
ABSTRACT

Title of dissertation: HARDWARE AND SOFTWARE
ARCHITECTURES FOR
ENERGY- AND RESOURCE-EFFICIENT
SIGNAL PROCESSING SYSTEMS

Inkeun Cho, Doctor of Philosophy, 2014

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and Computer
Engineering

For a large class of digital signal processing (DSP) systems, design and im-

plementation of hardware and software is challenging due to stringent constraints

on energy and resource requirements. In this thesis, we develop methods to ad-

dress this challenge by proposing new constraint-aware system design methods for

DSP systems, and energy- and resource-optimized designs of key DSP subsystems

that are relevant across various application areas. In addition to general methods

for optimizing energy consumption and resource utilization, we present streamlined

designs that are specialized to efficiently address platform-dependent constraints.

We focus on two specific aspects in our development of energy- and resource-

optimized design techniques:

(1) Application-specific systems and architectures for energy- and resource-

efficient design.

First, we address challenges in efficient implementation of wireless sensor net-

work building energy monitoring systems (WSNBEMSs). We develop new energy

management schemes in order to maximize system lifetime for WSNBEMSs, and

demonstrate that system lifetime can be improved significantly without affecting

monitoring accuracy.

We also present resource-efficient, field programmable gate array (FPGA) ar-

chitecture for implementation of orthogonal frequency division multiplexing (OFDM)

systems. We have demonstrated that our design provides at least 8.8% enhancement

in terms of resource efficiency compared to Xilinx FFT v7.1 when it is embedded

within the same OFDM configuration.

(2) Dataflow-based methods for structured design and implementation of energy-

and resource-efficient DSP systems.

First, we introduce a dataflow-based design approach based on integrating

interrupt-based signal acquisition in context of parameterized synchronous dataflow

(PSDF) modeling. We demonstrate that by applying our approach, energy- and

resource-efficient embedded software can be derived systematically from high level

models of dynamic, data-driven applications systems (DDDASs) functional struc-

ture.

Also, we present an in-depth development of lightweight dataflow-Verilog

(LWDF-V), which is an integration of the LWDF programming model with the

Verilog hardware description language(HDL), and we demonstrate the utility of

LWDF-V for design and implementation of digital systems for signal processing.

We emphasize efficient integration of LWDF with HDLs, and emphasize application

of LWDF-V to design DSP systems with dynamic parameters on FPGA platforms.

HARDWARE AND SOFTWARE ARCHITECTURES FOR
ENERGY- AND RESOURCE-EFFICIENT SIGNAL PROCESSING

SYSTEMS

by

Inkeun Cho

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Martin Peckerar
Professor Neil Goldsman
Professor Manoj Franklin
Professor Patrick McCluskey

Acknowledgments

Foremost, I appreciate to god for his grace to let me complete long journey of Ph.D.

I owe my gratitude toward my advisor, who is Dr. Bhattacharyya, for giving me

opportunities to have research in interesting and challenging works. His devotion

in research made a profound impression to me, and his sincere attitude for advising

and working together with his student remind me an ideal professor. As a Ph.D

student of him, I have learned how to define a research problem, build an initial

idea to concrete research, and prove the uniqueness and worthy of research theme in

technically and formally. It was a great honor to be his student and had experiences

to research with such a great person. I would like to thank to my Ph.D committees,

who are Dr. Peckerar, Dr. Goldsman, Dr. Franklin, and Dr. McCluskey, for their

advice and effort to finish my thesis. I am grateful to Dr. Tachwali and Dr. Hsu,

who are working in Agilent Technologies Inc., for collaboration on FPGA research.

I also would like to thank my DSPCAD group colleagues for working in projects.

Dr. Shen helped me in embedded software design for wireless sensor network by

discussing in research idea, and guiding me to solve the technical problem that I

have encountered during research. Kishan helped me to apply the DDDAS into new

dataflow design methodologies. It was great experience to work and interact with

Hojin, Ruirui, George, Zhou, Scott, Nimish, Wu, Stephen, Lai-Huei, Ilya, Soujanya,

Shenpei, William and Allen. They helped my research by discussing idea with me

and giving me comments. I would give my sincere gratitude my parents, who always

give me infinite support and love, and I engraved their efforts that they had for me

ii

in my mind. I also appreciate my brother, who is Sungkeun, for his support to

take care of our family. Thanks to my parents in law for their praying for me and

supporting my family. I would like to give my sincere appreciation to my beloved

wife, who is YouKyung Lee, for her devotion in supporting me during my Ph.D.

Her great efforts to take care of family make me focus on the research, and I owed

everything to her in finishing my Ph.D. Thanks to my precious daughter, who is

Ellie SeoHyeon Cho, for growing up well.

The research underlying this thesis was supported in part by Agilent Technologies,

the Austrian Marshall Plan Foundation, the Laboratory for Physical Sciences, the

Maryland Industrial Partnerships (MIPS) Program, the US Air Force Office of Sci-

entific Research, and the US National Science Foundation.

iii

Table of Contents

List of Figures vii

1 Introduction 1
1.1 Contributions of this Thesis . 3

1.1.1 Design Methods for Wireless Sensor Network Building Energy
Monitoring Systems . 3

1.1.2 Configurable, Resource-optimized FFT Architecture for OFDM
Communication . 4

1.1.3 Data-driven Parameterized Synchronous Dataflow 5
1.1.4 Lightweight Dataflow Design of Digital Systems 6

2 Background 7
2.1 Dataflow-based Design of Signal Processing Systems 7

2.1.1 Dataflow Graphs . 7
2.1.2 Synchronous and Parameterized Synchronous Dataflow Graphs 8
2.1.3 Core Functional Dataflow . 9
2.1.4 Lightweight Dataflow . 10

3 Design methods for Wireless Sensor Network Building Energy Monitoring
Systems 13
3.1 Introduction . 13
3.2 Related Work . 15

3.2.1 Wireless Sensor Network Applications 15
3.2.2 Wireless Sensor Network Building Energy Monitoring System 16

3.2.2.1 Wireless Sensor Network Existing Researches on Net-
work Lifetime . 16

3.3 IEEE 802.15.4 MAC Energy Modeling 18
3.3.1 IEEE 802.15.4 MAC Layer Overview 18
3.3.2 Energy Modeling of Beacon-enabled Mode 20

3.4 Energy Monitoring . 20
3.4.1 WSNBEMS System Model . 21

3.4.1.1 Application Energy Modeling 22

iv

3.5 Energy Efficient Management Scheme for WSNBEM 25
3.5.1 End Node Based Energy Saving Scheme 28

3.6 Simulation and Experiments . 30
3.6.1 WSNBEMS Testbed . 30
3.6.2 Node Lifetime . 32
3.6.3 Energy Savings Using ENBESS 35

3.7 Conclusion . 37

4 Configurable Resource-optimized FFT Architecture for OFDM Communica-
tion 39
4.1 Introduction . 39
4.2 FFT Design Optimization for OFDM 41

4.2.1 FFT Design with User Configurability 41
4.2.2 Memory Efficient Design of FFT for OFDM 44
4.2.3 Simple Control Logic . 46

4.3 Experiments . 46
4.3.1 Evaluation Metric . 46
4.3.2 Performance of Our Proposed Design 47

4.4 Conclusion . 52

5 Dynamic Resource Coordination and Energy Optimization in Sensor Network
Platforms 54
5.1 Introduction . 54
5.2 Data-driven PSDF Modeling . 56
5.3 Energy Estimation . 60
5.4 Experiments . 62

5.4.1 Case Study: Sensor Network System for Speech Recognition . 62
5.5 Conclusion . 69

6 Design and Implementation of FPGA-based DSP Systems using LWDF-V 71
6.1 Introduction . 71
6.2 Related Work . 72

6.2.1 Model Based Design Methodologies for Digital Hardware . . . 72
6.3 LWDF-V . 75

6.3.1 Actor Invoke Module . 76
6.3.2 Actor Enable Module . 78
6.3.3 Dataflow Edge Module . 80
6.3.4 Summary . 82

6.4 Design Example . 83
6.5 Dynamic Parameter Manipulation in LWDF-V 85

6.5.1 DPM-enabled LWDF-V Actors 86
6.5.2 DPM-enabled Inner Product Actor 87

6.6 Experiments . 88
6.6.1 Overhead Evaluation Metrics 88
6.6.2 Performance of DPM-enabled LWDF-V Design 90

v

6.6.3 Summary . 91
6.7 Conclusion . 92

7 Conclusions 93

Bibliography 104

vi

List of Figures

3.1 IEEE 802.15.4 Zigbee Network Superframe Structure 19
3.2 LWDF application model for the targeted WSNBEMS application . . 22
3.3 Node lifetime versus transmission interval. 28
3.4 Network for WSNBEMS testbed. 32
3.5 Energy consumption for all Z-stack layers except for the MAC and

application layers. 33
3.6 Test results for end node lifetime. 34
3.7 Simulation results for accuracy and energy savings. 36

4.1 OFDM system overview. 42
4.2 Pipelined parallel architecture for FFT. 42
4.3 Pipelined serial architecture for FFT 43
4.4 Block diagram of targeted OFDM system design. 43
4.5 Configuration for Xilinx FFT v7.1 IP Core Generation 48
4.6 Performance of our proposed configurable FFT design. 49
4.7 Performance of Xilinx FFT core. 49
4.8 Resource efficiency of proposed design with block RAM. 50
4.9 Performance comparison of our proposed design based on a distributed

memory implementation. 51
4.10 Resource efficiency of our proposed design using distributed memory. 52

5.1 Illustration of DDPSDF modeling. 57
5.2 DDPSDF model for the experimental WSN application. 63

6.1 LWDF-V actor invoke module (AIM) design 77
6.2 LWDF-V actor enable module (AEM). 79

6.3 inner product actor (IPA) . 94
6.4 Hierarchical specification of an AIM for IPA. 95
6.5 AIM design for a DPM-enabled LWDF-V actor. 96
6.6 Illustration of DPM-enabled IPA using three-level hierarchical design

structure. 97

vii

6.7 Resource and speed overhead of DPM-enabled LWDF-V inner prod-
uct actor compared to statically parameterized LWDF-V inner prod-
uct actor. 98

6.8 Overhead in resource of runtime parameter reconfigurability in inner
product example . 99

viii

Chapter 1: Introduction

1

Digital signal processing (DSP) technology is used in many applications, in-

cluding applications for wireless communication, image processing, and speech pro-

cessing, to name a few. Design and implementation of DSP systems is often chal-

lenging due to stringent, multi-dimensional constraints that must be satisfied — e.g.,

real-time performance constraints when processing high volume data streams, or en-

ergy consumption constraints in low power wireless sensor networks (e.g., see [3]).

Resource-constraints are also highly relevant in many signal processing application

areas, such as consumer-oriented areas, where cost is often a major differentiator.

For such applications, use of hardware resources may need to be carefully optimized

to avoid the use (and associated costs) of more devices than necessary, more complex

devices or device models than necessary, etc.

In this thesis, we address challenges in design and implementation of signal

processing systems that must satisfy stringent constraints in hardware resource uti-

lization and energy consumption. We focus especially on the application areas of

wireless communication systems and wireless sensor networks, which are areas in

which energy and resource constraints are often critical. We develop novel architec-

tures and design methodologies to help optimize the energy and resource efficiency

of systems for wireless communications and wireless sensor networking. Specific

contributions of this thesis are outlined in remainder of this chapter.

2

1.1 Contributions of this Thesis

1.1.1 Design Methods for Wireless Sensor Network Building Energy

Monitoring Systems

Wireless sensor network (WSN) systems are widely used in real-world applica-

tions, such as applications in military, environmental monitoring, healthcare, build-

ing management, and other areas. The specific types of protocols, architectures,

and design methods employed in such systems depend on the kinds of sensing, pro-

cessing and communication functionality required [4]. Building energy monitoring

systems represent a promising area for widespread use of wireless sensor networks

due to their potential for improving home automation and energy efficiency. In such

systems, it is desirable for the employed sensor nodes to be battery-powered, and

support long battery lifetimes to help reduce the frequency of required maintenance.

In this thesis, we present a new energy management method that is targeted to

maximizing sensor node lifetime in wireless sensor networks for building energy mon-

itoring. Our energy management method can be viewed as an application-specific

approach for enhancing energy efficiency in wireless sensor networks. Our energy

management method is based on approaches for energy consumption analysis at the

sensor node, application, and network levels, and for systematically applying this

multi-level analysis to improve the energy efficiency of building energy management

systems. We validate our proposed energy management method through experi-

ments on a fully functional building energy monitoring system that is based on a

3

wireless sensor network.

1.1.2 Configurable, Resource-optimized FFT Architecture for OFDM

Communication

Orthogonal frequency division multiplexing (OFDM) is widely used in mod-

ern wireless communication systems, including wireless LAN, WiMAX and 3G LTE.

OFDM is known to be an efficient multiple access scheme for high data rate commu-

nication. Hardware platforms such as field programmable gate arrays (FPGAs) and

application specific integration circuits (ASICs) are used to provide implementations

for OFDM communication systems. Achieving area-efficient, hardware implementa-

tion for OFDM is a challenging and important problem in wireless communications.

FFT computation is the most computationally intensive part of an OFDM

system. In Chapter 4 of this thesis, we address area-efficient FFT implementation

for general OFDM architectures. Our proposed architecture can be configured across

a range of different specialized OFDM requirements. We have identified inefficiencies

in memory and resource utilization in conventional FFT implementations, and we

have developed methods to address these inefficiencies to achieve a novel, area-

efficient FFT hardware architecture. To validate our FFT architecture, we have

apply relevant evaluation metrics for resource efficiency in FPGA platforms, and

synthesize our proposed design on an off-the-shelf FPGA platform. We apply a

widely-used commercial intellectual property (IP) core for FFT as a reference for

our experimental comparisons, and through these experiments, we demonstrate the

4

area-efficiency of our proposed design.

1.1.3 Data-driven Parameterized Synchronous Dataflow

Dataflow models of computation have been used in a wide variety of devel-

opment environments to aid in the design and implementation of signal process-

ing applications, and provide systematic approaches for design processes, including

modeling, simulation, and implementation (e.g., see [3]). A limitation of existing

dataflow-based design methodologies is systematic support for hardware interrupts.

In Chapter 5, we develop a novel dataflow modeling approach, called data-driven

parameterized synchronous dataflow (DDPSDF), to support efficient model-based

development of signal processing systems in a manner that provides integrated mod-

eling and management of hardware interrupts.

DDPSDF can be viewed as a structured integration of parameterized syn-

chronous dataflow (PSDF) modeling of signal processing applications [5], and the

DDDAS paradigm for dynamic steering of system operation and instrumentation

based on run-time data characteristics [1]. In the area of WSN applications, DDPSDF

allows for model-based integration of optimized, interrupt-driven processing and in-

terrupt control in energy-constrained sensor nodes. We demonstrate the efficacy of

our proposed DDPSDF techniques through a case study involving a a WSN appli-

cation for integrated speech recognition and temperature sensing.

5

1.1.4 Lightweight Dataflow Design of Digital Systems

In Chapter 6, we present LWDF-Verilog (LWDF-V), which is an integration of

the lightweight dataflow programming model with the Verilog hardware description

language (HDL), and we demonstrate the utility of LWDF-V for design and imple-

mentation of digital systems for signal processing. Lightweight dataflow (LWDF)

is a recently-introduced programming model for applying dataflow techniques to

DSP system design in a manner that is relatively easy to learn and integrate into

existing design processes, and that provides agility in retargeting designs across dif-

ferent kinds of platforms [2]. Use of LWDF-V facilitates the use of formal dataflow

techniques in the design and implementation of signal processing systems. These

techniques in turn are effective in exposing high level application structure, which

can be exploited to optimize implementations in terms of key metrics, including

energy and resource utilization efficiency [3]. In this work, we emphasize new fea-

tures that have been developed in LWDF for efficient integration with HDLs, and

the application of LWDF-V to design of DSP systems with dynamic parameters on

FPGA platforms. We demonstrate our proposed LWDF-V programming model and

methods for managing dynamic parameters through design and implementation of

actors for inner product computation.

6

Chapter 2: Background

2.1 Dataflow-based Design of Signal Processing Systems

2.1.1 Dataflow Graphs

Model based design is used widely in many areas of embedded digital signal

processing (e.g., see [3]). Dataflow is often used as a model of computation to pro-

vide the foundation for model-based design methods that are targeted to digital

signal processing (DSP) systems. In dataflow modeling of DSP applications, the

applications are modeled as directed graphs of actors (graph vertices) and dataflow

graph edges. Actors express the computational components in an application and

edges represent communication channels between actors. A data value is encapsu-

lated in a token as it passes from the output of one actor to the input of another.

Actors consume tokens from their input edges, process the data encapsulated by the

tokens, and produce the resulting output tokens on their output edges. Edges in a

dataflow graph correspond to FIFO buffers.

Execution of a dataflow graph follows a data-driven execution model [6]. An

actor executes as a sequence of discrete units of computation called firings, and

each firing depends on some well-defined amount of data on the input edges of the

7

actor. We say that such an actor is enabled when this well-defined amount of data

is present on the actor input edges (i.e., within the corresponding FIFO buffers).

Due to the data-driven semantics of dataflow-based application models, the order in

which actors fire is not part of the specification. The order is typically determined

by the compiler, the hardware, or both.

2.1.2 Synchronous and Parameterized Synchronous Dataflow Graphs

Synchronous dataflow (SDF) [7] is a specialized form of dataflow that is pop-

ular in many design environments for DSP systems. In SDF graphs, the number of

data values produced and consumed by each actor is fixed and known at compile

time. This restriction provides increased predictably for SDF graphs and enables

static scheduling [7].

Parameterized synchronous dataflow (PSDF) is a modeling approach that can

be viewed as an integration of synchronous dataflow (SDF) with the meta-modeling

framework of parameterized dataflow [5]. In contrast to SDF, PSDF describes a

wide range of dynamic dataflow behaviors with flexible forms of dynamic parame-

ter configuration allowed in a design. PSDF provides a systematic framework for

integrating various SDF analysis techniques into a more general, dynamic dataflow

setting.

The basic unit of modeling in PSDF is a PSDF specification, and PSDF spec-

ifications can be composed hierarchically to construct complex systems. A PSDF

specification Φ consists of three distinct subgraphs: the init graph (Φi), subinit graph

8

(Φs), and body graph (Φb) [5]. Intuitively, Φb in PSDF is typically employed to model

the core signal processing behavior of a subsystem (e.g., speaker keyword identifi-

cation), while Φi and Φs are used primarily to specify how parameter updates are

determined to the configure or reconfigure the body graph functionality.

When a PSDF subsystem Φ executes, the associated init graph Φi is invoked

prior to each invocation of the associated (hierarchical) parent subsystem, while

Φs is invoked prior to each invocation of the associated body graph Φb. Reliable

and efficient implementations can be derived from PSDF graphs using quasi-static

scheduling techniques that analyze the structure and parameters of the underlying

PSDF models [5].

2.1.3 Core Functional Dataflow

enable-invoke dataflow (EIDF) is a flexible dataflow model that can express

actors that involve both static and dynamically determined dataflow (production

and consumption) rates. For DSP system design, the most relevant subclass of

EIDF specifications is core functional dataflow (CFDF), which ensures deterministic

execution [8].

Intuitively, a CFDF actor A is has an associated set modes(A) of modes, where

each mode µ ∈ modes(A) can be viewed intuitively as a specific “configuration” for

actor execution. Each firing of a CFDF actor A has a unique mode associated with

it, and in each mode, A produces and consumes tokens at constant rates on the

ports of A. However, production and consumption rates can differ across different

9

modes of the same actor, which allows for specification of dynamic dataflow rates.

A CFDF actor A also has two associated functions, called the enable and

invoke functions of A, respectively. Intuitively, the enable function is a Boolean-

valued function that takes as arguments a mode µ ∈ modes(A), a vector vi of input

buffer populations, and a vector vo of output buffer populations. Each element

of vi corresponds to a specific input port of A, and similarly, each element of vo

corresponds to a specific output port of A, and these vector elements are all non-

negative-integer valued. The enable function returns true for a given triple (µ, vi, vo)

if and only if actor A is fireable (has sufficient data to fire) in mode µ when the

volume of available input data and output buffer capacity is given by vi and vo,

respectively. The invoke function can be described intuitively as a function that

defines the mapping from input vectors consumed by the actor on its inputs and

specific modes of operation (elements of modes(A)) into specific output vectors that

are produced on its outputs. For further details on the CFDF invoke and enable

functions, we refer the reader to [8]. Note that the original definition of the enable

function in [8] does not consider finite output buffer capacities as we do in this

paper, but this is a straightforward extension of the core enable function concept

that was introduced in [8].

2.1.4 Lightweight Dataflow

Lightweight dataflow (LWDF) is a programming methodology for implemen-

tation of signal processing systems based on the core functional dataflow (CFDF)

10

model of computation [2].

By avoiding dependence on specialized tools and facilitating retargetability to

arbitrary host languages (languages for implementing individual actors), LWDF pro-

vides a minimally intrusive methodology for implementing applications based on the

CFDF model, and can be incorporated efficiently into existing design processes [2].

In our approach to design and implementation of wireless sensor network building

energy management systems (WSNBEMSs), which we develop in Chapter 3, we

employ LWDF-C, which is the integration of the LWDF programming methodology

with the C programming language. C is commonly used in developing embedded

software for sensor nodes, and LWDF-C provides a framework for implementing

such software through rigorous dataflow principles.

In LWDF, each actor has an operational context (OC), which encapsulates all

parameters, local variables, and state variables of the actor, as well as references

to the ports of the input and output FIFOs. Actor design in LWDF involves four

interface functions called the construct, execute (also called invoke), terminate, and

enable functions. The construct function performs one-time memory allocation and

initialization associated with setting up the actor, and is typically called once at the

beginning of the application. Similarly, the terminate function performs memory

deallocation and other actor-level wrapup tasks, and is called when the actor is no

longer needed, typically after the application is shut down or otherwise terminated.

Each call to the execute function performs a single firing of the associated

actor provided that the input ports of the actor have sufficient input data. If the

execute function is called when there is not sufficient data, the results are in gen-

11

eral unpredictable. For each call to the execute function, the designer or enclosing

tool can ensure sufficient data through appropriate static or quasi-static scheduling

techniques or by first checking the status of the input buffers using the LWDF en-

able function. The enable function is a function that returns a Boolean value. This

return value is true if and only if the actor has sufficient data on in its input edges

and sufficient empty space on its output edges to carry out the next firing of the

actor, including all of the required data consumption and production.

In CFDF and LWDF, the firing of actors and the associated tests that are

performed by the enable function are formulated in terms of distinct modes of the

actor. In general, an actor has one or more modes. A mode can be viewed as a

“firing template” (functionality for a well defined subset of firings) in which the

number of data values produced and consumed from the actor ports is constant.

Thus, each mode has fixed data transfer (production and consumption behavior),

but data transfer behavior can vary across different modes. Such decomposition of

actor firing behavior in terms of fixed data transfer units is useful since data transfer

characteristics generally have a strong influence on techniques for dataflow graph

scheduling and other forms of dataflow graph analysis (e.g., see [3]).

12

Chapter 3: Design methods for Wireless Sensor Network Building

Energy Monitoring Systems

3.1 Introduction

A wireless sensor network(WSN) is a distributed, wireless communication net-

work system, where the nodes of the network (sensor nodes) contain groups of sensor

devices. In addition to their associated sensors, sensor nodes typically consists of

microprocessors, wireless communication interfaces, and energy sources. The small

size and low cost of many modern sensor devices allow designers to deploy WSNs

for a wide variety of applications.

Major research issues for WSNs include efficient hardware implementation and

software stacks for energy-optimized wireless communication. Various low power

processing units for sensor nodes have been developed with objectives of application-

specific energy optimization. Development of new sensor technologies is also an

important research area that gains motivation from the rapid evolution of WSN

applications.

Research on design methods for WSN applications has received relatively lit-

tle attention compared to the aforementioned WSN-related research areas. Design

13

of WSN applications requires careful attention to operating system, data acquisi-

tion, and communication protocol aspects and their interactions. The complexity of

these interactions and the need to manage this complexity under strict energy con-

straints contribute significantly to the difficulty of WSN application development.

In this chapter, we address this difficulty by developing new design methods for

WSN systems based on the formal application modeling framework of signal pro-

cessing dataflow graphs. Our methods help to ease the task of implementing WSN

applications, and to optimize their energy efficiency so that they can operate for

longer periods before they need to be serviced or replaced.

More specifically, we develop a number of contributions to energy analysis and

optimization of sensor nodes in WSN application. First, we develop a new energy

analysis method for this class of sensor nodes at the application level and network

level. Then we apply this energy analysis method to develop a new energy manage-

ment scheme that is targeted to maximizing end node lifetime in building energy

monitoring system(BEMs). To enhance the efficiency and reliability with which this

management scheme can be implemented, we develop a new application-level design

approaches of two representative application in each group that uses dataflow to

model the application-level interfacing behavior between the processor and sensors

on an individual sensor node. At the network level, we analyze the energy consump-

tion in the 802.15.4 Zigbee network medium access control (MAC) layer based on

the state of the sensor node radios. We validate our methods for energy analysis and

optimization through experiments on a fully functional building energy monitoring

system in which the sensor nodes are equipped with Texas Instruments CC2530

14

Zigbee network-enabled micro controllers [9]. This chapter builds on our published

research on design methods for WSN BEMSs [10].

3.2 Related Work

3.2.1 Wireless Sensor Network Applications

WSN systems are widely used in real world applications. Akyildiz et al.

present a survey on various application areas of WSNs, and categorize WSN ap-

plications as military, environmental, health, home, and other commercial areas

depending on the kinds of sensing, processing and communication functionality pro-

vided [11]. In military applications, WSN systems can be used for applications such

as equipment monitoring or detection of chemical attacks. WSNs can be applied for

flood or mountain fire detection in environmental applications, and used to track

physical data for patients in healthcare applications.

WSNs can be categorized as monitoring systems and signal processing systems.

For example, flood detection, physical data tracking, and building energy monitor-

ing involve periodic reporting of sensed data, which is characteristic of monitoring

systems. On the other hand, intruder detection and home automation typically

involve intensive image, acoustic, or speech signal processing, and are thus repre-

sentative of signal processing oriented WSNs. In monitoring systems, the behavior

of a sensor node exhibits periodic, alternating mode changes from active to sleep

states depending on the reporting schedule. In signal processing oriented WSNs,

the system continually acquires and processes sensed data for event detection, and

15

classification.

We develop new design methods for monitoring and signal processing oriented

WSN systems. Our methods apply the recently introduced lightweight dataflow

programming model [2] [12], which provides a flexible and retargetable approach for

developing monitoring and signal processing applications based on formal dataflow

graph semantics. Using lightweight dataflow programming and dataflow graph anal-

ysis, we have developed systematic methods for measuring and optimizing energy

consumption in sensor nodes. We have demonstrated and refined these methods us-

ing a representative application in the monitoring domain, and in our future work,

we propose to address also the signal processing domain. Specific applications that

we are focusing on include building energy monitoring (for the monitoring domain),

and distributed speech recognition (for the signal processing domain).

3.2.2 Wireless Sensor Network Building Energy Monitoring System

3.2.2.1 Wireless Sensor Network Existing Researches on Network

Lifetime

Zhaohua and Mingjun [13] present a survey on network lifetime research for

wireless sensor networks. Zhang, Jia, and Yuan [14] and Padmavathy [15] have pro-

posed network protocols and assocaited algorithms for improving energy efficiency.

Wang and Kulkarni [16] consider scenarios in which sensor nodes are over-deployed

in certain regions, and explore trade-offs between network lifetime and coverage

through application of partial coverage transmission. Madan et al. [17] investigate

16

cross layer design for the physical, MAC, and routing layers to maximize lifetime in

wireless sensor networks.

These are largely general-purpose approaches, which are formulated without

taking into account detailed characteristics of the targeted wireless sensor network

or monitoring application.

Various bodies of research have targeted WSNBEMS technology (e.g., see [18]

[19] [20]). Jang, Healy and Skibniewski [19] develop a building monitoring system

with associated hardware, a web-based user interface, and monitoring software; eval-

uate this system on a wireless sensor network; and demonstrate that such a network

can be employed to provide low cost monitoring. Chintalapudi et al. [20] show how

wireless sensor networks can be used in structural health monitoring, and describe

actual monitoring systems that are deployed to monitor real structures. These

efforts have emphasized the development and demonstration of practical wireless

sensor network based monitoring systems, and have not placed significant emphasis

on optimizing energy consumption or maximizing lifetime for the network nodes.

Our research differs from these approaches in that we develop methods to

exploit specific characteristics of our targeted class of WSNBEMSs, and stream-

line the design to maximize network lifetime based on these characteristics. Also,

whereas an important body of related work focuses on network level considerations,

the approach developed focuses on trade-off analysis and optimizations that take

into account application level quality of service (reporting accuracy).

We therefore provide an additional layer of application-driven optimization

that is geared towards the important domain of WSNBEMS and goes beyond what

17

can be provided by more generic methods. As part of this application-driven ap-

proach, we model the target application in terms of core functional dataflow [8],

which allows us to formally capture the signal processing functionality in a form

that can be efficiently analyzed and mapped into hardware and software. Addition-

ally, we apply new techniques for MAC layer energy analysis and we apply these

techniques to optimize transceiver energy consumption in sensor nodes.

3.3 IEEE 802.15.4 MAC Energy Modeling

3.3.1 IEEE 802.15.4 MAC Layer Overview

The 802.15.4 Zigbee network MAC layer protocol is a hierarchical protocol in

which at any given time, a single coordinator node controls a set of one or more end

nodes in the network. This protocol has two operation modes, which are referred to

as the beacon-enabled mode and non-beacon mode. The non-beacon mode works with

carrier sense multiple access with collision avoidance (CSMACA) communication.

In the non-beacon mode, data communication from end nodes is allowed at

arbitrary times. To support such flexibility, the coordinator continually monitors

the communication channel for messages from the associated end nodes. Such moni-

toring is expensive in terms of energy consumption, and furthermore the flexibility it

provides is not needed in our targeted WSNBEMS applications, where data commu-

nication from end nodes can be restricted to occur at pre-specified, periodic times.

Thus, we are able to perform all of the intra-node communication in our wireless

sensor network architecture using only the beacon-enabled mode, which is more

18

energy efficient.

Figure 3.1: IEEE 802.15.4 Zigbee Network Superframe Structure

In the beacon-enabled mode, communication is governed by a superframe

structure, which is illustrated in Figure 3.1. The superframe structure is composed

of four parts, which are called the beacon frame, contention access period (CAP),

contention free period (CFP), and inactive period. The superframe structure (in-

dicated by the interval in Figure 3.1 labeled superframe duration) is composed of

16 time slots, where each slot corresponds to communication from at most one end

node to the coordinator. The beacon frame is used to synchronize all of the nodes

in the network. In the CAP, the end nodes that are ready to transmit data (ready

nodes) check their back-off timers (the values of these timers are randomly assigned),

and wait until their respective timers expire. After appropriate back-off, a ready

node sends data if the channel is clear; otherwise, its backoff timer is set to another

random value, and its backoff process is repeated. Through the CFP, a coordinator

node can selectively assign guaranteed time slots to specific nodes, and nodes that

19

obtain such permissions can send data during the CFP without channel sensing.

3.3.2 Energy Modeling of Beacon-enabled Mode

End node lifetime can be estimated by dividing the battery capacity (in Joules)

with the average power consumption of an end node (in Watts). In our target ap-

plication, the average power consumption of an end node can be divided into ap-

plication layer and MAC layer power consumption. The application layer power

consumption includes the power expended for acquiring sensed values from the at-

tached sensors, such as temperature, light, and humidity sensors. The MAC layer

power consumption includes the power expended for handling MAC events, the

transceiver power consumption for transmission of sensed data, and sensor node

sleep mode power consumption during the inactive periods of network beacon inter-

vals. For simplicity, we take into account only the MAC layer data transmission, and

ignore the effects of communication that are due to other factors. Although this is a

significant simplification, we show in our experiments that it does not have a major

affect on the energy consumption trend in our experiments; that is, we can compare

alternative design configurations with reasonable accuracy under this assumption.

3.4 Energy Monitoring

In this section, we describe our approach to energy analysis for BEMS appli-

cations.

20

3.4.1 WSNBEMS System Model

In the model of WSNBEMSs that we apply, end nodes, which are equipped

with heterogeneous sets of measurement sensors, are deployed in fixed positions,

and these end nodes periodically send sensor measurements to a central network

node, which we refer to as the coordinator node. The coordinator node collects data

from all of the end nodes, and processes the data to determine properties of overall

building energy consumption.

In the WSNBEMS testbed that we are experimenting with, the wireless com-

munication range for end nodes is approximately 30 meters, and router nodes are

used for multi-hop networking and clustering.

Each end node in our testbed is composed of a microcontroller for data pro-

cessing and peripheral control, and a wireless transceiver subsystem for communica-

tion with other nodes. The microcontroller on an end node communicates with its

associated sensors and acquires environmental measurement data using peripheral

communication protocols.

We encapsulate the functionality for sensor interfaces in LWDF actor imple-

mentations so that sensor interfaces are integrated into the overall design using the

same general module design approach as all other functional components. Thus, re-

gardless of whether the sensors support I2C, SPI or some other protocol, the sensor

interfaces communicate with other actors in the same way, which makes it easy to in-

tegrate sensors into the end nodes using a standard, protocol-independent approach.

Moreover, the standardized interfacing and encapsulation as dataflow components

21

facilitates more comprehensive model-based analysis, including energy estimation,

for the overall application. This feature, for example, allows designers to derive

useful estimates of energy consumption for alternative designs before deploying and

testing the design in real environments.

3.4.1.1 Application Energy Modeling

���������	

����

����
���	

�����	�
����	
 ����
���
����	�

Figure 3.2: LWDF application model for the targeted WSNBEMS application

Commonly, environmental sensors support multiple sensing modes having dif-

ferent resolutions. Such sensing mode alternatives provide for trade-offs among the

resolution of the data arriving from the sensor interfaces, number of bits required to

communicate the sensed data across the interface and network, and time required

to obtain the sensor readings. Resolution modes for sensors are generally configured

by sending appropriate instructions to the sensors.

The mode based decomposition of LWDF firings provides a natural method

for specifying functionality associated with different resolution modes within LWDF

actors. In our WSNBEMS end node design, we provide for dynamic selection of

sensor resolution modes through a resolution mode selection actor. Such an actor

can, for example, be connected to a bank of switches or process configuration data

22

sent by the coordinator node to dynamically adapt the resolution mode based on

user input or coordinator node decisions. On each firing, the resolution mode selec-

tion actor reads the resolution settings from the appropriate configuration interface,

packages the settings as a sequence of dataflow tokens (data packets), and passes

these tokens to one or more subsequent actors for controlling how sensor data is

read and transmitted.

boolean resolution_mode_selection_enable() {

boolean result = FALSE;

switch(context->mode) {

case HIGH_resolution:

result = TRUE;

break;

case LOW_resolution:

result = TRUE;

break;

default:

wsnbems_exception(context, INVALID_ACTOR_MODE);

break;

}

return result;

}

void resolution_mode_selection_invoke() {

23

switch(context-> mode) {

case HIGH_resolution:

value=generate_inst(HIGH_resol);

lwdfc_fifo_write(&value);

context->mode=decide_next_mode();

break;

case LOW_resolution :

value=generate_inst(LOW_resol);

lwdfc_fifo_write(&value);

context->mode=decide_next_mode();

break;

default:

wsnbems_exception(context, INVALID_ACTOR_MODE);

break;

}

}

Figure 3.2 illustrates our LWDF-based application model for our experimental

WSNBEMS application. As an example of actor programming in our design, selected

code is sketched below for the resolution mode selection actor.

We analyze the energy consumption of the end node functionality in terms of

the LWDF application model of Figure 3.2.

The overall application energy is estimated as the sum of energy consumption

24

estimates that are derived for the individual actors. In the estimation process, each

component of energy consumption (Een, Efifow, etc.) is derived by instrumenting

the application to determine the amount of time spent in the associated processing

state, and multiplying by an estimate of the power consumption in each state.

The instrumented values are obtained through actual application execution on the

targeted hardware (not by simulation).

The overall energy estimation approach is summarized by the following equa-

tions.

Eapp = Eres + Ecom + Edp

Eres = Een(res) + Efifow + Emdch(res) + Einst

Ecom = Een(com) + Efifor + Eintfmode + Efifow

Edp = Een(dp) + Efifor + Edps

Table 3.1 provides a legend of the symbols that are used in these energy mod-

eling equations.

3.5 Energy Efficient Management Scheme for WSNBEM

In the previous sections, we have developed models for analyzing the energy

consumption of our targeted WSNBEMS, both in terms of application- and MAC-

related energy consumption. To derive energy estimates from these models, we

apply appropriate hardware platform parameters. For example, Table 3.2 shows

relevant platform parameter values for the Texas Instruments CC2530 microcon-

25

Eapp Application Energy

Eres Resolution Selection Actor Energy

Ecom Communication Actor Energy

Edp Data Processing Actor Energy

Een Actor Enabling Energy

Efifow FIFO Write Energy

Efifor FIFO Read Energy

Emdch Energy for Mode Change

Einst Energy for Instruction Generation

Eintfmode Sensor Interface Communication Energy

Edps Data Processing Energy

Table 3.1: Terminology for Energy Analysis

26

Parameter Value

CurrentTX 39.6 mA

CurrentActive 20.5 mA

CurrentSleep 1 uA

ttimeslot 320 us

Vop 3.3 V

Table 3.2: Hardware platform parameters for the Texas Instruments CC2530.

troller, which supports 802.15.4 Zigbee networks, and is the platform used in our

experiments. However, we note that through its basis in dataflow-based applica-

tion representations, our energy analysis methodology is easily retargeted to other

platforms, and is not specific to the hardware used in our implementation.

As an example of how this kind of energy modeling can be applied, Figure 3.3

shows how end node lifetime varies as we increase the time interval for transmis-

sion, and apply the parameters in Table 3.2 and a battery with an energy capacity of

1250mAh. As we would expect, the lifetime has a tendency to increase with increas-

ing intervals for transmission, and our detailed energy analysis approach helps to

quantify this trend so that we can identify a suitable trade-off based on application

requirements.

27

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

Transmission Interval(sec)

Li
fe

tim
e

of
 N

od
e(

ho
ur

)

Figure 3.3: Node lifetime versus transmission interval.

3.5.1 End Node Based Energy Saving Scheme

In this section, we present the end node based network lifetime (ENBESS)

scheme, which is an energy saving scheme that helps to extend end node lifetime by

adjusting the transmission interval based on relevant operating conditions. This ap-

proach is motivated by the trade-off between transmission interval and node lifetime,

which was discussed above.

ENBESS is motivated by the observation that environmental data of interest

in our application, such as temperature and light, is relatively stable in building

28

environments. ENBESS exploits this stability by maintaining a moving average of

sensed data for each monitoring modality (temperature, humidity, light, etc.) of

interest, and transmitting at increasingly long intervals when the current sensed

values are sufficiently close to their associated moving average values.

When each modality is sensed, the moving average is updated. Then a weighted

sum is used to determine the deviation of the current set of sensed values from the

associated moving averages. This deviation is compared to a pre-specified thresh-

old, and if the difference is within the threshold then the data transmission time

is increased; on the other hand, if the deviation is moderately outside the thresh-

old, then the transmission time is decreased. If the deviation from the threshold is

outside of a pre-specified normal range, then a much shorter exception interval is

used to notify the controller node. This notification alerts the controller node to

an exceptional change in sensed value status, which could indicate, for example, a

device failure or dangerous event in the environment.

The ENBESS method is sketched by the pseudocode shown in Algorithm 1.

By strategically adjusting between shorter and longer transmission intervals, the

method provides for both accurate data reporting to the coordinator node, as well

as energy efficient operation on the end nodes.

In Algorithm 1, a provides a weight for updating the moving average value,

which is described above. Fint is a weight that is applied to the difference between

the newly updated moving average and stored moving average, and Wsen is a co-

efficient applied to each sensed value measurement. The value of Wsen should be

determined based on the units in which sensor value measurements are provided

29

and the associated magnitude ranges. For example, in our measurement scenario,

temperature sensor values typically range from 20 to 35 degree Celcius, while light

sensor values range from 0 to 800 degree Lux. In our experiments, we used coeffi-

cient values of 0.2 and 0.01, for temperature and light readings, respectively, to help

normalize the values into similar ranges. tBase provides a time offset that we used

to update successive transmission intervals. In our experiments, we used 12 seconds

as the value for tBase .

3.6 Simulation and Experiments

3.6.1 WSNBEMS Testbed

To experiment with our methods for design and energy analysis, we have

developed a fully functional, small scale WSNBEMS testbed. The network nodes

in this testbed employ Texas Instruments CC2530 802.15.4 Zigbee network enabled

(Z-Stack 1.4.0) microcontrollers.

Figure 3.4 shows an overview of the network in our testbed. The network

includes one coordinator node, one router node, and three end nodes. Each end

node is equipped with two environmental sensors — a temperature sensor and a

light sensor. Both of these sensors communicate with the associated microcontroller

using the I2C peripheral communication protocol [21].

The network is deployed in the A. V. Williams Building on the University

of Maryland, College Park campus. End nodes periodically send sensed values for

temperature and light to the coordinator node, and the router node relays informa-

30

Algorithm 1 End Node Based Energy Saving Scheme.

Fint = 0

for i = 1 to Nsen do

Mavg[i] = a ∗Msen[i] + (1− a) ∗Mpavg[i]

Dsen[i] = Mavg[i]−Mpavg[i]

Mpavg[i] = Mavg[i]

end for

for i = 1 to Nsen do

Fint = Fint+Dsen[i] ∗Wsen[i]

end for

if Fint > Lbase then

NexInterval = PreInterval + tBase ∗ Fint

else if Fint ≤ Lbase then

NexInterval = PreInterval − tBase ∗ Fint

end if

for i = 1 to Nsen do

if Msen[i] is out of normal range then

NexInterval = ExceptionInterval

end if

end for

PreInterval = NexInterval

31

Room

2402

Room

2466

Room

2464

Room

2467

Room

2465

Coordinator Node

Router Node

End Node

Figure 3.4: Network for WSNBEMS testbed.

tion to the coordinator node in case end nodes cannot reach the coordinator node

directly.

3.6.2 Node Lifetime

In our testbed, the Texas Instruments Z-stack is used to implement the 802.15.4

Zigbee protocol, and the Operating System Abstraction Layer (OSAL) is used for

node scheduling. The Z-stack is composed of 7 main layers — the MAC layer, net-

work layer, hardware abstraction layer, application support sub-layer, monitoring

task, interface for Zigbee application layer, and application layer. In our energy

analysis, we consider in detail the MAC layer and application layer, so our energy

analysis needs some model for differentiating results measured from our testbed with

results obtained from our analysis. To help differentiate between testbed and analy-

sis results, we define the term Elayers to represent the combined energy consumption

of the network layer, hardware abstraction layer, application support sub-layer, and

32

0 5 10 15
0

5

10

15

20

25

Transmission Interval(sec)

E
ne

rg
y

C
on

su
m

pt
io

n
du

rin
g

th
e

T
ra

ns
m

is
si

on
 In

te
rv

al
(m

A
)

Estimation Function
Test Measurement

Figure 3.5: Energy consumption for all Z-stack layers except for the MAC and application

layers.

interface for Zigbee application layer.

To estimate the energy consumption for these layers (i.e., all layers apart from

the application and MAC layers), we measure the required numbers of clock cycles

for processing the layers with increasing data transmission intervals. From these

clock cycle counts, we can estimate the associated energy consumption values. The

clock cycle counts are measured 15 times and the average across these 15 trials

is used to derive the energy consumption estimates. Figure 3.5 shows our energy

estimation results for the different layers.

Based on the results shown in Figure 3.5, we use a linear estimation function

33

0 100 200 300 400 500 600
0

50

100

150

200

250

300

Transmission Interval(sec)

E
nd

 N
od

e
Li

fe
tim

e(
ho

ur
)

Energy Analysis
Experimental Result

Figure 3.6: Test results for end node lifetime.

to provide the term Elayers.

Figure 3.6 presents experimental results based on the end nodes employed in

our testbed. From these results, we can verify that end node lifetime increases with

increases in the data reporting interval. However, measurements from the actual

testbed give shorter end node lifetimes compared to the lifetimes estimated from

our energy model analysis. Even if we revise the energy analysis by incorporating

the Elayers term, the actual measured lifetimes are shorter than what the estimates

predict. This indicates that there are other overheads that contribute to overall

energy consumption but are not included or not adequately covered by our energy

34

model.

However, the results also demonstrate that the measurement- and analysis-

based energy consumption profiles follow similar trends, and thus the results from

our analysis can be used to compare alternative design points with reasonable accu-

racy. This confirms the utility of our energy analysis approach in rapid prototyping,

design exploration, and overall design methodology assessment.

3.6.3 Energy Savings Using ENBESS

To apply ENBESS, we must first ensure that the method is accurate — i.e.,

that the technique is effective at detecting exceptional conditions when they occur.

An energy monitoring setup that has high lifetime but low accuracy will usually be

of little use. In this context, we define accuracy under a given application scenario

(e.g., based on a given experiment) as the ratio D/A, where D and A represent

the number of detected exception cases, and the number of actual exception cases,

respectively. If A = 0 for a given scenario, then the accuracy for that scenario is

undefined.

The accuracy result can be affected by the weighted sum calculation in Algo-

rithm 1 (i.e., the update of the Fint variable). Because of the difficulty involved in

rigorous testing of exception conditions in an actual environment (e.g., the need to

cause sudden swings in temperature, humidity, etc.), we performed accuracy assess-

ment throught simulation. For this purpose, we modeled sensed values as having

Gaussian distributions, and as a result, exception conditions were configured to

35

occur during simulation with relatively low, but nonzero probability.

Figure 3.7 shows the accuracy and energy savings for various simulations. This

is based on comparison with a static data transmission time interval of 40s, which is

selected because it is the largest (most energy efficient) static interval that achieves

a target accuracy of 75%.

5 10 15 20 25
60

80

100
Emergency Rate=0.1%, Var(T)=1.15, Var(L)=48, Accuracy of Static Int=77.42%

5 10 15 20 25
60

80

100
Emergency Rate=1%, Var(T)=1.2, Var(L)=60, Accuracy of Static Int=74.23%

A
cc

ur
ac

y(
%

)

5 10 15 20 25
60

80

100
Emergency Rate=3%, Var(T)=1.3, Var(L)=80, Accuracy of Static Int=77.84%

Energy Saving(%)

a=0.25

a=0.5

a=0.75

Figure 3.7: Simulation results for accuracy and energy savings.

The tests are held with different emergency rate value. As shown in Figure 3.7,

ENBESS usually saves 9% or more energy and increases reporting accuracy com-

pared to the use of static data transmission intervals. Thus, this value should be

examined carefully through simulation to determine an effective setting based on

36

End Node Life Time Hours Average Interval

ENBESS with a=0.3 76h 15m 527s

ENBESS with a=0.5 77h 12m 512s

ENBESS with a=0.7 74h 23m 507s

Static Transmission Interval(40s) 60h 12m

Table 3.3: Energy saving of ENBESS as determined from the WSNBEMS testbed.

expected operating conditions. The value of the weight values (in the update equa-

tion for Fint) in general will also affect the results. Analysis of this effect, as well

as development of more systematic methods for determining a and the weighting

factors for Fint, are useful directions for further investigation.

We have also experimented with the ENBESS scheme on real hardware in our

WSNBEMS testbed. Table 3.3 shows the energy savings determined from these

experiments. These savings are determined in comparison to the same 40s static

interval case that was used in Figure 3.7. The results in Table 3.3 demonstrate

significant improvement compared to the static interval case.

3.7 Conclusion

In this chapter, we have developed methods for system design and analysis of

wireless sensor network building energy monitoring systems (WSNBEMs). We have

developed methods for application modeling and energy analysis that help to quickly

37

assess the energy efficiency of alternative design configurations. Motivated by re-

sults from our energy analysis, we have developed a method, called the End Node

Based Energy Saving Scheme (ENBESS), for dynamically adjusting data transmis-

sion intervals in a WSNBEMS based on the degree to which sensed data deviates

from corresponding moving average values. We have validated ENBESS along with

our energy analysis methods in a fully functional, small scale WSNBEMS testbed

deployed across multiple rooms in an actual building. Results from experiments on

our testbed show that our energy analysis methods are useful in comparing alter-

native WSNBEMS design configurations, and that ENBESS can achieve significant

improvements in energy efficiency and node lifetime through strategic adaptation of

transmission intervals.

38

Chapter 4: Configurable Resource-optimized FFT Architecture for

OFDM Communication

4.1 Introduction

As OFDM is widely used in wireless communication systems, efficient hard-

ware implementation for OFDM is critical issue. FFT computation is the most

computationally intensive part of an OFDM system. A large body of prior research

exists on efficient implementation of FFTs. Two general forms of FFT architecture

are the parallel input and output architecture [22] [23] [24], and the serial input and

output architecture [25] [26]. The parallel input and output architecture is shown

in Figure 4.2, and the serial input and output architecture is shown in Figure 4.3.

A parallel input and output architecture can offer relatively high throughput

of computation, however it requires multiple computation units (butterfly process-

ing units) for processing parallel inputs simultaneously, and additional hardware

resources due to complex multipliers [27]. Since area efficiency is critical in mobile

systems, this architecture is not well suited for OFDM implementation. On the

other hand, a serial input and output architecture can be developed using single

computation units along with random access memory (RAM), and can thereby offer

39

resource efficient design for OFDM implementation.

Saeed et al. presented an FFT system in [26] that employs a simple radix-2

based processing unit instead of a radix-4 unit, and provides a configurable FFT

size (number of points). This system also uses simple counter based control logic,

which helps to reduce resource utilization. Our proposed solution adopts ideas from

the work of Saeed et al., and further streamlines buffer memory and control logic

implementation based on the context in the which an FFT unit operates within an

overall OFDM system.

A variety of methods have been presented for implementing serial input and

output FFTs for OFDM systems. Hung, Chen and Chen presented an address gen-

erator for memory and twiddle factors of variable-length FFTs for high speed and

low complexity design [28]. Jung, Yoon and Kim demonstrated a method for effi-

cient design of the radix-4 based butterfly [29] and multiplier in an FFT unit. This

approach was shown to achieve enhancements in both area and throughput. Huang

et al. presented a memory efficient OFDM system considering WiMAX subcar-

rier allocation scheduling and demonstrated results in terms of area efficiency [30].

However, these approaches are based on specialized OFDM system requirements

— i.e., these methods exploit the specialized structure for specific OFDM system

configurations to derive optimized designs.

In contrast, in this chapter we target efficient FFT implementation for general

OFDM architectures, which can be configured across a range of different specialized

OFDM requirements. Such general OFDM architectures are useful for prototyp-

ing as well as for cognitive radio applications, which may support many different

40

communication standards within the same hardware.

For such generalized OFDM architecture design, we have identified inefficien-

cies in memory and resource utilization in conventional FFT implementations, and

we have developed methods to address these inefficiencies to achieve a novel area-

efficient FFT hardware architecture. To help support the overall context within

a generalized OFDM design, our design provides significant user configurability in

terms of FFT parameters, such as the number of FFT points, and fixed point rep-

resentation format.

To validate our FFT architecture, we have synthesized it using Xilinx ISE

version 13.4 with the Digilent Spartan 3e platform as the target. This target plat-

form is based in turn on the Xilinx (xc3s500efg320-4) integrated circuit. We have

selected the Xilinx FFT intellectual property (IP) core (Xilinx FFT IP core v7.1)

as a reference for comparison, as it is a widely used commercial IP core.

4.2 FFT Design Optimization for OFDM

4.2.1 FFT Design with User Configurability

Orthogonal frequency division multiplexing (OFDM) is a multiple access scheme

for high data rate communication. OFDM is based on frequency division multiplex-

ing, where bandwidth is divided into a series of non-overlapping frequency bands,

and each user is assigned a dedicated subset of the available bands. OFDM is a spe-

cial case of frequency division multiplexing in which the sub-carriers are orthogonal

to one another, which eliminates crosstalk between sub-carriers [31].

41

Constellation

Mapping

Serial

to

Parallel

Sub-

Carrier

Mapping

N point

IFFT

Digital

Analog

Converter

RF

Parallel

to

Serial

Add Cyclic

Prefix or

Suffix

Figure 4.1: OFDM system overview.

���������

���������

���������

���������

	�
 	�

Figure 4.2: Pipelined parallel architecture for FFT.

OFDM offers a variety of advantages, including robustness against narrow

band co-channel interference, inter symbol interference and fading caused by mul-

tipath propagation. Also, OFDM can readily be implemented with the fast Fourier

transform (FFT). Due to these advantages, OFDM is widely used in modern wireless

communication systems, including wireless LAN, WiMAX and 3G LTE. Figure 4.1

shows a system overview for OFDM.

OFDM modules are used in many communication systems, and OFDM con-

figurations in general need to be varied with communication system requirements.

42

���������

������

���������

������

	�
 	�

Figure 4.3: Pipelined serial architecture for FFT

To support a broad range of OFDM configurations, we consider a parameterized

OFDM system design that supports flexibility across the OFDM design space. A

block diagram of our targeted OFDM system design is shown in Figure 4.4. The

contribution of this chapter is to present an optimized FFT architecture that is

suitable for integration as a component of this system design.

Memory : size 8
IrealIimag

Memory : size 8
+

-

-

+

01010101 C

Memory : size 4 Memory : size 4
+

-

010101 C
+
-

_

+

0101 01

Input Buffer

enableRead enable enableBF I BF II BF I BF II

M : s 2M : s 2 M : s 1M : s 1

enable enable enable
IrealIimag

M : s 16
0 1 SelectorRev. Bit Addr

WriteAddrM : s 16
Write enable

enable enable

M : s 16M : s 16Write Addr

FFT Reorder Buffer Cyclic Suffix

Counter 1Counter 2
Controller

Selector
0101 OrealOimag

Counting signal

Mult

Figure 4.4: Block diagram of targeted OFDM system design.

There were plenty of FFT designs were researched and the FFT implementa-

tion is a well matured research area. In this chapter, we focused more on developing

the efficient OFDM modules based on the FFT module which was presented in pre-

43

vious research. We chose the FPGA FFT design in [26] among plenty of system,

because the system can easily expandable with the point of FFT for supporting

multiple configuration and have a counter based control logic. The proposed con-

figurable parameters for OFDM module provides user configurability in terms of

parameters such as the number of FFT points, and fixed point representation for-

mat.

4.2.2 Memory Efficient Design of FFT for OFDM

In an OFDM system, a guard interval using a cyclic prefix or cyclic suffix

is used between consecutive OFDM symbol durations [31]. Such prefix or suffix

based guard intervals are used to combat inter symbol interference. When using a

cyclic prefix, the OFDM output symbol size increases from N to (N + C), where

N and C represent the FFT size and cyclic prefix size, respectively. The OFDM

symbol duration is the sum of the actual transmission time for an N -sized IFFT

output and the guard interval time. The actual transmission time for an OFDM

symbol is determined by the time taken by the physical layer electronics, and the

RF transmission time. If the rate at which OFDM symbols are generated exceeds

the throughput of the physical layer electronics, an additional FIFO is inserted to

help compensate for the rate difference.

In OFDM system design, a buffer of size (N + C) is inserted to handle cyclic

prefix or suffix generation. In our design, we employ a cyclic suffix, and configure

the FFT a with stall state. In this state, which is employed during guard intervals,

44

the FFT does not generate any output. After FFT data is generated, a dedicated

cyclic suffix module suffixes data in memory based on a suffix size parameter C.

This approach allows for streaming generation of OFDM symbols before digital-to-

analog conversion without requiring additional buffering, and provides a memory

savings of

Msave1 =
N

N + C
. (4.1)

Within an OFDM system, a re-order buffer is typically used in conjunction

with the FFT unit. The output streams for the IFFT/FFT computations are in bit-

reversed order based on common conventions for IFFT and FFT implementation.

A common buffer management scheme for re-order buffer and cyclic suffix design,

which is presented in [32], uses a buffer of size 2N for re-ordering and continuous

processing of FFT output data. However, with optimized buffer management, our

design employs a smaller re-order buffer of size (N + C). In particular, based on

knowledge of how the FFT is employed in the surrounding OFDM context, we are

able to replace the double buffering scheme of [32] with in-place buffering. This

leads to a re-order buffer that is smaller by a factor of

Msave2 =
N − C

2N
. (4.2)

This represents a significant savings since typically C is much smaller than N

in OFDM systems.

45

4.2.3 Simple Control Logic

Another opportunity that we exploit in our OFDM-oriented FFT subsystem

is the ability to share control logic across key modules that interface to the FFT.

In particular, we extend the controller for the core FFT unit with an additional

counter, and use the resulting circuit as a unified controller for the re-order buffer

and cyclic suffix modules (“interface modules”). This is in contrast to conventional

approaches to OFDM system implementation that use off-the-shelf or otherwise

generic FFT IP blocks and interface modules, which come with their own controllers.

Our approach to sharing of control logic helps to further enhance the area efficiency

of our approach, as we demonstrate quantitatively in experiments.

4.3 Experiments

4.3.1 Evaluation Metric

In this section, we demonstrate the performance and area efficiency of our

OFDM-oriented FFT subsystem design. First, we define two evaluation metrics

that we employ in our experiments. As a measure of resource utilization on the

targeted FPGA devices, we define R(Di) to be the number of FPGA slices occupied

by the synthesized result for a given design Di. Also, given two designs Di and Dj

such that R(Dj) > R(Di), we use the metric E(Di, Dj) to quantify the degree to

which Di is more resource-efficient compared to Dj. This metric is defined by:

46

ER(Di, Dj) = (1− R(Di)

R(Dj)
)× 100(%). (4.3)

4.3.2 Performance of Our Proposed Design

To further test the performance of our proposed design, the design is synthe-

sized under Xilinx ISE version 13.4 with the option of using the Digilent Spartan 3e

platform, which is based in turn on the Xilinx integrated circuit. We have chosen

FFT computation with cyclic suffix generation as the configuration for the evalu-

ating system performance. The FFT module is the most computationally complex

part in an OFDM system and the system resource usage is heavily related to this

part. Also, the Xilinx IP generator supports FFT v7.1 instantiation along with

features for reorder buffer and cyclic suffix usage. Since this core (the Xilinx FFT

IP core v7.1) has these relevant features and it is a widely used commercial core, we

employ it as a reference for comparison in our experiments.

Results obtained from our synthesis experiments are shown in Figure 4.6. In

this Figure, R represents the amount of occupied logic resources, and M represents

the amount of RAM memory blocks that are used. Each entry for R is expressed

in the form x/y , followed by a percentage value z. Here, x represents the number

of occupied logic resources in the synthesized design, y represents the total number

of available logic resources on the targeted FPGA device, and z represents the

percentage of occupied resources (i.e., the quotient (x/y)).

For fairness in our comparison, we maintained consistency where possible be-

47

Xilinx FFT
Configuration Parameter

Applied Value

Target Frequency Same as our design

Hardware Architecture Pipelined Architecture

I/O Method Streaming I/O

Data Format 12 Bit Fixed Point Representation

Length of Precision Same as our design

Output Ordering
(Bit Rev. or Natural)

Same as our design

Number of Stages
Using Block RAM

Same as our design

Complex Multiplier
3-multiplier structure

(resource optimization)

Figure 4.5: Configuration for Xilinx FFT v7.1 IP Core Generation

tween the configurations used for our design and the configurations used for gen-

erating the Xilinx FFT core. Figure 4.5 shows the configurations that we used to

generate the Xilinx FFT core.

For the synthesis experiments using the Xilinx core, the target clock frequency

is set based on the maximum frequency at which our proposed configurable FFT

module can operate. Since the Xilinx core generator generally improves the resource

utilization efficiency for lower speeds, this optimizes the resource utilization of the

48

FFT FFT with Natural Order Output
FFT with Natural Order Output and

Cyclic Suffix

R M Max Speed R M Max Speed R M Max Speed

16 Points FFT
616 / 4,656

13%
4 / 20
20%

25.333MHz
659 / 4,656

14%
6 / 20
30%

25.333MHz
698 / 4,656

14%
8 / 20
40%

25.296MHz

256 Points FFT
1,615 / 4,656

34%
12 / 20
60%

10.279MHz
1,666 / 4,656

35%
14 / 20
70%

10.292MHz
1,703 / 4,656

36%
16 / 20
80%

10.279MHz

1024 Points FFT
2,349 / 4,656

50%
16 / 20
80%

7.819MHz
2,405 / 4,656

51%
18 / 20
90%

7.819MHz
2,450 / 4,656

52%
20 / 20
100%

7.819MHz

Figure 4.6: Performance of our proposed configurable FFT design.

FFT FFT with Natural Order Output
FFT with Natural Order Output and

Cyclic Prefix

R M R M R M

16 Points FFT
784 / 4,656

16%
0 / 20
0%

897 / 4,656
19%

1 / 20
5%

1,010 / 4,656
21%

1 / 20
5%

256 Points FFT
1,965 / 4,656

42%
4 / 20
20%

2,032 / 4,656
43%

5 / 20
25%

2,160 / 4,656
46%

5 / 20
25%

1024 Points FFT
2,608 / 4,656

56%
7 / 20
35%

2,687 / 4,656
57%

9 / 20
45%

2,848 / 4,656
61%

9 / 20
45%

Figure 4.7: Performance of Xilinx FFT core.

Xilinx core for the same speed that is achieved by proposed design.

For the complex multiplier configuration in the Xilinx IP core, we applied

the 3-multiplier structure among the three available options — CLB-logic, 3-

multiplier structure and 4-multiplier structure. We selected the 3-multiplier

structure because it is the most resource-efficient option.

Figure 4.8 shows the resource efficiency of our proposed design over the ref-

erence design, based on the experiments summarized in Figure 4.6 and Figure 4.7.

We see that our proposed configurable FFT module requires less logic resources

49

1 2 3
0

5

10

15

20

25

30

35

Number of Points FFT (1. N=16 2. N=256 3. N=1024)

R
es

ou
rc

e
E

ffi
ci

en
cy

 o
f P

ro
po

se
d

D
es

ig
n

(%
)

FFT
FFT with Natural Order
FFT with Natural Order,
Cyclic Suffix

Figure 4.8: Resource efficiency of proposed design with block RAM.

than the Xilinx FFT core. Thus, our proposed module is advantageous for highly

cost-constrained design scenarios with extensive requirements of computational re-

sources, such as those that arise from trying to fit complex wireless communication

subsystems into single-chip implementations.

Although, as shown in Figure 4.6 and Figure 4.7, our design is significantly

more efficient in terms of logic resource requirements, it has increased requirements

in terms of on-chip memory blocks.

An alternative to incurring the increased block RAM cost of our approach, is

to employ distributed memory, which consumes logic resources (slices) rather than

50

Num of Points FFT
FFT with

Natural Order Output
FFT with Natural Order
Output and Cyclic Prefix

Proposed
Design

16 Points FFT
608 / 4,656

13%
682 / 4,656

14%
737 / 4,656

15%

256 Points FFT
1,884 / 4,656

40%
2,476 / 4,656

53%
3,016 / 4,656

64%

Xilinx
FFT Core

16 Points FFT
784 / 4,656

16%
1,198 / 4,656

25%
1,247 / 4,656

26%

256 Points FFT
2,067 / 4,656

44%
3,724 / 4,656

79%
3,847 / 4,656

82%

Figure 4.9: Performance comparison of our proposed design based on a distributed memory

implementation.

block RAM. To study the impact on resource efficiency in this case, we synthesized

the design using distributed instead block RAM, and and we compared the result-

ing resource usage with the Xilinx FFT core under the same conditions (i.e., by

enforcing use of distributed RAM). Figure 4.9 shows that under these constraints,

our proposed configurable FFT module requires less logic resources than the Xilinx

FFT core.

Figure 4.10 shows the resource efficiency (ER) for the distributed memory

version of our proposed design compared to the Xilinx FFT core. This demonstrates

an efficiency enhancement of 8.5% using our proposed OFDM-oriented FFT solution.

51

1 2
0

5

10

15

20

25

30

35

40

45

Number of Points FFT (1. N=16 2. N=256)

R
es

ou
rc

e
E

ffi
ci

en
cy

 o
f P

ro
po

se
d

D
es

ig
n(

%
)

FFT
FFT with Natural Order
FFT with Natural Order
Cyclic Suffix

Figure 4.10: Resource efficiency of our proposed design using distributed memory.

4.4 Conclusion

In this chapter, we have presented a resource efficient design for a configurable

FFT module for flexible integration into OFDM systems. Our design overcomes in-

efficiencies in the conventional use of FFT modules in OFDM systems, and provides

extensive designer-configurability that helps to support a variety of communication

system specifications. Our OFDM-targeted FFT design achieves efficient resource

utilization through careful buffer memory optimization, and streamlining of control

logic. To validate our proposed FFT design, we synthesized it on an FPGA target,

and compared the synthesis results to an analogous configuration of a commercial,

52

off-the-shelf FFT core. Results from synthesis show that our proposed design pro-

vides significant improvements in resource efficiency under both block RAM and

distributed memory based implementations.

53

Chapter 5: Dynamic Resource Coordination and Energy Optimiza-

tion in Sensor Network Platforms

5.1 Introduction

Wireless sensor networks (WSNs) can be applied to a variety of application

domains such as environmental monitoring and surveillance. The resources of com-

putation, communication, memory, and power on a typical sensor node platform are

severely limited such that careful design and optimization are needed in order to

meet mission-critical requirements. To address this problem, we have developed a

system-level design approach for WSN systems, utilizing the dynamic data driven

applications systems (DDDAS) paradigm [1] jointly with dataflow models of com-

putation. Dataflow models of computation have been used in a wide variety of

development environments to aid in the design and implementation of signal pro-

cessing applications (e.g., see [3, 10, 33–39]).

When developing a design methodology for WSN applications, we need to

carefully support optimizations for dynamic resource coordination and utilization of

power-aware processing modes. Hardware interrupts are commonly used in sensor

node platforms to handle events associated with data acquisition. Such interrupts

54

help to efficiently drive signal processing subsystems and associated control func-

tionality in a data-driven manner, where subsystem iterations, application mode

changes, and other aspects of signal processing computations can be triggered based

on the arrival of specific kinds of data from specific sensors. In this chapter, we have

developed a novel dataflow modeling approach, called data-driven parameterized

synchronous dataflow (DDPSDF) to support efficient model-based design and im-

plementation of WSN systems based on such sensor-driven triggering of control and

signal processing computations. DDPSDF can be viewed as a structured integration

of (1) parameterized synchronous dataflow (PSDF) modeling of signal processing ap-

plications, and (2) the DDDAS paradigm for dynamic steering of system operation

and instrumentation based on run-time data characteristics.

Dynamic configuration of resource usage and power consumption in WSN sys-

tems is critical to efficient WSN system design. For optimized performance, con-

figuration changes need to be driven carefully by the current data characteristics

and system status. This calls for rigorous integration of DDDAS design principles

into design processes for WSN systems. Use of DDDAS design techniques involves

tightly integrated feedback from instrumentation and application of dynamic param-

eters that are adapted based on such feedback, and that also control how subsequent

rounds of instrumentation are performed. The DDPSDF design approach developed

and demonstrated in this chapter is a first step towards systematic integration of dy-

namically parameterized dataflow modeling and scheduling techniques with DDDAS

principles for robust and context-optimized operation of application systems under

complex constraints.

55

To demonstrate our proposed DDPSDF methods, we present in this chapter a

case study involving an embedded speech recognition system. We demonstrate that

by applying the DDPSDF approach, and its associated interrupt-integrated style of

PSDF modeling, energy- and resource-efficient embedded software can be derived

systematically from high level models of DDDAS application structure.

5.2 Data-driven PSDF Modeling

The DDPSDF approach presented in this chapter integrates the interactions

of platform-level interrupt service routine (ISR) operation with high-level PSDF

modeling of signal processing applications. By integrating ISR operation within

a parameterized dataflow framework, sleep and awakening operations for micro-

controllers and sensor subsystems can be incorporated naturally with quasi-static

scheduling strategies for efficient and structured execution of signal processing ap-

plications across WSNs. Integration of ISRs in this way also allows designers to

efficiently adapt run-time operation of the system based on data acquired from var-

ious sensors under specific kinds of conditions (e.g., exceeded thresholds in signal

magnitude or frequency).

DDPSDF modeling is a structured application of PSDF graphs to incorporate

interrupt driven processing throughout the execution of a parameterized dataflow

graph specification. DDPSDF exploits the flexibility in the parameterized dataflow

framework for defining the underlying notion of a graph iteration, which defines

the basic window of processing in PSDF during which parameter values are kept

56

dataflow edge

DDPSDF-control

edge

init(Ф
i

) subinit(Ф
s

)

body(Ф
b

)

buffer

Data Processing

ISR

Timer Interrupt

Data Interrupt

Sensor Interrupt

subfin(Ф
sf

) fin(Ф
f

)

�

�����

�

�����	

�

�
��	

�

����

�

�������

�

��������

Figure 5.1: Illustration of DDPSDF modeling.

constant [5]. The DDPSDF modeling approach is illustrated in Figure 5.1.

In a sensor network system, many kinds of interrupts can be used, including

timer-driven and data-driven interrupts. In DDPSDF, we model the system with a

core data processing part that interacts with one or more types of hardware inter-

rupts. Sensor data is acquired using sensor interrupts and stored into buffers that

are modeled as input edges of associated body graph (Φb) representations.

In DDPSDF modeling, the handling of different kinds of hardware interrupts

can be controlled and configured dynamically by setting appropriate ISR and data

acquisition parameters. Computations required to generate new parameter values

or perform related control operations can be specified as dataflow subsystems and

integrated with the associated signal processing and interrupt management func-

tionality through PSDF modeling techniques. For example, if an interrupt has low

57

priority, it can be disabled during core “data processing phases” of system operation,

and enabled again when there is no new data to process. In general, the priority

associated with each interrupt can be updated at run-time through application of

DDDAS techniques that are embedded as appropriate subgraphs within init graph

and subinit graph specifications.

The init graph Φi of a DDPSDF subsystem sets up hardware interrupts for

acquiring sensor data, and initializes the relevant peripherals. The subinit graph

Φs controls the scheduling associated with data processing and interrupts based on

monitored data, including run-time instrumentation information. The body graph

Φb can then be employed to carry out the core signal processing functionality for

the sensed samples. The samples are read from the input edges of Φb and processed

using actors and nested SDF or DDPSDF subsystems that implement the relevant

signal processing algorithms. Configurations of Φb can be updated with parameters

set from Φs between graph iterations depending on the current status of relevant

buffers and ISRs.

The DDPSDF model also incorporates a natural extension of the core PSDF

model to provide symmetry with the subinit graph feature. In particular, each

DDPSDF subsystem Φ is equipped with a (optionally empty) graph called the sub-

fin graph (Φsf) that encapsulates computations to be performed just after each body

graph iteration. Here, “fin” is short for “finalize” just as “init” is short for “initial-

ize”. Similarly, DDPSDF introduces the concept of a fin graph to provide symmetry

in relation to the init graph. Specifically, computations associated with Φ that are

to be executed at the end of each parent graph iteration can be encapsulated in the

58

fin graph (Φf) associated with Φ.

Thus, a DDPSDF subsystem in general consists of five graphs — the body,

fin, init, subfin, and subinit graphs, although in general some of these graphs may

be unused (empty) for any given DDPSDF subsystem.

The following are specific actors that can be applied, with suitable customiza-

tions, for various useful purposes in the context of DDPSDF models. These actors

are employed in the embedded speech recognition case study that we present in

Section 5.4. These actors are defined here as core functional dataflow (CFDF) [8]

actors so that they can be applied beyond the framework of DDPSDF. CFDF is a

specific dataflow model of computation in which actor functionality is decomposed

into distinct modes of operation. Each CFDF mode has constant production and

consumption behavior (dataflow signatures) on the actor ports, but different modes

can have different signatures, thereby allowing for dynamic, actor-level dataflow

behavior. A CFDF actor A can be embedded in a DDPSDF graph as a PSDF

subsystem, where each firing of A corresponds to an iteration of the subsystem.

Thus, the actors defined here can be applied readily as part of the DDPSDF design

methodology developed in this chapter, while also being applicable in designs using

CFDF and related models.

1. Interrupt checking actor acheck. The acheck actor contains three modes — the

Check mode (the initial mode), EndProcessing mode, and Sleep mode. When a

system needs to disable selected interrupts (e.g., for QoS management), acheck

generates a token to allow asuspend (described below) to suspend interrupt gen-

59

eration processes, and changes its current mode to the EndProcessing mode.

2. Interrupt suspending actor asuspend. This actor provides a parameterized in-

terface to interrupt control registers associated with a particular embedded

processor platform. When asuspend executes, it sets the encapsulated interrupt

control registers to suspend interrupts depending on the desired priority levels,

which can be set statically or reconfigured as dynamic parameters of the actor.

3. Interrupt sleep actor asleep. This actor enables a sleep timer and transitions

the processor into its sleep mode. Prior to entering the sleep mode, priority

parameters can be readjusted to ensure that sleep mode status is maintained

until an event of sufficiently high priority is encountered. For example, if

the system is in a state of critically low battery level, then the threshold for

returning from sleep mode may be relatively high. The system will resume

operation upon arrival of a sensor or timer interrupt of sufficiently high priority.

4. Interrupt action actor aaction. This actor resumes generation of selected inter-

rupts by appropriately configuring the associated interrupt control registers.

5.3 Energy Estimation

We outline here an energy estimation model based on run-time analysis of the

available power modes in the targeted sensor node processor (microcontroller). In

the case study presented in Section 5.4, we use this model to estimate the energy

savings of our DDPSDF design approach.

60

We denote the estimated energy consumption of the targeted microcontroller

across the time interval [0, t] as E(t). E(t) is decomposed into the processing energy

Ep(t) (associated with computational tasks), and energy for idling in sleep mode

Es(t). That is,

E(t) = Ep(t) + Es(t). (5.1)

We denote IA and IS as the average current consumption when the microcon-

troller is in its active mode and sleep mode, respectively. Also, Vref denotes the

reference voltage for the system. Ep(t) can then be estimated as

Ep(t) = IA × Vref × t1, (5.2)

where t1 is the total amount of time within time interval [0, t] that the microcon-

troller is in its active mode.

Similarly, the “sleep energy” can be estimated as

Es(t) = IS × Vref × t2, (5.3)

where t2 is the total amount of time within time interval [0, t] that the microcon-

troller is in its sleep mode.

In this model, we approximate as zero the time spent in transitions between

the active and sleep modes. Thus, we assume that t = t1 + t2.

To compare the energy consumption values associated with different implemen-

tations, we define the energy gain (improvement) GE = GE(I1, I2) of implementation

61

I1 relative to implementation I2 as

GE(I1, I2) =
E2 − E1

E2

, (5.4)

where E1 and E2 represent the estimated energy usage of I1 and I2, as determined

by the energy estimation model of (5.1). Note that a positive (negative) energy gain

value GE(I1, I2) indicates that implementation I1 is estimated as being more (less)

energy efficient compared to implementation I2.

5.4 Experiments

5.4.1 Case Study: Sensor Network System for Speech Recognition

We have experimented with the DDPSDF modeling techniques and design

methods presented in this chapter using a WSN application for distributed speech

recognition. The underlying speech recognition algorithm is a lightweight algorithm,

designed for distributed embedded operation, developed by Phadke et al. [40]. Our

implementation of this speech recognition application involves functionality for sens-

ing, signal processing, and interrupt handling to demonstrate the data-driven and

interrupt integration features of the DDPSDF model.

Our sensor network for speech recognition is integrated with a temperature

sensing application to demonstrate DDPSDF methods in a system that requires

heterogeneous sensing and processing tasks. Such a lightweight (limited vocabu-

lary) speech recognition system together with temperature sensing can be used, for

example, as part of a building automation system. Depending on the system energy

62

level and processing priorities in our experimental WSN system, the temperature

sensor can be turned on and off at different points in time.

In our experimental WSN system, we have used two sensors, an external acous-

tic sensor for speech data acquisition, and the internal temperature sensor of the

targeted microcontroller. The speech data acquisition is data-driven, through use

of interrupts to acquire samples when there is input of sufficient magnitude (loud-

ness) at the microphone sensor. The temperature sensing is achieved by using timer

interrupts to acquire data at periodic intervals, where the enabling of the sensor

readings and the period of data acquisition can be adapted at run-time.

Figure 5.2 illustrates our experimental WSN application modeled as a DDPSDF

graph. The Texas Instruments (TI) CC2530 microcontroller was used as the target

processor for our implementation.

dataflow edge

DDPSDF-control

edge

init(Ф
i

) subinit(Ф
s

)

body(Ф
b

)

buffer

ISR subfin(Ф
sf

) fin(Ф
f

)

�

�����

�

�����	

�

�
��	

�

����

�

�������

�

��������

�

����

�����
�

�

�����

�

���

�

��������

���������	

�

������	�

MIC (Data Interrupt)

ADC (Timer Interrupt)

Temperature

(Timer Interrupt)

Figure 5.2: DDPSDF model for the experimental WSN application.

The speech signal is sampled at an 8Khz sampling rate, and a timer is initial-

63

ized in Φi for triggering the sampling of speech signals whenever there is an input

signal of sufficient magnitude detected at the acoustic sensor. Furthermore, an ana-

log to digital converter (ADC) is initialized in Φi to convert the sampled speech

signals into digital form. The temperature sensor is also enabled and configured

with a timer in Φi. The subinit graph Φs is used to control enabling and disabling

of timer and data interrupts based on dynamically determined priorities between

speech and temperature sensing.

Signal processing in Φb for speech data begins by converting the sampled data

into 12 or more overlapped frames. These frames are processed with a 64-point fast

Fourier transform (FFT), and are filtered through a Mel-scaled filter bank. Filtered

frames are used for extracting features from each frame. These features are matched

with the given set of template words, and if a close enough match is detected, then

the matched word is reported as the newly recognized word.

Speech processing is designated by default as having higher priority compared

to temperature sensing in our experimental WSN application. This is because pre-

cise regularity in temperature sensing is typically not critical for an application,

whereas dropping of speech recognition tasks will be immediately noticeable to the

user. For energy and performance optimization, we can therefore disable interrupts

for temperature sensing when speech processing tasks are being carried out. Such

interrupt disabling and subsequent re-enabling can be integrated into the DDPSDF

model specification, and carried out as part of the scheduling and optimization

results that are derived from the model.

During system operation, the priority of speech processing can be lowered

64

temporarily (e.g., if an excessively long time has elapsed since the most recent tem-

perature reading). This is handled through re-assessment of interrupt priorities in

the subfin graph of the DDPSDF specification. In our experiments, we do not ac-

tually utilize this possibility for dynamic change in priorities, and the subfin graph

here is thus effectively a placeholder for handling dynamic switching between pri-

oritizations. Experimentation with dynamic priority handling in our experimental

WSN system and other DDPSDF application contexts is an interesting direction for

further investigation.

Timer interrupts are enabled (through an ISR) only when a threshold-based

interrupt (data driven interrupt) indicates to the system that there is a signal on

the acoustic sensor input of sufficient magnitude to be part of a possible new spoken

word (speech candidate). Once a speech candidate is detected, the ISR configures

timer interrupts, which drive acquisition and processing of new speech samples.

The associated (parameterized) timer value can be adjusted dynamically based on

the desired sample rate, which in turn affects trade-offs between buffer memory

requirements and speech processing accuracy through Φs.

The DDPSDF representation allows PSDF scheduling techniques to be applied

for systematic derivation of efficient and correct-by-construction schedules for the

targeted class of WSN applications. The schedule S for our experimental WSN

system implementation begins by executing Φi, and iteratively executes Φb and Φs

with transitions between Φb and Φs occurring as body graph iterations complete or

as interrupts arrive for handling by Φs.

To validate the correctness and efficacy of our DDPSDF-based design, and

65

evaluate the energy improvement provided by the disabling of redundant tempera-

ture interrupts (i.e., interrupts that will effectively be ignored because the concur-

rently executing speech processing tasks will have higher priority), we implemented

our integrated speech- and temperature-sensing WSN system, and analyzed its per-

formance and energy consumption. Our DDPSDF-based design is implemented by

applying the lightweight dataflow design environment (LWDF), which provides a

tool for experimenting with design and optimization techniques for dataflow-based

signal processing systems [2]. We compare the performance and energy efficiency of

the DDPSDF-based system with a conventional synchronous dataflow (SDF)-based

implementation that does not apply dynamic enabling and disabling of interrupts.

As shown in Section 5.3, the energy consumption for each system was esti-

mated, using the energy model discussed in Section 5.3, in terms of the processor

power modes employed and the time spent in each mode. The times spent in the

active and sleep processor modes (t1 and t2 in the model of Section 5.3) were mea-

sured using an oscilloscope based on execution on the targeted TI CC2530 platform.

Additionally, we applied a number of energy-related device parameters (shown in

Table 5.1) that are obtained from the TI CC2530 data sheet.

In this experiment, we first stored 4 pre-sampled 120ms-duration speech seg-

ments into memory. In the DDPSDF-based implementation, we configured timer

interrupts to trigger temperature sensing every 200ms, and we set speech signal pro-

cessing to have the highest priority, as described earlier in this section. Along with

initiation of the body graph schedule for signal processing on each speech segment,

timer interrupts for temperature sensing were disabled for the duration of processing

66

Table 5.1: Energy-related device parameters for the TI CC2530 microcontroller.

Parameter Value

IA 6.5mA

IS 0.1µA

Vref 3.3V

for the corresponding speech segment.

On the other hand, in the implementation that is based on a conventional

SDF modeling approach, temperature sensing interrupts continue to operate during

speech processing. Even though these interrupts are effectively ignored because of

the higher priority given to speech, the system consumes redundant energy for the

temperature sensing interrupts.

Table 5.2 shows the time required to process the pre-sampled speech segments

for both the DDPSDF- and SDF-based implementations: tD and tS refer to the total

execution times for the DDPSDF- and SDF-based implementations, respectively.

These results show that the DDPSDF-based implementation results in a 5.69%

improvement in execution time. This execution time improvement can be translated

into an energy consumption improvement if the same overall execution speed of the

SDF-based version is maintained, and the processor is put into its sleep mode during

the “slack” period (tS−tD) that is provided by the faster processing in the DDPSDF

67

Table 5.2: Measured execution times for the DDPSDF- and SDF-based implementations.

Measured value Time (ms)

tD 2840.10

tS 3011.60

implementation. The energy consumption levels for both implementations can then

be compared over identical processing windows of duration tS.

Applying the energy estimation model of Section 5.3 to the DDPSDF-based

implementation, we then have t1 = tD, t2 = (tS − tD), and the overall estimated

energy computed as

E1 = Vref · IA · t1 + Vref · IS · t2 = 60.021mJ. (5.5)

On the other hand, the energy consumption (under the same level of overall

processing speed) for the implementation without using DDPSDF modeling is given

by:

E2 = Vref · IA · tS = 64.599mJ. (5.6)

The energy improvement of the DDPSDF version, as determined by (5.4),

can then be estimated as

68

GE =
E2 − E1

E2

= 5.69%. (5.7)

Thus, in this experiment, the implementation that uses DDPSDF modeling

provides an estimated energy consumption improvement of 5.69% through disabling

of timer interrupts during the processing of speech signals. Such interrupt-oriented

optimization is not supported in an integrated way with conventional SDF or PSDF

modeling techniques.

Furthermore, use of model-integrated interrupt- and data-driven processing

techniques, as supported in DDPSDF-based design, allows designers to leverage op-

timized parameterized dataflow scheduling and buffer management techniques (e.g.,

for optimizing individual init, subinit and body graphs in the model), and sys-

tematic, model-based scheduling and integration of subsystems. These advantages

of extending the power of dataflow-oriented, model-based design and implementa-

tion techniques are perhaps the most general and significant benefits of DDPSDF.

Further development and demonstration of such benefits and application to other

important areas of signal processing and DDDAS are useful directions for further

investigation.

5.5 Conclusion

In this chapter, we have introduced the data-driven parameterized synchronous

dataflow (DDPSDF) modeling technique and associated methods for design and im-

plementation of wireless sensor network applications. DDPSDF can be viewed as

69

a structured integration of parameterized synchronous dataflow (PSDF) modeling

of signal processing applications, and the DDDAS paradigm for dynamic steering

of system operation and instrumentation based on run-time data characteristics.

DDPSDF provides model-based integration of optimized, interrupt-driven process-

ing and interrupt control in energy-constrained sensor nodes. We have demonstrated

the efficacy of our proposed DDPSDF techniques using a wireless sensor network ap-

plication for integrated speech recognition and temperature sensing. Further devel-

opment and demonstration of DDPSDF methods and application to other important

areas of signal processing and DDDAS are useful directions for further investigation.

70

Chapter 6: Design and Implementation of FPGA-based DSP Sys-

tems using LWDF-V

6.1 Introduction

Development and demonstration of LWDF techniques has focused primarily so

far on the use of LWDF for software implementations, e.g. through integration (API

retargeting) of LWDF with C and CUDA [2,41]. In this chapter, we study in depth

the application of LWDF to digital system design, and present LWDF-V (LWDF-

V), which is an integration of the lightweight dataflow programming model with the

Verilog HDL. While such integration was studied in the preliminary form in [2,41],

those works, as mentioned above focused primarily on the application of LWDF

to software implementation. In this chapter, we develop new extensions to the

LWDF APIs for effective and flexible integration with HDLs, and demonstrate these

extensions concretely using the Verilog HDL, and LWDF-V programming model.

In this chapter, we also present new methods in LWDF-V for supporting dy-

namic parameter manipulation (DPM) in dataflow-based applications and actors.

By DPM, we mean the capability to flexibly reason about and change functional

parameters of dataflow graphs and actors at run-time. Such capabilities for DPM

71

are important for handling features such as adaptivity and multi-mode operation

in signal processing systems, and for integrating LWDF-V-based actor implementa-

tions with higher-level methodologies for parameter management in dataflow graphs,

such as change context analysis [42], parameterized dataflow [5], PiMM [43], and

scenario-aware dataflow [44].

We demonstrate our proposed LWDF-V programming model and methods for

managing dynamic parameters through design and implementation of actors for

inner product computation.

6.2 Related Work

6.2.1 Model Based Design Methodologies for Digital Hardware

Research on model based design methodologies related to signal processing

hardware design includes two major directions — process network models, and

dataflow models. Process networks and dataflow graphs are related formalisms for

model-based signal processing system design. relationship between these formalisms

are discussed in [45].

Using Kahn process networks (KPNs), signal processing functionality can be

described in terms of continuously executing computational processes and unbounded,

first in first out (FIFO) connections between these processes. KPNs are determinis-

tic, which means that the input to a KPN uniquely determines the outputs. Stefanov

et al. [46] presented the Compaan and Laura tools for HDL code synthesis from KPN

models. Compaan is used to translate MATLAB programs into KPN models from

72

which Laura generates optimized HDL code.

Kienhuis and Deprettere [47] presented the Stream-Based Functions (SBF)

model of computation, which is a specialized form of KPN. SBF models are com-

posed of SBF objects and channels, where each object in turn is composed of a set

of functions, a controller, and state. Methods for mapping SBF representations into

FPGA platforms are developed in [48].

Various methods for implementing DSP dataflow graphs in hardware have

also been developed. Eker and Janneck [49] introduced CAL, which is a language

for dataflow programming that has been applied to a variety of DSP application

domains, with some of the most interesting results presented in the area of recon-

figurable video coding. The behavior of a CAL actor is defined in terms of a set of

actions. Actions of a CAL actor define transitions that internal states of the actor

can undergo. CAL is supported by the Eclipse integrated development environment

(IDE) [50], and open source plugins called OpenDF and OpenForge [51], which allow

CAL models to generate HDL code.

McAllister et al. [52] developed methods for optimized hardware synthesis of

pipelined dataflow graph structures. This work presents a new modular signal flow

graph synthesis method that systematically converts dataflow graphs into networks

of pipelined components, which can then be mapped efficiently into FPGA imple-

mentations. This approach enables high level, hardware-oriented dataflow graph

optimizations along with efficient design space exploration.

In contrast to previous work on model-based design methodologies for DSP

hardware, our work on LWDF and HDL-targeted LWDF, such as LWDF-V, empha-

73

sizes the use of compact, retargetable APIs that are agnostic to specific platforms

or languages. This facilitates cross-platform design, design for heterogeneous plat-

forms, and systematic migration of actor implementations across different languages

(e.g., porting from MATLAB-based simulation code to an HDL-based implementa-

tion version). With this different focus of our proposed LWDF design methods, there

is significant potential to extend the design methods for application with some of

the key directions of related work described above. For example, the optimizations

developed in [52] can potentially be integrated to develop schedulers that control

the execution of LWDF-V actors or actors in some other HDL variant of LWDF.

Exploration of such extensions is a useful direction for further work that emerges

naturally from the developments of this chapter.

Preliminary work on integration of Verilog and LWDF for actor design has

been presented in [2, 41]. This chapter goes significantly beyond the preliminary

work in a number of ways. First, the hardware execution status of LWDF-V actors

is decomposed into explicit idle and active states, which are defined at actor inter-

faces, and allow tighter coordination between actors and any enclosing subsystem-

or graph-level schedulers. Second, capabilities for DPM are integrated through-

out the interface and design process for LWDF-V actors, which provides a flexible

foundation for applying higher-level dataflow graph modeling, analysis, and synthe-

sis techniques (e.g., see [5, 42–44]) involving dynamic management of actor- and

graph-level parameters. Third, a comprehensive development of required module

interfaces — for dataflow actors and edges — is provided for LWDF-V; this devel-

opment is not dependent on any specialized features of Verilog, and is thus readily

74

abstracted into module APIs that can be retargeted into other HDLs.

6.3 LWDF-V

In this section, we discuss the modeling and implementation of applications

using LWDF-V. We emphasize in this section the different kinds of modules involved

in the LWDF-V design methodology, and in the interface specifications for these

modules.

Building on the LWDF operational context concept, as described in Sec-

tion 2.1.4, we develop in this chapter an LWDF-based digital hardware design

methodology for signal processing systems, called LWDF-V. The “V” in “LWDF-V”

stands for Verilog, which is the specific HDL that we have applied for integrating

hardware design capabilities with LWDF. However, the conceptual extensions de-

veloped in this chapter to provide hardware support in LWDF-V are relevant to

HDLs in general, and we envision that they can be readily adapted to other HDLs,

such as VHDL or System-C. Pursuing such adaptations for other relevant HDLs is

a useful direction for future work.

In LWDF-V, the abstract enable and invoke functions of LWDF are imple-

mented as two coupled Verilog modules, which are called the actor enable module

(AEM) and actor invoke module (AIM). A key principle of LWDF is to impose

minimal constraints on the design of actors. Accordingly, the AEM and AIM can

contain arbitrary sub-modules (e.g., for modular design of complex actors), and

can be described using any Verilog coding style, including behavioral, structural or

75

mixed behavioral/structural coding [53], as long as the prescribed LWDF-V module

interfaces (described below) are adhered to. Such flexibility facilitates evolutionary

design of complex digital systems, where the functionality and level of abstraction

associated with different subsystems can be adjusted as appropriate as the design

progresses, and as more details are understood about the targeted implementation.

6.3.1 Actor Invoke Module

Figure 6.1 illustrates the high level operation of an LWDF-V AIM module.

The required interface ports of an AIM module for an actor A can be divided into

four groups:

• Dataflow-related inputs. Corresponding to each actor input port xyz, there is

an AIM input port in_xyz. There is also Boolean input port called invoke.

When this input signal is true and A in the idle state (see Figure 6.1), the

next firing of A should be initiated in the next clock cycle/

• Dataflow-related outputs. Corresponding to each actor output port abc, there

is an AIM output port out_abc (for writing output tokens), and another

AIM output port wr_abc (for submitting write requests to the output edge

connected to abc). Also, corresponding to each actor input port xyz, there is

an AIM output port rd_xyz (for submitting read requests to the input edge

connected to xyz).

• Platform-related inputs. A clock input and synchronous reset input are pro-

vided for relevant synchronization with interfacing circuitry. The synchronous

76

Actor

Idle

State

Actor

Firing

State

reset = 1

fc = 0

invoke = 1 && reset = 0

fc = 0
fc = 1

fc = 0 (During actor firing)

invoke = 0 || reset = 1

fc = 0

fc = firing

complete

Figure 6.1: LWDF-V actor invoke module (AIM) design

reset, when asserted, brings the actor to its idle state on the next clock cycle

even if it is in the middle of a firing.

• Control-related inputs and outputs. The next_mode_out signal (output) pro-

vides the next mode in which to invoke the actor as determined by the current

firing. The next_mode_in signal (input) provides the next mode in which to

invoke the actor as prescribed by the enclosing scheduler (external actor con-

trol). The fc signal (output) that is asserted (to the logic high value) when a

firing completes during the current clock cycle.

77

Recall that LWDF is based on CFDF semantics so that each actor firing in

LWDF corresponds to a specific CFDF actor mode, and results in a next mode value

as a side effect of the firing. Typically, the next_mode_in signal will be set based

on the next_mode_out from the most recent firing; however, by appropriate setting

of the next_mode_in signal, the enclosing scheduler has the flexibility to “override”

the next_mode_out value when invoking an actor — e.g., if some sort of actor-,

subsystem- or application-level reset operation is being carried out. It is important

also to note that any given firing may take one or more clock cycles; thus, actor

modes do not necessarily correspond to individual clock cycles.

6.3.2 Actor Enable Module

The AEM provides the functionality associated with the enable function in

CFDF semantics [8]. Analogous to the AIM operation diagram in Figure 6.1, Fig-

ure 6.2 illustrates the high level operation of the LWDF-V AEM module. The

required interface ports for an AEM module are as follows.

• enable (output): indicates whether or not the associated actor has enough

data on its input ports and enough free space on its output ports to fire in the

given mode (i.e., as specified by the mode input, which is specified below).

• pop_in_xyz (input): one AEM input port pop_in_xyz is provided correspond-

ing to each actor (input or output) port xyz. This AEM port is used to read

the current buffer population (number of tokens) on the dataflow edge con-

nected to actor port xyz.

78

Mode y

Mode x

Mode z

mode = y;

mode = z;

mode = z;

mode = x ||

reset = 1;

mode = y;

mode = x ||

reset = 1;

mode = x ||

reset = 1;

mode = y;

mode = z;

Figure 6.2: LWDF-V actor enable module (AEM).

• mode: an input port for specifying the CFDF actor mode in which the current

(next) enable evaluation is to be computed for a combinational implementation

(sequential implementation) of the AEM.

• reset: synchronous reset signal (active high).

As implied in the discussion of the mode port, interpretation of the interface

ports for an AEM is different depending on whether the AEM is to be implemented

as combinational or sequential logic. Sequential logic may be preferred for AEM

79

implementation in cases where resources are constrained relative to the complexity

of the CFDF enable functionality. For example, an actor with a large number of

inputs or outputs requires a correspondingly large number of comparators under

a straightforward combinational design for the enable logic associated with a given

actor mode. By instantiating a limited number of comparators (less than the number

of input ports) and time-multiplexing their use, a sequential implementation can be

used to trade-off area cost reduction and latency increase through the AEM.

A sequential AEM implementation must provide the following additional mod-

ule interface ports.

• clock (input): clock signal.

• compute: a single-bit, active high input signal used to initiate computation of

the enable output based on the current value of the mode input.

• valid: a single-bit, active high output signal for specifying that the enable

output is valid with respect to the most recent assertion of the compute input.

6.3.3 Dataflow Edge Module

A dataflow edge module (DEM) provides a Verilog realization for a CFDF graph

edge in LWDF-V, and its instances provide communication channels for connections

between actor output ports and corresponding actor input ports. As with the AIM

and AEM interface specifications, the DEM interface specification is designed to

impose minimal (“lightweight”) constraints on module design so as to ensure the

desired dataflow properties while providing flexibility to implement or simulate the

80

modules according the designers specific interests and needs. For example, in the

context of an FPGA design, DEM could be realized as using block RAM or dis-

tributed RAM, or as a purely behavioral (non-synthesizable) module for simulation

purposes.

The following list summarizes the input ports in the DEM interface specifica-

tion, as prescribed by LWDF-V.

• wr_enable: write enable (single bit) — an input enabling signal for storing

data into the FIFO that is encapsulated by the DEM.

• rd_enable: read enable (single bit) — an output enabling signal for reading

data from the FIFO.

• data_in: input data (directed from the actor at the source of the correspond-

ing edge) to be written into the FIFO.

Similarly, the following list summarizes the output ports in the DEM interface

specification.

• data_out: output data (directed to the actor at the sink of the corresponding

edge) to be read from the FIFO.

• population: the number of tokens that are currently stored in the FIFO.

• capacity: FIFO size — the maximum number of tokens that can coexist on

the edge at any given time.

81

Typically, in hardware implementations, the FIFO capacity associated with a

DEM will be determined statically. However, this is not a requirement of LWDF-

V. In particular, dynamically determined buffer capacities, such as capacities that

are adjusted between “quiescent points” of a schedule [42], can be implemented as

long as changes to the capacities are consistently reflected on the capacity output

ports. Such flexibility is important to support adaptive scheduling and more pow-

erful forms of dynamic reconfiguration, which are important directions for research

and development in advanced signal processing systems.

6.3.4 Summary

In this section, we have presented the LWDF-V programming model for appli-

cation of the lightweight dataflow design methodology to digital system design using

the Verilog HDL. The emphasis in this section has been on describing the standard

modules in LWDF-V — the AIM, AEM, and DEM modules — and discussing key

aspects of the interface specifications for these modules.

We would like to emphasize that the interface specifications of the AIM, AEM,

and DEM modules apply standard principles from the design of HDL design compo-

nents and are not specific to the Verilog language; these specifications can therefore

be retargeted to other HDLs. Thus, the developments in this section can be viewed

as providing the basis for a general LWDF-HDL interface specification, with Verilog

employed as a specific HDL with which to demonstrate the specification concretely.

82

6.4 Design Example

To illustrate the LWDF-V design approach presented in Section 6.3, we present

in this section an example of an inner product actor that is developed using LWDF-

V.

The inner product actor (IPA) targeted in this example, in terms of dataflow

semantics, has two input ports, one output port, and a static parameter N , which

gives the vector length of the inner product that is computed by the actor. This

is illustrated in Figure 6.3(a). The IPA operates by reading (consuming) vectors

of length N from its two input ports, where each input token is assumed to be a

single vector element; computing the inner product of the two N -element vectors;

and then producing the resulting inner product value on the actor output port. This

process of reading, inner product computation, and production is repeated over and

over on the input token streams as long is the actor continues to fire.

The operation of this actor is designed in terms of CFDF semantics, as illus-

trated in Figure 6.3(b), which shows the CFDF mode transition graph for our IPA

actor implementation. Each vertex in this graph corresponds to a specific CFDF

mode of the actor, and the edges specify transitions between modes. For a fixed

value of the vector length N , this actor can also be implemented using CSDF se-

mantics [54]; however, CFDF provides a natural extension to the case where N can

vary dynamically — e.g., through a dynamically manipulated parameter (as dis-

cussed in Section 6.5) or through a separate input port in which a dynamic stream

of vector lengths is read (consumed). For conciseness and clarity in the section, we

83

focus only on the static parameter case. Extensions to handle dynamic parameter

manipulation are discussed in Section 6.5, as mentioned above.

The mode transition graph of Figure 6.3(b) shows that the IPA computes one

result (produces one new output token) on every third firing. The dataflow rates

associated with the modes in the IPA are summarized in Figure 6.3(c).

Figure 6.4 illustrates a hierarchical design pattern that can be used to imple-

ment the AIM module for the IPA and also as a general approach to implement AIMs

for a variety of different kinds of actors in LWDF-V. The top level (Figure 6.4(a))

in this design pattern specifies the coordination of overall actor operational status,

as modeled in LWDF-V, and how it is controlled by the relevant signals in the AIM

input interface.

The intermediate level (Figure 6.4(b)) illustrates the switching between CFDF

modes, based on the next_mode_in signal at the AIM input interface. Such switch-

ing can be performed behaviorally or structurally, as desired by the designer, and

intra-mode logic can be embedded inline, within the HDL code for the module il-

lustrated in Figure 6.4(b). However, for more complex modes, it may be useful

(e.g., for clarity and modularity) to instantiate mode-specific modules within some

or all of the modes referenced in Figure 6.4(b). Such hierarchical embedding of

intra-mode functionality is illustrated in Figure 6.4(c). This hierarchical approach,

for example, allows designers to experiment efficiently with alternative implementa-

tions of individual modes — only the module instance for a given mode needs to be

replaced to switch between alternative implementations, which the rest of the actor

implementation remains intact.

84

Also, it should be noted that the top level of the AIM module, illustrated in

Figure 6.4(a), is of general applicability to LWDF-V actors and can be reused to

provide the top-level design across all LWDF-V actors in a design.

Figure 6.4(d) shows a Verilog code segment for the inner product mode of

the IPA illustrated in Figure 6.3(b), where the intra-mode Verilog specification is

instantiated through a Level 3 FSM, as illustrated in Figure 6.4(c).

6.5 Dynamic Parameter Manipulation in LWDF-V

As signal processing systems incorporate increasing levels of dynamic function-

ality, such as dynamics due to adaptivity or multi-mode operation, support for DPM

is of great importance in processes and tools for design and implementation [3]. For

example, 3GPP LTE wireless communication systems incorporate dynamic resource

allocation capabilities that require run-time adjustments to relevant transceiver pa-

rameters [55, 56]. Similarly, in energy-constrained, real-time processing environ-

ments, filtering operations for image, speech, and video processing can benefit from

run-time adjustments to filter size and other functional configurations to best mach

the current state of the hardware.

Motivated by this need, we develop in this section methods in LWDF-V for in-

tegrating DPM support. This support is intended to help implement features such as

adaptivity and multi-mode operation in dataflow-based system designs, and to help

integrate LWDF-V-based actor implementations with higher-level methodologies for

parameter management in dataflow graphs, such as change context analysis [42], pa-

85

rameterized dataflow [5], PiMM [43], and scenario-aware dataflow [44].

6.5.1 DPM-enabled LWDF-V Actors

A DPM-enabled actor in LWDF-V has three AIM inputs, called DPM inputs,

in addition to the standard set of inputs defined for AIMs in Section 6.3. Similarly,

one output, called uc (update complete) is added to the AIM output interface in

support of DPM. Additionally, the top-level state diagram of the basic (statically

parameterized) AIM (Figure 6.1) is extended with a third state, called the Actor

DPM State, as illustrated in Figure 6.5.

Parameters for a DPM-enabled actor A are represented (indexed) by a set

paramset(A) of integers, which are referred to as parameter IDs. Thus, each actor

parameter, such as a filter length value or a vector of filter coefficients, has a unique

ID within paramset(A) that can be used to reference the parameter at run-time.

External, subsystem- or graph-level control, such as that incorporated within a

quasi-static scheduler, can then be used to update actor parameters in a flexible

manner through use of these parameter IDs.

The additional AIM inputs that are used to support DPM are labeled

param_update, param_ID, and param_value. When the param_update input is

high, and the actor is in its idle state, the actor DPM state is entered, as illustrated

in Figure 6.5. In this state, the parameter referenced by parameter index param_ID

is updated with the value received from the param_val input. Once the parame-

ter update is complete, the actor asserts the uc output, and returns to the actor

86

idle state, as illustrated in Figure 6.5. Note that a parameter update may involve

arbitrarily complex changes to the state of an actor, and thus, there may be an

arbitrarily long delay (number of clock cycles) between the initiation of a parameter

update and the corresponding assertion of uc. For example, suppose that a sequence

of n vector elements, such as filter coefficients, must be updated cycle-by-cycle as

part of a single parameter update. Such an update would require at least n clock

cycles. In this case, the parameter could, for example, represent an entire set of

filter coefficients, or could correspond to a specific mode of operation, where each

mode corresponds to a specific set of internal filters.

6.5.2 DPM-enabled Inner Product Actor

In this section, we extend the IPA example of Section 6.4 with a dynamically

variable size parameter that replaces the static vector length parameter N defined

in Section 6.4. In this case, the parameter update is a simple update of a scalar value,

and this value in turn affects the consumption rate of the actor — in particular, the

number of tokens consumed from each input during the reading mode in Figure 6.3.

We implemented this DPM-enabled IPA using the three-level hierarchical de-

sign structure. Figure 6.6 illustrates this design along with excerpts of relevant code

blocks from the design. The code block on the left corresponds to the reading mode

of the IPA, which now consumes a dynamically-determined number of tokens, and

the code block on the right corresponds to the inner product mode, which carries

out a dynamically-determined number of multiply-accumulate (MAC) operations to

87

produce its single output token.

In addition to illustrating DPM support in LWDF-V, the example in this

section provides a more detailed look at actor implementation using LWDF-V. Syn-

thesis results based on this design are presented in Section 6.6.

6.6 Experiments

In this section, we demonstrate a synthesized implementation of the DPM-

enabled, LWDF-V-based actor presented in Section 6.3, and we assess the per-

formance and area efficiency of this design compared to a corresponding LWDF-V

design that does not employ DPM. This assessment provides a quantitative example

of the overhead (in terms of area and performance) for incorporating DPM features

into an LWDF-V design for a practical actor example.

6.6.1 Overhead Evaluation Metrics

Our experiments in this section assume an FPGA (xc3s500efg320-4) as the

target platform. We use the number of occupied FPGA slices in the targeted FPGA

device as a measure of resource utilization. We employ the resource utilization

efficiency metric OR defined in [57]. The metric OR measures the resource overhead

of a given design Di compared to that of another design Di. The metric is defined

by:

OR(Di, Dj) = (1− R(Dj)

R(Di)
)× 100(%). (6.1)

88

Here, for a given design X, R(X) represents the number of FPGA slices used by the

synthesized result for design X. Given two designs Di and Dj such that R(Di) >

R(Dj), we use the metric OR(Di, Dj) to quantify the degree to which Di utilizes

more resources compared to Dj.

We also define ts(X) as the schedule completion time for a given design X.

More specifically, suppose that X represents a hardware design for an SDF graph G.

Then ts(X) gives the total execution time for a single iteration of a minimal periodic

schedule for G when it is executed using design X. A minimal periodic schedule is a

well defined unit of execution for an SDF graph where the amount of computation

involved is defined by the repetitions vector for the graph. For background on the

repetitions vectors and minimal periodic schedules for SDF graphs, we refer the

reader to [3,7]. In this context, a minimum periodic schedule is often referred to as

an iteration of the associated SDF graph.

The schedule completion time ts(X) is defined by:

ts(X) =
Nc

fmax(X)
, (6.2)

whereNc is the number of cycles required to complete a graph iteration, and fmax(X)

is the maximum frequency of the synthesized design X. If ts(Dj) ≤ ts(Di), then the

slowdown (inverse of speedup) of design Di compared to Dj is denoted by Sd(Di, Dj),

and defined by:

Sd(Di, Dj) = (1− ts(Dj)

ts(Di)
)× 100(%). (6.3)

89

Thus, the slowdown (under the stated assumption that ts(Dj) ≤ ts(Di)) is within

the range 0 ≤ Sd(Di, Dj) < 1 (i.e., 0% ≤ Sd(Di, Dj) < 100%), and a slowdown

value of zero indicates that the two designs have the same speed.

6.6.2 Performance of DPM-enabled LWDF-V Design

Providing a DPM-enabled actor implementation requires some amount of ad-

ditional hardware resources, which can be viewed as an overhead associated with the

flexibility of DPM. We have evaluated this overhead for the DPM-enabled LWDF-V

inner product example (presented in Section 6.4) compared to a statically param-

eterized LWDF-V inner product actor. Both designs (DPM-enabled and statically

parameterized) are synthesized under Xilinx ISE version 13.4 with the option of

using the Digilent Spartan 3e platform, which is based in turn on a Xilinx FPGA

device. Results obtained from our synthesis experiments are shown in Figure 6.7.

For fairness in our comparison, we maintained consistency where possible between

the configurations used for the DPM-enabled LWDF-V inner product actor and the

corresponding configurations used for the statically parameterized version.

The x-axis of Figure 6.7 represents the inner product dimension (vector length).

The left and right sides of the y-axis represent the OR and Sd metrics defined in

Section 6.4. These metrics are applied to measure the overhead, in terms of resource

utilization and performance, of the DPM-based, LWDF-V inner product actor com-

pared to the statically parameterized LWDF-V inner product actor. As shown in

the results, the resource utilization of the DPM version is higher than the statically

90

parameterized version. However, as the dimension of the inner product increases,

the OR (relative overhead) value decreases rapidly.

Figure 6.8 breaks down resource utilization in the DPM-enabled inner prod-

uct actor design. The figure shows the resource utilization due to the core actor

functionality (i.e., all portions except for the logic that implements DPM), and the

utilization due to DPM. The horizontal axis in the figure again shows variation across

different inner product dimensions. Again, we see a trend of decreasing overhead, in

relative terms, of DPM as the inner product dimension increases. The results also

show relatively low overhead for DPM considering the significant flexibility provided

by DPM.

6.6.3 Summary

In summary, the experimental results in this section quantify the overhead

of DPM for a practical LWDF-V actor of moderate complexity (i.e., a “medium

granularity” actor). The overhead is assessed for both hardware resource utiliza-

tion and run-time performance, with comparison being made between DPM-enabled

and statically-parameterized versions of the same actor. The results demonstrate

relatively low overhead for this example. In general, the relative overhead can be

expected to vary based on specific characteristics and overall complexity of the actor

being implemented, and the results in this section can be viewed as giving a concrete

assessment of the overhead for a specific LWDF-V actor design.

91

6.7 Conclusion

This chapter has focused on the application of the lightweight dataflow (LWDF)

design methodology to hardware implementation for signal processing systems. We

have presented in depth LWDF-V, which is an integration of LWDF design princi-

ples with the Verilog hardware description language (HDL). We have developed new

extensions to the application programming interfaces of LWDF that enable effec-

tive and flexible integration with HDLs, and we have demonstrated these extensions

concretely using the Verilog HDL. We have also presented new methods in LWDF-V

for supporting dynamic parameter manipulation (DPM) in dataflow-based actors.

By DPM, we mean the capability to flexibly reason about and change functional

parameters of dataflow actors at run-time. We have demonstrated that DPM can

be supported systematically within the framework of LWDF-V with relatively low

overhead in terms of hardware resource utilization and performance.

92

Chapter 7: Conclusions

93

(c) IPA actor dataflow rate of modes

(b) IPA actor mode transition graph

Mode 1
reading

Mode 3
production

Mode 2
inner product

(a) Dataflow IPA actor

IPA

input1

input2

output

consumption

rate

production

rate

input1 input2 output

reading

mode
N N 0

inner product

mode
0 0 0

production

mode
0 0 1

Figure 6.3: inner product actor (IPA)

94

(a) Level 1 FSM: modeling

of actor operation status

invoke = 1

fc = 1

actor_idle
start_in = 0;

firing_start
start_in = 1;

firing_wait
start_in = 0;

(b) Level 2 FSMs: inter-mode actor modeling

start_in = 1

&&

mode = m1

m1_start
start_in_m1 = 1;

m1_wait
start_in_m1 = 0;

m2_start
start_in_m2 = 1;

m2_wait
start_in_m2 = 0;

m3

start_in = 1

&&

mode = m2

start_in = 1

&&

mode = m3

done_out_m2 = 1

done_out_m1 = 1

start
fc = 0;

done
fc = 1;

(c) Level 3 FSMs: intra-

mode actor modeling

start_in_m2 = 1

start
done_out_m2 = 0;

state0_m2
done_out_m2 = 0;

done
done_out_m2 = 1;

(d) Verilog HDL code for IPA MAC mode

always @(state, start_in, ram_out1, ram_out2, counter)
begin

done_out <= 0;
case (state)
start:

next_acc <= acc;
next_counter <= 0;
if (start_in)

next_state <= state0_m2;
state0_m2:

next_counter <= counter + 1;
next_acc <= ram_out1 * ram_out2;
next_state <= state1_m2;

end
state1_m2:

next_counter <= counter + 1;
next_acc <= acc + ram_out1 * ram_out2;
if (counter == (size - 1))

next_state <= done;
done:

done_out <= 1;
next_counter <= 0;
next_state <= start;

endcase
end

Figure 6.4: Hierarchical specification of an AIM for IPA.

95

Actor

Idle

State

Actor

Firing

State

invoke = 1 &&

reset = 0 &&

fc = 0

fc = 0

invoke = 0 || reset = 1;

Actor

Parameter

Reconfiguration

State

(fc = 1 &&

param_update = 0) ||

(reset = 1)
param_update = 1

uc = 1

uc = 0

Figure 6.5: AIM design for a DPM-enabled LWDF-V actor.

96

memory

input

paramset(IPA)

• param_update

• param_ID

• param_value

mout

size

configurable

counter based

controller

multiplier

memory out

sel

always @(state, start_in, counter, param_value)
begin

case (state)
START:

if(start_in == 1)
next_state <= STATE0;

STATE0:

STATE1:
next_counter <= counter + 1;
wr_en <= 1;
if (counter == param_value - 1)

next_state <= END;
else

next_state <= STATE0;
END:

done_out <= 1;
next_state <= START;

endcase
end

always @(state, start_in, ram_out1, ram_out2,
counter, param_value, acc)

begin
case (state)
START:

if (start_in)
next_state <= STATE0;

STATE0:

STATE1:
next_counter <= counter + 1;
rd_en <= 1;
next_acc <= acc + ram_out1 * ram_out2;
if (counter == (param_value - 1))

next_state <= END;
else

next_state <= STATE1;
END:

done_out <= 1;
next_state <= START;

endcase
end

Figure 6.6: Illustration of DPM-enabled IPA using three-level hierarchical design struc-

ture.

97

Figure 6.7: Resource and speed overhead of DPM-enabled LWDF-V inner product actor

compared to statically parameterized LWDF-V inner product actor.

98

Figure 6.8: Overhead in resource of runtime parameter reconfigurability in inner product

example

99

Optimization of energy and resource utilization efficiency is critical in design

and implementation of signal processing systems in many application areas. In this

thesis we have developed methods for helping DSP system designers meet stringent

constraints on energy consumption and resource utilization. We have focused on the

areas of wireless communication and wireless sensor networks, which often involve

critical constraints on energy and resource utilization.

In Chapter 3, we presented a new energy management scheme that is tar-

geted to maximizing end node lifetime in building energy monitoring systems. We

first presented an energy analysis method for estimating the energy consumption

and lifetime at network end nodes. Based on this analysis method, we formulated

trade-offs between energy consumption and the reporting interval for building en-

ergy monitoring, and we presented an energy-optimized dynamic reporting control

scheme. We validated our proposed energy optimization scheme through exper-

iments on a fully functional building energy monitoring system that is equipped

with Texas Instruments CC2530 Zigbee network-enabled microcontrollers.

In Chapter 4, we presented a resource-efficient fast Fourier transform (FFT)

architecture for hardware implementation of orthogonal frequency division multi-

plexing (OFDM) communication systems. Our architecture is based on a serial

input and output architecture. We have identified inefficiencies in memory and

resource utilization exhibited by conventional FFT implementations for OFDM.

Our proposed FFT architecture is designed to help overcome these limitations and

achieve significantly improved area efficiency in OFDM system design. To assess the

resource utilization of our FFT architecture, we applied relevant evaluation metrics,

100

and compared the resource usage of our proposed architecture with a Xilinx FFT

intellectual property (IP) core that is widely used as a commercial IP core for FFT

implementation.

In Chapter 5, we proposed a novel dataflow modeling approach, called data-

driven parameterized synchronous dataflow (DDPSDF), to support efficient model-

based development of signal processing systems in a manner that provides integrated

modeling and management of hardware interrupts. Our proposed design methodol-

ogy based on DDPSDF graphs provides model-based integration of interrupt-driven

processing and interrupt control in energy-constrained sensor nodes, and provides

energy optimized control for digital signal processing. We validated and experi-

mented with our proposed DDPSDF methods using a case study involving a WSN

application that includes speech recognition and temperature sensing.

In Chapter 6, we presented LWDF-Verilog (LWDF-V), which is an integration

of the lightweight dataflow programming model with the Verilog hardware descrip-

tion language. Use of LWDF-V facilitates the use of formal dataflow techniques in

the design and implementation of hardware for signal processing systems. These

techniques in turn are effective for exposing high level application structure, which

can be exploited to optimize implementations in terms of key metrics, including

energy and resource utilization. We demonstrated our proposed LWDF-V program-

ming model and methods for managing dynamic parameters through design and

synthesis of actors for inner product computation.

Various useful directions for future work emerge from the developments of this

thesis. For example, the energy efficient monitoring scheme that we presented in

101

Chapter 3 is based on transmission interval control with moving averages. Depend-

ing on the specific sensors employed and the building environment, the optimized

control scheme employed in this approach can be varied. We can employ sensor-

specific parameters for controlling the transmission interval, and also provide inde-

pendent controls for each of the sensors or for subsets of the sensors in the system.

Such finer granularity control over the employed sensors can provide more precise

control for the overall system, which can lead to higher energy efficiency.

Another useful direction for future work, related to Chapter 6 in this the-

sis, is the development of hardware synthesis techniques that operate on high-level

dataflow graphs, and apply LWDF-V actors and DPM capabilities. Such meth-

ods could be developed to operate on libraries of LWDF-V actors together with

characterizations of the actors (e.g., in terms of resource utilization and energy con-

sumption or performance characteristics). The overall dataflow graph structure of

an application can be derived easily from the connectivity between actors and edges

in the LWDF-V representation, and can be used to provide the graphical input to

this type of high-level, hardware synthesis approach.

Buffer minimization is an important problem in the mapping of dataflow

graphs onto resource constrained architectures. Thus, another important direction

for future work, related to the high-level, hardware synthesis methods described

above, is development of methods in LWDF-V for efficient analysis and optimiza-

tion of dataflow buffers.

Buffer minimization is closely related to dataflow graph scheduling, and has

been studied in various bodies of prior work. Related prior work on buffer minimiza-

102

tion has often focused on specialized forms of dataflow, such as synchronous dataflow

(SDF) and homogeneous SDF [7], as well as cyclo-static dataflow (CSDF) [54].

Scheduling homogeneous SDF graphs to minimize buffer costs was proved to be

NP-complete [58]. Cubric and Panangaden presented a heuristic approach to min-

imize buffer costs for a restricted set of acyclic, delayless SDF graphs [59]. Wig-

gers et al. presented an algorithm that determines minimum buffer sizes for CSDF

graphs under throughput constraints [60]. Oh and Ha [61] presented a method for

minimizing buffer costs based on representing production and consumption rates

as fractional values [61]. Horstmannshoff and Meyr studied interactions between

retiming and buffer minimization for dataflow graph implementation [62].

These approaches for buffer optimization are based on various types of anal-

ysis of dataflow graph properties. However, they do not address the integrated

optimization of actor-level pipelining, overlapping of token processing with input

token consumption, and buffer management for hardware implementation. Such

integrated optimization is useful in efficiently mapping dataflow graph models into

hardware implementations, and is a useful direction for future work on further en-

hancements to LWDF-V.

103

Bibliography

[1] F. Darema. Grid computing and beyond: The context of dynamic data driven
applications systems. Proceedings of the IEEE, 93(2):692–697, 2005.

[2] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow
approach for design and implementation of SDR systems. In Proceedings of
the Wireless Innovation Conference and Product Exposition, pages 640–645,
Washington DC, USA, November 2010.

[3] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors. Hand-
book of Signal Processing Systems. Springer, second edition, 2013. ISBN: 978-
1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online).

[4] J. Suhonen, M. Kohvakka, V. Kaseva, T. D. Hämäläinen, and M. Hännikäinen.
Low-power wireless sensor network platforms. In S. S. Bhattacharyya, E. F.
Deprettere, R. Leupers, and J. Takala, editors, Handbook of Signal Processing
Systems. Springer, second edition, 2013.

[5] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling
for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408–2421,
October 2001. DOI:10.1109/78.950795.

[6] J. B. Dennis. First version of a data flow procedure language. Technical report,
Laboratory for Computer Science, Massachusetts Institute of Technology, May
1975.

[7] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the
IEEE, 75(9):1235–1245, September 1987.

[8] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Func-
tional DIF for rapid prototyping. In Proceedings of the International Symposium
on Rapid System Prototyping, pages 17–23, Monterey, California, June 2008.

[9] Texas Instruments, Inc. CC2530F32, CC2530F64 CC2530F128, CC2530F256:
A True System-on-Chip Solution for 2.4–GHz IEEE 802.15.4 and ZigBee Ap-
plications, February 2011.

104

[10] I. Cho, C. Shen, S. Potbhare, S. S. Bhattacharyya, and N. Goldsman. Design
methods for wireless sensor network building energy monitoring systems. In
Proceedings of the IEEE International Workshop on Practical Issues in Building
Sensor Network Applications, pages 974–981, Bonn, Germany, October 2011.

[11] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. Wireless multimedia sensor
networks: Applications and testbeds. Proceedings of the IEEE, 96(10):1588–
1605, October 2008.

[12] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and
implementation of image processing applications. Technical Report UMIACS-
TR-2011-11, Institute for Advanced Computer Studies, University of Maryland
at College Park, 2011. http://drum.lib.umd.edu/handle/1903/11403.

[13] L. Zhaohua and G. Mingjun. Survey on network lifetime research for wire-
less sensor networks. In Proceedings of the IEEE International Conference on
Broadband Network & Multimedia Technology, pages 899–902, 2009.

[14] R. Zhang, Z. Jia, and D. Yuan. Analysis of lifetime of large wireless sensor
networks based on multiple battery levels. International Journal of Communi-
cations, Network and System Sciences, 1(2):136–143, 2008.

[15] T. V. Padmavathy. Extending the network lifetime using optimized energy
efficient cross layer module (OEEXLM) in wireless sensor networks. Wireless
Sensor Network, 1(1):27–35, 2009.

[16] L. Wang and S. S. Kulkarni. Sacrificing a little coverage can substantially
increase network lifetime. In Proceedings of the Annual IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Communications and Networks,
pages 326–335, 2006.

[17] R. Madan, C. Shuguang Cui, S. Lall, and A. Goldsmith. Cross-layer design for
lifetime maximization in interference-limited wireless sensor networks. IEEE
Transactions on Wireless Communications, pages 3142–3152, 2006.

[18] M. Kintner-Meyer, M. R. Brambley, T. Carlon, and N. Bauman. Wireless
sensors: Technology and cost-savings for commercial buildings. In ACEEE
Summer Study on Energy Efficiency in Buildings. European Council for an
Energy Efficient Economy, 2002.

[19] W. S. Jang, W. M. Healy, and M. J. Skibniewski. Wireless sensor networks as
part of a web-based building environmental monitoring system. Automation in
Construction, 17(6):729–736, 2008.

[20] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govin-
dan, E. Johnson, and S. Masri. Monitoring civil structures with a wireless sensor
network. IEEE Internet Computing, 10(2):26–34, 2006.

105

[21] NXP Semiconductors. I2C–bus specification and user manual, October 2012.

[22] E. H. Wold and A. M. Despain. Pipeline and parallel-pipeline FFT processors
for VLSI implementations. IEEE Transactions on Computers, C-33(5):414–426,
1984.

[23] W. Han, T. S. Arslan, A. T. Erdogan, and M. M. Hasan. Multiplier-less based
parallel-pipelined FFT architectures for wireless communication applications.
In Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, pages v/45–v/48, 2005.

[24] J. Palmer and B. Nelson. A parallel FFT architecture for FPGAs. In J. Becker
and S. Vernalde M. Platzner, editors, Field Programmable Logic and Appli-
cation, volume 3203 of Lecture Notes in Computer Science, pages 948–953.
Springer Berlin Heidelberg, 2004.

[25] S. He and M. Torkelson. A new approach to pipeline FFT processor. In Pro-
ceedings of the International Parallel Processing Symposium, pages 766–770,
1996.

[26] A. Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy. Efficient FPGA
implementation of FFT/IFFT processor. International Journal of Circuits,
Systems and Signal Processing, 3(3):103–110, 2009.

[27] H. Jiang, H. Luo, J. Tian, and W. Song. Design of an efficient fft processor for
ofdm systems. volume 51, pages 1099–1103, 2005.

[28] C.-P. Hung, S.-G. Chen, and K.-L. Chen. Design of an efficient variable-length
FFT processor. In Proceedings of the International Symposium on Circuits and
Systems, pages II–833–II–836, 2004.

[29] Y. H. Jung, H. I. Yoon, and J.-S. Kim. New efficient FFT algorithm and pipeline
implementation results for OFDM/DMT applications. IEEE Transactions on
Consumer Electronics, 49(1):14–20, 2003.

[30] S.-J. Huang and S.-G. Chen. A memory-efficient continuous-flow FFT proces-
sor for Wimax application. In Proceedings of the International Symposium on
Circuits and Systems, pages 17–20, 2012.

[31] H. Rohling, editor. OFDM: Concepts for Future Communication Systems.
Springer, 2011.

[32] F. Kristensen, P. Nilsson, and A. Olsson. Reduced transceiver-delay for OFDM
systems. In Proceedings of the Vehicular Technology Conference, volume 3,
pages 1242–1245, 2004.

[33] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong. Taming heterogeneity — the Ptolemy approach.
Proceedings of the IEEE, January 2003.

106

[34] M. C. Johnson and K. Roy. Datapath scheduling with multiple supply voltages
and level converters. ACM Transactions on Design Automation of Electronic
Systems, 2(3):227–248, July 1997.

[35] J. L. Pino and K. Kalbasi. Cosimulating synchronous DSP applications with
analog RF circuits. In Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, November 1998.

[36] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr, A. Deyhle,
A. Hadert, and J. Teich. A SystemC-based design methodology for digital
signal processing systems. EURASIP Journal on Embedded Systems, 2007:Ar-
ticle ID 47580, 22 pages, 2007.

[37] M. Pelcat, S. Aridhi, J. Piat, and J.-F. Nezan. Physical Layer Multi-Core
Prototyping. Springer, 2013.

[38] C. Shen, W. L. Plishker, D. Ko, S. S. Bhattacharyya, and N. Goldsman. Energy-
driven distribution of signal processing applications across wireless sensor net-
works. ACM Transactions on Sensor Networks, 6(3), June 2010. Article No.
24, 32 pages, DOI:10.1145/1754414.1754420.

[39] J. Janneck, I. Miller, and D. Parlour. Profiling dataflow programs. In Pro-
ceedings of the IEEE International Conference on Multimedia and Expo, June
2008.

[40] S. Phadke, R. Limaye, S. Verma, and K. Subramanian. On design and imple-
mentation of an embedded automatic speech recognition system. In Proceedings
of the International Conference on VLSI Design, pages 27–132, 2004.

[41] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and
implementation of image processing applications. In L. Guan, Y. He, and S.-Y.
Kung, editors, Multimedia Image and Video Processing, pages 609–629. CRC
Press, second edition, 2012. Chapter 24.

[42] S. Neuendorffer and E. Lee. Hierarchical reconfiguration of dataflow models.
In Proceedings of the International Conference on Formal Methods and Models
for Codesign, June 2004.

[43] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi. PiMM:
Parameterized and interfaced dataflow meta-model for MPSoCs runtime recon-
figuration. In Proceedings of the International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, pages 41–48, Samos,
Greece, July 2013.

[44] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run aver-
age and worst-case performance analysis. In Proceedings of the International
Conference on Formal Methods and Models for Codesign, July 2006.

107

[45] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEEE, pages 773–799, May 1995.

[46] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. Sys-
tem design using Kahn process networks: the Compaan/Laura approach. In
Proceedings of the Design, Automation and Test in Europe Conference and Ex-
hibition, February 2004.

[47] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the
SBF model of computation. Journal of Signal Processing Systems, 34(3):291–
299, 2003.

[48] C. Zissulescu, B. Kienhuis, and E. Deprettere. Expression synthesis in process
networks generated by laura. In Proceedings of the International Conference
on Application Specific Systems, Architectures, and Processors, July 2005.

[49] J. Eker and J. W. Janneck. CAL language report, language version 1.0 —
document edition 1. Technical Report UCB/ERL M03/48, Electronics Research
Laboratory, University of California at Berkeley, December 2003.

[50] S. Holzner. Eclipse. O’Reilly & Associates, Inc., 2004.

[51] S. S. Bhattacharyya, G. Brebner, J. Eker, J. W. Janneck, M. Mattavelli, C. von
Platen, and M. Raulet. OpenDF — a dataflow toolset for reconfigurable hard-
ware and multicore systems. In Proceedings of the Swedish Workshop on Multi-
Core Computing, pages 43–49, Ronneby, Sweden, November 2008.

[52] J. McAllister, R. Woods, R. Walke, and D. Reilly. Synthesis and high level opti-
misation of multidimensional dataflow actor networks on FPGA. In Proceedings
of the IEEE Workshop on Signal Processing Systems, 2004.

[53] D.E. Thomas and P.R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, fifth edition, 2002.

[54] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static
dataflow. IEEE Transactions on Signal Processing, 44(2):397–408, February
1996.

[55] European Telecommunications Standards Institute. ETSI TS 136 300 Technical
Specification, V10.7.0, 2012.

[56] LTE; feasibility study for further advancements for E-UTRA (LTE-Advanced).
Technical Report 3GPP TR 36.912 version 10.0.0 Release 10, 2011.

[57] I. Cho, C. Shen, Y. Tachwali, C. Hsu, and S. S. Bhattacharyya. Configurable,
resource-optimized FFT architecture for OFDM communication. In Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing,
pages 2746–2750, Vancouver, Canada, May 2013.

108

[58] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, 1996.

[59] M. Cubric and P. Panangaden. Minimal memory schedules for dataflow net-
works. In Proceedings of CONCUR ’93, pages 368–383, August 1993.

[60] M. H. Wiggers, M. J. G. Bekooij, and G.J.M. Smit. Efficient computation of
buffer capacities for cyclo-static dataflow graphs. In Proceedings of the Design
Automation Conference, pages 658–663, 2007.

[61] H. Oh and S. Ha. Fractional rate dataflow model for efficient code synthe-
sis. Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 37:41–51, May 2004.

[62] J. Horstmannshoff and H. Meyr. Optimized system synthesis of complex rt
level building blocks from multirate dataflow graphs. In Proceedings of the
International Symposium on System Synthesis, November 1999.

109

