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Autism Spectrum Disorder (ASD) is characterized by difficulties with social 

motivation and social interaction. However, the neural underpinnings of these 

processes are poorly understood, and past studies investigating this subject have 

significant methodological limitations. This study is the first to investigate the neural 

correlates of social interaction in children and adolescents diagnosed with ASD using 

a naturalistic “chat” paradigm that mimics real-world reciprocal conversations. 

Despite core weaknesses in social interaction, participants with ASD showed similar 

brain activation to their neurotypical counterparts while initiating conversations and 

receiving replies from peers. Two notable group differences emerged, however. 

Participants with ASD showed blunted responses in the amygdala while initiating 

conversations and receiving replies, and they showed hyperactive responses in the 

temporal parietal junction (TPJ) while initiating conversations with peers. Findings 



 

 

have implications for how we understand social motivational and social cognitive 

weaknesses in ASD. 
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Introduction 

Autism Spectrum Disorder (ASD) is characterized by difficulties with social 

interaction and social communication, including reduced interest in both approaching 

and sharing information with peers (American Psychiatric Association, 2013). A host 

of challenges are present throughout development in individuals with ASD that 

significantly impact social reciprocity. These include difficulties reading social and 

emotional cues (e.g., facial expressions, body posture), modulating behavior based on 

social context, and forming reciprocal relationships (Rutter & Schopler, 1987). 

Despite the centrality of social interactive difficulties in ASD, little is known about 

the neural correlates of social reciprocity in this clinical population. Investigating the 

neural correlates of social interaction in ASD will allow us to better understand the 

underlying reasons for atypicalities in ASD and may give insight into optimal 

interventions.  

One factor that may contribute to these difficulties is reduced social 

motivation, although behavioral and neural evidence for this theory is mixed 

(Chevallier, Kohls, Troiani, Brodkin, & Schultz, 2012; Dichter & Adolphs, 2012; 

Jones, Gliga, Bedford, Charman, & Johnson, 2014, Kohls et al., 2012a). According to 

the social motivation theory, children with ASD view social stimuli as less rewarding 

than their neurotypical peers. As a result, they pay less attention to many aspects of 

the social world, including others’ facial expressions and gestures (Chevallier et al., 

2012; Dawson et al., 2002; Dawson, Bernier, & Ring, 2012; Dawson, Webb, & 

McPartland, 2005). Thus, children with ASD miss out on important social cues early 

in life, which may begin a developmental cascade that leads to greater social 
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disability and may change the course of brain development (Klin, Jones, Schultz, & 

Volkmar, 2003; Pelphrey, Shultz, Hudac, & Vander Wyk, 2011; but see Jones et al., 

2014). In fact, increasing the number of self-initiated social encounters (i.e., 

motivation to interact with others) is considered a pivotal area of intervention in ASD, 

supporting the centrality of social motivational difficulties in the disorder (Koegel, 

Koegel, & McNerney, 2001; Koegel & Mentis, 1985). 

Past research suggests that social cognitive, in addition to social motivational, 

weaknesses may underlie difficulties with social interaction in individuals with ASD 

(Baron-Cohen, 2000; Baron-Cohen, Leslie, & Frith, 1985; Travis & Sigman, 1998). 

While some individuals with ASD are unmotivated to seek friends, many report 

wanting friendships and romantic relationships (Henault & Attwood, 2002) but are 

unsuccessful at initiating and maintaining reciprocal relationships. This points to the 

possibility that for some individuals with ASD, social cognitive rather than social 

motivational weaknesses may be primary (i.e., they may want relationships but do not 

have the social skills to acquire them). It is possible that, as the result of many failed 

social interactions due to social cognitive weaknesses, people with ASD are then less 

motivated to further pursue social relationships. These social cognitive and social 

motivational challenges contribute to many autistic individuals reporting social 

anhedonia (i.e., the inability to derive enjoyment from interacting with others; 

Berthoz, Lalanne, Crane, & Hill, 2013; Carre et al., 2015; Chevallier et al., 2012), and 

half of adults with ASD reporting that they have no friends (Howlin, Goode, Hutton, 

& Rutter, 2004). In sum, throughout development, individuals with ASD demonstrate 
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social cognitive weaknesses coupled with diminished social motivation, which results 

in difficulties with social reciprocity and social interaction.   

Brain regions involved in social motivation have been well characterized in 

typical development and include subcortical regions such as the amygdala and ventral 

striatum (VS), as well as orbitofrontal cortex (OFC), ventromedial prefrontal cortex 

(vmPFC), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) 

(Chevallier et al., 2012; see Berridge & Kringelbach, 2008; Haber & Knutson, 2010; 

Fareri, Martin, & Delgado, 2008; Taber, Black, Porrino, & Hurley, 2012 for reviews 

of reward processing). Consistent with behavioral evidence, the few studies that have 

investigated the neural correlates of social motivation in ASD show many 

inconsistencies. 

There is some evidence that the neural systems involved in social motivation 

differ in autistic individuals compared to their neurotypical peers (Kohls et al., 2012; 

Richey et al., 2012; Scott-Van Zeeland, Dapretto, Ghahremani, Poldrack, & 

Bookheimer, 2010). While some studies find hypoactivation in ASD in VS (Richey et 

al., 2012; Scott-Van Zeeland et al., 2010), other studies evidence typical levels of VS 

activation (Delmonte et al., 2012; Dichter, Richey, Rittenberg, Sabatino, & Bodfish, 

2012). While one study found hypoactivation in ASD in amygdala and ACC to social 

rewards (Kohls et al., 2012b), other studies found no differences between groups in 

these regions (Delmonte et al., 2012, Dichter et al., 2012; Richey et al., 2012; Scott-

Van Zeeland et al., 2012). Another study found no differences between NT and ASD 

in any of these classic reward regions in response to social rewards (Delmonte et al., 
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2012), and one study found hyperactivation in ASD in amygdala (Dichter et al., 

2012). There are several possible explanations for these inconsistencies.  

Critically, social motivation in autism has not been studied in a social 

interactive context, which is problematic for two reasons. First, the lack of reciprocal 

social interaction and real-world applicability in past studies is troubling since 

individuals with ASD have the most difficulty in interactive social communicative 

contexts but may perform within normal limits on non-interactive laboratory tasks 

related to social cognition (Chevallier et al., 2015; Schilbach et al., 2013; Senju, 

Southgate, White, & Frith, 2009). Second, failing to study social motivation in a 

social interactive context might underestimate the role of social cognitive neural 

circuitry. In fact, recent studies have found that embedding participants in social 

interactive contexts recruits brain regions involved in social cognition, even in the 

absence of a social task (Rice & Redcay, 2016). Thus, to capture meaningful 

differences between groups and to better understand the neural correlates of social 

motivation and social cognition, it is imperative to use ecologically valid, social 

interactive paradigms.  

A recent study with a more engaging, interactive social paradigm (i.e., playing 

a domino game with a “live” partner) investigated the neural correlates of social 

motivation in ASD (Assaf et al., 2013) and found involvement of both social 

motivational and social cognitive brain regions. This study found hypoactivation in 

VS in the ASD group, consistent with some past research (Richey et al., 2012; Scott-

Van Zeeland et al., 2010). By embedding the rewards in a social context, this study 

also found activation in both the ASD and NT groups in the following social 
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cognitive regions when participants believed they were playing the game with another 

person: bilateral temporal parietal junction (TPJ), superior temporal sulcus (STS), 

middle temporal gyrus (MTG), and medial prefrontal cortex (mPFC). When the ASD 

and NT groups were compared directly, there was MTG hypoactivation in ASD. 

While Assaf et al. (2013) improved upon past social reward paradigms by embedding 

rewards in a social context, the reward itself (scoring points in the game) was 

nonsocial. Thus, the VS hypoactivation in ASD was not related to social interaction 

per se. Additionally, participants were unable to communicate directly with the other 

person and could not share information with them or learn facts about them. Instead, 

participants were competing with the other person in a game. While the context was 

social (because participants believed they were playing with a real person), it was not 

particularly interactive and it was dissimilar from everyday reciprocal conversations 

with peers. For example, in everyday reciprocal conversations, we share and receive 

information from our conversational partners—we are truly interacting with them. 

 To overcome these limitations, our lab developed a study that embedded 

typically developing children in a real-world social communicative interaction, where 

both initiating and responding to bids for social interaction could be investigated 

(Warnell, Sadikova, & Redcay, 2017). Participants believed they would be chatting 

with a same-aged peer and sharing information about themselves as well as learning 

information about their peer. Briefly, findings revealed classic reward regions during 

social initiation and both reward and social cognitive regions during peer reply.  This 

finding suggests that embedding children in a naturalistic, reciprocal social 

interaction recruits social cognitive brain regions, unlike past social motivation 
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studies that did not involve social interaction. Thus, this study design was critical to 

understand the neural correlates of social interaction and allowed us to tap into both 

social motivational and social cognitive neural circuitry.     

The purpose of the current study was to capitalize on the experimental 

strengths of Warnell et al. (2017) to investigate the neural correlates of social 

interaction in children with ASD between the ages of 7 and 14. Because a reciprocal 

social interaction involves two stages—sharing information with peers (e.g., self-

disclosure, initiation of a topic) and receiving a response from the peer—we sought to 

understand what brain regions were involved in each of these stages. This is 

important given that the neural substrates of initiating and receiving a response may 

be different both in NT and ASD (Haber & Knutson, 2010; Kohls et al., 2012a). 

Finally, given that it may be rewarding for children to receive any type of contingent 

response, we investigated what brain regions were active when children received a 

social contingent response (i.e., from a peer) versus a non-social contingent response 

(i.e., from a computer). 

The current study had three aims. 1) To determine differences between ASD 

and NT in the neural correlates of initiating a social interaction with a peer (i.e., 

sharing information about themselves) versus sharing information about themselves 

with a computer 2) To determine differences between ASD and NT in the neural 

correlates of receiving a response from a peer (i.e., learning something about their 

conversational partner) versus receiving a response from the computer; and 3) To 

determine differences between ASD and NT in the neural correlates of social 

engagement during an interaction (i.e., [learning something about their conversational 
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partner versus receiving a response that the partner is away] versus [receiving a 

response from the computer versus the computer showing a ‘disconnected’ 

message]).  

 We hypothesized that, compared to NT children, children with ASD would 

show fewer differences in VS between sharing information about themselves with a 

peer and a computer. We expected that in ASD, the VS would be active to both 

conditions but would not activate more to the peer vs. the computer condition. This 

would suggest that the neural circuitry supporting motivation in ASD is intact, but 

that sharing information in a nonsocial condition is as rewarding as sharing with a 

peer.  

We also predicted that, compared to NT children, children with ASD would 

show dampened neural activation to peer responses in both reward (VS, OFC, 

dmPFC) and social cognitive (TPJ, STS) regions. We predicted that while the ASD 

within-group analysis would show higher activation in reward and social cognitive 

regions to peer responses, the between-group analysis contrasting ASD with NT 

would reveal less activation in the ASD group to the main effect of partner type (Peer 

vs. Computer). This would suggest that the neural circuitry supporting the second 

stage of social interaction—receiving a response from a peer—is underactive in ASD.  

Finally, we hypothesized that, compared to NT children, children with ASD 

would show less activation in social cognitive and reward regions for social 

engagement trials, i.e., when the peer responds versus is away or when the peer 

responds versus when the computer responds. We predicted that within the ASD 

group, there would be differences between peer response vs. away in social cognitive 
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and reward regions, but that the between-group analysis would reveal less activation 

in the ASD group. This would suggest that the neural circuitry supporting social 

engagement is underactive in ASD. 
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Methods 

Participants 

 Participants included children and adolescents between the ages of 7 and 14 

diagnosed with an ASD (confirmed in our lab with an Autism Diagnostic Observation 

Schedule, Second Edition; ADOS-2 and the Social Communication Questionnaire; 

SCQ). All recruited participants had a clinical diagnosis of ASD prior to participating 

in our study, and all participants met criteria for ASD during our ADOS-2 

assessment, which was conducted by a research-reliable administrator. Participants 

were recruited from a database of local families and from flyers posted on campus 

and at local businesses and doctors’ offices serving individuals with ASD. 

Participants were eligible for the study if they were not more than 5 weeks premature 

(>35 weeks gestation), were native English speakers, and had no history of head 

injury, seizures, or any other characteristics that would prevent MRI scanning. We 

recruited 28 participants, and due to excessive scan motion from 8 participants, our 

final sample included 20 participants (2 females). A mean age-, mean IQ-, and sex-

matched group of NT participants was used as the comparison group for analyses 

comparing ASD and NT. NT participants had no family history of ASD.  

Task procedures: setting up the chat 

 Peer trials. Prior to entering the MRI scanner, the experimenter explained to 

participants that they would be chatting with another child in a separate research lab 

somewhere in the United States. In reality, the experimenters had preprogrammed all 

“peer” responses to maintain experimental control. Participants learned that they 



 10 

 

would use “yes” and “no” buttons to share information about themselves (e.g., 

hobbies, interests) with the other child, and would also learn information about the 

other child. To begin interacting with the other child, participants learned that they 

would answer “yes” or “no” to a statement such as, “I play soccer” (Peer Initiation). 

The other child would see the participant’s answer and would respond by saying, “Me 

too/neither!” or “That’s not what I picked” (Peer Engagement). Importantly, the peer 

primarily responded with the same answer as the participant (“Me too/neither”), but 

participants also viewed two Disagreement trials (i.e., “That’s not what I picked”) to 

increase believability of the peer’s responses. These Disagreement trials were not 

analyzed. Participants learned that the other child would not always be available to 

chat with the participant, because they sometimes had to play another game. This was 

a cover story in order to have non-contingent social trials (i.e., trials for which the 

peer did not reply to the participant). For those trials, an away message was displayed 

as the peer response (i.e., “I’m away”); however, the other child could still see the 

participant’s answers to the self-relevant statements. This was the Peer Non-

Engagement condition. In sum, each time the participant learned that they would 

share an answer with the other child, initiating a conversation with the other child that 

could either be responded to or not responded to, depending on if the other child was 

available or busy playing his or her other game. 

After the experimenter confirmed that the participant understood the 

instructions, he or she took a photograph of the participant and pretended to email it 

to the lab where the other child was located. Participants were informed that soon 

they would be able to see photographs of potential chat partners. Next, participants 
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viewed a preprogrammed series of screens that matched them with the other child and 

created the chat illusion. Participants viewed two photos of age- and sex-matched 

peers (smiling, direct gaze photos from the NIMH Child Emotional Faces Pictures 

Set; Egger et al., 2011) that the computer had matched them with, and to increase 

motivation, participants had the opportunity to choose the peer with whom they 

would like to chat (c.f. Guyer et al., 2009). Participants then rated this peer on a 1-5 

scale in terms of how interested they were in chatting with the peer and how much 

they thought they would like the peer in real life. 

 Computer trials. Participants learned that sometimes, they would just be 

connected to a computer (and not another child). During these trials, no one would 

see the participant’s answers to the self-relevant statements (Computer Initiation), and 

the computer would generate a response (“yes” or “no”) randomly, by spinning a 

wheel. The participant then would see the computer’s response (“Matched” or 

“Mismatched”), with “Matched” meaning that the computer randomly generated the 

same response as the participant, and “Mismatched” meaning that the computer 

randomly generated the opposite response. This was the Computer Engagement 

condition. Importantly, the computer would primarily respond with “Matched,” but 

participants would also view two Disagreement trials (i.e., “Mismatched”) to increase 

believability of the computer’s responses. These trials were not analyzed.  

Participants learned that at times, the computer would lose its connection, and when 

this happened, the participant’s response would not be sent to the computer, and the 

computer would send the message “Disconnected.” This was a cover story in order to 

have non-contingent nonsocial trials  (Computer Non-Engagement condition). In 
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sum, each time the participant shared an answer with the computer, the participant’s 

answer was either responded to or not responded to, depending on if the computer 

was connected or disconnected. See Figure 1 for a diagram of the task. 

 

Stimuli characteristics 

The chat partner photographs of age- and gender-matched peers have been 

used in past studies to assess perception of peers in middle childhood (Guyer et al., 

2009, 2012, 2014). The self-relevant statements (e.g., “I like French fries”) to which 

participants responded were developed in our lab by piloting a sample of 12 NT 

Figure 1. The interactive social motivation task. Children completed 24 trials of each 

condition (Peer Engagement, Peer Non-engagement, Computer Engagement, Computer Non-

engagement) in an event-related design. All Peer Engagement trials expressed agreement with 

the child. Participants believed that the peer was a live child participating in another 

experiment and that on certain trials (Non-engagement) he or she was busy playing another 

game and was unable to respond. Thus, trials of social non-engagement did not contain 

elements of deliberate social exclusion. Participants also believed that the computer generated 

a random answer and when that answer matched the participant’s, the screen read, “Matched!”  

Children were also told that if the computer lost its connection, the screen would read 

“Disconnected.” 

 

*Figure adapted with permission from Warnell et al. (2017) 
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children between ages 7 and 12. We piloted 168 statements and excluded items that 

had the lowest response rates within the response window. We then selected eight 

statements to which children answered “Yes” and “No” approximately 50% of the 

time each. We chose these statements as Disagreement items, since it would be 

plausible for a peer to disagree with the participant’s response (e.g., “That’s not what 

I picked”). Disagreement items were included to increase believability of the chat; 

however, these trials were not included in the analysis of fMRI data due to their low 

frequency. The final 96 selected statements were matched between conditions on 

average reaction time, response rate, and answer (“yes” vs. “no”). 

Stimuli presentation 

The task was programmed and presented using the Psychophysics Toolbox 

Extension for MATLAB 7.6 (PTB-3; Brainard, 1997). Participants viewed 52 trials of 

each initiation type (Peer Initiation, Computer Initiation) and 24 individual trials of 

each analyzed reply type (Peer Engagement, Peer Non-engagement, Computer 

Engagement, Computer Non-engagement). If participants did not respond “yes” or 

“no” to the self-relevant statement (e.g., “I play soccer”) within the response window, 

they saw a non-engaged reply and these trials were not analyzed. We determined the 

distribution of the trial types and the timing of the jitters and inter-trial intervals using 

the program OptSeq (http://surfer.nmr.mgh.harvard.edu/optseq/) to ensure the optimal 

timing in order to allow for independent analysis of the events versus baseline. 

Specifically, Initiation and Reply types were counted together as one trial for event 

spacing and ordering (e.g., Peer Engagement was one trial type). This model was 
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further tested for collinearity using AFNI’s 3dDeconvolve (Cox, 1996; 

http://afni.nimh.nih.gov/), ensuring that all beta values of interest were estimable.  

 We presented a 2-6s jittered fixation cross, distributed exponentially and 

centered around 3.5s, between the Initiation and Reply portions and between each 

trial and for the first 15s and last 10s of each run.  In between each run, children were 

shown the photo of the age- and sex-matched peer that they had selected in the 

portion of the experiment before entering the scanner (Egger et al., 2011), along with 

a message about the chat (e.g., “That was fun!”). The purpose of this was to reinforce 

the live chat illusion. 

 We assigned each participant to one of four stimuli sets, which differed based 

on the assignment of the 96 items to the different types of trials (Peer Engagement, 

Peer Non-Engagement, Computer Engagement, and Computer Non-Engagement). 

The order and timing of the trial types within each run were determined prior to the 

scan. Trials were randomly assigned to different positions within the runs (e.g., the 

Peer Engagement item selected could be any of the 24 possibilities), and the 

participant’s stimuli set (i.e., which items were assigned to which condition) and run 

order were predetermined to ensure that all possibilities were represented. This was 

an important step to ensure that reaction time and response rates, as determined from 

the pilot data used to select stimuli, were matched for the peer versus computer 

conditions for all participants.   

Image acquisition and preprocessing 

Functional magnetic resonance imaging data was collected using a 32-channel 

head coil on a single Siemens 3.0-T scanner at the Maryland Neuroimaging Center 
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(MAGNETOM Trio Tim System, Siemens Medical Solutions). The scanning 

protocol for each participant consisted of four runs of the experiment (T2*-weighted 

echo-planer gradient-echo; 40 interleaved axial slices; voxel size=3.0 x 3.0 x 3.0 mm; 

repetition time=2200ms; echo time=24ms; flip angle=78°; pixel matrix=64 x 64), and 

a single structural scan (three-dimensional T1 magnetization-prepared rapid gradient-

echo sequence; 176 contiguous sagittal slices, voxel size=1.0 x 1.0 x 1.0 mm; 

repetition time=1900ms; echo time=2.52ms; flip angle=9°; pixel matrix= 256 x 256). 

Preprocessing of fMRI data was performed using AFNI (Cox, 1996).  Data was slice 

time corrected and then aligned to the first volume (using a rigid-body transform). 

The anatomical scan was aligned to the first volume and then transformed to MNI 

space via linear and non-linear transformations. We then normalized the functional 

data using these same transformation parameters, and spatially smoothed with a 5mm 

full-width half-maximum (fwhm) Gaussian kernel.  Functional data was intensity 

normalized so that each voxel would have a mean of 100. Volumes in which the 

difference between two consecutive volumes exceeded 1mm (across translational and 

rotational movements) were considered outliers and were censored in subsequent 

analyses. Runs were excluded if total frame deviation was greater than 4mm in any 

direction, or if greater than 10% of collected volumes were identified as outliers. 

Participants with at least three usable runs were included in the final analyses. Five 

participants in the ASD sample had motion spikes greater than 4mm at the very end 

of a run. In these instances, we were able to exclude a minimal number of data points 

while still keeping the majority of the run in our analyses. Importantly, the number of 

useable runs did not differ between NT and ASD groups (t(38)=0, p=1.0). The mean 



 16 

 

number of runs for NT participants and ASD participants was identical: 3.65 runs. 

Additionally, the average mean frame displacement (t(38)=1.52, p = 0.14) and 

average max frame displacement (t(38)=1.26, p = 0.21) across useable runs was not 

significantly different between groups. 

Post-scan questionnaire 

 Immediately following the scan, an experimenter verbally administered a 

questionnaire to participants. The purpose of this questionnaire was to assess 

participants’ subjective experiences of the chat.  A subset of questions assessed levels 

of enjoyment during the two Initiation types (Peer vs. Computer) and the four Reply 

types (Peer Engagement, Peer Non-engagement, Computer Engagement, Computer 

Non-engagement).  Additionally, the experimenter asked participants how much 

attention they paid when initiating, as well as how much they wanted to see the 

answers of the peer versus the computer. Questions were presented on a 1 to 5 point 

Likert-type scale. Finally, we assessed participants’ belief in the live illusion (See 

Appendices for full post-scan questionnaire). 

Data Analysis 

 After preprocessing fMRI data using the procedures discussed above, we ran 

Ordinary Least Squares regression analyses for each participant’s concatenated runs 

with regressors for each condition (Peer Initiation, Computer Initiation, Peer 

Engagement, Peer Non-engagement, Computer Engagement, Computer Non-

engagement) as well as nuisance regressors. Nuisance regressors included baseline 

and linear, quadratic, and cubic trends in addition to twelve motion regressors (i.e., 
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the frame deviation at each volume for the six directions of translational and 

rotational motion and their derivatives). Regressors for all conditions were created by 

convolving a gamma-variate basis function with the stimulus timing function 

(duration the length of one event and an amplitude of 1). Contrasts were estimated for 

each condition of interest and for the following comparisons: 1. Initiation: Peer vs. 

Computer; 2. Reply: Main effect of Peer versus Computer [(Peer Engagement + Peer 

Non-engagement) > (Computer Engagement + Computer Non-Engagement)]; 3. 

Reply: Effect of social engagement [(Peer Engagement versus Peer Non-

Engagement) versus (Computer Engagement versus Computer Non-Engagement)]; 

and 4. Other Reply contrasts of interest: Peer Engagement versus Peer Non-

Engagement and Peer Engagement versus Computer Engagement.  

Whole-brain analysis. We then incorporated coefficients and t-statistics for 

each contrast in the group-level analyses using mixed effect models (3dMEMA; 

Chen, Saad, Britton, Pine, & Cox, 2013), modeling within- and between-subject 

variance. For each contrast, we calculated within- and between-groups (i.e., ASD 

versus NT) effects across all participants for each voxel using mixed effect models. 

Across comparisons, all contrast maps were thresholded at p < .005 and cluster 

corrected at p < .05 (k=73, using the updated version of AFNI’s 3dClusStim; Eklund, 

Nichols, & Knutsson, 2015).  

Region of interest (ROI) analysis. In addition to whole-brain comparisons, we 

conducted region of interest (ROI) analyses. Given our a priori hypotheses about the 

role of VS and amygdala in social motivation and engagement, we selected two VS 

ROIs, bilateral inferior VS (corresponding to nucleus accumbens) and bilateral 
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superior VS (corresponding to ventral caudate), and one bilateral amygdala ROI for 

analysis. Ventral striatum ROIs were anatomically defined (Di Martino et al., 2008) 

and have been used in other studies investigating VS activation (e.g., Kelly et al., 

2009; Kolla et al., 2016; Padmanabhan, Lynn, Foran, Luna, & O’Hearn, 2013). We 

chose to focus on ventral (as opposed to dorsal) striatum given that past studies have 

identified VS as important in processing social rewards (Izuma, Saito, & Sadato, 

2010; Pfeiffer et al., 2014; Schilbach et al., 2010; Tamir & Mitchell, 2012). The 

amygdala ROI was anatomically defined with the Harvard-Oxford subcortical atlas 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).  

 In addition to the VS and amygdala ROIs, we also selected four social 

cognitive ROIs: bilateral anterior STS, bilateral TPJ, mPFC, and dmPFC. We selected 

these regions due to their involvement in previous studies investigating social 

interaction and social cognition (Assaf et al., 2013; Warnell et al., 2017; Saxe, 2009). 

Given that these brain regions are difficult to anatomically define, we functionally 

defined them based on a meta-analysis of functional brain imaging studies related to 

theory of mind (Schurz, Radua, Aichorn, Richlan, & Perner, 2014). While this meta-

analysis was conducted in adults as opposed to children, it is the largest meta-analysis 

of its kind, summarizing 73 studies and 1241 participants. Thus, activation foci are 

more reliable than had we used a single study with a child or adolescent sample. 

Moreover, the activation foci selected from Schurz et al. (2014) are similar to those in 

a theory of mind study that was conducted in a similarly-aged child sample as the 

current study (Gweon, Dodell-Feder, Bedny, & Saxe, 2012). For each ROI, we drew 

a sphere with a 6mm radius around the peak voxel identified in Schurz et al. (2014) 
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then extracted individual participant beta values from these functionally defined 

regions. For all ROIs, we analyzed effects during the Initiation period using 2 (Peer 

vs. Computer) × 2 (NT vs. ASD) ANOVAs, and we analyzed effects during the Reply 

period using 2 (Engagement vs. Non-engagement) x 2 (Peer vs. Computer) x 2 (TD 

vs. ASD) repeated measures ANOVAs. 

 

Results 

Descriptive Analyses 

 NT and ASD participants did not significantly differ on age (t(38) = 0.93, p = 

0.36), Verbal IQ (t(38) = -1.78, p = 0.08), Nonverbal IQ (t(38) = -0.32, p = 0.75), or 

Full Scale IQ (t(38) = -1.51, p = 0.14). For the participants with ASD, ADOS-2 

scores were, on average, in the “Moderate” range. See Table 1 for descriptive 

statistics. 

 

Table 1. Descriptive Statistics 

 

 

 ASD NT 

N 20 20 

Age 12.22 (1.81) 11.69 (1.73) 

Sex 2 females 2 females 

Nonverbal IQ 112.95 114.35 

Verbal IQ 105.45 116.05 

Full-Scale IQ 110.75 117.80 

ADOS-2 Total 6.50 (1.67) N/A 

ADOS-2 Social 6.75 (1.52) N/A 

ADOS-2 RRB 6.55 (1.99) N/A 
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Behavioral Analyses 

 Post-scan questionnaire. All children believed they were chatting with a real 

peer and both NT and ASD participants reported that they found the peer likeable 

(NT average rating: 4.1/5; ASD average rating: 3.95/5). Across the four questionnaire 

categories (i.e., enjoyment chatting, attention paid when chatting, desire to see reply, 

and feeling when the reply matched) a 2 (Peer vs. Computer) × 2 (NT vs. ASD) 

ANOVA revealed a significant main effect of partner type (F(1,136) = 85.19, p < 

0.001), with higher ratings for the Peer. There was also a group by partner type 

interaction (F(1,136) = 6.57, p = 0.01). Post-hoc Tukey’s Honest Significant 

Difference (HSD) tests revealed that both NT (p < 0.001) and ASD (p = 0.001) 

participants enjoyed chatting with the Peer more than the Computer, both groups of 

participants reported having equal attention while chatting with the Peer and 

Computer, only NT participants reported a stronger desire to see Peer (versus 

Computer) replies (p = 0.005), and only NT participants reported feeling better when 

their response matched the Peer’s (versus Computer’s) reply (p = 0.002) (Figure 2).  

 
Figure 2. Both NT participants and those with ASD rated the Peer higher than the Computer in the 

following domain: enjoyment chatting. Only NT participants rated the Peer higher than the Computer 

in the following domains: desire to see reply and feeling when the reply matched.  
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fMRI analyses 

Behavioral Data from Scan. A 2 (Peer vs. Computer) × 2 (NT vs. ASD) 

ANOVA revealed no significant main effects or interactions. While in the scanner, 

NT and ASD groups did not significantly differ on reaction time for answering Peer 

versus Computer questions (t(28) = -0.13, p = 0.90), percentage of skipped questions 

for Peer versus Computer (t(32) = -0.15, p = 0.88), or the proportion of time they 

answered “yes” to Peer versus Computer questions (t(33) = 0.33, p = 0.74). 

 Within groups, participants answered Peer questions equally quickly to 

Computer questions (NT: t(19) = -1.35, p = 0.19, ASD: t(19) = -0.84, p = 0.41), they 

skipped the same proportion of Peer questions and Computer questions (NT: t(19) = 

0.05, p = 0.96, ASD: t(19) = -0.15, p = 0.89), and they answered “yes” the same 

percentage of time to Peer and Computer questions (NT: t(19) = 0.18, p = 0.86, ASD: 

t(19) = 0.52, p = 0.61). 

Effect of Social Initiation. Whole-brain analyses revealed no significant 

differences between ASD and NT groups when sharing information (i.e., initiation) 

with a peer versus sharing information with a computer. Consistent with Warnell et 

al. (2017), which included a subset of the NT participants included in the current 

study, there were also no differences in whole-brain activation between Peer versus 

Computer initiation within either group. 

In addition to whole-brain analyses, we conducted region of interest (ROI) 

analyses by extracting participants’ beta values from three anatomically defined ROIs 
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(amygdala, VSi, and VSs) and four functionally defined ROIs (TPJ, aSTS, mPFC, 

and dmPFC). Within the amygdala, a 2 (Peer vs. Computer) × 2 (NT vs. ASD) 

ANOVA revealed a significant main effect of group (F(1,76) = 5.89, p = 0.02). 

Specifically, NT participants showed greater activation across both conditions (Peer 

Initiation and Computer Initiation) compared to participants with ASD (t(77) = -2.45, 

p = 0.02). Within the right TPJ, a 2 (Peer vs. Computer) × 2 (NT vs. ASD) ANOVA 

also revealed a significant main effect of group (F(1,76) = 4.77, p = 0.03), but with 

ASD participants showing greater activation across both conditions compared to their 

NT peers (t(61) = 2.21, p = 0.03). There were no significant main effects or 

interactions within the other ROIs. See Figure 3 for graphs of the amygdala and right 

TPJ ROIs. 

 

Figure 3. Effect of social initiation: ROI analysis. In the right TPJ, participants with ASD showed 

greater activation across both conditions compared to NT participants. In the amygdala, NT 

participants showed greater activation across both conditions compared to participants with ASD.  
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Effect of Mutual Engagement: Whole Brain Analyses.  

Main effect of Peer versus Computer. Whole-brain analyses revealed no 

significant differences between ASD and NT groups when receiving a reply from a 

peer versus receiving a reply from a computer [(Peer Engagement + Peer Non-

Engagement) > (Computer Engagement + Computer Non-Engagement)]. Each group, 

however, did show neural sensitivity to Peer versus Computer replies. Within the NT 

group, receiving a reply from a peer resulted in significantly higher activation in the 

following brain regions associated with social cognitive and reward processing: 

bilateral aSTS, bilateral STS, mPFC, posterior cingulate, TPJ, and caudate. Within 

the ASD group, receiving a reply from a peer resulted in significantly higher 

activation in left aSTS. See Table 2 for a list of brain regions showing greater 

activation for Peer > Computer replies. Figure 4 depicts distinct and overlapping 

activation for the two participant groups.  

Table 2. Whole-brain main effect of Peer > Computer replies: peak t values, coordinates, and number 

of voxels (p < 0.005, α = 0.05, k = 73 voxels).  

Region Peak t Peak x Peak y Peak z # Voxels 

NT 

Left aSTS 5.81 -60 -18 -18 199 

Right aSTS 3.21 48 -24 -27 114 

Left STS 3.67 -69 27 -12 143 

Right STS 3.81 63 0 -12 115 

mPFC 3.25 -3 -66 27 279 

Posterior cingulate 3.91 -3 63 36 126 

Left TPJ 3.10 -60 60 18 73 

Caudate  3.16 0 -6 -12 202 

ASD 

Right aSTS 4.18 51 -21 -24 74 
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Figure 4. While there were no significant differences between groups for the main effect of partner 

type at the whole-brain level, NT participants (orange) showed activation in a larger number of regions 

than participants with ASD (green) when chatting with the peer. The two participant groups had 

overlapping activation (red) in right aSTS. 

 

 

 

 

 

 

 

 

 

Peer Engagement versus Peer Non-Engagement. There were also no 

significant group differences when participants received a “Me too!” reply from the 

peer versus when they received an “I’m away” reply from the peer. However, each 

group did show neural sensitivity in reward regions to this contrast. Within the NT 

group, there was greater activation in response to peer engagement in caudate, 

bilateral amygdala, right IFG, and dmPFC. Within the ASD group, there was greater 

activation to peer engagement in vmPFC, right IFG, and dmPFC. Figure 5 depicts 

distinct and overlapping activation for the two participant groups. 

Figure 5. While there were no significant differences between groups for the contrast of Peer 

Engagement > Peer Non-Engagement at the whole-brain level, NT participants (orange) showed 

activation in a larger number of regions than participants with ASD (green). The two participant 

groups had overlapping activation (red) in dmPFC and right IFG. 

 

 

 

 



 25 

 

 

Peer Engagement versus Computer Engagement. The comparison of 

receiving a “Me too!” response from a peer versus receiving a “Matched!” response 

from the computer also revealed no group differences. However, NT participants 

showed greater activation to the peer in mPFC, posterior cingulate, and caudate, 

while no areas of the brain were more active to peer versus computer in ASD 

participants. See Table 3 for a list of brain regions showing greater activation for Peer 

Engagement > Computer Engagement. 

Table 3. Whole-brain contrast of Peer Engagement > Computer Engagement: peak t values, 

coordinates, and number of voxels (p < 0.005, α = 0.05, k = 73 voxels).  

Region Peak t Peak x Peak y Peak z # Voxels 

NT 

mPFC 4.29 0 -63 24 256 

Posterior cingulate 3.96 -3 60 36 150 

Caudate  3.20 0 -6 -15 307 

ASD 

NONE 

 

Effect of Social Engagement. Finally, we were interested in the effect of 

social engagement, or receiving a “Me too” reply from the peer versus an “I’m away” 

reply from the peer VERSUS receiving a “Matched!” reply from the computer versus 

a “Disconnected” reply from the computer. At the whole brain level, there were no 

significant group differences. Within each group separately, there were also no brain 

regions that showed significant activation for this contrast. 

Effect of Mutual Engagement: ROI Analyses. For ROI analyses, we conducted 

a 2 (Engagement vs. Non-engagement) x 2 (Peer vs. Computer) x 2 (TD vs. ASD) 

repeated measures ANOVA for each ROI. Several regions showed a main effect of 
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Engagement. These included amygdala (F(1,89) = 5.34, p = 0.02), VSi 

(F(1,63)=7.30, p = 0.01), VSs (F(1,114)=9.12, p = 0.003), mPFC (F(1,56)=12.50, p < 

0.001), and dmPFC (F(1,73)=4.27, p = 0.04), and for all of these regions, the neural 

response was greater to Engaged replies than to Non-engaged replies. Several regions 

also showed a main effect of Partner Type. These regions included the amygdala 

(F(1,90) = 4.19 p = 0.04), VSi (F(1,38)=7.59, p = 0.01), VSs (F(1,55)=7.52, p = 

0.01), RaSTS (F(1,39)=15.73, p < 0.001), LaSTS (F(1,62)=9.73, p = 0.002), mPFC 

(F(1,38)= 15.32, p < 0.001), and dmPFC (F(1,105)=23.07, p < 0.001), and for all of 

theses regions, the neural response was greater when receiving Peer replies than when 

receiving Computer replies. A subset of these regions, including amygdala 

(F(1,114)=10.56, p = 0.002), VSs (F(1,114)=6.79, p = 0.01), and dmPFC (F(1,114) = 

4.15, p = 0.04), also showed an Engagement by Partner Type interaction, wherein the 

neural response to Peer Engagement was significantly greater than the neural 

response to both Computer Engagement and Peer Non-Engagement. The one region 

of interest for which there was a main effect of group (ASD vs. NT) during the reply 

period was the amygdala (F(1,38)=4.54, p = 0.04), which showed greater activation 

in NT participants compared to ASD participants. Figure 6 depicts amygdala 

activation during the reply period, where there was a significant main effect of group. 

See Appendices for graphs of the remaining ROIs. 

Figure 6. Effect of mutual engagement: ROI analysis. During the reply period, the amygdala showed a 

significant main effect of group, with NT participants exhibiting greater activation than those with 

ASD across the Engaged and Non-Engaged conditions.  
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Exploratory Analysis: Relation Between Self-Reported Desire to See Peer 

Reply and Amygdala Activation. Given the amygdala’s role in social reward and 

social cognitive processing, we were interested to see if amygdala activation during 

the initiation or reply period was related to participants’ self-reported level of 

enjoyment when chatting with the peer. While NT participants’ amygdala activation 

was not related to their self-reported enjoyment, participants with ASD showed a 

significant positive correlation between amygdala activation when receiving a reply 

from the peer (versus computer) and the degree to which they reported wanting to see 

the peer’s (versus computer’s) reply while chatting (r(18) = 0.53, p = 0.02) (Figure 

7).  

 

Figure 7. Participants with ASD showed a significant correlation between amygdala activation to Peer 

Reply > Computer Reply and self-reported desire to see Peer (versus Computer) replies. 
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Discussion 

This study investigated the neural correlates of initiating and responding to 

bids for social interaction in children with and without ASD. Consistent with past 

work (Warnell et al., 2017), neurotypical participants exhibited greater activation in 

brain regions involved in social cognition and reward when they received responses 

from a peer than when they received responses from a computer. Surprisingly, 

participants with ASD overall had similar neural responses to their NT peers. They 

too exhibited greater activation to Peer versus Computer replies in several areas of the 

social brain as well as brain regions involved in reward processing. While the ASD 

group qualitatively exhibited less activation to Peer versus Computer replies 

compared to neurotypical controls, these differences did not reach significance at the 

whole brain level.  

There are several possible reasons why we did not find significant group 

differences at the whole-brain level, as expected. First, ASD is a highly 

heterogeneous disorder, with highly heterogeneous neural activation patterns (e.g., 

Hasson et al., 2009). This variability may have minimized group differences in this 

relatively small sample. As noted in Figures 4 and 5, while group differences did not 

reach significance at the whole-brain level, NT and ASD participants displayed both 

overlapping and distinct activation when receiving replies from the Peer, with NT 

participants displaying greater activation in regions associated with reward processing 

(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011; www.neurosynth.org) such 

as mPFC, caudate, posterior cingulate, and amygdala. While Figures 4 and 5 do not 

represent statistically significant differences between groups, our statistical 
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thresholding and corrections for multiple comparisons at the whole-brain level (used 

to diminish Type I errors), may have increased the likelihood of Type II errors 

(Lieberman & Cunningham, 2009). Thus, Figures 4 and 5 may represent true 

differences between groups, but this will need to be replicated by future studies. As 

Lieberman and Cunningham (2009) note, it is better for neuroimaging researchers to 

report findings from more lenient statistical thresholds in order to avoid Type II errors 

(epecially because the cognitive, social, and affective neuroscience fields are still in 

an ‘exploration phase’), and then rely on replication and meta-analysis to erase Type I 

errors. Otherwise, if we employ very stringent statistical thresholds to avoid Type I 

errors, we might miss true, subtle effects that will go unreported in meta-analyses. 

It is possible that the current study may not have had enough power to detect 

group differences at the whole-brain level. While the number of participants in this 

study (i.e., 20 in each group) was larger than that of past studies investigating social 

motivation in ASD (i.e., an average of 16 in each group), it is possible that we still 

did not had enough power to detect differences between groups. This is especially 

true for interaction effects (Brookes et al., 2004), which were of primary interest in 

the current study. According to simulations reported in Brookes et al., (2004), a trial 

with 80% power for an overall effect only had 29% power to detect an equal 

magnitude interaction effect. To increase power for interaction effects, Brookes et al. 

(2004) suggest inflating sample sizes fourfold. Thus, future studies investigating 

neural circuitry in ASD using similar paradigms should significantly increase the 

sample size to ensure adequate power. 
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Another possibility is that the current findings represent true similarities 

between diagnostic groups. Despite the social cognitive weaknesses that are 

characteristic of ASD, many autistic individuals report wanting friends (Henault & 

Attwood, 2002); thus, they may have broadly intact neural reward circuitry when 

initiating and receiving replies from peers. This latter possibility has implications for 

how we understand the social motivation hypothesis of ASD. 

 Group differences did emerge, however, within the amygdala. We chose to 

include the amygdala as a region of interest due to its role in social cognition and 

social motivation (Berridge & Kringelbach, 2008; Chevallier et al., 2012; Dichter et 

al., 2012; Fareri, Martin, & Delgado, 2008; Haber & Knutson, 2010; Kohls et al., 

2012; Schultz, 2005). During both the initiation and reply periods, participants with 

ASD showed a blunted amygdala response across conditions. Thus, when they were 

sharing information about themselves (with both the peer and computer) and when 

they were receiving information (from both the peer and the computer), participants 

with ASD showed less activation than their neurotypical counterparts. 

The amygdala has been implicated in social cognition (Adolphs, 2010; 

Kennedy, Glascher, Tyszka, & Adolphs 2009; Adolphs & Spezio, 2006; Spezio, 

Huang, Castelli, & Adolphs 2007), and several studies have demonstrated differences 

in the amygdala between individuals with ASD and their neurotypical peers. 

Specifically, people with ASD show less amygdala activation when reading others’ 

emotions (Baron-Cohen et al., 1999), show either increased (Dalton et al. 2005; 

Monk et al. 2010; Weng et al. 2011) or decreased (Critchley et al. 2000; Dapretto et 

al. 2006; Grelotti et al. 2005; Hadjikhani, Joseph, Snyder, & Tager-Flusberg, 2007) 
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amygdala activation to faces, have an altered growth pattern of neurons in the 

amygdala (Avino et al., 2018) that is related to symptom severity (Mosconi et al., 

2009; Schumann, Barnes, Lord , & Courchesne, 2009), and have impaired 

connectivity between the amygdala and other key social brain regions (von dem 

Hagen, Stoyanova, Baron-Cohen, & Calder, 2013). The amygdala is also related to 

reward processing (Adolphs & Spezio, 2006; Klein et al., 2009) and shows 

abnormalities in individuals with ASD when processing social rewards (Dichter et al., 

2012; Kohls et al., 2012). 

Given the amygdala’s role in social reward processing, we would expect 

greater activation in this region when participants were sharing self-relevant 

information with a Peer versus the Computer. However, neither NT nor ASD 

participants showed a differential neural response in this region when initiating a chat 

with the Peer versus the Computer. Instead, the NT group showed significant 

amygdala activation when sharing information with both Peer and Computer, while 

the ASD group did not show significant amygdala activation when initiating chats 

with either conversational partner. There are two plausible reasons for this finding. 

First, the nature of the task may have been too cognitively overwhelming for 

participants to distinguish between Peer and Computer conditions during the initiation 

period. Specifically, they were asked to quickly respond to a prompt (e.g. “I have 

been to Baltimore”) and may not have had time to notice whether they were chatting 

with the Peer or with the Computer (which was noted at the top of their screen). We 

believe that this is the most likely explanation. A second possibility is that 

participants actually found the two conditions equally rewarding. We believe this is 
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unlikely, given that both NT and ASD participants reported that they enjoyed sharing 

information about themselves with peers significantly more than they enjoyed sharing 

information with the computer.  

Thus, greater amygdala activation across both conditions (Peer and Computer) 

in NT participants during the initiation period likely reflects a neural correlate of 

initiating social interactions by sharing self-relevant information, which is a critical 

component of normative social development (Buhrmester & Prager, 1995; Collins & 

Miller, 1994; Sprecher, Treger, Wondra, Hilaire, & Wallpe, 2013). Children and 

adolescents with ASD, on the other hand, have characteristic weaknesses in social 

initiation (Kamps et al., 1992; Koegel, Koegel, Frea, & Fredeen, 2001; Oke & 

Schreibman, 1990; Shabani et al., 2002; Strain, Kerr, & Ragland, 1979), which may 

have been reflected in the current study by underactive amygdala responses when 

sharing information about themselves. 

Group differences in the amygdala also emerged during the Reply period of 

the task, when participants received information from the peer (i.e., “Me too!” or 

“I’m Away”) and computer (i.e., “Matched! or “Disconnected”). At the whole-brain 

level, NT participants showed significant activation in bilateral amygdala when 

receiving an engaged response from a peer (e.g., “Me too!”) versus receiving a non-

engaged response from a peer (e.g., “I’m Away”). Participants with ASD did not 

show activation in amygdala to this contrast, although between-group differences did 

not reach significance at the whole-brain level. Amygdala ROI analyses revealed a 

significant main effect of group, with NT participants exhibiting greater activation 

than participants with ASD regardless of whom they were receiving a response from 
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(Peer or Computer) and regardless of whether or not the conversational partner was 

engaged (“Me too!” or “Matched!”) or not engaged (“I’m Away” or “Disconnected”). 

Further supporting the role of the amygdala in social reward processing, participants 

with ASD demonstrated a significant correlation between amygdala activation to Peer 

(versus Computer) replies and self-reported desire to see the Peer’s (versus 

Computer’s) reply. NT participants did not show this correlation, possibly due to 

limited variability in their responses to the post-scan questionnaire. 

 The only other group difference that emerged was in the right TPJ during the 

initiation period. Unexpectedly, participants with ASD showed significantly higher 

activation than NT participants in this region while sharing self-relevant information 

with the peer and the computer. The TPJ is involved in thinking about other people 

(i.e., mentalizing; Decety & Lamm, 2007; Samson, Apperly, Chiavarino, & 

Humphreys, 2004; Saxe & Kanwisher, 2003) as well as thinking about oneself 

(Vogeley & Fink, 2003). A large body of literature shows reduced activation in TPJ 

in ASD during tasks that involve mentalizing, or taking the perspective of another 

person (Castelli et al., 2002; Kana et al., 2009; Lombardo et al., 2011; Murdaugh, 

Nadendla, & Kana, 2014; but see Dufour et al., 2013). One study investigating theory 

of mind found TPJ hyperactivation in ASD (Mason, Williams, Kana, Minshew, & 

Just, 2008). Greater activation in a brain region associated with a core area of 

dysfunction in ASD, such as theory of mind, may reflect a compensatory mechanism 

(see Dichter, Felder, & Bodfish, 2009; Schmitz et al., 2006). In fact, research in 

disorders such as schizophrenia and depression suggests that psychopathology can be 

associated with hyperactivation of brain regions that are related to the disorder 
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(Buchsbaum et al., 2007; Manoach, 2003; Wagner et al., 2006), supporting the notion 

of cortical inefficiency. In the current study, it is therefore plausible that participants 

with ASD required more TPJ activation than their neurotypical peers when initiating 

conversations, because this is a core area of dysfunction in the disorder (Kamps et al., 

1992; Koegel et al., 2001; Oke & Schreibman, 1990; Shabani et al., 2002; Strain, 

Kerr, & Raglan, 1979). 

 Overall, findings suggest that, despite the centrality of social interactive 

difficulties in ASD, neural differences between children and adolescents with ASD 

and their neurotypical peers are subtle. There were no significant whole-brain 

differences between groups during the Initiation or Reply periods, and both groups 

recruited social cognitive and reward circuitry while interacting with a peer. 

However, the whole-brain response to peer replies qualitatively appeared more robust 

in the neurotypical sample, and ROI analyses supported significant between-group 

differences in the amygdala and right TPJ.  

Conclusion 

In sum, this study was the first to compare the neural correlates of participants 

with and without ASD during a naturalistic “chat” paradigm. Findings are broadly 

consistent with Dufour et al. (2013), who found minimal differences during theory of 

mind tasks in a very large sample of adults with and without ASD. It is possible that 

group differences in the current study could be obscured due to the highly 

heterogeneous nature of the ASD sample; for example, different individuals may have 

different neural correlates of social interactive challenges. It is also possible that 

social interactive difficulties could be present in individuals with ASD without 
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corresponding differences in brain activation. Future studies should examine other 

neural indices of social interaction such as connectivity between regions and should 

examine the contribution of factors such as age. 
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Appendices 

 

Post-Scan Questionnaire 

 

CHT_ASD Rating Questionnaire ID:                               Date: 

 

CHT Parameters: ___________________________ 

 

Pre-test (after they select their chat partner during mock)—REMEMBER 
TO SHOW SCALES TO CHILD 

1) How much are you interested in chatting with _________? Where 1 is 
not at all and 5 is a lot. 

___________________ 

2) How much do you think you’d like  _________ in real life?  Where 1 is 
not at all and 5 is a lot? 

_________________ 

Post-test—PULL A PHOTO UP OF THE CHAT PARTNER BEFORE THE 
CHILD COMES IN TO THE ROOM. USE THE CORRECT SCALES. 

First, let’s talk about _______________. (Fill in name) 

1) How much did you like chatting with ___________? Where 1 is not at 
all and 5 is a lot. 

___________________ 

2) How much do you think you’d like ___________in real life?  Where 1 is 
not at all and 5 is a lot? 

_________________ 

3) Sometimes it can be hard to pay attention when you’re playing games. 
How much did you pay really close attention answering a question 
when he/she was the one you were chatting with? Where 1 is not at all 
and 5 is a lot. 

_________________ 

4) How much did you want to see his/her answer to your question? 
Where 1 is not at all and 5 is a lot. 

_________________ 

5) How did you feel when she/he agreed with your answer? Where 1 is 
very bad and 5 is very good. 
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_________________ 

6) How did you feel when she/he disagreed with your answer? Where 1 is 
very bad and 5 is very good. 

_________________ 

7) How did you feel when she/he was away and didn’t respond? Where 1 
is very bad and 5 is very good. 

_________________ 

8) What did you like the most?  

ANSWERED  AWAY  THE SAME 

9) How much do you think ___________ would want to be your real-life 
friend? Where 1 is not at all and 5 is a lot. 

_________________ 

10) Tell me about what kind of person you think ___________is. 

________________________________________________________
________________________________________________________
________________________________________________________ 

11) Why do you think ___________was away for some questions? 

________________________________________________________
________________________________________________________
________________________________________________________ 

 

Now let’s talk about those questions where no one saw your answer and it 
was just the computer. 

12) How much did you like it when you were just answering the computer?  
Where 1 is not at all and 5 is a lot? 

_________________ 

13) Sometimes it can be hard to pay attention when you’re playing games. 
How much did you pay really, really close attention answering a 
question when you were chatting with the computer? Where 1 is not at 
all and 5 is a lot. 

_________________ 

14) How much did you want to see if the computer matched your answer? 
Where 1 is not at all and 5 is a lot. 

_________________ 

15) How did you feel when your answer matched the random answer? 
Where 1 is very bad and 5 is very good. 

_________________ 
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16) How did you feel when your answer did not match the random answer? 
Where 1 is very bad and 5 is very good. 

_________________ 

 

17) How did you feel when the computer was disconnected? Where 1 is 
very bad and 5 is very good. 

_________________ 

18) What did you like the most?  

CONNECTED (told you matched or mismatched)
 DISCONNECTED    

THE SAME 

19) Do you think there was more to this game than we told you about? 

YES       NO 

20) [If yes] What? 

________________________________________________________
________________________________________________________
________________________________________________________ 

 

21) Did you like chatting with a person or the computer more? 

PERSON       COMPUTER 

 

22) Did you pay more attention when it was a person or the computer? 

PERSON       COMPUTER 

 

23) When you were connected to the computer, did anyone see your 
answer? 

YES         NO 

24) When the other person was playing the maze, did they still see your 
answer? 

YES         NO 

25) Were there any particular questions that were fun to answer or hard to 
answer? 

________________________________________________________
________________________________________________________
________________________________________________________ 

26) Is there anything else you want to tell us about the chat task? 
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