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The mechanosensitive channel MscS is a ubiquitous bacterial membrane valve 

that opens by increased tension in the event of osmotic down-shock, releasing small 

internal osmolytes and thus preventing the cell from excessive hydration and possible 

lysis. This osmolyte release is accompanied by a reduction of osmotic pressure and 

volume of the cell, which simultaneously increases crowding. The large catalogue of 

MscS homologs in both prokaryotes and eukaryotes makes the study of this channel 

enticing to the field of physical biochemistry. 

Here are the results of three different studies, two of which focus on the gating of 

MscS in the presence of large osmolytes and amphipathic compounds and a third which 

describes the first electrophysiological examination of the inner membrane of the 

facultative pathogen Vibrio cholerae. The first study in Chapter 2 describes the 

sensitivity of gating transitions in MscS to large intracellular macromolecules. This 



 

 

sensitivity originates at the cytoplasmic cage domain and the perceived crowding alters 

the rate of opening, closing and inactivation. Chapter 3 details the utilization of MscS as 

a sensor for changes in the lateral pressure profile of native bilayers and how this 

technique can be used to resolve the potential of antibacterial agents to partition into the 

membrane. The third and final study describes our development of a procedure to 

generate giant spheroplasts of Vibrio cholerae and the subsequent characterization of its 

two major mechanosensitive channels in terms of gating, inactivation, conductivity, and 

compatible osmolyte sensitivity as well as the durability of the pathogen in response to 

osmotic shock. These contributions to the field of mechanobiology and channel 

biophysics suggest that environmental feedback during osmoregulation is recognized by 

the cell, provide a potential method to monitor the partitioning of antibiotics into a cell 

membrane, and lastly detail the mechano-electrical response of a relevant, disease-

causing bacteria. 
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Chapter 1: An introduction to mechanosensitive ion channels and 

their role in osmotic regulation. 
 

Introduction to mechanosensation 

 

One of the defining characteristics of life is the ability to sense and respond to 

environmental stimuli. Perhaps the most basic of these inputs is mechanical stimulation, 

which affects all life forms, from bacteria to humans. Because organisms perceive 

various external forces and at the same time generate their own, mechanosensation arises 

in many obvious forms, such as hearing, touch sensation in skin, proprioception in joints, 

cardiovascular responses mediated by aortic baroreceptors, gauging fluid flow rates by 

the endothelium and managing large osmotic gradients by the kidney. The latter case is 

especially interesting because common osmotic forces are strong and ubiquitous 

throughout nature.  A mere 100 mM gradient of glucose across a water-permeable 

membrane creates a hydrostatic pressure of 2.42 atm. Therefore, when the first membrane 

bound primeval cells began to accumulate metabolites, their cytoplasm became 

hypertonic in comparison to their environment and the problem of containing the 

hydrostatic pressure arose. Perception of osmotic forces is likely the most ancient from of 

mechanosensation.  

To prevent uncontrolled swelling and possible lysis resulting from metabolite 

accumulation, various techniques were developed in nature. One is the rigid wall 

surrounding the cell membrane (in bacteria, fungi and plants) that could withstand high 

hydrostatic pressure [1]. But the rigid wall obviously restrained motility. In motile animal 

cells, the firm cell wall is replaced by a strong internal dynamic cytoskeleton that could 

resist swelling [2] and assist in regulatory volume decrease after hypoosmotic exposure 
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[3]. As a separate measure of reducing excessive osmotic gradients, channels arose which 

would open as membrane tension approached the lytic limit, letting out solutes. It is 

possible that these early channels functioning as simple osmotic ‘release valves’ became 

the evolutionary  predecessors of more specialized channels that are currently associated 

with the meachanoelectrical transduction in sensory organs as well as in many non-

sensory cells. Examples of such channels in higher organisms include the DEG/ENaC 

(degenerin-epithelial Na channel) family found in many animal mechanosensory and 

somatosensory neurons [4], TRP channels involved in both osmo- and mechano-sensory 

functions in yeast [5] and humans [6],the  K2P family of neuronal K+-selective channels 

[7] and the recently identified channels from the Piezo family, which appear to be the 

main touch sensitive channel in eukaryotes. [8]. Higher plants (A. thaliana) are 

completely devoid of TRP and Deg/ENaC type channels but do have a Piezo homolog 

and their mechanosensation relies in part on MscS-type mechanosensitive channels that 

are present in the plasma membrane [9] and mitochondria [10], where they regulate 

volume and plastid division, respectively.  

Mechanosensitive (MS) channels are not the only type of molecular 

mechanotransducers found in cells. Other types include proteins of the cytoskeleton, 

extracellular matrix (ECM) and adhesion molecules [11, 12]. Enzymes such as kinases, 

phosphatases, GTPases and cyclases, as well as G-protein coupled receptors [13] also 

respond to mechanical stimuli.  Many of these proteins change conformation with force, 

and that change may send messages in many ways, such as exposing previously hidden 

binding sites for recruitment of new components and reversible modification of stress-

bearing elements. However, MS channels are the fastest and most efficient transducers 
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because they activate directly by mechanical force without chemical intermediates and 

can utilize pre-existing electrochemical gradients of ions to convey information by 

altering the membrane potential of excitable cells[14].  

The first experimental data suggesting the ion-conductive nature of primary 

mechanotransducers was obtained on frog muscle spindles, which depolarized under 

mechanical stress [15]. Similarly, depolarization with deflection was reported for insect 

mechanosensory hairs [16]. The ionic nature of the deflection-induced auditory hair cell 

receptor potential was reported by Hudspeth and Corey in 1979 [17], suggesting that the 

primary auditory mechanotransducer is an ion channel. At about the same time Neher, 

Sakmann and coauthors published the first recordings of single-channel currents using 

membrane patches isolated at the ~1 um tip of a glass pipette, allowing for the first 

examination of membranes via the technique that became known as ‘patch-clamp’[18]. 

Because the tight gigaohm seal formation on the glass pipette involves application of 

negative pressure (suction), the technique inherently delivers a mechanical stimulus to the 

membrane as well.  The first observation of activation of cationic channels in embryonic 

chicken myoblasts by stretching the membrane patch in this manner was published by 

Guharay and Sachs [19]. While in some preparations mechano-activated currents were 

readily recorded from on-cell or excised patches as a result of mechanical perturbation, 

mechanosensation was elusive in whole-cell mode and it was suggested to simply be an 

artifact of patch-clamping[20]. It took several years to convince the community that MS 

channels are real objects with a physiological function. The decisive piece of information 

came with the isolation and cloning of the first mechanosensitive channel, which was 

bacterial MscL [21].  The channel was purified and reconstituted in artificial liposomes 
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and shown to be fully functional, confirming the existence of channels which gate via 

tension conveyed through the lipid bilayer. 

 

Osmoregulation 

A cellular membrane is tasked with separating the interior of the cell from the 

outside environment. Water from the aqueous environment most bacterial cells live in has 

two pathways for entering the cell. One is simple diffusion (osmosis) down its 

concentration gradient. Though the lipid bilayer has a very low partition coefficient for 

water, the concentration (or activity) of surrounding water is large enough that it can 

partition into and permeate the membrane[22]. The other mechanism of water movement 

is through specific water channels (aquaporins). If these aquaporins are inhibited, leaving 

bilayer permeation as the only route for water diffusion[23], there is only an approximate 

60% drop in the water permeability rate across the membrane, meaning that a significant 

portion of water movement occurs without specialized channels. Unlike many biological 

responses which depend on specific ligands or receptors, osmoregulation relies on an 

overall physical property, which in this case is the osmolarity of the environment. In 

situations where the concentration of water is higher on the extracellular side of the 

membrane (hypoosmotic shock), there is a net flow of water into the cell, causing an 

initial increased cellular volume and a dilution of intracellular ions and metabolites. 

Metabolites and ions have their own specific concentration requirements so 

osmoregulation during hypoosmotic shock is interwoven with metabolic and ionic 

regulation in addition to its primary function in protection against osmotically induced 

lysis. Conversely, in hyperosmotic shock, water diffuses out of the cell and the same 
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precious ions and metabolites are limited in their ability to increase in concentration and 

serve as osmoregulatory solutes. Therefore, there is an accumulation of specific, 

compatible osmolytes which do not effect enzymatic activity [24] and keep the internal 

volume constant. These two conditions demonstrate that osmoregulation through the 

accumulation and release of osmolytes and the parallel water fluxes is tightly linked to 

many cellular processes. 

Upon the onset of hyperosmotic shock, bacteria initially respond by increasing the 

internal concentration of K+ [25]. The bulk of this work is done by the PMF-dependent 

potassium transport systems TrK(18) and an ATP-driven high-affinity Kdp transporter 

[26]. The promotor controlling Kdp has been shown to be insensitive to K+ 

concentration[27] yet changes in external osmolarity (and thus turgor pressure [28]) 

induce the operon, increasing K+ influx.  This effect is mirrored by a K+ efflux during 

adaptation to lower osmolarity (low salt), which is primarily carried out through three 

different systems, MscK (formerly KefA), KefB, and KefC [29].  Concurrent with the K+ 

accumulation during a rise in osmolarity, glutamate synthesis is induced, providing a 

counterion [30]. Since high concentrations of potassium glutamate can lead to disruptions 

of cellular metabolism[31], other osmolytes are needed to do the majority of osmotic 

regulation. Thus, to further increase internal osmolarity, the acquisition and synthesis of 

inert osmoprotectants (trehalose, proline and glycine betaine) is induced by increased 

levels of potassium glutamate [32, 33]. 

In an event of hypoosmotic shock, the problem is now reversed and the interior of 

the cell has a higher concentration of proteins and ions than the external environment. 

When two solutions are divided by a semipermeable membrane, the chemical potential of 
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the solvent on the solute-rich side (inside of the cell) decreases. In this situation, the flow 

of water down its chemical potential gradient generates hydrostatic pressure which 

counters the influx of solvent across the membrane until the chemical potential of the 

solvent on each side becomes equal. This is the pressure which presses against the cell 

membrane and develops turgor. Upon a 50% drop in external osmolarity, E. coli cells 

which were pre-adapted to high osmolarity media were shown to release most of their 

internal trehalose, potassium and glutamate stores within 20 seconds [34], however 

concentrations of other intracellular compounds (such as ATP, arginine, lysine and 

sucrose) did not become membrane-permeable. This indicates that the reduction of 

compatible osmolytes from the cells was the result of some type of controlled selective 

release and not simply an overall increase in permeability resulting from some type of 

fracturing of the membrane.  As was described above, the resulting hydrostatic pressure 

inside the cell translates to lateral tension in the membrane, providing the mechanical 

input which opens MS channels. The main proposed avenue of osmolyte release from 

bacterial cells is through a set of several tension-activated channels characterized by 

different activation thresholds and unitary conductances. 

 

Electrophysiological studies in bacteria 

Bacterial cells are small and their cytoplasmic membranes are covered with a cell 

wall and often outer membrane. Initially, this prevented the application of patch-clamp 

technique to intact bacterium. The needed breakthrough came in a 1985 bacterial fusion 

experiment where Ruthe and Adler grew E. coli cells in the presence of cephalexin, 

(which inhibited cytokinesis) and caused cell wall digestion (via lysozyme), creating 
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giant spheroplasts in the range of 2-10 µm in diameter [35]. This cell preparation 

technique allowed for the first direct recording of channel activities in E. coli by applying 

the patch-clamp technique to giant spheroplasts; in 1987 Martinac et al. documented the 

presence of 1 nS pressure-activated channels in the E. coli cell envelope[36]. This was 

followed by solubilization and reconstitution of extracted E. coli membrane proteins into 

liposomes by Sukharev  (1993) which identified a 1 nS MS channel similar to that 

described by Martinac, designated MscS, and another of larger conductance (3 nS), 

termed MscL [37].  

In the following year, the MscL protein was identified, isolated and the mscL gene 

was cloned. A mscL- (null) strain was prepared which lacked MscL activity. When mscL 

was reinserted via an expression plasmid in the knockout strain, it restored MscL activity 

[21]. Purified MscL reconstituted with synthetic lipids was active in mechanically 

stimulated patches, which led to the conclusion that MscL is gated solely by tension in 

the surrounding bilayer. Levina et. al later isolated the yggB gene which encodes for 

MscS [38], the protein responsible for the bulk of the 1 nS conductance seen in wild-type 

E. coli.  Another channel with a large amount of C-terminal homology to MscS, termed 

MscK, was identified along with its gene kefA; this channel opens with a conductance 

similar to MscS but is less abundant, has a degree of potassium dependence and has a 

stable open state [39]. Either MscS or MscL can single-handedly save MS-null cells from 

osmotic shock, while MscK is insufficient.  
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Figure 1.1. Crystal structures of MscL and MscS. (Left) The 136 amino acid homopentameric 

mechanosensitive channel MscL from Mycobacterium tuberculosis at a resolution of 3.5 Å (PDB 2AOR) 

[40]. The N-terminal transmembrane portion of the protein consists of two helices, followed by the 

molecular pre-filter C-terminal.  (Right) The 286 amino acid homoheptamer mechanosensitive channel 

MscS from Escherichia coli at a resolution of 3.5 Å (PDB 2OAU)[41]. Three helics form the 

transmembrane domain while the C-terminus comes together to form a large hollow vestibule named 

‘cage.’ Black lines represent the boundaries of the cytoplasmic membrane and the half of the figure shows 

the pore as view from the extracellular side of the membrane. 

 

MscL and MscS are structurally unrelated yet both protect from osmotic shock by 

opening at the appropriate time and tension to release small osmolytes, partially 

dissipating the osmotic gradient and thus rescuing the cell from imminent osmotic lysis. 

MscS transiently opens its 1 nS pore at moderate sub-lytic tensions (midpoint 

tension~5.5-8 mN/m) and likely provides adjustments to mild osmotic downshifts. MscL, 

the 3 nS high-threshold channel opens at near-lytic tensions (10-13 mN/m) serving as a 
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‘last resort’ for survival. The major functional difference between these two is the ability 

of MscS to adapt to tension and enter an inactivated state, while MscL opens and closes 

but does not inactivate.  This ability to release osmolytes and then disengage the gate to 

avoid repetitive openings and loss of metabolites allows MscS to act as the main volume 

regulator in non-emergency situations. 

 

Relating MscS channel structure with its functional cycle.  

MscS is a homoheptamer of 286 amino acid subunits with a crystal structure first 

resolved to 3.5 Å by Bass et. al, 2002[42] and then refined in 2007[41]. Each subunit 

contains three transmembrane helices (TM1-TM3) and the C-termini from all subunits 

jointly form a hollow cytoplasmic domain termed ‘cage’ (PDB ID 2OAU). The initial 

crystal structure shows the TM1-TM2 pairs surrounding an inner core of tightly packed 

TM3 helices which form the pore. The TM1-TM2 helices have a 30° splay from the pore 

axis. The central pore formed by a nearly cylindrical assembly of TM3 segments bears 

two rings of leucines (L105, L109) that form a hydrophobic gate inside the channel. 

However, the constriction is not completely occluded by the side chains and has a ~6 Å 

hole.  Just below the gate, at residue G113, this crystal structure displays a kink and the 

rest of the TM3 (TM3b segment) forms the top portion of the cytoplasmic domain. 

The first crystal structure of MscS was interpreted as the open state of the channel 

due to the incompletely-occluded pore [42]. Molecular dynamics (MD) simulations later 

suggested that the pore is too small and too hydrophobic to be permanently hydrated and 

thus it must be nonconductive[43]. Also, the splayed peripheral helices in the 2OAU 

crystal structure show a substantial crevice separating TM2 and TM3, indicating there is 
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no way to transmit tension on the membrane-facing helices (TM1-TM2) to the pore-

lining helices (TM3). Further studies [44-46] then suggested the packing of the 

transmembrane domain in situ should be different from that in the 2OAU crystal structure 

and the splay of peripheral helices is likely due to the absence of the lipid bilayer. It was 

proposed that TM1 and TM2 are more tightly packed against the TM3 helices when they 

are in the membrane. To support this, a computationally restored TM2-TM3 hydrophobic 

contact was shown to play an important role in transmitting membrane tension from the 

outer helices facing the membrane (TM1-TM2) to the central pore-lining TM3 

helices[44]. A more recent crystal structure (2VV5) [46] of the A106V MscS mutant 

shows a wider pore which, according to simulations, is hydrated and passes ions. It also 

shows a 45° twist of the TM1-TM2 helices relative to their positions in the 2OAU 

structure of wild-type MscS. This structure is likely a better representation of the open 

state of the channel. 

Since crystallization requires the replacement of lipids with detergent around the 

protein, it is possible that a delipidated crystal structure misrepresents a native state of the 

protein. Also, the tension of at least 8 mN/m required to capture the open state of the 

protein is extremely difficult to recreate in crystallization[47]. To solve this issue, several 

computational protocols were used to explore the structure of MscS and determine a 

possible path of opening, starting with the 2OAU structure [48]. Anishkin et al., utilized 

an ‘extrapolated motion protocol’ (EMP) [49], which is based on repeated cycles of small 

displacements of the protein domains, short relaxing simulations, energy minimizations, 

and atom displacement based on previous coordinates, in the path most preferred by the 

protein itself. Candidate models generated by using EMP, which also satisfied 
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experimental parameters of conductance and in-plane pore-expansion, were reintroduced 

into the all-atom simulated environment and equilibrated with the fully hydrated lipid 

bilayer. The results confirmed that the TM2-TM3 interactions are stable in both the 

resting and open states [48, 49]. Also, this modeled resting state differed from the starting 

crystal structure in the placement of the kink in the TM3 helix, moving it from G113 in 

the crystal structure to G121 in the model [49]. 

Extrapolated motion simulations suggested that the opening of the channel occurs 

through a straightening and tilting of the TM3 helices [48]; a tilting and axial rotation of 

this helix produced a pore diameter of 16 Å, which is 9-10 Å wider than in the original 

2OAU structure, and approximately 6 Å wider than that of the 2VV5 partially open 

structure [46]. This helical rotation exposed buried glycines to the channel while 

reorienting the L105 and L109 gate residues into contact with other hydrophobic residues 

on the neighboring TM3 helices, creating a much more hydrophilic environment inside 

the pore [48].  

The resulting open state model depicts kink-free TM3s acting as collapsible 

‘struts’, stabilizing the frame of the open pore [50]. Since the C-termini of the TM3 

helices form the ‘top’ of the cytoplasmic cage domain and are far separated in the model, 

the only way for the proper hydrophobic residues to reform the constriction of the pore is 

to kink the helices. Repeated simulations showed a preferential bending of the TM3 helix 

at the highly-conserved G121 [50], not at G113 as suggested in the crystal structure, 

permitting better packing of TM2s along TM3s. Thus, TM3 kinking of the helices at the 

alternative hinge point of G121 was proposed as the nonconductive closed state of MscS.  
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Experiments have shown that there are two nonconductive forms of the channel 

which likely correspond to these different kink positions: one which can reopen and one 

which remains tension-insensitive [50, 51]. In a typical patch-clamp experiment, upon 

exposure to prolonged membrane tension just above the gating threshold, wild-type MscS 

channels gradually enter a tension-insensitive, nonconductive state. These channels are 

defined by their lack of response to super-saturating tension and termed as inactivated 

[38, 50, 51]. It is thought that this inactivation may play a role in preserving membrane 

barrier function by preventing the channels from reopening under sustained tension near 

the MscS gating threshold yet far below the lytic threshold. The kink present at G113 in 

the original crystal structure was attributed to the inactivated state. Experiments which 

increased helical propensity of G113 through a G113A mutation inhibit channel 

inactivation [50]. Conversely, a Q112G mutation creating a double-glycine motif made 

that kink region of the helix more flexible and this increased inactivation[51]. A double 

mutation at both proposed hinges (G113A/G121A) produces channels which remained in 

the open state for minutes at a time under zero tension, suggesting that TM3 exists in a 

kink-free form in the open state of the channel. This would suggest that the original 

crystal structure with a kink at G113 resembles an inactivated state of MscS, whereas the 

closed (ready-to-fire) state might have an alternative kink at G121 [50]. 

The crystal structure and the proposed closed state (Fig. 1.2) differ in the 

interpretation of the crevice between TM2 and TM3: could this helical separation and 

hydration of the crevice in the 2AOU structure represent disengagement of the gate in the 

inactivated state? Belyy et al. answered this by showing that serine mutations of the 

hydrophobic contact between TM2 and TM3 (F68S and L111S) result in channels which 
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became difficult to open, had a much higher rate of inactivation, and recovered much 

more slowly [44]. Serine mutations situated deeper in the crevice had no effect on 

inactivation or recovery. Also, the cysteine at the L111 site was only accessible to 

MTSET reagents when the channel entered the inactivated state, indicating that this site is 

not exposed to the solvent environment until the channel enters the inactivated state. 

Similar experiments showed that the sites located deeper in the hydrophobic crevice 

remained inaccessible throughout the gating cycle of MscS, meaning that a large 

separation of TM2 from TM3 does not happen in the course of inactivation[44]. 

Though the above experiments support the ‘crevice’ model of helix uncoupling, it 

is very possible that this placement of the helices is energetically unfavorable in the lipid 

environment [52]. The native inactivated state may have a different arrangement of 

transmembrane helices than those in the crystal structure, which was determined in the 

absence of a lipid bilayer. Since only the L111 site near the entrance to the crevice was 

accessible upon inactivation, it’s possible that TM1-TM2 pairs do not swing outward to 

form a wide crevice, but rather bend and twist around TM3s and thus expose L111 to the 

solvent.  
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Figure 1.2. The crystal structure and proposed closed state of MscS. (A) The original crystal structure 

of MscS (PDB 2OAU) is believed to closely represent the inactivated state, with the TM1/TM2 contact 

with TM3 removed. The characteristic kink of TM3 at G113 is also present, putting the C-terminal end of 

TM3 in contact with the top of the cage. (B) The lipid-equilibrated model of the closed state of MscS, with 

the break of the helix now positioned at G121. This model also returns the contact between the lipid facing 

TM1/TM2 pair and the pore lining TM3. (Figure from Rowe et al. 2014, in press)  

 

 

Macromolecular crowding and its effect on MscS  

 In solution, no two solute molecules can simultaneously occupy the same space. 

A single E. coli bacterium has an internal volume between 0.4 and 0.7 μm3[53]. Within 

this space, macromolecules are present at concentrations of approximately 0.3 to 0.4 g/ml 

[54], creating an environment where free space is at a premium. Around all of these 

macromolecules inside the cell (or in any solution), there is a volume from which the 

center-of-mass of an approaching molecule is excluded [22]. The total space in which 

other molecules cannot occupy is the actual volume the molecule occupies plus a certain 

'shell' around the molecule; the thickness of this shell is equal to the radius of the 

macromolecule which approaches it (Fig. 1.3). The larger the hydrodynamic radius of the 

approaching macromolecule, the larger the excluded volume, meaning that a long, rod-

shaped particle will exert a greater crowding effect than a smaller protein. This 
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phenomenon of crowding and excluded volume has been linked to many processes such 

as an increased rate of protein folding [55], enzymatic activity [56], and protein 

aggregation.  

  

Figure 1.3. Excluded volume interactions. The total volume of which the small sphere of radius r cannot 

occupy when approaching the larger sphere of radius R is the entire volume within the dashed sphere. This 

excluded volume is defined as the sphere of radius R + r. (Figure credit: Rowe) 

 

Previous studies [57] have found that large molecular crowding agents exert 

pressure on the channel complex, perhaps causing a more compact state of the 

cytoplasmic cage of MscS to be preferred. While there is debate as to whether this 

compaction is the result of osmotic stress in the form of water removal from the surface 

of the protein due to a change in water activity [58], some direct association of the 

channel protein with crowders [59], an increase in internal osmotic pressure, or an 

excluded volume effect, it is generally accepted that the state of smaller protein volume is 

preferred in the presence of inert crowding molecules[60]. 

The cage domain of MscS was originally viewed merely as a pre-filter at the 

cytoplasmic entrance to the pore [61]. Koprowski and coworkers [62] found that MscS 

adapts faster in the presence of polymers (PEGs, dextrans, Ficoll) on the cytoplasmic side 
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of the patch and speculated that this effect may be caused by the dehydrating action of 

polymers on the cage. Through random mutagenesis studies [63] they also discovered 

that the crystallographic interface between the beta domain of the cage and the C-

terminal end of TM3 plays an obvious role in gating and adaptation. However, the 

pressure protocol for patch stimulation used by that group was not designed to separate 

the effect of stimulus adaptation from complete channel inactivation, and the question of 

which functional state of the channel and what transition the polymers act on remained 

unanswered. Multi-step pressure protocols probing the kinetics of both reversible 

adaptation and also complete inactivation have been devised in our laboratory and, as will 

be described below, they suggest that the polymers increase the rates of both closing and 

inactivation.  

  

MscS as a sensor of lateral pressure asymmetry 

Transmembrane proteins are embedded in a lipid bilayer matrix of the cell 

membrane, which creates a highly anisotropic environment due to the presence of local 

interfacial forces. The two leaflets of the cell membrane are made of various 

phospholipids which are joined together by polar interactions between the adjacent 

phosphate head groups of each monolayer and interfacial tension at the boundary with 

aliphatic chains. At rest, the repulsive force of the tight packing of the phosphate heads 

and acyl chain tails is countered by the attractive force of surface tension at the 

water/lipid interface, creating a lateral pressure profile which spans the membrane (Fig. 

1.4). Aside from delineating the intracellular environment from the outside, the 

membrane can serve a reservoir for lipid-derived messengers or a place for preferential 
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distribution of lipophilic drugs. As lipophilic compounds penetrate between head groups 

of a monolayer or bilayer, they exert a lateral pressure on adjacent lipids and alter the 

lateral pressure profile by increasing the repulsion in the acyl chain region of the bilayer. 

The functions of channels [64, 65] and other integral proteins are likely dependent on 

lateral pressure changes in the membrane [66, 67]. Hence, the amphipathic properties of 

many general anesthetics cause them to preferentially partition into the membrane, 

altering the lateral pressure profile and generating the desired effects on transmembrane 

proteins. 

 

 

 

Figure 1.4. An example of a lateral pressure profile. On the far left is a lipid bilayer and in the center is a 

theoretical lateral pressure profile associated with it. Due to the aliphatic nature of lipids, the head groups 

pack tightly together to reduce the exposure of the hydrophobic tails to solvent while the tail groups are 

also forced into close proximity. On top of this, surface tension at the boundary between the hydrophobic 

and hydrophilic groups creates a large attractive force. The area under the curve in the profile describes an 

attraction or repulsion at that particular position in the membrane and since the bilayer is at equilibrium the 

sum of these forces (the area under the entire curve) must equal zero. (A) indicates head group repulsion, 

(B) describes the attractive force of surface tension and (C) represents the repulsion due to the hydrophobic 

tail packing. (D) depicts the hypothesized mode of action of intercalating agents. 

 

The first effects of amphipathic substances (trinitrophenol, chlorpromazine) on 

bacterial MS channels were reported by Martinac and coworkers [68]. Subsequently, 
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even smaller substances such as fluorinated alcohols were found to be potent modifiers of 

MS channel gating. It has been shown that 2,2,2-trifluoroethanol (TFE) disrupts 

interhelical contacts and strongly prefers the organic bulk phase in solution [69]. TFE has 

an octanol/water partitioning coefficient of 0.41, implying that it would have a strong 

tendency to occupy the membrane if given the chance. As stated earlier, MscS gates via 

tension in the membrane and thus would be susceptible to TFE in the membrane. In 

patch-clamp studies, TFE (<5%) reversibly right-shifts the activation curve of MscS, 

implying that higher tension is then required to open the channel. The increase of lateral 

pressure in the inner leaflet of the lipid bilayer upon TFE addition acts asymmetrically on 

the gate of the channel, which is closer to the cytoplasmic side of the membrane. 

Similarly, it was found that esters of parabenzoic acid (parabens) of different length 

(ethyl, propyl, and butyl) shift the activation midpoint of MscS according to the length of 

their sidechain; this data was found to correlate with the ability of the parabens to alter 

both the surface tension of an air/water interface and the surface pressure of a monolayer 

[70].  More recently, partitioning of amphipathic autoinducer molecules (AI-1, AI-2, 

indole) into the inner E. coli membrane was assessed using WT MscS as a lateral 

pressure sensor in a study that combined patch-clamp experiments with tensiometry and 

Langmuir monolayer experiments [71]. The observed correlations between MscS 

activation curve shifts and changes of lateral pressure in Langmuir experiments asserted 

that MscS can be used as a lateral pressure sensor for monitoring of partitioning of 

exogenous lipophilic substances into the native bacterial membrane. 
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Problem statements and questions 

 Probing of the cytoplasmic domain of MscS 

When I joined the Sukharev Lab in the fall semester of 2008, ongoing 

experiments and simulations suggested that the cytoplasmic cage of MscS was not a rigid 

structure and could occupy different conformations of varying volume. The role of the 

cytoplasmic domain was still unclear but it clearly had a more important function than 

simply acting as a size-exclusion filter. Some initial experiments suggested that 

macromolecular crowding exerted by large polymers changed channel closure and 

increased inactivation[62]. Initial studies of this phenomenon in the Sukharev Lab 

supported this notion yet a detailed portrait of how crowding changed the channel 

structure has not been obtained.  Thus, I sought to describe: 

- What is the actual mechanistic effect of large macromolecular crowding 

agents on channel opening, closing and inactivation? 

- How does the packing of the beta-domain of the cytoplasmic cage affect 

channel opening, closure and inactivation and does the modeled closed state 

accurately predict the packing of residues in this region? 

- What is the physiological role of MscS inactivation and is it related to osmotic 

regulation of the interior of the cell? 
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Figure 1.5.  Proposed effect of cytoplasmic crowding. (A) Cartoon representation of the resting state 

with a relaxed round cage.TM3 (blue) is coupled with peripheral TM1-2 helices and the kink in the pore-

lining TM3 helix is at G121. (B) The inactivated state in which macromolecular crowding causes 

compression of the cage and breaks TM3 at G113 instead of G121. TM1-2 helices become uncoupled from 

TM3 and the grey area shows the change of excluded volume.  

 

Utilizing MscS as a sensor of drug partitioning 

Permeability through membranes is a key determinant of drug efficacy; if it 

cannot enter a cell it cannot perform its task. The common ways to estimate membrane 

permeability use surface activity, oil-water partition coefficients, partitioning into 

artificial lipid-impregnated filters or liposomes. Langmuir lipid monolayers is a system 

that permits direct measurements of lateral pressure changes exerted by an amphipathic 

compound as it intercalates between lipid molecules on a surface. Currently, no simple 

probe-based technique exists to predict the partitioning of a lipophilic or amphipathic 

substance into the native bacterial membrane. Since MscS activation has been shown to 

be sensitive to membrane-intercalating substances, is it possible that it can act as a sensor 

of drug partitioning? The main issues which need to be addressed are: 

- Can MscS be optimized as a probe for asymmetric partitioning? 
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- Do amphipathic drug analogs, which alter the surface tension of water and 

exert lateral pressure in lipid monolayers, similarly affect the activation of 

MscS channels in patch-clamp experiments? 

- Can the changes in MscS activation be interpreted as a membrane partitioning 

coefficient (Kmem) and are these values comparable to other partitioning 

coefficients obtained in more classic manners?  

- Can the redistribution of amphipathic analogs to the opposite leaflet of the 

membrane be monitored? 

 

The mechanosensitive channels in facultative pathogens Vibrio cholerae  

E. coli has been the main organism used to study bacterial mechanosensitive 

channels since their discovery in 1987. Since then they have been well characterized but 

the field is lacking in understanding of how such channels operate in other pathogenic 

bacteria. The ability to investigate the electro-mechanical properties of the membrane in 

more harmful bacteria has obvious potential for drug development and targeting. The first 

hurdle to this is the generation of spheroplasts; the procedure for making such cells is 

well documented for E. coli but has not yet been developed for other species. Thus, 

expanding the patch-clamp technique to other organisms would be a worthwhile 

endeavor.  

V. cholerae is an enteric bacteria which causes severe diarrhea and is responsible 

for infecting about three million people annually [72]; in 2010, Haiti alone suffered a 

cholera epidemic that killed approximately 8,000 to 10,000 people. During its 

transmission cycle, V. cholerae must regularly be subjected to environments of varying 
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salinity, meaning that it likely utilizes mechanosensitive channels to cope with osmotic 

shock. The medical relevance each of these bacteria present make them optimal choices 

for spheroplast development. 

The promise of membrane susceptibility to partitioning agents and the medical 

relevance of both these species makes them perfect candidates for membrane exploration. 

Here, I set out to address the following: 

- Is it possible to make spheroplasts of V. cholerae such that they can be easily 

studied for mechanosensitivity similarly to the way E. coli is examined? 

- What is the mechanosensitive channel population of V. cholerae and how does 

it compare (in both number and activity) to that in E. coli? 

- How do compatible osmolytes effect the mechanosensitive activity of the V. 

cholerae membrane? 
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Abstract 

 

Macromolecular excluded volume of the cytoplasm is a critical parameter maintained by 

cells, but mechanisms of its sensing remain unknown. MscS, the major turgor regulator in 

bacteria, mediates efflux of small osmolytes in response to increased membrane tension. 

Under moderate sustained tensions, MscS exhibits slow adaptive inactivation, but it 

inactivates sharply in the presence of cytoplasmic crowding agents.  To understand this 

mechanism, we explored possible transitions of MscS and generated models suggesting 

that the coupling of the gate formed by TM3 helices to the peripheral TM1-TM2 pairs 

depends on the axial position of the core TM3 barrel relative to the TM1-TM2 shaft and 

the state of the associated hollow cytoplasmic domain (cage). Tension-driven inactivation 

separates the gate from the peripheral helices and promotes kinks in TM3s at G113; this 

conformation is stabilized by association of the TM3b segment with the beta domain of 

the cage.  Mutations destabilizing the TM3b-beta interactions preclude inactivation and 

make the channel insensitive to crowding agents and voltage. Mutations that strengthen 
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this association result in a stable closed state and immediate inactivation. Simulations 

show that pressure exerted on the bottom of the cage in the inactivated state reduces the 

volume of the cage in the cytoplasm and at the same time increases the footprint of the 

TM domain in the membrane, implying a coupled sensitivity to both membrane tension 

and crowding pressure. The cage, therefore, provides feedback on the increasing 

crowding that disengages the gate and prevents excessive draining and condensation of 

the cytoplasm. We discuss the structural mechanics of cells surrounded by an elastic cell 

wall where this feedback mechanism specific for MscS may be necessary. 

 

INTRODUCTION  
 

Life, as we know it, is inseparable from water.  Solvation sets chemical potentials 

for all soluble components inside and outside the cell, affects intermolecular interactions, 

drives hydrophobic assembly, and provides free space for diffusion and macromolecular 

dynamics. Crowding effects are strong since many equilibria and reaction rates inside the 

cell have generally steeper dependencies on the macromolecular excluded volume than 

on ionic strength or osmolarity per se [73-77]. Although mutual compensatory 

mechanisms between increased ionic strength and macromolecular excluded volume 

exist, the primary purpose of osmoregulation is the maintenance of sufficient amount of 

free water in the cytoplasm [78]. Cells actively regulate their water content by 

accumulating or releasing ions and small compatible osmolytes [79], but the mechanisms 

that sense and define the setpoints for water activity and volume fraction are still unclear.  

While several candidates for primary osmosensors in different organisms and cell types 
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have been proposed [80-82], no mechanistic hypothesis that would connect their function 

with the fractional volume of water exists.  

Free-living microorganisms are frequently subjected to hydration stresses and 

possess robust osmoregulatory systems.  In hyperosmotic conditions, bacteria accumulate 

ions and compatible organic osmolytes to retain water [83-85]. Under steady growth 

conditions, the internal turgor (hydrostatic pressure) inside bacterial cells decreases with 

an increase in external osmolarity[86]. However, in the event of a sudden drop of external 

osmolarity, bacteria release accumulated osmolytes through several types of 

mechanosensitive channels acting as tension-activated release valves. Gradual increase of 

tension in the cytoplasmic membrane of E. coli opens the low-threshold YbdG channel 

[87] exhibiting a MscM-like activity, followed by more conductive  MscK [88], MscS 

[38], and several other species such as YbiO, YjeP, and YnaI [89]. When tension in the 

membrane approaches the lytic limit (11-14 mN/m), large-conductance mechanosensitive 

channels (MscL) released larger osmolytes [21] and rescues the cell from lysis [38]. One 

should remember that in the event of moderate osmotic adjustments, even brief opening 

of the non-emergency MscS valve results in dissipation of vital ionic gradients, and 

clearly comes at a metabolic cost. Apparently, to suppress spurious openings at sustained 

moderate tensions, MscS shows adaptive behavior which leads to closure and subsequent 

inactivation [50, 51, 90, 91].  

In the inactivated state, MscS does not conduct or respond to tension [51]. 

Examination of the WT MscS crystal structure (PDB ID 2OAU, [41]) obtained in 

foscholine (in the absence of lipids) suggests that its conformation resembles a non-

conductive inactivated state [92]. This state is characterized with the gate uncoupled from 
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the external stimulus due to the splay of peripheral TM1-TM2 helical pairs being 

separated from the gate formed by sharply kinked TM3 helices. For the same reason the 

structure does not possess functionally important D62-R131 bridges. A more recent 

crystal structure of WT MscS obtained in a partially open state in dodecylmaltoside (PDB 

ID 4HWA [93]) shows a different splay of unsupported TM1-TM2 pairs, indicating that 

the conformations of these domains are very sensitive to the type of detergent replacing 

the membrane and that their positions in the lipid bilayer are likely to be different.  

Several attempts were made to create a model of the resting state, which would have a 

direct connection to transmit force from the lipid-facing helices to the gate [44, 49, 50, 

94]. This conformation is likely characterized by a more parallel packing of TM1-TM2 

helices, forming a buried hydrophobic interface with TM3s (Fig. 2.1) providing a 

mechanism by which the channel would be able to open by membrane tension 

transmitted through the peripheral helices to its gate [44].  The previous searches for the 

gating-competent resting state and models for opening and inactivation considered 

primarily conformational changes in the transmembrane (TM) domain, although there 

were indications that the movements of the TM domain generates coupled movements in 

the cage  [95-97].  

The possibility of a salt bridge formation between the tips of the TM1-TM2 loops 

(D62) with the equatorial region of the cage (R128/R131) was first noted in MD 

simulations [52], and then the functional role of these bridges was experimentally 

demonstrated by Nomura and coworkers [96] who found that disruption of these bridges 

with mutations strongly speeds up channel adaptation. Another important observation 

was made by the Kubalski group who first reported that adaptive closure of MscS occurs 
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more rapidly in the presence of indifferent polymers such as PEGs, dextrans or Ficoll on 

the cytoplasmic side, implying involvement of the hollow cage domain [57]. Subsequent 

genetic screens for gain- and loss-of-function mutants performed by the same group [63] 

revealed multiple new loci affecting gating, including one potent mutation at the interface 

between TM3b and the beta domain of the cage (G168D) that strongly affected the 

process of adaptation. 

In the present paper we go beyond previous studies and show that MscS 

inactivation is exquisitely sensitive to excluded volume effects and the cage domain 

directly participates in sensing the cytoplasmic crowding of large-molecular weight 

compounds and voltage. We develop a new molecular model of the resting state that 

includes several previously unexplained features and propose a consistent explanation for 

the role of the cage and specifically the TM3b-beta interface in the functional cycle of 

MscS. We show opposite effects of interface-stabilizing and destabilizing mutations on 

MscS inactivation and provide data suggesting that in active states the mutual 

arrangement of TM3b and beta domains are likely to be different from that in the crystal 

structure. Molecular simulations of the resting and inactivated state models illustrate how 

geometrical parameters of the molecule (lateral expansion of the transmembrane domain 

and compaction of the cytoplasmic cage) lead to the coupling between membrane tension 

and crowding pressure both acting synergistically in driving the inactivation transition. 

We propose the first structural mechanism of crowding sensing by a mechanosensitive 

channel and describe a physiological context in which cells surrounded by elastic 

peptidoglycan would benefit from this ability.  
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MATERIALS and METHODS 

 

Modeling and simulations  

We used the extrapolated motion protocol (EMP) [48, 50] to generate a set of 

non-random models from the crystal structure of WT MscS (PDB ID 2OAU) [41] with 

the missing N-terminal domain modeled with Rosetta [49]. Arranged as cycles of small 

(0.1-0.5 Å) displacements extrapolated from the previous step, energy minimizations and 

short relaxing MD simulations (see details in Supplement), this protocol generates strings 

of interconnected conformations covering 5-15 Å domain displacements within 50-100 

steps. The protocol was implemented with the Tcl/Tk language in NAMD2-VMD [98]. 

The library of about 86000 models generated from different starting points was sorted 

using automated searching scripts identifying spatial proximities of specific groups or 

domains. The specific search criteria included (a) sufficiently tight rings of L105 and 

L109 forming a non-conductive gate;  (b) salt bridge between the tip of the TM1-TM2 

loop (D62) and the equatorial region of the cytoplasmic ‘cage’ domain (R128 or R131) 

[96]; (c) an extensive buried contact between TM2 (A63-F80) and TM3 (V99-L115) in 

the resting state, and separation of these helices in the inactivated state [44] and (d) TM3 

helix straightened  near G113 in the resting state or kinked in the inactivated [50]. An 

additional criterion for the choice of the pair of resting and inactivated states was the 

difference of the effective in-plane areas of the TM barrel that was estimated from the 

inactivation and recovery kinetics as about 8 nm2 [90].  
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The candidate models without perturbations of the secondary structure were 

embedded in the fully hydrated and pre-equilibrated lipid bilayer assembled from 220 

POPC molecules, energy-minimized and then equilibrated in all-atom MD simulations 

for 20 ns followed by refinement using a 5 ns symmetry-driven simulated annealing [99].  

To explore the structural changes in MscS under increased crowding in the 

cytoplasm we visualized the effect of cytoplasmic cage compression using steered 

molecular dynamics. We have approximated the pressure of the large macromolecules by 

a force acting on the C-terminal half of the cytoplasmic cage (residues 183-280 in each 

subunit, 2751 atoms per complex). The force acting towards the midplane of the bilayer 

was set for slow exponential growth from 0.001 to 0.1 kcal/mol/Å/atom over the course 

of 20 ns simulations. To prevent the net displacement of the protein and membrane under 

the force, we have restrained the center of mass of non-hydrogen backbone atoms of 

TM1-TM2 helices in its position inside the lipid bilayer only in the direction normal to 

the membrane midplane (see more details in the Supplement).  

 

Mutagenesis and electrophysiology 

The mscS gene was inserted and induced via IPTG in a pB10b vector and 

expressed in the MJF465 triple-knockout E. coli strain (mscS-, mscL-, mscK-) [38]  or 

PB113 (mscS-, mscK-)  [88], which retained a native copy of mscL. Mutants of MscS 

were created using a QuikChange mutagenesis kit (Strategene/Agilent).  

Spheroplasts were generated as described in previous works [36, 51, 100] and all 

electrophysiological recordings were made in excised inside-out patches exposing the 

cytoplasmic side to the bath. The experimental bath solution contained 400 mM sucrose, 
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200 mM KCl, 50 mM MgCl2, 5 mM CaCl2 and 5 mM HEPES and was titrated to pH 7.4 

with KOH. For crowding experiments, Ficoll 400 was perfused into the bath manually at 

the desired wt/vol concentration. Osmolarities of solutions were measured with a Wescor 

5520 vapor pressure osmometer. Membrane patches were obtained with borosilicate glass 

pipettes (Drummond, cat# 2-000-100) and recorded at the desired voltage set by a 

microelectrode amplifier (Axopatch 200B); unless otherwise noted, all recordings were 

performed at 30 mV pipette potential. Negative pressure (suction) was applied using a 

high-speed pressure clamp apparatus (HSPC-1, ALA Scientific). Pressure and voltage 

protocol programming and data acquisition/analysis were performed with the PClamp 10 

suite (Axon Instruments). Linear triangular ramps involve a steady 1 s increase in 

pressure followed by a symmetric reduction of pressure back to zero and were used to 

determine activation midpoints and hysteresis. Pulse-step-pulse protocols are defined by 

an initial pulse of saturating pressure to visualize the entire population, followed by a step 

(5 to 10 s) of sub-saturating pressure and ending with another saturating pulse to show 

the number of channels still available for opening; these elucidated the extent of tension-

driven inactivation. Pulse-step protocols were performed with a saturating pressure pulse 

opening the entire channel population followed by a step down to some sub-saturating 

tension, which allowed the channels to adapt/close and gave insight into the closing rate 

dependencies on tension. 

Conversion of the pressure amplitudes into the tension scale was achieved by 

using the previously-established midpoint tension values for WT MscS (7.8 mN/m) and 

MscL (13 mN/m). Assuming that the radius of curvature of the patch (r) does not change 

in this pressure range, the ratio of tension and pressure midpoints should be the same. 
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The pressure midpoint of each patch was determined via a 1s ramp of pressure and set 

equal to the tension midpoint of MscS (7.8 mN/m) after it was determined that the 

specific mutant had the same p0.5MscS/ p0.5MscL (~0.6) as WT MscS through 

expression in a cell like containing native MscL. [101-103] 

 

 

 

 

 

RESULTS  

 

Modeling 

The existing crystal structures of E. coli MscS [42, 46, 93] and its homologs [104] 

solved in detergents obviously do not represent the complex functional cycle of the 

channel entirely. The non-conductive structures likely resemble the inactivated state with 

an uncoupled gate [41], whereas conductive conformations [46, 93] appear to be partially 

open. Modeling and simulations may help envision the channel structure in the native 

membrane environment and reconstruct the missing parts of the functional cycle [48-50]. 

Here we combined a computational algorithm allowing us to explore the conformational 

space of MscS with multiple constraints derived from functional experiments to generate 

models for the resting and inactivated states. All modeling was done by Dr. Anishkin. 

A database of non-random models was generated from the revised crystal 

structure of WT MscS.  This library of 86000 non-random models generated from 
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different starting points was sorted using automated searching scripts identifying spatial 

proximities of specific groups or domains. The criteria included non-conductive gate; salt 

bridge formed between D62 and one of the arginines (R128 or R131) on the cytoplasmic 

‘cage’ domain, buried contact between TM2 and TM3 engaging the gate in the resting 

state, or separation of these helices in the inactivated state.  

It soon became obvious that imposition of the D62-R131 bridges results in a more 

upright orientation of the peripheral helices and vertical displacement of the TM3 barrel 

inside the TM1-TM2 shaft. In EMP trials, this transformation generally (not always) 

correlates with straightening of the crystallographic G113 kink and reformation of a less 

prominent kink near G121. In the crystal-like inactivated state, D62 formed a salt bridge 

with R128. We did not stipulate the in-plane area change in the transmembrane domain 

between the modeled resting and inactivated states, but we found it very close to the 

experimentally estimated 8 nm2 area change [90].    

The candidate models were embedded in the fully hydrated and pre-equilibrated 

POPC lipid bilayer, energy-minimized and equilibrated in all-atom MD simulations for 

20 ns followed by symmetry-driven simulated annealing [99]. The models are shown in 

Fig. 2.1 (A, B) with the detailed structure of the gate region and surrounding domains 

below. 
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Figure 2.1. MD-equilibrated models of the inactivated (A) and resting (B) states in the explicit lipid 

bilayer. The details of TM-cage domain interactions with critical sidechains shown for the inactivated (C) 

and resting (D) state where the gate (L105, L109) is coupled to the peripheral helices through the 

hydrophobic (F68, L72 – L111, L115) contact. The model of inactivated state resembles the crystal 

conformation (2OAU), however the splay of the peripheral TM1 and TM2 helices (ocher and green) is less. 

In both conformations, D62 residing on the TM1-TM2 loop forms a salt bridge with either R128 in the 

inactivated or R131 in the resting state. The resting state model predicts straightening of the 

crystallographic G113 kink, a substantial separation of TM3b (dark blue) from the beta cytoplasmic domain 

(purple) and a translation of the gate region upward.  

 

The conformation assigned as ‘inactivated’ (Fig. 2.1A) is similar to the initial 

crystal state, with prominent kinks at G113 and tight packing of the TM3b-beta interface. 

In this putative inactivated conformation, the peripheral TM1/TM2 helices are splayed 

but they form a smaller angle than in the crystal structure, allowing the D62-R128 salt 

bridges to form. The TM1-TM2 pairs are partially detached from the gate region such 

that the hydrophobic sidechains in the buried zone are packed more loosely than in the 
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resting state. The TM1-TM2 splay increases the effective in-plane area of the lipid-

embedded TM domain compared to the resting state (Fig. 2.1B). In most of the candidate 

models for the resting conformation, the TM3 helices were reproducibly kink-free until 

G121, the entire TM3 barrel was moved up inside the sheath of peripheral TM1-TM2 

helices and the TM3b helical segments were dissociated from the beta domains within the 

cytoplasmic cage.  

The transition from left to right would represent recovery from inactivation to the 

gating-competent resting state. Experimental measurements of recovery kinetics show 

that it is a relatively slow process on the molecular scale, taking 1.3-2 s for WT MscS 

[51]. It involves several changes: compact packing of helices and formation of a more 

extended and tight contact between TM2 and TM3 (see panels C and D), which are 

accompanied by movement of the TM3 barrel inside the TM1-TM2 sheath by 

approximately 2 helical turns (from the cytoplasmic interface towards midplane of the 

membrane), straightening of TM3s and detachment of the TM3b helical segment from 

beta domains and re-formation of D62-R131 bridges which stabilize the resting state.  

The inactivating transition is likely to involve the same changes in reverse, which results 

in a decrease of the cage profile in the cytoplasm. While its own internal volume does not 

change much, due to the vertical displacement the cage occupies a smaller volume when 

the sharp kinks at G113 are in place and the TM1-TM2 pairs are separated from the inner 

TM3 barrel. 
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MscS inactivation is increased in the presence of crowding agents 

Like activation, MscS inactivation is driven by tension; both transitions originate 

from the closed state [90]. The ability of MscS current to adapt with time under sustained 

tension [51, 102] produces decaying current traces which represent the sum of sequential 

processes of adaptive closure and complete inactivation. The two kinetically intertwined 

processes are distinguished by the ‘comb’ pressure protocol that includes a prolonged 

conditioning step of tension with interspersed short saturating pulses testing for the 

availability of non-inactivated channels. In control experiments, the amplitude of current 

responses to test pulses gradually decays with time, representing the number of channels 

in the closed state as well as kinetics of tension-dependent inactivation (Fig. 2.2).  
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Figure 2.2. Responses of WT MscS to crowding agent Ficoll 400.  The top trace (A) was recorded at +20 

mV pipette voltage with stimulation by a 30 s step of constant pressure with five evenly interspersed 

saturating test pulses of 0.1 s in length (‘comb’ protocol). The peaks of current responses to test pulses in 

the control (0% Ficoll 400) reflect the kinetics of inactivation. In the presence of 5% Ficoll, the MscS 

population opens in response to the first pulse and then completely inactivates. The bottom figure (B) 

shows the kinetics of recovery after inactivation. The inset shows the pressure protocol consisting of a 

prolonged step of pressure followed by a series of test pulses. The kinetics of recovery is not influenced by 

10% Ficoll.  

 

The presence of crowding agents such as Ficoll 400 on the cytoplasmic side shifts 

the activation curve in response to ramp stimuli toward higher pipette pressures (Fig. 

2.4A), signifying that the crowding pressure acting primarily on the cytoplasmic domain 

interacts with the gate and counteracts the tension. The presence of crowders also 
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changes the character of response to the ‘comb’ protocol (Fig. 2.2), leading to immediate 

inactivation after the first test pulse. In the presence of 10% Ficoll the rate of inactivation 

increases by more than one order of magnitude as measured at the same amplitude of 

conditioning pulse equal to the midpoint pressure (p0.5) of MscS activation determined 

in ramp experiments.  Surprisingly, the presence of 10% Ficoll did not visibly change the 

kinetics of recovery. Polyethylene glycol (PEG 3300) in concentration of 25 mM (~7.5 

vol %) exerted the same strong effect on inactivation, but also slowed down the recovery. 

 

The TM3b-beta domain interface  

In order to proceed with analysis of mutations, we first investigated (Fig. 2.3) and 

analyzed the residue interactions at the TM3-beta domain interface which underwent a 

substantial rearrangement upon modeled transition from the inactivated to resting state. In 

the TM3b-beta bound conformation representing crystal-like inactivated state (panel A) 

we observe several critical interactions. The sidechain of N117 interacts with the 

backbone nitrogen of N167 and packs with F151. The backbone of N117 forms alpha 

helical hydrogen bonds with the backbone of both critical hinge residues, G113 and G121 

[50]. Besides the terminal oxygen of N117, the backbone of N167 also interacts with the 

backbone amide oxygen of F151. G168 packs in close proximity of G113 and N117. The 

crystallographic TM3-beta contact is predicted to be essentially desolvated. Upon 

straightening of TM3 in the resting state (panel B), the hydrophobic neighborhood is 

largely dispersed, liberating the sidechains of N117 and N167. The separation of many 

hydrophobic sidechains is energetically feasible because N167 and N117 become 

favorably solvated. The general prediction is that crystallographic packing will be 
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stabilized by isovolumic replacement of N117 or N167 by apolar valines. The G168D 

mutation identified by Koprowski and coworkers in the random mutagenesis screen [63] 

is located at the interface between the cytoplasmic beta domain and the c-terminal end of 

TM3b.  Introduction of a charged and bulkier substitution is expected to stabilize the 

open conformation which has the most unfolded TM3b-beta contact. We have analyzed 

10 single and 3 double substitutions in this region. The most drastic and interpretable 

effects of several mutations are described below.  

 

 

Figure 2.3. Detailed view of sidechain packing at the TM3b – beta domain interface in the crystal 

conformation (PDB ID 2OAU) (A) and in the modeled resting state with TM3b and beta domains 

separated (B). 

 

The G168D mutation affects the gating transitions and sensitivity to crowding agents 

Current responses to triangular ramps of pressure for WT and G168D MscS are 

presented in Fig. 2.4A. WT exhibits moderate asymmetry of response (hysteresis), 

showing a lower midpoint of the current-pressure curve on the descending limb of the 

ramp in comparison to the ascending limb, while G168D exhibits much stronger 

hysteresis and closes only at tensions near zero. The hysteresis is the manifestation of a 
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slow closing rate (koff), which appears to be especially slow in the mutant. This closing 

transition was confirmed with a specific (pulse-step) protocol; the population was 

subjected to a full activation by a short saturating pulse followed by a prolonged step of 

lower pressure, during which the closing kinetics were recorded. The resultant decaying 

current traces (Fig. 4B) were fitted with monoexponential functions, producing a linear 

dependency of the natural log of koff on tension (γ, mN/m) (Fig. 2.4D). The same range of 

decay times was achieved for the G168D mutant at much lower pressures (red arrows), 

which shifts the position of the ln(koff) curve to much lower tensions (by 2 mN/m). 

Extrapolation of the fitting line to zero tension (the y-intercept) gives estimations of 

‘intrinsic’ closing rates of  2430 ± 270 s-1 (n = 6) for WT and only 107 ± 24 s-1 (n = 6) for 

G168D MscS. The slopes of these curves represent the tension dependency of their 

closing rates and can be interpreted as the difference of in-plane areas between the open 

state and rate-limiting barrier for closing, based on a putative single-barrier energy profile 

(Fig. 2.4D, inset) for the tension-gated transitions [105]. The slope of the WT curve was 

found to be -1.54 ± 0.16 s-1/(mN/m), n = 6, which is smaller than that found for the 

G168D mutant (-2.0 ± 0.17 s-1/(mN/m), n = 6). This suggests that the open state of 

G168D is more stable and might have a deeper and/or wider energy well than WT. 

Alternatively, the mutant may have a different position of the rate-limiting barrier, which 

is farther from the open-state well compared to WT.  
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Figure 2.4. The crowding effects of 5% Ficoll 400 on Wild Type and G168D MscS opening and 

closing. Under symmetric ramps of saturating pressure (A), both WT and G168D MscS open at similar 

tensions yet G168D closes much more slowly, resulting in greater hysteresis of the closing portion of the 

activation curve. Upon the addition of 5% Ficoll, activation curves for both WT and G168D shift ~10% to 

the right (shown in red). Pulse-step protocols for both WT and G168D are shown both before (B) and after 

(C) the addition of 5% Ficoll. Arrows indicate the pressure that was applied for the two second step during 

which the closing kinetics were monitored. The closing rates from each of these curves (before and after 

5% Ficoll) were plotted against the applied tension (n = 3 for each) (D). The alteration of closing kinetics 

after 5% Ficoll is more pronounced for WT than G168D MscS. The inset shows a theoretical single barrier 

energy profile. The solid line represents the transition from closed to open in WT MscS while the dotted 

line corresponds to G168D; the deeper and wider energy well for the open state of the mutant indicates a 

stabilization of the open state and a slower closing rate. 

 

Ramp responses measured in the presence of  5% wt/vol Ficoll 400 showed a 10% 

± 6% (n = 10) shifts of the activation curve midpoint toward higher pressures for WT 

MscS, as measured on the ascending limb of the ramp (Fig 2.4A, red traces). The 

midpoint on the descending limb also shifted toward higher pressures (22% ± 10%, n = 

10), signifying stabilization of the resting state comparing to the open. The maximal 
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current amplitude at saturating tensions also tended to decrease by 10-20% due to partial 

inactivation of the channel population. For the G168D mutant, the response to the 

ascending limb shifted comparably to WT, however the rate of channel closure did not 

appear to increase as dramatically as in WT and a decrease of maximal current was less 

pronounced. The alteration of closing rates by Ficoll was further investigated by 

repeating the pulse-step protocol for WT and the mutant (Fig. 2.4C). The closing rate 

versus tension plot, based on three separate patches of both WT and G168D in the 

presence of 5% Ficoll, shows that the WT MscS curve shifts by about 40% toward higher 

tension, while the G168D curve only has a 4% shift (Fig. 2.4D, grey lines). This indicates 

that the G168D mutant is less susceptible to crowder-induced alterations of the closing 

rate of the channel. 

Fig. 2.5 shows the typical responses of WT and G168D MscS to pulse-step-pulse 

protocols revealing the degree of tension-dependent inactivation. After a 10-s 

conditioning step of approximately half the tension required to open all the channels 

(p0.5), an average of  about 70% of the WT population remains active while the 

remaining channels recover from inactivation with a time constant τ of 1.4s + 0.4 s, n = 

10. However, in the presence of 10% Ficoll WT MscS inactivates completely, as 

demonstrated in Fig. 2.5A. The G168D population generally resists inactivation under 

similar conditions (10-s conditioning step of sub-saturating tension), even in the presence 

of Ficoll (Fig. 2.5B). To compare the inactivation resistance of G168D with another non-

inactivating mutant, G113A, we applied the same protocol.  The G113A mutation favors 

a straight pore-lining helix and has been shown to impede inactivation in the absence of 

crowders [50, 90] (Fig. 2.5C). Upon the addition of 10% Ficoll, G113A shows moderate 
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inactivation. Fig. 2.5D shows data from three WT MscS patches and describes the 

inactivation of the channels in response to 10s conditioning steps of varying tension. WT 

MscS shows its maximal inactivation of roughly 40-50% of channels upon exposure to a 

10s step of tension of approximately 8 mN/m, seen as a dip in the data. Upon addition of 

5% Ficoll, this inactivation drastically increases, with 80-90% of the population 

becoming inactivated. G168D is much less susceptible to tension-driven inactivation in 

identical procedures, with less than 15% inactivation (Fig. 2.5E). After exposure to 5% 

Ficoll, inactivation remains below 20% for G168D (n = 3). G113A shows intermediate 

inactivation (approximately 40%, n = 3) in the presence of Ficoll, as seen in Fig. 2.5F, 

indicating that the mutant is more sensitive to crowding than G168D. The fact that 

G168D inactivates much less than G113A in the presence of crowders indicates that the 

intact TM3b-beta interface has a stronger contribution in the stability of the inactivated 

state than helical flexibility at G113 and the cage is intimately involved in conveying the 

crowding pressure perturbation to the gate. Notably, the active channel population is 

entirely present in the first saturating test pulses in the 10s protocol for both WT, G168D 

and G113A (Fig. 2.5A-C); this shows that crowding agents at these concentrations do not 

drive the channel directly into the inactivated state and tension is absolutely required to 

inactivate MscS. 

We have also tested the disaccharide trehalose, a compatible osmolyte for similar 

effects in a concentration range up to 1 M, which constitutes 24 vol%. While at this 

concentration trehalose also shifted activation curves to the right, it did not change the 

extent of inactivation of WT or G168D MscS (see Fig. 5.4).  
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Figure 2.5. The crowding effect of Ficoll 400 on Wild Type and G168D MscS inactivation. Pulse-step-

pulse protocols were used to investigate the tension-driven inactivation of WT (A), G168D (B) and G113A 

MscS (C), with the difference between the initial and final pulse (black arrows) representing the relative 

amount of inactivation. After exposure to 10% Ficoll on the cytoplasmic side of the patch, WT MscS 

completely inactivates, G168D resists inactivation and G113A displays an intermediate amount of 

inactivation (red arrows). The same pulse-step-pulse protocol was applied at varying step pressures to 

several different patches of WT, G168D and G113A (n = 3 for each) in the absence and presence of 5% 

Ficoll 400.  The resulting fraction of available channels was plotted against tension to illustrate 

inactivation. The inactivation of WT MscS channels was greatly increased in the presence of Ficoll (D) 

while G168D remained largely unchanged (E) and G133A inactivated moderately (F). 

 

G168D MscS is insensitive to voltage 

Fig. 2.6 shows traces of MscS currents evoked by the same step-pulse pressure 

protocol recorded at different voltages. The near-saturating step kept the entire population 

open for 5 s whereas the super-saturating step at the end was applied to indicate any 

adaptive closure or inactivation that could occur during the step. As seen from the traces, 

WT population reduces its conductance at -60 mV pipette voltage (depolarizing) and 

quickly closes and completely inactivates at -80 and -100 mV, consistent with the 

previous results [51]. An alanine substitution at residue 168 does not change this 

behavior. The G168E mutant displays slight inactivation at -100 mV and the G168D 

mutant shows no inactivation at all. This data suggests that the conformational changes in 

the cage are also critical for voltage-dependent inactivation, which likely proceeds 
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through the common pathway with tension-dependent inactivation involving kink-

stabilizing TM3b-beta interactions. Based on a recent study [106], it is also possible that 

the cage acts as a voltage sensor, in contrast to previous conjectures that charges on TM1 

may be responsible for voltage-dependent gating [42]. It is likely that the driving force 

for closure is electroosmotic water flux [48] which may lead to partial desolvation and 

shrinkage of the cage and would be analogous to the desolvating effect of crowders.  

 

Figure 2.6. Inactivation of MscS under strong depolarizing voltages is obliterated by negatively 

charged substitutions for G168. Responses of a 3 s step-pulse pressure protocol activate the entire 

population of channels in an excised membrane patch. This protocol was repeated at varying voltages 

between +20 mV and +120 mV to demonstrate the voltage-dependent adaptation and inactivation of WT 

MscS at -80 mV and -100 mV. A substitution of alanine at residue 168 did not cause a phenotypic 

divergence from WT MscS in terms of voltage-dependent adaptation. However, this voltage sensitivity is 

completely lost in G168D while G168E shows little adaptation. 

 

Hydrophobic substitutions near the TM3b-beta interface stabilize non-conductive states 

As suggested by the comparison of the inactivated and resting conformations (Fig. 

2.1 and 2.3), disruption of the hydrophobic neighborhood of residues forming the TM3b-

beta domain interface is facilitated by the presence of two polar residues, N117 and 
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N167. Isovolumic replacement of these asparagines with more hydrophobic valines is 

predicted to stabilize the tightly assembled crystallographic state.  

Fig. 2.7 compares the traces of N117V and N167V MscS populations versus WT 

obtained with ramp, pulse-step and pulse-step-pulse protocols. WT shows full activation 

with 1 s ramps, its closure within a 10 s period takes place at tensions near the midpoint 

and it moderately inactivates during a 5 s step and recovers with a characteristic τ of 1.4s 

+ 0.4s (n = 10) (see also Table S1). In the presence of high concentration of crowders 

(10-15%), ramp responses show only partial activation of MscS, whereas the rest of the 

population inactivates silently without opening (red trace). As indicated by measurements 

in the PB113 mscL-positive strain, both valine mutants activate at much higher tension 

than WT (~13 mN/m). N117V shows reduced activation with a 1 s ramp and closes with 

a τ of about 0.1s at tensions close to 90% of saturating tension. This indicates substantial 

silent inactivation and a destabilized open state in this mutant. Under a 5s conditioning 

step of sub-saturating tension, N117V closes very quickly and inactivates almost 

completely. However, this mutant recovers three times faster than WT, with a τ of 0.5 + 

0.02s (n = 3).  N167V could not be readily activated by a 1 s ramp, also indicating 

massive silent inactivation preceding opening. It was impossible to keep this mutant 

population in the open state for longer than 500 ms even under saturating pressure, 

indicating a strongly destabilized open state. Under pulse-step-pulse protocols, N167V 

inactivated silently and completely yet also recovered much more quickly than WT 

MscS, with a τ of 0.6 + 0.2s (n = 3). When these two valine mutations were combined to 

create N117V/N167V MscS, the channel was again nearly impossible to activate with a 

1s ramp and showed complete inactivation under moderate tension (not shown). 
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Figure 2.7. Effects of hydrophobic substitutions for N117 and N167 on the resting, open and 

inactivated states. Above displays three similar protocols for WT MscS and the mutants N117V and 

N167V. (Column 1) Upon being subjected to a 1 s pressure ramp, WT MscS displays its characteristic 

opening and closure, while both N117V and N167V refuse to open. (Column 2) The patches were then 

subjected to a closure protocol similar to those from Fig. 2.4 B, C. N117V and N167V required near-

saturating pressure to hold the channels open long enough to monitor closure and both closed much faster 

than WT MscS. (Column 3) Lastly, the patches were subjected to an inactivation protocol beginning with a 

saturating pulse followed by a conditioning step and ending with several pulses of saturating pressure to 

monitor the process of channel recovery from the inactivated state. The N117V and N167V MscS mutants 

showed more inactivation than WT MscS following the conditioning step yet both mutants recovered 

faster, with a characteristic time of recovery (τ) of 0.5 s + 0.02 s (n = 3) for N117V and 0.6s + 0.2 s (n = 3) 

for N167V. Both of these recovery rate values were lower than that found for WT MscS (1.4 s + 0.4 s, n = 

10). 

 

Silent inactivation from the resting state and quick recovery suggests that in these 

mutants the resting state is conformationally closer to the inactivated state. It appears that 

these transitions occur without substantial separation of TM3b from the beta domain and 

may only involve the separation of TM1-TM2 pairs from TM3. It is also possible that the 
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unstable open state in valine mutants has a different conformation compared to WT, 

which is predicted to have kink-free TM3 helices in the open state [50].  

 

The predicted inactivated state is susceptible to axial compaction coupled to lateral 

expansion of the transmembrane domain.  

The data above show that crowding acts synergistically with tension in driving 

inactivation. However, the question of how tension and crowding perturbations 

communicate within the channel remains. We designed steered simulations to mimic 

crowding pressure acting on the channel from the cytoplasmic side and observe a 

susceptibility of the resting and inactivated states to this type of perturbation. Although 

crowding pressure of smaller macromolecular components might be acting normally to 

the cage surface, larger crowders which are unable to approach the membrane too closely 

would primarily exert pressure along the main axis of the channel toward the membrane. 

In the following simulations we have approximated the pressure acting on the cage 

domain in the direction normal to the membrane. The membrane-equilibrated models of 

the resting and inactivated state were subjected to gradually increasing steering force 

applied to all main chain atoms of the lower hemisphere of the cage directed toward the 

membrane midplane. The force increased exponentially from 0.001 to 0.1 kcal/mol/A. 

These forces were purposely much larger than the actual osmotic forces acting on the 

cage in experiments in order to observe the character of domain interactions in the 20 ns 

time frame accessible in all-atom simulations. Fig. 2.8 shows the initial and 16 ns frames 

of a 20 ns simulation of the resting (A) and inactivated models (B) (after the 16th ns the 

exponentially increasing force was causing non-physiological distortion of the 
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structures). Analysis of these two states indicates that the upward cage displacement 

resulted in sharpened TM3 kinks (at G113) and increased splay of TM1-TM2 pairs, 

stabilizing and somewhat exaggerating  the inactivated state and causing a significant in-

plane expansion.  Steered motion of the cage in the resting model does not lead to such 

distortions and caused an increase in the in-plane channel area only half as large.  Panel C 

shows the changes in the molecule’s geometry with time, tracing the distances between 

the cage and TM domain’s centers of masses in the course of compression. Panel D 

depicts simultaneous changes of the volume that the cage takes in the cytoplasm and the 

average in-plane area of the TM domain. It is clear that the vertical displacement of the 

cage, especially in the inactivated state, is coupled to a large lateral expansion of the TM 

domain. A volume change of ~20 nm3 experienced by the cage is substantial. Since the 

thermal energy of 1 kBT = 4.1 atm ×1 nm3 ,  the pressure that would generate this energy 

over a 20 nm3 compression  path is ~0.2 atm, which in corresponds to osmotic imbalance 

of only ~9 mOsM (Note that 10% w/v Ficoll 400 used in our experiments has osmotic 

pressure of 70 mOsm, meaning that it creates an energy bias toward more compact state 

by ~8 kT).  A coupled expansion of the transmembrane domain by ~8 nm2 under tension 

of 7 mN/m would by itself generate a bias of ~14 kT toward the inactivated state. The 

observed coupling between the two geometrical parameters (Fig. 2.8E, F) appears to be 

the structural underpinning of the enhancement of tension-driven inactivation by 

crowders.  
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Figure 2.8. Results of MD simulations in which the cage domain in the resting and inactivated states 

was subjected to a compressive force applied to the lower half of the cage normally toward the plane 

of the membrane.  Panels A and B show closed and inactivate conformations at start and at eight 

nanoseconds (marked with black arrows). The applied force causes similar displacement of the bottom and 

center of mass (COM) of the cage in both closed and inactivated states (C), however the gate region 

displaces more towards the center of the membrane in the inactivated state (blue line), apparently due to the 

detached state of TM1-TM2 pairs from the  TM3 barrel. Cage volume decreases similarly under 

compression in both conformations, however cage pressing on the transmembrane barrel cause twice as 

larger increase of the in-plane area of the inactivated conformation as it has lipid-facing helices detached 

from the pore-lining TM3 barrel (D), thus favoring the transition from the closed to inactivated state under 

tension. Cage compression and the barrel expansion are illustrated by the contours of cross-section radii 

(E), while overlay of the closed state with no compression and inactivated state under force (F) explain the 

geometry change with inactivation and the reason for the synergy between tension and crowding pressure 

in driving inactivation.  

 

Experiments presented on Fig. 2.4 show that crowding agents also shift activation 

curves to the right, making opening harder.  Based on simulations, crowding pressure 

could stabilize the resting conformation relative to the open by making it slightly wider in 
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the membrane and thus decreasing energy gain from tension on opening. Another 

stabilizing contribution might be increasing the number and stability of TM1-TM2 linker 

contacts with the beta-domains (in particular, D62-R131 salt bridge). Such closed 

conformation would still be capable of opening because of the stable TM2-TM3 contact 

(membrane stress transmission route to the gate), but may open at a slightly higher 

tension, as observed in experiments .The inactivated state is predicted to be more strongly 

stabilized because of increased TM2-TM3 separation which facilitates expansion of 

TM1-TM2 barrel. 

Consistent with the slow kinetics of inactivation (5-10 s at near-midpoint 

tensions), in our 20 ns steered simulation of the resting state we did not observe any 

tendency to switch to the inactivated conformation even at highest axial pressures exerted 

on the cage. Neither had we observed recombination of the beta domain with the TM3b 

helix. Apart from the timescale, it could be also because we did not apply high enough 

tension which is required for triggering the transition as observed in experiments. To 

visualize the transition, it would take a set of specially designed long simulations with 

simultaneously applied tension to the TM domain and pressure on the cage, and possibly 

with enhanced sampling techniques to overcome the energy barriers underlying the slow 

rate of inactivation.  
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DISCUSSION 

 

The experimental measurements of MscS activity in excised patches using advanced 

pressure protocols (Fig. 2.2) show that the channel is exquisitely sensitive to crowding 

agents on the cytoplasmic side, which shift activation curves to higher tensions and drive 

immediate inactivation after the first activating pulse. Since resting MscS can undergo 

two parallel tension-driven transitions, to either the open or inactivated state, crowding 

appears to bias the process toward inactivation. The volume percent of the crowders 

present in our experiments (5-10%) was lower than the typically estimated 

macromolecular excluded volume for E. coli cells grown under standard conditions 

(~30%) [54, 78]. This means that the observed effect is not caused by exaggerated 

experimental conditions and pertains to the physiology of osmoregulation. How can this 

crowding-dependent MscS disengagement be beneficial for bacteria? 

Solute-accessible volume of the cytoplasm (reciprocal to macromolecular 

excluded volume) is a parameter tightly regulated by cells through accumulation or 

release of small osmolytes. Bacterial MS channels perceive excessive internal pressure in 

the form of membrane tension which is generated in the cytoplasmic membrane in a 

curvature-dependent manner according to the law of Laplace (∆p = 2γ/r). The 

cytoplasmic membrane of E. coli is not free but is instead covered by both an elastic 

peptydoglycan layer (cell wall) [107, 108] and the outer membrane which are stressed 

under normal turgor pressure  of ~ 1-3.5 atm [86] and undergo additional distension 

under osmotic downshock. We propose that the presence of an elastic cell wall acting as a 
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‘corset’ stipulates a feedback system that would sense and modify the efflux of small 

osmolytes depending on the degree of cytoplasmic crowding.  

Let us first consider a cell devoid of a cell wall that is initially in osmotic 

equilibrium with the external medium. On moderate medium dilution, hypoosmotic 

swelling will dilute internal osmolytes and reduce the osmotic gradient, but stronger 

swelling and building membrane tension will activate MS channels, which would release 

part of the internal osmolytes and thus relieve the pressure inside. Once this tension drops 

to the sub-threshold level, the channels close. As a result, this cell would gain some extra 

volume after the osmotic down-shock and this sequence cannot result in a return to 

previous levels of small solute accessible volume (illustrated in Fig. 2.9) unless the 

conditions suddenly reverse toward higher external osmolarity. Even if mechanosensitive 

channels remain open after establishing the new equilibrium in a more hypoosmotic 

medium, this would not result in a cell volume decrease. 
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Figure 2.9. A cartoon representation of wall-less and walled cell responses to osmotic downshifts. The 

wall-less cell (above) behaves like an osmometer with release valves, it swells first and opens osmolyte 

release channels and partially returns to its initial state which is close to equilibrium with the new more 

dilute medium. Shrinkage is not expected. The walled cell maintains its volume by generating turgor 

pressure that counters the restoring force of the elastic cell wall. Swelling and opening of MS channels will 

release osmolytes and water, but if the channels remain open for too long, the compression may extrude 

water and shrink the cell beyond its normal volume. Channels that sense the increasing cytoplasmic 

crowding will inactivate and prevent ‘ovedraining’ of the cytoplasm.      

 

MscS, which is located almost exclusively to walled cells [109, 110], functions in 

a different context. Due to metabolite accumulation, bacterial cells typically have 

relatively high internal hydrostatic (turgor) pressure [86]. This pressure acting on the 

cytoplasmic membrane from the inside is counteracted by the compressing force from the 

cell wall and this balance maintains cell volume and shape [111].  Therefore, not only the 

internal volume but also the fraction occupied by macromolecules is the result of fine 

balance between the external compression and turgor created primarily by small 

metabolites. When in special experiments intracellular components were chemically 

washed away, the sacculus shrunk substantially [108]. A qualitatively similar effect is 
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expected in the event of osmotic membrane permeabilization. When MS channels are 

open under osmotic downshock, the release of osmolytes and simultaneous water efflux 

are greatly assisted by the elastic recoil of the peptidoglycan. A prolonged action of 

channels in this case can potentially let out more osmolytes than needed resulting in 

excessive condensation of the cytoplasm. A feedback system that would detect excessive 

crowding and in a timely fashion disengage the channels will prevent cell shrinkage and 

cytoplasm ‘overdraining’. The behavior of MscS in the presence of crowders described 

above clearly indicates the presence of such feedback.   

Our data show that the crowding-sensing mechanism increases the rate of tension-

driven inactivation which involves the hollow cytoplasmic domain (cage). Searches for 

conformations that satisfy the presence of functionally important D62-R128/R131 salt 

bridges [96]  resulted in a new arrangement of helices in the transmembrane domain, 

which straightened the G113 crystallographic kink and led to the separation of TM3b 

segment from the beta-domains in the cage. This conformation characterized by tight 

interactions between the peripheral (TM1-TM2) helices and the gate region (TM3) was 

assigned as the resting state, whereas the splayed crystal-like model was considered 

inactivated. The detachment of the beta domain from TM3b resulted in a slightly more 

prolate conformation of the cage as compared to the inactivated state with beta domains 

attached to TM3b (Fig 2.1A and B). Subjected to steered compression in MD simulations 

(Fig. 2.8), the two conformations exhibited similar compliances in the axial direction, but 

very different lateral expansions of the transmembrane domain. These suggested that 

when the closed channel experiences tension and starts switching from the resting to the 

inactivated state [90], not only does it expands in the plane of the membrane, but also 
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becomes more receptive to crowding forces acting on the cage. The simulations strongly 

suggest an allosteric interplay between the geometries of the transmembrane and 

cytoplasmic domains which makes the bulk parameter of macromolecular pressure inside 

the cell act synergistically with the interfacial parameter of membrane tension.  

How does this coupling occur? Our data suggest that crowding pressure by itself 

(in the studied range) does not produce inactivation, but moderate tension applied to the 

peripheral TM helices is required to trigger the transition. Under super-threshold tension 

and low/no crowding pressure the channel willingly activates. When crowding increases, 

the resting state is stabilized and the activation threshold increases. However, when this 

threshold is reached, tension diverts the population into the inactivation path (Fig. 2.2 and 

S1). We have pinpointed several loci in the channel that change in the course of 

inactivating transition. The major event is kink formation at G113 [50]  which 

accompanies detachment of the TM1-TM2 pairs from the gate and produces lateral splay, 

which in turn increases the ‘footprint’ of the channel inside the membrane [90]. The 

G113-kinked conformation of TM3s is then critically stabilized by association with the 

beta domains in the cage. This last step is supported by the effect of the contact-

destabilizing mutation G168D (Fig. 2.5), the mutant which barely inactivates and is 

practically insensitive crowder-induced inactivation. Importantly, G168D MscS does not 

inactivate with strong depolarizing voltage either (Fig. 2.6), indicating that voltage-driven 

inactivation [112] [51] proceeds through the same pathway as the crowder-assisted 

inactivation. According to the inflected traces in Fig. 2.6, it may not be not voltage per se, 

but more likely ionic current and associated electroosmotic efflux of water [48] that tends 

to reduce the internal volume of the cage and collapse TM3s, which might be analogous 
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to the effect of crowders. Previous studies [50, 102] have shown that this buckling of 

TM3 at G113 (and thus inactivation) can be inhibited via a G113A substitution, which 

increases the helical propensity at that point. The fact that G113A is more susceptible 

than G168D to crowder-induced inactivation indicates that the association of TM3 and 

the beta domain not just a major requirement of inactivation but can impose a kink in 

TM3 even in the presence of G113A. 

In steered simulations under normal force mimicking the effect of crowding 

pressure we observed a clear difference in the behavior of the modeled resting and 

inactivated states. In the latter case, the detachment of the TM1-TM2 pairs from TM3s 

and lateral barrel expansion is reinforced by the normal pressure. Thus, under conditions 

where both a normal force (crowding) and membrane tension are applied, the inactivated 

state of the channel is favored. 

The effects of mutations stabilizing the TM3b-beta association were more 

complex. These mutations strongly destabilized the open state even at saturating tensions 

leading to speedy inactivation in the absence of crowders. The recovery of these mutants 

from the inactivated state was unexpectedly fast (Fig. 2.7), suggesting that the closed and 

inactivated states in these mutants are more similar than in the WT and the 

conformational path is shorter. The modeling predicted that even with the stable G113 

kink imposed by stable association with the beta domain the TM1-TM2 loops can salt-

bridge to the equatorial arginines (R128 or R131) and the helices themselves can form a 

buried contact with the gate such that the channel can open, although at tensions higher 

than normal. The effectively ‘shorter’ pathway between the closed and inactivated states 
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in these mutants is likely due to absence of the vertical TM3 barrel displacement impeded 

by the stabilized G113 kinks. 

In conclusion, the fraction of cell volume allocated for macromolecules is a 

parameter tightly regulated by cells through accumulation or release of small osmolytes. 

We have only begun to understand mechanisms that regulate the crowding-dependent 

transport of osmolytes across the membrane.  In the present work we show that the 

mechanosensitive channel of small conductance, MscS, the primary turgor-regulating 

valve in E. coli is also one of the sensors of internal crowding.  Following the earlier 

observations by the Kubalski group [57, 63, 95] we have characterized MscS as the first 

sensor of cytoplasmic crowding and explained its adaptive inactivation mechanism in the 

context of a small cell encased in an elastic peptidoglycan sacculus. Although not all 

MscS homologs found in other species inactivate [113, 114], this mechanism has 

implications for the entire family of MscS-like channels carrying similar cytoplasmic 

‘cages’ which are structurally connected to the gate through the pore-lining helices. This 

domain, previously considered as a pre-filter [115], was recently shown to impart some 

ion selectivity to MscS and its homologs. Our data now provides the first conjecture as to 

why MscS-like channels are ubiquitously distributed in all domains of life characterized 

by cell walls and a reliance on turgor for the maintenance of their volume, shape and 

mechanical strength.   
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Abstract  

Membrane permeability is a desired property of most newly synthesized drugs, 

but there have been difficulties quantifying direct drug partitioning into native 

membranes. To assess forces that drive the molecule into and across the membrane, here 

we compare surface activity, affinity to phospholipid monolayers and partitioning into the 

inner E. coli membrane for three synthetic analogs of platensimycin. Biosynthetic 

production of this new antibiotic targeting prokaryotic and eukaryotic beta-ketoacyl 

synthases is costly, driving the development of synthetic analogs, among which 

dialkylamine compounds were found promising. For three analogs of platensimycin 

synthesized with identical dihydroxyl benzoate pharmacophores but different sidechains, 

biological activity varied by more than two orders of magnitude.  To test whether the 

activity of some of them is limited by low membrane permeability, we calculated their 

polarity, measured surface activity and ability to insert into phospholipid monolayers. We 

found that affinity to phospholipids for all three compounds directly correlated with the 

ability to intercalate into the native bacterial membrane gauged by activation curve shifts 



59 

 

of a re-engineered mechanosensitive channel MscS used as a lateral pressure sensor. The 

highest propensity toward membranes was observed for QD-11, the analog with two 

myrtenal sidechains, which exhibited the strongest antibacterial effect. Discrepancies 

between surface activity, monolayer and patch-clamp measurements emphasize different 

contributions to the total thermodynamic force driving membrane partitioning and 

permeation for different substances.  We discuss the capacity of endogenous tension-

activated channels to detect asymmetric partitioning and permeation of exogenous 

substances into the native bacterial membrane. 
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Introduction  

Permeation through the membrane is the first step in the mechanism of any drug 

that targets intracellular components or processes. When developing high-affinity 

pharmacophores, drug designers also try to balance the overall hydrophobicity of the 

drug that would confer direct permeability through the lipid bilayer without any special 

transport mechanisms. Generally, hydrophobicity measured as an oil-water or octanol-

water partitioning coefficient reasonably correlates with membrane solubility and 

permeability [116]. While these equilibrium measurements of two-phase partitioning take 

a long time, reverse phase HPLC on hydrophobic media [117]  gives a faster answer but 

is still only an approximation. An uneven distribution of polar and apolar groups defines 

amphipathicity of the substance which is manifested as propensity toward interfaces and 

quantified as surface activity at the air-water interface [118]. This parameter was also 

found to be a good corollary of the general membrane and blood-brain barrier 

permeability [119]. Neither an oil-water system nor an air-water interface accurately 

represent the membrane or properly account for drug-phospholipid interactions. The 

more recently developed system based on phospholipid -impregnated filters (PAMPA) 

[120] does mimic membrane composition but the presence of bulk solvent inside the 

filter does not precisely recreate the bilayer structure. Lipid monolayers previously used 

to assess affinities of anesthetics [121, 122] represent only half of the membrane with an 

artificially controlled lateral pressure and area per lipid, both of which are important 

parameters for partitioning. Direct partitioning into native cellular membranes can be 

done in a straightforward fashion with either radioactive, spin-labeled or fluorescent 

compounds, but not with any substance of interest. 
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Early patch-clamp recordings in giant bacterial spheroplasts indicated that 

amphipathic substances known to deform erythrocytes (such as chlorpromazine or 

trinitrophenol) due to unilateral intercalation into the lipid bilayer [123, 124] also change 

the open probability of bacterial mechanosensitive channels. This observation was 

initially interpreted as a curvature-inducing effect of amphipaths. Later analysis 

suggested that, independent of the spontaneous curvature the substances induce, insertion 

of a new material into one leaflet will lead to a redistribution of tension between the 

leaflets which may explain the observed changes of channel activity [125]. When MscS, 

the mechanosensitive channel of small conductance from E. coli, was first crystallized 

[42] the cytoplasmic position of the gate relative to the mid-plane of the membrane 

suggested a greater sensitivity to tension/lateral pressure in the inner leaflet as opposed to 

the outer. This notion was fist supported by experiments involving an asymmetric 

addition of trifluoroethanol [69], which shifted activation curves to the right when 

presented to the cytoplasmic side and, conversely, to the left when incorporated into the 

extracellular leaflet.  A comparative study of three esters of parabenzoic acid (parabens) 

indicated that the magnitude of right shift of the MscS activation curve reflected the extra 

tension needed for opening and closely correlated with the lateral pressure exerted by 

intercalation of these substances into the Langmuir monolayer formed of bacterial lipids 

[70]. The transient character of activation curve shifts leading to a return to the original 

position was interpreted as a time-dependent redistribution of intercalating substances to 

the opposite leaflet (i.e. permeation) and thus a restoration of lateral pressure symmetry. 

A subsequent study of autoinducers (AI-1, AI-2, indole) in these two systems confirmed 
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the ability of MscS to detect lateral pressure changes caused by the permeation of 

strongly amphipathic quorum signaling molecules across the bacterial membrane [71].  

In the present study we further develop this approach. We optimize MscS as a 

sensor of lateral pressure asymmetry by introducing a mild gain-of-function mutation that 

increases its sensitivity and then focus on the membrane partitioning of platensimycin 

and three synthetic analogs. This broad-spectrum antibiotic targets beta-ketoacyl 

synthases (FabF/B) in many prokaryotes and is active against eukaryotic fatty-acid 

synthesizing enzymes as well [126-128]. The high cost of its biosynthetic production 

drives the development of synthetic analogs, among which dialkylamine compounds 

were found most promising. For three analogs of platensimycin synthesized with 

identical dihydroxyl benzoate pharmacophores but different sidechains, biological 

activity varied by more than two orders of magnitude [129]. We hypothesize that the 

inactivity of some of them might be caused by low membrane permeability. To address 

this property, we calculated polarity, measured surface activity and determined the ability 

to insert into phospholipid monolayers and native bacterial membranes for each 

compound. One specific analog with two myrtenal sidechains stands out in terms of its 

ability to intercalate into membranes and shows the highest antibacterial activity. 

However, this correlation does not hold for other compounds, suggesting that not only 

membrane permeability but other factors define the biological activity of these analogs.   
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Materials and Methods 

 

Synthesis of Platensimycin analogs  

Platensimycin analogs were synthesized following published procedures [129, 130]. 

Briefly, compound 1 was reacted with excess aldehyde and sodium cyanoborohydride to 

form ester 2. The ester group in compound 2 was hydrolyzed into the carboxylic acid 3, 

using sodium hydroxide, followed by hydrochloride acid.  
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Scheme 3.1. Synthesis of platensimycin analogs. a) Aldehyde (3 equiv), NaCNBH3 (1.5 equiv.), HOAc (3 

equiv.), EtOH, rt, 1.5 h; b) NaOH (4 equiv.), EtOH/H2O (v/v) = 3/1, 40 oC, 7 h; c) 6M HCl aq. (20 equiv.), 

40 oC, 6h. 

 

 

Computations of polarity and partial charges 

 

Optimized structures, electrostatic potential maps and partial charges were 

obtained using Gaussian 09 [131] at B3LYP/6-31G(d) level. Solvent effect (water) was 

taken into account using a polarizable continuum model (PCM). EPIWEB 4.1, ALOGPS 

2.1 and molinspiration software were used to calculate the octanol-water partition 

coefficient (Kow) and polar surface area. 

 

 

Tensiometry and Langmuir monolayer experiments 

 

Surface tensions of subphase solutions of varying concentrations of platensimycin 

analogs were quantified using the Wilhelmy method with a piece of filter paper 

(Whatman, No. 1, 10.5 mm wide and 0.25 mm thick) used as a probe.  The subphase 
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buffer consisted of 150 mM NaCl and 25 mM Tris titrated to a pH of 7.0 with NaOH. 

The pressure sensor (model 601, NIMA, Coventry, UK) was calibrated using a 100 mg 

weight. Water surface tension was measured to be −72 mN/m, after calibration.  The 

sensor was hence zeroed, with further surface tension readings giving positive values for 

surface pressures. The surface activity and values for molecular area at the surface of the 

air-water interface (As),  the partition coefficient at the air-water interface  of the surface 

active molecule (KAW), and  the  membrane partitioning coefficient (Kmem), were 

determined as described previously [71, 132]. 

All monolayer experiments were performed in a dust free enclosed bench. All 

Langmuir measurements were done with a two-barrier rectangular 22 × 6 cm trough 

(Kibron MicroTrough XS) utilizing a Dyneprobe metal alloy needle as the Wilhelmy 

plate. Lipids used were Escherichia coli total polar lipid extract from Avanti Polar Lipids 

(Alabaster, AL) dissolved in chloroform or hexane to a final concentration of 0.2 mg/ml. 

Distribution of lipids onto the subphase was accomplished using a gastight 50 µl 

Hamilton® syringe. The subphase buffer was identical to the tensiometry buffer. Pressure 

– area isotherms (monolayers) were performed at room temperature (~ 20 °C) from 100 

cm2 to 20 cm2 at a barrier rate of 18 cm2/ min. All concentrations of the analogs were 

measured at least three times. 

 

Strains, spheroplast preparation and electrophysiology 

 

A pB10b vector was used to house and express the mscS gene in the triple-

knockout E. coli strain MJF465 (mscS-, mscL-, mscK-). The A98S MscS mutant generated 

and characterized previously [71] was chosen for its higher sensitivity to inner leaflet 

drug partitioning. 
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Spheroplasts were generated as described previously [36, 51, 100]. The 

experimental bath solution contained 400 mM sucrose, 200 mM KCl, 50 mM MgCl2, 5 

mM CaCl2, and 5 mM HEPES and was titrated to pH 7.4 with KOH. Membrane patches 

were obtained on borosilicate glass pipettes and recorded at 30 mV pipette voltage set by 

a microelectrode amplifier. The midpoint of activation for channels in each patch was 

determined at two-minute intervals for the duration of the experiment via a 1 s ramp of 

saturating pressure. Analogs of platensimycin were pre-diluted in either ethanol or bath 

solution and perfused into the bath to achieve the desired concentration. Negative 

pressure (suction) was applied with the HSPC-1 high speed pressure clamp device from 

ALA Scientific. Programming of the pressure protocols and data analysis were performed 

with the PClamp10 suite (Axon Instr.). The principle of lateral pressure measurements 

using two experimental systems, lipid monolayers and patch-clamp, is illustrated in Fig. 

3.1.   
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Figure 1. Experimental systems used for studies of lateral pressure perturbations. (A) Langmuir 

monolayer with amphipathic substance in the subphase. (B) A set of compression isotherms obtained with 

E. coli polar lipids in control and in the presence of varying concentrations of butyl paraben. The upward 

shift of isotherm signifies additional pressure in the film due to intercalation of paraben. (C) Excised patch 

configuration for electrical recording of MscS population currents evoked by pressure ramps. Applied 

negative pressure to the pipette (suction) produces tension in the patch membrane according to the law of 

Laplace. The intercalating paraben exerts additional lateral pressure in the inner leaflet of the patch 

membrane and shifts the activation curve to the right (D). Cartoon depicting the intercalation of parabens 

into the inner leaflet of the bilayer and exerting a lateral pressure on MscS. 

 

 

Interfacial partitioning data analysis 

 

The analysis of all interfacial adsorption data was performed in the general 

framework of Gibbs equation 

   

 

where d represents a small change in surface pressure, i is surface excess of component 

i and di is the small change of chemical potential of that component. For one adsorbing 

component, the Gibbs isotherm takes the form  

 

 iidd 

CRTd ln
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where surface excess is defined as the surface density of molecules = 1/(NAAS),  NA is 

Avogadro’s number and AS is the area requirement for the molecule at the surface. 

Generally,  is not constant, however, beyond a certain concentration in the bulk,  

assumes a constant value of ∞ and in that range of concentrations a linear relationship 

holds:  

 

 

 

To evaluate the partition coefficient for an air-water interface (KAW), the integral form of 

this equation which was introduced by Szyszkowski and applied in Gerebtzoff et al. [133] 

was used:  

 

 

 

As was shown in Suomolainen 2004 [119], the x-intercept of the fitting line of 

experimental (lnC) curve would approximate the inverse partitioning coefficient 1/KAW.  

The value of the bulk-monolayer (Klip) partitioning coefficient was determined in a 

similar way, using the deviations of surface pressure of monolayers measured at constant 

area. Initially, we attempted determining (C) starting from the monolayer-bilayer 

equivalence pressure of 40 mN/m achieved at 68.5 Å2/molecule [70]. However, at this 

compression, strongly intercalating substances produced pressure shifts beyond the 

collapse pressure of 45 mN/m, which forced us to score from lower pressures 

achieved at 72 Å2/molecule.  The bulk-membrane partitioning coefficient (Kmem) was 

estimated from the values of relative increase in MscS activation pressure midpoint (p0.5) 

measured in patch-clamp experiments at different concentrations of intercalating agents.  

 

CddRT ln/)/1( 

)1ln(   CKRT AW
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Results 

 

Optimizing MscS as a lateral pressure sensing device 

 

Previous studies of paraben partitioning into the inner E. coli membrane using 

wild-type MscS as a lateral pressure sensor [70] revealed direct correlations between the 

shifts of pressure midpoints (p0.5) for MscS activation curves measured in patch-clamp 

experiments and the additional surface pressure created by the same concentrations of 

substances due to intercalation into lipid monolayers. This suggested that the pressure 

sensor of the Langmuir apparatus and MscS detect the same parameter of lateral pressure 

change. In contrast to the Langmuir system, MscS senses not the absolute value of lateral 

pressure, but rather the difference in pressures between the membrane monolayers (Fig. 

3.1). The drawback of the original patch-clamp system employing WT MscS expressed in 

the MJF465 (mscS-, mscL-, mscK-) E. coli strain was that positive shifts of activation 

curves required application of higher tensions, which destabilized the patches. Another 

problem was the massive amount of MscS inactivation upon exposure to the 

concentrations of intercalating agents required to produce large shifts [71].  

We explored the A98S gain-of-function mutant of MscS and found it a more 

suitable sensor. In pressure ramp experiments this mutant activates earlier, but apparently 

has the same tension dependency of inactivation as WT [102]. Because the two 

competing processes of opening and inactivation both begin in the resting state (and open 

channels do not inactivate), at lower tension thresholds opening becomes a preferred path 

and these mutants generally do not inactivate [134].  The serine-for-alanine substitution 

hydrophilizes the outer portion of the hydrophobic pore (Fig. 3.2A,B).  As a result, this 

mutant activates at 5.8 mN/m (p1/2) versus 7.8 mN/m for WT MscS [134], and shows 
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reduced inactivation.  We tested this mutant against WT with a cytoplasmic addition of 

0.6 mM paraben, which has been characterized previously [70]. The typical activation 

curves (normalized current versus pipette pressure) measured with pipettes of equal size 

for the two channels are shown in Fig. 3.2C. Not only is the absolute shift of activating 

pressure (p0.5) greater for A98S, but the normalized shift averaged for six independent 

patches was 41 + 6% for the mutant versus 14 + 4% for WT. This illustrates the higher 

sensitivity of the mutant to a given lateral pressure perturbation. 

 

 
Figure 3.2. The A98S mutation of MscS increases the hydrophilicity of the pore region. The gating of 

MscS is defined by a dewetting transition from a hydrophobic pore in the closed state (A) to a hydrated, 

conducting channel. A serine substitution at position 98 pre-hydrates the closed pore of MscS, effectively 

shrinking and shifting the gate toward the cytoplasmic side of the membrane (B). A patch-clamp 

experiment showing the activation curve in response to a 1 s ramp of pressure (C) for both WT (black 

traces) and A98S (purple). Upon exposure to 0.6 mM butyl paraben, the activation curve of both patches 

shifts to the right, with the greatest change seen for A98S. 

 

 

The set of three synthetic analogs of platensimycin  

 

All of the platensimycin analogs described herein share the same benzoic acid 

pharmacophore and ethylene linker, but varied at the side chains. Figure 3.3 presents the 

structures of platensimycin and three analogs. The amino group in compound 1 (Scheme 

3.1) facilitated the easy installation of alkyl and aryl groups of different hydrophobicity 

via reductive amination. The easy installation of alkyl groups on compound 1 contrasts 
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with the difficult synthesis of the tetracyclic core in platensimycin, which involved more 

than 10 synthetic steps and multiple chromatographic separations. QD-06, QL-03 and 

QD-11 (myrtemycin) were the first generation of platensimycin analogs previously 

reported [129].  QD-11 contains two bulky myrtenyl rings, QD-06 has two simple linear 

butyl chains and QL-03 contains only one myrtenyl ring. Partial charge distribution 

calculations revealed that in platensimycin, polar area constituted 36% of the molecule 

and that partial charges were largely distributed around the benzoic acid and partially on 

the oxygen atom of the tetracyclic ring. In QD-06, QD-11 and QL-03, partial charges are 

mainly on the benzoic acid. QD-06 and QD-11 are both more hydrophobic than 

platensimycin, with the percentage polar areas of 30% and 25% respectively (compared 

to 36% for platensimycin). The calculated hydrophobicity of QL-03 (percentage polar 

area of 34%) is similar to platensimycin. In water, the two side chain groups of QD-06 

and QD-11 are predicted to form an open conformer and the aliphatic chains of QD-6 are 

predicted to be relatively easily solvated. All analogs were prepared, verified by NMR 

and visualized by Min Guo. 

 

 
 

Figure 3.3. The chemical structures and calculated partial charges and the preferred conformations 

in water for platensimycin and three analogs (Gaussian computations by Min Guo). 
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1 2 3 4 5 6 7 8 9 

Compound 

 

Percent Polar 
area 

ALOGPS 
logKOW 

Molins-

piration 

logKOW 

Average 
logKOW 

logKAW 

(tensiometry) 
log Klip 

(monolayer) 
logKmem 

(patch-clamp) 

MICa, 

g/ml 
 

QD-11 25% 7.44 6.067 6.75 6.09 7.59 6.09 4 

QD-06 30% 3.52 3.702 3.61 4.07 5.60 5.54 128 

QL-03 34% 3.79 2.852 3.32 4.04 5.95 4.52 >250 

PL 36% 3.32 2.844 3.08 4.63 6.49 4.82 2-4 

 

Table 3.1. Calculated and experimentally estimated partitioning parameters for platensimycin and 

its three analogs, compared with the anti-microbial activity.  The first three columns are computational 

predictions by two programs and their average of the oil-water partitioning coefficient (KOW) based on the 

exposed polar area of the molecule. The air-water (KAW) partitioning coefficient was obtained from 

tensiometry. The lipid and membrane partitioning coefficients (Klip and Kmem) were obtained from the x-

intercepts of lateral pressure versus concentration and midpoint shift (∆p1/2) versus concentration curves 

(Fig. 3.4). MIC represents the minimal inhibitory concentration for these substances determined with 

Staphylococcus aureus, Streptococcus agalactiae and Bacillus subtillis. 

 

 

 

Tensiometry  

 

The comparison of all data collected using tensiometry at the air-water interface, 

Langmuir technique and patch-clamp measurements with A98S MscS is summarized 

Figure 3.4.  The resulting estimations of air-water (KAW), lipid monolayer (Klip) and 

membrane (Kmem) partitioning coefficients for platensimycin (PL) and three synthetic 

analogs are presented in Table 3.1 along with the predicted KOW determined by the 

ALOGPS 2.1 and molinspiration software. Below we provide some details and 

illustrations on how these data were obtained.  

Tensiometry experiments were straightforward for QD-6, for which a decrease of 

surface tension was observed only in the sub-millimolar range, producing a linear 

(logC) dependence and a logKAW of about 4.0 (Fig. 3.4, top). QL-3 and especially QD-

11, containing one and two myrtenal rings, were considerably more surface-active with a 

logKAW of 4.04 and 6.09, respectively. At higher concentrations, their Gibbs isotherms 

visibly rolled off, signifying micelleation/aggregation in water. Platensimycin, the most 
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hydrophilic substance, produced no visible effect on surface tension up to 30 M. The 

tensiometry data generally agree with computed hydrophobicities with the exception of 

QL-3, which appeared more 

hydrophobic than predicted. 

 

 
 

 

 

 

 

Figure 3.4. Shifts of the MscS activation 

curve correlate to changes in surface 

tension and lateral pressure in Langmuir 

monolayers. The changes in surface tension 

(∆γ), lateral pressure (∆π), and activation 

midpoint of MscS (∆p1/2) are plotted against 

the logarithm of concentration. The plots on 

the left represent those obtained from 

platensimycin (PL), QD-6, QL-3 and QD-

11. The straight lines represent fits of linear 

parts of the curves where x-intercept 

corresponds to the inverse partitioning 

coefficient in each system (see Methods). 

 

 

 

 

 

 

Langmuir monolayer experiments  

The families of isotherms for four compounds (platensimycin, QD-11, QD-6 and 

QL-3) are shown in Fig. 3.5. The upward-right shifts signify swelling of the film with 

intercalating substances. Note that the concentrations of substances which produce 

detectable shifts vary within 2 orders of magnitude. QD-11 characterized with the highest 

affinity is ‘visible’ at 10-7 M, whereas QD-6 produces appreciable shift only at 10-5 M. 

The fact that the right ends of the curves are elevated relative to control curves indicates 

that the antibiotics willingly partition into the rarified (expanded) lipid film. However, 
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with compression, as surface pressure approaches the monolayer-bilayer equivalence 

region (35-40 mN/m), substantial part of the intercalated substance partitions back to the 

subphase. At the highest studied concentrations, all substances except for platensimycin 

remain in the film all the way to the collapse (denoted by arrows), which is 3-7 mN/m 

above the monolayer-bilayer equivalence pressure. This suggests that these substances 

have substantially high propensity toward lipids and will be able to make their way 

(wedge) between the lipids in the native membrane that exists at the same density. This 

pressure-dependent shift in the monolayer-bulk equilibrium has been reported for other 

substances [135-137]. All monolayer experiments were performed by Anthony Yasmann. 

 

 

 
 
Figure 3.5. Langmuir pressure-area (p-A) isotherms for platensimycin and three analogs. Green 

curves in all cases are control isotherms taken without intercalating agents. The upward-right shifts of p-A 

curves with concentration indicate intercalation of the amphipathic substance from the subphase and 

‘swelling’ of the monolayer. The dashed lines denote monolayer-bilayer equivalence pressure (40 mN/m) 

and the molecular area of 72 Å2 at which the pressure elevation was scored.     
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The sections of these families of isotherms taken at 72 Å2 per molecule produced 

pressure shift-concentration dependences (Fig. 3.4B) which were analyzed using 

Szyszkowski formalism [133]. The fits produced apparent logKlip of 5.6 and 6 for QD-6 

and QL-3 (Table 3.1). QD-11 was an exception, generating comparable shifts at 10-6 M 

with an estimated logKlip of 7.59. These values demonstrate that Klip is at least one order 

of magnitude above KAW values, indicating favorable interactions of platensimycin 

analogs with lipids in the monolayer as compared with the bare air-water interface. 

Remarkably, the natural antibiotic was characterized with relatively low propensity 

toward the monolayer, showing essentially no surface activity in this concentration range.   

 

Patch-clamp investigation of platensimycin insertion and its analogs 

 

The responses of isolated patches containing multiple A98S MscS channels to 

linear pressure ramps produced sigmoidal activation curves with saturation. The 

saturating current estimates the population of channels ranging from 100 to 250 in a 

typical patch. All tested substances shift the position of activation curves to the right. The 

examples of curve shifts for platensimycin and three analogs are shown in (Fig. 3.6). 

Platensimycin produces the highest relative shift of the curve at 0.1 mM concentration 

and, as seen from the level of saturation, causes inactivation of a substantial part of the 

channel population. 

The pressure ramps were applied every 2-5 min and the p1/2 shifts were plotted as 

a function of time. The slightly smoothed time courses of p1/2 for four tested substances 

are shown in Fig. 3.6. With QD-11, each sequential addition (arrows) leads to a rapid 

right shift with a gradual return toward the initial position with the time course of ~30 

min. This relaxation of the initial shift signifies equilibration of the lateral pressure 
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profile suggesting permeation of the intercalated substance to the other side of the 

membrane.  For QD-11, the process of initial unilateral insertion into the membrane 

appears to be 5-6 times faster than the process of flipping across the membrane. QD-6 

and QL-3 show similar time courses of insertion, but less pronounced relaxation at each 

addition. Platensimycin and its analog QD-11 show not only faster insertion at the highest 

bulk concentration (0.1 mM), but also much faster relaxation. This suggests that massive 

intercalation in one leaflet generates tension in the opposite leaflet, which likely 

generates a strong large lateral pressure gradient across the membrane thus driving 

permeation. 

 
Figure 3.6. Ramp responses of A98S MscS following the addition of platensimycin and its analogs 

and the time dependencies of the resulting midpoint shift. The shift of the activation curve of A98S 

MscS toward higher tension after exposure to the denoted compounds is shown (left column). The 

activation midpoint of the curves (p0.5) were then plotted against time (right column). Arrows indicate the 

point in time at which the given concentration of the compound was added to the bath. 
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The dose-response curves constructed from cumulative up-shifts of p1/2 are shown 

in Figure 3.4C for all four substances. The intercepts of fitting lines produce logKmem 

between 4.5 and 6, with the highest affinity for QD-11. The patch-clamp data (logKmem) 

is consistent with the monolayer data (logKlip) for the analogs, with the exception of QD-

11, for which the indicated logKlip was considerably higher. One possible explanation is 

that the bulky myrtenyl groups probably anchor the molecules during monolayer 

compression and thus preventing easy exchange and equilibration. 

The last column in Table 3.1 presents minimal inhibitory concentrations (MIC) 

for all of these substances assayed with several gram-positive and gram-negative bacteria 

[129]. Remarkably, platensimycin which is the most biologically active compound, 

resides in the middle of the hydrophobicity range and shows one of the lowest Kmem 

among its analogs. The second most active compound is QD-11, which is shows the 

highest surface activity, propensity to phospholipids and affinity for the native bacterial 

membrane. As illustrated by the data in Table 3.1, the absence of a direct correlation 

between the ability to partition into the membrane and biological activity for this set of 

platensimycin-like compounds with identical pharmacophores indicates that our initial 

hypothesis of the defining role of membrane permeability was too simplistic and other 

factors need to be taken into account.  

 

Discussion 
 

A successfully engineered drug or synthetic analog of a natural, biologically 

active compound must satisfy many other criteria besides its required affinity to the target 

molecule. If the target is inside the cell, then the drug must be sufficiently permeable 
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through the cell envelope. Small hydrophilic molecules may be taken up via poorly 

specific nutrient transport systems. However, a more reliable strategy is to make 

substances moderately lipophilic or amphipathic such that they would still be sufficiently 

water-soluble and at the same time directly permeable through the lipid bilayer. 

Permeability should be high enough to overwhelm endogenous efflux pumps (MDR 

proteins) which many malignant cells or pathogenic microorganisms possess or acquire. 

If the drug is too hydrophilic, it may not go through the membrane and be simply 

excluded from the cell. Conversely, if the drug is too lipophilic, it will be insoluble and 

hard to deliver. And even if the delivery scheme works well, the substance may start 

accumulating in the membranes or be sequestered in other lipid reservoirs. Therefore, 

inactivity of some engineered drugs with perfectly computed pharmacophores may be 

due to one of these problems posed by ‘non-specific’ interactions with membranes. For 

this reason, development of methods that could trace substances of interest directly in the 

membranes of their target organisms is a timely task. These methods may help tuning the 

balance between hydrophobic and hydrophilic properties of a new drug, and find proper 

distribution of polar and apolar groups for optimal solubility and membrane partitioning.   

Mechanosensitive channel MscS, naturally embedded in the cytoplasmic 

membrane of E. coli (with homologs in most known bacteria), readily detects partitioning 

of amphipathic drugs in the cytoplasmic leaflet of the membrane. The mild gain-of-

function mutant A98S used in this work is a more sensitive sensor of lateral pressure 

asymmetry than WT MscS, activates at lower tension and exhibits a larger fractional shift 

of p0.5 upon asymmetric intercalation of a well characterized test substance butyl paraben 

(Fig. 3.2). This technique provides a comparable, but somewhat lower estimation of drug 
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affinity to the native bacterial membrane compared to the Langmuir monolayer 

technique. By no means can this application of the patch-clamp technique be considered a 

‘high-throughput’ approach since the patches are less stable in the presence of 

amphipaths, and a skilled patch-clamper may collect one or two complete datasets (Fig. 

3.6) on a good day.  Yet, the technique can play its role in the ‘diagnostics’ of why a 

promising drug that displays a high affinity to its target in the test tube becomes inactive 

in in vivo experiments.  

As illustrated in a cartoon style in Fig. 3.1, the channel detects the difference in 

pressures/tensions between the leaflets, but not the absolute value of lateral pressure. The 

channel gate is approximately at the level of phosphates of the inner phospholipid leaflet 

of the membrane and the additional lateral pressure created by the substance intercalating 

in that leaflet (relative to the pressure in the extracellular leaflet) requires extra tension to 

activate the channel. As the concentration of intercalating substance is increased, p0.5 

progressively increases. We presume that the intercept of the p0.5 curves with the 

concentration axis reasonably approximates 1/Kmem, but we cannot interpret the slope of 

the curve the same way we interpret the slope of Gibbs isotherms as molecular area [132] 

(Methods).  On one hand, this can be considered a drawback which precludes quantitative 

thermodynamic analysis; however it is this ‘differentiating’ property that permits the 

detection of the redistribution of the intercalating substance between the two leaflets, i.e. 

the process of permeation.  The ‘flipping’ across the bilayer results in an equilibration of 

pressure profiles on both sides of the membrane and this is read by the system as 

midpoint relaxation back to its initial value. The kinetics of permeation appear to be 
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slower than the process of initial unilateral incorporation, and the exact time course of 

permeation is characteristic of each individual substance.   

In the present work we have characterized platensimycin and its three synthetic 

analogs in terms of partitioning to the air-water interface, a phospholipid monolayer of E. 

coli lipids and the native E. coli membrane. The simple ranking by the percent polar 

surface area emphasizes the higher hydrophobicity of QD-11 but does not make a large 

distinction between the three other substances (Table 3.1, column 2). The separation of 

polar and apolar areas as well as curvatures of solvated regions are taken into account in 

the algorithms used in EPIWEB 4.0, ALOGPS 2.1 and Molinspiration software (columns 

3 and 4). The data summarized in Figure 3.4 and Table 3.1 shows that all three 

experimental techniques give comparable but consistently different partitioning 

coefficients in the three systems. These differences emphasize the different components 

of the thermodynamic force driving the substances out of the aqueous phase and into the 

membrane: hydrophobicity, ampipathicity (dictating propensity toward the interface as 

opposed to continuous bulk phase) and favorable interactions with the phospholipids. 

Estimations of oil-water partitioning (logKow), from algorithm-based hydrophobicity 

computations surprisingly give a reasonable estimation for QD-11, the most hydrophobic 

substance, but are not accurate predictors of surface activity and membrane partitioning 

for less hydrophobic substances.   

Estimations of logKAW based on tensiometry measurements also underestimate 

compound partitioning into the membrane because they primarily take into account the 

hydrophobic effect (expulsion from water). Monolayer partition coefficients (Klip) are 

consistently higher by 1-1.5 orders of magnitude than air-water partition coefficients 
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(KAW), indicating that favorable interactions with lipids contribute to the affinity, 

contrasting the monolayer environment from the bare air-water interface (see discussion 

of this subject in Seelig and Suomolainen [119, 136]).  

If we consider experimental logKmem measured in patch-clamp as a parameter 

reflecting all physical factors driving drugs into the membrane (hydrophobicity, favorable 

interactions with lipids and the necessity to overcome lateral pressure of lipids [136, 

138]), we would say that lipid monolayers would be an adequate system to study drug 

partitioning since it gives almost identical data for most of the substances in a wide range 

of hydrophobicities. The discrepancy, however, is obvious for the two myrtenal 

compounds QL-03 and QD-11, for which the monolayer technique overestimates the 

partitioning. First of all, bulkier myrtenal groups are expected to be solvated by water less 

favorably than thin aliphatic chains [139]. The reason for stronger retention in the 

monolayer of these two substances is the presence of unusual bulky ball-like hydrophobic 

groups that can strongly anchor the molecules in the monolayer, thus preventing fast 

exchange. Indeed, we can use the assumption that a monolayer (representing half of the 

membrane at the equivalence pressure) has the same interface with the bulk water as a 

complete bilayer, however, when we consider partitioning, we should remember that in 

these two systems we approach the same equilibrium from two different sides. In the 

monolayer, which in its expanded state harbors many more amphipathic molecules, we 

observe expulsion of these molecules with compression. In the native membrane, we 

expect a wedging of the intercalating molecules between lipids which are naturally pre-

compressed to their normal density. It is possible that reaching true equilibrium in a 

compressed monolayer experiment with these compounds may require longer times since 
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the bulky myrtenal groups which easily partition into the expanded lipid monolayer may 

resist expulsion upon compression. Also, due to the large cross-sectional area of the 

myrtenal groups, it is more difficult for these compounds to intercalate into the bilayer in 

patch-clamp experiments, making the effective logKmem lower than logKlip. Another 

important factor might be coupling between the two leaflets in the complete bilayer, in 

which substance intercalation on one leaflet should also produce work of expansion of 

the opposite leaflet since the two are coupled through the common midplane. Effectively, 

lateral compressibility of the monolayer might be higher, which would harbor grafted 

amphipathic molecules more easily.  

In conclusion, the development of a patch-clamp based technique of estimating 

the partitioning of extrinsic amphipathic substances into the cytoplasmic membrane of 

Escherichia coli using mechanosensitive channel MscS as a natural sensor of lateral 

pressure opened new possibilities for characterizing membranotropic properties of natural 

or newly synthesized compounds. The comparison of partitioning coefficients for a 

particular set of substances obtained in different systems emphasizes not only the 

differences of the systems but different components of thermodynamic forces driving the 

substances into and across the membranes. 
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Abstract   

Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the 

capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an 

event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly 

released through tension-activated channels. With the newly established procedure of 

giant spheroplast preparation from V. cholerae, we performed the first patch-clamp 

characterization of its cytoplasmic membrane and compared tension-activated currents 

with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation 

belonging to the small-conductance (~1 nS) MscS-like channels and the large-

conductance (~3 nS) MscL-like channels, with a pressure midpoint ratio 

p0.5MscS/p0.5MscL of 0.48. We found MscL-like channels in V. cholerae present at a 

density three times higher than in E. coli, and yet, these vibrios were less tolerant to large 

osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward 

rectification and subconductive states at depolarizing voltages; they also adapt and 

inactivate at sub-saturating tensions and recover within 2 s upon tension release, just like 
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E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic 

conditions, significantly shifts activation curves of both MscL- and MscS-like channels 

toward higher tensions, yet does not freely partition into the channel pore. Direct 

electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane 

components critical for osmotic survival and electrogenic transport in this pathogen. 

 

INTRODUCTION 

Strong osmotic forces constantly affect all microorganisms, probably with only a 

few exceptions of obligatory symbionts or parasites.  A cell 2 m in diameter, surrounded 

by a single unarmored membrane, would burst with only a 20 mOsM inside vs. outside 

osmotic gradient. At the same time, most gram-negative bacteria survive 600-1000 

mOsm downshocks with uncompromised viability [34, 83, 84, 140]. The early perception 

was that bacteria can tolerate high internal pressure because they are surrounded by a 

rigid cell wall, but the peptidoglycan network was shown to be stretchable [107], and the 

more common opinion now is that the bacterium survives mostly because of its ability to 

rapidly dissipate excess osmolytes through a special emergency release system [36, 38] . 

This system consists of several types of mechanosensitive channels activated at different 

tension thresholds [87, 115, 141], with MscS and MscL mediating the bulk of osmolyte 

release. The success of the rescuing operation depends on one simple condition: the 

release of excess osmolytes must outpace the rate at which the lytic level of hydrostatic 

pressure inside the cell is reached. It is not surprising that expression of mechanosensitive 

channels is under the control of transcription factors regulating stress responses [142], 

especially responses to cell wall damage. It is now obvious that bacterial 
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mechanosensitive channels are capable of quickly dissipating ionic gradients [91] but 

their permeabilities to organic compatible osmolytes have not been studied.  Functional 

properties of such channels are under intense scrutiny through the application of direct 

electrical recording [36],  reconstitution [37], structural [41, 143] and computational [48, 

144] techniques, but limited primarily to E. coli.   

Facultative pathogens which spend part of their life as free-living forms face the 

same problem of osmotic adaptation. Vibrio cholerae populates an extremely broad range 

of aquatic environments, from rain water to deep sea water of high salinity [145-147] and 

estuarial zones, where the salinity and osmotic pressure can broadly fluctuate. Pathogenic 

strains of V. cholerae are transmitted predominantly through fresh water, in which it is 

typically dropped from the intestines [148]. The fact that microorganisms survive these 

abrupt changes in osmolarity implies a very efficient osmoregulation system [149, 150] 

which enhances environmental stability and transmission from one host to another. 

Extension of the electrophysiological platform to Vibrio cholerae may uncover new 

aspects of its osmoregulation system that are critical for osmotic survival. Previously, 

biophysical properties of the outer membrane channels (porins) from V. cholerae were 

studied in reconstituted systems [151-153] with the emphasis on adaptation to the 

intestinal environment. The membrane aspects of V. cholerae osmotic survival in fresh 

water have not been studied in direct electrophysiological experiments before.   

In this work we adapted the giant spheroplast preparation technique to Vibrio 

cholerae, previously developed for E. coli, and completed the first patch-clamp survey of 

its cytoplasmic membrane. We found two dominant channel activities similar to MscS 

and MscL in E. coli. Despite a higher overall density of mechanosensitive (MS) channels, 
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V. cholerae exhibits lower tolerance to large osmotic shocks. We present the first 

comparison of channel activities between the two enteric species, emphasizing 

differences which suggest parameters that may define environmental fitness of these 

bacteria.   

 

MATERIALS and METHODS 

Strains, spheroplast preparation and electrophysiology.   

Wild-type (WT) V. cholerae (N16691)  from Dr. Anwar Huq’s laboratory  

(UMD) and  WT E. coli strain AW405, a gift from J. Adler (University of Wisconsin), 

were used in the study.  The original procedure of giant spheroplast preparation from E. 

coli [35, 36] includes a 1.5-2 hr incubation in the presence of 0.06 mg/ml cephalexin, 

during which bacteria produce long filamentous cells. The filaments are resuspended in 1 

M sucrose buffer and subjected to lysozyme digestion (0.2 mg/ml) in the presence of 5 

mM EDTA. Within 5-10 min of lysozyme treatment, filaments collapse into spheres 3-6 

m in diameter, at which point the reaction is stopped with excess Mg2+. Spheroplasts are 

separated from the rest of the reaction and debris using quick sedimentation through a 1-

step sucrose gradient. Spheroplasts were stored in a high-sucrose/BSA medium at -80ºC. 

This procedure was used to make AW405 E. coli spheroplasts and was applied to 

N16961 V. cholerae with adaptations as described in Results.  

Borosilicate glass (Drummond, cat# 2-000-100) was empirically shown to be 

suitable for tight seal formation with bacterial membranes. Channel activities in giant 

spheroplasts were recorded from excised membrane patches at voltages between -80 mV 

and 80 mV. Negative pressures (suction) were applied to patches with a high-speed 
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pressure-clamp apparatus (HSPC-1, ALA Scientific Instruments). Pressure protocol 

programming, data acquisition and analysis were performed using PClamp 10 software. 

Ensemble and single-channel currents were analyzed after Rs-correction of the traces by 

the equation, GP = I/(V- IRS), where GP is the patch conductance and V and I are the 

transmembrane voltage and current, respectively. The series pipette resistance (RS ≈ 2.5-3 

M) was determined in each experiment after the patch broke.  

To analyze the effect of trehalose on single-channel conductance, we used the 

macroscopic equation accounting for the pore (Rp) and access (Rs) resistances separately: 

Rch = Rp+Rs=(l+0.5πa)ρ/πa2, where l and a are the length and radius of the pore [154, 

155].  Specific resistances (ρ) of recording buffers with and without trehalose were 

measured using CDM230 conductivity meter (Radiometer, Copenhagen). 

The midpoint of activation was determined with 1-s saturating pressure ramp 

protocols and the change in midpoint was monitored before and after the addition of 

trehalose to the bath. A combination of ramps of varying duration was used to visualize 

single-channel events in order to determine the current passing through a single channel. 

Inactivation of the MscS-like channel was examined with protocols which compared the 

number of channels available both before and after the patch was held under a 

subsaturating tension for 10-s. Specific protocols are explained in figure legends.  

 

Osmotic survival experiment 

After observing large tension-activated conductances and anticipating 

corresponding osmotic permeability responses, we compared osmotic shock survival for 

V. cholerae and E. coli, in parallel side-by-side experiments. Both species grow well in 
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LB+3% NaCl (HiLB, 1180 mOsM). Fresh overnight cultures were diluted 1:100 in this 

medium and pre-grown for 2 hrs to OD600 of ~0.4. The high-osmolarity adapted cultures 

(50 l aliquots) were then abruptly shocked into 5 ml of diluted media (LB, LB/2, LB/4, 

LB/8, LB/16 and distilled water). After 15 min incubation and quick 1:200 dilution in the 

medium it was shocked, each culture was plated in duplicates and the colonies were 

counted the next morning. Osmolarities of media were measured using a Wescor 5520 

vapor pressure osmometer (Logan, UT). All osmotic shock experiments were performed 

by Merina Elahi. 

 

RESULTS 

Vibrio spheroplast preparation.   

The original procedure of giant spheroplast preparation from E. coli [35] was 

adapted by Martinac and coworkers [36] for patch-clamp;  it includes a 1.5-2 hr 

incubation in the presence of 0.06 mg/ml of the septation blocker cephalexin, during 

which bacteria grow but do not divide, producing filamentous cells. Our results show that 

V. cholerae is susceptible to both cephalexin and lysozyme. Filamentous forms grew in 

LB broth in the presence of 0.1 mg/ml of cephalexin at the approximate rate of ~100 

m/hr. Filaments 80-150 m long remained stable after sedimentation at 2000 g and 

gentle pipetting. The concentration of lysozyme (0.4 mg/mL) and EDTA (25 mM) 

required for spheroplast formation in V. cholerae was twice what was needed for 

analogous E. coli preparations and on average took 20-30 min, which is also double the 

requirement of E. coli. Spheroplasts were separated from the debris by centrifugation 

through 1 M sucrose. Fig. 4.1 illustrates relative sizes of intact bacteria, filamentous 
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forms and giant spheroplasts. Spheroplasts often had a slightly irregular non-spherical 

shape, signifying remnants of undigested peptidoglycan. 

 

 

Figure 4.1. Phase contrast images of the intact V. cholerae cells (A), cephalexin-induced filaments (B) 

and giant spheroplasts after 20 min incubation with EDTA and lysozyme (C). 

 

Mechanoelectrical responses of the inner membrane to pressure ramps.  

Under sustained 20-40 mm Hg suction delivered from the pressure clamp 

apparatus, V. cholerae spheroplasts formed tight seals with borosilicate glass pipettes 

typically within 2-15 min. As with E. coli, patch excision was achieved by tapping on the 

base of the micromanipulator.  Inside-out patches stimulated by triangular ramps of 

saturating pressure under a 30 mV hyperpolarizing voltage exhibited 2-7 nA currents in 

both types of preparations, which invariably displayed two-wave responses (Fig. 4.2A). 

In E. coli, the first wave was ascribed to the MscS population, possibly with a mixture of 

a few MscK channels [88] and the second, activating at higher tensions, represents a 

uniform MscL population. In V. cholerae we observed very similar two-wave responses, 

usually with a lesser relative amplitude of the first wave. Relative amplitudes of the two 

waves were essentially independent on the speed of the pressure ramp. To avoid voltage 

clamp errors due to pipette series resistance (Rs) under high (>2 nA) currents, Rs-
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correction was introduced (see Methods). The corrected traces provided fractions of the 

total conductance ascribed to each type of channels and pressure mid-points for 

activation.  The ramp responses clearly show that in both enteric bacteria, MscL is the 

dominant conductance responsible for the bulk of tension-activated permeability increase. 

MscS-like channels in Vibrio represent considerably smaller fraction of conductance 

compared to MscS of E. coli; also they show no activation hysteresis (difference in 

midpoints on the ascending and descending legs of the triangular ramp), while half of E. 

coli MscS de-activate at a considerably lower pressure compared to the activation 

midpoint, producing an asymmetrical ramp response (Fig. 4.2B). 

 

 

Figure 4.2. Mechano-electrical responses of Vibrio cholerae and Escherichia coli membrane to ramps 

of pressure. (Top) Typical response of an excised inside-out patch to a 1-s saturating triangular ramp in V. 

cholerae (A) and E. coli (B). Responses of the same patches to a slow non-saturating ramp protocol 

designed to reveal single-channel conductances for V. cholerae (C) and E. coli (D). 
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In order to determine unitary conductances, we applied sequences of slower 

ramps to visualize single-channel events (Fig. 4.2 C, D). From multiple traces taken at 

different voltages, we created I-V plots and determined slope conductances at 

hyperpolarizing voltages (pipette positive) for single MscS-like (1.0 ± 0.1 nS) and MscL-

like channels (2.6 ± 0.1 nS, or 2.9 nS after Rs-correction) of V. cholerae (Fig. 4.3). This 

information permitted us to quantify the numbers and densities of channels in each 

preparation. Based on the previous results that the pressure midpoints for E. coli MscL 

correspond to ~12 mN/m tension [103, 105], we estimated the radius of curvature and 

area for each E. coli patch using the law of Laplace. Since we used the same 2.5-3 MOhm 

pipettes throughout this project, we first assumed that the average geometry of patches in 

both preparations was the same. The second assumption was that the tension midpoints 

for E. coli MscL and V. cholerae MscL-like channel are the same[156]. Using these two 

different assumptions we estimated patch areas and densities of channels in each 

preparation. The first assumption (Table 4.1, columns 4,5) gave a 20% lower estimation 

of channel density in V. cholerae relative to the second assumption (columns 8, 9) due to 

a slight difference in estimated mean patch radius (1.37 versus 1.50 m).  
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Figure 4.3. Current-to-voltage relationships for the two dominant channel conductances in V. 

cholerae.  (A, B) Examples of single-channel currents at opposite voltages for both the MscL- and MscS-

like channels. Note fast-flickering sub-conductance levels in MscS at negative pipette potentials. (C) 

Current-to-voltage plot of MscL-like (squares) and MscS-like channels (circles). Filled squares represent 

the Rs-corrected curve for MscL. MscS shows obvious inward rectification. 

 

The comparison of the ensemble currents in multiple patches (Fig. 4.2) reveals 

modest but statistically significant differences in activation midpoint ratios and 

substantial differences between channel numbers and densities in the membranes of E. 

coli and V. cholerae (Table 4.1). In E. coli (AW405), MscS and MscL are present on 

average at 3.6 and 4.3 channels/m2, with a ratio of midpoint pressures of 0.60 

(p0.5MscS/p0.5MscL). The MscS-like and MscL-like channels occur in V. cholerae 

(N16961) at densities of 1.2 and 11 channels/m2, respectively, with a midpoint ratio of 

0.48. Based on the data in Fig. 4.2 and Table 4.1, MscL-like channels are present at a 

2.5x higher density and MscS-like channels are present at third the density in V. cholerae 

compared to E. coli. These differences in channels densities, confirmed in three 

independent batches of spheroplasts, prompted us to compare resistances of the two 

strains against acute osmotic down-shock. The inference was that the higher overall 

density of channels in V. cholerae should correlate with higher osmotic survival.  
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 1 2 3 4 5 6 7 8 9 

 #MscS 

per patch 

#MscL per 

patch 

p0.5MscS/ 

p0.5MscL 
MscS/m2 

(r=1.5m) 

MscL/m2 

(r=1.5m) 

Patch r, m 

(= 12 

mN/m) 

Patch Area, 

m2 

MscS/m2 MscL/m2 

E coli 46 ± 14 61 ± 40 0.60 ± 0.05 3.6 ± 1.8 4.3 ± 2.2 1.5 ± 0.3 14.7 ± 5 3.6 ± 1.8 4.3 ± 2.2 

V cholerae 17  ± 9 164 ± 100 0.48 ±0.04 1.2 ± 0.7 11 ± 4 1.37 ± 0.3 12.4 ± 6.3 1.5 ± 0.8 14 ± 5 

 

Table 4.1. Experimental occurrences of MscS-like and MscL-like channels in patches of wild-type E. 

coli and V. cholerae. Multiple traces, as shown in Fig. 4.2, were Rs-corrected and numbers of MscS-like 

and MscL-like channels as well as midpoint pressures for each population were determined. The pressure 

midpoint (p0.5) for Eco MscL was equated to membrane tension γ0.5 = 12 mN/m acting on channels, from 

where the radii of patch curvature and areas were calculated according to the law of Laplace (γ=∆pr/2). The 

densities (channels/μm2) were then deduced for MscS- and MscL-like channels individually, first on the 

assumption that the average patch radius for V. cholerae preparations is the same as for E. coli (columns 4 

and 5), and independently with the assumption that MscLs in both preparations gate with the same 

midpoint γ0.5  = 12 mN/m (columns 6 through 9). Data are presented as mean ± std (n=12 for E. coli and 

n=19 for V. cholerae). The midpoint ratios p0.5MscS/p0.5MscL for the two species (column 3) are 

significantly different at a 0.006 level according to two-tailed unequal variance t-test.  

 

Osmotic survival of Vibrio cholerae 

Survival rates of estuarial/enteric V. cholerae were compared to that of primarily 

enteric E. coli in parallel osmotic dilution-and-plating experiments. Both cultures were 

pre-adapted in high-osmotic LB medium (LB base with 0.52 M NaCl, 1180 mOsM) 

where they grew for 2 hrs to OD600~0.5. The cultures were then abruptly diluted 1:100 

into media of different osmolarity (1180, 425, 212, 106, 70, 48 mOsM and distilled 

water). As seen from Fig. 4.4, both cultures easily survived a 970 mOsM downshift, after 

which the number of colonies for V. cholerae decreased.  E. coli remained completely 

viable after ~1100 mOsM drop, but beyond that point its survival precipitously declined 

as well. Remarkably, between the final osmolarity of 48 mOsM (LB/16) and distilled 

water there was almost no difference in the survival rates, ~2-4% E. coli and ~0.3-0.1% 

V. cholerae.  Although osmotic shock tolerance is comparable in the two enteric species, 

V. cholerae is clearly more sensitive despite the fact, that it had the overall higher density 

of MS channels. We hypothesize that this higher density of MS channels may be a 
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compensation for some other vulnerable traits of Vibrio, such as cell geometry, elasticity 

of the cell wall or limited permeability of channels to specific osmolytes. The possible 

reasons for Vibrio vulnerability are presented in Discussion.  The repeated observation of 

surviving colonies in distilled water suggest that bacterial populations are non-uniform 

and always contain a small fraction of highly resistant cells. 

 

 

Figure 4.4. Viability of V. cholerae and E. coli upon osmotic downshifts of different magnitude. Both 

cultures were pre-grown at 1180 mOsM (LB containing 0.52 M NaCl) for 2 hrs and then abruptly diluted 

into media of different osmolarity as indicated on the horizontal axis. After 15 min of incubation the 

cultures were further diluted and plated in duplicates. The survival is expressed as the number of colonies 

relative to the unshocked control. The data points are averages of 6 independent experiments with error 

bars representing standard deviation. 

 

Current-to-voltage relationships for the two dominant activities.  

To investigate how closely mechanosensitive channel activities in V. cholerae 

resemble those in E. coli we measured current-to-voltage (I-V) curves in a broad range 

for the two dominant activities. It was easier to record single MscS-like channels, which 

activate at a relatively low threshold, when the patch was initially silent. Conversely, to 

characterize MscL-like activities we had to saturate the population of MscS-like channels 

first and record single MscL-like activities on top of a 1 nA current plateau. Due to 

reduced patch resistance in the presence of 8-10 open MscS-like channels, the MscL-like 
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channels conducted at apparent 2.6 nS. After Rs correction (Rs = 2.9 M, the open 

pipette resistance), the conductance was close to the 3.0 nS activity reported for MscL 

channels recorded in MscS-null E. coli strains [38, 157].  In parallel experiments, E. coli 

MscL exhibited an apparent conductance of 2.4 nS when recorded at the background of 

~20 saturated MscS channels, 22% lower than the previously established unitary 

conductance of E. coli MscL. We also observed that the large-conductance channel from 

Vibrio also had a stronger propensity toward the uppermost subconductive state than E. 

coli MscL (compare Fig 4.3 A and B). 

The Vibrio MscS-like channel displayed a substantial inward rectification; the I-V 

curves were linear at hyperpolarizing voltages (pipette positive), but had a lower slope at 

depolarizing voltages. This MscS-like channel exhibited open-state noise at depolarizing 

(negative pipette) voltages, similar to what was observed in E. coli MscS [51]. These 

fast-flickering substates are likely to be the reason for rectification. 

 

MscS-like channel inactivates and recovers.  

The earlier saturation of MscS-like channel population (plateau in Fig. 4.2A) 

allowed us to choose a pressure range at which we could see activity only from this 

channel. Traces presented in Fig. 4.5 show patch responses to a pulse-step-pulse protocol, 

revealing the processes of adaptation and inactivation. In each protocol, the first short 

saturating pulse applied in the beginning revealed the entire active population while the 

following prolonged step of pressure conditions the process of inactivation. The short 

saturating pulse delivered at the end tests for the remaining active population. The trace 

presented in Fig. 4.5A shows a noticeable inactivation under a sub-threshold step which 
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did not invoke any activity. When the conditioning pressure step was at the midpoint for 

channel activation (determined with a 1 s ramp) inactivation was maximal (Fig. 4.5B).  

The recovery experiment (Fig. 4.5C) employed a similar protocol; after the conditioning-

step pressure was dropped to zero, the patch was probed by a sequence of saturating 

pulses, tracing the process of recovery from inactivation. As illustrated in Fig. 4.5D, 

inactivation of the MscS-like channel is tension-driven. The Vibrio MscS-like channel 

thus behaved very much like E. coli MscS [51, 90], with one subtle difference: it shows a 

small amount of silent inactivation at tensions which invoke no activity (Fig. 4.5A).  
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Figure 4.5. Inactivation and recovery of the Vibrio MscS-like channel. (A) Patch response to the pulse-

step-pulse protocol with a sub-threshold step amplitude. Saturating pulses before and after the step reveal 

the initial and remaining active population (B) A similar experiment with activation of nearly the entire 

population during the step. (C) The recovery experiment. Fitting of the tips of the test pulse responses 

reveals tau recovery of 1.5 ± 0.2 (n = 3) s.   (D) Dependence of the non-inactivated fraction of MscS-like 

channels on the amplitude of intermediate pressure step illustrates that inactivation is tension-driven.   

 

Both MscS-like and MscL-like channels are modulated by compatible osmolytes.  

Ramp responses of the entire channel population in control and in the presence of 

0.5 or 1 M trehalose on the cytoplasmic side of the patch are demonstrated (Fig. 4.6). V. 

cholerae (A) and E. coli (B) are both shown to be sensitive to the presence of this 

compatible osmolyte, evident by a right shift of the activation curve and a decrease of the 

active population. The lower panels (C, D) show the magnified responses of MscS-like 

channels at the foot of the trace in both control and with 1 M trehalose traces. In four 

independent experiments, the average shift of MscS activation midpoint in the presence 

of 1 M trehalose was 24± 16% for V. cholerae and 12± 5% for E. coli.  Shifts of MscL-
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like channels were 24±4% and 11±2%, for V. cholerae and E. coli, respectively.   It is 

clear that trehalose modulates channel activity, possibly through tension-driven 

intercalation into the bilayer [158-160] or perhaps through an osmotic or crowding effect, 

which has been shown to promote MscS inactivation [62]. We have also observed right-

shifts of MscL-like channel activation in the presence of 1 M glycine-betaine, another 

compatible osmolyte. glycine-betaine exerted no visible effect on MscS-like channel of 

Vibrio.  
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Figure 4.6. Effects of trehalose on MscS-like and MscL-like channel activation.  Trehalose induces 

substantial left shift of activation curves, which is more pronounced for MscL in V. cholerae (A) than in E. 

coli (B). The three curves represent trehalose concentrations of 0 (black), 0.5 (blue) and 1.0 M (red). 

Magnified early responses in V. cholerae (C) and E. coli (D) specifically show the left shift of the MscS 

curve as well as reduced single channel conductance in response to 1 M trehalose. 

 

Current-to-voltage relationships were analyzed for the two dominant channel 

activities in the absence and presence of trehalose on the cytoplasmic side of the patch. 

Fig. 4.7 shows these changes upon the addition of 1 M trehalose.  Data (Fig. 4.7 and 

Table 4.1) was treated using the macroscopic conductance equation [155], which 

accounts for pore resistance (Rp) and access resistances from each side of the channel 
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(Rs1 and Rs2) (see Methods and Fig. 4.7C). Previously, it was shown that the unitary 

conductances of both MscL and MscS scales linearly with specific conductivity of the 

recording buffer suggesting bulk-like conditions for ion transport through wide water-

filled pores [101, 105]. Conductivity measurements indicated that specific resistance of 

the recording buffer increased three times, from 33 cm to 98 cm in the presence of 1 

M trehalose. We presumed, if trehalose freely partitioned into the channel pore, we would 

observe a proportional decrease in pore conductance. Values of conductance determined 

from the data (Gexp) match closely with those calculated via the macroscopic conductance 

equation (Gcalc); variation of only Rs1 (the cytoplasmic side of the membrane patch) 

proportional to changes of bulk specific resistance (ρ) due to trehalose sufficiently 

explains the observed change in unitary currents. This suggests that the resistance of the 

pore itself (Rp) does not visibly change upon osmolyte addition and thus, trehalose does 

not freely partition from the cytoplasm or accumulate in MscS- or MscL-like pores. Pre-

filters on the cytoplasmic side of each channel formed by C-terminal domains [40, 41, 

161] may impede partitioning, whereas the exit toward the periplasm is likely to be 

unimpeded. The presented data does not exclude trehalose permeation through MscL or 

MscS pores, it simply shows that the steady-state pore occupancy with the osmolyte is 

low, possibly due to a slower (pre-filter limited) entry rate from the cytoplasmic side and 

a higher rate of exit on the periplasmic side.   
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Figure 4.7. (A, B) Current-to-voltage relationships for single-channel currents recorded in control 

and in the presence of 1 M trehalose on the cytoplasmic side for MscL- and MscS-like channels in V. 

cholerae. Each plot presents the data of one typical experiment with all I-V curves obtained on the same 

patch. Based on four independent experiments, unilateral addition of trehalose decreased the slope 

conductance by a factor of 0.78±0.03 for MscL-like and by a factor of 0.80±0.06 for MscS-like channels 

(mean ± std, n=4). (C) Model of a channel, depicting how the total series resistance (Rtot) is determined by 

the pore itself (Rp) as well as the access resistance on either side of the membrane (Rs1, Rs2). The values are 

dependent on channel radius (a), length (l), and the conductivity of the solution (ρ), which can be found in 

Table 2. Shaded area on the left represents the compartment with trehalose. 

 

 

DISCUSSION 

Vibrio cholerae readily produces filamentous forms and giant spheroplasts under 

experimental conditions similar to what was developed for E. coli. This enables direct 

patch-clamp characterization of the V. cholerae cytoplasmic membrane and the 

individual components involved in osmotolerance. The first electrophysiological survey 

of V. cholerae revealed a robust tension-stimulated conductance response mediated by 

two dominant types of MS channel activities, similar to what was observed in E. coli: the 

MscS-like (0.8-1 nS) and MscL-like (2.6-3 nS) channels. The N16961 Vibrio cholerae 

genome (Heidelberg et al., 2000) harbors one clear ortholog of E. coli MscL 

(NP_233001, 136 aa, 65% identity) and a likely ortholog of E. coli MscS (NP_230134.1, 
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287 aa, 48% overall identity with a 84% conserved TM3-beta domain region). A more 

distant MscS ortholog is coded by NP_232581.1 (291 aa, 21% identity). An additional 

ORF predicts a longer 569 aa protein with an N-terminal extension (NP_231387.2, 37% 

identity of the homologous C-terminal part to E. coli MscS). A putative ortholog of E. 

coli MscM (YbdG) [87] is also present in the  N16961 V. cholerae genome 

(NP_229921.1, 412 aa, 54% identity), but there is no obvious ortholog of MscK (KefA) 

[88]. Because these channel species have not been characterized individually, we 

presume that MscS-like activities can potentially be generated by a mixed channel 

population.    

Based on the densities of active channels in excised patches (Table 4.1), the 

numbers of channels per cell (5-8 m2 in surface area) can be estimated as 18-30 

heptameric MscSs and 20-35 pentameric MscLs in AW405 E. coli.  V. cholerae, 

respectively, should have 6-10 MscS-like and 50-90 functional MscL-like channels per 

cell. Our estimation of the number of E. coli MscL channels is about 2-3 times lower than 

previously determined in fluorescent microscopy experiments [162] which estimated 

300-400 MscL subunits per cell grown in MLB medium. It is possible that not all 

synthesized subunits form functional pentamers.  

The notable difference in mechanoelectrical responses of the two dominant 

species is that the density of MscL-like channels is approximately three times higher 

while the density of MscS-like channels is about three times lower in V. cholerae 

compared to E. coli. Not only is the proportion of MscL to MscS activities different, but 

the pressure midpoint ratio p0.5MscS/p0.5MscL for the two dominant channel types in 

Vibrio is lower, at 0.48 ± 0.05 versus 0.60 ± 0.05 for E. coli. If we take the MscL-like 
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activation midpoint as a reference, the Vibrio MscS-like channel activates earlier than its 

E. coli counterpart. In addition, the Vibrio MscS-like wave shows no hysteresis during a 

1 s triangular ramp, signifying a faster closing rate than that in E. coli. MscS-like 

channels of Vibrio exhibit similar rectifying conductance and tension-dependent 

inactivating behavior as E. coli MscS. Vibrio MscS-like channels recover from 

inactivation as fast as E. coli MscS does [50, 90], with a characteristic time of 1.5 s.  

Despite Vibrio cholerae N16691 having a three times larger overall density of 

mechanosensitive channels, it is less tolerant to strong down-shocks (1000-1200 mOsM) 

compared to Escherichia coli AW405. Vibrio alginolyticus, for instance, a strictly marine 

representative of this genus lacking the mscL gene, is extremely sensitive to osmotic 

downshifts, but expression of E. coli MscL in this microorganism was shown to 

dramatically increase its shock tolerance [163]. High density of MscL channels in V. 

cholerae might compensate for some other traits that make it osmotically vulnerable. The 

data above allows us to infer the traits to be considered. 

In the event of abrupt osmotic shock, the bacterial osmolyte release system will be 

able to rescue the cell by releasing excess osmolytes faster than hydrostatic pressure 

inside the cell reaches the lytic level. In the beginning, osmotic influx of water will 

stretch the elastic cell wall and the outer membrane. Tension in the inner membrane 

during osmotic swelling will begin to develop as the membrane unfolds. The kinetics of 

tension buildup will be defined by the magnitude of the osmotic gradient, elasticity of the 

cell wall, and the membrane excess area which requires a certain degree of cell wall 

distension. Once the threshold tension that activates MS channels is reached, the rate of 

osmolyte release should be high enough to negate the osmotic water influx before critical 
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rupturing tension develops. The observed lower tolerance of V. cholerae to abrupt 

osmotic down-shocks compared to E. coli, despite a higher density of MscL, points to the 

necessity of better understanding the following factors: 

1) Distribution of cell sizes in the population. According to the law of Laplace, 

tension in the membrane is proportional to the pressure gradient multiplied by the radius 

of curvature and thus larger cells must be more vulnerable. It has been well documented 

that stress conditions lead to the decrease of average size in microbial populations [148, 

164]. In exponential cultures, V. cholerae cells appear to be slightly larger than E. coli. 

The lower tail of size distributions in both populations may constitute the most shock-

tolerant cells.  In addition to outward cell geometry, the excess amount of membrane, and 

the mechanical strength of the retaining cell wall (peptidoglycan layer) might vary 

between the two species.  

2) Water permeability and relative densities of MscS and MscL. Under 

hydrostatic pressure of water flooding the cytoplasm through the membrane and 

aquaporins, MscS is predicted to open first and dissipate osmotic gradients. If MscS’s 

osmolyte permeability is insufficient, building up tension will open MscL, a true 

emergency valve which activates near the lytic tension. Earlier activation of MscS would 

mediate a more gradual permeability response with tension, which might be beneficial. 

The density of MscS-like channels in V. cholerae under the specific conditions of this 

study is lower than in E. coli, thus the first line of defense is not as strong. In E. coli, 

expression of both channels is under the control of stress-activated factor RpoS, and 

overexpression of one partially represses the other. The physiological role of densities of 

aquaporins, MscS, and MscL channels in both species needs to be better understood. It 
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was proposed that a high density of MscL may increase effective elasticity of the 

membrane and thus dampen tension due to protein expansion [165]. In addition, the 

clustering and distribution of channels between the cylindrical part of the rod-shaped cell 

and the poles [166], where curvatures and tensions are different may influence the 

hydrostatic pressure at which threshold tension is reached. 

3) The nature of internal osmolytes and channel permeability. The relatively large 

size of permeation pores in MscS and MscL may ensure that the release kinetics are 

comparable with the millisecond kinetics of osmotic swelling [91]. For this reason, 

efficiency of compatible osmolyte release might be an important factor defining the speed 

of cellular escape from osmotic rupture. However, permeabilities of MscS or MscL for 

organic osmolytes have not been studied in detail. Also, the composition of preferred 

compatible osmolytes used by each of the bacterial species might be different [34, 167]. 

In this investigation we were able to observe modulating effects of the common 

compatible osmolyte trehalose on the behavior of both MscS-like and MscL-like 

channels. Right shifts of activation curves were accompanied with substantial 

inactivation of MscS-like channels. Our single-channel recordings suggest that trehalose 

present in the cytoplasmic compartment does not freely partition into the pore, yet these 

conductance measurements do not exclude permeation. 

In conclusion, the establishment of V. cholerae as a system for 

electrophysiological analysis opens new perspectives for studies of mechanically-

activated osmolyte release system and electrogenic transport in this pathogen. The first 

patch-clamp survey has shown that V. cholerae has lower density of MscS-like channels, 

but higher density of MscL-like channels compared to E. coli.  Both V. cholerae channels 
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have gating and conductive properties comparable to their E. coli counterparts.  This is 

the first report on WT Vibrio cholerae, which shows that compatible osmolytes, 

especially trehalose, strongly modulate the mechanoelectrical response, shifting 

activation curves to the right. Trehalose does not seem to partition freely into the open 

MscL channel, bringing into question the actual exit path of this abundant osmolyte. The 

comparison of E. coli and V. cholerae’s sensitivities to osmotic down-shock strongly 

suggests that there must be other factors that contribute to the environmental fitness of 

this bacterium other than just the density of mechanosensitive channels in its membrane.  
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Chapter 5: General conclusions and future directions 

Conclusion 1 

The key feature of MscS adaptive behavior is tension-driven inactivation from the 

resting state, the process which competes with opening. This inactivation is strongly 

promoted by crowding agents on the cytoplasmic side. Both transitions (close-open and 

close-inactivation) were believed to occur mostly through conformational changes in the 

transmembrane domain. Recent genetic screen experiments and modeling suggested that 

the cytoplasmic cage domain must be involved. In the work described here, I’ve shown 

that the association between the N-terminus of the pore lining transmembrane helix 

(TM3b) and the beta domain of the cage plays a critical role in channel gating and 

inactivation. Stabilization of this contact with mutations impedes opening and causes 

massive silent inactivation; disruption of these interactions stabilizes the open state, 

reduces inactivation, and removes sensitivity to crowding agents and voltage. Molecular 

simulations indicated that the inactivated state of the channel has a higher degree of 

lateral in-plane expansion in response to axial compression in comparison to the resting 

state.  The ability of the inactivated state to expand in the membrane confers this ability 

to respond to synergistic action of crowding pressure and tension. This possibly allows 

for a feedback system between efflux of water and osmolytes through mechanosensitive 

channels and the elastic recoil of the peptidolglycan sacculus in order to maintain a 

constant turgor pressure.  
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Physical compaction of the cytoplasmic domain of MscS 

 

I propose that the compressibility of the cage be further investigated. Can the 

portals be closed by axial pressure (as shown in Fig. 5.1) and can this allow the cage to 

act as a second gate? EMP simulations suggest that such a flattening of the cytoplasmic 

cage is attainable, but is it realistic? 

 

 

Figure 5.1. The mechanism of crowding sensing by MscS. (A) The resting state; (B) the predicted 

mechanism of inactivation associated with kinking at G113 involving concerted axial compression of the 

molecule by crowding pressure and simultaneous in-plane expansion under lateral tension; (C) a 

hypothetical conformation with flattened cage with diminished conductance of side portals.  

 

I have completed a few initial experiments which examined cysteine cross-linking 

of the cage. Fig. 5.2 shows the approximate locations of residues G140 and A230 on the 

upper and lower hemispheres of the cage in the crystallographic, partially compacted, and 

flattened conformations. To attempt to capture these states, cysteine mutants were 

introduced and a G140C/A230C mutants was created and the single channel conductance 

was measured in reducing conditions (1 mM DTT) and with an oxidizer (10 mM H2O2). 

The overall results show an increase in opening events characterized by a lower current 



108 

 

amplitude; this decrease in single channel currents indicates that upon cross-linking, the 

cage enters a more compact state and is thus less permeable. 

 

 

Figure 5.2. Compressibility of the cytoplasmic domain of MscS. Three EMP-generated conformations of 

the cage: crystal (A), compact (B) and collapsed flat (C) are shown above

locations of residues G140 and A230, two residues on opposite ends of the windows in the cage. A Western 

Blot illustrating the probability of G140C-A230C cross-linking (in comparison to each single mutant) 

under 10 mM H2O2 is shown in (D).  Upon addition of 10 mM H2O2, the single channel conductance is 

diminished in comparison to its activity under reduced conditions (1 mM DTT, +50 mV pipette) (E). 

Histograms of single-channel currents from the traces (F). 

 

 

To test the second gate hypothesis, MscS A106C was reacted with 1 mM 

MTSET(+) (methanethiosulfonate-ethyltrimethylammonium). This positively-charged 

molecule locks the channel in the open state by reacting with the cysteine and stabilizing 

the hydrated state of the pore (Fig. 5.3A). Upon the addition of ~15% Ficoll 400, the 

channel activity remains unchanged, implying that the crowding was unable to force the 

channel to close (Fig. 5.3B). This suggests that either the channel has only one gate or 
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that crowding is unable to collapse the cage. Interestingly, the overall conductance of the 

patch does not change in the presence of the crowders; the results of the G140C/A230C 

crosslinking experiment did imply that compressing the cage would in fact reduce the 

conductance of individual channels. It is possible that crowder-induced inactivation of 

MscS occurs through a much more subtle change of volume of the cytoplasmic cage than 

what is simulated in the cross-linking experiment. Another interesting result to note is 

that while the channel is locked in the open state by MTSET, it still retains some negative 

voltage sensitivity; the initial opening of the full channel population (shown by the initial 

negative current spike) is quickly followed by closure of about half of the channels. 

 

 

 

Figure 5.3. Chemical activation of A106C MscS with MTSET. After activation by tension in the 

presence of 1 mM MTSET, patches of A106C MscS spheroplasts remains open with no tension. The figure 

above shows several traces of the same patch under various voltages. The conductance of the open 

population is the same both before (A) and after (B) the addition of 15% Ficoll 400.  

 

Further experiments need to be conducted to determine the true nature of 

compaction of the cage via crosslinking. The inactivation and closing rate of the 

G140C/A230C mutant in oxidizing conditions should provide a glimpse into the role of 

actual cage compaction in those processes. The A106C + MTSET experiment should also 
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be performed for a longer period of time under negative voltage to see how it compares to 

the same phenomenon in WT MscS, which requires approximately 2 sec to completely 

inactivate, as seen in Fig. 2.6 from Chapter 2. 

 

Molecular size effects crowding sensitivity of MscS 

 The interior of an E. coli cell is extremely crowded, with protein concentrations 

likely exceeding 0.3 g/mL. In my work I have shown that macromolecular crowding is 

effective at increasing the activation threshold as well as the closing and inactivation rate 

of MscS. This crowding was simulated by the addition of 5 wt/vol% Ficoll 400 to the 

cytoplasmic side of an excised patch of E. coli. The application of 1 M trehalose (~24% 

wt/vol) showed a similar modulation of MscS opening and closing but did not affect 

inactivation (Fig. 5.4). Trehalose is small, with a mass of less than 0.4 kDa, while Ficoll 

400 is a thousand times more massive (400 kDa); thus it can be inferred that the size of 

crowding molecules effects the exerted crowding pressure on the cytoplasmic cage of 

MscS.  
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Figure 5.4. The crowding effect of 1M (24 vol%) trehalose on WT and G168D MscS opening, closing 

and inactivation. Under symmetric ramps of pressure, both the opening and closing of WT (A) and 

G168D (B) MscS are modulated by the presence of 1M trehalose (red traces). The shift toward higher 

tensions required to open and close the channel is comparable to that which occurred during identical 

protocols in the presence of 5% Ficoll (Fig. 2.4A). The notable difference is the more pronounced drop in 

maximum current due to the higher resistance of a 1M trehalose solution. Pulse-step-pulse protocols were 

then used to investigate the tension-driven inactivation of WT (C) and G168D (D) before (black traces) and 

after (red traces) exposure to 1M trehalose in a similar manner as was done with 5% Ficoll (Fig 2.5A and 

B). Differences in amplitude of pulses in the beginning and end of the traces indicate the degree of 

inactivation (arrows). While trehalose, possibly permeable through the cage portals, is able to alter channel 

opening and closing in the same manner as cage-impermeable Ficoll 400,  it has minimal effect on 

inactivation. Under similar tension, Ficoll drives the entire population of WT MscS into the inactivated 

state (Fig 2.5). 

 

Since the molecular mass of many protein complexes in the cell are of 

comparable size to Ficoll 400, our crowding induced via 5-10% Ficoll 400 is not an 

overestimate of crowding but instead a moderate attempt to mimic the intracellular 

environment. Knowing this, I propose that the size requirement for gating and 

inactivation changes due to crowding be investigated. A simple way to do this would be 

to examine at what concentration do compatible osmolytes and crowding agents of 

different sizes begin to alter the opening threshold of MscS (which was seen for 1 M 

trehalose) and what combination of size/concentration characteristics is required to 
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actually induce inactivation. This could perhaps discern what physiological conditions in 

the cell are considered optimal for channel gating and therefore in which conditions a 

bacteria has the best chance for surviving osmotic downshock.   

 

Conclusion 2 

The ability to permeate the cell membrane is a necessary for any antibiotic agent 

to perform its designated task. As an amphipathic agent intercalates into a membrane, it 

alters the lateral pressure profile. Since MscS gates via tension in the membrane, it can be 

affected by changes in the lateral pressure profile of the bilayer. I have shown that our lab 

has made strides toward utilizing MscS as a reporter of this increase in lateral pressure in 

a native bacterial membrane. We have compared two different methods of estimating 

membrane partitioning, surface activity and lipid monolayer affinity, with alterations of 

the activation midpoint of MscS. These methods were used to investigate partitioning 

capabilities of the antibacterial agent platensimycin and three analogs generated in Dr. 

Sintim’s lab. The intercalation of these substances into the native membrane (gauged by 

activation curve shifts) generally correlated with their affinity for phospholipid 

monolayers. We attribute the discrepancies between the partitioning coefficients derived 

from monolayer experiments (Klip) and patch clamp (Kmem) to differing properties of the 

phospholipids in each case, namely the difficulty of large, bulky sidechains to intercalate 

into a bacterial membrane in the same manner as in an expanded monolayer.  
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Further monitoring of intercalation into the bacterial membrane and other special cases 

Upon amphipath addition to the cytoplasmic side of a membrane patch, there is a 

sudden increase in the activation midpoint. For some of the tested substances, namely 

QD-11, this is followed by a gradual return to the original midpoint value which can take 

over 30 minutes. We interpret this activity as a redistribution of the amphipath to the 

outer leaflet of the membrane, which reduces the asymmetric pressure on the gate of 

MscS. Once the agent occupies the outer leaflet, it can potentially redistribute into the 

bulk solution on the pipette side of the patch. This would mimic successful internalization 

of an antibiotic agent.  

 

 

Figure 5.5. Tetracycline lowers the gating threshold of MscS. Upon exposure to 0.5 mM of the 

polycyclic antibiotic tetracycline (inset), the activation curve of A98S MscS experiences a left shift (red 

trace). This transient alteration of the activation curve is usually followed by a shift back toward its original 

position. 

 

We found different results when we tested tetracycline, a triakylamine polycyclic 

antibiotic, for its ability to partition into the membrane; the activation curve of MscS 

actually shifts to the left upon its addition, implicating that the lateral pressure on the gate 

has been reduced and the channel now opens at lower tensions (Fig. 5.5). This led us to 
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infer that the plane of adsorption for tetracycline may be different from those of 

amphipaths we examined previously. MD simulations of tetracycline intercalation into 

the membrane differ from those of a known ‘right-shifting’ agent, butyl paraben. Instead 

of partitioning into the acyl chain region of the simulated bilayer like paraben, 

tetracycline adheres peripherally to the membrane by interacting mostly with the polar 

head region (Fig. 5.6). Comparison of computed lateral pressure profiles for both butyl 

paraben and tetracycline shows that the increase of the lateral pressure peak in the head 

group region of the tetracycline simulation is compensated by a decrease of lateral 

pressure in the acyl chain region. This reduction of hydrocarbon packing pressure may be 

responsible for the lower gating threshold observed. Therefore, MscS senses not only the 

presence of intercalating substances but also their plane of adsorption to the membrane. 

 

 

Figure 5.6. Polycyclic aromatic compounds interact with the polar head groups in a simulated 

bilayer. Above depicts an MD simulated phosphatidylcholine (PC) bilayer and its associated lateral 

pressure profile both before (black curves) and after (red curves) the addition of (A) butyl paraben and (B) 

tetracycline. The butyl paraben molecules intercalate into the acyl chain region in (A) while tetracycline 

interacts with the head groups in (B). As a result, the lateral pressure in the acyl chain increases in (A) 

while the pressure in that position decreases in (B) (dashed circles). 

 

  

Further testing of such polycyclic aromatic compounds should be done to 

understand these effects. Compounds which induce MS channel gating at low tensions 
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could be useful antimicrobial agents since gain-of-function mutations of both MscS and 

MscL reduce colony growth. 

 

Conclusion 3  

 The ability of a facultative pathogen, such as Vibrio cholerae, to withstand the 

osmotic shock associated with it enteric-to-freshwater transmission cycle is essential to 

its survival. Our group has developed a successful protocol for spheroplast generation of 

V. cholerae, which is the first step in mechanoelectrical examination of a bacterial 

membrane. Patch-clamp experiments revealed that the MS channels in V. cholerae 

operate similarly to those in E. coli, with one opening a ~1 nS pore at moderate tensions 

(termed MscS-like) and another which gates at higher tensions with a ~3 nS pore (MscL-

like). Inactivation of the MscS-like channel was very similar to its counterpart in E.coli 

and the voltage sensitivity was also the same in both species. Shifting of the activation 

curve MS channels in the presence of the compatible osmolyte trehalose occurred in both 

species as well; notably, trehalose did not appear to freely partition into the channel pore 

in V. cholerae. The activation midpoint ratio of the channels was a bit lower in V. 

cholerae (0.48 versus 0.6) and the MS channel density appeared to be higher in V. 

cholerae than in E. coli even though E. coli is more tolerant to osmotic shock, indicating 

that osmotic shock survival depends on more than simply the number of release valves 

present. 
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Investigation of osmolyte permeability through mechanosensitive channels 

 It has been long held that MS channels release osmolytes upon osmotic shock. 

Current-to-voltage relationships were analyzed for the activities of the MscS-like and 

MscL-like channels in V. cholerae in the absence and presence of trehalose on the 

cytoplasmic side of an excised patch. The macroscopic conductance of the channels were 

analyzed by taking into account the resistance of the pore, the resistance associated with 

approaching the pore from either side (access resistance), and the resistance of the 

recording buffer either with or without trehalose. The moderate decrease in channel 

conductivity upon trehalose addition indicated that the resistance of the pore itself does 

not visibly change and thus trehalose does not freely partition or accumulate in the MscS-

like and MscL-like channels. 

 The above description of channel conductance change doesn’t dismiss the role of 

MS channels as osmolyte release valves, it just suggests that they do not occupy the 

channel for a substantial amount of time. This could be due to a difference in entrance 

and exit rates of the osmolyte; if the cage slows the entry to the pore but exit from the 

pore is very rapid, the presence of the osmolyte could be difficult to detect. To further 

examine the osmolyte permeability, different osmolytes (glycine betaine or proline) 

should be tested and the osmolyte location should be flipped, with the pipette being 

backfilled with osmolytes, such that they can now enter from the extracellular side. If the 

cytoplasmic cage does indeed act as a filter and slows down permeation from the 

intracellular side of the patch, then the conductance of the patch should decrease to a 

larger magnitude than the previous experiment. 
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The mechanosensitive channels in the facultative pathogen Pseudomonas aeruginosa  

P. aeruginosa occupies both soil and water and causes fatal sepsis in damaged 

tissues or individuals with compromised immune systems. By readily forming biofilms 

on medical equipment, P. aeruginosa has become a serious problem associated with 

catheter infection. The medical relevance each of these bacteria present make them 

optimal choices for spheroplast development. We have developed such a protocol and I 

performed a few initial electrophysiological examinations of the mechanosensitive 

channels present.  

 

 

Figure 5.7. Mechanoelectrical responses of E. coli and P. aeruginosa. Above are the typical responses 

of both E. coli (A) and P. aeruginosa (B) to a 1s ramp of increasing pressure. The two-wave response in E. 

coli is due to the presence of two different channel populations (MscS and MscL, labelled with arrows) 

which each activate at different tension threshold. P. aeruginosa (B) does not exhibit clear channel 

population transitions, but rather displays a gradual increase in current. (C) shows the clear transition 

between MscS and MscL channels, while (D) shows that there is no obvious delineation.  
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Unlike the typical two-wave response of E. coli during a 1 s ramp of increasing 

pressure in patch-clamp experiments, P. aeruginosa shows a gradual increase in 

conductance without an obvious distinction between channel populations (Fig. 5.7). This 

could possibly indicate that there is a smaller distance between the two activation 

midpoints than there is in E. coli. The obvious instability and subconducting states in the 

smaller MscS-like channel(s) in P. aeruginosa may also be responsible for the lack of a 

clear delineation between channel populations. Initial osmotic survivability experiments 

indicate that this bacteria is also less tolerant of osmotic shock than E. coli (Fig. 5.8).  

 

 

Figure 5.8. Survival of P. aeruginosa and E. coli in response to abrupt osmotic downshock. Above is 

the survival reported for each species after a 15 minute shock in the stated dilutions. Data obtained by 

Christina Mayhew. 
 

 To continue to examine P. aeruginosa, as well as V. cholerae, our lab is currently 

working on isolating the genes associated with the MscS and MscL homologs in both 

species. Once this has been done we hope to transform each into E. coli MJF465 (mscS-, 
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mscK-, mscL-) on its own to elucidate gating via patch-clamp. We will also determine the 

ability of each of these channels to rescue MJF465 from osmotic shock. This will give us 

the first detailed description of the osmotic survival of these two facultative pathogens.  

 

The detection of the V. cholerae autoinducer CAI-1 partitioning into the P. aeruginosa 

membrane 

As bacteria generate resistances to known antibiotic methods, it becomes essential 

to discover new ways to stop infections. Recently, quorum sensing has been suggested as 

an interesting system that can be harnessed to reduce pathogenesis [168]. Specifically, V. 

cholerae uses the amphipathic autoinducer CAI-1 to coordinate gene expression of 

neighboring cells: when cell density is minimal and CAI-1 concentration is low, V. 

cholerae is virulent and forms biofilms. As the cell density increases, CAI-1 

concentration also increases and the bacteria becomes nonvirulent and biofilm formation 

halts, possibly leading to an increase in transmission. CAI-1 has been shown to enable 

genetic competence in V. cholerae and facilitate transformation of species and non-

species specific DNA into the cell [169]. Also, CAI-1 has been found to reduce cell 

growth and native quorum sensing in other bacteria species, namely P. aeruginosa [170]. 

The mode of action for this competitive inhibition is not yet detailed, however initial 

studies suggest that CAI-1 may permeate and perturb the membrane of P. aeruginosa 

enough to compromise the integrity of the cell. 

I have been provided a stock of CAI-1 from the lab of Dr. Sintim and performed 

some initial investigations on the effect of CAI-1 on the MS channel response in P. 

aeruginosa. The results suggest that ~10-100 uM CAI-1 does indeed alter the MS 
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activation curve in P. aeruginosa and V. cholerae excised membrane patches in the same 

manner as other amphipaths we’ve studied (Fig. 5.9). Further experimentation will be 

needed to determine the magnitude of this effect and whether it falls within the 

concentration range of CAI-1 antimicrobial activity against P. aeruginosa. 

 

 

Figure 5.9. Effect of 0.1 mM CAI-1 on V.cholerae and P. aeruginosa. Upon exposure to the V. Cholerae 

autoinducer CAI-1, the activation midpoint of both species is shifted toward higher tension. 

 

 

Closing remarks 

Since its isolation 20 years ago, MscS has become the most thoroughly studied 

mechanosensitive channel in science. The large catalogue of data available and the 

established protocols for the manipulation of MscS make it an attractive molecule for in 

vivo, in vitro and, increasingly, in silico analysis of ion channel gating. I am confident 

that future studies will lead to the further utilization of MscS as both a molecular tool and 

target. 
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Supplemental Methods, Figures and Tables 

 

 

 

Taken from: 

 

  

 

Ian Rowe, Andriy Anishkin, Kishore Kamaraju, Kenjiro Yoshimura and Sergei 

Sukharev. “The cytoplasmic cage domain of the mechanosensitive channel MscS is 

a sensor of macromolecular crowding.” Journal of General Physiology 2014 (in 

press) 

 

 

 

 

Modeling and simulations  

The extrapolated motion protocol (EMP), which allowed us to generate the library 

of 86000 models and briefly described previously [48-50] will be presented in detail in a 

separate paper (Anishkin et al, in preparation). 

The criteria for automated model selection based on experimentally determined 

spatial proximities are given in the main text. Here we only present the details and 

parameters of equilibrium and steered MD simulations used in this work.  

Candidate models of the resting and inactivated states satisfying the constraints 

were equilibrated and refined in MD simulations with explicit medium. To ensure better 

equilibration of the lipid bilayer and adjustment to the channel, we used POPC membrane 

from the previously equilibrated model of the resting MscS embedded in the membrane 

[49] and replaced the protein structure by one of the two conformations selected from 

EMP exploration results as described above. Slightly overlapping lipids were displaced 

towards the bulk of the membrane. Simulation cell setup and all the molecular 

modifications (protein embedding, overlapping lipid displacement etc.) was done using 
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VMD[98]. The final simulation cell contained ~170000 atoms in total, including ~30000 

protein atoms (1960 residues), 220 POPC molecules, ~37000 TIP3P waters, 65 potassium 

and 72 chloride ions (corresponding to a 200 mM salt solution). The whole system was 

energy minimized with a restrained protein backbone for 10000 steps using the conjugate 

energy gradient algorithm. The minimized system was simulated for 3 ns with the protein 

backbone harmonically restrained near the modeled positions with a spring constant of 1 

kcal/mol/Å for 3 ns. A flexible hexagonal cell was simulated with periodic boundary 

conditions under 1 bar of pressure and a lateral tension of 40 dyne/cm. All simulations 

were performed using NAMD2 with the CHARMM27 force field, the particle-mesh 

Ewald method for long-range electrostatics estimation, a 10 Å cutoff for short-range 

electrostatic and Van der Waals forces, and a Langevin thermostat set at 310 K. The 

equilibration of models in explicit lipid bilayer included 20 ns unrestrained simulation for 

each of the structures, followed by a refinement using 5 ns symmetry-driven simulated 

annealing as described previously[99]. 

To explore the structural changes in MscS under increased crowding in the 

cytoplasm we have approximated the pressure of the large macromolecules by a force 

acting on the C-terminal half of the cytoplasmic cage (residues 183-280). To speed up the 

simulation, the force was applied only to non-hydrogen backbone atoms of that region 

(393 atoms per monomer, 2751 per whole channel). The force was always acting in the 

same direction – towards the midplane of the bilayer. The magnitude of force was set for 

slow exponential growth from 0.001 to 0.1 kcal/mol/Å/atom over the course of 20 ns 

simulations. To prevent the net displacement of the protein and membrane under the 

force, we have restrained the center of mass of non-hydrogen backbone atoms of TM1-
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TM2 helices at the level of lipid bilayer (residues 12 to 54 and 70 to 89) in the direction 

normal to the membrane midplane. Note that only the average position of the center of 

mass of this region was restrained, while any relative motions within (e.g. helices tilting 

or kinking) were not affected. All the simulation conditions and settings were the same as 

in the relaxation simulations described above. The starting conformations of the protein 

(resting and inactivated) were taken from the final step of the symmetry-annealing of the 

relaxed structures.  

Visualization of the channel structures was performed using the Visual Molecular 

Dynamics (VMD) package[98]. All the structural analysis (relative position of the protein 

domains, in-plane area of the channel in the membrane, and estimation of the cytoplasmic 

cage volume) was done using custom-written Tcl scripts for VMD. 
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Figure S1. The scheme representing the functional cycle of WT MscS. The compact resting state is 

occupied at low sub-threshold tensions. It is characterized by the upright positions of peripheral (TM1-

TM2) helices forming the buried contact with the pore-forming TM3s. This state is stabilized by D62-R131 

salt bridges between the TM1-TM2 loops and the upper hemisphere of the cage. The application of super-

threshold tension drives the population of resting channels in two different paths. The first is opening, 

which leads to hydration of the hydrophobic gate associated with a larger (~15 nm2) in-plane expansion of 

the TM domain[50] and likely preserves TM2-TM3 contacts. The second inactivation pathway, trigged by 

tension of a similar threshold, leads to the detachment of the peripheral helices from the central TM3 core, 

accompanied by a kinking of TM3 helices at G113 which is stabilized by an association between the beta 

domains of the cage (purple) and the TM3b segments. Inactivation is associated with a smaller in-plane 

expansion of the TM domain[90]. The return to the resting state is predicted to include straightening if 

G113 kinks, detachment of beta domains from the TM3b segments and re-formation of D62-R131 bridges. 

This transition is predicted to result in a ~12 Å displacement of the gate upward, toward the midplane of the 

membrane.  
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Figure S2. The change in MscS inactivation and recovery rates in control and in the presence of 25 

mM (7.5 vol%) and 40 mM (12 vol%) of PEG 3350 on the cytoplasmic side of the excised patch. The 

‘comb’ pressure protocol incudes a prolonged (30s) conditioning step of pressure, typically chosen at the 

midpoint of activation (p1/2), and a train of interspersed saturation pulses indicating fraction of active 

channels.  In control, MscS shows decaying activation to four of the pulses 6 s apart. 25 mM PEG makes 

the channel open only once. 40 mM PEG activates only about 3% of the population, which immediately 

inactivates. The rate of recovery is visibly decreased by 25 mM of PEG.  This experiment allows us 

separate the previously described processes of crowder-promoted adaptation[62] from tension- and 

crowder-dependent inactivation. 
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Mutant pMscS/pMscL Midpoint 

(mN/m) 

Open state 

stability 

Ramp 

Response 

Inactivation Recovery τ of 

recovery 

(sec) 

WT 0.6 7.8 WT-like WT-like WT-like WT-like 1.3 + 0.6 

A98S 0.45 5.8 Unstable WT-like Less than WT - - 

G113A 0.6 7.8 Very Stable WT-like Less than WT - - 

N117A 1 13 WT-like WT-like WT-like Fast - 

N117V 1 13 Unstable Minimal WT-like Fast 0.5 + 

0.02 

G121A 0.6 7.8 Very Stable WT-like Less than WT Slow 229 + 

8.4 

F151R 0.6 7.8 Very Stable Reduced WT-like Slow 3.4 + 1.9 

F151D 0.6 7.8 Very Stable WT-like Less than WT - - 

N167D 1 13 Unstable WT-like WT-like Fast 1.9 + 0.6 

N167V 1 13 Unstable None More than WT Fast 0.6 + 0.2 

G168D 0.6 7.8 Very Stable WT-like Less than WT - - 

N117V/N167V 1 13 Unstable None More than WT Fast - 

F151R/N167D 1 13 Unstable None WT-like Slow 13.2 + 

5.8 

 
Table S1. Summary gating phenotypes for several mutants with altered contact region between the 

C-terminal segment (TM3b) of the gate-forming TM3 helix and the beta domain of the MscS cage. 
The above mutants were generated and scrutinized via patch clamp to investigate the deviations from WT 

MscS they produced. The given midpoint and recovery values are based on a minimum of three 

independent measurements where possible. Omissions in recovery information are due to either a lack of 

adaptation, thus prohibiting inactivation measurements (A98S, G113A, F151D, and G168D), or extreme 

gating tensions which destabilize the patch (N117A, N117V/N167V). 
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