for zdm
dt

.  This leads to the following coupled equations: 

 ( )x
y y z

dm m h m
dt

= + , (4.4) 

 (1 )y
x z

dm
D m m

dt
= − + , (4.5) 

 2 2 2 1x y zm m m+ + = . (4.6) 

From equations (4.5) and (4.6), we easily derive 

 ( ) ( )2 2(1 ) 1y
x x y

dm
D m t m t m

dt
= + − − , (4.7) 

where the negative sign of the square root is chosen and this sign is maintained 

constant during the precessional switching process. 

Since the desired dynamics of mx(t) that leads to the precessional switching of 

magnetization is chosen, formula (4.7) can be treated as a differential equation with 

respect to my(t).  By solving this equation with zero initial condition, my(t) can be 

found.  Then, from equation (4.4) we can recover the pulsed magnetic field 

 ( )
( ) ( )

( ) ( )
2 2

1
1

x
y y

x y

dmh t t m t
dtm t m t

−
= −

− −
, (4.8) 

that will guarantee the desired precessional switching. 

The described approach is straightforward because it is always easy to choose 

such a function mx(t) that guarantee the precessional switching.  However, this 

approach requires numerical integration of differential equation (4.7) and does not 
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lead to the explicit analytical expressions for hy(t).  It turns out that there exists an 

alternative approach that can be more preferable as far as explicit expressions for hy(t) 

are concerned.  In this approach, the dynamics of my(t) that leads to the precessional 

switching must be first chosen.  Then, by using equation (4.5) and (4.6), mx(t) and 

mz(t) are computed.  Afterwards, the pulsed magnetic field hy(t) is found from 

equation (4.4).  The main difficulty in this approach is the choice of the appropriate 

my(t) that guarantees the precessional switching.  Next, it is discussed how this 

difficulty can be dealt with. 

By assuming that my(t) is known, equations (4.5) and (4.6) can be treated as 

algebraic equations with respect to mx(t) and mz(t).  By eliminating mz(t) from (4.5) 

and (4.6), we arrive at the following equation for mx(t): 

 ( )
2

4 2 2
2

11 0
(1 )

y
x y x

dm
m m m

D dt
 

− − + = +  
. (4.9) 

It is easy to see that equations (4.5) and (4.6) are symmetric with respect to mx(t) and 

mz(t).  This implies that equation (4.9) is valid for mz(t) as well.  Therefore, we find: 

 ( )
( )

2
22 2 2

, 2
1 41 1
2 1

y
x z y y

dm
m m m

dtD

   = − ± − −   +   
. (4.10) 

Thus, there are “positive” and “negative” solutions (branches) of equation (4.9) 

that correspond to “+” and “- “ signs in formula (4.10), respectively.  It is apparent 

that different branches in (4.10) should be identified with mx(t) and mz(t).  At the 

beginning of precessional switching, this identification is performed on the basis of 

the initial conditions.  Thus, at the beginning of the precessional switching mx(t) must 

be identified with the positive branch of (4.10), while the negative branch 
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corresponds to mz(t).  However, these branches may be switched between mx(t) and 

mz(t) during the precessional process. 

Now, we shall discuss the conditions on my(t) that guarantee the precessional 

switching.  To this end, we consider the discriminant 

 ( ) ( )
( )

( )
2

22
2

41
1

y
y

dm
t m t t

dtD
 

 ∆ = − −    +  
. (4.11) 

It is obvious from (4.10) and (4.11) that those my(t) for which ∆(t)<0 at some 

instant of time are not physically realizable.  It is also apparent that those my(t) for 

which ∆(t) is strictly positive do not correspond to the precessional switching.  

Indeed, if ∆(t)>0 then the positive and negative branches in (4.10) are separated (see 

Figure 4.2).  Since mx(t) is a continuous function of t and it is identified with the 

positive branch of (4.10) at the beginning of magnetization dynamics, it must be 

identified with this branch at all instants of time.  Then, according to formula (4.10), 

mx(t) is strictly positive and cannot reach zero and, consequently, no precessional 

switching may occur. 

Next, we demonstrate that, when my(t) is such that ( ) 0t∆ ≥  and ( ) 0t∆ =  has 

an odd number of solutions before the negative branch from (4.10) reaches zero, the 

precessional switching will occur.  We shall provide the demonstration for the 

simplest case of “symmetric” precessional switching when hy(t) and my(t) are even 

functions of time in [-T/2, T/2], and ( ) 0t∆ =  has one solution t0 in [-T/2, 0] (see 

Figure 4.2).  It is apparent from (4.10) and (4.11) that at the time t0 positive and 

negative branches are not continuously differentiable.  Indeed, from (4.10) and (4.11) 

we find: 



 99

 ( ) ( ),
,

1( ) ( )
8 ( )

x z
x z

dm t
m t t g t

dt t
′∆

′= ±
∆

, (4.12) 

where the notation ( ) ( )( )21 4yg t m t= −  is used. 

Using Taylor expansions for ∆(t) and ( )t′∆  around t0, we derive: 

 ( ) ( ) ( ) ( ), 0
, 0 0 0

1
4 2

x z
x z

dm t
m t t g t

dt −

 ′′∆
′  = ± −

 
 

, (4.13) 

 ( ) ( ) ( ) ( ), 0
, 0 0 0

1
4 2

x z
x z

dm t
m t t g t

dt +

 ′′∆
′  = ±

 
 

, (4.14) 

where ( ),
0

x zdm
t

dt −  and ( ),
0

x zdm
t

dt +  denote the limits from “below” and “above” t0. 

 
Figure 4.2:  Positive and negatives branches of equation (4.10) for: (1) when ∆(t)>0 

and (2) when ( ) 0t∆ ≥  and zero is attained. 

It is clear from formulas (4.13) and (4.14) that positive and negative branches of 

the solution (4.10) are not continuously differentiable at t=t0, and consequently, these 

branches cannot be identified with mx(t) and mz(t) on the entire time interval [-T/2, 0].   
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It is also clear from formulas (4.13) and (4.14)  that the negative branch for t>t0 is a 

continuously differentiable extension of the positive branch for t<t0 and vice versa.   

Thus, mx(t) can be identified with the positive branch for 02
T t t− ≤ ≤  and with the 

negative branch for 0 0t t≤ ≤ .  Since my(t) is continuously differentiable even 

function, ( )0 0ydm
dt

=  and, according to (4.10), the negative branch and mx(t) reach 

zero at t=0.  For the time interval [0, T/2], mx(t) is the odd extension of mx(t) in the 

time interval [-T/2, 0], and this is tantamount to the precessional switching.  In the 

previous reasoning, it was tacitly assumed that ( ) 0t′′∆ ≠ .  However, the reasoning 

can be easily modified for the case ( ) 0t′′∆ = , because the first non-zero derivative of 

∆(t) at t=t0 is of even order.  The latter is the consequence of the fact ∆(t) is non-

negative and assumes its minimum zero value at t=t0. 

Thus, we have found the conditions on my(t) in terms of ∆(t) that result in the 

precessional switching.  From equations (4.4) and (4.10), the applied magnetic field 

corresponding to this switching is given by: 

 ( )
( )

( )

( )
( )

2
2

2 2

2
22

2

21
11 1

2 2 41
1

y
y y

y y

y
y

d m
m m

dtDD Dh t m
dm

m
dtD

− +
+− +

= +
 

− −  
+   .

 (4.15) 

Now, we present a technique that helps to choose my(t) in such a way that the 

conditions for precessional switching will be satisfied.  To this end, consider a set of 

functions 

 ( ) ( )ym t bf t= , (4.16) 
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depending on parameter ( ]0,1b∈ .  It is assumed that f(t) is even on [-T/2, T/2], and 

f(0)=1.  From initial conditions follows that f(-T/2)=0.  It turns out that there exists 

only one value of b such that ( ) 0t∆ ≥  on (-T/2, 0) and zero is attained in this 

interval.  The proof proceeds as follows.  It is apparent form formulas (4.11) and 

(4.16) that the previous assertion is equivalent to the existence of a unique solution 

for the following equation: 

 ( ) ( ) ( )2 2

,0
2

2 1 0
1

max
Tt

bF b b f t f t
D ∈ − 

 

 ′= + − = + 
 (4.17) 

It is easy to see that F(b) is a continuous and monotonically increasing function of b 

and: 

 ( ) ( )0 1lim 1,       lim 0b bF b F b→ →= − ≥ . (4.18) 

Thus, there is only one solution for equation (4.17), and consequently, there is only 

one b that satisfies our assertion.  This b can be found by solving one-dimensional 

non-linear equation (4.17). 

The “inverse problem” technique for the design of magnetic field pulses for 

precessional switching is illustrated by Figures 4.3 and 4.4.  A thin magnetic film 

with Ms=1.1T and D=0.008 has been considered and the following classes of 

functions ( ) ( )1 cos(2 / )ym t t T δβ π= +  and ( ) ( )21 (2 / )ym t t T
δ

β= −  have been 

chosen.  In Figure 4.3 we present the results for the first type of my-dynamics, where 

T=300ps, δ=3 and amplitude β has been chosen such that the condition for switching 

is satisfied.  The accuracy of this technique has been tested through numerical 

solution of the direct problem (4.3) corresponding to the magnetic field found by the 
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inverse problem approach.   Figure 4.4 presents the results of a similar analysis for 

the second type of my-dynamics mentioned above, with T=300ps and δ =10. 

In Figure 4.5 the damping (with α=0.01) is taken into account and it is 

confirmed that dissipative effects can be neglected for the design of the magnetic 

field pulses leading to precessional switching. 
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Figure 4.3:  The chosen dynamic for my and the corresponding mx, mz, and magnetic 

field Hy.  Numerical solutions xm , ym and zm  for the direct problem given Hy. 
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Figure 4.4:  The chosen dynamic for my and the corresponding mx, mz, and magnetic 

field Hy.  Numerical solutions xm , ym and zm  for the direct problem given the 

magnetic field Hy. 
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(a)      (b) 

Figure 4.5: Evolution of mx in the case of precessional switching when α=0, denoted 

by mx, and when α=0.01, denoted by mx
damp. 
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5. Surface effects on magnetization reversals in nanoparticles 

“Very often such, a simplified model throws 

more light on the real workings of nature than 

any number of ab initio calculations of 

individual situations, which even where correct 

often contain so much detail as to conceal rather 

than reveal reality.”  Philip W. Anderson [100] 

 

In this chapter, the study of surface anisotropy effects on magnetization reversals in 

nanoparticles is presented.  The multi-spin dynamics in magnetic nanoparticles is 

found by using Landau-Lifshitz equation with the effective field derived from 

Heisenberg-type Hamiltonian.  The expressions for critical magnetic fields that 

guarantee the quasi-static and precessional reversals are derived analytically for the 

case of very strong exchange and weak surface anisotropy.  These analytical results 

are also used to test the numerical approach, which is applied to the general case of 

the problem.  The distinct features of the quasi-static and precessional reversals in 

nanoparticles are examined. 

Magnetic nanoparticles have attracted the attention of many researchers since 

the pioneering work of Neel in the late 1940’s, due to their novel behavior and 

remarkable potential for technological applications.  However, it took almost half a 

century to find reliable techniques for manufacturing nanoparticles with desired 

structure, dimension, and other technological characteristics.  Recently, numerous 

experimental and theoretical studies on magnetic properties of isolated nanoparticles 
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have been published (see [101-111] and references therein).  However, many aspects 

of the experimental results are still waiting for satisfactory theoretical explanations.  

Moreover, these studies have been focused on the quasi-static magnetic 

characteristics of nanoparticles.  No comparable effort has been made to study the 

dynamic behavior of magnetization in nanoparticles, which is becoming increasingly 

important in various applications.  For instance, the study of surface effects on the 

precessional switching of nanoparticles has not been attempted.  In this chapter we 

present surface anisotropy effects on the hysteretic (quasi-static) and dynamical 

properties of magnetization in ferromagnetic nanoparticles. 

Surface effects strongly influence the properties of magnetic nanoparticles, and 

entail large deviations from the bulk behavior.  This influence is increasingly 

pronounced as the dimensions of the particle decrease.  It is useful to understand 

surface effects in magnetic materials in order to control the properties which are 

relevant for technological applications.  Surface effects are due to the breaking of 

crystal-field symmetry, and this is a local effect.  In order describe this contribution 

one has to resort to microscopic theories, which are capable of distinguishing between 

different atomic environments.  Our approach is to consider a semiclassical multi-spin 

description of a nanoparticle by using the Landau-Lifshitz equation for each spin with 

the effective field derived from a Heisenberg-type Hamiltonian.  The analysis 

presented here deals with the effect of surface anisotropy on the behavior of spherical 

nanoparticles with uniaxial anisotropy in the core and radial single-site anisotropy for 

spins on the boundary.  
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5.1. Hamiltonian model and computational method  

In this section, the Hamitonian model and physical parameters are defined, and the 

method used to compute hysteretic and dynamic properties of magnetic nanoparticles 

is presented.  

Within the classical approximation it is convenient to represent the atomic spin 

as the three-component spin vector si of unit length on the lattice site i.  We will 

consider the following Heisenberg-type Hamiltonian that includes the exchange 

interaction, Zeeman energy, and magnetocrystalline anisotropy energy: 

 ( )22
0

, 1 1

1 ( )
2

n n

ij i j B i i i i
i j i i

H J S g S Kµ µ
< > = =

= − ⋅ − ⋅ − ⋅∑ ∑ ∑s s H s s e . (5.1) 

Here, Jij is the strength of the nearest-neighbor exchange interaction, which is taken in 

these calculations the same everywhere (JijS2 will be denoted by J); <i,j> denotes the 

fact that the sum is made only over the nearest neighbors.  The constant g is the 

Lande factor, µB is the Bohr magneton, µ0 is the vacuum permitivity, and S is the 

value of the atomic spin.  The constant n is the total number of spins, while H is the 

uniform magnetic field applied in the direction ψ with respect to the reference z axis.  

The in-site magnetocrystalline uniaxial anisotropy is described by easy axis ei and 

anisotropy constants Ki.  This anisotropy contains two contributions stemming from 

the core and surface, and depends on the system under consideration.  In the case of 

spherical particle considered below, all core spins “feel” uniaxial anisotropy along the 

z easy axis with the same constant Kc, whereas each surface spins is assume to have 

its anisotropy axis along radial direction with the constants Ks.  As an illustration of 

this structure see Figure 5.1 where the spins are almost align to their anisotropy axis.  
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A remark should be made concerning the dipole-dipole interactions. It has been 

shown [112] that these contributions are negligible in very small spherical particles as 

compared with the contribution of exchange interactions. Moreover, continuum 

micromagnetic simulations for cubo-octahedral particles [113] also suggest that the 

influence of dipole-dipole interactions on the magnetic properties is not important 

even in relatively large nanoparticles with dimensions up to 60 nm.  For these 

reasons, we think that dipole-dipole interactions do not play a significant role in the 

behavior of spherical nanoparticles with diameters of a few nanometers, and 

consequently, they are not taken into account in Hamiltonian (5.1). 

 

 

Figure 5.1:  Magnetic structure of a spherical nanoparticle in an equilibrium state. 

This nanoparticle has 360 spins, Kc=1, Ks=1, weak exchange J=0.1, and no external 

magnetic field is applied (H=0). 
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The computational method of quasi-static characteristics presented in this 

section tries to follow physical dynamic processes that lead to the quasi-static 

characteristics, as opposed to energy minimization techniques usually applied for 

quasi-static studies.  Due to this property the method used here is naturally suitable 

for both quasi-static and dynamic studies of ferromagnetic nanoparticles.  Various 

models of a nanoparticle are considered. In each case, we simulate the lattice with 

simple cubic (sc) crystal structure and then assign to each site a length-fixed three-

component spin vector. For the calculation of a hysteresis loop we start with a 

magnetic configuration where all spins are pointing in the same direction –z, which 

corresponds to the saturation state.  The hysteresis loop is due to the existence of 

metastable states in the system.  Starting from the initial configuration and applied 

field, the integration of Landau-Lifshitz equation (see below) tends towards a new 

configuration that is an energy minimum. 

We choose Kc as the energy scale and normalize the other physical constants 

accordingly, i.e., 

 02 ,
2

c B

c

K g St t
K

µ µ
→ =h H . (5.2) 

Then, the Landau-Lifshitz equation for a spin si at site i, reads 

 eff effi
i i i i i

d
dt

α= − × − × ×
s s h s s h , (5.3) 

where eff
ih is the effective field acting on the spin si and is given by 

 ( )
12

iz
eff
i j i i i i

j

j k
=

= + − ⋅∑h h s s e e . (5.4) 
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Here, zi is the number of nearest neighbors considered, and there are used the reduced 

parameters j=J/Kc and ki=Ki/Kc (ki=1 if the spin belong to the core of the 

nanoparticle).  Therefore for each site i we arrive at three coupled equations (for spin 

components), and because of the second term in equation (5.4) we actually obtain a 

system of 3n (local) coupled nonlinear equations.  

After having constructed the magnetic structure (lattice and spin vectors in it), 

we apply a magnetic field H at some angle ψ  with respect to the reference z axis, 

with values chosen in a regular mesh.  Then we calculate the local effective field (5.4)

, for all spins and thereby the right-hand sides of the Landau-Lifshitz equations (5.3) 

and proceed with the time integration.  Time integration is made by using a Runge-

Kutta method and the technique presented in [75]. As this is done, the total energy in 

equation (5.1) smoothly decreases, and some criterion must be used for stopping the 

integration for the given value of the applied field and moving to the next value.  In 

our calculations we proceed to the next field value when 

 
1

1 n
i

i

d
n dt

ε
=

<∑ s , (5.5) 

which implies that the system is close to a stationary state, ε being a small parameter 

of order of 10-5-10-7.   

Next, the stationary state thus obtained is used as the initial state for the next 

value of the field. Iteration of this process over a sequence of applied fields, of given 

magnitude and direction ψ, renders the hysteresis loop.  For each value of this angle 

we determine the critical field.  The whole procedure finally renders the critical field 

as a function of the angle (critical curve, or limit-of-metastability curve).  



 110

5.2. Critical magnetic field curves for magnetization reversals in 

nanoparticles with weak surface anisotropy 

In this section, the expressions for quasi-static and dynamic critical magnetic fields 

that guarantee the magnetization reversals in spherical nanoparticles are analytically 

derived for the case of strong exchange and weak surface anisotropy. 

The analysis of the surface anisotropy effects can be appreciably simplified in 

the case of a very strong exchange ( { }max 1, sj k ).  In this case the spins motion 

can be considered uniform and their dynamics can be described by one spin motion 

which obeys the Landau-Lifshitz equation with the effective field derived from the 

reduced Hamiltonian: 

 ( ) ( ) ( )2 2

1

1 1
2 2

sn

r c z s i
i

H n n k
=

= − ⋅ − ⋅ − ⋅∑h s s e s e , (5.6) 

where, nc and ns are total number of core spins and surface spins, respectively.  

Moreover, taking into account the spherical symmetry of the problem, it will be 

proved in the next paragraph that the last term in (5.6) is independent on spin 

orientation, and consequently, it leads to an irrelevant constant in the Hamiltonian 

expression.  In conclusion, in the case of strong exchange and weak surface 

anisotropy the quasi-static and dynamic problems are reduced to the scaled versions 

of the uniaxial ferromagnetic object problems employed in Chapter 3 for the study of 

perpendicular oriented thin film media. 

The last sum in formula (5.6) can be written in the following form: 



 111

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 22 2 2 2

1 1 1 1

, 1 , 1 , 1
2 2 2

s s s s

s s s

n n n n
i i i

i x x y y z z
i i i i

n n n
i j i j i j

x y x y x z x z z y z y
i j i j i j

s e s e s e

s s e e s s e e s s e e

= = = =

= = =

⋅ = + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑

s e
, (5.7) 

where, i
xe , i

ye , and i
ze  are the cartesian coordinates of radial unit vector ei.  Since the 

crystal and surface anisotropy structures are invariant under the π/2 rotations around 

the each axis of coordinates, we have the following identities: 

 ( ) ( ) ( )2 2 2

1 1 1

s s sn n n
i i i
x y z

i i i
e e e

= = =

= =∑ ∑ ∑ . (5.8) 

( ) ( ) ( ) ( ) ( ) ( )
, 1 , 1 , 1 , 1 , 1 , 1

, ,
s s s s s sn n n n n n

i j j i i j j i i j j i
x y x y x z x z z y z y

i j i j i j i j i j i j

e e e e e e e e e e e e
= = = = = =

= − = − = −∑ ∑ ∑ ∑ ∑ ∑ . (5.9) 

It is obvious that all sums in (5.9) are actually equal to zero.  Therefore, the formula 

(5.7) can be written: 

 ( ) ( ) ( ) ( )2 22 2 2 2

1 1 1

s s sn n n
i i

i x y z z z
i i i

s s s e e
= = =

⋅ = + + =∑ ∑ ∑s e , (5.10) 

and consequently, this sum  is independent on the spin orientation.  In conclusion, this 

term can be removed from Hamiltonian expression (5.6) and now the reduced 

Hamiltonian reads: 

 ( ) ( )21
2r c zH n n= − ⋅ − ⋅h s s e . (5.11) 

Without restricting the generality of the foregoing, the magnetic field is assumed to 

be applied in z-y plane at some angle Ψ with the z-axis (anisotropy axis) and the 

energy is simply rewritten: 

 ( ) 21
2r z z y y c zH n h s h s n s= − + − . (5.12) 
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Energy (5.12) is only a scaled version, up to axes notation, of the energy used 

for the study on perpendicular media. Therefore, the results presented in Chapter 3 

can be rephrased for this special case of spherical nanoparticles with very strong 

exchange and weak surface anisotropy.  Thus, by taking into account formula (3.42) 

from Chapter 3, the analytical expression for critical field curve for quasi-static 

reversal process is given by: 

 
( )
( )

3

3

cos

sin
z c

y c

h n n

h n n

ϕ

ϕ

 =


=
, [ ],ϕ π π∈ − , (5.13) 

which is nothing else than the scaled version of Stoner-Wohlfarth astroid, the scale 

factor being the ratio between the number of core spins and the total number of spins.  

It is apparent that considering a radial distribution for surface anisotropy, leads, even 

in the case of very strong exchange, to important quantitative deviations from the 

classical Stoner-Wohlfarth results.  In particular, the corresponding astroid falls inside 

that of SW, and the larger the surface contribution the more the astroid shrinks. 

To check our numerical code we computed critical fields corresponding to 

various orientations of the applied field and particle diameters, and compared with the 

values given by formula (5.13).  Selected results of this comparison are plotted in 

Figure 5.2.  This evaluation also provides us with a range of validity for the 

assumption used at the beginning of this section for our analytical analysis.  Thus, for 

/ 100sj k ≥  the spins motion can be considered as unison. 

Next, we turn our attention towards the dynamical case. Considering formulae 

(3.38) and (3.41) from Chapter 3, the critical field curve for precessional switching 

can be described (in the first quadrant) by using the following formulae: 



 113

 
( ) ( )
( ) ( )

2

2

cos cos / 2

sin sin / 2
z c

y c

h n n

h n n

θ θ

θ θ

 =


=
, [ ]0, / 2θ π∈ , (5.14) 

 [ ]( / 2 )y z ch h n n= ± − . (5.15) 

In Figure 5.2 the analytically derived dynamical critical curves (plotted as lines) and 

the computed critical fields (plotted as symbols) are presented for various values of 

the particle diameter.  These numerical simulations confirm that the assumption of 

uniformity is valid for the ratio / 100sj k ≥ .  For smaller values of this ration, the 

multi-spin dynamics deviates from coherent motion and these deviations become 

more and more pronounced as this ratio decreases.  These non-uniform modes and 

their influences on critical fields are analyzed in the next sections.  

 
Figure 5.2:  Astroid for different values of surface-to-volume ratio Nst=ns/n.  The 

analytical results are plotted as continuous lines, while the numerical results for ks=1, 

j=100 are plotted as symbols. 
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Figure 5.3:  Dynamic critical curves for selected values of the total number of spins n. 

The analytical results are plotted as continuous lines, while the numerical results for 

ks=0.1, j=100 are plotted as symbols. 

 

Figure 5.4:  Scaled “dynamical astroid” and scaled Stoner-Wohlfarth (SW) astroid of 

a spherical nanoparticle with weak surface anisotropy. 
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5.3. Surface anisotropy effects on hysteretic properties of nanoparticles 

In this section we consider a spherical nanoparticle of simple cubic structure with 

uniaxial anisotropy in the core having reduced anisotropy constant kc=1, and radial 

anisotropy on the surface with reduced constant ks. Our main goal here is to 

investigate the influence of surface anisotropy, both in direction and strength, on the 

hysteresis loop and quasi-static critical curve. However, we will also study the effect 

of exchange coupling and particle’s size.  

For later reference, we plot in Figure 5.5 the critical field hc and the height of 

the magnetization jump (i.e. mu-md) as function of the angle ψ between the direction 

of the field and core easy axis for a macrospin (or equivalently, one classical spin) 

problem.  The dependence hc(ψ) in Figure 5.5 (left) is nothing else than the Stoner-

Wohlfarth astroid but plotted in different coordinates .  In the right figure we note a 

surprising and much less known property of magnetization jumps employed in this 

classical SW model: the height of magnetization jump has an almost linear 

dependence on ψ, except for the final portion 76°< ψ <90°.  This final portion 

corresponds to hysteresis cycles with crossing branches [27].  Again for later 

reference, we plot in Figure 5.6 the distribution of surface anisotropy axes of the 

spherical particle containing N=360 spins (176 surface spins and 184 core spins) as a 

function of the azymuthal angle ψs between a surface spin easy axis and applied field.  

This Figure will be also useful to our attempts at giving intuitive explanations to the 

computational results.   
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Figure 5.5:  One-spin problem. Left: critical field as function of ψ.  Right: height of 

magnetization jumps as function of ψ. 

 

 

Figure 5.6:  Distribution of surface anisotropy axes versus the azymuthal angle ψs for 

a spherical particle with diameter D=10 (n=360: 176 surface spins and 184 core 

spins). 
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Effects of the exchange coupling 

In this subsection we focus on the effects of exchange coupling on the hysteretic 

loops of the nanoparticle described above.  We first consider the case in which the 

anisotropy constants in the core and on the surface are equal, i.e., ks=1.0, and the 

magnetic field applied along the easy axis of the core spins, so as to investigate the 

influence of radial direction of surface anisotropy.  For 1j , i.e., j=0, 0.01, we can 

see along portion 1–2 in Figure 5.7 a progressive increase in the magnetization, which 

is due to the alignment of surface spins, since as the field direction is along the core 

easy axis, the core spins have a rectangular cycle and the jump is at h=1.0.  Next, 

along portion 2–3 we can see two jumps.  Indeed, according to the distribution of 

surface easy axes in Figure 5.6, and the critical field as a function of ψ in Figure 5.5 

(left), those surface spins with ψs between 0.6 and 1.0 are responsible for the first 

jump, and those with ψs between 0.4 and 0.6 or 1.0 and 1.2 are responsible for the 

second jump.  Next, along portion 3–4 we have successive small jumps and thereby a 

slight increase in the magnetization.  The origin of these small jumps resides in two 

contributions.  One contribution comes from those surface spins whose easy axis 

makes an angle around 0.2 with the field.  Even though the corresponding height of 

jump is large (see Figure 5.5 (right)), their number is rather small (see Figure 5.6) 

thus rendering a small contribution to the magnetization.  The other contribution is 

due to surface spins with an angle ψs~1.4, which yield a small contribution owing to 

the fact that the height of the corresponding jump is very small (see Figure 5.5, 

ψs>1.2), even though their number is relatively large.  On the last portion of the lower 

branch of the hysteresis in Figure 5.7, we see another big jump, which is due to the 
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switching of core spins at the field hc=1.0.  At last, there is a slow increase of 

magnetization due to a final adjustment of surface spins along the field direction.  In 

the present case, the surface fully switches before the core (see Figure 5.8). 

For j=0.1, we see that the surface behavior remains almost the same as in the 

previous cases, whereas the core spins now switch clusterwise as can be seen in the 

fourth picture of Figure 5.8.  Indeed, regarding the exchange field as a small 

perturbation of the applied magnetic field, it is clear that the core spins located near 

the surface are subject to an effective field whose direction is slightly deviated from 

their easy axis, i.e., the corresponding angle ψ is slightly different from zero.  Now, in 

Figure 5.5(left) we can see that this little deviation in ψ produces an important change 

in the switching field.  On the contrary, we find that this effect is almost absent in 

what concerns the jumping field of surface spins, as can be seen along portion 2–3 in 

Figure 5.7 upon comparing the loops for j=0, j=0.01, and j=0.1.  Indeed, the surface 

spins responsible for these jumps have their easy axes at an angle 0.6< ψs <1.0, and 

hence the change in the corresponding critical field is very small (see Figure 5.5 

(left)).  In Figure 5.7 we can also see that for j=0.1, i.e., when the exchange energy 

becomes comparable with anisotropy and Zeeman energy, there are more jumps that 

can be attributed to the switching of different spherical shells of core spins starting 

from surface down to the center.  This situation is sketched in Figure 5.8.  For 

example, for h=0 one can see that the exchange has a little influence on surface spins, 

as they are directed almost along their easy axes; for h=0.64 the surface spins show 

the same behavior as in the absence of exchange, but part of core spins, located near 

the surface, are deviated from their easy axes.  At the field h=0.8 all these core spins 
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have already switched and the similar processes happened for other shells of core 

spins as the field is slowly increased (see the plot corresponding to h=0.88).  Finally, 

for large enough applied fields the magnetization saturates, so all spins switched and 

are approximately oriented along the same direction. 

For j=1~ks , although there is only one jump, the hysteresis loop is not 

rectangular owing to the fact that the spins rotate in a noncoherent way, as can be 

seen in Figure 5.9. This is due to a compromise between anisotropy and exchange 

energies, see, for example, the picture for h=0. Moreover, even a small number of 

neighbors lying in the core produce a large effect via exchange on the behavior of a 

surface spin. 

 

 

Figure 5.7:  Hysteresis loop, i.e., plot of the magnetization projection on the field 

direction as a function of the (reduced) field h, for ψ=0, ks=1 and different values of j. 

n=360. 
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Figure 5.8:  Magnetic structure for j=0.1, ks=1 for the field values h=-4.0, 0, 0.64, 0.8, 

0.88, 4 which correspond to the saturation states and different switching fields shown 

in Figure 5.7. These field values correspond to the pictures when starting from the 

upper array and moving right, down left, and then right. Gray arrows represent core 

spins and black arrows represent surface spins. 
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Figure 5.9:  Magnetic structure for j=1, ks=1 for the field values h=-4.0, 0, 0.56, 0.6, 4 

which correspond to the saturation states and different switching fields shown in 

Figure 5.7.  Gray arrows represent core spins and black arrows represent surface 

spins. 
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For much larger values of j the spins are tightly coupled and move together, and 

the corresponding (numerically obtained) critical field hc coincides with the analytical 

expression obtained in the limit j →∞ , i.e., hc=nc /n, where nc is the number of core 

spins (see the previous section for an extensive discussion). 

Next we consider the case of larger values of ks , e.g., ks=10, so as to investigate 

the influence of surface anisotropy both in direction and strength.  The results are 

presented in Figure 5.10 (left).  Here, a notable difference with respect to the previous 

case, ks=1, is the fact that the core now switches before the surface and at higher 

fields. Moreover, there appear more jumps which may be attributed to the switching 

of various clusters of surface spins. Both cases show that as the ratio j/ks decreases, 

the magnetization requires higher fields to saturate.  This is further illustrated by 

Figure 5.10 (right) where ks=j=100 for a smaller particle. 

 
Figure 5.10:  Left: Hysteresis loops for ψ=0, ks=10, and selected values of j. D=10 

(n=360). Right: Hysteresis loops for ψ=0, ks=100, and selected values of j. D=7 

(n=123). 
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Let us now summarize the ongoing discussion.  We recall that considering a 

radial distribution for surface anisotropy, leads, even in the case of strong exchange 

and weak surface anisotropy, to important quantitative deviations from the classical 

Stoner-Wohlfarth model.  In particular, the critical field in our model is given by: 

 r uc
c c

nh h
n

= , (5.16) 

where r
ch  is the critical field for a spherical particle with radial anisotropy on the 

surface and uniaxial anisotropy in the core (i.e. the above discussed case) and u
ch  is 

the critical field for a spherical particle with uniaxial anisotropy for all spins (Stoner-

Wohlfarth case).  Then, when j and ks become comparable, the compromise between 

exchange coupling, favoring a full alignment of the spins along each other, and 

surface anisotropy, which favors the alignment of surface spins along their radial easy 

axes, produce large deviations from uniform spin motion, and obviously from Stoner-

Wohlfarth results.  More precisely, the shape of hysteresis loop for the case of the 

magnetic field applied along anisotropy axis is no longer rectangular, and moreover, 

there appear multiple jumps. 

Effect of the particle’s size 

Here, we study the effect of varying the particle’s size while keeping j and ks 

fixed. So we use the same value of anisotropy constant for all spins and strong 

exchange (for the first discussed case ks=1, j=100) and vary the particle’s diameter 

from 6 (n=56) to 30 (n=12712).  In Figure 5.11 (left) there are presented hysteresis 

cycles of a particle with different diameters when the field is along the core easy axis, 

and on the right the variation with the particle’s diameter of the critical field (in 
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diamonds) obtained from the numerical solution of the Landau-Lifshitz equation, and 

(in circles) the analytical results [see Equation (5.16) and Section 5.2].  The figure on 

the left shows that for such a value of ks the hysteresis loop is rectangular for all sizes, 

and that the critical field decreases with the particle’s size.  The latter fact is clearly 

illustrated by the figure on the right. 

Next, in Figure 5.12 (left) we present the hysteresis loop in the case where the 

surface anisotropy constant ks equals the exchange coupling and the field is applied 

along the core easy axis, and in Figure 5.12 (right) the switching field, which marks 

the magnetization reversal, as a function of the particle’s diameter D.  As opposed to 

previous cases, this field no more coincides with the critical field, which marks the 

limit of metastability.  This is obviously related to the appearance of the multiple 

jumps in hysteresis cycles.  Moreover the values of the switching field are much 

higher, and more important its behavior is opposite to that of the previous case.  

Indeed, here we see that the switching field increases when the particle’s size is 

lowered. For such high values of ks ( s cK K ) surface spins are almost aligned along 

their radial easy axis, and because of the strong exchange coupling they also drive 

core spins in their switching process.  Thus the smaller the particle the larger the 

surface contribution and the larger the field required for complete reversal of the 

particle’s magnetization.  This could explain the nonsaturation of magnetization that 

has been observed in, e.g., cobalt particles [111]. 
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Figure 5.11: Left:  Hysteresis loops for ψ=0, ks=1, j=100 for different values of the 

particle diameter D.  Right: Switching field for the same parameters as function of D.  

 

 

Figure 5.12:  Left: Hysteresis cycles for ψ=0, ks=100, j=100, and different values of 

the particle diameter D.  Right: Switching field as a function of D for the same 

parameters. 
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Effect of the surface anisotropy constant ks 

Now, we fix the exchange coupling constant j, the particle’s total number of 

spins N, and vary the surface anisotropy constant ks . Because Kc is in general two to 

three orders of magnitude smaller than J, we have investigated the effect of surface 

anisotropy constant in the case of j=J/Kc=100. 

In contrast with the case 1sk ≤  and j=102–103 where the hysteresis loop and the 

limit-of-metastability curve scale with the Stoner-Wohlfarth ones with the same 

scaling constant for all angles between the applied field and core easy axis, we find 

that for 1<ks<20 the scaling constant depends on the angle ψ, as can be seen in Figure 

5.13.  This fact explains the deformation of the Stoner-Wohlfarth astroid, which is a 

depression in the core easy direction and an enhancement in the perpendicular 

direction. 

 
Figure 5.13:  Astroid for j=102, n=360 and different values of surface anisotropy 

constant ks.  The full line is the Stoner-Wohlfarth astroid scaled with nc/n. 
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For larger values of ks the computed hysteresis loops for ψ=0, n=360, j=100 are 

given in Figure 5.14.  Here, we first note that the shape of the hysteresis loop is rather 

different from that rendered by the Stoner-Wohlfarth model, since for ks=30, for 

instance, the hysteresis loop is no longer rectangular, even that ψ=0.  As explained 

earlier, this effect is due to the now more pronounced nonuniform rotation of surface 

spins and core spins located near the surface, and thereby that of the particle’s 

magnetization. 

 

 

 

Figure 5.14:  Hysteresis loops for ψ=0, j=100, D=10 and various values of surface 

anisotropy constant ks.  These two sets of data are presented as two plots because of 

scaling mismatch. 
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Our model of a spherical particle with uniaxial anisotropy in the core and radial 

anisotropy on the surface leads to three pertinent regions as far as the competition 

between surface anisotropy energy and exchange energy is concerned: 

For small values of this parameter, e.g., ks/j<0.01, our model renders hysteresis 

loops and limit-of-metastability curves that scale with the Stoner-Wohlfarh results for 

all values of the angle ψ between the core easy axis and the applied field, the scaling 

constant being nc/n.  The critical field increases with the particle’s size and tends to 

the Stoner-Wohlfarth critical field in relatively large systems. 

For larger values of ks/j, but ks/j<0.2, we still have some kind of scaling but the 

corresponding constant depends on ψ.  This is reflected by a deformation of the limit-

of metastability curve.  More precisely, the latter is depressed in the core easy 

direction and enhanced in the perpendicular direction.  However, there is still only 

one jump in the hysteresis loop implying that the magnetization reversal can be 

considered as close to the uniform mode.  The small deviations to the uniform motion 

are observed and they are confined to a small boundary region. 

For larger values of ks/j, there appear multiple steps in the hysteresis loop which 

may be associated with the switching of spin clusters.  The appearance of these steps 

makes the computed hysteresis loops qualitatively different from those of the above 

cases, as strongly pronounced nonuniformities exist in the magnetization reversal.  In 

addition, in the present case, there are two more new features: the values of the 

switching field are much higher, and more importantly, its behavior as a function of 

the particle’s size is opposite to that of the previous cases.  More precisely, here we 

find that this field increases when the particle’s size is lowered. 
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5.4. Influence of surface anisotropy on precessional magnetization 

switchings in nanoparticles 

In this section, the study of surface anisotropy effects on the precessional 

magnetization switchings in nanoparticles is presented. 

In the previous section it is shown that in the absence of the applied field there 

are two well-defined states with the global magnetization oriented along ez and –ez, 

respectively, as long as the surface anisotropy constant ks is small in comparison with 

the exchange j ( / 0.2sk j ≤ ).  This situation is consistent with experimental results, as 

has been observed in Reference [101].  These two stable minima are surrounded by 

two energy wells, separated by the boundary corresponding to the global 

magnetization component mz=0.  Thus, the precessional switching can be defined 

with respect to the global magnetization in a similar mode to the one given in Chapter 

3 for precessional magnetization switching in perpendicular media. 

The behavior of this dynamical system is determined by an interplay between 

four parameters: the dimension of the particle (diameter), reduced exchage constant j 

(»1), reduced surface anisotropy constant ks and the damping parameter α («1). Our 

analysis leads to the following conclusions regarding the precessional switching of 

magnetic nanoparticles.  First, the dimension of the particle can be considered as a 

scaling parameter.  This effect is apparent from Eqs. (10) and (12) and has been 

illustrated in Figure 5.3.  Second, the damping parameter α leads only to first order 

corrections to the critical field curves of precessional switching found by using 

undamped magnetization dynamics during the time period when the magnetic field is 

applied.  These corrections are typically less than 5%.  Finally, three distinct regions 
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can be observed as far as the competition between surface anisotropy and exchange is 

concerned.  In the first region, corresponding to ks/j<0.01, the spins motion can be 

considered uniform (macrospin region). In this region, the critical curve is a scaled 

version of the critical curve for bulk material (when all spins are considered to have 

the same anisotropy direction and constant). In a second region, corresponding to 

0.01<ks/j<0.2, small deviations from the uniform motion are observed and they are 

confined to a small boundary region (boundary layer phenomena). These deviations 

lead to the decrease in the critical switching magnetic field for large obtuse angles 

(see Figure 5.15). The third region (0.2<ks/j) corresponds to strongly pronounced 

nonuniformities in the magnetization dynamics as has also been observed in the 

quasi-static studies. In this region, the notion of precessional switching can not be 

well defined as far as the final spatial configuration of magnetization is concerned. 

 
Figure 5.15:  Critical curves for selected values of surface anisotropy constant ks.  

Exchange constant j=100, diameter D=7 (n=123), and damping parameter α=0.01. 
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6. Conclusions 

The evolution of data storage technology has been impressive over the last fifty years.  

However, the paradigm of magnetic data storage is approaching its fundamental 

limits for areal storage density, as well as for speed in data processing.  As a result, 

there is an urgent need for finding reliable alternatives to current magnetic recording 

media, which are based on longitudinal thin film, and to the conventional mechanism 

of magnetization reversal, based on damping switching. 

In this dissertation, faster modes of magnetization reversals, using precessional 

magnetization motion, were analyzed in traditional longitudinal media and in its 

promising alternatives: perpendicular and patterned media.  This analysis used multi-

spin description of magnetic nanoparticles and continuum micromagnetics for thin 

film media.  The spins dynamics in both discrete and continuum versions was 

modeled by Landau Lifshitz type equations. 

The case of the perpendicular media subject to rectangular magnetic field pulses 

was first analyzed.  The features of precessional magnetization switching and 

conventional magnetization reversal were compared, based on analytical solutions 

found for these problems.  By using integrals of motion and “unit disk representation” 

of undamped magnetization dynamics, the expressions for critical fields and pulse 

durations that guarantee precessional reversals were analytically derived.  This study 

was then extended to non-rectangular magnetic field pulses by using the inverse 

problem approach to design magnetic field pulses that guarantee precessional 

switching. 
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The analysis of precessional magnetization switching in longitudinal thin film 

media was then undertaken.  After a short summary of the research studies on this 

topic, the inverse problem approach to the analysis of precessional switching in these 

media was presented.  This approach led to explicit expressions for the magnetic field 

pulses that guarantee the precessional switching. 

In the end, the study of surface anisotropy effects on magnetization reversals in 

nanoparticles was presented.  Magnetic nanoparticles are the building blocks in 

patterned magnetic media, which represent a very promising direction for further 

improvement of magnetic data storage technology.  The expressions for critical 

magnetic fields that guarantee the quasi-static and precessional reversals were derived 

analytically for the case of very strong exchange and weak surface anisotropy.  These 

analytical results have also been used to test the numerical approach applied to the 

general case of the problem.  The distinct features of the quasi-static and precessional 

reversals in nanoparticles were examined and their dependence on various parameters 

of the problem was discussed. 

In conclusion, this thesis provides a theoretical analysis of magnetization 

dynamics in nanometer scale structures over picosecond time scales.  The results 

presented here are of direct technological relevance for increasing the speed of data 

processing in HDD and MRAM.  They offer valuable information for the design of 

magnetic field pulse that guarantee precessional switching and are also filling many 

gaps existent in understanding ultrafast magnetization reversals in nanostructures. 
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