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Preface

In 1935, Einstein, Podolsky, and Rosen (EPR) published a paper claiming

that quantum mechanics was incomplete, that there exist ‘elements of reality’ which

cannot be described by the quantum wave-function of a system [1]. The key to their

argument was their definition of an element of reality: whenever a physical quantity

of a system can be predicted with certainty without disturbing that system, there

must necessarily be a corresponding element of reality. In quantum mechanics, an

observable of a system can only be predicted with certainty if that system’s wave-

function is an eigenvector of that observable. Thus two non-commuting observables

(with non-complementary eigenvectors) cannot be simultaneous elements of reality.

Considering wave-functions describing composites of two systems, EPR showed that

by measuring one system it appeared possible to ‘steer’ the second to a wave-function

corresponding to two different non-commuting observables. Therefore, by making an

appropriate measurement on the first system, it seemed possible to predict the values

of both non-commuting observables of the second, and therefore both observables

would be elements of reality. Since this is forbidden in quantum mechanics, EPR

concluded that the theory was incapable of completely describing nature 1.

Building on the comments of Einstein, Podolsky, and Rosen, Erwin Schrödinger [2]

considered a class of composite quantum states for which the value of every observ-

1Many physicists today would argue that the issue with this conclusion is not in quantum

mechanics, but rather in EPR’s defintion of an ‘element of reality’. We can instead interpret

EPR’s paper as showing that quantum mechanics is in direct conflict with local realism, i.e. that

elements of reality must be associated with objects localized in space.
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able of one system can be inferred by measuring a corresponding observable in the

other 2. An extraordinary feature of these states is that, prior to any measure-

ment, one cannot make predictions with certainty about any observable of a single

subsystem, and yet all of them are elements of reality. Schrödinger called systems

displaying this bizzare property “entangled”, and stressed the importance of this

phenomenon to quantum theory:

“I would not call that one but rather the characteristic trait of quantum mechanics,

the one that enforces its entire departure from classical lines of thought.”

This unique form of correlation, and more generally the ability to form superposi-

tions of composite systems, is arguably the key ingredient of quantum information

science. From it stem novel applications in computation [3], communication [4], and

metrology [5].

2Today these are called maximally entangled states. In the case of two qubits (an ‘EPR pair’),

they are called Bell states.
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This thesis focuses on different aspects of quantum information science, and
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Chapter 1: Introduction

While quantum information science has seen impressive advances in the last

two decades, it has also generated unique challenges. Experiments in atom and

ion traps have been approaching the coherence and size limits required to simu-

late exotic states of matter [6–8]. Success in these efforts will provide insight into

strongly correlated many-body systems in condensed matter [8–10], as well as quan-

tum field theories that cannot be studied with classical numerical methods [11,12].

Yet it is exactly the fact that they simulate such quantum systems that makes

confirming the output of these simulators so difficult [13–15]. Along similar lines,

progress in quantum optics has led to some of the first industrial applications of

quantum information, including provably secure long-range distribution of cryp-

tographic keys [16–19] and generation of truly random numbers [20–22]. All of

these advances inherit the same problem: given a device purported to achieve a

uniquely quantum task, how does one verify it is working with only limited quan-

tum resources? There have also been several impressive achievements in quantum

metrology [5]. Since the 1950’s [23] there have been orders of magnitude improve-

ments in timekeeping of atomic clocks [24].The extreme precision of these devices
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(currently one part in 1018 [25, 26]) make them ideal for defining time standards1,

as well as testing for space-time variations of fundamental constants [28, 29]. De-

velopments in precision measurement from quantum optics have also recently been

applied in gravitational wave detection [30]. These experiments use systems dis-

playing uniquely quantum features, such as squeezed states, to achieve precisions

surpassing the Standard Quantum Limit [31, 32]. The generation of such states is

non-trivial, and understanding the practical physical limits of measurement remains

an active area of research.

Future successes in quantum information science will rely on advances in the

following categories:

1. The ability to correlate distant quantum systems through controlled interactions

while avoiding decoherence. For example, interactions between at least two

qubits are required for universal quantum computation [33] as well as the en-

tanglement required for generating provably secure cryptographic keys [4,34].

Decoherence from interactions with the environment causes these superposi-

tions of correlated states to break down, forming useless statistical mixtures.

2. Procedures for verifying the correct operation of quantum devices. Indeed,

techniques for measuring error rates [35–38] are invaluable in quantum com-

puting, since there exists error correction thresholds which a computation is

guaranteed to succeed [39, 40].In many settings (such as in quantum simula-

1According to the International Bureau of Weights and Measures (BIPM) [27]:“The second is

the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the

two hyperfine levels of the ground state of the caesium 133 atom.”
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tion [13,41] and boson sampling [42]) it is impossible to completely verify the

system of interest using known classical methods. Indeed, for such systems the

many-body quantum processes involved are not believed to be reproduceable

by classical computation.

3. Quantum state preparation. Specifically prepared quantum states serve as

practical resources, such as in measurement based quantum computing [43] and

quantum state teleportation [44,45]. Alternatively, the preparation of certain

states can be viewed as computational goals, such as for ground states corre-

sponding to physically interesting Hamiltonians [46] or as outputs of quantum

computation [47].

This thesis will describe efforts to address each of these challenges.

1.1 Decoherence and controlled interactions

Minimizing decoherence and maintaining strong desired couplings between

constituents of a quantum system can be conflicting goals. Decoherence is caused

by unwanted interactions with an inaccessible environment. This can be viewed

as a measurement of the system by the environment, whose back-action degrades

the stored information in a quantum memory or disentangles multi-partite systems.

(Although not a main focus in this thesis, the strength of decoherence will be of

relevant interest in several of the following chapters.) Conversely, certain quantum

systems (e.g., photons) have intrinsically weak interactions with their environment

and therefore low decoherence rates, but for this same reason they require sophisti-
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cated measures to correlate them with other systems. Both of these issues are crucial

in nearly every aspect of quantum information science, from proposed large scale

quantum computing networks [48–50], to cryptographically secure communication

schemes [51,52], to preservation of sensitive states used in metrology [53,54].

Many applications stem from the ability to controllably and strongly couple

distinct quantum systems. This is the basis of sympathetic cooling, in which artifi-

cial baths thermalize target systems far below their ambient temperatures (e.g., in

ultracold atoms [55–57] or micromechanical oscillators [58–60]). Likewise, atom-light

couplings can be used to generate effective interactions between photons, allowing

for novel many-body photonic systems [61,62], single photon detectors [63–65], and

scalable light-based quantum computation [66–68]. Future devices will likely be hy-

brid quantum systems, combining components with distinct properties needed in a

quantum computing architecture. For example, with their long lifetimes and ease

of measurement [69], trapped ions make good canditates for quantum memories.

There has been recent interest in interfacing these systems with superconducting

circuits, which have fast gate times, can be fabricated to user specifications, and

sized to macroscopic scales [70]. In Chapters 2 and 3 we will discuss two related

implementations of these hybrid systems.

1.2 Verification of quantum systems

The ability to verify entanglement between distant objects is fundamental

to our understanding of quantum physics. Indeed, some of the earliest protocols
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for quantum key distribution [18] were based on detecting violations of Bell’s in-

equalities [71, 72]. The amount of entanglement between two subsystems after one

subsystem is sent through a quantum communication channel defines the channel’s

quantum capacity, which characterize its ability to coherently transmit quantum

states [45,73,74]. The quantum capacity is at least as large as the classical capacity

since classical information can be encoded in quantum states [75]. Long-range inter-

actions can also be viewed as communication channels, since they induce statistical

correlations between distant objects. In Chapters 4 and 5 we study interactions in

the presence of decoherence that can correlate quantum systems but never produce

distillable entanglement between them. In other words, they have a finite classical

channel capacity but zero quantum channel capacity. From this analysis we derive

a generic test verifying that an observed interaction can entangle.

As quantum systems grow beyond a few tens of constituents, the exponential

growth of their Hilbert space makes it impossible to directly simulate their evolution

or even completely characterize them through measurement (a procedure known as

state or process tomography). In fact, this was one of the first motivations for mak-

ing such quantum simulators [13,14]. Instead, current experimental efforts must use

incomplete tests to verify the correct operation of quantum devices. For example,

state tomography based on compressed sensing assumes that the studied state is

described by a low rank density matrix, allowing for substantially fewer measure-

ments than full tomography [76, 77]. Similarly, randomized benchmarking [36, 78]

and fidelity estimation [37, 38] techniques can be used to quantify error rates in

quantum gates. In Chapter 6 we will describe another partial test, intended to ver-
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ify that the simulated evolution of quantum system can be used to generate long

range entanglement.

1.3 State preparation

Exotic quantum states are key to applications within quantum information

science. Indeed, highly entangled ‘Schrodinger cat states’ have the potential to

enhance signal to noise ratios in interferometry [53], but for this same sensitivity

to noise they are very hard to prepare in practice (the largest photonic cat state

to date was composed of 8 distinct modes [79]). On the information theoretic side,

instances of classically intractable problems can be encoded in the ground states

of quantum Hamiltonians with three-body interactions [47, 80]. In fact, the ability

to generically measure the ground state energy of 3-local Hamiltonians is believed

to be even outside the capability of quantum algorithms (the 3-local Hamiltonian

problem is QMA-complete) [81]2.

There are a variety of state preparation algorithms for achieving specific tasks.

For example, quantum Metropolis sampling [82, 83] can be used to prepare Gibbs

states of simulated Hamiltonians on a quantum computer (this is a challenge in clas-

sical simulations due to the ‘sign problem’), while more generally there is also a quan-

tum version of rejection sampling (a primary subroutine in the classical Metropolis

algorithm) [84]. Likewise adiabatic quantum computation [47] is premised on using

an adiabatically changing a system’s Hamiltonian to prepare ground states relevant

2In this context, a k-local Hamiltonian is a sum of terms, each acting on at most k subsystems.
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to computational problems. It has been shown to be computationally equivalent to

the circuit-based model [85]. Recently these problems have been approached from

the perspective of quantum query complexity, producing lower bounds on the re-

quired number of operations to prepare a given state [86–88]. In Chapter 7 we will

study the computational power of cooling quantum systems with limited resources.

Relevant to this discussion, we present a novel scheme for ground state preparation

in quantum simulators, based on cooling the simulated system through resonant,

local interactions with a single qubit ‘bath’.

1.4 Thesis outline

The upcoming chapters are grouped according to three sets of related cate-

gories:

• 2,3 – Control of hybrid quantum systems. Chapter 2 describes a hybrid quan-

tum system composed of a superconducting circuit capacitively coupled to a

nearby trapped ion. The circuit’s photonic excitations and the ion’s motional

mode are modeled as coupled harmonic oscillators with highly off-resonant

frequencies. To overcome the frequency mismatch and achieve a fast exchange

of excitations between these modes, we modulate the characteristic inductance

of the circuit. Our method is based on the reaction of a non-linear circuit ele-

ment (a Josephson junction) to a time-dependent, external magnetic flux. The

inductance modulation adds a sideband to circuit dynamics that is resonant

with the ion motion, so that the ion-circuit coupling is time-independent in
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the interaction picture. Similarly, Chapter 3 describes how to couple these sys-

tems by instead modulating the circuit’s capacitancee. The capacitive driving

allows for much larger resonant sideband in the circuit’s charge, and is there-

fore much more effective than the previous scheme. Based on this enhanced

coupling we describe several applications, each premised on using the ion mo-

tional mode as a ‘quantum bus’ between the circuit and ion’s spin degree of

freedom.

• 4,5,6 – Verification of entanglement in quantum systems. Moving from con-

trol to verification of quantum systems, in Chapter 4 we study the effects of

dissipation on linearly coupled oscillators. We derive a necessary and sufficient

condition for a given class of master equations to generate distillable entan-

glement. This leads to a generic experimental test, premised on observing the

canonical variables as a witness to the interaction’s ability to correlate the sys-

tems. We compare the witness to the observed noise in these variables, which

must increase at a finite rate in order to prevent entanglement from emerging.

Chapter 5 ties these results to the question of gravitational decoherence. It

proposes a simple gravitational model between two pendulums based on con-

tinuous measurement and feedback, studies this model in the context of the

previous chapter’s results, and discusses the challenges in experimentally test-

ing whether gravity can entangle distant objects. Finally, Chapter 6 focuses on

verification of entanglement in many-body quantum simulators. It describes

a generic test for distinguishing classical and quantum systems, by checking
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whether the time evolution of a system can be used to produce long-range

entanglement.

• 7 – State preparation in quantum simulators. Chapter 7 investigates the cost

of state preparation in quantum simulators. It describes a technique for cool-

ing these systems to their ground states using only local interactions a small

ancillary ‘bath’. By comparing total cooling time to query cost in terms of

computational complexity, it shows that this technique is as powerful as stan-

dard quantum computation3.

3More specifically, we show that any algorithm that can be carried out efficiently using circuit-

based quantum computation can also be achieved efficiently by ground state preparation.
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Chapter 2: Dynamics of an Ion Coupled to a Parametric Supercon-

ducting Circuit

Superconducting circuits and trapped ions are promising architectures for

quantum information processing. However, the natural frequencies for controlling

these systems – radio frequency ion control and microwave domain superconducting

qubit control – make direct Hamiltonian interactions between them weak. In this pa-

per we describe a technique for coupling a trapped ion’s motion to the fundamental

mode of a superconducting circuit, by applying to the circuit a carefully modulated

external magnetic flux. In conjunction with a non-linear element (Josephson junc-

tion), this gives the circuit an effective time-dependent inductance. We then show

how to tune the external flux to generate a resonant coupling between the circuit

and ion’s motional mode, and discuss the limitations of this approach compared to

using a time-dependent capacitance.

2.1 Introduction

Superconducting circuits and trapped ions have distinct advantages in quan-

tum information processing. Circuits are known for fast gate times, flexible fabri-

cation methods, and macroscopic sizes, allowing multiple applications in quantum

10



information science [89–92]. Unfortunately, they have short coherence times and

their decoherence mechanisms are hard to address [50]. Trapped ions, on the other

hand, serve as ideal quantum memories. Indeed, the hyperfine transition displays

coherence times on the order of seconds to minutes [93–96], while high fidelity state

readout is available through fluorescence spectroscopy [69, 97]. Unfortunately, ions

depend mainly on motional gates for interactions [98–101]; these are typically slow,

susceptible to motional heating associated with traps [102–104], and usually occur

only at relatively short – dipolar – ranges (as compared with the size scales of inter-

connected superconducting circuits). The distinct advantages of ion and supercon-

ducting systems therefore motivates a hybrid system comprising both architectures,

producing a long-range coupling between high-quality quantum memories.

Early proposals for hybrid atomic and solid state systems [105, 106] have yet

to be implemented experimentally. Other approaches involve coupling solid state

systems to atomic systems with large dipole moments, such as ensembles of polar

molecules [107] or Rydberg atoms [108]. Although the motional dipole couplings

with the electric field of superconducting circuits can be several hundred kHz, these

systems suffer from a large mismatch between motional (∼ MHz) and circuit (∼

GHz) frequencies. This causes the normal modes of the coupled systems to be

either predominantly motional or photonic in nature, thereby limiting the rate at

which information is carried between them. Implementation of a practical hybrid

device therefore requires something additional.

Parametric processes allow for efficient conversion of excitations between off-

resonant systems. In the field of quantum optics, they are widely used in the fre-
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quency conversion of photons using nonlinear media [109, 110]. In the realm of

superconducting quantum devices, parametric amplifiers provide highly sensitive,

continuous readout measurements while adding little noise [111–114]. Parametric

processes can also be used to generate controllable interactions between supercon-

ducting qubits and microwave resonators [115–117]. In the context of hybrid sys-

tems, Ref. [118] presents a parametric coupling scheme between the resonant modes

of an LC circuit and trapped ion. The ion, confined in a trap with frequency ωi,

is coupled to the driven sidebands of a high quality factor parametric LC circuit

whose capacitance is modulated at frequency ωLC−ωi. This gives rise to a coupling

strength on the order of tens of kHz for typical ion chip-trap parameters.

In this chapter we describe an alternative parametric driving scheme to pro-

duce coherent interactions between atoms and circuits. By using a time-dependent

external flux, we drive a superconducting loop containing a Josephson junction,

which causes the superconductor to act as a parametric oscillator with a tunable in-

ductance. By studying the characteristic, time-dependent excitations of this system,

we show how to produce a resonant interaction between it and the motional mode

of a capacitively coupled trapped ion. Although in principle our approach could be

used to produce a strong coupling, we find that, in contrast with capacitive driving

schemes, the mismatch between inductive driving and capacitive (charge-mediated)

interaction causes a significant loss in coupling strength.

The chapter proceeds as follows: In the first section, we describe the experi-

mental setup of the circuit and ion systems and motivate the method used to couple

them. To understand how the Josephson non-linearity and external flux affect the
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circuit, we transform to a reference frame corresponding to the classical solution

of its non-linear Hamiltonian. We then linearize about this solution, resulting in

a Hamiltonian that describes fluctuations about the classical equations of motion

and corresponds to an LC circuit with a sinusoidally varying inductance. This peri-

odic, linear Hamiltonian is characterized by the quasi-periodic solutions to Mathieu’s

equation. From these functions we define the ‘quasi-energy’ annihilation operator for

the system and transform to a second reference frame where it is time-independent.

Finally, we derive the circuit-ion interaction in the interaction picture, which al-

lows us to directly compute the effective coherent coupling strength between the

systems. We conclude by comparing our results to previous work [118] (a capacitive

driving scheme) and analyzing why inductive modulation is generically ineffective

for capacitive couplings.

2.2 Physical System and Hamiltonian

We begin with a basic physical description of the ion-circuit system, and as in

Ref. [119], construct the classical Lagrangian before deriving the quantized Hamil-

tonian. We consider a single ion placed close to two capacitive plates of a super-

conducting circuit. We assume that the ion is trapped in an effective harmonic

potential with a characteristic frequency ωz in the direction parallel to the electric

field between the two plates [69]. The associated ion Lagrangian is

Lion(z, ż, t) =
1

2
mż2 − 1

2
mω2

zz
2 , (2.1)
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where m is the ion mass and z its displacement from equilibrium. Since the LC

circuit will only couple to the ion motion in the z direction, we ignore the Lagrangian

terms associated with motion in the other axial directions.

The circuit interacting with the ion contains a Josephson junction [120] (Fig. 2.1)

shunted by an inductive outer loop with inductance L. This configuration is known

as a radio frequency superconducting quantum interference device (rf-SQUID) [90].

The SQUID is connected in parallel to a capacitor C, whose plates are coupled to

the nearby trapped ion. An external, time-dependent magnetic flux φx(t) through

the circuit is used to tune the characteristic frequencies of this system. In our pro-

posed configuration, the SQUID Lagrangian can be written in terms of the node

flux φ as [119]

Lq(φ, φ̇, t) =
1

2
CΣφ̇

2 + EJ cos(φ/φ̃0)−
1

2L
(φ+ φx(t))

2 , (2.2)

where φ̃0 = ~/(2e) is the reduced flux quantum and CΣ = C + CJ is the effective

capacitance of the circuit including the capacitance CJ of the Josephson junction.

The Josephson energy is defined in terms of the critical current of the junction,

EJ = Icφ̃0. The Josephson term adds a non-linearity to the system ∝ EJ which will,

in conjunction with the external driving, allow us to map the circuit to a linear LC

system with time dependent inductance. The modulation of the inductance, in turn,

will allow for coherent transfer of excitations between the otherwise off-resonant LC

circuit (typical frequency ∼ 1 − 10 GHz) and ion motional mode (∼ 1 − 10 MHz).

Finally, we include the interaction between the two systems, associated with the ion
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Figure 2.1: Simplified diagram of experimental setup. Left: An rf-Squid with

Josephson energy EJ and junction capacitance CJ driven by a time-dependent exter-

nal flux φx(t). The outer loop with inductance L contributes an energy EL. Right:

Schematic of an ion confined by a capacitor with capacitance C. The capacitor is

connected in parallel to the rf-SQUID system.
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motion through the electric field between the two plates in the dipole approximation:

LI = −e
(

ξ

d
φ̇

)

z , (2.3)

where d is the distance between the two plates and ξ ∼ 0.25 a dimensionless factor

associated with the capacitor geometry [118].

With the full Lagrangian L = Lq+Lion+LI we follow the standard prescription

to define the canonical variables conjugate to z and φ:

pz =
∂L
∂ż

= mż (2.4)

q =
∂L
∂φ̇

= CΣφ̇− ξ
e

d
z . (2.5)

These are identified as the momentum of the ion in the z direction and the effective

Cooper-pair charge in the Josephson junction, respectively. We use the canonical

Legendre transformation H = qφ̇+ pz ż −L to define the Hamiltonian and quantize

the system, giving

Ĥ(t) = Ĥion + Ĥq(t) + ĤI , (2.6)

where

Ĥion =
p̂2z
2m

+
1

2
mω2

i ẑ
2, (2.7)

Ĥq(t) =
q̂2

2CΣ

− EJ cos(φ̂/φ̃0) +
1

2L
(φ̂− φx(t))

2, (2.8)

ĤI = −e ξ

dCΣ

q̂ẑ , (2.9)

As the canonical charge q of equation (2.5) has a term proportional to z, the ion

Hamiltonian Ĥion gains an extra potential term proportional to ẑ2. Accounting for

this term, we define the dressed trap frequency,

ω2
i = ω2

z +
e2ξ2

d2CΣm
. (2.10)
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The latter correction is small compared to ωz; it is on the order of 50kHz for the

parameters suggested in Ref. [118] (d ≈ 25µm, CΣ ≈ 50fF andm ≈ 1.5×10−26kg the

atomic mass of Beryllium). Finally, we note the resulting commutation relations,

[φ̂, q̂] = [ẑ, p̂z] = i~.

To motivate the method for coherently coupling the ion and circuit, we consider

the Hamiltonian in the interaction picture, i.e., in the frame rotating with respect

to Ĥq(t) + Ĥion. In this frame the Hamiltonian takes the form,

Ĥint(t) = − ξe

dCΣ

q̂(t)
(

b̂e−iωit + b̂†eiωit
)

√

~

2mωi
, (2.11)

where b̂ =
√

mωi

2~
ẑ + i

√

1
2~mωi

p̂z is the annihilation operator associated with exci-

tations of the ion motional mode, and q̂(t) is propagated according to the time-

dependent Hamiltonian Ĥq(t). Observe that if we set both φx(t) and EJ to 0 in the

definition of Ĥq(t), the charge q̂(t) will oscillate as a harmonic oscillator,

q̂(t) → i

√

~CΣω0

2
(âe−iω0t − â†eiω0t) , (2.12)

with â the circuit annihilation operator analogous to b̂, and ω0 the undriven fre-

quency LC,

ω0 = 1/
√

LCΣ . (2.13)

In order to coherently exchange excitations between the systems, Ĥint(t) should

only contain beam splitter like terms, âb̂† and â†b̂, while suppressing the excitation

non-conserving terms, â†b̂† and âb̂. Yet since ω0 ≫ ωi, the ab
† terms oscillate at a

frequency comparable to the a†b† terms, both of which have negligible effect in the

rotating wave approximation (RWA). Our goal is therefore the following: design EJ
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and φx(t) such that âb̂† contains a time-independent component in the interaction

picture, while âb̂ contains only oscillating terms that drop out in the RWA.

2.3 Linearization of the Parametric Oscillator

Before we can determine the parameters φx(t) and EJ allowing for coherent

exchange of excitations, we must first bring Ĥq(t) into a more agreeable form. To

begin, we linearize the circuit Hamiltonian about the classical solution to its equa-

tions of motion. This makes it possible (in the next section) to identify effective

annihilation and creation operators for the LC system, and to analyze their spec-

trum.

We linearize by displacing the charge and flux variables by time-dependent

scalars, qc(t) and φc(t), through the unitary transformations

Û1(t) = eiφ̂qc(t)/~,

Û2(t) = e−iq̂φc(t)/~ . (2.14)

Specifically, we consider the LC circuit in terms of the displaced states,

∣

∣

∣Ψ̃(t)
〉

= Û †
2(t)Û

†
1(t) |Ψ(t)〉 , (2.15)

whose equation of motion satisfies

∂t

∣

∣

∣Ψ̃(t)
〉

= −i~−1H̃q(t)
∣

∣

∣Ψ̃(t)
〉

,

H̃q = Û †
2 Û

†
1ĤqÛ1Û2 − i~Û †

2 Û
†
1

∂Û1

∂t
Û2

− i~Û †
2

∂Û2

∂t
.

(2.16)
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Given [φ̂, q̂] = i~, we have that Û †
1 q̂Û1 = q̂ + qc(t) and Û †

2 φ̂Û2 = φ̂ + φc(t), while

clearly Û †
1 φ̂Û1 = φ̂ and Û †

2 q̂Û2 = q̂. The displaced state Hamiltonian is therefore

H̃q(t) =
(q̂ + qc(t))

2

2CΣ

+ Vq(φ̂+ φc(t))

+(φ̂+ φc(t))∂tqc(t)− q̂∂tφc(t), (2.17)

where we have defined the nonlinear potential,

Vq(φ̂) = −EJ cos(φ̂/φ̃0) +
1

2L
(φ̂− φx(t))

2 , (2.18)

with φ̃0 = ~/(2e). We now Taylor expand Vq about φc(t), and collect all first and

second order terms in q̂ and φ̂, giving

H̃q(t) = q̂ (qc(t)/CΣ − ∂tφc) + φ̂
(

V ′
q (φc) + ∂tqc

)

+
q̂2

2CΣ

+
V ′′
q (φc)

2!
φ̂2 +R(φ̂) , (2.19)

where we have dropped all scalar terms, and

R(φ̂) =
∑

k≥3

φ̃k0V
(k)
q (φc)

(

φ̂/φ̃0

)k 1

k!
(2.20)

represents all higher order terms in the Taylor expansion.

To complete the linearization, the displacements qc and φc are chosen so that

the first order terms in q̂ and φ̂ vanish, and therefore H̃q is quadratic to leading

order:

∂tφc = qc/CΣ

∂tqc = −V ′
q (φc) . (2.21)
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These relations are the solutions to the classical, driven Hamiltonian, Hq =
q2c
2CΣ

+

Vq(φc, t), and can be substituted into each other to give

∂2t φc + ω2
0(φc + βφ̃0 sin(φc/φ̃0)) = ω2

0φx(t) , (2.22)

where

β = LEJ/φ̃
2
0 =

LIc

φ̃0

(2.23)

represents the strength of the non-linearity and ω0 = 1/
√
LCΣ is the bare LC

resonance frequency. Substituting from (2.21) and computing V ′′
q (φc) = 1

L
(1 +

β cos(φc/φ̃0)), we can now express the circuit Hamiltonian as

H̃q(t) =
q̂2

2CΣ

+
1

2L
(1 + β cos(φc(t)/φ̃0))φ̂

2 . (2.24)

Note that we have dropped the higher order terms R(φ̂) of equation (2.20). Un-

derstanding when this is valid will require us to express the flux operator φ̂ in the

interaction picture, which we carry out below. A complete analysis is deferred to

the appendix.

With equation (2.24) we have converted to the Hamiltonian of a harmonic

oscillator with time-dependent inductance. Although it is explicitly dependent on

the classical solution φc(t), we note that engineering this function is rather straight-

forward. Given a desired φc(t), the external driving φx(t) needed to produce it is

given explicitly by equation (2.22) (see Fig. 2.2). For simplicity we assume that

φc(t) satisfies the relation

β cos(φc(t)/φ̃0) = η cos(ωdt) , (2.25)
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Figure 2.2: External flux drive φx(t)/φ̃0 required for a sinusoidal modulation of

circuit inductance. The flux φx(t) is defined explicitly by equation (2.22), where the

classical solution φc(t) satisfies β cos(φc(t)/φ̃0) = η cos(ωdt). The plotted function

corresponds to drive parameters ωd = 0.999ω0, η = 0.06 = (3/4) × β, where β =

EJ(φ̃
2
0/L)

−1 represents the strength of the non-linearity compared to the bare linear

inductance. The relative scaling η/β < 1 is chosen so that φc is a smooth function

of time; the η → β− limit corresponds to a saw-tooth wave with undefined second

derivative.

where we assume η < β so that φc is well defined at all t. This corresponds to an LC

circuit with inverse inductance L−1 modulated at amplitude η and frequency ωd,

H̃q(t) =
q̂2

2CΣ

+
1

2L
(1 + η cos(ωdt))φ̂

2 . (2.26)

In the following section we will see how the design parameters η and ωd determine

the evolution of this system.
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2.4 Time-Dependent Quantum Harmonic Oscillator

Although we now have a quadratic Hamiltonian for the SQUID, since H̃q(t) =

q̂2

2CΣ
+ 1

2L
(1 + η cos(ωdt))φ̂

2 is time-dependent, it is not immediately clear how to

define its associated annihilation operator. To do so, we follow the approach of

Ref. [121] to obtain an effective operator â retaining useful properties of the time-

independent case. Specifically, it satisfies [â, â†] = 1 and, in the appropriate reference

frame, is explicitly time-independent. Further, in this frame the Hamiltonian can

be written as ~(∂tθ(t))(â
†â + 1/2), where θ(t) is the effective phase accumulated

by â in the Heisenberg picture. This new Hamiltonian commutes with itself at

all times, allowing us to directly transform to the interaction picture in the next

section. We will then describe how to control the spectral properties of q̂(t) in

the interaction Hamiltonian (2.11), producing the desired time-independent beam

splitter-like interaction between circuit and ion motion.

Following Ref. [121], we use unitary transformations to change H̃q(t) so that

it is of the form ∼ g(t)(αq̂2 + βφ̂2), where α and β are explicitly time-independent.

To do this, we first analyze the classical equation of motion for the flux φ associated

with H̃q(t), as derived from equation (2.26),

∂2t f(t) + ω2
0(1 + η cos(ωdt))f(t) = 0 . (2.27)

Since the drive has period τ = 2π/ωd, from Floquet’s theorem [122,123] we can find
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a quasi-periodic solution f satisfying

f(0) = 1 ,

f(t+ τ) = eiµπf(t) . (2.28)

In order for the solution to be stable, the characteristic exponent µ must be real

valued. This imposes constraints on the parameters ωd and η, which we discuss

later. As we shall see, the properties of the function f will be closely related to the

spectrum of q̂(t) in the interaction picture.

It is useful to express f in polar form,

f(t) = r(t)eiθ(t) , (2.29)

where r > 0 and θ is real valued. Substituting this relation into the characteristic

equation (2.27) determines equations of motion for r and θ,

∂2t r =
(

(∂tθ)
2 − ω2

0(1 + η cos(ωdt))
)

r ,

0 = r∂2t θt + 2(∂tr)(∂tθ) .

(2.30)

We define the associated Wronskian, which sets a characteristic frequency scale for

the evolution,

W =
1

2i
(f ∗(t)∂tf(t)− f(t)∂tf

∗(t))

= Im
(

re−iθ∂t
(

reiθ
))

= r2∂tθ . (2.31)

We note that 1
r
∂tW is equal to the second line of (2.30), so ∂tW = 0 and W is

time-independent.
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The above definitions are key to the transformations bringing H̃q(t) into the

desired form. Our first transformation is

Û3 = exp(iχ(t)φ̂2/~) , (2.32)

where

χ(t) ≡ CΣ

2

∂tr

r
(2.33)

is the real part of the effective admittance, CΣ

2
∂tf
f
. Using [φ̂, q̂] = i~, we note

Û †
3 q̂U3 = q̂ + 2χφ̂

Û †
3 φ̂U3 = φ̂

−i~Û †
3∂tÛ3 = (∂tχ)φ̂

2 (2.34)

After some algebra, the Hamiltonian of Eq. (2.26) is transformed to Û †
3H̃q(t)Û3 −

i~Û †
3∂tÛ3 and becomes

q̂2

2CΣ

+
χ

CΣ

(φ̂q̂ + q̂φ̂)

+
CΣφ̂

2

2

(

ω2
0 (1 + η cos(ωdt)) + (2χ/CΣ)

2 + 2∂tχ/CΣ

)

(2.35)

=
q̂2

2CΣ

+
χ

CΣ

(φ̂q̂ + q̂φ̂) +
CΣ

2
(∂tθ)

2φ̂2 .

In the last line we used 2χ/CΣ = (∂tr)/r and the first line of (2.30) to compute

2∂tχ/CΣ = (∂tθ)
2 − ω2

0 (1 + η cos(ωdt))− (2χ/CΣ)
2.

The next transformation removes the cross term and rescales q̂ and φ̂:

Û4 = e−iF (t)(φ̂q̂+q̂φ̂)/~ , (2.36)

where F (t) = 1
2
log(r) satisfies ∂tF = χ/CΣ. Given [(φ̂q̂ + q̂φ̂), φ̂] = −2i~φ̂ and
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[(φ̂q̂ + q̂φ̂), q̂] = 2i~q̂, we compute

Û †
4 q̂U4 = e−2F q̂ =

q̂

r

Û †
4 φ̂U4 = e2F φ̂ = rφ̂

−i~Û †
4∂tÛ4 = − χ

CΣ

(φ̂q̂ + q̂φ̂) . (2.37)

The final transformed Hamiltonian is therefore

ĤLC =
q̂2

2CΣr2
+
CΣ

2
(∂tθ)

2r2φ̂2

=
∂tθ

W

(

q̂2

2CΣ

+
1

2
CΣW

2φ̂2

)

, (2.38)

where the last line follows from equation (2.31).

Equation (2.38) allows us to define the effective annihilation operator in the

standard way,

â =

√

CΣW

2~
φ̂+ i

√

1

2~CΣW
q̂ , (2.39)

so that the Hamiltonian is also equal to

ĤLC(t) = ~(∂tθ)(â
†â+ 1/2) . (2.40)

In this reference frame, we can interpret â† as the creation operator for the instan-

taneous eigenstates of ĤLC(t), whose energies are integer multiples of ~(∂tθ)(t).

2.5 Interaction Picture

Using the series of unitary transformations derived above, we now compute the

operators φ̂ and q̂ in the interaction picture with respect to Eq. (2.40). This serves

two purposes. First, it will allow us calculate in the interaction picture the higher
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order terms R(φ̂) of equation (2.20), which we we dropped in order to the reach

driven, quadratic Hamiltonian of equation (2.26). In the appendix we evaluate the

size of these corrections in the rotated frame, and suggest a technique for minimizing

their effect. Second, going to the interaction picture will allow us to write the original

interaction ĤI = −e ξ
dCΣ

q̂ẑ in terms of the effective annihilation operators of equation

(2.39), allowing for a straightforward calculation of the coherent coupling strength

in the next section.

It is easier to first compute φ̂ in the interaction picture; the first two transfor-

mations are the displacements involved in linearization,

φ̂→ φ̂+ φc , (2.41)

while the third unitary Û3 = exp(iχφ̂2/~) has no effect on φ̂. The final unitary Û4

rescales φ̂ by the factor r, giving

√

~

2CΣW
r(â+ â†) + φc(t) , (2.42)

where we have used (2.39) to express φ̂ in terms of the annihilation operator â.

Finally, since in this rotated frame the circuit Hamiltonian is of the form ĤLC =

~(∂tθ)
(

â†â+ 1/2
)

, in the corresponding interaction picture â → âe−iθ. The final

form of φ̂ in the interaction picture is thus

φ̂int(t) = φc(t) +
√

~

2CΣW
r(âe−iθ + â†eiθ)

= φc(t) +
√

~

2CΣW
(f ∗â+ fâ†) , (2.43)

where we have used f = reiθ. Using this expression for the interaction picture flux

operator, we bound the effect of the higher order corrections R(φ̂) to the linearized
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Hamiltonian of equation (2.24). A parameter of interest arising in this discussion is

the relative size of the characteristic flux, which is set by

γ ≡ 1

φ̃0

√

~

2CΣW
. (2.44)

Importantly, the final coupling strength is linearly proportional to this parameter,

which we shall see limits the efficacy of our approach.

The derivation of q̂int is analogous to that of φ̂int. From the action of the four

transformations Û1 through Û4, q̂ takes the form

qc(t) +
1

r
q̂ + 2χrφ̂ . (2.45)

Expressing these operators in terms of â of equation (2.39) then going to the rotating

frame â→ âe−iθ gives

q̂ → qc(t) +

√

~CΣ

2W

(

g(t)â+ g(t)∗â†
)

, (2.46)

where g(t) = (∂tr − iW
r
)e−iθ. Using the Wronskian identity W = r2∂tθ of equation

(2.31), we see that g(t) = ∂t(re
−iθ) = ∂tf

∗, so the final form of q̂ in the interaction

picture is

q̂int(t) = qc(t) +

√

~CΣ

2W

(

∂tf
∗â+ ∂tfâ

†) . (2.47)

With this result, we may immediately compute the final ion-circuit interaction,

Ĥint(t) = −e ξ

dCΣ

q̂int(t)ẑint(t)

= −ξ ez0
CΣd

√

~CΣ

2W

(

∂tf
∗â+ ∂tfâ

†) (2.48)

×(b̂e−iωit + b̂†eiωit) , (2.49)
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where ẑint(t) = z0(b̂e
−iωit+ b̂†eiωit), with z0 =

√

~

2mωi
the characteristic displacement

of the ion. Note that we have dropped the term qc(t)ẑint(t) by using the rotating

wave approximation, since qc oscillates at characteristic frequency ωd ≫ ωi.

2.6 Coupling strength

In order to compute the effective coupling strength between the circuit and

ion motion, we must first analyze the Fourier spectrum of the characteristic func-

tion f . We begin by expressing the interaction Hamiltonian of (2.49) in terms of

dimensionless factors,

H̃int(u) = −~ωd
4

z0
d
ξγ
(

∂uf
∗â+ ∂ufâ

†)

×(b̂e−i2ωiu/ωd + b̂†ei2ωiu/ωd) , (2.50)

where we have used φ̃0 = ~/(2e) to get an expression in terms of the flux parameter γ

of equation (2.44). Here we have rewritten f in terms of the dimensionless parameter

u = ωdt/2, to better match the canonical form of Mathieu’s equation,

[

∂2u + (A− 2Q cos 2u)
]

f = 0, . (2.51)

Using the substitution A = 4(ω0/ωd)
2, and Q = −ηa/2, this equation is equivalent

to (2.27). By Floquet’s Theorem, f can be expressed as a quasi-periodic function

f(u) = eiµu
∑

k

cke
2iku , (2.52)

where the sum has period u0 = π corresponding to t = 2π/ωd. Multiplying the cross

terms of equation (2.50), we see that the coupling strength is proportional to the
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time-independent part of ei2ωiu/ωd∂uf
∗âb̂† (the only term to survive under the RWA).

This constant is exactly proportional to the Fourier component of f corresponding

to the ion motional frequency, which is specified by the resonance condition

(µ+ 2k) = 2ωi/ωd . (2.53)

Accounting for the derivative ∂uf
∗ in this expression, the coupling strength is

~|Ω| = ~ωd
4

z0
d
ξγ(µ+ 2k)|ck| =

~ωi
2

z0
d
ξγ|ck| , (2.54)

where in the second equality we used condition (2.53). Note that although Ω is

not explicitly dependent on the driving amplitude η and frequency ωd, both γ and

ck are functions of these parameters since both are dependent on the characteristic

function f .

With equation (7.37) we can now evaluate the strength of the coupling for a

driving strategy similar to that of Ref. [118]. Specifically, we set the drive frequency

to be approximately the difference between the circuit’s bare frequency and the ion’s

motional frequency: ωd ≈ ω0 −ωi. Since the ion frequency ωi ≪ ω0 is much smaller

than the LC frequency, the drive frequency ωd is nearly resonant with the LC circuit.

This means that even a relatively small drive amplitude leads to a mathematical

instability in the system. Indeed, for η sufficiently large, the characteristic exponent

µ describing the quasi-periodic function f gains an imaginary component, causing

the interaction picture charge operator q̂int(t) to diverge over time. This instability

is alleviated in the presence environmental dissipation, as the system dynamics are

then damped, though for simplicity we neglect these effects in our analysis. As

seen in Fig. 2.3, for ω0 ≈ ωd ≫ ωi the boundary between mathematically stable
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and unstable regions is set by η . 2
√

ωi/ω0. For near-resonant driving to be

mathematically stable, the parameter η must therefore be perturbatively small. In

this η ≪ 1 limit, the characteristic exponent is equal to µ = 2ω0/ωd + O(η2) [124],

so the solution of the frequency matching condition µ + 2k = 2ωi/ωd corresponds

to k = −1. Using the relations A = 4(ω0/ωd)
2 ≈ 4 and Q = −ηA/2 ≈ −2η,

these parameters can be mapped to the canonical form of equation (2.51). The

coefficient c−1 = Q/4+O(Q2) = −η/2+O(η2) is known from standard perturbative

expansions [124]. Substituting this value into equation (7.37), we conclude that in

the perturbative regime η . 2
√

ωi/ω0, the coupling strength between LC and ion

modes scales as

~|Ω| =
~ωi
4

(z0
d
ξγη
)

(1 +O(η))

.
~ωi
2

(z0
d
ξγ
)

√

ωi
ω0

(

1 +O(
√

ωi/ω0)
)

. (2.55)

We note that this driving scheme may not be optimal. When ωd is set far from

resonance and η ∼ 1, the characteristic exponent µ can be stable and vary over

a large range of values, allowing for the resonance condition (2.53) to be satisfied

at stronger driving. Note that this also changes the Wronskian W (which changes

γ ∝ 1/
√
W ) in a non-linear way, so a general analysis for the best driving parameters

is difficult. Strong driving may be infeasible for experimental reasons, since it may

require too large a Josephson energy (which is proportional to β > η).

Unfortunately, we find that the final effective coupling Ω is substantially

weaker than in the proposal of Ref. [118]. In that work, the ion’s motional de-

gree of freedom was also capacitively coupled to the circuit, but the characteristic
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Figure 2.3: Stability diagram of Mathieu’s equation. The parameters ωi/ω0 and

η map to the canonical variables of equation (2.51) as A = 4(1 − ωi/ω0)
2 and

Q = −2η(1 − ωi/ω0)
2. The shaded region corresponds to stable quasi-periodic

solutions, i.e. those with characteristic exponent µ having no imaginary part. The

red dot at ωi = 0.001ω0, η = 0.06 corresponds to the driving parameters used in

Fig. 2.4.
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equation of the circuit was instead modulated by a time varying capacitive element.

The same driving scheme as above was used, leading to an effective coupling strength

of the form,

~Ωcap ∼
eQ0

CΣ

(

ξ
z0
d
η
)

≈ ~(2π × 60 kHz) . (2.56)

Here Q0 =
√

~CΣW
2

is the characteristic charge fluctuation in the driven circuit, and

η the relative amplitude of the time-varying capacitance, C(t) = CΣ(1+ η sin(ωdt)).

For comparison, from equation (2.55) we obtain a coupling rate Ω ≃ 1 Hz. Decoher-

ence rates for these systems are expected to be on the order of kHz, while leading

order corrections from linearization scale as ~ωi(βγω0/ωi)
2, both of which make this

approach infeasible as currently described. Note that we are making the same as-

sumptions as Ref. [118] about trap geometry (ξ = 0.25, d = 25µm) and ion mass

(m ≃ 1.5× 10−26kg for 9Be+), as well as ion motional frequency (ωi ≈ 2π × 1MHz,

so z0 =
√

~

2mωi
≈ 25 nm). Finally, the parameter γ ∼ 1.3 is set by the circuit

capacitance CΣ = 46 fF and the Wronskian W ≈ ω0 = 2π × 1 GHz.

As seen from the above comparison, when the ion-circuit interaction is ca-

pacitive (proportional to charge), modulating the circuit inductance at frequency

ωd ≫ ωi is significantly less effective than modulating the capacitance. This results

from the asymmetric dependence between charge and flux operators on the charac-

teristic function f , as demonstrated by the interaction picture expressions for these

operators (equations (2.43) and (2.47)). While the flux scales with f(t), charge is

explicitly dependent on ∂tf(t). This means that the Fourier component of q̂int(t)

oscillating at frequency ωi (and thus the time-independent component of Ĥint(t))
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picks up a factor of ωi/ωd ≪ 1 compared to φ̂int(t). The opposite is true for capac-

itance modulation (for which the roles of q and φ are reversed in transformations

Û3 and Û4), which explains why it achieves a much larger effective coupling for a

charge based interaction.

2.7 Conclusions

We have studied a technique to coherently couple a superconducting circuit to

the motional mode of a trapped ion by careful variation of the circuit’s inductance.

We describe a means of tuning the inductance (an external magnetic flux with a

Josephson Junction) through an approximation mapping the circuit’s non-linear

Hamiltonian to that of a driven harmonic oscillator. Notwithstanding corrections

to this approximation (as well as the technical challenges of trapping and optically

addressing an ion near a Josephson junction) the mismatch between the inductive

driving and capacitive interaction is the major reason why the resulting coupling

strength is impractically small. We confirm this in a direct comparison with a

capacitive modulation scheme for a specific driving strategy, though the general

form of the coupling suggests our conclusions hold for a broader class of strategies

as well. Indeed, equation (7.37) holds for any choice of drive parameters ωd, η, and

in fact can be applied more generally to any periodic modulation of inductance1.

Conversely, our work suggests that for an inductive interaction (e.g. one based on

1Specifically, we may replace Mathieu’s equation (2.27) with the more general Hill equation,

∂2
t f + Q(t)f = 0, where Q(t) is any periodic function. The bare LC resonance frequency would

then correspond to ω2
0 = 1

τ

∫ τ

0
Q(t)dt, where Q(t+ τ) = Q(t).
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mutual inductance between off-resonant circuits) an inductive modulation is the

preferred approach.

2.8 Appendix – Linearization Procedure

The expression for φ̂int(t) allows us to evaluate the higher order corrections

to the linearized Hamiltonian of equation (2.26). Since these corrections arise after

the first two transformations ((φ̂, q̂) → (φ̂ + φc, q̂ + qc)), they can be expressed as

R̂int(t) = R(φ̂int(t)− φc). Using relations (2.20) and EJ = βφ̃2
0/L we obtain

R̂int(t) =
∑

k≥3

φ̃k0V
(k)
q |φc(t)φ̃−k

0

(

φ̂int(t)− φc(t)
)k

/k!

=
φ̃2
0

L

∑

k≥3

βck(t)

(

√

~

2CΣW

1

φ̃0

)k
(

âf ∗ + â†f
)k 1

k!

=
~

LCΣW

∑

k≥3

βck(t)γ
k−2
(

âf ∗ + â†f
)k 1

k!
,

where we have defined the characteristic flux parameter

γ ≡ 1

φ̃0

√

~

2CΣW
. (2.57)

Here ck(t) = E−1
J φ̃k0

∂kVq
∂φk

|φ=φc is defined according to equation (2.18), giving

βc3(t) = β sin(φc(t)/φ̃0) =
√

β2 − η2 cos2(ωdt)

βc4(t) = β cos(φc(t)/φ̃0) = η cos(ωdt)

βck(t) = −β∂kx cos(x)|x=φc(t)/φ̃0 ,

where we have used β cos(φc(t)/φ̃0) = η cos(ωdt).

To bound the error introduced by R̂int(t) we begin by considering only the
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k = 3 contribution. Using ω2
0 = 1/LCΣ this term can be written as

~ω0
ω0

W

γβ

3!

√

1− (η/β)2 cos2(ωdt)
(

âf ∗ + â†f
)3
. (2.58)

To analyze this term under the rotating wave approximation, we note that our

coupling scheme is premised on giving f a Fourier component matching the ion

motional frequency, ωi. Specifically, in the driving scheme described in the text, the

parameters ωd ≈ ω0 − ωi and η < β ≪ 1 are chosen such that f has the form

f(t) = ei(ωd+ωi)t
(

1 +
η

2

(

eiωdt/3− e−iωdt
)

+ ...
)

, (2.59)

where all other terms are of order O(η2) and correspond to frequencies nωd (|n| ≥

2). Thus the only slowly rotating term in equation (2.58) is of order ~ω0γη (since

W ≈ ω0 for these parameters) and rotates at frequency ωi. This slowly rotating part

is the main contribution of (2.58) for evolutions over a time scale ∼ 1/ωi, and we

may compute its effective size over this timescale by using a second-order Magnus

expansion [125,126],

R̂int(t) ∼ ~ωi

(

γβ
ω0

ωi

)2

. (2.60)

Using a similar procedure, we can derive analogous estimates for the higher (k > 3)

order terms as well. But because these terms pick up extra factors of γ, equation

(2.60) represents the overall scaling of all higher order terms. This is true when

the scale of |f | is on the order of ∼ 1 (as in Fig. 2.4), the characteristic flux is

small (γ . 1), and there are only small fluctuations above the classical solution,

〈

â†â
〉

∼ 1.

One technique to reduce the effective size of corrections R̂int(t) is to replace
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Figure 2.4: A plot of the periodic component of the characteristic function, p(u) =

e−iµuf(u). The blue, solid line and red, dashed lines represent the real and imaginary

parts of p(u), respectively. Because the driving frequency ωd = 0.999ω0 is nearly

resonant with the bare LC frequency, even a small driving amplitude η = 0.06 causes

significant deviations from the undriven case (for which µu = 2πω0t and p(u) = 1).

the single Josephson junction with a linear array of these elements. In the sim-

plest approximation [127], using a stack of N junctions we get that the Josephson

Hamiltonian contribution is transformed as

−EJ cos
(

φ̂

φ̃0

)

→ −NEJ cos
(

φ̂

Nφ̃0

)

(2.61)

In terms of the parameters in the definition of R̂int(t), this corresponds to the map

β → β/N , φ̃0 → Nφ̃0 (or equivalently γ → γ/N). From equation (2.60), this rescales

the leading order contribution of R̂int(t) by a factor of 1/N4. For the resonance ratio

ω0/ωi = 1000, an array of N ∼ 100 junctions should suffice to limit the effect of all

higher order corrections.

36



Chapter 3: Quantum interface between an electrical circuit and a

single atom

As alluded to in the previous chapter, we develop a more successful scheme to

bridge the divide between atomic systems and electronic devices, based on engineer-

ing a coupling between the motion of a single ion and the quantized electric field of

a capacitively modulated circuit. Our method can be used to couple the internal

state of an ion to the quantized circuit with the same speed as the internal-state

coupling between two ions. All the well-known quantum information protocols link-

ing ion internal and motional states can be converted to protocols between circuit

photons and ion internal states. Our results enable quantum interfaces between

solid state qubits, atomic qubits, and light, and lay the groundwork for a direct

quantum connection between electrical and atomic metrology standards.

3.1 Introduction

Atomic systems are remarkably well suited to storage and processing of quan-

tum information [128, 129]. However, their properties are tightly constrained by

nature, causing difficulties in interfacing to other optical or electronic devices. On

the other hand, quantum electronic circuits, such as superconducting interference
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devices, may be easily engineered to the designer’s specifications and are readily

integrated with existing microelectronics [130]. The naturally existing couplings be-

tween a single atom and a single microwave photon in a superconducting circuit are

too weak for practical coherent interfaces. The coupling has been estimated at tens

of Hz [131], much smaller than the decoherence rate of 103 s−1. For trapped ions, the

coupling between the electric dipole induced by ion motion and the electric field of

the superconducting circuit can be much larger, on the order of several hundred kHz.

Unfortunately, this coupling is far off resonance. Motional frequencies of trapped

ions are limited to tens of MHz, while any superconducting circuit must maintain

GHz operating frequencies to avoid thermal noise, even in the extreme cryogenic

environment of a dilution refrigerator.

In this chapter, we propose a method to couple single trapped ions with mi-

crowave circuits, bridging the gap between the very different frequencies of ion mo-

tion and microwave photon by parametric modulation of the microwave frequency.

The resulting coupling strength of ∼ 2π × 60 kHz is sufficient for high-fidelity co-

herent operations and similar to the strength of currently obtained ion-ion cou-

plings [132, 133]. A simple model system illustrating the key concepts is shown in

Fig. 3.1. Microwave photons reside in a superconducting LC circuit with natural

frequency ωLC = 1/
√
LC ≈ 1 GHz. A single ion is confined within the capacitor

Cs and can oscillate at the motional frequency ωi ≈ 10 MHz. The circuit volt-

age across Cs generates an electric field that couples to the ion’s motional electric

dipole. Modulating the circuit capacitance by Cmod at a frequency ν causes the

superconducting voltage to acquire sidebands at frequencies ωLC ± ν. The coupling
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Figure 3.1: Equivalent-circuit model of scheme for ion-circuit coupling.

between the superconducting circuit and the ion motion becomes resonant when

ωi ≈ ωLC − ν. The interaction Hamiltonian is then

Hint = ~g ab† + h.c. (3.1)

where a and b are the annihilation operators of the microwave photon mode and the

ion motional mode, respectively. As shown below, g ∼ 2π × 60 kHz.

The coupling between the LC circuit and the ion motion allows us to generalize

all the well-known protocols operating on ion spin and motion to protocols oper-

ating on ion spin and LC state. Ion spin-motion protocols based on laser [134] or

microwave fields [135,136] now allow for generation of nearly arbitrary spin/motion

entangled states. If the capacitance modulation is switched on for a time T = π/(2g),

Eq. (3.1) shows that the mode operators evolve as a(T ) = −ib(0), b(T ) = −ia(0),

i.e., a perfect swap between LC and motional modes. For a unitary operator U(b, ~σ)

describing a protocol between the ion motion and the ion spin operator ~σ, the se-

quence 1) swap LC/motion, 2) apply U(b, ~σ), 3) swap LC/motion implements the

same unitary U(a, ~σ) between the LC and spin modes. By this means, one can es-
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tablish a quantum communications channel between LC circuits in separate dewars,

couple ion spins through a common LC circuit for large-scale quantum computing

on a single chip, and perform Heisenberg-limited voltage metrology in the microwave

domain by generating large Schrödinger cat states of the LC mode.

3.2 Realisation of ion-CQED coupling

Figure 3.2 shows a schematic of a device implementing the simple model de-

scribed above. The device combines an ion trap, a microwave LC circuit, and a

bulk-acoustic-wave (BAW) microelectromechanical modulator to coherently couple

the quantized motion of trapped ions at MHz frequencies with microwave photons

at 1 GHz. We now describe a specific design to give real-world parameters relevant

to our system.

Ions are confined above a planar electrode structure of a type now widely

used for microfabricated trap arrays [137]. Applying appropriate voltages to the

electrodes generates RF electric fields, which provide a ponderomotive confining

potential transverse to the trap axis, and DC fields that give rise to a harmonic

potential along the axis. The ion trap parameters are taken to be typical for planar

traps [138], with ions confined at height h = 25 µm above the plane with an axial

frequency ωi of 2π×1 MHz. For the commonly used 9Be+ ion, the harmonic oscillator

length is then z0 =
√

~/(2mωi) = 24 nm.

A superconducting inductor is attached to the island electrodes and a silicon

bulk-acoustic-wave resonator (BAW) is mounted near the inductor (see the Supple-

40



Figure 3.2: Schematic of a device for coupling trapped ions to a microwave resonant

circuit. a) Top view of surface ion trap showing RF and DC trapping electrodes.

The “LC island” electrodes couple the ion motion to the LC circuit excitation. b)

Side view of device, showing ion trap, superconducting inductor, and BAW device.

c) Exploded side view of BAW device. Purple line: transverse displacement of BAW

substrate due to classical driving.
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mental Material for technical details). The inductance of 440 nH, combined with

the total static circuit capacitance of C0 = 46 fF, then yields ωLC = 1 GHz, with

characteristic impedance of Z = 2.7 kΩ. The zero-point charge fluctuation on the

resonator is q0 =
√

~/(2Z) = 0.9 electrons.

The ion-circuit coupling is provided through two coplanar islands near the ion

position that are each connected to a terminal of the superconducting inductor. The

microwave electric field between these islands couples to the ion motion along the

trap axis through the electric dipole of the moving ion charge. To activate the ion-

circuit coupling, one excites acoustic waves in the BAW at frequency νB ≈ ωLC−ωi

by voltage driving of metallic electrodes on the BAW surface. The modulation of

the BAW-substrate gap distance provides the desired capacitance modulation.

The classical dipole interaction energy of the ion due to the axial electric field

Ez from the island electrodes is

Ucl = ezEz =
eζ

h
z V =

eζ

hC
zQ (3.2)

where h is the ion height, V is the voltage between the islands, ζ is a dimensionless

constant of order unity set by the electrode geometry, C is the total circuit capaci-

tance, and Q is the total charge on the circuit. Simulation of the electric field near

the island electrodes gives ζ = 0.25. The BAW drive modulates the capacitance as

C = C0(1 + η sin νt) with modulation depth η = 0.3, so that

Ucl(Q, z, t) =
eζ

hC
(1− η sin νt)zQ (3.3)

We now quantize the LC and ion motion, but keep the BAW motion classical.

In the rotating frame with respect to LC and motion, the total Hamiltonian of
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the ion-LC system becomes (for details of the calculation, see the Supplemental

Material)

Hint/~ =
2ig0η

3
e−i∆tab† + h.c. (3.4)

where g0 = eζz0q0/(hC0) and ∆ ≡ ν − (ωLC − ωi). For the numerical parameters

given above, g0 = 2π × 200 kHz and η = 0.3, giving g = 2π × 60 kHz.

Because the BAW is only used as a parametric drive in our scheme, it con-

tributes negligible noise to the LC and motional modes. To first order, the only

semiclassical effect of the BAW is variation in the coupling parameter η between

the ion motion and the LC–there is no direct (linear) coupling between the mo-

tion of the BAW and these other two variables. Hence parametric heating is the

main source of noise added by the BAW. While thermal motion of the BAW can in

principle produce parametric heating, in most practical settings errors in η will be

determined by classical control errors in setting the BAW amplitude.

The chief quantum noise contribution of the BAW arises from the entanglement

induced by the LC and ion systems with the BAW and, indirectly, its environment.

This entanglement occurs via the parametric coupling, and manifests as a static dis-

placement of the BAW that depends on LC photon number nLC . The displacement

can be estimated as

ζLC ∼ xB
ζ0

nLCωLC

ωLC − ν + iκB/2
(3.5)

where xB is the harmonic oscillator length of the BAW and κB is the BAW damping

rate. For typical BAW parameters at ν ∼ 1 GHz, one finds xB ∼ 10−16 m and

κB ∼ 100 kHz, so that ζLC/ζ0 . 10−3 even for nLC ∼ 100. Hence the BAW
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contributes negligible quantum noise for our purposes.

3.3 LC/spin protocols

LC/spin protocols can be executed by the swapping method with fidelity well

over 95%. Q as high as 5 × 105 have been reported for an LC circuit [139], giving

a decoherence rate of 2 ms−1. Motional decoherence rates of 0.5 s−1 have been

demonstrated in a cryogenically cooled ion trap with an ion height of 150 µm and

1 MHZ motional frequency [140]. This rate scales as ∼ 1/d4 [141], so at our 25 µm

height, we estimate a rate of 0.5 ms−1. Spin decoherence is negligible on these

timescales [134]. Hence the overall decoherence rate is 2.5 ms−1, limited by LC

damping. The total spin/LC operation requires two LC/motion swaps, each taking

3 µs, and the spin/motion protocol, with typical Rabi frequency Ω0 ∼ 2π × 100

kHz [134]. A typical spin/motion protocol requires approximately a π/2-pulse time,

so the total time required for the LC/spin protocol is 10 µs. The infidelity is given

by the ratio of decoherence rate to operation rate, i.e., 0.03.

Quantum interfaces between LC and spin can be achieved through a Jaynes-

Cummings spin/motion interaction [134]. If the LC mode is regarded as the mi-

crowave analog of a linear-optical qubit, this interaction serves as a quantum logic

interface between ion spin and single-rail microwave photon qubits. A π/2 pulse of

the interaction performs an LC/spin CNOT gate.

An alternative LC-spin quantum interface swaps spin-dependent displacement

of the ion motion into the LC mode. The unitary evolution for such a protocol is
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given by

Ueff(α) = exp
[

(αa+ α∗a†)σx
]

(3.6)

Such an operation could be used to teleport a superposition of spin states into a

superposition of coherent LC states.

These interactions allow us to use the LC and ion modes as quantum buses

for more complex tasks. The Jaynes-Cummings LC/spin interaction enables quan-

tum communication between LC circuits in independent cryogenic environments, as

shown in Figure 3.3(a). Each ion interface is controllably coupled to a high-finesse

optical resonator. After LC/spin coupling, the spin is mapped to the polarisation

state of an outgoing optical photon, as in recent experiments [142]. Overall, this set

of operations coherently couples the microwave photon state to the optical domain.

In particular, one could entangle independent superconducting qubits via condi-

tional photon measurements [143]. This task is impossible using direct microwave

signaling, owing to the thermal noise of microwave links at room temperature.

The spin-dependent LC displacement also lets one perform nonlocal ion spin-

spin gates on a single chip through a shared LC mode (Fig 3.3(b)). The spin-spin

bus is based on the spin-dependent displacement operationD(αqσy). Two ions (with

identical phonon frequencies) in multiple traps are capacitively coupled to the LC

circuit. Performing four spin-dependent displacements that enclose a square in phase

space with side length L = αJz, one picks up a phase of 2|L|2 = 4|α|2(1 + σ
(1)
z σ

(2)
z ),

which is the desired spin-spin interaction [144]. Along with single qubit gates, this
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Figure 3.3: Quantum buses enabled by LC/motion coupling. a) Quantum commu-

nication between LC circuits in independent cryogenic environments. b) Nonlocal

ion spin-spin gates on a single chip.

interaction provides a sufficient gate set for universal quantum computation [145].

Spin-dependent displacement of the LC causes a superposition of spin states

to evolve into a superposition of LC coherent states. Such superposed coherent

states can detect field displacements with Heisenberg-limited sensitivity [146]. In the

present context, these states enable Heisenberg-limited metrology of small voltages

at microwave frequencies. The mean photon number in the generated state can

exceed 100 for our parameters. The RMS voltage is then ∼ 0.1 mV and can be

estimated at sub-µV precision in a single shot.

3.4 Resistance to motional heating

Rapid technical advances in superconducting circuits mean that the LC coher-

ence time may substantially increase in the near future, leaving ion motional heating

as the primary source of decoherence. We have developed a modified LC/spin cou-
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pling scheme similar to [144,147] that resists ion heating. We simultaneously apply

bichromatic LC/motion and motion/spin couplings at detunings ±δ from the blue-

sideband and red-sideband resonances. In the frame rotating with ion motion, the

Hamiltonian becomes

Hint/~ =
√
2M (x cos δt+ p sin δt)) (3.7)

M ≡ 2iηg0
3

q +
Ω0

4
σx (3.8)

where x = (b + b†)/
√
2, p = −i(b − b†)/

√
2 are dimensionless motional operators,

q = (a + a†)/
√
2 is the dimensionless charge operator, and we approximate Ω0 ≪

δ ≪ ωi. The Hamiltonian (3.7) is identical to that of [148], except that the collective

spin operator Jy is replaced by the collective spin-LC operatorM . The ion motional

state undergoes M -dependent phase-space displacement along a closed trajectory,

giving rise to an M2 dependent geometric phase. At times tn = 2πn/|δ| with n an

integer, the evolution operator becomes simply

Un = exp

[

−i sign(δ)2πn
δ2

M2

]

(3.9)

The undesired q2 term in Eq. (3.9) can be removed by a spin echo sequence ZU †
nZUn,

where Z = e−iπσz is a fast π-pulse of the spin, and U † is obtained by changing

δ → −δ. The overall time evolution is then exp(αqσx) with α = −4iπng0Ω0η/(3δ
2).

A straightforward modification of the arguments of Sørensen and Mølmer [148]

shows that this coupling can be made arbitrarily resistant to ion motional heating.

The loss of fidelity due to heating is ∝ 1/δ2 in the limit of low infidelity, while the

effective coupling constant is ∝ 1/δ. Even if the heating rate is larger than the

coupling constant, one can still achieve near-perfect coupling.

47



3.5 Outlook

Our ion-circuit coupling enables a powerful hybrid quantum system with op-

eration speeds similar to those for ion spins. This system can perform nonlocal

quantum gates between ions on a single chip, nonlocal quantum communication be-

tween electrical circuits, and Heisenberg-limited voltage metrology. The coupling

can be made resistant to ion motional heating. Implementing our proposal will

present new challenges arising from the need to isolate these systems from the de-

vices used to manipulate them. For example, errors may arise when stray fields

from the BAW drive displacing the ion’s motion, or from circuit heating through

interactions with trap electrodes and light used to address the ion. Despite these

issues, we believe that current experiments in classical ion-circuit coupling [135,136]

can be extended in a natural way to realise our scheme.
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Chapter 4: A universal test for entangling dynamics

Interactions between particles, typically called forces, lead to the emergence of

correlated dynamics. Seen from an information theoretic perspective, we infer that

interactions are primarily a means of communication. Here we present a method

of confirming that a given, continuous interaction actually provides a means of

quantum communication. More specifically, we show that for a system with linear

couplings between canonical variables of two separated subsystems, disallowing the

quantum communication necessary to produce distillable entanglement leads to ex-

cess noise in the subsystems’ conjugate variables. Analogously to Bell’s inequality

for quantum states, this gives a straightforward, local test verifying the capacity

for an interaction to entangle systems. We conclude with a simple experimental

proposal demonstrating these ideas.

4.1 Introduction

Entanglement is an ubiquitous phenomenon in modern quantum mechanics

arising from interactions between quantum systems [2]. While a complete under-

standing of entanglement and its characterization remains elusive in experimental

settings [149–151], the crucial insight of Bell [71] provides the current “gold stan-
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dard” for testing the existence of entanglement between separated systems. This

has developed into the general class of entanglement witnesses [72, 152, 153], from

which physical approaches to quantum information have validated their quantum

performance [154–156]. However, in practice the increasing complexity of quantum

information experiments – particularly going to large numbers of qubits – makes

validation more difficult [77,157,158], and one is forced to ask if the character of the

interactions may instead be probed. For example, one might attempt to bound the

quantum channel capacity [45, 73, 74] of interactions between two systems directly

rather than verify the entanglement produced by the channel. While we do not have

a general solution to this problem, a subcase of interest – Gaussian channels – may

admit a path forward [159,160].

In this chapter we propose an inequality for interacting open quantum systems

whose violation indicates the interaction between these systems distillably entan-

gles them. This effectively verifies that the interaction has an effective, non-zero

quantum channel capacity, i.e., that it can be used in conjunction with distillation

protocols to coherently transmit quantum information [41, 44, 74]. Analogously to

Bell’s inequality, assuming the interaction correlates but does not entangle distant

subsystems leads to local, observable consequences. Thus, as a substitute for Bell’s

inequality violation experiments, one can verify entanglement generation with a two

step approach: first, measure the linear response as a “witness” of the interaction

strength; second, measure the corresponding noise and compare to the rate of in-

formation transfer suggested by the witness. This enables a noise-based test of

entanglement generation which may be easier to confirm in laboratory settings and
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in scenarios where a detailed physical model of the interaction remains unknown.

4.2 Main result

Consider an open quantum system comprised of two (infinite dimensional)

subsystems, A and B. Assume that they evolve under a Hamiltonian Ĥloc, which

contains only local terms that are quadratic in canonical variables. Define Â and

B̂ as canonical variables acting on subsystems A and B, meaning that they have

conjugate variables Âc and B̂c satisfying [Â, Âc] = [B̂, B̂c] = i (for simplicity we set

~ = 1 and assume that Â and B̂ are both dimensionless). Now add an interaction

between the two systems, with the following witness:

∂t〈Âc〉I =
1

2
(2η − ξ)〈B̂〉I and ∂t〈B̂c〉I =

1

2
(2η + ξ)〈Â〉I , (4.1)

where 〈Ô〉I represents an average in the interaction picture with respect to Ĥloc.

For ξ = 0, this witness to the coupling strength can be interpreted as a statement

of Ehrenfest’s theorem [161] and is satisfied by simple addition of V̂ = ηÂB̂ to the

Hamiltonian. However, it is generically compatible with any dissipative component

that is both Markovian and quadratic in variables Â and B̂. Expressed in the

Heisenberg picture, we therefore consider the equation

∂tÔ = L(Ô) = i[Ĥloc + ηÂB̂, Ô] +D(Ô) , (4.2)
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where

D(Ô) = i
ξ

2
(ÂÔB̂ − B̂ÔÂ)+

− 1

4

(

Yxx[Â, [Â, Ô]] + Ypp[B̂, [B̂, Ô]]

+2Yxp[Â, [B̂, Ô]]
)

.

(4.3)

As discussed in the appendix, this is the most general (quadratic and Markovian)

time-homogeneous dynamical equation that satisfies equation (4.1). In contrast

to the first term of equation (4.2), corresponding to unitary evolution, D is an

adjoint superoperator representing irreversible information exchange with the envi-

ronment [162].

Defining ∆n as the n component symplectic matrix

∆n =
n
⊕

i=1









0 1

−1 0









i

, (4.4)

and Y as the matrix composed of the parameters Yuv defining D in equation (4.3),

we can state the main result of this work:

Theorem: For Gaussian states evolving under generator L of equation (4.2), if Y −

2iη∆1 is positive semi-definite, then non-zero distillable entanglement never develops

between A and B. Conversely, let |ψa〉⊗|ψb〉 denote the (separable, Gaussian) ground

state of Ĥloc. If Y − 2iη∆1 has a negative eigenvalue, then after some t > 0 the

initial state |ψa〉 ⊗ |ψb〉 is mapped to a state with finite distillable entanglement.

The full proof of the theorem is given in the appendix, though we summarize it

here. We first assume thatA and B are Gaussian states of single harmonic oscillators

(described below). Defining the vectorM = [x̂a, p̂a, x̂b, p̂b]
T from the (dimensionless)
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canonical variables of A and B, we consider the covariance matrix of the system,

γij = 〈M̂iM̂j + M̂jM̂i〉 − 2〈M̂i〉〈M̂j〉 . (4.5)

Up to a displacement of the means mi = 〈M̂i〉, this matrix uniquely defines the

2-mode Gaussian states (i.e. the states whose characteristic function is of the form

〈exp(izTM)〉 ∝ exp(izTm − 1
4
zTγz)) [159, 163]. We note that since it is quadratic

in canonical variables, the generator L of (4.2) necessarily maps Gaussian states

to Gaussian states [164]. It therefore suffices to consider the evolution of m and

γ alone. We then use the fact that a bipartite Gaussian state is not distillably

entangled if and only if its partial time reverse is also a valid state [165,166]. That

is, if we set p̂b → −p̂b in the definition of γ above, the resulting characteristic

function corresponds to a valid Gaussian state. Solving directly for the evolution

of γ we show that this is true for all initial γ, as long as Y − 2iη∆1 is positive

semi-definite. Conversely, if this matrix has a negative eigenvalue, then we let γ

initially correspond to the separable ground state of Ĥloc (which is Gaussian as

Ĥloc is quadratic). After time t > 0 sufficiently small, we show that the partial

time reverse of this state violates the uncertainty principle [167–169]. Since the

time evolved state is no longer valid under partial time reversal, it is distillably

entangled [166].

This result characterizes when distillable entanglement (i.e., entanglement use-

ful in quantum teleportation protocols [45,170]) can emerge between Gaussian states

of A and B. Our theorem will allow us to define a direct test of the effective quan-

tum channel capacity of the interaction arising from L. Specifically, it will allow us
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to verify if, for finite times t > 0, the map etL could be used in conjunction with

a distillation protocol [171,172] to transmit quantum information between separate

parties controlling each subsystem.

To motivate our test, we notice that the matrix Y − 2iη∆1 can be understood

heuristically as a comparison between the observed witness parameters and the de-

coherence caused by the dissipator D. Accordingly, we define the ‘witness’ dynamics

of an operator Ô as

Lw(Ô) = i[Ĥloc + ηÂB̂, Ô]

+ i
ξ

2

(

ÂÔB̂ − B̂ÔÂ
)

.

(4.6)

Strictly speaking, the generator Lw cannot be written in Lindblad form [173] and

does not generate a completely positive time evolution [164]. Indeed, the effect of

the term proportional to ξ is to cause an apparent violation of Newton’s third law.

Even so, the dynamics generated by Lw agree with L for any canonical variable Ô,

and it is exactly the component of L which determines the evolution of 〈Ô〉.

Our test compares the observed noise in the canonical variables to the noise

predicted by Lw. Specifically, we define the excess noise rate of an observable Ô as

N(Ô, t) = ∂t

(

Var
(

etL(Ô)
)

− Var
(

etLw(Ô)
))

, (4.7)

where etL(Ô) defines the propagation of Ô for time t under generator L and Var(Ô) =

〈Ô2〉 − 〈Ô〉2 is the variance in Ô. Using the theorem we can bound the amount of

excess noise added to the systems in order to prevent distillable entanglement from

emerging. More specifically,

Corollary: Let A and B evolve under L of equation (4.2). Assume that Gaussian
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states of these systems cannot become distillably entangled. Then for any state of

A and B, the excess noise rate in the conjugate variables Âc and B̂c should exceed

twice their coupling strength η. That is, at all times t,

N(Âc, t) +N(B̂c, t) ≥ 2|η| . (4.8)

Hence if this bound does not hold, then the (separable) ground state of Ĥloc becomes

distillably entangled at some later time.

From the corollary we can derive a local test of the ability of an interaction to

entangle distant objects. First, observers of A and B monitor the first moments of

their canonical variables, establishing a witness to the parameters of the interacting

Hamiltonian Ĥloc + ηÂB̂ and the parameter ξ, which completely characterize the

witness generator Lw. This can be inferred directly from the full equations of motion,

for if Â′ and B̂′ represent canonical variables for A and B, respectively,

∂t〈etLÂ′〉 = 〈etL
(

i[Ĥloc + (η − ξ

2
)ÂB̂, Â′]

)

〉

∂t〈etLB̂′〉 = 〈etL
(

i[Ĥloc + (η +
ξ

2
)ÂB̂, B̂′]

)

〉 .
(4.9)

(Since Ĥloc is quadratic, the output of the commutators is a sum of canonical vari-

ables.) Observers then monitor the variance in Âc and B̂c and compare to the

predictions of the witness variables determined above. If the excess noise rate is

less than 2|η|, they may immediately conclude that the interaction can distillably

entangle A and B.

The corollary follows directly from the theorem. Let Ô be any canonical

variable. First notice that since every term of L is quadratic in canonical variables,
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Lk(Ô) is also a canonical variable for every k ≥ 0 1. Further, (L−Lw)(Ô) vanishes

since it involves only double commutators. We conclude then that Lk(Ô) = Lkw(Ô)

for every k ≥ 0 and therefore etL(Ô) = etLw(Ô). Similarly, for any pair of canonical

variables Ô and Ô′, L(ÔÔ′) is quadratic in canonical variables, and (L−Lw)(ÔÔ′) is

proportional to the identity operator Î. Since L(Î) = (L−Lw)(Î) = 0, by expanding

the Taylor series for etL we conclude that etL(ÔÔ′) =
(

etLw + t(L − Lw)
)

(ÔÔ′).

Combining these facts with the definition of N(Ô, t) in equation (4.7), the left hand

side of (4.8) simplifies to 〈(L−Lw)(Â2
c+B̂

2
c )〉. Defining the vectors z± = 1√

2
[1,±i]T ,

from equation (4.3) we see that this quantity is equal to 1
2
(Yxx+ Ypp) = z†±Y z±. We

get the desired lower bound by noting that the no entanglement condition of the

theorem implies that z†±Y z± ≥ 2iη(z†±∆1z±) = ±2η.

4.3 Circuit model for long-range interactions

To describe a physical context for our result and motivate the theorem and its

corollary, we present a toy model inspired by phonon-mediated spin-spin interactions

in ion traps [99, 174]. This will serve as a conceptual aid and provide a clue as to

when entanglement can emerge. To mediate the non-local interaction between A

and B, we introduce an ancillary harmonic oscillator F , analogous to the phonon in

ion trap systems. Our goal is to derive a linear generator of time evolution, L, that

corresponds to the witness dynamics of equation (4.1).

Within our model, the dynamics of A and B arise as the limiting process of

1The notation Lk = L ◦ L ... ◦ L denotes a k-fold composition of the superoperator L
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n applications of a quantum circuit, involving only A− F and B − F interactions.

In the limit n → ∞, the systems are propagated a time t by setting the effective

individual circuit time as t/n. The ancilla F interacts individually with each system

through the chain of unitary evolutions [174],

ei
√
t/nB̂p̂ei

√
t/nÂx̂e−i

√
t/nB̂p̂e−i

√
t/nÂx̂ = e−itÂB̂/n , (4.10)

where x̂ and p̂ are canonical variables of F satisfying [x̂, p̂] = i. We can heuristically

picture the ancilla as traveling between A and B to produce the effective interaction

of a Hamiltonian ÂB̂. Following this by the local unitary e−it(Ĥa+Ĥb)/n completes

the evolution for a circuit of time t/n. In the large n limit, by the Trotter formula

we obtain

lim
n→∞

(

e−iÂB̂t/ne−itĤa+Ĥb/n
)n

= exp(−it(Ĥa + Ĥb + ÂB̂)) . (4.11)

This corresponds to a witness in equation (4.1) with η = 1, ξ = 0. This effective

interaction is the underlying mechanism describing geometric phase gates [99, 174,

175].

While the unitary above produces the desired witness dynamics, to account

for the more general L we add a ‘screen’ operation acting on the ancilla. This

screen behaves like a measurement in the middle of the circuit, whose strength

determines whether the ancilla is able to entangle A and B. Letting S be the

unital, completely positive map [176] representing the screen’s action, the true circuit

evolution (Fig. 4.1) is described by the superoperator,

Vt = CĤa+Ĥbt
CÂx̂√t CB̂p̂√t S C−Âx̂√t C−B̂p̂√t , (4.12)
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where CX̂(Ô) = eiX̂Ôe−iX̂ are superoperators associated with unitary evolution and

the products above denote composition. Note that we are working in the Heisenberg

picture, so Vt acts on operators representing observables of the composite system.

As expected, when S is the identity, the Trotter limit is just C(̂Ĥa+Ĥb+ÂB̂)t.

The superoperator of equation (4.12) acts non-trivially on the ancilla, and

hence cannot determine the dynamics of A and B alone. To do this we take the

Markovian limit, i.e. we suppose that the ancilla starts in the same density matrix,

ρ̂f , between each time step. This is equivalent to saying that the ancilla has no

“memory” of its interactions with A and B, and that it is drawn out of a large

reservoir of identical systems. We can then trace out the ancilla, yielding the reduced

circuit propagator,

Vredt (Ôab) = trf

{

Iab ⊗ ρ̂fVt(Ôab ⊗ If )
}

. (4.13)

Finally, we take the take the Trotter limit to produce the true time evolution su-

peroperator,

etL = lim
n→∞

(

Vredt/n

)n
, (4.14)

with corresponding generator [173],

L ≡ ∂t(Vredt )|t=0 . (4.15)

As we shall see below, the generator L produces the expected dynamics of equa-

tion (4.2).

Before verifying the form of L, we first derive a necessary property of the screen

S based on the requirement that the limit (4.14) converges. This is equivalent to
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Figure 4.1: a) Heuristic diagram representing non-local interaction between distinct

quantum subsystems. b) Quantum circuit schematic simulating the witness equa-

tions (4.1). The local unitaries Ûa = exp(−itĤa) and Ûb = exp(−itĤb) account

for local Hamiltonian evolution, while the ancilla couplings ÛA = exp(−i
√
tÂx̂),

ÛB = exp(−i
√
tB̂p̂) produce the effective interaction between A and B. The deco-

herence caused by the screen S can prevent entanglement between A and B while

still allowing classical correlations to emerge.

59



assuming that the terms of order
√
t in the Taylor expansion of Vredt vanish. To see

when this is the case, we use the Baker-Campbell-Hausdorff formula,

eiX̂Ôe−iX̂ = Ô +
1

1!
[iX̂, Ô] +

1

2!
[iX̂, [iX̂, Ô]] + ... (4.16)

Substituting into equations (4.12) and (4.13), we see (in the appendix) that the
√
t

terms vanish if and only if S preserves the mean quadratures of the ancilla,

〈S(x̂)− x̂〉f = 〈S(p̂)− p̂〉f = 0 , (4.17)

where 〈Ô〉f = tr{ρ̂f Ô}. Given equation (4.17) holds, we may directly verify that

the Trotter limit generator of equation (4.15) matches the dynamics of equation

(4.2). We defer this calculation to the appendix, but note that it results from the

BCH formula (4.16) and the Jacobi identity [X̂Ŷ , Ẑ] = X̂[Ŷ , Ẑ] + [X̂, Ẑ]Ŷ .

The action of the screen modifies the dynamics of A and B analogously to

the effect of an external environment. First, it adds a Lamb shift-like term to the

observed local Hamiltonian,

Ĥloc = Ĥa + Ĥb +
νa
2
Â2 +

νb
2
B̂2 , (4.18)

with associated coupling strengths set by the action of the screen,

νa = −i 〈[x̂,S(x̂)]〉f

νb = −i 〈[p̂,S(p̂)]〉f .
(4.19)

The observed interaction parameters η and ξ are shifted as well. This is set by the

discrepancy in the commutation relations between the input and output canonical
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variables of F ,

η = 1− i

2
〈[S(x̂), p̂]− [x̂,S(p̂)]〉f

ξ/2 = 1− i

2
〈[x̂,S(p̂)] + [S(x̂), p̂]〉f .

(4.20)

As expected, when S is the identity, the generator L corresponds to the original

witness, η = 1, ξ = νa = νb = 0. The components of D proportional to Yuv (in

equation (4.3)) are set by,

Yuv = 〈S({û, v̂}) + {û, v̂} − {û,S(v̂)} − {S(û), v̂}〉f , (4.21)

for indices u and v representing either x̂ or p̂. These terms can be interpreted as a

back-action on the system due to the continuous measurement of Â and B̂ by the

environment [177–179].

We can use the toy model to motivate the matrix Y − 2iη∆1 described in

the theorem. For simplicity, assume that the screen S takes the form of an un-

biased heterodyne measurement followed by preparation of a coherent state corre-

sponding to the measured quadratures. Since this is the optimal ‘quantum-classical’

channel [163] that estimates both quadratures of F [180–182], we expect that this

channel causes the least amount of decoherence while still disallowing entanglement.

Because this channel is unbiased it does not displace first moments of the ancilla

quadratures, i.e., S(x̂) = x̂ and S(p̂) = p̂, so we observe no level shifts (νa = νb = 0

in equation (4.19)) or shifts in the witness parameters (η = 1 and ξ = 0). The matrix

Yuv of equation (4.21) (representing the noise added to the ancilla by the channel)

is thus the only parameter to determine whether L can distillably entangle A and

B. In this case, the output of the screen is simply a coherent state corresponding to
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the measured quadratures. This output is inherently noisier than the input, since

x̂ and p̂ can’t be concurrently measured with infinite precision, and further since

the output coherent states have variance 1/4 in each quadrature. Combining these

effects, we have that the output variance in x̂ and p̂ satisfies [183],

Var(S(x̂)) + Var(S(p̂)) ≥ 1 + Var(x̂) + Var(p̂) . (4.22)

Further, since the screen preserves the first moments of x̂ and p̂, this inequality still

holds under all canonical transformations, x̂→ αx+βp̂, p̂→ −βx̂+αp̂, α2+β2 = 1.

In terms of the heterodyne noise matrix corresponding to equation (4.21), this can

be expressed as

Yh ≥ 2i∆1 , (4.23)

where i(∆1)uv = [û, v̂] denotes the commutation relations between x̂ and p̂. We

note that this bound is tight in that it is saturated in the ideal case of minimal

channel noise. We may therefore hypothesize that any channel S which disallows

distillable entanglement between A and B must also satisfy this inequality. Indeed,

generalizing to the case η 6= 1 immediately gives the condition of our theorem.

4.4 Experimental application

We conclude with a suggested experiment to demonstrate these concepts. We

consider two optical cavities, each coupled linearly to one end of a waveguide. This

produces an effective normal mode coupling between the cavities, and this coupling

would normally entangle them, except that in our setup the waveguide light is

‘screened’ such that only classical correlations can develop. In order to test whether
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this is the case, our approach is to verify the coupling between the two cavities via

the average equations of motion. This verification is a “witness” to the necessary

communication rate of the channel. By our theorem, if the rate of increase in excess

noise in the system is below the bound set by the witness, then the channel must

distillably entangle the cavities.

We now describe the experiment in detail. We assume the narrow-band limit,

as well as linear interactions between the cavities and waveguide field modes, so

that the system can be described within the input-output formalism [184,185]. We

assume the cavities each couple to the wave-guide at a rate 2g, while also decaying

into the environment at a rate κ. The equations of motion for the cavity and field

modes are then

∂tâ =
2g + κ

2
â−

√

2|g|B̂in −
√
κÂin

Âout = Âin +
√
κâ

B̂out = B̂in +
√

2gâ

∂tb̂ =
2g + κ

2
b̂−

√

2|g|Ĉin −
√
κD̂in

Ĉout = Ĉin +
√

2gb̂

D̂out = D̂in +
√
κb̂ .

(4.24)

Here â and b̂ describe the cavity modes, while all other terms are input-output field

operators for either the waveguide or environment (note that we are working in a

frame rotating at the resonance frequency of the two cavities). In order to screen

the amount of quantum information transferred through the waveguide, at each

cavity interface we pick off some of the outgoing light, measure its quadratures,
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and reproduce the corresponding coherent fields at the other end (see Fig. 4.2a).

Experimentally this is done through a continuous heterodyne measurement. As

seen in Fig. 4.2b, we vary the strength of this ‘screen’ by measuring a variable

fraction T of the outgoing beam intensity. In the narrow band limit, the heterodyne

measurement can be modeled as a linear interaction with two auxiliary vacuum

fields, whose resulting individual quadratures average to the mean quadrature of

the input field [180]. The output is

B̂in = iĈout +
√
TR̂1

Ĉin = iB̂out +
√
TR̂2 .

(4.25)

The terms R̂j = (F̂ †
j + Ĝj) represent auxiliary vacuum fields which account for the

noise added to the waveguide field during the measurement process. The transmis-

sivity T determines how much of the cavity output is measured, while the factor

i corresponds to the phase acquired in propagating through the waveguide and is

set so that no standing waves occur. Through substitution in equations (4.24) and

(4.25), we compute reduced equations of motion for the cavity modes,

∂tâ = −κ
2
â− igb̂−

√

|g|TN̂a −
√
κÂin

∂tb̂ = −κ
2
d̂− igâ−

√

|g|TN̂b −
√
κD̂in ,

(4.26)

where N̂a and N̂b are independent fields satisfying 〈〈N̂(t)〉〉 = 0 and 〈〈N̂(t)N̂ †(t′)〉〉 =

〈〈N̂ †(t)N̂(t′)〉〉 = δ(t− t′).

Matching the reduced Heisenberg-Langevin equations (4.26) to a master equa-

tion, we see that the dynamics are reproduced by a Hamiltonian interaction g(x̂ax̂b+
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Figure 4.2: a) Optical cavity with mode â coupled via variable optical isolator

(quarter wave plate and variable polarizing beam splitter) to a waveguide with a

possible heterodyne measurement system acting as the screen S. An analogous cav-

ity (not shown) receives the vertically polarized output and returns the horizontally

polarized input. b) Example of the variable-strength screen S via heterodyne mea-

surement followed by attenuation and phase shift of a coherent source to match the

measurement outcome α. The path length of the unmeasured beam is set so that it

interferes constructively with the heterodyne output at the second beam splitter.
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p̂ap̂b) = g(âb̂† + b̂â†), a measurement induced dissipator [177],

D(a)
M (Ô) = −1

4
2|g|T

(

[x̂a, [x̂a, Ô]] + [p̂a, [p̂a, Ô]]
)

, (4.27)

as well as a thermalization dissipator [162],

D(a)
T (Ô) =κ(n̄+ 1)

(

â†Ôâ− 1

2
{â†â, Ô}

)

+ κn̄

(

âÔâ† − 1

2
{ââ†, Ô}

)

,

(4.28)

and equivalent terms D(b)
M + D(b)

T . Neglecting the thermal terms, the generator of

time evolution is a sum of generators Lxx +Lpp, each of the form in equation (4.2).

Here Lxx (Lpp) produces an x̂ax̂b (p̂ap̂b) coupling of strength η = g, noise matrix

Yf = 2|g|TI, and anomalous term ξ = 0. Our theorem predicts that, as expected,

when all of the intermediate light is intercepted (i.e. T = 1), both Lxx and Lpp have

positive semi-definite matrices Y − 2iη∆1, and therefore the two cavities cannot

become entangled. Conversely, when T < 1, each generator can entangle the cavities,

and the sum Lxx + Lpp does so as well 2.

The actual experimental test is as follows. First, one monitors the evolution

of the canonical variables to determine the local Hamiltonian Ĥloc + g(x̂ax̂b + p̂ap̂b)

and the thermal decay rate κ. Letting m̂a =
1√
2
(eiθa â+ h.c.), m̂b =

1√
2
(eiθb d̂+ h.c.)

represent arbitrary canonical variables of the systems, one then measures the excess

2It may not be true in general that two entangling generators sum to an entangling generator.

The statement holds in this case because the two circuit generators involve operators that are

canonically conjugate to each other. Considering the proof in the appendix, since they act on

different subspaces, the violation of (4.40) is independent for both generators.
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noise rates

N(m̂a, t) +N(m̂b, t) = 〈D(a)
M (m̂a) +D(b)

M (m̂b)〉

= 2|g|T .
(4.29)

Note that we have incorporated the thermal decay into the definition of N(Ô, t),

i.e., we have added the DT terms to the definition of the witness generator Lw. This

modifies operational definition of the excess noise, since although the parameter κ

may be determined by observation of the first moments of the canonical variables,

parameter n̄ must be determined from the second moments. As expected, when

T < 1, the noise rate is less than twice the communication rate 2|g|, hence the

systems may become entangled in the κ/|g| → 0 limit.

4.5 Conclusion

We have presented a formalism for testing whether a non-local interaction be-

tween continuous variables is capable of distillably entangling them. Curiously, our

scheme does not require actual verification of entanglement between the interacting

objects, allowing one to circumvent these typically challenging measurement proce-

dures. Possible applications of our results range from continuous variable quantum

cryptography, to verification of quantum information processing, to the first step

towards zero-knowledge reconstruction of models for observed physical interactions.
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4.6 Appendix

4.6.1 Calculation of the generator and physical considerations

Generality and complete positivity of the generator: As mentioned previously,

L is the most general time-homogeneous generator for Markovian evolution that

can be written as a quadratic expression in operators Â and B̂ and satisfies equa-

tion (4.1). To see this, we note that the dissipative component D (defined in equa-

tion (4.3)) can equivalently be written in the canonical Lindblad form [173],

D(Ô) =
∑

k

V̂ †
k ÔV̂k −

1

2
{V̂ †

k V̂k, Ô} , (4.30)

where we make the identification,

V̂k = αkÂ+ βkB̂

1

2
Yxx =

∑

k

|αk|2 ,
1

2
Ypp =

∑

k

|βk|2

1

2
(Yxp + iξ) =

∑

k

α∗
kβk .

(4.31)

Because it can be expressed in this form, for all t ≥ 0 the adjoint propagator etL is

completely positive [164,173], as expected for a physically realizable map.

Existence of the limit in equation (4.14): To show when the limit exists, we

use the Baker-Campbell-Hausdorff relation to expand each term of (4.12) to first

order in
√
t. For example, we may expand CB̂p̂√t(Ô) = eiB̂p̂

√
tÔeiB̂p̂

√
t as

CB̂p̂√t = Id + i
√
t[B̂p̂, · ]− t

2
[B̂p̂, [B̂p̂, · ]] +O(t3/2) , (4.32)
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where Id(Ô) = Ô is the identity super-operator, and [B̂p̂, · ]Ô = [B̂p̂, Ô] is the

commutation super-operator. Adding all terms of Vt of order
√
t gives

i
√
t[B̂, · ]⊗ (S(p̂)− p̂) + i

√
t[Â, · ]⊗ (S(x̂)− x̂) , (4.33)

where we have pulled out x̂ and p̂ from the commutators since we are only acting on

terms of the form Ôab⊗ If . Taking the partial trace over the ancilla Hilbert space in

(4.12), we have that the
√
t terms of Vt vanish exactly when equation (4.17) holds.

Derivation of L: To calculate the dynamics induced by the reduced circuit

(4.13), we continue using Baker-Campbell-Hausdorff (as in equation (4.32)) and

expand each superoperator in Vt to order t. The calculation involves making frequent

use of the following identity:

[X̂ ⊗ û, [Ŷ ⊗ v̂, Ôab ⊗ If ]] =
1

2
{X̂, [Ŷ , Ôab]} ⊗ [û, v̂]

+
1

2
[X̂, [Ŷ , Ôab]]⊗ {û, v̂}

(4.34)

where we have assumed X̂ and Ŷ are commuting operators on the composite system

AB, and û and v̂ are operators on F . There are multiple sources of order t terms

in Vt. The first is just the commutator

i[Ĥa + Ĥb, · ] (4.35)

obtained from the local unitary C(Ĥa+Ĥb)t
. Second, we have products of order

√
t

terms arising from commutators of different ancilla-system interactions (e.g. C√tÂx̂
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and C√tB̂p̂), which – after accounting for the action of the screen – produce

i[ÂB̂, · ]⊗
(

i

2
([S(x̂), p̂]− [x̂,S(p̂)]) + 1

)

− i
(

Â · B̂ − B̂ · Â
)

⊗
(

1− 1

2i
([x̂,S(p̂)] + [S(x̂), p̂])

)

− 1

2
[Â, [B̂, · ]]⊗ ({x̂, p̂}+ S({x̂, p̂})− {S(x̂), p̂} − {x̂,S(p̂)}) ,

(4.36)

where we have used [x̂, p̂] = i.

Finally, we have products of
√
t terms having only Â⊗ x̂ or B̂⊗ p̂ commutators

(e.g., from C√tÂx̂ and C−√
tÂx̂) , as well as individual order t terms involving double

commutators from a single interaction (as in the third term of equation (4.32)).

This gives

i
1

2
[Â2, · ]⊗ (−i[x̂,S[x̂]])

− 1

2
[Â, [Â, · ]]⊗

(

x̂2 + S(x̂2)− {x̂,S(x̂)}
)

.

(4.37)

and an analogous contribution from the B̂ terms, obtained by substituting x̂ →

p̂ and Â → B̂ above. Adding all terms together and taking the trace over the

ancilla exactly produces the generator in equation (4.2), with parameters set as in

equations(4.19)-(4.21).

4.6.2 Proof of the Theorem

Theorem: For Gaussian states evolving under generator L of equation (4.2),

if Y − 2iη∆1 is positive semi-definite, then non-zero distillable entanglement never

develops between A and B. Conversely, let |ψa〉 ⊗ |ψb〉 denote the (separable, Gaus-

sian) ground state of Ĥloc. If Y − 2iη∆1 has a negative eigenvalue, then after some
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t > 0 the initial state |ψa〉 ⊗ |ψb〉 is mapped to a state with finite distillable entan-

glement.

We discuss some preliminary information before giving the proof. As before, we

let M = [x̂a, p̂a, x̂b, p̂b]
T denote the vector of canonical variables of both subsystems.

We first note that by its quadratic form, the generator L does not increase the degree

of any polynomial in M̂i, which implies that etL preserves Gaussian states [160].

Since Gaussian states are defined uniquely by their first and second moments, we

reduce our discussion to the mean vector mi = 〈M̂i〉 and covariance matrix γij =

〈{M̂i, M̂j}〉 − 2mimj. For any state of A and B, a consequence of the positivity of

the density matrix is the uncertainty principle [167–169], as implied by the matrix

inequality [186–188],

γ + i∆2 ≥ 0 , (4.38)

meaning that the (complex valued) matrix γ+i∆2 has no negative eigenvalues. Here

∆n represents the n-mode symplectic matrix,

∆n =
n
⊕

i=1









0 1

−1 0









i

. (4.39)

We note that a 2-mode Gaussian state is not distillable if and only if [165,166]

γ̃ + i∆2 ≥ 0 , (4.40)

where γ̃ is obtained from γ by setting p̂b → −p̂b. In other words, 2-mode Gaussian

states are distillably entangled if and only if their partial time reverse does not satisfy

the uncertainty principle. Given that γ̃(t) = Kγ(t)K, with K = diag([1, 1, 1,−1]),
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we have that (4.40) is equivalent to

γ ≥ −i∆̃2 , (4.41)

where we have defined the operator

i∆̃2 = iK∆2K =









0 1

−1 0









⊕









0 −1

1 0









. (4.42)

Proving the theorem requires determining when inequality (4.41) can break.

To prove the first statement, we analyze the evolution of γ and show that under

condition

Y − 2iη∆1 ≥ 0 , (4.43)

if equation (4.41) holds at t = 0 then it also holds for t > 0 sufficiently small. This

implies that equation (4.40) holds for all t ≥ 0, since the argument may similarly

be applied assuming any initial value of t. Conversely, if Y − 2iη∆1 has a negative

eigenvalue, we show that for γ(0) corresponding to the (separable, Gaussian) ground

state of Ĥloc, the inequality (4.41) breaks down for some small t > 0.

To begin the proof we first determine the evolution of γ(t). We consider the

operator valued matrix

Γij = M̂iM̂j + M̂jM̂i . (4.44)

Written in terms of M and noting that i(∆2)ij = [M̂i, M̂j ], we can write this matrix

as Γ = 2MMT − i∆2. From the definition of L in (4.2), we can then compute the

equations of motion,

∂tM = xTM

∂tΓ = xTΓ + Γx+ y .

(4.45)
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Here the matrices x and y are

xT = ∆2(H +G) y = −∆2N∆2 , (4.46)

with matricesH,G andN described below. The real symmetric matrixH parametrizes

the Hamiltonian,

1

2

∑

ij

HijM̂iM̂j = Ĥloc + ηÂB̂ . (4.47)

Since they are canonical variables, we can decompose Â and B̂ as Â = χTx M̂ and B̂ =

χTp M̂ , where χx and χp are real vectors. Likewise since Ĥloc is a local Hamiltonian,

there exist 2 × 2 real symmetric matrices Ha and Hb such that Ĥloc =
1
2

∑

ij(Ha ⊕

Hb)i,jM̂iM̂j takes on a block diagonal structure. Combining these statements, we

have that

H = Ha ⊕Hb + η(χxχ
T
p + χpχ

T
x ) . (4.48)

The matrix G similarly encodes the effect of the superoperator i ξ
2
(Â · B̂ − B̂ · Â)

appearing in L. It is similar to H in that it appears in the dynamics of both M and

Γ, but unlike H it is an antisymmetric matrix,

G =
ξ

2
(χxχ

T
p − χpχ

T
x ) . (4.49)

Finally, the operator N represents the noise added to the systems from the dissipa-

tive term D,

N =
∑

u,v=x,p

Yuvχuχ
T
v . (4.50)

From the definition (4.5), we have γ = 〈Γ〉 − 2〈M〉〈M〉T . Hence from (4.45) and

noting that xT i∆2 = −i∆2x, the equation of motion for γ is,

∂tγ = xTγ + γx+ y . (4.51)
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The differential equation (4.51) may then be solved directly to give

γ(t) = Yt +XT
t γ(0)Xt , (4.52)

where Xt = ext and Yt =
∫ t

0
XT
t−s y Xt−sds.

To prove the first statement of the theorem, we assume that Y −2iη∆1 is posi-

tive semi-definite. We want to show that if any γ(t) satisfies matrix inequality (4.41)

at t = 0, then it also does so for sufficiently small t > 0. Hence we must show that

if there is some (possibly complex) vector z such that z†
(

γ(0) + i∆̃2

)

z = 0, then

∂tz
†(γ(t) + i∆̃2)z|t=0 is non-negative, and therefore γ(t)−i∆̃2 has no negative eigen-

values for small t > 0. To do this, we use equations (4.52) and (4.41) to compute

γ(t) + i∆̃2 = Yt +XT
t γ(0)Xt + i∆̃2

≥ Yt −XT
t i∆̃2Xt + i∆̃2

≡ F (t) .

(4.53)

Since F (0) = 0, it suffices to show that F ′(0) ≥ 0: for if z†(γ(0) + i∆̃2)z = 0, then

assuming that ∂tz
†(γ(t) + i∆̃2)z|t=0 is negative would produce a contradiction with

inequality (4.53). A straightforward calculation shows that

F ′(0) = y − ixT ∆̃2 − i∆̃2x

= −∆2N∆2 − i∆2(H +G)∆̃2 − i∆̃2(−H +G)∆2

= (i∆2)N(i∆2)

− i(i∆2)
(

(H +G)∆̃2∆2 +∆2∆̃2(−H +G)
)

(i∆2) .

(4.54)

In the first line we used the definition of Xt and Yt and in the second we used

equation (4.46) and the fact that H (G) is symmetric (antisymmetric). Finally, in
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the third line we used ∆2∆2 = −I2, where In is the 2n× 2n identity matrix.

It is easy to see that ∆̃2∆2 = (−I1)⊕ I1 = ∆2∆̃2, which commutes with any

block diagonal matrix. Hence for H = Ha ⊕Hb + η(χxχ
T
p + χpχ

T
x ) (noting that χx

and χp have supports in the first and second blocks, respectively), we may eas-

ily compute H∆̃2∆2 −∆2∆̃2H = 2η(χxχ
T
p − χpχ

T
x ). Likewise we see that since

∆2∆̃2χxχ
T
p + χxχ

T
p∆2∆̃2 = 0, the contribution of G = ξ

2
(χxχ

T
p − χpχ

T
x ) to F ′(0)

vanishes. Using the definition of N in (4.50), the expression for F ′(0) then becomes,

F ′(0) =
∑

u,v

(Yuv − 2iη(∆1)uv)(i∆2)(χuχ
T
v )(i∆2)

= (i∆2)χ(Y − 2iη∆1)χ
T (i∆2) ,

(4.55)

where χ = [χx χp] is the 4 × 2 matrix with columns χx and χp. Since i∆2 is a

Hermitian matrix, we see that F ′(0) ≥ 0 if and only if Y − 2iη∆1 ≥ 0. Thus if

Y − 2iη∆1 is positive semi-definite, z†(γ(t) + i∆̃2)z can never become negative, so

inequality (4.41) holds and Gaussian states do not become distillably entangled.

To prove the converse statement, we assume that (Y − 2iη∆1) has a negative

eigenvalue. Let us prepare the system in the ground state of Ĥloc =
1
2
M(Ha ⊕Hb)M

T .

As we argue at the end of the proof, without loss of generality we may assume that

Ha ⊕Hb = (ωaI1 ⊕ ωbI1), and hence the ground state is described by covariance

matrix γ(0) = I2. For small times t > 0, by equation (4.51) we have

γ(t) + i∆̃2 = γ(0) + i∆̃2 + t(y + xTγ(0) + γ(0)x) +O(t2) . (4.56)

Since (Y − 2iη∆1) has a negative eigenvalue, there exists a complex valued vector

zf = [z1, z2]
T such that z†f (Y − 2iη∆1)zf < 0. We use this fact to define a vector

zab ∈ C
4 such that z†ab(γ(t) + i∆̃2)zab (from the equation above) is negative to
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leading order in t, and therefore the ground state becomes distillably entangled. Set

χ̃s = χs//||χs|| for s = x, p, and χ̃′
s = i∆2χ̃s (which is orthogonal to χ̃s, since ∆2 is

antisymmetric). Define the vector

zab = i∆2

(

z1
||χx||

(χ̃x − χ̃′
x) +

z2
||χp||

(χ̃p + χ̃′
p)

)

. (4.57)

Noting that (i∆2)(i∆̃2) = (i∆̃2)(i∆2), i∆̃2χ̃x = χ̃′
x, and i∆̃2χ̃p = −χ̃′

p, it is easy

to verify that (I2 + i∆̃2)zab = 0. Since γ(0) = I2, we see that the zero order

term of z†ab(γ(t) + i∆̃2)zab in equation (4.56) vanishes. Likewise, since (i∆2)
2 =

I2 and {χ̃x, χ̃′
x, χ̃p, χ̃

′
p} form an orthonormal basis, one may directly verify that

χTx (i∆2)zab = z1 and χTp (i∆2)zab = z2. Using i∆̃2zab = −zab with equations (4.54)

and (4.55), this implies that the order t term of z†ab(γ(t) + i∆̃2)zab is

z†ab(y + xT + x)zab = z†abF
′(0)zab = z†f (Y − 2iη∆1)zf , (4.58)

which is strictly negative by our original assumption. Thus z†ab(γ(t) + i∆̃2)zab is

negative for t > 0 sufficiently small, so that the ground state corresponding to γ(0)

at t = 0 violates equation (4.41) and becomes distillably entangled.

We now justify the assumption that Ha⊕Hb = (ωaI1 ⊕ωbI1) by showing that

Ha ⊕ Hb can be transformed into this form under a local change of basis. Before

we do so, we note that we can decompose each original Hamiltonian matrix as

Hs = ωsOsRsR
T
s O

T
s ≡ ωsSsS

T
s , for s = a, b. Here Os is an orthogonal matrix that

diagonalizes Hs, and Rs =









rs 0

0 r−1
s









for some rs > 0. In the case of 2 × 2

matrices, the symplectic matrices (i.e. those satisfying S∆1S
T = ∆1) are exactly

those with determinant 1, so we conclude that each Ss is symplectic. Since the
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Gaussian unitary channels (i.e., maps corresponding to Yt = 0 in (4.52)) correspond

exactly to the symplectic transformations [163], we conclude that there exists a

local Gaussian unitary, Ûa ⊗ Ûb, that implements the symplectic transformation

S = S−1
a ⊕ S−1

b . In this new basis, the local Hamiltonian matrix is mapped to

Ha ⊕ Hb → (ωaI1 ⊕ ωbI1), and the coupling terms are mapped according to χs →

S−1χs. Further, since S−1 is block diagonal, the transformed vectors S−1χs still

have support in either the A or B subspace. Our assumption is therefore valid

because the Gaussian separability condition (4.40) is invariant under Gaussian local

unitaries.
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Chapter 5: A classical channel model for gravitational decoherence

We show that, by treating the gravitational interaction between two mechani-

cal resonators as a classical measurement channel, a gravitational decoherence model

results that is equivalent to a model first proposed by Diosi. The resulting decoher-

ence model implies that the classically mediated gravitational interaction between

two gravitationally coupled resonators cannot create entanglement. The gravita-

tional decoherence rate ( and the complementary heating rate) is of the order of the

gravitationally induced normal mode splitting of the two resonators. Failure to see

this in an experiment would rule out treating gravitational interactions as purely

classical.

5.1 Introduction

The ability to optically cool macroscopic mechanical oscillators close to their

ground state, from which highly non-classical superposition states may be prepared,

provides a platform in which to study the interplay between gravitational and quan-

tum physics [189–192]. The objective is to engineer quantum states of mechanical

systems in which gravitational effects must be taken into account if we are to ac-

count for the dynamics. Karolyhazy [193], Penrose [194] and also Diosi [195] have
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proposed that in such a setting gravity would lead to a new kind of decoherence and,

correspondingly, a new source of noise acting on the quantum degrees of freedom.

There are a number of ways to see why decoherence plays a special role in

gravitational interactions. The central point can best be seen by contrasting the

case of gravitationally mediated interactions to that of electromagnetically mediated

interactions for which a full quantum description is available in QED [196]. Indeed,

ion trap quanta computing shows that one can entangle the motional states of

many particles using the coulomb interaction. The current limits on this are due

to fluctuating charges on nearby electrodes but in principle one can shield from all

unwanted Coulomb interactions. This is not the case for the gravitational field of a

massive object. There are many ways to measure the gravitational field of a large

mass: scattering of test particles, deflection of light, red shifts of clocks, contraction

of rulers. Admittedly these effects are weak but in principle there is always an open

measurement channel: one cannot shield against gravity. A gravitational source

exhibits open measurement channels through its effect on space-time geometry. If

one cannot close off a measurement channel then there necessarily remains a source

of noise and decoherence even if the measurement results are never known. The key

question is, how large is this effect?

If we had a quantum theory of gravity, the appearance of an additional source

of noise would not be remarkable: it would ultimately arise from quantum fluctu-

ations in the underlying field that mediates the gravitational interaction between

quantum mechanical degrees of freedom [196]. Such effects, it is claimed, are likely

to become important at the Planck scale and thus seem unlikely to arise in table-top

79



opto-mechanical experiments for which the Newtonian description of gravitational

interactions would seem to suffice. Surprisingly, the proposals of Penrose and Diosi

would indicate that this is not the case and that, given sufficient quantum control

over macroscopic mechanical degrees of freedom, opto-mechanical systems might

reveal gravitational decoherence.

In this chapter we use the recent proposal [197] for classically mediated long

range interactions applied to gravitational interactions. They introduce a picture in

which gravitational interactions are regarded as a two-way communication channel.

Within this picture we contrast a conventional unitary treatment of the mutual

gravitational interaction of two masses with a classical channel modelled as a weak

continuous measurement of the position of each mass. Such a channel is classical

in so far as the stochastic measurement record may be duplicated through fan-

out without introducing noise. A classical measurement channel of this kind is

an example of LOCC (local operation with classical communication) and cannot

entangle the two masses. If gravitational interactions are of this form it implies

one cannot entangle particles through purely gravitational interactions. Henceforth

when we refer to a classical channel we mean one that cannot be used to entangle

systems.

The continuous measurement record is used to control a reciprocal classical

force on each mass via a feedforward control. In essence, the classical measurement

record informs each mass of the other’s position and applies the corresponding gravi-

tational force. By requiring the effect to be reciprocal, we show that the gravitational

decoherence rate is completely determined by the gradient of the gravitational force
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between the two masses. This is equivalent to the gravitational decoherence models

proposed by Penrose and Diosi. We calculate the size of this effect for an experiment

based on two gravitationally coupled oscillators. We show that the decoherence rate

saturates the bound required for a classical channel to not entangle the oscillators.

The key point is this: a decoherence rate below this level would enable one to en-

tangle particles through gravitational interactions and imply that a quantum theory

of gravity must realise a quantum channel.

In [198] Diosi introduces a very similar model to the one we are proposing here

for the case of relativistic quantum fields. In that paper a fundamental and universal

measurement process measures the field configuration and the measurement results

are fed back to modify the future dynamics of the field. In the Markov and non-

relativistic limit a special case is made for the mass distribution being subject to

the universal measurement. In many ways the model of this chapter is a particular

demonstration of the physical consequences of this assumption.

5.2 Combining quantum and gravitational physics

Consider two masses, m1,m2 freely suspended so as to move (approximately)

harmonically along the x-axis, Fig. 5.1. The gravitational interaction between the

two masses couples these harmonic motions. The displacement of mass mk from

equilibrium is denoted xk. The equilibrium positions are determined by the grav-

itational attractions between the two suspended masses. The interaction potential

energy between the masses, expanded to second order in the relative displacement,
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Figure 5.1: A gravitationally coupled system of two harmonic oscillators comprising

two suspended masses m1,m2.

may be written

V (x1, x2) = V0 −
Gm1m2

d2
(x1 − x2)−

Gm1m2

d3
(x1 − x2)

2 (5.1)

The term linear in the displacement represents a constant force between the masses

and simply modifies the equilibrium position of the masses to x̄1 = Gm2/(d
2ω2

1), x̄2 =

−Gm2/(d
2ω2

2). We will absorb this into the definition of the displacement coordi-

nates. The quadratic terms proportional to x2k can be incorporated into the definition

of the harmonic frequency of each mass. The total mechanical Hamiltonian is then

given by

Hqm = H0 +Kx̂1x̂2 (5.2)
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where

H0 =
2
∑

k=1

p̂2k
2mk

+
mkΩ

2
k

2
x̂2k (5.3)

with

Ω2
k = ω2

k −K/mk (5.4)

and

K =
2Gm1m2

d3
(5.5)

and the usual canonical commutation relations hold [x̂k, p̂j ] = i~δkj.

The model thus reduces to the very well understood case of two quadratically

coupled simple harmonic oscillators. The resulting classical and quantum dynamics

is then described as two independent simple harmonic oscillators, the normal modes,

which are linear combinations of the local co-ordinates q+ = (x1 + x2)/
√
2 is the

centre-of-mass mode and q− = (x1 − x2)/
√
2 is the breathing mode with frequencies

ω± given by

ω2
± = (Ω2

1 + Ω2
2)/2±

1

2

[

(Ω2
1 − Ω2

2)
2 + 4K2/(m1m2)

]1/2
(5.6)

In what follows we will consider the symmetric case for which m1 = m2 = m and

Ω1 = Ω2 = Ω. In that case the normal mode frequencies become

ω+ = ω ;ω− = ω

[

1− 2K

mω2

]1/2

(5.7)

In most situations of laboratory relevance, the gravitational coupling is weak and the

difference in frequency between the two normal modes, the normal mode splitting,

can be written

∆ ≡ ω+ − ω− ≈ K

mω
(5.8)
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What is the relevance of the normal modes of two coupled oscillators and grav-

itational decoherence? Many discussions of gravitational decoherence are concerned

with the ability to prepare a single massive object in a pure quantum state of its

centre of mass degree of freedom, for example, with a delocalised wave function of

the form ψ(x) = ψ(x + d) + ψ(x − d) where d is a macroscopically distinguishable

displacement [199]. The ground state of two normal modes is a superposition state

of the configuration space variables of two centre-of-mass degrees of freedom (the

local modes) and as such the ability to prepare such a state through purely gravita-

tional interactions would be a test of gravitational decoherence. The wave function

of the normal mode ground states, |0〉+ ⊗ |0〉−, in the coordinate basis of the local

centre-of-mass coordinates, is a Gaussian two-mode squeezed state [200],

|0〉+ ⊗ |0〉− =

∫ ∫

dx1dx2 ψ(x1, x2)|x1〉 ⊗ |x2〉 (5.9)

where the wave function is

ψ(x1, x2) = N exp
[

−~xTL~x
]

(5.10)

where ~xT = (x1, x2) and

L =
mω

4









1 +
√
1− β 1−√

1− β

1−√
1− β 1 +

√
1− β









(5.11)

and β = 2K/mω2. Decoherence will suppress the off-diagonal components of this

state in the local co-ordinate basis. This state also carries a superposition of cor-

relations through the off diagonal elements of L, that is to say it is also entangled.

Thus decoherence will tend to reduce entanglement.
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5.3 Gravity as a classical measurement channel

Kafri and Taylor [197] (Chapter 4) have recently proposed a simple way to

test if a long range interaction between two particles is mediated by a quantum or a

classical channel. They define a quantum channel by introducing an ancillary degree

of freedom, a harmonic oscillator. The coherent interactions between two local

systems and the channel lead, under appropriate circumstances, to an effective direct

non-local interaction between the two local systems. This kind of process is used in

geometric phase gates to simulate non-local interactions between internal states of

trapped ions, with the ionic vibrational modes serving as the ancilla [201,202]. The

key of course is the ability to implement controlled entangling operations between

the electronic and vibrational degrees of freedom of each ion. A classical channel

can then be defined by simply allowing the ancillary oscillator to be continually

measured.

In this chapter we will take a different, although equivalent, approach to defin-

ing a classical mediated interaction by using methods from quantum stochastic con-

trol theory [203]. Rather than a direct quantum interaction of the form x̂1x̂2, we

assume the interaction is mediated by a classical channel. That is, the gravitational

centre of mass co-ordinate, x̂i, of each particle is continuously measured and a classi-

cal stochastic measurement record, Jk(t), carrying this information acts reciprocally

as a classical control force on the other mass. The effect on the dynamics of the
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systems is to produce a Hamiltonian term of the form,

Hgrav = χ1
dJ1(t)

dt
x̂2 + χ2

dJ2(t)

dt
x̂1 . (5.12)

As we will see, the units can be chosen such that the units of χk are Jm
−2, the same

as the units of K.

In the case of continuous weak measurements of x̂k the measurement record

obeys a stochastic differential equation of the form [203]

dJk(t) = 〈x̂k〉cdt+
√

~

2Γk
dWk(t) (5.13)

where Γk is a constant that determines the rate at which information is gained by

the measurement, while dW1,2 are independent, real valued Wiener increments. The

units of Γk/~ are m−2s−1. The average 〈x̂k〉c is a conditional quantum mechanical

average conditioned on the entire history of measurement records up to time t.

The conditional quantum dynamics of the coupled oscillator system is given

by the stochastic master equation

dρc = − i

~
[Hc, ρc]dt−

2
∑

k=1

Γk
2~

[x̂k, [x̂k, ρc]]dt+

√

Γk
~
dWk(t)H[x̂k]ρc (5.14)

where the classical control Hamiltonian is defined by

Hc = H0 +Hgrav (5.15)

and the conditioning super-operator, H is defined by

H[X̂]ρ = X̂ρ+ ρX̂ − Tr
(

X̂ρ+ ρX̂
)

(5.16)

The appearance of the conditional average, Tr (x̂kρ+ ρx̂k) in Eq.(5.14) is very similar

to the theory of [204] and also [205] although in the latter case the stochastic term

is missing and the interpretation is thus very different.
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The form of Eq. (5.15) defines a direct feedback model of the kind considered in

[203]. Using the results there we find that the corresponding unconditional dynamics

(that is to say, the dynamics averaged over all measurement records) is given by

dρ

dt
= − i

~
[H0, ρ]−

i

2~
(χ2[x̂1, x̂2ρ+ ρx̂2] + χ1[x̂2, x̂1ρ+ ρx̂1]) (5.17)

−
2
∑

k=1

Γk
2~

[x̂k, [x̂k, ρ]]−
χ2
2

8~Γ1

[x̂2, [x̂2, ρ]]−
χ2
1

8~Γ2

[x̂1, [x̂1, ρ]]

The second term is the systematic effect of the control protocol. It is easy to see

that if we fix χ1 = χ2 = K this reduces to the standard Hamiltonian interaction

term given in Eq.(5.2). The final two terms represent the effect of feeding back the

white noise on the measurement signals to control the dynamics of the other mass.

In the case of highly asymmetric masses, for example the mass of the earth

and the mass of a neutron in the experiments on neutron interferometry [206–208],

m1 ≫ m2, so we expect the measurement rates to also be highly asymmetric. In

fact for the case of the measurement channel that records the position of the larger

mass we expect Γ1 ≫ Γ2 so that the relative contribution to the noise in the channel

from the larger mass to the smaller mass is much smaller than the converse channel.

This simply captures the intuition that for large mass the position of the centre of

mass should be very classical. Equivalently the rate at which classical information

is carried form the larger mass to the smaller mass is much greater than the rate at

which information is carried form the smaller mass to the larger mass. This ensures

that the decoherence rate of the smaller mass is much less than the decoherence rate

of the larger, ‘ classical’ mass.

Let us now consider the symmetric case in which m1 = m2. In that case we
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expect Γ1 = Γ2 = Γ. The noise added by measurement and feedback is a minimum

at Γ = χ/2 linking the decoherence rate due to the continuous measurement to the

scale of the gravitational interaction as

Γ = K/2 (5.18)

so that the rate at which classical information is transmitted by the classical chan-

nel is determined entirely by the gradient of the gravitational field. The resulting

unconditional dynamics is

dρ

dt
= − i

~
[H0, ρ]−

i

~
K[x̂1x̂2, ρ]−

K

2~

2
∑

k=1

[x̂k, [x̂k, ρ]] (5.19)

This is consistent with Diosi’s model [195] which gives the same decoherence rate

as obtained here under similar approximations [209]. The form of Eq.(5.19) can

be generalized to exactly match the one in reference [197] if we include non-cross

terms in the feedback. I.e., in equation (9), we could have terms proportional to

(dJ1/dt)x1 and (dJ2/dt)x2.

There are similarities between Diosi’s approach and the measurement mediated

approach described here. Both require that the gravitational interaction between

the two degrees of freedom be replaced with a noisy interaction. In the measurement

based approach this is incorporated in a way which necessarily preserves positivity

as the noise arises from a ‘hidden’ position measurement of the gravitational centre

of has co-ordinate. In Diosi’s approach we need to explicitly constrain the noise to

preserve positivity. More recently Diosi [210] has pointed out that a system subject

to weak continuous measurement is a natural example of a quantum-classical hybrid

dynamics.
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Using the main result of the previous chapter, we can show that, in the case

when the two systems are Gaussian, the master equation Eq. (5.19) can never

entangle them. This is also true for Eq. (5.17), assuming χ1 = χ2. Further, the

gravitational decoherence in the dynamics is minimal in the sense that, if it were

any smaller, evolution under Eq. (5.19) would immediately entangle the ground

state of the (uncoupled) Hamiltonian, H0.

To see this we write the Eq.(5.19) in terms of the dimensionless operators

x̃k = xk (mω/~)
−1/2,

dρ

dt
= − i

~
[H, ρ]− ig[x̃1x̃2, ρ]−

1

4

2
∑

k=1

Yij[x̃i, [x̃j , ρ]] (5.20)

where g = K
mω

measures the strength of the gravitational interaction and the matrix

Yij =
(

2K
mω

)

δij is the decoherence matrix. Invoking the theorem of the previous

chapter, we note that entanglement is never generated if and only if the matrix

Y − 2igσ has no negative eigenvalues, where σ is the 2× 2 symplectic matrix

σ =









0 1

−1 0









(5.21)

Noting that Y − 2igσ has eigenvalues 0 and 4g we see that a slightly less noisy

matrix Yij − ǫδij produces entanglement for any positive ǫ.

5.4 An experimental test of gravitational decoherence

We now consider the prospects for an experimental observation of the model

proposed here. For simplicity we will assume that the two mechanical resonators

have the same mass (m1 = m2 = m) and frequency (ω1 = ω2 = ω). The last term
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in Eq. (5.19) is responsible for two complementary effects: it drives a diffusion

process in momentum of each of the oscillators at the rate ~K, which we will call

the gravitational heating rate

Dgrav = ~K (5.22)

The momentum diffusion leads to heating of the mechanical resonators. It is conve-

nient to define this in terms of the rate of change of the phonon number; the average

mechanical energy divided by ~ω. The heating rate is then given by

Rgrav =
K

2mω
(5.23)

The double commutator term also leads to the decay of off-diagonal coherence

in the position basis of each mechanical resonator,

d〈x′k|ρ|xk〉
dt

= (. . .)− K

2~
(x′k − xk)

2 (5.24)

This shows that the rate of decay of coherence is more rapid the greater the sepa-

ration of the superposed states. We can use the natural length scale proceeded by

the zero-point position fluctuations in the ground state of each resonator to rewrite

the decoherence rate as

Λgrav =
K

2~
∆x20 =

K

4mω
(5.25)

Thus the gravitational decoherence rate for position, in natural units, is one half

the gravitational heating rate.

These rates can equivalently be expressed in terms of the normal mode splitting
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when the gravitational interaction is weak, Eq. (5.8).

Rgrav =
∆

2
(5.26)

Λgrav =
∆

4
(5.27)

We thus see that the key parameter responsible for gravitational decoherence is of

the order of the normal mode splitting between the two mechanical resonators due

to their gravitational coupling. This has significant consequences for observation.

In order to see gravitational decoherence in this model, we need to arrange for

the normal mode splitting to be as large as possible. Writing this in terms of the

Newton constant, we see that

∆ =
Gm

ωd3
(5.28)

In the case of two spheres of radius r, this may be written in terms of the density

of the material as

∆ =
4πGρ

ω

(r

d

)3

(5.29)

As d < 2r, this quantity is bounded

∆ ≤ πGρ

6ω
(5.30)

We need to use a material with a large density and a mechanical frequency as small

as possible. For example, for depleted uranium spheres and a mechanical frequency

of one Hertz, we find that ∆ ∼ 10−7s−1, a value so small that a terrestrial experiment

would be challenging.

In a realistic experiment with low frequency mechanical resonators of the kind

considered here, thermal noise and frictional damping will be unavoidable. We can
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estimate the relative size of these effects using the quantum Brownian motion master

equation [203],

dρ

dt

∣

∣

∣

∣

diss

=
2
∑

j=1

−iγk[x̂j, {p̂j , ρ}]− 2γjkBTmj[x̂j, [x̂j , ρ]] (5.31)

where γk is the dissipation rate for each of the mechanical resonators assumed to be

interacting with a common thermal environment at temperature T . If we compare

the form of thermal noise in this equation to the form of gravitational decoherence,

for the symmetric case, we see that we can assign an effective temperature to the

gravitational decoherence rate given by

Tgrav =
~K

2mγkB
(5.32)

If we write this in terms of the quality factor, Q, for the mechanical resonators, it

gives an effective thermal energy scale of

kBTgrav = ~Q∆ (5.33)

In the example discussed in the previous paragraph for the relatively high value

of Q = 109 we find that Tgrav ∼ 10−9K. One would need an ambient temperature

less than this to clearly distinguish gravitational decoherence from environmental

effects. Possibly gravitationally coupled Bose-Einstein condensates of atomic gases

could reach this regime.

However there is currently much interest in using opto-mechanical systems to

look for gravitation decoherence. This is largely due to the ability to use laser cooling

techniques to prepare harmonically trapped particles of large mass in the ground

state [199, 211]. It is possible that carefully controlled optical levitation [212–215],
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or magnetic levitation [199,216] experiments on two gravitationally coupled masses

might reach the regime discussed in this chapter but it will not be easy. It should

be noted in connection with Eq. 5.33 that laser cooling also changes both the

temperature and the quality factor. There will need to be distinct rounds of cooling

and coherent control similar to what is done in ion trap experiments. Perhaps the

motivation will come from opto-mechanical attempts to fix a better value for G, the

Newton gravitational constant. These efforts will help advance these technologies

to the point where the kind of decoherence considered here could be ruled out, thus

ruling out the possibility of describing gravity as a classical channel.

5.5 Conclusion

In this chapter we have presented a model in which the force of gravity is

mediated by a purely classical channel. The channel is defined by considering a

continuous weak measurement of the position of each of two masses and feeding

forward the classical stochastic record of measurement results to induce the right

gravitational force between the masses. As the weak measurement model is entirely

consistent with quantum mechanics, exactly the right amount of noise is introduced

to ensure that the resulting master equation, when averaged over all measurement

records, is positivity preserving. Using a minimal symmetric argument, we find

that the model is equivalent to a gravitational decoherence model first proposed by

Diosi. As the systematic effect of the gravitational interaction also fixes the size of

the noise, minimising the noise leads to a model with no free parameters.
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It is well known that a consistent quantum-classical hybrid dynamics leads to

problems with positivity of classical phase space distributions and quantum den-

sity operators [217]. In our approach these problems are avoided as the classical

dynamical component is in fact a quantum measurement signal, explicitly incorpo-

rating quantum back-action noise. Another approach to quantum-classical hybrid

dynamics has been considered by Hall and Reginato [218].

Our model is a specific example of a general theory of a classically mediated

(i.e. non-entangling) force law considered in the previous chapter. Using a result in

that paper we find that a classically mediated gravitational channel based on contin-

uous weak measurement can never entangle Gaussian systems. In an experimental

setting of two identical gravitationally coupled resonators, this result is manifest as a

direct scaling between the normal mode splitting induced by the gravitational force

and the gravitational decoherence rate. An experimental test using two gravitation-

ally coupled opto-mechanical resonators would be difficult, but not impossible, with

current technology.
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Chapter 6: Distinguishing Quantum and Classical Many-Body Sys-

tems

Controllable systems relying on quantum behavior to simulate distinctly quan-

tum models so far rely on increasingly challenging classical computing to verify their

results. We develop a general protocol for confirming that an arbitrary many-body

system, such as a quantum simulator, can entangle distant objects. The protocol

verifies that distant qubits interacting separately with the system can become mu-

tually entangled, and therefore serves as a local test that excitations of the system

can create non-local quantum correlations. We derive an inequality analogous to

Bell’s inequality [71, 72] which can only be violated through entanglement between

distant sites of the many-body system. Although our protocol is applicable to gen-

eral many-body systems, it requires finding system-dependent local operations to

violate the inequality. A specific example in quantum magnetism is presented.

6.1 Introduction

Quantum simulators can efficiently model quantum systems [13,14]. However,

characterizing and validating such devices is in general difficult. Indeed, quan-

tum state tomography [176] for even eight qubits has required weeks of classical
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computational processing time [219] (in addition to exponentially growing measure-

ment requirements). This issue is also present in process tomography, the analogue

for quantum channels [220, 221]. Notwithstanding the number of measurements

growing exponentially in system size, for systems with 10+ constituents reliable

tomography is expected to break down from systematic errors in preparation and

measurement [222]. Although these resource scaling problems are partially allevi-

ated with methods based on compressed sensing [76,223–226], the cost still scales at

least linearly with the Hilbert space dimension, and thus exponentially in the num-

ber of constituents. Added difficulties arise when data is limited to experimentally

accessible local observables [227].

Despite the costs of completely characterizing large quantum systems, there

do exist scalable tests giving incomplete – though useful – descriptions of system

behavior. For example, techniques such as randomized benchmarking [35,36,78,228]

and fidelity estimation [37,38] require a number of measurements polynomial in sys-

tem size, while still quantifying useful information such as error rates or average

gate fidelities. In the case of locally correlated errors, this is sufficient to guarantee

the operation of error-corrected quantum computer [39, 40, 229, 230]. Recent linear

optics experiments have likewise partially verified implementations of boson sam-

pling, a task which currently cannot be carried out classically [42]. Although it is

impossible to efficiently verify this sampling, by using the results of Ref. [231] the

authors of Ref. [232] were able to distinguish the sampled distribution from a uni-

form one. The experiment of Ref. [233] produced similar results, while also checking

whether the photon statistics corresponded to indistinguishable particles.
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This chapter presents another incomplete test, in the context of quantum

simulators of many-body systems (MBS) [234, 235]. It derives from a constructive

procedure to entangle two distant ancilla qubits through local interactions with the

many-body system. It starts by preparing the system in an initial, known state,

composed of many spatially-fixed sites (see Fig. 6.1). We apply a local perturbation

to a single site, conditioned on the state of an ancilla qubit in superposition. The

simulator then propagates the system forward in time, correlating the ancilla with

other sites of the MBS. At one of these distant sites, we apply a second perturba-

tion controlled by a second ancilla qubit. This interaction is chosen to increase the

probability amplitude between the current excited MBS state and its initial state,

but only does so if both qubits are in the same control state. Qualitatively, excita-

tions induced by the first qubit are conditionally removed by the second. Although

both ancillas are now correlated, their correlation with the MBS prevent them from

being entangled. We therefore measure the MBS and post-select for it being in its

original state. This both disentangles the MBS from the ancillas and increases the

probability that they are in the same eigenstate. Finally, we can directly verify that

the qubits are entangled (e.g., through state tomography).

6.2 Toy model

As a toy model, we consider a one dimensional transverse field Ising Hamilto-

nian,

Ĥ = B
∑

i

σ(i)
x − J

∑

i

σ(i)
z ⊗ σ(i+1)

z . (6.1)
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Figure 6.1: a) and b): Prototype entangling procedure. Ancilla qubit A prepared as

|+〉 = (|0〉+ |1〉)/
√
2 applies controlled unitary Û1 to site 1 of the initial MBS state

|ψ〉12E, producing a conditional excited state (|0〉A ⊗ |ψ〉12E + |1〉 ⊗ Û1 |ψ〉12E)/
√
2.

Time evolution V̂τ propagates the MBS, spreading the excitation across the system.

Ancilla qubit B (also in superposition) then applies controlled unitary Û2 to site 2,

removing the excitation (conditional on its initial state). Finally, a post-selection

conditioned on projector P̂ is carried out, confirming the MBS has returned to

its original state. This projects the ancillas into a (possibly entangled) correlated

state. c) An analogous protocol using only one ancilla qubit. After post-selection,

measurements of the single ancilla are sufficient to determine whether the previous

protocol would have entangled the two ancillas.
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We write the evolution for a time τ as V̂τ = exp(−iτĤ). In the B/J ≪ 1 limit, the

eigenstates of Ĥ are well approximated by eigenstates of the transverse field term,

ĤJ = −J∑i σ
(i)
z ⊗ σ

(i+1)
z . We therefore assume an initial state of the form

|g〉 = |0〉 ⊗ |0〉 ⊗ ... ⊗ |0〉 , (6.2)

where σz |0〉 = |0〉, which minimizes the energy
〈

Ĥ
〉

up to corrections of order

B · (B/J)N . The lowest lying excitations of ĤJ are described by domain walls. For

our protocol to produce entanglement, we use excitations that are indistinguishable

from |g〉 outside a finite region. We therefore consider the evolution of the next

lowest excitations of ĤJ , involving pairs of domain walls of the form,

|ei,j〉 =
∏

i≤k≤j
σ(k)
x |g〉 , (6.3)

where 1 < i ≤ j < n. Evolution under Ĥ = ĤJ + ĤB disperses these states across

the chain [236].

We now consider how to use the MBS to entangle two distant qubits. First,

an ancilla qubit (labeled A) in state |+〉 = 1√
2
(|0〉 + |1〉) rotates the second1 spin

of the chain through controlled-NOT gate, ÛA,2 = |0〉〈0|A ⊗ 1̂ + |1〉〈1|A ⊗ σ
(2)
x . This

produces the excitation |e2,2〉 in the chain, conditioned on the state of the ancilla

qubit,

ÛA,2 |+〉A ⊗ |g〉 = 1√
2
(|0〉A ⊗ |g〉+ |1〉A ⊗ |e2,2〉) . (6.4)

At this point, the ancilla state is correlated with the MBS, though only at spin 2 of

the chain.
1Since the first spin only interacts with one neighbor, exciting it would create a single domain

wall instead of two.
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Continuing with the entangling procedure, we propagate under V̂τ for a time

τ ∼ N/B in order to spread the correlation with the ancilla across the spin chain

as a superposition of excitations. After applying V̂τ , the |g〉 component of the MBS

acquires only an irrelevant global phase θ, while the excited state |e2,2〉 disperses

over the subspace spanned by {|eij〉}:

V̂τ ÛA,2 |+〉A ⊗ |g〉 = 1√
2

(

eiθ |0〉A ⊗ |g〉+ |1〉A ⊗ V̂τ |e2,2〉
)

. (6.5)

To understand this process, we consider the projection of ĤB to the linear span of

states |ei,j〉, an approximation valid when B/J ≪ 1 [237]. We note that ĤB only

couples between adjacent domain walls,

〈ei,j| ĤB |ek,l〉 = B(δi,k+1 + δi,k−1 + δj,l+1 + δj,l−1) , (6.6)

so the evolution of |e2,2〉 under Ĥ is equivalent to that of a continuous-time quantum

walk in two dimensions [238]. The distinct behaviors of |g〉 and |e2,2〉 under V̂τ will

allow us to distinguish the states of the ancilla through a local operation at spin

N − 1.

After evolving for a time τ ∼ N/B, the excitation V̂τ |e2,2〉 has a probability ∼

1/N2 of being localized in state |eN−1,N−1〉. We verify this numerically by using the

quantum walk analogy above. As seen in Fig. 6.2a, the peak transition probability

| 〈eN−1,N−1| V̂τ |e2,2〉 |2 scales as ∼ 1/N2. Key to the success of our protocol, we note

that the unitary σx at site N −1 maps the excitation |eN−1,N−1〉 back to the ground

state |g〉. Hence we can applying σ
(N−1)
x to V̂τ |e2,2〉 to give it a non-zero overlap

with the ground state,

r = 〈g| σ(N−1)
x V̂τ |e2,2〉 = 〈eN−1,N−1| V̂τ |e2,2〉 6= 0 , (6.7)

100



where |r|2 ∼ 1/N2. The time τ required for the overlap |r| to reach its peak scales

linearly with N (Fig. 6.2b), as opposed to a time scale ∼ N2/B observed in diffusive

propagation [81].

We can use the fact that |e2,2〉 can transition to |eN−1,N−1〉 via σ
(N−1)
x to

entangle ancilla A with a second ancilla, B. After time evolution V̂τ , we apply a

second controlled-NOT gate between B and spin N − 1,

ÛN−1,B = |0〉〈0|B ⊗ 1̂ + |1〉〈1|B ⊗ σ(N−1)
x . (6.8)

The resulting state displays correlations between both ancillas and the MBS,

ÛN−1,BV̂τ ÛA,2 |++〉AB ⊗ |g〉 =

1

2

(

|0 0〉AB ⊗ eiθ |g〉+ |1 0〉AB ⊗ V̂τ |e2,2〉+

|0 1〉AB ⊗ eiθσ(N−1)
x |g〉+ |1 1〉AB ⊗ σ(N−1)

x V̂τ |e2,2〉
)

.

To motivate the final step, observe that if the ancillas are in either state |0 1〉AB or

|1 0〉AB, the MBS is necessarily in an excited state. Thus if we measure and post-

select the MBS to be in the ground state |g〉, we project the ancilla qubits into an

entangled superposition of states |0 0〉AB and |1 1〉AB. This post-selection succeeds

with probability 1+|r|2
4

, and produces the entangled state,

〈g| ÛN−1,BV̂τ ÛA,2 |++〉AB ⊗ |g〉 =

1
√

1 + |r|2
(

eiθ |0 0〉AB + r |1 1〉AB
)

. (6.9)

To conclude the protocol, a measurement of the ancillas would then confirm that

the ancillas are entangled.
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Figure 6.2: Evolution time and ancilla qubit correlation as a function of spin chain

length N , in the quantum walk approximation. a.) Inverse plot of the peak values

of |r| = | 〈eN−1,N−1| V̂τ |e2,2〉 |, as a function of chain length N . The numerically

calculated values (dots) match closely to the linear fit, with |r|−1 ≃ 0.08N + 0.55.

b.) A plot of the time τ0 taken for the overlap |r| to reach its peak value. The

numerically calculated values (dots) match the linear fit as τ0B ≃ 0.52N +2.02. c.)

A simulation of state occupations 〈|ei,j〉〈ei,j|〉 in a quantum walk corresponding to

N = 32 qubits. The system is initialized in state |e2,2〉 at time τ = 0. The time

lapse corresponds to times τ = 0.1τ0 (top), τ = 0.5τ0 (middle), and τ = τ0, where

τ0 corresponds to the peak time determined in the previous fit.
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6.3 General protocol

This simple approach can be generalized to a protocol on generic many-body

systems. We consider a propagator for an arbitrary many-body Hamiltonian, V̂τ =

exp(−iĤτ), and an initial prepared ground state |ψ12E〉 (as we discuss later, this

picture can be easily expanded to encompass open quantum systems). The MBS is

composed of two local components S1 and S2, with E representing the rest of the

system. As in the experimental example, we consider two ancilla qubits, interacting

locally with S1 and S2 at different times. In full, the unitary evolution is

CB(Û2) V̂τ CA(Û1) |+〉A |+〉B |ψ12E〉 , (6.10)

where CA(Û1) = |0〉〈0|A⊗ 1̂+ |1〉〈1|A⊗Û1 (with CB(Û2) defined analogously). Impor-

tantly, we assume that the local unitaries Û1, Û2 individually bring the MBS to an

excited state, though the combined evolution Û2V̂τ Û1 produces a non-zero overlap

with the ground state. After the second controlled unitary, we make a post-selective

measurement on the MBS represented by the projection operator P̂ . Although this

projection can be arbitrary, we assume it confirms that the system has returned to

its ground state. As we argued in the example case, this post-selection imparts a

known correlation to the ancilla qubits.

The actual test of the MBS derives from verifying that the ancilla qubits are

entangled. Writing out the qubit density matrix in the σz basis, we have

ρij,i′j′ =
1

p

〈

(̂Û †
1)
i′ V̂ †

τ (Û2)
j′ P̂ (Û †

2)
j V̂τ (Û1)

i
〉

, (6.11)

where 〈Ô〉 = 〈ψ12E| Ô |ψ12E〉 refers to an average over the MBS state alone, and p is
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the probability of making the projective measurement P̂ for the state of Equation

(6.10). The product (Û2)
j V̂τ (Û1)

i (with i, j either 0 or 1) represents the unitary

evolution of the MBS conditioned on the ancillas being in initial state |ij〉. Hence to

generically determine whether the qubits are entangled, one may carry out full state

tomography of the qubits’ density matrix which can be done through concurrent

local measurements on the individual qubits.

The protocol outlined above is the central result of this chapter. Given the

ability to prepare and measure an initial state, it provides a local test verifying that

the MBS propagator can generate non-local entanglement. Such a result precludes

a description in which subsystems are locally quantum but all correlations between

subsystems are essentially classical. In this light, the protocol is akin to a Bell’s

inequality applied to the system and its dynamics as a whole. Like Bell’s inequality,

it uses only local operations. It also has a ‘loophole’: we require that the sites of

the MBS are spatially stationary. Otherwise a single site could migrate through

the MBS and interact with both ancilla to entangle them, bypassing the need for

quantum information to be passed between different sites of the MBS.

The protocol directly extends to the case of open quantum systems. That

is, we can apply the same procedure to many-body systems described by a density

matrix ρ̂12E, whose generic simulator evolution is a trace preserving completely-

positive map Sτ . The extension comes from noting that any such density matrix

can be ‘purified’ by expressing it as a partial trace over an auxiliary system, E ′:

ρ̂12E = trE′ {|ψ12EE′〉〈ψ12EE′|} . (6.12)
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Similarly, the map Sτ can be written as a unitary evolution over a larger Hilbert

space [239],

Sτ (ρ̂12E) = trR

{

V̂τ (ρ̂12E ⊗ |ψR〉〈ψR|) V̂ †
τ

}

. (6.13)

Incorporating the extra system R into the auxiliary E ′, we can generically ex-

press the simulator operation as a unitary evolution over an extended pure state,

V̂τ |ψ12EE′〉〈ψ12EE′|V̂ †
τ , which reduces to S(ρ̂12) under the partial trace. Since the

system is pure and unitary in this extended picture, the procedure we described

previously can be directly applied.

6.4 One qubit protocol

Although the procedure we have presented generically requires two ancilla

qubits to be carried out, under certain assumptions this requirement may be loos-

ened. Indeed, although full state tomography on the ancillas is required to generi-

cally verify entanglement, we note that by equation (6.11) the qubit density matrix

is completely determined by averages over the MBS alone. This means that in cer-

tain cases, even in the absence of one of the ancilla qubits, it is possible to test

whether entanglement would have occurred. Such a test derives from the Peres-

Horodecki criterion [149, 240], which states that the ancillas are entangled if and

only if the partial transpose matrix ρΓ has a negative eigenvalue. This property is

characterized by Sylvester’s criterion, which states that a square matrix A has no
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negative eigenvalues if and only if its principal minors are all non-negative [241],2.

Hence to confirm that the ancilla qubits are entangled, it is sufficient to check that

a single principal minor of ρΓ is negative: ρΓ01,01ρ
Γ
10,10− ρΓ01,10ρ

Γ
10,01 < 0. We map this

statement to an expression on the MBS by using ρΓij,i′j′ = ρij′,i′j and equation (6.11):

〈

V̂ †Û †
2 P̂ Û2V̂

〉〈

Û †
1 V̂

†P̂ V̂ Û1

〉

<
∣

∣

∣

〈

V̂ †P̂ Û2V̂ Û1

〉∣

∣

∣

2

. (6.14)

When this inequality holds, the ancilla qubits become entangled under our protocol.

It can only be satisfied when quantum correlations are propagated between spatially

distant sites. Importantly, since 〈Ô〉 = 〈ψ12E| Ô |ψ12E〉 represents averages over only

the state |ψ12E〉, so it characterizes the many-body system and its evolution alone.

Although inequality (6.14) implies the pair of qubits in the protocol become

entangled, it can actually be measured using a single ancilla qubit. First, we note

that the product of terms on the left hand side require no ancilla qubits to be

measured: for example, the quantity 〈V̂ †Û †
2 P̂ Û2V̂ 〉 is simply the probability of mea-

suring the MBS in a state corresponding to projector P̂ , after having applied the

many-body propagator V̂ followed by the local unitary Û2. Contrasting with the

left hand terms, the right hand side requires an ancilla qubit to measure. Preparing

the ancilla in state |+〉 = 1√
2
(|0〉 + |1〉), we follow the same unitary protocol as in

equation (6.10), except in this case we use the single ancilla as the control for both

unitaries Û1 and Û2. Written out, this produces the state

|φ〉 = 1√
2

(

|0〉A ⊗ V̂ |ψ〉+ |1〉A ⊗ Û2V̂ Û1 |ψ〉
)

. (6.15)

2The principal minors of a square matrix Amn are the determinants det(A(s1,s2, ... sk)), where

A(s1,s2, ... ,sk) is the matrix A truncated to only rows and columns {s1, s2, ... , sk}.
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The real and imaginary parts of 〈V̂ †P̂ Û2V̂ Û1〉 for the many-body state |ψ〉 are then

the means of σx ⊗ P̂ and σy ⊗ P for the compound state |φ〉,
〈

V̂ †P̂ Û2V̂ Û1

〉

= 〈φ| σx ⊗ P̂ |φ〉+ i 〈φ| σy ⊗ P̂ |φ〉 . (6.16)

Preparing the state |φ〉 of Equation (6.15) requires the ancilla qubit to interact with

both sites of the many-body system, but certain cases require only a single site

interaction to measure 〈V̂ †P̂ Û2V̂ Û1〉. This occurs when the post-selection projector

takes a tensor product form,

P̂ = P̂2 ⊗ P̂1E ⊗ 1̂E′ . (6.17)

The product P̂ Û2 can also be written in this way,

P̂ Û2 =
(

B̂+ + iB̂−

)

⊗ P̂1E ⊗ 1̂E′ . (6.18)

where we have written P̂2Û2 in terms of its Hermitian and anti-Hermitian parts,

and as before we let E ′ denote the (inaccessible) environmental degrees of freedom.

Using this decomposition, it suffices to prepare the state

|φ′〉 = 1√
2

(

|0〉A ⊗ V̂ |ψ〉+ |1〉A ⊗ V̂ Û1 |ψ〉
)

, (6.19)

which requires only a controlled unitary between the ancilla qubit and site 1 of the

MBS. As before, the right hand side of (6.14) can then be written as a sum of

observables,

〈

V̂ †P̂ Û2V̂ Û1

〉

= 〈φ′|
(

σx ⊗ B̂+ − σy ⊗B−

)

|φ′〉

+i 〈φ′|
(

σx ⊗ B̂− + σy ⊗B+

)

|φ′〉 . (6.20)

We note that with identity (6.11), both of these procedures can be generalized to

do complete state tomography.

107



6.5 Outlook

The ideas we have presented have potential applications in a variety of existing

experimental setups. For example, current ion trap experiments have the potential

to simulate spin models displaying long-range propagation of correlations [155,242–

246], making them amenable to the single ancilla protocol described above. The

models studied have ground states that can be both prepared and measured through

direct fluorescence spectroscopy following (if necessary) adiabatic passage. The

protocol’s ancilla qubit can take the form of either one of the ions present in the

system or one of the global motional modes associated with the ion trap. A key

requirement in these setups is the ability to individually address single ions in the

experiment [247–250]. Alternatively, in optical lattice many-body simulators [7,

251–254] it is possible to use polarization of light as the ancilla qubit. Based on

selection rules arising out of angular momentum conservation, the controlled unitary

operation of the ancilla would correspond to a polarization-dependent interaction

with a localized subsystem. Between interactions the light must be sent through a

delay line (e.g., a Fabry-Perot cavity), so that correlations between spatially distant

MBS sites are given enough time develop [255,256].
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Chapter 7: Ground State Preparation by Quantum Simulated Cool-

ing

Controlled quantum mechanical devices provide a means of simulating more

complex quantum systems exponentially faster than the best known classical simu-

lation methods. Such “quantum simulators” rely heavily upon being able to prepare

the ground state of Hamiltonians, whose properties can be used to calculate cor-

relation functions or even the solution to certain classical computations. While

adiabatic preparation remains the primary means of producing such ground states,

here we provide a different avenue of preparation: cooling to the ground state via

simulated dissipation.

7.1 Introduction

Quantum devices provide new opportunities in communication and computa-

tion [13,14,16,18,257–261]. One promising application of a well controlled quantum

device is simulating a quantum system, which can occur exponentially faster than

can be achieved classically [14,15,262,263]. Such simulations could provide insights

in many current fields of research, such as BCS-BEC superfluids [6, 7], quantum

chemistry [264, 265], and highly correlated condensed matter systems [8–10, 266].
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However, a crucial component of such simulation is the specification of the initial

state of the system to be simulated. While for some problems such initial states can

be prepared [47, 267], in general a means of preparing such states does not exist.

Methods for the preparation of specific eigenstates of Hamiltonians, particularly the

ground state, therefore remain a pressing challenge for the most interesting quantum

simulation applications. A naive approach would be coupling the system to a zero

temperature bath to cool it to its ground state. However, fundamental questions

about thermalization and convergence to the low T Gibbs ensemble have to date

precluded rigorous bounds on cooling efficiency [268–271].

In this chapter we consider the black box query model for cooling a simulated

Hamiltonian system. Our approach is inspired by Farhi and Gutmann [272], who

introduced the concept of a ‘Hamiltonian oracle’ as the continuous limit of a dis-

crete oracle. It arises from a common technique for evaluating the complexity of a

computational problem, which is to treat a given resource as a black box [273]. That

is, one can bound the cost of solving a problem in terms of the number of required

queries to an otherwise opaque source of information. In the quantum setting, this

approach has provided tight limits on the complexity of many well known problems,

including unstructured search [274,275], abelian hidden subgroup problems such as

in period finding [259] and in Simon’s algorithm [276], and collision finding [277].

In contrast to the standard query model, we consider a unit query in terms of

the simulated evolution time. Within the query model, the black-box ‘oracle’ can be

encoded as a map |x〉 → eiπsx |x〉, where sx represents the x-th bit of an oracle string

s [86,258]. Connecting this to Hamiltonian evolution, the continuous analogue of a

110



discrete query is then the maximum total accumulated phase. Indeed, in the binary

case, the discrete and continuous models are equivalent in terms of query cost [278].

This also makes sense in terms of computational complexity: the cost of simulating

sparse Hamiltonians (including local Hamiltonians) is, up to logarithmic factors,

linear in the number of calls to the function describing the non-zero Hamiltonian

entries [279–281].

The problem we investigate in this chapter is the quantum query complexity

of cooling with limited resources. This is a generalization of the original black box

query model, as the goal is no longer to evaluate a function of an oracle string s

but rather to generate a specific oracle-dependent state [87, 88]. We assume black

box access to time evolution under a Hamiltonian ĤS and are tasked with preparing

its ground state. To do this, we are allowed to include the evolution of a second

Hamiltonian, which acts on an ancillary system and allows for interactions with

the oracle system. We may also measure and reset the ancilla to allow for energy

dissipation; in effect, we cool the system through controlled interactions. We seek

to determine the computational power of this model when the allowed interactions

with the system are constrained. Specifically, we consider only a finite sized ancilla

(a single qubit) that interacts only locally with (i.e., with a small sub-system of) the

oracle system. Despite these limitations, we show that, with even one ancilla qubit,

the ability to simulate a specific Hamiltonian is sufficient to efficiently reproduce

circuit-based quantum computation.
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7.2 Grover’s Algorithm by Simulated Cooling

As an illustrative example, we apply the method of QSC (Quantum Simulated

Cooling) to the Hamiltonian analogue of Grover’s algorithm [258]. (Although the

arguments given in this section are heuristic, the claims made for the general scheme

are rigorously shown in the appendix.) Grover’s algorithm is a circuit-based quan-

tum algorithm for finding elements in an unstructured list. In the context of the

black box query model, we assume access to the oracle map |x〉 → eiπsx |x〉, where

sx denotes a single bit in an N bit string. The goal of the search is to find an index

x such that sx = 0, while minimizing the required number of calls to the oracle map.

Equivalently, we wish to prepare a quantum state that acquires no phase under the

oracle operation.

The unstructured search solved by Grover’s algorithm may be restated in terms

of Hamiltonian evolution. We consider simulated evolution of a Hamiltonian ĤS on

n qubits and which has only two distinct eigenspaces. These are labeled P0 and P1,

with energies ω0 = 0 and ω1 > 0, and correspond to the logical qubit states |x〉 such

that sx = 0 or 1, respectively 1. For notational simplicity, we let the symbol for a

subspace also represent the projector into that subspace. We then have

ĤS = ω1P̂1. (7.1)

Up to a constant factor, the simulation of ĤS for a fixed time is equivalent in cost to

1The logical basis for n qubits is defined by the mutual eigenstates of the individual qubit Pauli

Z operators, σz |b〉 = (−1)b |b〉. For x = b02
0 + b12

1 + ... bn−12
n−1, a basis element |x〉 is denoted

by its binary representation |b0〉 |b1〉 .... |bn−1〉.
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an oracle query of the string s [278]. Hence finding x such that sx = 0 is equivalent

to preparing the ground state of ĤS [176,272].

The simulated cooling algorithm works by exchanging energy between the

simulated Hamiltonian system and a concurrently simulated bath. We consider just

a single, two-level bath, with Hamiltonian

ĤB = ωB1S ⊗ P̂↑ , (7.2)

where P̂↑ = |↑〉〈↑| is the rank one projection operator corresponding to the eigen-

vector σz |↑〉 = |↑〉. To do cooling we prepare the bath in its ground state |↓〉 and

the system in an initial state |F 〉. (For the moment we assume that |F 〉 is an arbi-

trarily chosen state.) We then simulate the non-interacting Hamiltonian ĤS + ĤB

concurrently with an interaction term,

V̂ = Ω0|F 〉〈F | ⊗ σx . (7.3)

We note that the operator |F 〉〈F | is highly non-local: for a system composed of many

distinct subsystems, this operator acts non-trivially on all subsystems at once. Such

an interaction is difficult to implement in practice, and in the generic case we will

assume access to only a local interaction, i.e., between a few subsystems and the

bath.

The evolution of the system under the simulated Hamiltonians can be effec-

tively described through perturbation theory [282]. To do so we decompose |F 〉 into

its spectral components:

|F 〉 = x0 |0〉+ x1 |1〉 , (7.4)
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where xj |j〉 = P̂j |F 〉 and xj is real and non-negative. The complete Hamiltonian

ĤS + ĤB + V̂ maps the linear span S = Span{|0〉 |↓〉 , |0〉 |↑〉 , |1〉 |↓〉 , |1〉 |↑〉} to itself,

hence for initial state |F 〉 |↓〉 we may reduce our analysis to this subspace. Written

explicitly, within S the full Hamiltonian takes the form

(Ĥ + V̂ )|S =



































(0 ↓) (0 ↑) (1 ↓) (1 ↑)

(0 ↓) 0 Ω0x
2
0 0 Ω0x0x1

(0 ↑) Ω0x
2
0 ωB Ω0x0x1 0

(1 ↓) 0 Ω0x0x1 ω1 Ω0x
2
1

(1 ↑) Ω0x0x1 0 Ω0x
2
1 ω1 + ωB



































.

To implement a resonant exchange of energy between system and bath, we set their

energies to be approximately equal (ω1 ≈ ωB) while keeping the interaction strength

Ω0 perturbatively small. The states |0〉 |↑〉 and |1〉 |↓〉 are then nearly degenerate,

so we expect superpositions of these states to form eigenstates of ĤS + ĤB + V̂ . As

V̂ has no diagonal terms in the above basis, perturbation theory implies that even

orders of Ω0 cause the energy levels of ĤS + ĤB + V̂ to shift, while the odd orders

cause the eigenstates to mix. Indeed, in the perturbative limit |Ω0/ω1| ≪ 1, the

dynamics of |0〉 |↓〉 , |1〉 |↑〉 are effectively governed by the effective Hamiltonian [237]

Ĥeff =

(

ωB +
x40Ω

2
0

ωB

)

|0〉〈0| ⊗ |↑〉〈↑ |

+

(

ω1 +
x41Ω

2
0

ωB

)

|1〉〈1| ⊗ |downn〉〈downn|

+ Ω0x0x1 (|0〉〈0| ⊗ |↑〉〈↑ |+ h.c.) ,

(7.5)

where we have dropped terms of order O(Ω3
0).

The form of the effective Hamiltonian gives a prescription for simulated cool-
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ing. With knowledge of x0 and x1, we could compute the two diagonal entries of

Ĥeff (in equation (7.5)) to all orders in Ω0 [283], and adjust ωB accordingly so that

they are equal. Time evolution under ĤS + ĤB + V̂ then causes coherent oscilla-

tions between |0〉 |↑〉 and |1〉 |↓〉, at a rate Ω ≈ Ω0x0x1. Conversely, since the other

states |0〉 |↓〉 and |1〉 |↑〉 are not approximately degenerate under the non-interacting

Hamiltonian, to leading order they are still eigenstates of ĤS + ĤB + V̂ . An initial

state |F 〉 |↓〉 and evolution time τ = π
2Ω

would therefore satisfy

e−iτ(ĤS+ĤB+V̂ ) (x0 |0〉 |↓〉+ x1 |1〉 |↓〉) ≈ x0 |0〉 |↓〉+ x1 |0〉 |↑〉 ,

so that the system is mapped to a ground state of ĤS.

The simulation time required for cooling scales in the same way as the number

of oracle queries in Grover’s algorithm. To see this, assume that ĤS corresponds to

an n−qubit Hilbert space of dimension N = 2n, and M = dim P0 is the rank of

the ground space projector P̂0. Assuming the projectors P̂0 and P̂1 are diagonal in

the logical basis2, the initial state we use is |F 〉 = 1√
N

∑

x |x〉, which is equal to the

product state |+〉⊗n, with |+〉 = 1√
2
(|0〉 + |1〉). The amplitude x0 =

√

〈F | P̂0 |F 〉

is then exactly
√

M/N . The evolution time τ needed to map between |1〉 |↓〉 and

|0〉 |↑〉 is set as τ = π
2Ω
, where Ω = Ω0x0x1 is the coherent oscillation rate. As

expected, τ scales linearly with |x0|−1 =
√

N/M , reflecting the expected quadratic

speedup of Grover’s algorithm and analogous implementations based on adiabatic

state preparation [272,284]. This scaling with |x0|−1 will also apply to generalizations

of QSC to more complicated Hamiltonians.

2An analogous assumption is made for the oracle in the original Grover’s algorithm [274].
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Figure 7.1: The sensitivity of the Grover cooling scheme to errors in bath detuning,

as a function of system size. We assume the Hamiltonian ĤS describes a system of

n qubits with corresponding Hilbert space dimension 2n. In this case the ground

overlap of the initial state |F 〉 is exponentially small, 〈F | P̂0 |F 〉 = 2−n. Inset: The

cooling fidelity 〈F ↑| ei(ĤS+ĤB+V̂ )τ P̂0 e
−i(ĤS+ĤB+V̂ )τ |F 〉 |↑〉 as a function of the bath

detuning, (ωB − ω1)/ω1, for n = 7 qubits. The vertical dashed line represents the
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We note that the values of x0 and x1 must be known to set the evolution

time τ correctly, as well as account for the energy level shift induced by V̂ . This is

significant, since for |x0| ≪ |x1| ≈ 1, the level shift of state |1〉 |↓〉 in equation (7.5)

is approximately
Ω2

0

ωB
, which is non-negligible compared to the coupling Ω0x0x1. As

seen in Figure 7.1, if this shift is not accounted for, the scheme’s success rate becomes

exponentially small with increasing system size. Thus, as will also be true in the

generic case, knowledge of the size of the coefficients xj is critical to success of our

scheme. To circumvent this requirement, in a later section we present a second,

modified scheme that succeeds probabilistically in the same time as the original.

For the case of the Grover Hamiltonian above, we could then select |F 〉 from a

random sample [285], so that on average |x0|2 ≈ M/N . The modified algorithm is

analogous to amplitude amplification [286] (a generalization of Grover’s algorithm)

in the sense that the square root scaling is achieved without knowledge of the initial

state.

7.3 Quantum Simulated Cooling

The general QSC algorithm is able to cool a class of Hamiltonians with a

specific, known structure. Specifically, we consider a subspace S that is a direct sum

of eigenspaces of ĤS. We assume that S contains the ground state of ĤS and that

the energies corresponding to S are non-degenerate with those of its complement,

S⊥. Within S the simulated Hamiltonian ĤS has L+ 1 non-degenerate eigenstates,

(ĤS)|S =
L
∑

j=0

ωj|j〉〈j| , (7.6)
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where ω0 = 0 and ωj > ωj−1. A parameter of interest is the general spectral gap

between these energies,

∆ = min
ωj ,E

{|E − ωj| : E ∈ Spec(HS), E 6= ωj} . (7.7)

The size of ∆ will bound strength of the interaction between the system and bath,

since this interaction must be perturbatively small for coherent oscillations to occur.

Thus, as in adiabatic quantum computation, the inverse gap ∆−1 sets a natural time

scale for the algorithm. Importantly, we assume that the energies ωj are known,

and also that we may initialize the system in the subspace S. As in other quantum

algorithms [87, 287], these QSC criteria reflect the need for some knowledge about

a given problem (e.g., a known symmetry of the system) in order for it to be solved

efficiently.

As before, the simulated system is cooled through a simple interaction with

a single qubit bath. The bath Hamiltonian is defined in the same way, ĤB =

ωB1S⊗ P̂↑, where ωB is the tunable qubit gap. This gap is set resonant with a given

system transition, so that a system-bath interaction V̂ transfers energy between the

system and bath. The interaction is written generically as

V̂ = T̂S ⊗ σx , (7.8)

where T̂S is a Hermitian operator acting on the system. Unlike in the Grover ex-

ample, T̂S does not need to be highly non-local. Rather, we only require that the

projection of T̂S to S is of rank one,

(T̂S)|S = Ω0|G〉〈G| , (7.9)
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where the state |G〉 has a spectral decomposition,

|G〉 =
L
∑

j=0

xj |j〉 . (7.10)

As in the Grover case, we assume knowledge of the coefficients xj so that we may

correctly set the bath gap ωB and evolution time.

Though all of this structure seems cumbersome, in the next section we will

show that it applies directly to a variant of Kitaev’s clock Hamiltonian [288]. The

ground state of this Hamiltonian corresponds to the outcome of a generic circuit-

based quantum computation, and the total time for cooling this Hamiltonian scales

polynomially with the corresponding circuit’s size. Importantly, in that case there

exists an operator T̂S satisfying property (7.9) and acting on only a single degree

of freedom of the system. We will therefore show that our model of local simulated

cooling is computationally equivalent to standard quantum computation.

The QSC algorithm works by successively implementing transitions from every

excited state |j〉 to the ground state. Letting the system start in any initial state

within subspace S, we initialize the bath in state |↑〉 and its gap ωB near the maximal

system energy ωL. This makes |L〉 |↓〉 and |0〉 |↑〉 nearly degenerate eigenstates of

ĤS+ĤB, so that evolution under ĤS+ĤB+ V̂ causes a transition between them. In

order for this transition to be favorable, we must calculate the perturbative energy

level shifts induced by V̂ on these states3. We correspondingly adjust ωB so that

|L〉 |↓〉 and |0〉 |↑〉 are degenerate when accounting for the even order corrections in

3Such a calculation – detailed in the appendix – is equivalent to finding a root of a degree L

polynomial to accuracy 1/poly(L), and is possible since one may explicitly calculate the coefficients

xj in (7.10).
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V̂ (see Fig. 7.2). Incorporating the odd order corrections, the approximate eigen-

states of ĤS+ĤB+ V̂ become |0〉 |↑〉±|L〉 |↓〉, with a corresponding energy splitting

Ω = Ω0|x0xL|(1 +O(Ω0/∆)). Evolving under ĤS + ĤB + V̂ for time τ (L) = π
2Ω

thus

coherently maps |L〉 |↓〉 to the state |0〉 |↑〉. Conversely, since the lower energy states

{|j〉 |↓〉}L−1
j=0 of ĤS + ĤB are not degenerate with any corresponding |↑〉 state, by

energy conservation their occupation probabilities remain unchanged. A measure-

ment of the bath in state |↑〉 therefore indicates that the system has transitioned

to the ground state, so we may terminate the algorithm. A measurement of |↓〉,

on the other hand, implies that we have projected the system to space spanned by

{|j〉 |↓〉}L−1
j=0 . We would therefore decrement ωB to a corresponding value near ωL−1,

and implement an analogous procedure for the transition |L− 1〉 |↓〉 → |0〉 |↑〉. Re-

peating this process for at most L evolutions, we reach the ground state with high

probability.

7.4 Perturbative tools, Simulation errors, and Timing

To rigorously evaluate the fidelity of simulated cooling in the presence simula-

tion errors, we use the method of resolvents [283, 289] to precisely approximate the

spectrum and eigenvectors of ĤS + ĤB + V̂ . The resolvent of a generic Hamiltonian

Ĥ (also known as the Green’s function) is the meromorphic function

Ĝ(z) = (z1− Ĥ)−1 , (7.11)

whose singularities correspond to the eigenvalues of Ĥ [290]. It can be loosely inter-

preted as the Fourier transform of exp(−iτĤ). Within this formalism we consider
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Figure 7.2: The spectrum of ĤS + ĤB during the cooling of energy level j. The

left and right columns represent the spectrum of the composite system when the

bath spin is in its ground and excited state, respectively. The bath gap ωB is

adjusted so that eigenstate |0〉 |↑〉 on the right is nearly degenerate with eigenstate

|j〉 |↓〉 on the left. The inset (center column) shows the effect of the interaction V̂

on these unperturbed eigenstates. The blue energy levels are shifted by the even

order perturbative corrections in V̂ (which are diagonal in the |j〉 |↓〉 , |0〉 |↑〉 basis).

The value of ωB is accordingly adjusted so that these shifted energies are exactly

degenerate. The odd order corrections in V̂ couple these states, so including both

even and odd orders (green) causes a splitting of 2Ω between the new eigenstates

|j〉 |↓〉 ± |0〉 |↑〉. Evolving for time τ (j) = π/(2Ω) maps |j〉 |↓〉 to |0〉 |↑〉. The bath

spin is then measured and, if no transition has occurred, the process is repeated for

energy level j − 1.
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a subspace P spanned by the eigenvectors of Ĥ corresponding to an isolated energy

range (ω−, ω+) and study how the dynamics within P are changed when a pertur-

bation V̂ is added to Ĥ. Projecting the perturbed resolvent G̃(z) = (z1− Ĥ− V̂ )−1

into P defines the corresponding self-energy operator4 ,

(G̃(z))|P = P̂ G̃(z)P̂ =
1

zP̂ − Σ̂(z)
. (7.12)

Heuristically speaking, if the self-energy Σ̂(z) is approximately constant for z near

the range (ω−, ω+), we can consider it as a Hamiltonian for time evolution within P.

Indeed, we can define an effective Hamiltonian Ĥeff for P by approximating Σ̂(z).

As long as the spectral norm ||Σ̂(z)−Ĥeff || is bounded for an appropriate range of z,

the work of Ref. [289] shows that Ĥeff closely approximate the eigenvalues of Ĥ+ V̂

near the range (ω−, ω+). We extend these perturbative results (in the appendix) to

show when the eigenvectors of Ĥeff also approximate those of Ĥ + V̂ . This allows

us to give definite bounds on the deviations from the expected transitions in each

cooling step of the algorithm.

The calculations describing each step of the algorithm begin by assuming a

simplified form for the interaction and neglecting any sources of simulation error.

Thus, for the cooling of energy level j we consider the (idealized) unitary

Û
(0)
j = exp

(

−iτ (j)(ĤS + Ĥ
(j)
B + Ω0|G〉〈G| ⊗ σx)

)

, (7.13)

where Ĥ
(j)
B = ω

(j)
B 1S ⊗ P̂↑ is the bath Hamiltonian with gap ω

(j)
B ≈ ωj and we have

projected T̂S into subspace S (as in equation (7.9)). We derive the evolution of

4This definition is slightly different from the physics literature though we use it here for nota-

tional convenience. The typical definition is G̃|P = (zP̂ − P̂ ĤP̂ − Σ̂(z))−1.
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states |j〉 |↓〉 and |0〉 |↓〉 by computing an effective Hamiltonian that approximates

their self-energy operator. We set the unperturbed Hamiltonian as Ĥ = ĤS + Ĥ
(j)
B

and compute Σ̂(z) for the subspace spanned by these two states. Letting P̂ be the

projector into P and Q̂ = 1− P̂ , the self-energy operator can be written explicitly

as [283]:

Σ̂P (z) = P̂ ĤP̂ + P̂ V̂ P̂ + P̂ V̂ Q̂
1

z − Q̂(Ĥ + V̂ )Q̂
Q̂V̂ P̂

= P̂ ĤP̂ + P̂ V̂ P̂ +
∑

k≥1

P̂ V̂ (ĜQ(z)V̂ )kP̂ , (7.14)

where ĜQ(z) = (zQ − Q̂ĤQ̂)−1 and V̂ = Ω0|G〉〈G| ⊗ σx. The simplified form of

V̂ allows us to explicitly compute Σ̂(z) to all orders in Ω0 (see the appendix). We

correspondingly define the effective Hamiltonian as Ĥeff = Σ̂(ω
(j)
B ), which allows

us to bound the difference ||Σ̂(z)− Ĥeff || through Taylor series expansion. With

this bound we use the result of ref. [289] and its extension to show that both the

two non-trivial eigenvalues and eigenvectors of Ĥeff approximately correspond to

those of Ĥ + V̂ . This allows us to predict the dynamics under the true Hamilto-

nian, Ĥ + V̂ , and to show that the state |j〉 |↓〉 is mapped to |0〉 |↑〉 with bounded

error. Furthermore, the calculation of Ĥeff = Σ̂(ω
(j)
B ) allows us to exactly deter-

mine bath gap ω
(j)
B and evolution time τ (j) required for this transition to occur.

As in the Grover example, the value of ω
(j)
B is set so that the diagonal entries

of the effective Hamiltonian, 〈j| 〈↓| Ĥeff |j〉 |↓〉 and 〈0| 〈↑| Ĥeff |0〉 |↑〉, are identical.

Likewise the simulation time is determined by the coupling between these states,

Ω(j) = | 〈j| 〈↓| Ĥeff |0〉 |↑〉 | = Ω0|x0xj|(1 +O(Ω0/∆)), so that τ (j) = π
2Ω(j) .

Using the mathematical tools described above, we can bound the error in the
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unitary evolution as a function of the perturbative parameter r = Ω0/∆. Further-

more, by using other results from matrix perturbation theory [282], we are able

to incorporate the effect of the true interaction T̂S ⊗ σx and a possible simulation

error term δ̂j. Hence the error in the simulation is set by true measure of infidelity,

1− | 〈0| 〈↑| Ûj |j〉 |↓〉 |2, where

Ûj = exp
(

−iτ (j)(ĤS + Ĥ
(j)
B + T̂S ⊗ σx + δ̂j)

)

. (7.15)

Our error bounds are determined by the Hamiltonian spectral gap ∆ and the size

of the previously neglected terms. In the appendix we show that the total error in

each unitary evolution scales as O(Ω0/∆) as long as the following inequalities hold:

r ≡ Ω0/∆ < 1/8

||Ŝδ̂jŜ||
∆

< r2 · |x0xj|

||Ŝ(T̂S + δ̂j)Ŝ⊥||2
∆2

< r2 · |x0xj|

||Ŝ⊥(T̂S + δ̂j)Ŝ⊥||
∆

< 1/2 .

(7.16)

Here Ŝ is the projector into the assumed subspace S containing the ground state of

ĤS, as described in equation (7.6), while Ŝ⊥ projects into its orthogonal complement.

These inequalities ensure that the energy gap between the targeted states and all

other states is large enough to prevent unwanted transitions from occurring.

We can express the complete QSC algorithm and compute its fidelity and

timing using the language of trace-preserving, completely positive (TCP) maps [291–

293]. Accordingly, we consider each step of the algorithm as a measurement of the

bath followed by a unitary evolution conditional on the measurement outcome. The
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TCP map for the cooling of level j is then

Ej(ρ̂) = Ûj(1S ⊗ P̂↓) ρ̂ (1S ⊗ P̂↓)Û
†
j

+ (1S ⊗ P̂↑)ρ̂(1S ⊗ P̂↑) ,

(7.17)

where ρ̂ is a density matrix for the system and bath, and Ûj is the defined as in

equation (7.13). The TCP map describing the complete algorithm is then E =

E1 ◦ E2... ◦ EL. As expected, if the bath transitions into the excited state |↑〉 during

cooling of level j (indicating the algorithm should terminate), the application of

steps Ej−1 through E1 acts as an identity operation. Expressing the output of the

algorithm, for any density matrix ρ̂S supported in S we have

E(ρ̂S ⊗ |↓〉〈↓ |) = λ0ρ̂0 + R̂, (7.18)

where λ0 ≥ 0 and ρ̂0 is a density matrix made up of states |0〉 |↓〉 and |0〉 |↑〉. The

operator R̂ represents the accumulated error from all L steps of the algorithm and

sets the corresponding infidelity,

ǫ =1− Tr[(|0〉〈0| ⊗ 1B)E(ρS ⊗ |↓〉〈↓ |)]

=1− λ0 − Tr[(|0〉〈0| ⊗ 1B)R̂] .

(7.19)

Building on the analysis described above, we show that both 1− λ0 = Tr[R̂] and

Tr[(|0〉〈0| ⊗ 1B)R̂] ≤ 2||R̂|| scale as O(L2
√
LΩ0/∆). Thus for the algorithm to pre-

pare the ground state with fidelity at least 1−ǫ, we must scale the relative interaction

strength r = Ω0/∆ as

r = O(
ǫ

L2
√
L
) . (7.20)

Since the time required for cooling step j is τ (j) = (r∆)−1 π
2|x0xj | (to leading order in
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r), the total simulation time of the algorithm may be computed as

L
∑

j=1

τ (j) =
1

r∆

π

2

L
∑

j=1

1

|x0xj|

= O

(

L2
√
L

ǫ∆

)

L
∑

j=1

1

|x0xj|
.

(7.21)

Generalizing the Grover example case, we see that the cost of the algorithm is

related to the inverse amplitudes |xj|−1 describing the interaction state |G〉 in equa-

tion (7.10). In the case where |xj| is exponentially small in the system size for some

j > 0, it is possible to skip the cooling of this energy level. As discussed later, doing

so increases the error rate ǫ by the probability that the initial state ρ̂S has energy

ωj.

7.5 Cooling a Quantum Circuit

Here we show how QSC can be used to produce the outcome of a chain of 2-

qubit unitary operations, Ûc = ÛLÛL−1...Û1, with a total simulation time scaling as

O(poly(L)). Since 1- and 2-qubit unitaries are sufficient to implement any efficient

quantum computation [33, 145], any problem efficiently solved through standard

quantum computation can also be solved using QSC with at most a polynomial

overhead. The idea behind our result draws from the work of Ref. [85], which shows

that adiabatic quantum computation is equivalent to standard quantum computa-

tion.

We wish to define a Hamiltonian whose unique ground state (after tracing out

any ancilla qubits) can be made arbitrarily close to the outcome of a computation

Ûc on n qubits. One ĤS satisfying this requirement is a variant of Kitaev’s clock
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Hamiltonian [288]. To describe it we consider a particle on a one dimensional lattice

with L+1 sites, whose internal state is described by n qubits [294]. For a given site

l, the particle has fixed on-site energy ω, but may also tunnel to neighboring sites

l±1 through a coupling term −ω
2
· Ûl acting on the internal states. The Hamiltonian

describing such a particle particle is then

Ĥprop/w =
L
∑

l=0

|sl〉〈sl| −
1

2

L
∑

l=1

(

Ûl ⊗ |sl〉〈sl−1|+ h.c.
)

, (7.22)

where |sl〉 corresponds to the particle being in the lth site. This Hamiltonian is

analogous to that of a particle freely propagating through space, and its eigenstates

are all of the form [289]:

|E(x, j)〉 = c
(j)
0 |x〉 |s0〉+

L
∑

l=1

c
(j)
l

(

ÛlÛl−1...Û1

)

|x〉 |sl〉 , (7.23)

where |x〉 is the internal state of the particle at site l = 0, denoting a state in the

logical basis, and the energy index j runs from 0 to L. The coefficients c
(j)
0 can be

determined by setting each Ûl in Ĥprop to the identity so that it is tri-diagonal. It

is then straightforward to diagonalize this matrix [295], giving

c
(j)
l =

√

2− δ0,j
L+ 1

cos

(

(2l + 1)jπ

2(L+ 1)

)

. (7.24)

The corresponding energy eigenvalues are

ωj = ω ·
(

1− cos

(

jπ

L+ 1

))

, (7.25)

each having a 2n-fold degeneracy indexed by |x〉.

We now add another term to the Hamiltonian to ensure that the ground state

is non-degenerate and corresponds to the properly initialized output of the compu-
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tation5, |x〉 = |0n〉. This is a perturbation of the form

Ĥinput = ∆1

n
∑

m=1

|1〉〈1|m ⊗ |s0〉〈s0|, (7.26)

where ∆1 ≪ ω, and |1〉〈1|m acts only on qubit m of the particle’s internal state.

This lifts the degeneracy between the eigenstates |E(x, j)〉, and allows us to reduce

our analysis to the invariant subspace of eigenstates with |x〉 = |0n〉. Matching the

language we used previously, we define the subspace S as the span of the L + 1

eigenstates of Ĥprop which are also ground states of Ĥinput (i.e., the states |E(x, j)〉

with x = 0n). Letting ĤS = Ĥinput + Ĥprop, we thus set the eigenstates in the

decomposition (7.6) as

|j〉 = |E(0n, j)〉 , (7.27)

which satisfy ĤS |j〉 = Ĥprop |j〉 = ωj |j〉.

It is straightforward to show that the output of the computation can be en-

coded in the ground state of ĤS. By equation (7.24) the ground states |E(x, 0)〉 of

Ĥprop correspond to c
(0)
l = 1√

L+1
for all l, and the perturbation Ĥinput adds positive

energy to all these states except the one with |x〉 = |0n〉. Thus, by equation (7.23)

the ground state of ĤS = Ĥprop + Ĥinput has site L component 1√
L+1

Ûc |0n〉 |sL〉.

Preparing this state and measuring the position of the particle, with probability

1/(L + 1) we would observe the particle at site L and project its internal state to

the outcome of the computation. Alternatively, we could improve this probability

by adding (L+1)/ǫ sites to the definition of Ĥprop, with hopping terms correspond-

5Here |x〉 denotes a state in the logical basis, and |0n〉 denotes the binary representation of

x = 0 on n bits

128



ing to the identity operation on the internal state. The ground state of ĤS would

then have a probability 1− ǫ of being past site L, so after tracing out the particle’s

position its internal state has an O(ǫ) trace-norm distance from Ûc|0n〉〈0n|Û †
c [85].

The energy scale determining the timing of the algorithm is the spectral gap

∆ of the eigenstates in S (equation (7.7)). The gap is set by the energy shifts that

Ĥinput adds within the original eigenspaces of Ĥprop. It is straightforward to compute

since Ĥinput is diagonal in each eigenspace (each is just the span of {|E(x, j)〉} for

fixed j). Considering a single eigenspace with energy ωj, by equation (7.23) we see

that Ĥinput has diagonal entries

〈E(x, j)| Ĥinput |E(x, j)〉 = ∆1N(x)|c(j)0 |2 (7.28)

where N(x) is the number of 1’s in the binary expansion of x and c
(j)
0 is defined in

equation (7.24). Since Ĥinput vanishes only when |x〉 = |0n〉, the gap is bounded by

∆ ≃ ∆1 · 1 · |c(j)0 |2 ≥ ∆1/(L+ 1) . (7.29)

Note, though, that Ĥinput and Ĥprop do not commute, so this bound only holds when

first order degenerate perturbation theory is valid. This is true when ||Ĥinput|| = n∆1

is bounded by the minimum level spacing of Ĥprop, which from equation (7.25) scales

as ω · L−2. We therefore scale ∆1 as ∼ ω · n−1L−2, so the gap satisfies

∆−1 ≤ (∆1|c(j)0 |2)−1 = ω−1 ·O(nL3) . (7.30)

The final ingredients for simulated cooling of the circuit are the single qubit

bath and the interaction with the system. We define the bath Hamiltonian (ĤB =

ωB1S⊗ P̂↑) and interaction (V̂ = T̂S⊗σx) as before, where now the system operator
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T̂S is

T̂S = Ω0 1n ⊗ |s0〉〈s0| . (7.31)

Notice that T̂S does not couple between S and its complement S⊥, so it automatically

satisfies the bounds implied by equations (7.16). Furthermore, by the decomposi-

tion (7.23) and |j〉 = |E(0n, j)〉, the projection of T̂S into S has the simple form

required by QSC,

(T̂S)|S = Ω0|G〉〈G| ⊗ σx , (7.32)

where state |G〉 satisfies

|G〉 =
∑

j

c
(j)
0 |j〉 . (7.33)

Importantly, we note that the interaction V̂ is local in the sense that the qubit

couples only to the particle’s position. In fact, by encoding the position as a unary

string of logical qubits (|sl〉 ≡
∣

∣1l0L−l
〉

), it is possible to implement the Hamiltonian

ĤS + ĤB + V̂ using at most 5-qubit interactions [85], and we expect that a 2-local

QSC scheme is also possible based on Hamiltonian gadget constructions [296,297].

Using results from the previous section, we can now show that local quantum

simulated cooling is polynomially equivalent to standard quantum computation.
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Equating the coefficients xj = c
(j)
0 , from equation (7.21) the total simulation time is

τtot =
∑

j

τ (j) = O

(

L2
√
L

ǫ∆

)

L
∑

j=1

1

|c(0)0 c
(j)
0 |

= O

(

L2
√
L

ǫ∆

)

L
∑

j=1

(

L+ 1√
2

)(

cos

(

jπ

2(L+ 1)

))−1

= O

(

nL6
√
L

ǫω

)

L
∑

j=1

(

cos

(

jπ

2(L+ 1)

))−1

(7.34)

= ω−1O

(

nL7
√
L log(L)

ǫ

)

, (7.35)

where the second line follows from equation (7.24) and the third from the bound (7.30).

For the final line we noted that the sum grows like O(L log(L)). Assuming that a

single ‘query’ to the Hamiltonian simulator has cost proportional to the maximum

accumulated phase, the total cost of simulated cooling scales as O(||ĤS||τtot). Given

the above bound and the fact that ||ĤS|| = O(L)ω [85], the effective cost of prepar-

ing the output of the circuit with error ǫ is bounded by O(nL8
√
L log(L)/ǫ). Thus

Quantum Simulated Cooling with local interactions is, in terms of computational

complexity, equivalent to standard quantum computation: any problem on n qubits

that may be solved in poly(n) time using a standard quantum computer may also

be solved in poly(n) time through QSC.

7.6 Extension

Although the QSC protocol we have presented is in principle as powerful as

circuit-based quantum computation, the variety of Hamiltonian systems it can cool

is limited by the assumptions placed on ĤS and V̂ . To avoid unwanted transitions,

it requires access to an approximate eigenspace S with gap ∆, as well an interaction
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V̂ described by a known decomposition (equation (7.10)). Here we propose an

extension to this scheme that overcomes these constraints. The caveats of this

approach are that it is probabilistic and requires (k + 1)-local interactions for a k-

local ĤS. That is, if ĤS can be written as a sum of terms each acting on at most k

subsystems, then the Hamiltonian involved in the extended scheme involves terms

acting on k + 1 subsystems.

We briefly summarize the scheme before describing it in detail. We assume that

the spectrum of ĤS has a non-degenerate ground state |0〉, as well as an subspace

P1 corresponding to energies near ω1 that are well separated from the rest of the

spectrum. We also assume the ability to simulate evolution under to an operator T̂S

that couples between this space P1 and |0〉. We define Hamiltonians Ĥ and V̂ based

on ĤS and T̂S such that energy is transferred coherently between the system and

a qutrit (dimension 3) bath. The system is prepared in P1 in a state that couples

to |0〉 under T̂S, then propagated with the bath under Ĥ + V̂ for a sufficiently

long time. The bath is then measured and, if it has transitioned, we evolve under a

second Hamiltonian and measure the bath again in order to verify that the transition

mapped the system to its ground state. The scheme is probabilistic since if either

measurement fails the process is restarted.

We now specify the scheme’s requirements. First, the Hamiltonian ĤS is of

the form

ĤS = P̂1ĤSP̂1 + P̂2ĤSP̂2 + ω0|0〉〈0| , (7.36)

where P̂1 and P̂2 are projectors into subspaces of the same name and ω0 = 0 denotes
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the ground state energy. The subspace P̂1 represents a narrow band of energies

within (ω1 − δω1, ω1 + δω1). We assume that ĤS has a non-degenerate ground state

|0〉 with energy ω0 = 0, and let P̂2 represent the space orthogonal to both P̂1 and |0〉.

The limiting energy scale for this scheme is ∆ = min
{

ω1, E, |E − ω1| : E ∈ Spec(ĤS|P2)
}

.

As before, the size of ∆−1 will set an upper bound for the time scale of the simula-

tion.

Along with ĤS, we assume access to a Hermitian operator T̂S that couples |0〉

to the space P̂1:

P̂1T̂S |0〉 = Ω |1〉 , (7.37)

where Ω is real and positive by choice of phase convention. Using this coupling, over

a time scale 1/Ω the simulation will cause coherent oscillations of the form |1〉 |C〉 ↔

|0〉 |B〉, where |C〉 and |B〉 are orthogonal bath states. We must further assume that

the energy spread of P̂1 is small compared to the coupling: δω1 ≪ Ω. This will allow

us to treat |1〉 as an eigenstate of ĤS in our analysis of the simulated evolution. We

must also assume that the energy shift induced by T̂S on the ground state is small

compared to the coupling: | 〈0| T̂S |0〉 |2/ω1 ≪ Ω, that T̂S is perturbative compared

to the gap: Ω ≤ ||T̂S|| ≪ ∆, and that T̂S does not couple strongly between |0〉 , P̂1

and P̂2: ||(|0〉〈0|+ P̂1)T̂SP̂2|| ≪
√
Ω∆. These spectral properties exist, for example,

in gapped, translationally invariant many-body systems.

The original scheme succeeds by introducing a 2-level bath and adjusting its

energy ωB so that |1〉 |↓〉 and |0〉 |↑〉 are nearly degenerate. Within degenerate per-

turbation theory, the interaction V̂ then produces a splitting of 2Ω between approx-
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imate eigenstates 1√
2
(|1〉 |↓〉 ± |0〉 |↑〉), thereby causing coherent oscillations of the

form |1〉 |↓〉 ↔ |0〉 |↑〉. If not accounted for, the (even-order) level shifts induced by

V̂ on the state |1〉 |↓〉 can be much larger than this splitting, meaning the eigenstates

look more like |1〉 |↓〉 and |0〉 |↑〉, so that the desired oscillation does not occur. Al-

though we may explicitly account for the level shifts by adjusting ωB, this requires

knowledge of the coefficients xj in (7.10). Instead, one may tailor the unperturbed

Hamiltonian Ĥ so that unwanted level shifts cancel out:

Ĥ = ĤS ⊗ (|C〉〈C|+ |R〉〈R| − |L〉〈L|)

+ ω11S ⊗ (|R〉〈R|+ |L〉〈L|) ,
(7.38)

where the bath Hilbert space now has dimension 3, with basis vectors |C〉 , |R〉 and

|L〉. Since the sign of ĤS is conditioned on the state of the bath, simulation of Ĥ is

equivalent to applying a conditional evolution of the system Hamiltonian.

We use the operator T̂S to create the system-bath interaction V̂ :

V̂ = T̂S ⊗ (|C〉〈B|+ |B〉〈C|)

|B〉 = 1√
2
(|L〉+ |R〉) .

(7.39)

To see how Ĥ+V̂ causes the desired oscillations, we compute the self-energy operator

Σ̂(z) for the subspace P of eigenstates of Ĥ with energy at most ∆/4 away from

ω1 [283]. Written as a projector,

P̂ = |0〉〈0| ⊗ (|L〉〈L|+ |R〉〈R|) + P̂1 ⊗ |C〉〈C|. (7.40)

As discussed previously and rigorously shown in the appendix, the eigenstates and

eigenvectors of Σ̂(z) for z close to ω1 are good approximations of eigenstates and
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eigenvectors of Ĥ + V̂ . As before, we have

Σ̂(z) = P̂ ĤP̂ + P̂ V̂
∑

k≥0

(ĜQ(z)V̂ )kP̂ , (7.41)

where ĜQ(z) =
Q̂

zQ̂−Q̂ĤQ̂ and Q̂ projects into the orthogonal complement of P. We

observe that for z = ω1,

ĜQ(ω1) =
P̂1 + P̂2

P̂1ĤSP̂1 + P̂2ĤSP̂2

⊗ (|L〉〈L| − |R〉〈R|)

+

(

ω−1
1 |0〉〈0|+ P̂2

ω1P̂2 − P̂2ĤSP̂2

)

⊗ |C〉〈C| ,
(7.42)

Notice that the bath operator (|L〉〈L| − |R〉〈R|) above has zero expectation value

under state under |B〉 = 1√
2
(|L〉 + |R〉), so the partial projection of ĜQ(ω1) also

vanishes: 〈B| ĜQ(ω1) |B〉 = 0. Further, since V̂ only has matrix elements between

bath states |B〉 and |C〉, the expansion for Σ̂(z) truncates at second order for z = ω1.

Thus the the only contributions from V̂ in the expansion (7.41) are the first order

term P̂ V̂ P̂ = Ω(|1〉〈0| ⊗ |C〉〈B|+ |0〉〈1| ⊗ |B〉〈C|) and the ground state energy shift,

ω∗
0 =

∣

∣

∣
〈0| T̂S |0〉

∣

∣

∣

2

ω1

+ 〈0| T̂S
P̂2

ω1P̂2 − P̂2ĤSP̂2

T̂S |0〉 . (7.43)

We therefore have

Σ̂(ω1) = ω1|0〉〈0| ⊗ (|L〉〈L|+ |R〉〈R|) + P̂1ĤSP̂1 ⊗ |C〉〈C|

+ Ω(|1〉〈0| ⊗ |C〉〈B|+ |0〉〈1| ⊗ |B〉〈C|)

+ ω∗
0|0〉〈0| ⊗ |B〉〈B| .

(7.44)

This simplified form for the self-energy operator shows that cooling the system

is possible without explicit prior knowledge of a spectral decomposition. Indeed,

we show in the appendix that as long as the level shift ω∗
0 for |0〉 |B〉 and energy
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dispersion δω1 of the states in P1 are sufficiently small, the states |0〉 |B〉 and |1〉 |C〉

are nearly degenerate with respect to the diagonal component of Σ̂(ω1). And since

Σ̂(ω1) is the effective Hamiltonian for states in P (as in the previous scheme), its

off-diagonal term produces the desired oscillation |1〉 |C〉 ↔ |0〉 |B〉 at a rate 2Ω.

Say that the initial prepared state |F 〉 |C〉 has overlap |f1| = |〈1|F 〉| with the

state described in equation (7.37). Since coherent oscillations between |1〉 |C〉 and

|0〉 |B〉 occur at frequency 2Ω, as long as we evolve for times sampled randomly over

a range 1
Ω
, with probability O(|f1|2) we expect to observe a transition of the form

|1〉 |C〉 → |0〉 |B〉, heralded by a measurement of the bath. The average simulation

time of the algorithm then scales as O
(

1
|f1|2Ω

)

. If one is not given an explicit

value of Ω, as in Ref. [286] one may implement the scheme with evolution times

sampled randomly from [τ, 2τ ], and iteratively increase τ → 2τ after ∼ 1/|f1|2

failed attempts. Since the sampling time τ grows exponentially, the total evolution

time before success still scales as O
(

1
|f1|2Ω

)

.

Unfortunately, a bath measurement of |B〉 does not imply the system is in its

ground state, as other resonant transitions could also occur. To account for this,

after measuring |B〉 we map the bath state |B〉 → |L〉 and evolve under a verification

Hamiltonian,

Ĥ + Ω01S ⊗ (|L〉〈R|+ |R〉〈L|) , (7.45)

for time τv = π
2Ω0

. The form of Ĥ (equation (7.38))under the symmetric swap

|R〉 ↔ |L〉 implies that only the system ground state |0〉 has degeneracy between

its |L〉 and |R〉 bath states. All other eigenstates |ψ L〉 have at least ∆ less energy
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than any |R〉 eigenstate. Hence by energy conservation only |0〉 exhibits coherent

oscillations from |L〉 to |R〉, so measurement of the bath in |R〉 heralds success of

the scheme.

Notice that, as long as Ω0, δω1 ≪ ∆, all of the constraints on T̂S required for

this scheme are satisfied by T̂S = Ω0|F 〉〈F |. Since |F 〉〈F | is rank 1, the assumption

that the ground eigenspace P0 is non-degenerate is no longer necessary, as T̂S van-

ishes on every state in P0 orthogonal to f0 |0〉 = P̂0 |F 〉 (where |f0|2 = | 〈F | P̂0 |F 〉 |).

In this case we would have Ω |1〉 = P̂1T̂S |0〉 = Ω0f
∗
0 f1 |1〉, where |f1|2 = 〈F | P̂1 |F 〉.

If we use unitary 2-designs (procedures used for efficient random sampling [285])

to randomly generate |F 〉, we then require that there is a fixed probability in n

that 〈F | P̂i |F 〉 ≥ di/2
n+1, where di is the rank of P̂i. Thus if we are given no

information about ĤS other than δω1, ω1, and ∆, by using 2-designs and the prob-

abilistic scheme we may obtain the ground state of ĤS with an average simulation

time scaling as O

(

1
∆

(

2n

d1

)3/2 (
2n

d0

)1/2
)

, reflecting the quadratic speedup observed

in previous sections.

7.7 Concluding Remarks

There are several known alternatives to standard, logic-based quantum com-

puting [47, 298–303]. The advantages of simulated cooling are that it requires the

simulation of only time-independent Hamiltonians, as well as measurements of a

single qubit (or qutrit) bath. Using the gadget construction [296, 297] we expect

that it may be efficiently implemented with only 2-local interactions.
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Our work suggests several new avenues for investigation. One question is

whether the techniques used in QSC may be applied to prepare other interesting

states, such as mixed state ensembles [15, 82–84] or ground states of frustration

free Hamiltonians [302]. Using techniques in Ref.’s [125,126,304], one may attempt

to show whether this scheme is robust against time dependent error terms in the

simulation, or non-unitary evolution described by weak interactions with an envi-

ronment. Finally, we note that the application of QSC to the clock Hamiltonian in

Section 3 used only a 2-body system-bath interaction. This prompts the question of

when sums of local interactions suffice to produce the ground state of a Hamiltonian,

and fundamentally, what the relationship is between a Hamiltonian’s computational

complexity and the potential to cool it using such interactions.

7.8 Appendix A: Mathematical Tools

The following theorems ensure that the effective Hamiltonian described in

Section 7.4 accurately describes the dynamics of the simulator. The goal of these

theorems is to bound the error in the unitary evolutions designed to map |j〉 |↓〉 →

|0〉 |↑〉 or |1〉 |C〉 → |0〉 |B〉 (in the probabilistic scheme). This will be done by

showing that both the eigenstates and eigenvalues corresponding to Ĥeff are close

to true eigenstates and eigenvalues of H̃.

We consider a finite dimensional Hilbert space on which a Hamiltonian Ĥ

acts, where the subspace P is spanned by the eigenvectors of Ĥ whose eigenvalues

are in (λ−, λ+). We likewise define P̃ , Q̃ with respect to a perturbed Hamiltonian,
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H̃ = Ĥ+V̂ , using the same bounds. (For simplicity we let the symbol for a subspace

also represent its projector.) We will assume that Ĥ has gap ∆, i.e. that the

eigenvalues of Ĥ in P are at least ∆ away from those in Q. We are interested in the

dynamics under H̃ within P̃ , which we approximate with an effective Hamiltonian

Ĥeff acting in P. The approximation is derived from a series expansion of the

self-energy operator [283] (equation (7.14)):

Σ̂P (z) = P̂ ĤP̂ + P̂ V̂ P̂ + P̂ V̂ Q̂
1

z − Q̂(Ĥ + V̂ )Q̂
Q̂V̂ P̂

= P̂ ĤP̂ + P̂ V̂ P̂ +
∑

k≥1

P̂ V̂ (ĜQ(z)V̂ )kP̂ , (7.46)

In this notation Ĝ(z) = (z1 − Ĥ)−1 is the Green’s function for the unperturbed

Hamiltonian.

In all cases below, || · || represents the operator 2-norm,

||X̂|| = sup
〈v|v〉=1

||X̂ |v〉 ||

where X̂ is a (bounded) linear map between two Hilbert spaces, and || |v〉 || is the

norm induced by their inner products. This is a consistent norm, satisfying [282]

||ÂB̂|| ≤ ||Â|| · ||B̂|| . (7.47)

Finally, we mention a slight abuse of notation: If |v〉 is a vector in a Hilbert space

and Â an operator acting on that space, then for expressions of the form

|v〉+O(r)

Â+O(r)
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O(r) represents a vector (operator) with norm scaling as O(r). With this notation

in hand, we can state the first theorem. Note that unless otherwise mentioned, the

proofs for the following results are at the end of the appendix.

The first result is a slight modification of Theorem 3 in [289]. Within the

subspace of interest, the theorem gives a one-to-one correspondence between the

spectra of Ĥeff and H̃ = Ĥ + V̂ , and bounds their difference.

Theorem 7.8.1 ( [289]) Assume that Ĥ has no eigenvalues in [λ− − ∆/2, λ− +

∆/2] and [λ+ −∆/2, λ+ +∆/2] and that ||V̂ || < ∆/2. Let P correspond to the sub-

space of Ĥ spanned by eigenvectors with eigenvalues between (λ−, λ+), and likewise

define P̃ for the perturbed Hamiltonian H̃ = Ĥ + V̂ . Assume there exists an opera-

tor Ĥeff on P whose spectrum is contained in some neighborhood [c, d], and denote

µ1 ≤ µ2 ≤ ... and σ1 ≤ σ2 ≤ ... as the eigenvalues of Ĥeff and (H̃)|P̃ , respectively.

Also assume that for some γ > 0, we have that

[c− γ, d+ γ] ⊂ (λ−, λ+) .

Finally, for the self-energy operator Σ̂(z) defined in equation (7.46), assume that

||Σ̂(z)− Ĥeff || < γ

for all z ∈ [c−γ, d+γ]. Then the eigenvalues of Ĥeff are γ-close to those of (H̃)|P̃ .

That is, for all j,

|µj − σj| < γ .

Reference [289] proves this result for the case λ− = −∞. Since the proof of Theorem

7.8.1 only requires a straightforward modification of the original, we do not show
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it here. While Theorem 7.8.1 is used to characterize the spectrum of Ĥeff , the

following corollary characterizes its eigenvectors. It states that if a subspace P′ ⊆ P

of Ĥeff is ‘well resolved’ from its complement, then the corresponding subspace of

H̃ is well approximated by P′.

Corollary 7.8.2 Given the assumptions of Theorem 7.8.1, let P′ ⊆ P be an sub-

space of Ĥeff , and let P−P′ be its local complement. Define the spectral diameter

of P′ as

ν = max
{

|x− y| : x, y ∈ Spec(Ĥeff |P ′)
}

,

and the spectral distance between P′ and P−P′ as

η = min
{

|x− y| : x ∈ Spec(Ĥeff |P ′), y ∈ Spec(Ĥeff |P−P ′)
}

.

Assume that η is larger than the eigenvalue separation γ. (If P′ = P, set η =

∞.) Finally, define P̃ ′ from the eigenvalue correspondence in Theorem 7.8.1: σj

corresponds to P̃ ′ if and only if µj corresponds to P′.

Then for each eigenstate |ṽi〉 ∈ P̃ ′ of H̃,

〈ṽi| P̂ ′ |ṽi〉 >



1−
(

2||V̂ ||
∆

)2




(

1−
(

2γ + ν

η − γ

)2
)

.

The following result is used in the proof of Theorem 7.8.1, as well as in some

of the claims below.

Lemma 7.8.3 ( [289]) Let Ĥ, H̃ be two Hamiltonians with ordered eigenvalues

µ1 ≤ µ2 ≤ ... and σ1 ≤ σ2 ≤ ... . Then for all j,

|µj − σj| ≤ ||Ĥ − H̃|| .
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We now give a result derived Theorem 3.6, Chapter V, of Stewart and Sun’s

Matrix Perturbation Theory [282], used to show that transitions in the algorithm

which do not conserve energy are suppressed.

Theorem 7.8.4 ( [282]) Let Ĥ and H̃ be Hermitian operators. Let P be the sub-

space of Ĥ spanning eigenvalues in [λ− + ∆/2, λ+ − ∆/2] 6= ∅, and likewise let

P̃ be the subspace of H̃ spanning eigenvalues in (λ−, λ+). Suppose that for ev-

ery eigenvalue EQ corresponding to the subspace Q complementary to P, either

EQ ≤ (λ− −∆/2) or EQ ≥ (λ+ +∆/2). Then for any |v〉 ∈ P, |ṽ〉 ∈ P̃ ,

〈ṽ| P̂ |ṽ〉 ≥ 1−
(

2||Ĥ − H̃||
∆

)2

〈v| P̃ |v〉 ≥ 1−
(

2||Ĥ − H̃||
∆

)2

The following corollary extends the above theorem to the case of subspaces

spanning multiple energy bands.

Corollary 7.8.5 Let Ĥ be a Hermitian operator resolved by spaces P andQ: Ĥ = P̂ ĤP̂ + Q̂ĤQ̂.

Assume that P = P1 ⊕ P2 ⊕ ... ⊕ PL, and that there exist numbers λ1− < λ1+ <

λ2− < ... < λL+ such each Pk is the subspace of Ĥ spanning eigenvalues in [λk− +

∆/2, λk+ − ∆/2]. Further assume that the eigenvalues of Ĥ in the complement Q

are at least ∆ > 0 away from those in P. Finally, for 1 ≤ k ≤ L define P̃k as the

subspace of the perturbed operator H̃ corresponding to eigenvalues within (λk−, λk+),

and set P̃ = P̃1 ⊕ ... ⊕ P̃L.
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Then for each |v〉 ∈ P, |ṽ〉 ∈ P̃ ,

〈v| P̃ |v〉 ≥ 1− L

(

2||H̃ − Ĥ||
∆

)2

〈ṽ| P̂ |ṽ〉 ≥ 1− L

(

2||H̃ − Ĥ||
∆

)2

.

Finally, the following proofs we will require the following two lemmas about

operator norms.

Lemma 7.8.6 Let Â, B̂ be Hermitian operators on C
m,Cn, respectively. Suppose

that ||Â|| ≤ α and that B̂ is invertible, with ||B̂−1|| ≤ 1
α+β

, for β > 0. Then for any

linear operator X̂ : Cn → C
m,

||X̂|| ≤ ||ÂX̂ − X̂B̂||
β

.

Lemma 7.8.7 Let Â, B̂ be Hermitian operators on some space S1 ⊕ S2. Suppose

that Â = Ŝ1ÂŜ1 + Ŝ2ÂŜ2, and that

||Ŝ1Â
−1Ŝ1|| < 1/G1

||Ŝ2Â
−1Ŝ2|| < 1/G2

b11 = ||Ŝ1B̂Ŝ1|| < G1/2

b22 = ||Ŝ2B̂Ŝ2|| < G2/2

b12 = ||Ŝ1B̂Ŝ2|| < min(G1, G2)/2 .

Then (Â− B̂) is invertible, and

||Ŝ1(Â− B̂)−1Ŝ2|| <
b12

(G1 − b11)(G2 − b22)− b212

||Ŝ1(Â− B̂)−1Ŝ1|| <
1

G1 − b11
(1 + b12||Ŝ1(Â− B̂)−1Ŝ2||)

||Ŝ2(Â− B̂)−1Ŝ2|| <
1

G2 − b22
(1 + b12||Ŝ1(Â− B̂)−1Ŝ2||) .
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We now begin the proofs of the above results, neglecting Theorem 7.8.1 and Lemma 7.8.3

as they may be derived (with minimal modification) from results in [289].

Proof of Lemma 7.8.6: Since the operator norm is consistent (equation (7.47)),

we have that

||ÂX̂|| ≤ α||X̂||

||X̂|| = ||X̂B̂B−1|| ≤ ||X̂B̂||
α + β

=⇒

||X̂B̂|| ≥ (α + β)||X̂||

By the triangle inequality we conclude that

||ÂX̂ − X̂B̂|| ≥ ||X̂B̂|| − ||ÂX̂|| ≥ β||X̂||

�

Proof of Lemma 7.8.7:

First, we show that (Â − B̂) is invertible. It suffices to show that ||B̂Â−1|| < 1,

as then (1 − B̂Â−1) =
(

(Â− B̂)Â−1
)

is invertible. Let a normalized |vi〉 ∈ Si be

given. Then Â−1 |vi〉 = c |v′i〉 for some (normalized) |v′i〉 ∈ Si and |c| < 1/Gi. Using

the above equation, one gets

||B̂Â−1 |vi〉 ||2 = 〈vi| Â−1B̂B̂Â−1 |vi〉

<
1

G2
i

〈v′i| B̂
(

Ŝ1 + Ŝ2

)

B̂ |v′i〉

≤ b2ii + b212
G2
i

< 1/2 .
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For any normalized state |v〉, one may write |v〉 = a |v1〉+ b |v2〉, with |vi〉 ∈ Si and

|a|2 + |b|2 = 1, and by the triangle inequality

||B̂Â−1 |v〉 || ≤ |a| · ||B̂Â−1 |v1〉 ||+ |b| · ||B̂Â−1 |v2〉 ||

<
1√
2
(|a|+ |b|) ≤ 1 ,

where the last inequality follows from writing |a| =
√
s, |b| =

√
1− s for some

s ∈ [0, 1]. This shows that ||B̂Â−1|| < 1, which implies that (1 − B̂Â−1) has only

positive eigenvalues and is therefore invertible.

Since we have shown that (Â− B̂) is invertible, one may easily check that

(Â− B̂)−1 = Â−1 + Â−1B̂(Â− B̂)−1 (7.48)

Decomposing into S1 and S2 components, one gets

Ŝ1(Â− B̂)−1Ŝ1 = Ŝ1Â
−1Ŝ1 +

Ŝ1Â
−1Ŝ1

(

Ŝ1B̂Ŝ1(Â− B̂)−1Ŝ1

+Ŝ1B̂Ŝ2(Â− B̂)−1Ŝ1

)

By the triangle inequality and the consistency relation ||ĈD̂|| ≤ ||Ĉ|| · ||D̂||, we have

||Ŝ1(Â− B̂)−1Ŝ1|| <
1

G1

+
b11
G1

||Ŝ1(Â− B̂)−1Ŝ1||

+
b12
G1

||Ŝ1(Â− B̂)−1Ŝ2|| =⇒

||Ŝ1(Â− B̂)−1Ŝ1|| <
1

G1−b11

(

1+b12||Ŝ1(Â−B̂)−1Ŝ2||
)

,

(7.49)

where we also used the fact that we may interchange the projectors Ŝ1, Ŝ2 when tak-

ing the operator norm. Interchanging the numbers 1 and 2, we obtain an equivalent

result for ||Ŝ2(Â− B̂)−1Ŝ2||. This proves the last two statements in Lemma 7.8.7.
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Likewise using equation (7.48), one may show that

||Ŝ1(Â− B̂)−1Ŝ2|| = ||Ŝ1Â
−1Ŝ1

(

Ŝ1B̂Ŝ1(Â− B̂)−1Ŝ2

+Ŝ1B̂Ŝ2(Â− B̂)−1Ŝ2

)

||

≤ b11
G1

||Ŝ1(Â− B̂)−1Ŝ2||+
b12
G1

||Ŝ2(Â− B̂)−1Ŝ2|| .

Hence,

||Ŝ1(Â− B̂)−1Ŝ2|| ≤
b12

G1 − b11
||Ŝ2(Â− B̂)−1Ŝ2|| . (7.50)

Substituting the result of (7.49) (with 1 and 2 interchanged) into the right hand

side produces the first statement of Lemma 7.8.7.

�

Proof of Corollary 7.8.2:

By assumption, we have that Ĥ = P̂ ĤP̂ + Q̂ĤQ̂, where P̂ projects into the

subspace of Ĥ with eigenvalue in (λ− + ∆/2, λ+ − ∆/2). This defines the energy

gap between Ĥ|P and Ĥ|Q. For H̃ = Ĥ + V̂ , we define P̃ as the subspace of H̃

with eigenvalue in (λ−, λ+). P′ ⊂ P is an subspace of Ĥeff and P̃ ′ ⊂ P̃ is the

associated subspace of H̃, obtained from the eigenvalue correspondence discussed in

Theorem 7.8.1.

Let |ṽi〉 ∈ P̃ ′ be an eigenstate of H̃, with corresponding eigenvalue Ẽi. We

may write

|ṽi〉 = Ni |ui〉+ Q̂ |ṽi〉 ,

where P̂ |ṽi〉 = Ni |ui〉 and 〈ui| ui〉 = 1. Since |ṽi〉 ∈ P̃ , we may use Theorem 7.8.4
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to conclude that

N2
i = 〈ṽi| P̂ |ṽi〉 ≥ 1−

(

2||V̂ ||
∆

)2

.

Now decompose |ui〉 into components parallel and orthogonal to P′:

|ui〉 = P̂ ′ |ui〉+ (P̂ − P̂ ′) |ui〉

We wish to bound 〈ui| P̂ ′ |ui〉 from below. To do this we first note that, as in the

proofs of Lemmas 5 and 6 of [289], Σ̂(Ẽi) |ui〉 = Ẽi |ui〉. From this we conclude that

(Σ̂(Ẽi)− Ĥeff ) |ui〉+ (Ĥeff − Ẽi1)P̂
′ |ui〉

= −(Ĥeff − Ẽi1)(P̂ − P̂ ′) |ui〉

By assumption, ||(Σ̂(Ẽi) − Ĥeff )|| < γ. Since Ei is an eigenvalue corresponding

to P′, the eigenvalues of operator (Ĥeff − Ei1)P̂
′ have magnitude at most ν (its

spectral diameter), and since |Ei − Ẽi| < γ, ||(Ĥeff − Ẽi1)P̂
′|| < γ + ν. By the

triangle inequality, the norm of the left hand side is less than 2γ + ν. Likewise, the

eigenvalues of (Ĥeff − Ei1)|P−P ′ have magnitude at least equal than the spectral

distance η, so the eigenvalues of (Ĥeff − Ẽi1)|P−P ′ are greater than η−γ > 0. Thus

the norm of the right hand side is greater than (η − γ)||(P̂ − P̂ ′) |ui〉 ||. Therefore

||(P̂ − P̂ ′) |ui〉 || <
2γ + ν

η − γ
=⇒

〈ui| P̂ ′ |ui〉 = 1− 〈ui| (P̂ − P̂ ′) |ui〉 > 1−
(

2γ + ν

η − γ

)2

The result follows by noting that 〈ṽi| P̂ ′ |ṽi〉 = N2
i 〈ui| P̂ ′ |ui〉.

�
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Proof of Theorem 7.8.4:

Define the numbers

λ̄ =
λ+ + λ−

2

Λ =
λ+ − λ−

2

Note that Λ ≥ ∆/2 since we assumed [λ−+∆/2, λ+−∆/2] is non-empty. Since Ĥ is

Hermitian, there exists a unitary operator Û = (X̂P , X̂Q) that diagonalizes Ĥ, where

the columns of X̂P and X̂Q form an orthonormal basis for P and Q, respectively.

By our assumption about the spectra of Ĥ in P and Q, we see that

Ĥ − λ̄1 = X̂P L̂P X̂
†
P + X̂QL̂QX̂

†
Q ,

where L̂p and L̂Q are diagonal matrices, with eigenvalues in [−(Λ−∆/2),Λ−∆/2]

and (−∞,−Λ−∆/2]∪ [Λ +∆/2,∞), respectively. Analogously, we may define the

decomposition of H̃ − λ̄:

H̃ − λ̄1 = X̃P̃ L̃P̃ X̃
†
P̃
+ X̃Q̃L̃Q̃X̃

†
Q̃
,

where the eigenvalues of L̃P̃ and L̃Q̃ are in [−Λ,Λ] and (−∞,−Λ] ∪ [Λ,∞).

Consider the operator

V̂E = X̃†
P̃

(

H̃ − Ĥ
)

X̂Q

From the identities above it follows that

V̂E = X̃†
P̃
(H̃ − λ̄1)X̂Q − X̃†

P̃
(Ĥ − λ̄1)X̂Q

= L̃P̃ X̃
†
P̃
X̂Q − X̃†

P̃
X̂QLQ
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Noting that ||L̃P̃ || ≤ Λ and ||L̂−1
Q || ≤ 1

Λ+∆/2
, we may use Lemma 7.8.6 with Â = L̃P̃ ,

B̂ = L̂Q, α = Λ, β = ∆/2, and X̂ = X̃†
P̃
X̂Q to conclude

||X̃†
P̃
X̂Q|| = ||X̂|| ≤ 2||ÂX̂ − X̂B̂||

∆

=
2||V̂E||
∆

=
2||X̃†

P̃

(

H̃ − Ĥ
)

X̂Q||
∆

≤ 2||H̃ − Ĥ||
∆

.

Here the second line follows from the second definition of V̂E and the last line follows

from ||ÂB̂|| ≤ ||Â|| · ||B̂||.

Let |ṽ〉 ∈ P̃ be given with 〈ṽ| ṽ〉 = 1. Since the columns of X̃P̃ form an

orthonormal basis for P̃ , there exists a vector |x〉 such that |ṽ〉 = X̃P̃ |x〉 and

〈x|x〉 = 1. From the previous line we conclude that

〈ṽ| Q̂ |ṽ〉 = 〈ṽ| X̂QX̂
†
Q |ṽ〉

= 〈x| X̃†
P̃
X̂QX̂

†
QX̃P̃ |x〉

≤ ||X̂†
QX̃P̃ ||2

= ||X̃†
P̃
X̂Q||2 ≤

(

2||H̃ − Ĥ||
∆

)2

where in the last line we used the fact that the operator norm is unchanged when

taking the Hermitian adjoint. The first statement follows by noting that Q̂ = 1− P̂ .

To prove the second statement, we can make an identical argument using ṼE =

X̂†
P (H̃ − Ĥ)X̃Q̃.

�
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Proof of Corollary 7.8.5:

We may assume without loss of generality that each domain [λk−+∆/2, λk+−

∆/2] is at least 2∆ away from its neighboring domains. If this were not the case

for two domains, the gap ∆ between the spectra of Ĥ|P and Ĥ|Q would imply that

Ĥ|Q had no eigenvalues between the two domains, and thus they may be merged.

Let a normalized vector |v〉 ∈ P be given. We may decompose |v〉 into its

components within each Pk:

|v〉 =
∑

k

(

P̂k |v〉
)

=
∑

k

ck |vk〉 ,

where
∑

k |ck|2 = 1. Define rk as the amplitude of |vk〉 outside of P̃ ,

|vk〉 = P̃ |vk〉+ rk
∣

∣v⊥k
〉

,

where
∣

∣v⊥k
〉

∈ Q̃ has norm 1. Applying Theorem 7.8.4 to the single subspace Pk, we

get

1− |rk|2 = 〈vk| P̃ |vk〉 ≥ 〈vk| P̃k |vk〉 ≥ 1−
(

2||H̃ − Ĥ||
∆

)2

,

therefore

|rk| ≤
2||H̃ − Ĥ||

∆
.

Substituting into the definition of |v〉, we get

|v〉 =
∑

k

ck

(

P̃ |vk〉+ rk
∣

∣v⊥k
〉

)

= P̃

(

∑

k

ck |vk〉
)

+ reff
∣

∣v⊥
〉

,

where reff
∣

∣v⊥
〉

=
∑

k ckrk
∣

∣v⊥k
〉

is a vector in Q̃. By the triangle and Cauchy-

150



Schwartz inequalities we conclude that

|reff | ≤
∑

k

|ckrk|

≤
∑

k

|ck|
(

2||H̃ − Ĥ||
∆

)

≤
√
L

(

2||H̃ − Ĥ||
∆

)

.

The first statement of the corollary follows by noting that 〈v| P̃ |v〉 = 1 − |reff |2.

The second statement follows by making the same argument and, except with the

initial assumption, adding or removing ∼ to each projector and vector.

�

7.9 Appendix B: Deterministic QSC Analysis

This section describes the deterministic Quantum Simulated Cooling scheme,

and gives sufficient conditions for its success up to an infidelity O(ǫ).

Theorem 7.9.1 Let ĤS be a Hamiltonian acting on n qubits, with subspaces S and

S⊥. Assume that

(ĤS)|S =
L
∑

j=0

ωj|j〉〈j| ,

where 0 = ω0 < ω1 < ω2... < ωL and

∆ = min
ωi,E

{|E − ωi| : E ∈ Span(ĤS), E 6= ωi} > 0 .

Finally, assume that there exists operators T̂S, δ̂j, such that

(T̂S)|S = Ω0|G〉〈G| ,
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with

|G〉 =
L
∑

j=0

xj |j〉 ,

|xj| > 0, and for all j,

r ≡ Ω0/∆ < 1/8

||Ŝδ̂jŜ||
∆

< r2 · |x0xj|

||Ŝ(T̂S + δ̂j)Ŝ⊥||2
∆2

< r2 · |x0xj|

||Ŝ⊥(T̂S + δ̂j)Ŝ⊥||
∆

< 1/2 .

(7.51)

Then for ǫ > 0 and r ∝ ǫ
L2

√
L
, there exists a TCP map E , consisting of L single

qubit measurements and unitaries Ûj on n+ 1 qubits of the form

Ûj = exp
(

−iτ (j)(ĤS + ω
(j)
B 1S ⊗ P̂↑ + T̂S ⊗ σx + δ̂j)

)

, (7.52)

such that for any density matrix ρ̂S with support in S,

Tr[(|0〉〈0| ⊗ 1B)E(|F 〉〈F | ⊗ |↓〉〈↓ |)] = 1−O(ǫ) ,

as ǫ→ 0+, with total simulation time

τtot = O

(

L2
√
L

ǫ∆|x0|

)

L
∑

j=1

1

|xj|
.

The proof is constructive and the QSC protocol is described in the main text.

In summary, E can be described by a loop of L cooling steps, labeled by the index j

(starting at j = L). At the beginning of each iteration, the bath is measured in the

logical basis. If it is in state |↑〉, then the transition to the ground state has already

occurred, so we effectively terminate by decrementing j → j − 1 and continuing

to the next iteration. Otherwise, we evolve under Hamiltonian H̃j = Ĥj + V̂ + δ̂j,
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where Ĥj = ĤS + ω
(j)
B 1S ⊗ P̂↑, V̂ = T̂S ⊗ σx, and δ̂j represents an error term in the

simulation. The bath energy ω
(j)
B (defined explicitly below) is near ωj. The time

evolved under this Hamiltonian is τ (j) = π
2Ω0|x0xj |(1 + O(r2)), and the associated

unitary evolution is labeled Ûj (equation (7.52)). We then decrement j → j− 1 and

continue to the next iteration.

Written in pseudo-code, E may be summarized as

For j= L, L-1, ... 1

Measure bath qubit

If bath is down:

Apply U_j

Measure bath

Step j is associated with the following trace-preserving, completely positive (TCP)

map:

Ej(ρ̂) = Ûj(1S ⊗ P̂↓) ρ̂ (1S ⊗ P̂↓)Û
†
j

+ (1S ⊗ P̂↑)ρ̂(1S ⊗ P̂↑) ,

(7.53)

as defined previously. We define E = E1 ◦E2... ◦EL. Given the above assumptions,

the lemmas below prove that the algorithm works as expected. The proofs of the

lemmas are included at the end of this section.

Lemma 7.9.2 (Fidelity of the cooling step) Let Ûj be the unitary evolution as-

sociated with cooling state |j〉 |↓〉, as defined in equation (7.52). Assume that the
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bounds (7.51) hold. Then there exists a time evolution τ (j) = π
2Ω0|x0xj |(1 + O(r2))

and ω
(j)
B ∈ (ωj −∆/4, ωj +∆/4) defining Ûj such that

Ûj |j〉 |↓〉 = |0〉 |↑〉+O(r) ,

where the bound O(r) is uniform over all j.

Lemma 7.9.3 (Preservation of the lower bands) Define

M↓
j−1 = Span{|k〉 |↓〉}j−1

k=0

Then under the assumptions of Lemma 7.9.2, for any state |v〉 ∈ M↓
j−1,

Ûj |v〉 = M̂↓
j−1Ûj |v〉+

√

j ·O(r)

Lemma 7.9.4 (Projective mapping of TCP map) Define

Mj = M↓
j ⊕ Span ({|0〉 |↑〉})

Then for M̂j ρ̂M̂j = ρ̂,

Ej(ρ̂) = λj ρ̂j−1 + R̂j

where ρ̂j−1 is a density matrix satisfying M̂j−1ρ̂j−1M̂j−1 = ρ̂j−1, λj = 1− Tr[R̂j],

Tr[R̂j] = j3/2 ·O(r), and ||R̂j|| =
√
j ·O(r).

Lemma 7.9.5 (Success of Deterministic Algorithm) Given the assumptions in

the previous lemmas, let ρ̂ = ρ̂S ⊗ |↓〉〈↓ | for any ρ̂S whose support is in S. Assume

that r = Ω0/∆ ∝ ǫL−5/2. Then

Tr[M̂0E(ρ̂)] = 1−O(ǫ)

as ǫ→ 0+.
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Proof of Theorem 7.9.1: Since M̂0 = |0〉〈0| ⊗ 1B, Lemma 7.9.5 proves the first

claim in Theorem 7.9.1. As shown in the proof of Lemma 7.9.2, unitary Ûj requires

an evolution time τ (j) = π
2Ω
, where Ω = Ω0|x0xj|(1 + O(r)). The simulated time

required for the algorithm is therefore

τtot =
L
∑

j=1

τ (j)

=
π

2Ω0

L
∑

j=1

1

|x0xj|
(1 +O(r))

= O

(

L2
√
L

ǫ∆

)

L
∑

j=1

1

|x0xj|
,

where we used the fact that Ω−1
0 = (r∆)−1 = ∆−1L5/2 ·O(ǫ−1).

�

7.9.1 Reduced Algorithm:

It is possible that the decomposition |G〉 =
∑

j xj |j〉 contains values of xj

that are exponentially small in n, meaning that the simulation time τ (j) scales

exponentially in n. Under certain conditions it is valid to neglect the cooling of such

states, leading to an improved run time. This discussion allows us to derive bounds

on the allowed error in the preparation of the initial system state ρ̂S.

Suppose that we choose to skip the cooling of all states |j〉 such that |xj| ≤ η,

for some parameter η. Defining S′ = Span{|j〉 : |xj| > η} ⊆ S, we may write any

initial system state |F 〉 as

|F 〉 = Ŝ ′ |F 〉+ f⊥ |F⊥〉
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Writing the compound initial state as ρ̂ = |F 〉〈F | ⊗ |↓〉〈↓ |, we may compute

ρ̂ = (1− |f⊥|2)|F ′〉〈F ′| ⊗ | ↓〉〈↓ |+ R̂⊥ (7.54)

where |F ′〉 ∈ Ŝ ′, and R̂⊥ is an error term with rank 2 and norm ||R̂⊥|| ≤ 3√
2
|f⊥|.

We can define the complement to S′ as S′
⊥ = S⊥ ⊕ (S− S′). From (7.51) and

the triangle inequality, we get new norm bounds for these spaces,

||Ŝ ′(V̂ + δ̂)Ŝ ′
⊥|| = O(∆r)

||Ŝ ′
⊥(δ̂)Ŝ

′
⊥|| = ∆(1/2 +O(r))

(7.55)

As these are the only assumptions necessary to prove Lemma 7.9.3, for sufficiently

small r it still holds for the reduced space (M↓
j−1)

′ = M↓
j−1 ∩ S′. Combining this

with Lemma 7.9.2, we see (as in its proof) that Lemma 7.9.4 also holds with respect

to the space M′
j = Mj ∩ S′. We may then apply Lemma 7.9.5 to the density

matrix ρ̂′ = |F ′ ↓〉〈F ′ ↓ | and get the same fidelity ǫ for the reduced algorithm

E ′ = Ei1 ◦ ... ◦ EiL′
, where i1 ≤ i2... ≤ iL′ enumerate the eigenstates in S′.

Since E ′ is applied to ρ̂ and not ρ̂′, we see that the reduced algorithm fidelity

is

Tr[M̂0E ′(ρ̂)] = (1− |f⊥|2)Tr[M̂0E ′(ρ̂′)] + Tr[M̂0E ′(R̂⊥)]

= (1 −|f⊥|2)(1−O(ǫ)) + Tr[M̂0E ′(R̂⊥)] . (7.56)

Because E ′ is a composition of L′ single qubit measurements and unitary evolutions,

as seen in the proof of Lemma 7.9.5 we have that ||E ′(R̂⊥)|| ≤ L′·||R̂⊥|| = L′·O(|f⊥|),

where L′ = dim(S′)/2−1 ≤ L. Furthermore, as M̂0 is a rank 2 projector, M̂0E ′(R̂⊥)
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has rank at most 2, so we conclude that

|Tr[M̂0E ′(R̂⊥)]| ≤ rank(M̂0E ′(R̂⊥)) · ||M̂0E ′(R̂⊥)||

= L′ ·O(|f⊥|) .

Using this result in (7.56), as long as |f⊥| = O(ǫ/L′), we may still achieve fidelity

1 − O(ǫ). Notice this allows us to treat any error in the preparation of |F 〉 |↓〉 as

contributing to |f⊥|.

Since we are only cooling states such that |xj| > η, the timing of the algorithm

is then

τ ′tot = O

(

1

Ω0|x0|
L′

∑

k=1

1

|xik |

)

≤ O

(

1

Ω0|x0|
L′

η

)

= O

(

(L′)3
√
L′

ǫη∆|x0|

)

.

In the case where |F 〉 = |G〉 we see that |f⊥|2 =
∑

|xj |≤η |xj|2 ≤ Lη2, so L · |f⊥| ≤

L3/2η and in order to maintain an infidelity O(ǫ) it is sufficient to set η = ǫ/L3/2.

This gives

τ ′tot = O

(

L5

ǫ2∆|x0|

)

.

7.9.2 Proofs of Lemmas 7.9.2-7.9.5

The proof of Lemma 7.9.2 is the most involved. First, we analyze the simulated

Hamiltonian H̃j = ĤS + ω
(j)
B 1S ⊗ P̂↑ + T̂S ⊗ σx + δ̂j in the subspace corresponding

to S, and show that it has eigenstates near |j〉 |↓〉 ± |0〉 |↑〉, with eigenvalues near
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ωB ± Ω0x0xj. In order to do this we compute the self-energy operator Σ̂(z) for the

manifold of eigenvalues near ωj, and show how the value of ω
(j)
B may be calculated

to account for energy shifts associated with V̂ . We then account for the static error

term δ̂j, and the possibility that V̂ may couple between S and S⊥.

Proof of Lemma 7.9.2:

We begin by analyzing the case where δ̂j = 0 and V̂ = ŜV̂ Ŝ = Ω0|G〉〈G| ⊗ σx.

Note that the compound subspace S⊗HB is then invariant under

H̃
(0)
j = Ĥj + Ω0|G〉〈G| ⊗ σx

=
(

ĤS + ω
(j)
B 1S ⊗ P̂↑

)

+ Ω0|G〉〈G| ⊗ σx ,

which will simplify our analysis. In order to understand the dynamics of H̃
(0)
j , we

compute the self-energy operator (equation (7.46)) to find an effective Hamiltonian

for the eigenstates of H̃
(0)
j with eigenvalue near ωj. LetP be the subspace spanned by

eigenvalues between λ− = ωj −∆/2 and λ+ = ωj +∆/2. Given that the eigenstates

of ĤS in S⊥ are at least ∆ away from those in S, and |ω(j)
B − ωj| < ∆/4, we have

that P ⊂ S and

P̂ = |j〉〈j| ⊗ |↓〉〈↓ |+ |0〉〈0| ⊗ |↑〉〈↑ |

Q̂ =
∑

k 6=0

|k〉〈k| ⊗ |↑〉〈↑ |+
∑

k 6=j
|k〉〈k| ⊗ |↓〉〈↓ |+ Ŝ⊥Q̂Ŝ⊥

P̂ ĤjP̂ = ωj|j〉〈j| ⊗ |↓〉〈↓ |+ ω
(j)
B |0〉〈0| ⊗ |↑〉〈↑ |

V̂ = Ω0|G〉〈G| ⊗ σx
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Using (7.46), we may now compute

Σ̂(z) = P̂ ĤjP̂ + P̂ V̂ P̂ + P̂ V̂
Q̂

z − Q̂(Ĥj + V̂ )Q̂
V̂ P̂

= P̂ ĤjP̂ + P̂ V̂ P̂

+ P̂ V̂
(

ĜQ(z) + ĜQ(z)V̂ ĜQ(z) + ...
)

V̂ P̂

(7.57)

where ĜQ(z) = Q̂

z−Q̂ĤjQ̂
. Since the projector into S commutes with P̂ , Q̂, Ĥj , and

V̂ , we may replace all operators by their projections into S above. This simplifies

Σ̂(z), giving

Σ̂(z) = ωj|j〉〈j| ⊗ |↓〉〈↓ |+ ω
(j)
B |0〉〈0| ⊗ |↑〉〈↑ | (7.58)

+ Ω0P̂ |G〉
(

σx+Ω0σx 〈G| ĜQ(z) |G〉 σx
)

σ∗(z) 〈G| P̂

where σ∗ is the bath operator

σ∗(z) = 1 +
(

Ω0 〈G| ĜQ(z) |G〉 σx
)2

+
(

Ω0 〈G| ĜQ(z) |G〉 σx
)4

+ ...

To compute σ∗(z) explicitly, we note that

〈G| ĜQ(z) |G〉 = gj(z)|↓〉〈↓ |+ g0(z)|↑〉〈↑ |

gj(z) = 〈G| 〈↓| ĜQ(z) |G〉 |↓〉 =
∑

k 6=j

|xk|2
z − ωk

g0(z) = 〈G| 〈↑|GQ(z) |G〉 |↑〉 =
∑

k 6=0

|xk|2

z − (ωk + ω
(j)
B )

so

(Ω0 〈G|GQ |G〉 σx)2n =
(

Ω2
0gjg0

)n
(|↓〉〈↓ |+ |↑〉〈↑ |) .
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Therefore

σ∗(z) =
1

1− Ω2
0gj(z)g0(z)

(|↓〉〈↓ |+ |↑〉〈↑ |) (7.59)

Since P̂ |G〉 |↓〉 = xj |j〉 |↓〉 and P̂ |G〉 |↑〉 = x0 |0〉 |↑〉, we may use (7.58) and (7.59)

to get

Σ̂(z) = ωj|j〉〈j| ⊗ |↓〉〈↓ |+ ω
(j)
B |0〉〈0| ⊗ |↑〉〈↑ |

+
Ω0

1− Ω2
0gjg0

P̂
(

|G〉〈G| ⊗
(

|↓〉〈↑ |+ |↑〉〈↓ |

+ Ω0gj|↑〉〈↑ |+ Ω0g0|↓〉〈↓ |
)

)

P̂

=









ωj 0

0 ω
(j)
B









+
Ω0

1− Ω2
0gj(z)g0(z)









|xj|2Ω0g0(z) x0xj

x0xj |x0|2Ω0gj(z)









(7.60)

where the above matrices are written in the {|j〉 |↓〉 , |0〉 |↑〉} basis.

Using the above expression, we define the effective Hamiltonian Ĥeff = Σ̂(ω
(j)
B ).

We identify the diagonal elements of the second matrix above as the level shift, and

observe these are composed of even powers in Ω0. If the diagonal terms in Ĥeff were

equal, it would cause coherent oscillations |j〉 |↓〉 ↔ |0〉 |↑〉 at a rate 2Ω ≈ 2Ω0|x0xj|.

We may find ω
(j)
B such that this is the case, by solving the degree L+ 1 polynomial

equation

(

(1− Ω2
0gj(z)g0(z))(z−ωj) + Ω2

0(|x0|2gj(z)−|xj|2g0(z))
)

∣

∣

∣

z=ω
(j)
B

= 0 (7.61)

Effectively, we are adjusting the value of ω
(j)
B so that the even order energy shifts

induced by V̂ are canceled out. Note that we need a solution for ω
(j)
B that is contained
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in (ωj −∆/4, ωj +∆/4). Using the fact that Ω0 < ∆/4, as well as |gj|, |g0| ≤ 4
3∆

for z = ω
(j)
B ∈ [ωj −∆/4, ωj +∆/4], it is not difficult to show that the left hand

side is negative for ω
(j)
B = ωj − ∆/4 and positive for ω

(j)
B = ωj + ∆/4. Since the

left hand side is smooth over this range, by the Intermediate Value Theorem a

root exists within (ωj −∆/4, ωj +∆/4). If our computed root is δω
(j)
B off from the

exact solution, from (7.60) we see the two states retain a splitting O(δω
(j)
B ). The

necessary accuracy δω
(j)
B can thus be incorporated into the error term Ŝδ̂jŜ, as long

as δω
(j)
B = O(||Ŝδ̂jŜ||) = Ω0|x0xj| ·O(r).

We therefore assume that ω
(j)
B has been chosen so that the diagonal terms in

(7.60) are equal at z = ω
(j)
B , which means

Ĥeff = ω∗
B1+ Ω(|j〉〈0| ⊗ |↓〉〈↑ |+ |0〉〈j| ⊗ |↑〉〈↓ |)

where

Ω =
Ω0x0xj

1− Ω2
0gjg0

= Ω0x0xj
(

1 +O(r2)
)

ω∗
B = ω

(j)
B + Ω0|x0xj|

|x0/xj|Ω0gj
1− Ω2

0gjg0
= ω

(j)
B + Ω ·O(r)

and we assume that |x0/xj| ≤ O(1).

Ĥeff has eigenstates |v±〉 = 1√
2
(|j〉 |↓〉 ± |0〉 |↑〉) with energy ω∗

B ± Ω, so dy-

namics under Ĥeff for time τj = π
2Ω

would map state |j〉 |↓〉 → |0〉 |↑〉. To show

that evolution under H̃
(0)
j achieves the same mapping, we use Theorem 7.8.1 and

Corollary 7.8.2 to show it has eigenstates and eigenvalues near those of Ĥeff . To do

this, we must determine an error bound for ||Σ̂(z)− Ĥeff ||.

As in (7.57) above, since Ĥeff = Σ̂(ω
(j)
B ) we have

Σ̂(z)− Ĥeff = P̂ V̂
(

G̃Q(z)− G̃Q(ω
(j)
B )
)

V̂ P̂ (7.62)
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where

G̃Q(z) =
Q̂

z − Q̂(Ĥj + V̂ )Q̂
=
∑

s

(z − Es)
−1|φs〉〈φs|

for |φs〉 ∈ Q. Since |ω(j)
B −ωj| < ∆/4, the eigenvalues of Q̂ĤjQ̂ are at least 3∆/4 away

from ωj. As ||V̂ || < ∆/4, by Lemma 7.8.3 we then conclude that Es ∈ (−∞, ωj −

∆/2]∪[ωj+∆/2,∞) for all s. G̃Q(z) is therefore analytic for z ∈ [ωj−∆/4, ωj+∆/4],

so we may compute its Taylor series expansion about ω
(j)
B ∈ (ωj −∆/4, ωj +∆/4):

G̃Q(z) =
∑

s

[

(ω
(j)
B − Es)

−1 − (z − ω
(j)
B )(zs − Es)

−2
]

|φs〉〈φs |

For some zs ∈ [ωj −∆/4, ωj +∆/4], between ω
(j)
B and z. Since |zs −Es| ≥ ∆/4, we

conclude that

||G̃Q(z)− G̃Q(ω
(j)
B )|| ≤ |z − ω

(j)
B |
(

4

∆

)2

=⇒

||Σ̂(z)− Ĥeff || ≤ |z − ω
(j)
B |
(

4||V̂ ||
∆

)2

= |z − ω
(j)
B |(4r)2

(7.63)

As above, the spectrum of Ĥeff is contained in [c, d], where c = ω
(j)
B −

Ω (1 +O(r)), d = ω
(j)
B + Ω(1 +O(r)). In Theorem 7.8.1, we consider only val-

ues of z in [c−γ, d+γ] (γ is the error in the eigenvalues of Ĥeff , compared to H̃
(0)
j ).

Thus we can determine γ self-consistently by solving

γ = |z − ω
(j)
B |(4r)2

for z = d+ γ and z = c− γ. To leading order in r, this gives

γ = Ω ·O(r) (7.64)
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(in fact γ = Ω · O(r2), but the following result holds for (7.64) as well). Applying

Theorem 7.8.1, we have that the two eigenvalues of Ĥeff , E± = ω∗
B ±Ω, are γ close

to the eigenvalues of H̃
(j)
j . The relative error in the energy difference (E+ − E−) is

therefore O(γ/Ω) = O(r).

Now Corollary 7.8.2 can be used to show that the eigenvectors of Ĥeff are

close to the corresponding eigenvectors of H̃
(0)
j . In the notation of that corollary,

we can define P̂ ′ = |v+〉〈v+|, and see that ν = 0, η = 2Ω. Denoting the analogous

eigenvectors and eigenvalues of H̃
(0)
j by |ṽ±〉 and Ẽ±, using (7.64) we see that

|〈ṽ+|v+〉|2 = 〈ṽ+| P̂ ′ |ṽ+〉

>



1−
(

2||V̂ ||
∆

)2




(

1−
(

2γ + ν

η − γ

)2
)

= 1−O(r2)

and likewise for 〈ṽ−|v−〉. From this and Theorem 1 we conclude that

|ṽ±〉 = |v±〉+O (r) =
1√
2
(|j〉 |↓〉 ± |0〉 |↑〉) +O(r)

Ẽ+ − Ẽ− = (E+ − E−) (1 +O(r)) = 2Ω(1 +O(r))

(7.65)

For time evolution τj =
π

E+−E−

= π
2Ω
, (7.65) implies the statement of Lemma 7.9.2.

To complete the proof, we account for the case when V̂ 6= ŜV̂ Ŝ or δ̂ 6= 0 by including

the effect of these terms in ||Σ̂(z)− Ĥeff ||. As long as (7.64) still holds, we conclude

that (7.65) is still valid. The full Hamiltonian is now H̃j = Ĥj + ŜV̂ Ŝ + δ̂eff , where

δ̂eff accounts for the terms we previously neglected. Specifically,

δ̂eff = δ̂ + (V̂ − ŜV̂ Ŝ)

We wish to compute the bound ||Σ̂(z) − Ĥeff ||, where now Σ̂(z) is defined with

respect to the perturbation ŜV̂ Ŝ+δ̂eff (see (7.66) below). As before, we have Ĥeff =
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Σ̂(ω
(j)
B )|δ̂eff=0, with Σ̂(z)|δ̂eff=0 defined as in (7.57). Suppose ||Σ̂(z)− Σ̂(z)|δ̂eff=0|| =

γ′. By the triangle inequality,

||Σ̂(z)− Ĥeff || ≤ γ′ + ||Σ̂(z)|δ̂eff=0 − Ĥeff ||

We could then repeat the previous analysis to compute γ, and get γ = Ω · O(r) +

O(γ′). The results of Theorem 7.8.1 and Corollary 7.8.2 could then still be applied

to get (7.65), as long as γ′ also satisfies (7.64). Below we show that this is the case,

as long as (7.51) is true.

Including δ̂eff in (7.46), we see that

Σ̂(z) = P̂ ĤjP̂ + P̂ V̂ P̂ + P̂ δ̂eff P̂

+ P̂ (ŜV̂ Ŝ + δ̂eff )·

Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
(ŜV̂ Ŝ + δ̂eff )P̂

(7.66)

In order to bound all terms proportional to δ̂eff , we use the relation (Â − B̂)−1 =

Â−1 + Â−1B̂(Â− B̂)−1 to get

Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
= G̃Q(z)

+G̃Q(z)δ̂eff
Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
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where ĜQ(z) =
Q̂

z−Q̂(Ĥj+SV̂ S)Q̂
. This allows us to write:

Σ̂(z)− Σ̂(z)|δ̂eff=0 = P̂ δ̂eff P̂

+ P̂ δ̂eff
Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
ŜV̂ ŜP̂ + h.c.

+ P̂ δ̂eff
Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
δ̂eff P̂

+ P̂ ŜV̂ ŜG̃QŜδ̂eff ·

Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
ŜV̂ ŜP̂

(7.67)

We now bound this difference. The operator Q̂(z − Ĥj − ŜV̂ Ŝ)Q̂ can be

diagonalized in blocks of S and S⊥. As before, for z ∈ [ωj −∆/4, ωj +∆/4], within

both S and S⊥ this operator has eigenvalues with magnitude at least ∆/2. In the

notation of Lemma 7.8.7, we may define Â = Q̂(z − Ĥj − ŜV̂ Ŝ)Q̂, B̂ = Q̂δ̂effQ̂,

G1 = ∆/2, G2 = ∆/2, so that (Â − B̂)−1 = Q̂

z−Q̂(Ĥj+ŜV̂ Ŝ+δ̂eff )Q̂
. Defining Ri =

||ŜiQ̂δ̂effQ̂Ŝi||/∆ ≤ ||Ŝiδ̂eff Ŝi||/∆, R× = ||ŜQ̂δ̂effQ̂Ŝ⊥||/∆ ≤ ||Ŝδ̂eff Ŝ⊥||/∆, by

Lemma 7.8.7 one may show that

||Ŝ Q̂

z−Q̂(Ĥj+ŜV̂ Ŝ+δ̂eff )Q̂
Ŝ⊥|| = O(R×)

||Ŝ Q̂

z−Q̂(Ĥj+ŜV̂ Ŝ+δ̂eff )Q̂
Ŝ|| = O(1)

||Ŝ⊥
Q̂

z−Q̂(Ĥj+ŜV̂ Ŝ+δ̂eff )Q̂
Ŝ⊥|| = O(1)
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Writing all terms of (7.67) in S, S⊥ blocks, we have for z ∈ [ωj−∆/4, ωj+∆/4]

P̂ δ̂eff = ∆ ·
(

O(R1) O(R×)

)

Q̂

z − Q̂(Ĥj + ŜV̂ Ŝ + δ̂eff )Q̂
= ∆−1 ·









O(1) O(R×)

O(R×) O(1)









ŜV̂ ŜP̂ = ∆ ·









O(r)

0









P̂ ŜV̂ ŜG̃QŜδ̂eff = ∆ ·
(

O(rR1) O(rRx)

)

With these components, using (7.67) one may calculate γ′ = ||Σ̂(z)− Σ̂(z)|δ̂eff=0|| =

O(∆(R1 +R2
×)). We need ||Σ̂(z)− Σ̂(z)|δ̂eff=0|| = Ω ·O(r), so we require

R1 = O(r · Ω/∆)

R2
× = O(r · Ω/∆)

R2 ≤ 1/2

where the last inequality comes from the bound on δ̂eff necessary to use Lemma 7.8.7.

One may check that these statements are satisfied by (7.51).

�

Proof of Lemma 7.9.3:

As before, we have Ĥj = ĤS+ĤB, H̃j = Ĥj+V̂ +δ̂j. Define P̂0 as the subspace

spanned by the eigenspaces of Ĥj with eigenvalues ω0, ω1, ...ωj . This corresponds to

the space M↓
j−1 ⊆ S mentioned in the lemma. In the language of Corollary 7.8.5, it

corresponds to λ−k = λk+ = ωk and ∆ as defined for ĤS. The proof comes in two
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steps. We define the intermediate Hamiltonian

H̃ ′
j = Ĥj + ŜV̂ Ŝ ,

with a subspaceP1 corresponding to eigenvalues within (ω0 −∆/8, ω0 +∆/8) ∪ (ω1 −∆/8, ω1 +∆/

Likewise, P2 is the subspace of H̃j of eigenvalues within (ω0 −∆/4, ω0 +∆/4) ∪ (ω1 −∆/4, ω1 +∆/

The proof follows by showing that (up to an error O(r2)), any state in P0 is in P1,

and any state in P1 is in P2. This will imply that a state in P0 undergoing evolu-

tion Ûj will remain in P0. For simplicity of notation, for all equations below let |vi〉

represent a normalized state in Pi.

Since H̃ ′
j and Ĥj are block diagonal in S and S⊥, as long as, P1 ⊆ S it is

sufficient to reduce our analysis to S. This holds if Ŝ⊥(V̂ + δ̂)Ŝ⊥ does not change

the eigenvalue of S⊥ states by more than ∆/2, as implied by Lemma 7.8.3 and

(7.51). Considering only S, (7.51) implies the bound ||Ŝ
(

H̃ ′
j − Ĥ

)

Ŝ||/∆ = O(r).

By Corollary 7.8.5, we have that

〈v0| P̂1 |v0〉 = 1− j ·O(r2)

Writing |v0〉 = a |v1〉+ b
∣

∣v⊥1
〉

where P̂1

∣

∣v⊥1
〉

= 0, one can easily show that

P̂1 |v0〉 =
√

1− j ·O(r2) |v1〉

Equations (7.51) also imply that P1 is energetically separate from its comple-

ment Q1 by at least ∆′ = ∆/4, so that ||H̃j − H̃ ′
j||/∆′ = O(r), and as above,

P̂2 |v1〉 =
√

1− j ·O(r2) |v2〉
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We can combine these statements to get

〈v0| P̂2 |v0〉 ≥ 〈v0| P̂1P̂2P̂1 |v0〉

= (1− j ·O(r2)) 〈v1| P̂2 |v1〉

= (1− j ·O(r2))2

Finally, writing |v0〉 = a |v2〉+ b
∣

∣v⊥2
〉

, the above statement implies

P̂2 |v0〉 = (1− j ·O(r2)) |v2〉

and by an identical analysis, for any |v2〉 ∈ P2, there exists |v0〉 ∈ P0 such that

P̂0 |v2〉 = (1− j ·O(r2)) |v0〉

Notice that the diagonals of P̂0 are at least as large as those of P̂2P̂0P̂2. Since

P2 is an subspace of H̃j, it is clear that P̂2Ûj = ÛjP̂2. Using these facts and the

above equalities, we compute the bound:

〈v0| Û †
j P̂0Ûj |v0〉 ≥ 〈v0| Û †

j P̂2P̂0P̂2Ûj |v0〉

= 〈v0| P̂2Û
†
j P̂0ÛjP̂2 |v0〉

= (1− j ·O(r2))2 〈v2| P̂0 |v2〉

= (1− j ·O(r2))4 = 1− j ·O(r2)− j3 ·O(r6)

= 1− j ·O(r2)

where in the last line we use the fact that r ∝ L−5/2. Since Q̂0 = 1− P̂0 we get

||Q̂0Ûj |v0〉 ||2 ≤ j ·O(r2)

Writing Ûj |v0〉 = P̂0Ûj |v0〉+Q̂0Ûj |v0〉, we conclude the proof noting that P̂0 = M̂↓
j−1

and that the bound O(r2) is dependent only on the ratio r = Ω0/∆.
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�

Proof of Lemma 7.9.4:

Since the operation Ej starts with a bath measurement and since the M̂j projector

commutes with the bath projectors 1S ⊗ P̂↓ and 1S ⊗ P̂↑, we may assume without

loss of generality that

ρ̂ = M̂↓
j ρ̂M̂

↓
j + p0|0〉〈0| ⊗ |↑〉〈↑ |

where M↓
j = Span{|k〉 |↓〉}jk=0. Furthermore, since

Ej(|0〉〈0| ⊗ |↑〉〈↑ |) = |0〉〈0| ⊗ |↑〉〈↑ | = M̂j−1Ej(|0〉〈0| ⊗ |↑〉〈↑ |)M̂j−1

by the linearity of TCP maps it suffices to analyze the component of ρ̂ within M↓
j .

We may therefore assume that ρ̂ = M̂↓
j ρ̂M̂

↓
j . Since ρ̂ is a density matrix, we have

that

ρ̂ =
∑

l

pl|vl〉〈vl| ⊗ |↓〉〈↓ |

where |vl〉 |↓〉 ∈ M↓
j and l is a sum over at most j + 1 = dim(M↓

j) terms. Each

|vl〉 |↓〉 may be decomposed into components parallel and orthogonal to |j〉 |↓〉:

|vl〉 |↓〉 = al |j〉 |↓〉+ bl
∣

∣v⊥l
〉

where
∣

∣v⊥l
〉

∈ M↓
j−1. By Lemma 7.9.3, we have that

Ûj
∣

∣v⊥l
〉

= M̂↓
j−1Ûj

∣

∣v⊥l
〉

+
√

j ·O(r)

Likewise by Lemma 7.9.2,

Ûj |j〉 |↓〉 = |0〉 |↑〉+O(r)

= M̂j−1Ûj |j〉 |↓〉+O(r)
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Since M↓
j−1 ⊂ Mj−1, we conclude that

Ûj |vl〉 |↓〉 = M̂j−1Ûj |vl〉 |↓〉+
√

j ·O(r)

Finally, since Ej is a linear operator, we see that

Ej(ρ̂) =
∑

l

plEj (|vl〉〈vl| ⊗ |↓〉〈↓ |)

=
∑

l

pl

(

Ûj|vl〉〈vl| ⊗ |↓〉〈↓ |Û †
j

)

=
∑

l

pl

(

M̂j−1Ûj |vl〉 |↓〉+
√

j ·O(r)
)

·
(

〈vl| 〈↓| Û †
j M̂j−1 +

√

j ·O(r)
)

= M̂j−1Ej(ρ̂)M̂j−1 + R̂j

where R̂j is the sum of all terms proportional to O(r). Using the triangle inequality

and the fact that the pl sum to 1, we see that ||R̂j|| =
√
j · O(r). Since R̂j is a

sum of at most (j + 1) operators, each of rank 2, we see that rank(R̂j) ≤ 2(j + 1).

Therefore |Tr[R̂j]| ≤ rank(R̂j) · ||R̂j|| = j3/2 · O(r). Since a projection of a density

matrix is proportional to a density matrix, we may write M̂j−1Ej(ρ̂)M̂j−1 = λj ρ̂j−1,

with λj = Tr[M̂j−1Ej(ρ̂)M̂j−1] = Tr[Ej(ρ̂)− R̂j] = 1− j3/2 ·O(r).

�

Proof of Lemma 7.9.5:

E is defined by the chain of TCP maps,

E = E1 ◦ E2... ◦ EL

The initial state of the system and bath is described by the density matrix ρ̂L =
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|F ↓〉〈F ↓|, where |F 〉 |↓〉 ∈ ML. Repeated application of Lemma 7.9.4 gives

E(ρ̂L) = E1 ◦ E2... ◦ EL−1

(

λLρ̂L−1 + R̂L

)

= E1 ◦ E2... ◦ EL−2

(

λLλL−1ρ̂L−2

+λLR̂L−1 + EL−1(R̂L)
)

...

=

(

L
∏

k=1

λk

)

ρ̂0 + R̂tot

where M̂0ρ̂0M̂0 = ρ̂0, R̂tot represents all other terms, and Tr[R̂tot] = 1−
(

∏L
k=1 λk

)

since E is trace-preserving.

We will bound the infidelity, 1−Tr[M̂0E(ρ̂L)] = 1−
(

∏L
k=1 λk

)

−Tr[M̂0R̂tot], by

showing that 1−
(

∏L
k=1 λk

)

and Tr[M̂0R̂tot] are small. First, consider the quantity

y = log
(

∏L
k=1 λk

)

=
∑L

k=1 log(λk). By Lemma 7.9.4, we see that λk = 1− Tr(R̂k).

Given that | log(1− x)| ≤ 2|x| for |x| < 1/2, we conclude that for |Tr(R̂k)| < 1/2,

|y| ≤
L
∑

k=1

∣

∣

∣log(1− Tr[R̂k])
∣

∣

∣

≤
L
∑

k=1

2|Tr[R̂k]|

=
L
∑

k=1

k3/2 ·O(r)

= L5/2 ·O(r)

Thus, to leading order in r,

1−
(

L
∏

k=1

λk

)

= 1− ey = L5/2 ·O(r)
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To show the second term is small, we must bound R̂tot, which is the sum of

all error terms:

R̂tot =
L
∑

k=1

(

L
∏

j=k+1

λj

)

E1 ◦ ... ◦ Ek−1(R̂k)

From the simple form of Ej (see (7.53)), we see that

E1 ◦ ... ◦ Ek−1(R̂k) =
k
∑

j=1

ÂjR̂kÂ
†
j

where

Âj = |↑〉〈↑ |
(

Ûj|↓〉〈↓ |
)

·
(

Ûj+1|↓〉〈↓ |
)

· ... ·
(

Ûk−1|↓〉〈↓ |
)

for 2 ≤ j ≤ k, and

Â1 =
(

Û1|↓〉〈↓ |
)

·
(

Û2|↓〉〈↓ |
)

· ... ·
(

Ûk−1|↓〉〈↓ |
)

Âk = |↑〉〈↑ |

Since Âj is a product of projectors and unitaries, we must have that ||ÂjR̂kÂ
†
j|| ≤

||R̂k||, so by the triangle inequality and Lemma 7.9.4 it follows that

||E1 ◦ ... ◦ Ek−1(R̂k)|| ≤ k||R̂k|| = k3/2 ·O(r) =⇒

||R̂tot|| =
L
∑

k=1

k3/2 ·O(r) = L5/2 ·O(r)

Finally, we note that since M̂0 is a projector of rank two, M̂0R̂totM̂0 also has

rank at most 2. By the cyclic property of the trace, we conclude that

|Tr[M̂0R̂tot]| = |Tr[M̂0R̂totM̂0]|

≤ rank(M̂0R̂totM̂0) · ||M̂0R̂totM̂0||

= L5/2 ·O(r)
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Combining the two results, we have that

1− Tr[M̂0E(ρ̂L)] = L5/2 ·O(r)

Thus, as long as r = O(ǫ/L5/2), the algorithm succeeds with infidelity O(ǫ).

�

7.10 Appendix C: Extension Analysis

We now discuss an augmentation of the previous cooling technique which does

not require knowledge of the overlaps xk describing the coupling T̂S (as in equa-

tion (7.10)). It is described in detail in Section 7.6, though we summarize it here.

We assume that the system Hamiltonian ĤS has the form

ĤS = P̂1ĤSP̂1 + P̂2ĤSP̂2

where P1 is the subspace of ĤS spanned by eigenvalues between (ω1 − δω) and

(ω1 + δω), |0〉 is the non-degenerate ground states ĤS with energy ω0 = 0, and P̂2

is a projector into the space orthogonal to Span{|0〉}⊕P1. To relate to notation in

the previous section, we define the projectors Ŝ = (|0〉〈0|+ P̂1), Ŝ⊥ = P̂2. We define

the spectral gap between Span{|0〉},P1 and P2:

∆ = min
{

ω1, E, |E − ω1| : E ∈ Spec(ĤS|S⊥
)
}

(7.68)

In full, the unperturbed Hamiltonian is

Ĥ = ĤS ⊗ (|C〉〈C|+ |R〉〈R| − |L〉〈L|)

+ ω11S ⊗ (|R〉〈R|+ |L〉〈L|)
(7.69)
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where |C〉 , |R〉 and |L〉 are orthogonal basis vectors for the bath Hilbert space. We

start by preparing the state,

|F 〉 |C〉 = f1 |1〉 |C〉+ f⊥ |F⊥〉 |C〉

where |1〉 ∈ P1, 〈1|F⊥〉 = 0, and we are given a lower bound for |f1|. The algorithm

proceeds by simulating the evolution of Hamiltonians Ĥ + X̂, where X̂ satisfies

X̂ = T̂S ⊗ (|C〉〈B|+ |B〉〈C|)

|B〉 = 1√
2
(|L〉+ |R〉)

Ω |1〉 = P̂1T̂S |0〉

(7.70)

where by phase convention Ω is real. Again, although ||T̂S|| = Ω0 is a known

quantity, we are only given a lower bound Ω∗ for Ω.

The algorithm is probabilistic, and involves a single evolution step for time

τ ∼ 1
Ω
, followed by a measurement of the bath. If the bath is measured in state |B〉,

then the desired transition |1〉 |C〉 → |0〉 |B〉 could have occurred. We verify this by

applying the bath unitary |B〉 ↔ |L〉 , |D〉 ↔ |R〉, then evolving under Ĥ + Ŷ for

time τ = π
2Ω0

where

Ŷ = Ω01S ⊗ (|L〉〈R|+ |R〉〈L|) (7.71)

A measurement of a bath transition |L〉 → |R〉 would indicate that the system is

in its ground state, while in all other cases a transition |ψL〉 → |ψR〉 is suppressed

by energy conservation. If either the first or second bath measurements fail, we

reinitialize the system and start again.
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As before, we again show that given some bounds, the algorithm is robust

against simulation errors and coupling between S and S⊥:

r = Ω0/∆ < 1/8

δω < r · Ω(V̂ )

| 〈0| T̂S |0〉 |2
ω1

< r · Ω(V̂ )

||Ŝδ̂Ŝ||
∆

< r · Ω(V̂ )

∆

||Ŝ(V̂ + δ̂)Ŝ⊥||2
∆2

< r · Ω(V̂ )

∆

||Ŝ⊥(V̂ + δ̂)Ŝ⊥||
∆

< ∆/2

(7.72)

where Ω(V̂ ) = Ω0 for V̂ = Ŷ , and Ω(V̂ ) = 〈1| T̂S |0〉 = Ω for V̂ = X̂. As seen below,

for the probabilistic scheme to succeed with fidelity 1 − O(ǫ), we must scale r as

O(|f1|ǫ3/2).

Lemma 7.10.1 (Fidelity of the Unitary Evolutions) Let Û(τ) = e−iτ(Ĥ+X̂+δ̂)

and assume (7.72). Then

Û(τ) |1〉 |C〉 = cos(φt) |1〉 |C〉 − i sin(φt) |0〉 |B〉+O(r) (7.73)

where φt = τΩ(1 + O(r)). The error term in φt and in (7.73) is uniform over τ .

Likewise, let Ûv(τ) = e−iτ(Ĥ+Ŷ+δ̂). Then

Ûv(τ) |0〉 |L〉 = cos(φv) |0〉 |L〉 − i sin(φv) |0〉 |R〉+O(r) (7.74)

where φv = τΩ0.

Lemma 7.10.2 (Verification Step)

max
|ψ〉

〈ψ| 〈L| Û †
v (1S ⊗ |R〉〈R|) Ûv |ψ〉 |L〉 = O(r2)

max
|ψ〉

〈ψ| 〈R| Û †
v (1S ⊗ |L〉〈L|) Ûv |ψ〉 |R〉 = O(r2)

(7.75)
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where the maximum is taken over all normalized system states |ψ〉 such that 〈ψ| 0〉 =

0.

Theorem 7.10.3 (Success of the Probabilistic Scheme) Say that r = O(|f1|ǫ3/2)

as ǫ → 0+, and that the Ût simulation time τ is sampled randomly within the

range [ π
Ω∗ ,

2π
Ω∗ ], where Ω∗ < Ω. Then the verification step accepts with probability

pv = 1
|f1|2 · O(1). Given an acceptance, the probability of the system being in its

ground state is psuccess = 1− O(ǫ). Since Ω < r∆, the average simulation time 〈T 〉

satisfies

o

(

1

|f1|3
1

ǫ3/2∆

)

= 〈T 〉 = O

(

1

|f1|2
1

Ω∗

)

The proof of Lemma 7.10.1 is analogous to the proof of Lemma 7.9.2. We

first analyze the success of the unitary evolutions under the assumption the most

unwanted terms are zero, and show that it leads to the desired outcome. We then

bound the effect of the unwanted terms on the unitary evolution.

Proof of Lemma 7.10.1:

We begin by proving the first statement of the lemma, for V̂ = X̂ = T̂S ⊗ (|B〉〈C|+ |C〉〈B|).

As in the proof of Lemma 7.9.2, instead of analyzing Ĥ + V̂ + δ̂ we start by look-

ing at the evolution of Ĥ + ŜV̂ Ŝ, then obtain a bound on the errors caused by

δ̂eff = V̂ − ŜV̂ Ŝ + δ̂. Define P as the subspace spanned by the eigenvectors of Ĥ

with energy in [ω1 −∆/4, ω1 +∆/4]. Notice that the projector P̂ is

P̂ = P̂1 ⊗ |C〉〈C|+ |0〉〈0| ⊗ (|D〉〈D|+ |B〉〈B|) ,

where |B〉 = 1√
2
(|L〉 + |R〉), |D〉 = 1√

2
(|L〉 − |R〉), and that P ⊂ S. Before we
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calculate the self-energy operator Σ̂(z) at z = ω1, we note the following relations:

P̂ = |0〉〈0| ⊗ (|L〉〈L|+ |R〉〈R|) + P̂1 ⊗ |C〉〈C|

= |0〉〈0| ⊗ (|D〉〈D|+ |B〉〈B|) + P̂1 ⊗ |C〉〈C|

Q̂ = P̂1 ⊗ (|L〉〈L|+ |R〉〈R|) + |0〉〈0| ⊗ |C〉〈C|+ Ŝ⊥

P̂ ĤP̂ = ω1|0〉〈0| ⊗ (|D〉〈D|+ |B〉〈B|) + P̂1ĤSP̂1 ⊗ |C〉〈C|

Q̂ĤQ̂ = (P̂1ĤSP̂1 + Ŝ⊥ĤSŜ⊥)⊗ (−|L〉〈L|+ |R〉〈R|)

+ω1(P̂1 + Ŝ⊥)⊗ (|L〉〈L|+ |R〉〈R|)

+Ŝ⊥ĤSŜ⊥ ⊗ |C〉〈C|

P̂ V̂ P̂ = P̂
(

T̂S ⊗ (|C〉〈B|+ |B〉〈C|)
)

P̂

= Ω(|1C〉〈0B|+ |0B〉〈1C|)

The next term required in (7.46) is the unperturbed Green’s function, ĜQ(z) =

Q̂

zQ̂−Q̂ĤQ̂ . Since P ⊂ S and ŜV̂ Ŝ, Ĥ are both block diagonal in S and S⊥, we may

ignore the S⊥ component of ĜQ(z):

ŜĜQ(z)Ŝ =
P̂1 ⊗ (|L〉〈L|+ |R〉〈R|)

(z − ω1)− P̂1ĤSP̂1 ⊗ (|R〉〈R| − |L〉〈L|)
+
1

z
|0〉〈0| ⊗ |C〉〈C|

so that

ŜĜQ(ω1)Ŝ =
P̂1

P̂1ĤSP̂1

⊗ (|L〉〈L| − |R〉〈R|)

+
1

ω1

|0〉〈0| ⊗ |C〉〈C|

Notice that 〈B| ŜĜQ(ω1)Ŝ |B〉 = 0. From the definition of ŜV̂ Ŝ = ŜT̂SŜ ⊗
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(|C〉〈B|+ |B〉〈C|), we immediately observe that

ŜV̂ ŜĜQ(ω1)ŜV̂ Ŝ =
1

ω1

ŜT̂S|0〉〈0|T̂SŜ ⊗ |B〉〈B|

Multiplication by ĜQ(ω1) again produces a term proportional to |D〉. Since V̂ |D〉 =

0, this implies that the series (7.46) with perturbation ŜV̂ Ŝ truncates at second order

in V̂ . Therefore Ĥeff ≡ Σ̂(ω1) may be computed to all orders as

Ĥeff = P̂ ĤP̂ + P̂ V̂ P + P̂ V̂ ŜĜQ(ω1)ŜV̂ P̂

= ω1|0〉〈0| ⊗ (|D〉〈D|+ |B〉〈B|) + P̂1ĤSP̂1 ⊗ |C〉〈C|

+Ω(|1〉〈0| ⊗ |C〉〈B|+ |0〉〈1| ⊗ |B〉〈C|)

+
|〈0| T̂S |0〉|2

ω1

|0〉〈0| ⊗ |B〉〈B|

The system Hamiltonian is written ĤS = P̂1ĤSP̂1+ Ŝ⊥ĤSŜ⊥, where the spec-

trum of ĤS|P1 is contained in (ω1 − δω, ω1 + δω). The state |1〉 ∝ P̂1T̂S |0〉 is not

necessarily an eigenstate of ĤS, but ω
∗
1 = 〈1| ĤS |1〉 is contained in (ω1−δω, ω1+δω).

We write the projector into the remainder of P1 as P̂ ′
1 = P̂1 − |1〉〈1|. To see that

Ĥeff produces the desired evolution, we rewrite it as

Ĥeff = ω1 (|0〉〈0| ⊗ |B〉〈B|+ |1〉〈1| ⊗ |C〉〈C|)

+
(

ω1|0〉〈0| ⊗ |D〉〈D|+ P̂ ′
1ĤSP̂

′
1 ⊗ |C〉〈C|

)

+ Ω(|1〉〈0| ⊗ |C〉〈B|+ |0〉〈1| ⊗ |B〉〈C|)

+
(

(ω∗
1 − ω1)|1〉〈1|+ P̂ ′

1ĤS|1〉〈1|+ h.c.
)

⊗ |C〉〈C|

+
|〈0| T̂S |0〉|2

ω1

|0〉〈0| ⊗ |B〉〈B|

(7.76)

Observe that if we neglect the terms on the third line of (7.76), Ĥeff has eigen-

vectors |v±〉 = 1√
2
(|1〉 |C〉 ± |0〉 |B〉) with eigenvalues ω1±Ω, which exactly produce

178



the desired evolution (7.73). Since ||P̂ ′
1(ĤS−ω1P̂

′
1)P̂

′
1|| ≤ ||P̂1(ĤS−ω1P̂1)P̂1|| ≤ δω,

by Lemma 7.8.3 all other eigenvalues of the approximate Ĥeff are in (ω1 − δω, ω1 +

δω). The eigenvalues ω1 ± Ω are therefore non-degenerate and energetically sepa-

rated from the rest of the spectrum by a gap Ω− δω. This fact will allow us to use

Theorem 7.8.4 below to show that, up to an error of order O(r), |v±〉 correspond to

eigenvectors of Ĥeff .

The terms in the third line of (7.76) are bounded by Ω · O(r). To see this,

note that |〈0|T̂S |0〉|2
ω1

≤ Ω · O(r) is already an explicit assumption. The bound for

(

(ω∗
1 − ω1)|1〉〈1|+ P̂ ′

1ĤS|1〉〈1|+ h.c.
)

= P̂1(Ĥs − ω1P̂1)P̂1 − P̂ ′
1(Ĥs − ω1P̂

′
1)P̂

′
1 comes

from the fact that ||P̂ ′
1(ĤS − ω1P̂

′
1)P̂

′
1|| ≤ ||P̂1(ĤS − ω1P̂1)P̂1|| ≤ δω = Ω ·O(r). By

invoking Lemma 7.8.3 and Theorem 7.8.4 we conclude that Ĥeff has eigenvectors

∣

∣±̃
〉

with eigenvalues ω1 ± Ω · (1 +O(r)) such that | 〈±| ±̃〉|2 ≥ 1−O(r2), and that

the rest of the spectrum of Ĥeff is Ω · (1 +O(r)) away from these eigenvalues.

The rest of the proof of (7.73) is now identical to the argument in Lemma 7.9.2.

Using the bound for Ω0 = ||T̂S||, in the case when δ̂eff = 0 we bound ||Σ̂(z)|δ̂eff −

Ĥeff || for z ∈ [ω1 −Ω · (1 +O(r)), ω1 +Ω · (1 +O(r))] using the Taylor’s expansion

of Q̂

zQ̂−Q̂(Ĥ+ŜV̂ Ŝ)Q̂
. Then, using Lemma 7.8.7 we bound the error in Σ̂(z) obtained

by neglecting δ̂eff = V̂ − ŜV̂ Ŝ + δ̂, and show that it is equal to Ω ·O(r) under our

assumed bounds (7.72). Since ||Σ̂(z)− Ĥeff || is still sufficiently small, we conclude

by Theorem 7.8.1 and corollary 7.8.2 that Ĥ+V̂ +δ̂ has eigenvalues ω1±Ω·(1+O(r)),

and that these eigenvalues correspond to 1√
2
(|1〉 |C〉+ |0〉 |B〉) +O(r).

The proof of the second statement is nearly identical to the first. Noting that

now V̂ = Ω01S ⊗ (|R〉〈L| + |L〉〈R|), we have P̂ V̂ P̂ = Ω0|0〉〈0| ⊗ |R〉〈L| + h.c. and
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P̂ V̂ Q̂ = 0. Assuming that δ̂ = 0, the self-energy operator Σ̂(z) is now exactly equal

to P̂ ĤP̂ + P̂ V̂ P , so Ĥeff = Σ̂(ω1) satisfies

Ĥeff = ω1 (|0〉〈0| ⊗ |L〉〈L|+ |0〉〈0| ⊗ |R〉〈R|) + P̂1ĤSP̂1 ⊗ |C〉〈C|

+ Ω0|0〉〈0| ⊗ (|L〉〈R|+ |R〉〈L|)

which clearly has eigenvalues ω1 ± Ω0 corresponding to 1√
2
(|0〉 |L〉 ± |0〉 |R〉), with

the rest of its spectrum in (ω1 − δω, ω1 + δω). Ĥeff therefore produces the desired

evolution. The rest of the proof, in which we bound ||Σ̂(z)− Ĥeff ||, again continues

in the same way as in Lemma 7.9.2, with the substitution of Ω0 in place of Ω.

�

Proof of Lemma 7.10.2:

The proof of this analogous to the proof of Lemma 7.9.3. As before, let P rep-

resent the subspace spanned by eigenvectors of Ĥ with eigenvalue contained in

(−∞, ω1 − ∆]. Notice that P corresponds only to bath states in state |C〉 or |L〉.

The complement, Q, corresponds to eigenvalues within [ω1,∞). In the language of

Theorem 7.8.4, we have λ− = −∞, λ+ = ω1 −∆/2, and ∆ defined as in (7.68).

Given (7.72), by the triangle inequality we conclude that ||Ŷ + δ̂||/∆ = O(r).

Define P̃ as the direct sum of eigenspaces of H̃=Ĥ + Ŷ + δ̂ with eigenvalue in

(λ−, λ+) = (−∞, ω1 −∆/2). By Theorem 7.8.4, for any state |v〉 ∈ P, we see that

〈v| P̃ |v〉 > 1−
(

2||H̃ − Ĥ||
∆

)2

= 1−O(r2)
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This implies that P̃ |v〉 =
√

1−O(r2) |ṽ〉, where |ṽ〉 represents an arbitrary nor-

malized vector in P̃ . Likewise, for |ṽ〉 ∈ P̃ , 〈ṽ| P̂ |ṽ〉 = 1 − O(r2). Since P̃ is

spanned by eigenvectors of H̃, for Ûv = exp(−iτH̃), P̃ Ûv = ÛvP̃ . Noting that

〈ψ| P̃ P̂ P̃ |ψ〉 ≤ 〈ψ| P̂ |ψ〉 for all |ψ〉, we conclude that for any |v〉 ∈ P,

〈v| Û †
v P̂ Ûv |v〉 ≥ 〈v| Û †

v P̃ P̂ P̃ Ûv |v〉

=
(

〈v| P̃ Û †
v

)

P̂
(

ÛvP̃ |v〉
)

= (1−O(r2)) 〈ṽ| P̂ |ṽ〉

= (1−O(r2))2 = 1−O(r2)

Let |ψ〉 |L〉 be given such that 〈ψ|0〉 = 0. By examining the spectrum of Ĥ,

one sees that |ψ〉 |L〉 ∈ P, and that the subspaceHS⊗Span{|R〉} is contained within

Q, so that the operator 1S ⊗ |R〉〈R| ≤ Q̂ = (1− P̂ ). From the above inequality we

conclude that

〈ψ| 〈L| Û †
v (1S ⊗ |R〉〈R|) Ûv |ψ〉 |L〉 ≤ 〈ψ| 〈L| Û †

v

(

1− P̂
)

Ûv |ψ〉 |L〉

= 1− 〈ψ| 〈L| Û †
v P̂ Ûv |ψ〉 |L〉

= O(r2)

By an identical argument, we may prove the second statement of the claim as well.

�

Proof of Theorem 7.10.3:

Given initial state |F 〉 |C〉 and time evolution Ût(τ) (as defined in Lemma 7.10.1),

the probability of a verification event is given by

pv = 〈F | 〈C| Û †
t X̂

†X̂Ût |F 〉 |C〉
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where

X̂ = |R〉〈R|Ûv|L〉〈B|

and Ûv is evaluated for time π
2Ω0

. Likewise, the probability of the system being in

the ground state after the verification has occurred is

pvs = 〈F | 〈C| Û †
t X̂

†|0〉〈0|X̂Ût |F 〉 |C〉

where |0〉 is the ground state of ĤS. Along with finding pv, we wish to calculate the

success probability of the algorithm conditional on a verification event, ps|v = pvs/pv.

These three probabilities are functions of the parameter φ, where φ/τ = Ω(1+O(r))

is half the energy splitting of the eigenstates |ṽ±〉 ≈ 1√
2
(|1〉 |C〉± |0〉 |B〉) used in the

evolution Ût(τ).

By the first result of Lemma 7.10.1, for any time evolution Ût(τ) we may write

Ût(τ) |F 〉 |C〉 = f1 (cos(φt) |1〉 |C〉 − i sin(φt) |0〉 |B〉+O(r))

+f⊥Ût |f⊥〉 |C〉

Since Lemma 7.10.1 implies coherent oscillations between |1〉 |C〉 and |0〉 |B〉, it must

be that 〈0| 〈B| Ût(τ) |f⊥〉 |C〉 = O(r), so that 〈0| 〈B| Ût(τ) |F 〉 |C〉 = −i(f1 sin(φt) +

O(r)). We mention that the bound O(r) is independent of τ , i.e. as r → 0+ there

is a constant c > 0 such that | 〈0| 〈B| Ût(τ) |F 〉 |C〉+ if1 sin(φt)| < c · r for all τ .

Likewise, the second result of Lemma 7.10.1 implies that

Ûv

(

τ =
π

2Ω0

)

|0〉 |L〉 = |0〉 |R〉+O(r)

so

X̂ |0〉 |B〉 = |0〉 |R〉+O(r)
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For system states |ψ〉 such that 〈ψ| 0〉 = 0, by Lemma 7.10.2 we have that

max
〈ψ|ψ〉=1

〈ψ| 〈L| Û †
v |R〉〈R|Ûv |ψ〉 |L〉 = O(r2)

and since Û †
v |R〉〈R|Ûv is a projector, it must be that Û †

v |R〉〈R|Ûv |ψ〉 |L〉 = O(r),

where the error bound is uniform over all |ψ〉. We conclude that for all composite

states |ψSB〉 such that 〈ψSB| 0〉 |B〉 = 0,

X̂ |ψSB〉 = Ûv

(

Û †
v |R〉〈R|Ûv

)

· (|L〉〈B|ψSB〉) = O(r)

and that this bound is the same over all such |ψSB〉. Since 〈0| 〈B| Ût(τ) |F 〉 |C〉 =

−i(f1 sin(φt) +O(r)), we may write

Ût(τ) |F 〉 |C〉 = −i(f1 sin(φt) +O(r)) |0〉 |B〉+ c(τ) |ψSB(τ)〉

where |c(τ)| < 1 and 〈ψSB(τ)| 0〉 |B〉 = 0 for all τ .

Applying X̂ gives

X̂Ût(τ) |F 〉 |C〉 = −i(f1 sin(φt) +O(r)) |0〉 |R〉+O(r)

= −i(f1 sin(φt) + A(φt)) |0〉 |R〉

+B(φt) |ψ⊥(τ)〉 |R〉

where 〈ψ⊥(τ)| 0〉 = 0 for all τ . As the bounds derived from Lemmas 7.10.1 and 7.10.2

are independent of τ , we have that A = max |A(φt)| = O(r) and B = max |B(φt)| =

O(r). We may now directly compute pv and pvs:

pv(φt) = |f1 sin(φt) + A(φt)|2 + |B(φt)|2

pvs(φt) = |f1 sin(φt) + A(φt)|2
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so the success probability for a given φt is

ps|v(φt) =
|f1 sin(φt) + A(φt)|2

|f1 sin(φt) + A(φt)|2 + |B(φt)|2

Suppose that when sampling over values of φt, with probability at least 1−ǫ/2

we have ps|v(φt) > (1− ǫ/2). Then psuccess > (1− ǫ/2)2 > 1− ǫ for 0 < ǫ < 1, which

is the desired result. In terms of the relation above, this condition equivalent to

|f1 sin(φt) + A(φt)| > |B(φt)|
√

2

ǫ
− 1

As |f1 sin(φt) +A(φt)| > |f1 sin(φt)| −A and |B(φt)| < B, this relation is satisfied if

| sin(φt)| ≥
A+ B

√

2
ǫ

|f1|
= O

(

r√
ǫ|f1|

)

(7.77)

Hence we obtain an infidelity at most ǫ as long (7.77) is violated with probabil-

ity at most ǫ/2. Note that if φt is sampled uniformly over a range larger than π/2 (as

ensured by our sampling scheme for τ), the probability that | sin(φt)| < c for some

small number c > 0 is pfail = O(c) as c→ 0. We require pfail < ǫ/2 in (7.77), which

is satisfied for r = O(|f1|ǫ3/2). This gives success the bound psuccess > 1− ǫ stated in

the Lemma. Using the same argument, we see that to have |f1 sin(φt)| > 2A = O(r)

with probability at least 1/2, we only require r = O (|f1|), so under the more strin-

gent scaling we may also conclude that the verification probability pv(φt) is greater

than |f1|2/4 with probability O(1). This gives the desired scaling, paccept = O
(

1
|f1|2

)

.

�
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[150] H. Häffner, C.F. Roos, and R. Blatt. Quantum computing with trapped ions.
Physics Reports, 469(4):155 – 203, 2008.

[151] Robin Blume-Kohout, Jun O. S. Yin, and S. J. van Enk. Entanglement veri-
fication with finite data. Phys. Rev. Lett., 105:170501, Oct 2010.

[152] Barbara M. Terhal. Bell inequalities and the separability criterion. Physics
Letters A, 271(5–6):319 – 326, 2000.

[153] Fernando G. S. L. Brandão. Quantifying entanglement with witness operators.
Phys. Rev. A, 72:022310, Aug 2005.

[154] Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental tests of
realistic local theories via bell’s theorem. Phys. Rev. Lett., 47:460–463, Aug
1981.

196



[155] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini,
D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and
D. J. Wineland. Creation of a six-atom /‘schrodinger cat/’ state. Nature,
438(7068):639–642, 12 2005.
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