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Graphene is a novel material that features a quasi-relativistic linear energy

dispersion with the quantum mechanical motion of electrons obeying the massless

Dirac equation. In this dissertation, we study the many-body effects in graphene

due to Coulomb interaction and electron-phonon interaction. Interaction effects

can appear in both transport and electronic properties. For many-body effects in

transport, we formulate the theory for Coulomb drag in double-layer graphene. We

calculate the drag resistivity and study its dependence on temperature, density

and interlayer spacing, finding zero drag if one of the graphene layers is intrin-

sic (i.e., undoped) and a non-zero drag exhibiting a similar behavior to regular

bilayer drag if both graphene layers are extrinsic (i.e., doped). For many-body ef-

fects in electronic properties, we formulate the theory for quasiparticle and phonon

renormalization due to Coulomb and electron-phonon interaction. We first study

renormalization of electron properties due to Coulomb interaction by calculating the

renormalized quasiparticle parameters from the electron self-energy, showing that



intrinsic graphene behaves as a marginal Fermi liquid and extrinsic graphene behaves

as a regular Fermi liquid. We then study renormalization of electron properties due

to electron-phonon interaction. We calculate the electron self-energy and the renor-

malized quasiparticle velocity, finding that the renormalized band structure exhibits

a kink at the phonon energy in agreement with angle-resolved photoemission spec-

troscopy (ARPES) experiment. We finally study renormalization of phonon energy

due to electron-phonon interaction. We calculate the phonon self-energy and the

renormalized phonon energy dispersion, showing that multiple Kohn anomalies arise

which are completely different from the Kohn anomaly in usual metals.



MANY-BODY EFFECTS IN GRAPHENE

by

Wang-Kong Tse

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Sankar Das Sarma, Chair/Advisor
Professor Theodore Einstein
Professor Michael Fuhrer
Professor Victor Galitski
Professor Ellen Williams



c© Copyright by
Wang-Kong Tse

2008



To my parents,

who have offered me their unconditional support through these years.

ii



Acknowledgments

I have heartfelt gratitude for all the people who have helped and supported

me during these five years of my Ph.D. study. First of all, I would like to thank my

advisor Professor Sankar Das Sarma for his insightful advice and helpful guidance,

and for his motivation which inspired me on several occasions to get through the

tough research problem at hand. It has been a true pleasure to work with and learn

from him, who has created a wonderful environment for the Condensed Matter

Theory Center (CMTC) where I have also benefited tremendously from interacting

with other group members.

I remain very grateful to my family for being supportive of my educational

and career goal. I am particularly grateful for for my mother who has supported me

a great deal during these years and my father for instilling a learning environment

at home when I was young. Without the support of my family, I would not have

been able to pursue my goal and obtain my Ph.D. today. Words cannot express my

gratitude to my family.

I would also like to express my gratitude to all the colleagues and friends who

have helped and supported me in Maryland. I would like to thank Ben Hu from

whom I learned a lot through enlightening and stimulating discussions (occasionally

over dim sums at lunch); Euyheon Hwang for his patient and useful guidance in

tackling difficult and detailed calculation problems; Igor Zutic for his useful advice

to my career which has helped me a lot when I was starting out my research at

CMTC and when I was preparing for my job hunting.

iii



Last but not least, I owe my gratitude to three great friends Stephen Ho, Don

Priour and Wayne Witzel, who have provided their help and encouragements when

I needed it, and who have enriched my life in Maryland through countless occasions

of sharing stimulating discussions and interesting adventures.

iv



Contents

1 Graphene 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Graphene structure . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Energy dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Important graphene parameters . . . . . . . . . . . . . . . . . 9

1.2 Angle-resolved photoemission spectroscopy
(ARPES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Graphene ARPES experiment . . . . . . . . . . . . . . . . . . 15

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Quasiparticle renormalization due to Coulomb interaction 21
2.1 Random-phase approximation . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Extrinsic graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Quasiparticle decay rate . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Renormalization factor . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Renormalized velocity . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Intrinsic graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Quasiparticle decay rate . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Renormalization factor . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Renormalized velocity . . . . . . . . . . . . . . . . . . . . . . 40

3 Many-body effect in graphene transport – Coulomb drag 42
3.1 The phenomenon of Coulomb drag . . . . . . . . . . . . . . . . . . . 42
3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Drag conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Nonlinear susceptibility . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Drag in intrinsic graphene systems . . . . . . . . . . . . . . . . . . . 49
3.4 Drag in extrinsic graphene systems . . . . . . . . . . . . . . . . . . . 51

3.4.1 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Effect of interlayer plasmon excitation . . . . . . . . . . . . . . . . . 60

v



4 Quasiparticle renormalization due to electron-phonon interaction 64
4.1 Electron-phonon interaction . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Phonon-mediated electron-electron interaction . . . . . . . . . . . . . 68
4.3 Self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Imaginary part of the self-energy . . . . . . . . . . . . . . . . 73
4.3.2 Real part of the self-energy . . . . . . . . . . . . . . . . . . . 75
4.3.3 Quasiparticle spectral function . . . . . . . . . . . . . . . . . . 80
4.3.4 Renormalized energy dispersion . . . . . . . . . . . . . . . . . 81

5 Phonon renormalization due to electron-phonon interaction 85
5.1 Validity of the Born-Oppenheimer

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Phonon self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Long-wavelength limit . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Static limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Finite q and ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Renormalized phonon energy dispersion . . . . . . . . . . . . . . . . . 99
5.5 Understanding the Kohn anomalies . . . . . . . . . . . . . . . . . . . 101

6 Conclusion and Outlook 104

List of Publications 108

Bibliography 110

vi



List of Figures

1.1 The real-space honeycomb lattice structure of graphene. A unit cell
is formed by connecting the centers of four adjacent hexagonal lat-
tices, and comprises two atoms labeled A and B. a1 and a2 are the
lattice vectors, e1, e2, e3 are the unit vectors along the three possible
directions of the hexagon. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The reciprocal-space structure of graphene, which is also a honeycomb
lattice. The Brillouin zone is indicated by the shaded hexagon, with
corners at K and K’ points. b1 and b2 are the reciprocal space vectors. 4

1.3 The energy-momentum dispersion surface of graphene (adapted from
Fig. 3 of Ref. [1]). The zoom-in figure depicts the energy dispersion
in the vicinity of the K point, which exhibits a cone-like structure. . . 8

1.4 Geometry of an ARPES experiment. (adapted from Fig. 6(a) of
Ref. [2]) The electron analyzer registers the photoemission intensity
at a polar angle θ and azithmuthal angle φ. . . . . . . . . . . . . . . 13

1.5 ARPES intensity (a) EDCs, (b) MDCs and (c) measured on the ma-
terial Bi2212 (adapted from Ref. [3]). The EDCs are shown vertically
displaced for different values of momentum and the MDCs for differ-
ent values of energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Constant energy maps adapted from Fig. 1c-d of Ref. [4], in which
the Fermi level around the six K and K’ points are clearly discernible.
Fig. 1.6 c corresponds to an electron doping with a Fermi level of
0.45eV above the Dirac point and Fig. 1d to a hole doping with a
Fermi level of 1.5eV below the Dirac point. It can be seen that from
Fig. 1.6 d that at such a large energy away from the Dirac point the
energy dispersion is no longer linear. . . . . . . . . . . . . . . . . . . 16

vii



1.7 Band structure of graphene at the Brillouin zone corner K adapted
from Fig. 2 of Ref. [4]. The colored plots show the measured intensity,
and the dashed lines indicate an extrapolation of the lower band.
The number in each subfigure shows the electron density in cm−2.
Fig. 1.7i shows the reconstructed spectral function using the extracted
imaginary part of the self-energy from the line-width of MDCs. . . . . 17

1.8 Measured line-widths of the MDCs at different values of electron den-
sity n (in units of 1013cm−2) from Ref. [4]. . . . . . . . . . . . . . . . 18

2.1 The Feynman diagram for the screened Coulomb interaction within
the RPA. The thin and thick wiggly lines denote respectively the bare
and the RPA-screened interaction, and the thin straight line stands
for the bare Green function. . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The electron self-energy Σ Eq. (2.15), the thick wiggly line denotes
the screened Coulomb interaction within the RPA in Fig. 2.1. This
is the standard ring diagram approximation for self-energy exact in
the rs � 1 limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 The experimental setting of a Coulomb drag experiment. A current
is sent through the “active layer” driving electrons to flow along the
layer, this “drags along” the electrons to move in the same direction in
the open-circuited “passive layer” via interlayer Coulomb interaction,
which then induce a voltage that can be measured. . . . . . . . . . . 43

3.2 Diagram for the nonlinear susceptibility Γ, which is a three-point
vertex function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Diagrams contributing to the drag resistivity Eq. (3.2). The dou-
ble wavy lines represent the screened interlayer Coulomb potential
Eq. (3.4) and the vertices on the left and on the right denote charge
current in the two layers. Dashed vertical lines next to the vertices
denote impurity vertex correction to the charge current. . . . . . . . . 46

3.4 ρD/(T/TF )2 as a function of T/TF for Coulomb drag between two
identical extrinsic graphene sheets, with values of kFd = 10 (solid
lines), 5 (dashed lines), and 1 (dot-dashed lines). Numerical results
are indicated with bold (black) lines and analytical results Eq. (3.15)
with thin (grey/red) lines. The analytical results become an increas-
ingly accurate approximation to the full numerical results with in-
creasing kF d (i.e. increasing n or d). . . . . . . . . . . . . . . . . . . 60

viii



3.5 ρD/(T/TF )2 vs. T/TF for higher values of T up to 0.2TF . Upper
panel: for fixed interlayer distance d = 500Å and different values
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Chapter 1

Graphene

1.1 Introduction

Graphene is a two-dimensional hexagonal lattice of carbon atoms. It can be

regarded as the fundamental building block of other important carbon-based struc-

tures, such as graphite (a stack of graphene sheets bonded by the van der Waals

force) and carbon nanotubes (a cylinder formed by rolling up a graphene sheet).

Graphene was first realized [7] experimentally by the group of Andre Geim at the

University of Manchester in 2004, employing a surprisingly simple but effective

method of ripping weakly bound layers from a graphite crystal using adhesive tape.

Those layers are then rubbed against an oxidized silicon surface and put under an

optical microscope to look for the rare monolayer flakes that would be graphene.

Before its discovery, pure graphene was presumed not to exist in nature as early

theoretical studies [8, 9, 10, 11] predicted that a two-dimensional crystal would

be thermodynamically unstable and would spontaneously decompose, segregate or

1



rearrange itself into other three-dimensional structures. This unexpected break-

through therefore immediately caught the attention of the worldwide condensed

matter physics community, followed by a burst of experimental and theoretical in-

vestigations resulting in more than six hundred papers in the four-year time-frame

since its discovery. Several reviews in the subject that appeared in the literature

are Refs. [12, 1, 13, 14].

One of the most interesting aspects of graphene that captures the interest of

the condensed matter community is the linear energy dispersion of electrons at the

Brillouin zone corners. This gives the electrons in the vicinity of those points the

property of relativistic particles, obeying the massless Dirac equation as for massless

neutrinos in relativistic quantum field theory. The band structure of graphene that

gives rise to the peculiar linear dispersion at the Brillouin zone corners was first

discussed by Wallace [15] in 1947 using tight-binding analysis, and then followed

by McClure [16] and Slonczewski et al. [17]. These intitial theoretical studies of

graphene served more as a stepping stone to understand the properties of graphite

rather than as a subject of its own interest.

1.1.1 Graphene structure

The hexagonal real-space structure of graphene comprises two interpenetrating

triangular sublattices A and B (Fig. 1.1), and this real-space structure also translates

into a hexagonal lattice in momentum space. The Brillouin zone is a hexagon

indicated by the shaded area in Fig. 1.2, with corners at the high symmetry K and

2



K’ points. When undoped, graphene has point Fermi surfaces located at these K

and K’ points, which are also called “valleys” by virtue of the fact that these are

the troughs of the electron energy dispersion surface. The sublattices and valleys

constitute additional electronic degrees of freedom besides the electron spin, with

the A and B sublattices referred as the “pseudospins” and the K and K’ valleys

referred as the “isospins”. In the absence of any isospin symmetry-breaking process

(i.e., intervalley impurity scattering, or Umklapp phonon scattering between a K

valley point and a K’ valley point), the isospin degree of freedom is degenerate. In

addition to the two electronic spins, this yields an combined electronic degeneracy

factor of 2 × 2 = 4.

Figure 1.1: The real-space honeycomb lattice structure of graphene. A unit cell is
formed by connecting the centers of four adjacent hexagonal lattices, and comprises
two atoms labeled A and B. a1 and a2 are the lattice vectors, e1, e2, e3 are the unit
vectors along the three possible directions of the hexagon.

3



Figure 1.2: The reciprocal-space structure of graphene, which is also a honeycomb
lattice. The Brillouin zone is indicated by the shaded hexagon, with corners at K
and K’ points. b1 and b2 are the reciprocal space vectors.

1.1.2 Energy dispersion

In the following we derive the effective Hamiltonian in the neighborhood of

the K point from the tight-binding model [15]. To this end, we define the vectors of

the real-space lattice (Fig. 1.1)

a1 =

√
3a

2
(1,

√
3),

a2 =

√
3a

2
(−1,

√
3), (1.1)

where a = 1.42Å is the distance between adjacent carbon atoms, and the reciprocal

lattice vectors (Fig. 1.2)

b1 =
2π

3a
(
√

3, 1),

b2 =
2π

3a
(−

√
3, 1), (1.2)

4



and the three unit vectors connecting any atom to its nearest neighbors

e1 =
a

2
(
√

3, 1),

e2 =
a

2
(−

√
3, 1),

e3 = a(0,−1). (1.3)

The tight-binding Hamiltonian, in second quantized form, for the π-orbital electrons

taking into account nearest-neighbor hopping is given by (next nearest-neighbor

hopping can be neglected in the vicinity of the K point):

HTB = −t
∑

〈i,j〉σ

(

a†
iσbjσ + b†jσaiσ

)

, (1.4)

where aiσ, biσ are the electron annihilation operators for the sublattice A and B, i, j

are lattice site labels (with the corresponding coordinate vectors Ri and Rj, 〈i, j〉

denotes the set of i and j in the nearest neighborhood of one another, σ is the spin

label, and t ≈ 2.7 eV is the nearest-neighbor hopping energy. To express Eq. (1.4)

in the momentum space, we define the Fourier transforms of aiσ and biσ

aiσ =
1√
N

∑

k

e−ik·Riakσ,

biσ =
1√
N

∑

k

e−ik·Ribkσ, (1.5)

where N is the number of unit cells. The tight-binding Hamilonian can now be

expressed as

HTB =
∑

kσ

[

α(k)a†
kσbkσ + α∗(k)b†kσakσ

]

=
∑

kσ

[

a†
kσ b†kσ

]









0 α(k)

α∗(k) 0

















akσ

bkσ









. (1.6)
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where

α(k) = −t(1 + e−ik·a1 + e−ik·a2). (1.7)

The energy dispersion is given by diagonalizing the Hamiltonian Eq. (1.6),

ε± = ±|α(k)|

= ±t

√

√

√

√3 + 2cos
(√

3kxa
)

+ 4cos

(√
3kxa

2

)

cos

(

3kya

2

)

. (1.8)

The wave vector at the K and K’ points are K = (b1 − b2)/3 = (4π/3
√

3a)(1, 0)

and K ′ = −(b1 − b2)/3 = −(4π/3
√

3a)(1, 0). It can be easily verified that α(K) =

α(K ′) = 0. Expanding α(k) around K such that k = K + δk,

α(K + δk) = −t

{

1 + exp

{

−i

[

2π

3
+

√
3a

2

(

δkx +
√

3δky

)

]}

+exp

{

−i

[

−2π

3
+

√
3a

2

(

−δkx +
√

3δky

)

]}}

' 3ta

2
(δkx − iδky) . (1.9)

Therefore the energy dispersion near the K point is given by

ε± = ±3ta

2

√

δk2
x + δk2

y

= ±vδk, (1.10)

where v = 3ta/2 is the Fermi velocity of the electron. The Hamiltonian Eq. (1.6)

then becomes

HTB =
∑

kσ

[

a†
kσ b†kσ

]









0 v (δkx − iδky)

v (δkx + iδky) 0

















akσ

bkσ









, (1.11)
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from which we arrive at the following effective Hamiltonian near the K (or K’) point

in the first quantization

H0 = vσ · k, (1.12)

where σ = (σx, σy, σz) is the set of Pauli matrices describing the A and B sublattice

(i.e., pseudospin) degrees of freedom, and we have changed the notation for the mo-

mentum from δk back to k understanding that k is now measured from the K (or

K’) point. In real space, we substitute k = −i∇. Diagonalization of this Hamilto-

nian in the momentum space leads to the two energy eigenvalues εkλ = λvk; λ = ±1

is often referred to as the chirality in the graphene literature, with λ = 1 describing

the conduction band and λ = −1 the valence band. The two corresponding energy

eigenstates are |kλ〉 = [1 λeiφk ]/
√

2, where φk = tan−1(ky/kx) is the azithmuthal

angle of the momentm k. We also note, for discussions in subsequent chapters, that

the transformation which diagonalizes the Hamiltonian H0 has the following form

and is dependent on φk:

Uk =
1√
2









1 1

eiφk −eiφk









. (1.13)

Fig. 1.3 shows the full energy dispersion surface of graphene based on single-

particle band structure calculation, from which one can see that in the neighbour-

hood of the Brillouin zone corners K and K’ the energy dispersion indeed has a

cone structure. The energy dispersion of graphene is thus linear with respect to mo-

mentum in the vicinity of these K and K’ points described by Eq. (1.10), with the

upper portion of the cone behaving as the conduction band and the lower portion

7



the valence band. In this vein, graphene can be regarded as a zero-gap semiconduc-

tor with a linear energy dispersion instead of the usual quadratic energy dispersion

associated with regular semiconductors. Moreover, because the conduction and va-

lence bands are connected at a single point, electrons in the valence band can also

contribute to electronic properties through interband excitations to the conduction

band. As in a semiconductor, graphene can be doped by chemical disposition of

extrinsic atoms (such as potassium) or by electrical gating, with n-doping (addition

of electrons) yielding a finite Fermi surface in the conduction band and p-doping

(depletion of electrons) yielding a finite Fermi surface in the valence band. To carry

the analogy with semiconductor even further, doped graphene (either by chemi-

cal doping or by electrical gating) will be called extrinsic graphene while undoped

graphene called intrinsic graphene. Because of Eq. (1.11), the behavior of electron

Figure 1.3: The energy-momentum dispersion surface of graphene (adapted from
Fig. 3 of Ref. [1]). The zoom-in figure depicts the energy dispersion in the vicinity
of the K point, which exhibits a cone-like structure.

in the vicinity of the K and K’ points shares the same physics with the behavior of

8



the massless neutrino, which is governed by the massless Dirac equation. Electron

in graphene therefore behaves similarly as massless neutrino, with its quantum me-

chanical motion governed by the Dirac equation instead of the Schrödinger equation.

The electron pseudospin is analogous to the real spin in neutrinos pointing paral-

lel or anti-parallel to the momentum direction k. The Fermi velocity of graphene

electrons plays the role of the speed of light c, its value v ≈ 106m−1 being three

hundred times smaller than c. Because of this remarkable property for the electrons

near the K and K’ points, these points are also referred to as the Dirac points, and

the electrons as Dirac fermions.

1.1.3 Important graphene parameters

In this section we introduce some important quantities that are relevant to

our discussions later on in this dissertation. First, the electron energy dispersion

in graphene is not all the way linear up from the Dirac point; at a momentum

sufficiently far away from the Dirac point the energy dispersion becomes nonlinear

as shown in Fig. 1.3. The energy at which this happens is given by the size of the

Brillouin zone, and hence we define the cut-off momentum kc = ~/a (or equivalently,

the cut-off energy Λc = ~v/a where a = 1.42Å is the graphene lattice spacing)

characterizing the region where the linear energy dispersion is valid. Second, from

the graphene energy dispersion one can calculate the density of states as a function

of energy as

ν(ε) =
4ε

2π~2v2
, (1.14)
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where the factor of 4 counts the two spin and two valley degeneracies. We recall

that the density of states of a regular two-dimensional electron gas (2DEG) with

parabolic dispersion is a constant ν = m/~
2π; in contrast, the density of states of

graphene varies linearly with energy and vanishes at the Dirac point ε = 0. We note

that the electron/hole density achievable by electrical back gating in experiment [18]

is n/p ∼ 1014cm−2.

In Chapter 2 and Chapter 3, we will consider Coulomb interaction in graphene.

The relevant quantity indicating the strength of Coulomb interaction is given by the

interaction coupling parameter rs, which is defined as the ratio of the interparticle

potential energy to the single-particle kinetic energy. We recall that for regular

2DEG rs = (e2kF/εm)/(~2k2
F/2m) = 2me2/εm~

2kF is inversely proportional to the

square root of density. For graphene,

rs =
e2kF/εm

~vkF

=
e2

εm~v
, (1.15)

which is a constant independent of electron density, a result peculiar to the linear

energy dispersion of graphene. Note that rs is analogous to one of Nature’s funda-

mental constants – the fine structure constant αf = e2/~c. For graphene on a SiO2

substrate, the background dielectric constant εm is obtained as the average of the

vacuum and the substrate dielectric constants εm = (1 + 3.9)/2 = 2.5, and we have

rs ' 0.87.

In Chapter 4 and Chapter 5, we will consider electron-phonon interaction in

graphene. In particular, we are interested in the G band in-plane optical phonon

which has an energy ω0 = 200meV [13, 5], and the electron-phonon interaction is
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characterized by the coupling constant [Eq. (4.4)]:

g = −(
β~v

a2
)

√

~

2NMcω0
, (1.16)

with N here the number of unit cells, Mc = 2.2 × 104me the mass of a carbon

atom (me is the electron mass), a = 1.42Å the equilibrium bond length between

adjacent carbon atoms. The bond length oscillates around the equilibrium value

a due to lattice vibrations, and β = d lnt/d lnl ∼ 2 is a dimensionless parameter

describing the change of the nearest-neighbour hopping energy t with respect to the

bond length l [19, 20]. In the presence of electron-phonon coupling, electrons can

interact with one another through exchange of phonons, and this phonon-mediated

electron-electron interaction is characterized by the dimensionless coupling constant

[Eq. (4.22)]:

gee =
g2A
~2v2

=

(

β

a2

)2
~

ρω0

= 2 × 10−2, (1.17)

where A is the sample area and ρ is the mass density of graphene. The fact that

both rs and gee are smaller than unity shows that graphene is a weakly-interacting

system, with the phonon-induced electron-electron coupling weaker than Coulomb

coupling by an order of magnitude.
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1.2 Angle-resolved photoemission spectroscopy

(ARPES)

One important experimental technique to study the band structure of a mate-

rial is angle-resolved photoemission spectroscopy (ARPES). The principle of ARPES

is based on the photoelectric effect: electrons can be ejected from a material by ab-

sorbing photons of high enough energy. Upon absorbing a photon with an amount

of energy hν enough to overcome the binding forces in the solid, an electron in the

bulk of the solid will have sufficient energy to escape from the surface of the mate-

rial, with the amount of energy left going to the electron final-state kinetic energy

Ekin in the vacuum. The photon has to provide energy to do work on the electron to

overcome the binding energy EB of the electron in the solid and the surface potential

barrier of energy W (called the material work function), and therefore

hν = |EB| + W + Ekin. (1.18)

The goal is to determine the binding energy EB of the electron inside the solid,

and therefore by measuring the kinetic energy of the photo-emitted electron and

the material work function W one can obtain EB from Eq. (1.18). Fig. 1.4 shows

the geometry of the ARPES experiment. The magnitude of the momentum of the

photo-emitted electron is given by its kinetic energy as p =
√

2mEkin. In the case of

a two-dimensional system (for which graphene is a prominent example), one needs to

concern only the in-plane component of the electron momentum inside the material,

which can be deduced from conservation of momentum as p// =
√

2mEkinsinθ,
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where θ is the polar angle at which the photo-emitted electron is detected in the

vacuum. The energy-momentum relationship can, therefore, be mapped in this way

for different directions. On the other hand, the energy dispersion can also be more

simply mapped out by tracking the energy position of the peaks detected in the

ARPES spectra as a function of p// for different directions. Besides the energy

Figure 1.4: Geometry of an ARPES experiment. (adapted from Fig. 6(a) of Ref. [2])
The electron analyzer registers the photoemission intensity at a polar angle θ and
azithmuthal angle φ.

dispersion of a material, another important quantity which can be extracted from

the ARPES data is the quasiparticle spectral function Ak(ω). The spectral function

is an important quantity because it provides a measure of how well the elementary

excitations in a material can be described by quasiparticles within the framework of

Fermi liquid theory. For non-interacting particles, the spectral function is given by

a delta function at the particle energy, whereas for interacting particles the spectral

function broadens into a Lorentian with the center position and the line-width giving

information of the interparticle interaction. In the language of many-body theory,

the spectral function of a quasiparticle having energy ξk = εk − εF is defined as

Ak(ω) ≡ −2ImGk(ω), where Gk(ω) is the retarded interacting quasiparticle Green

13



function given by Gk(ω) = 1/[ω − ξk − Σk(ω)]. The quantity Σk(ω) is the retarded

self-energy, which we will consider in detail in the following chapters. The measured

photoemission intensity I(k, ω) is directly proportional to the spectral function:

I(k, ω) ∝ nF (ω)Ak(ω)

= nF (ω)
ImΣk(ω)

[ImΣk(ω)]2 + [ω − ReΣk(ω)]2
, (1.19)

where nF (ω) = 1/[exp(ω/kBT ) + 1] is the Fermi distribution function.

ARPES studies of the spectral function have been carried out previously in

metals and cuprate materials (see, for example, Refs. [21] and [22]). Information on

the spectral function can be directly extracted from scanning the measured ARPES

intensity as a function of energy at constant values of momentum, resulting in so-

called energy distribution curves (EDCs), and as a function of momentum at con-

stant values of energy, resulting in so-called momentum distribution curves (MDCs).

The EDCs is usually not as useful as the MDCs, because the self-energy generally

has a complicated dependence on energy ω resulting a complex line-shape of the

EDCs. On the other hand, at constant values of energy MDCs are very well ap-

proximated by Lorentzians assuming a momentum-independent self-energy, making

them very useful for extracting the imaginary part of the self-energy by measuring

the line-width of the Lorentzian. Fig. 1.5 shows typical EDCs and MDCs obtained

in ARPES experiments.

14



Figure 1.5: ARPES intensity (a) EDCs, (b) MDCs and (c) measured on the mate-
rial Bi2212 (adapted from Ref. [3]). The EDCs are shown vertically displaced for
different values of momentum and the MDCs for different values of energy.

1.2.1 Graphene ARPES experiment

Using APRES, the linear energy spectrum of Dirac fermions was first directly

observed by the group of A. Lanzara of Berkeley with a graphite sample [23] and

by the group of E. Rotenberg of the Lawrence Berkeley National Laboratory with

a graphene sample [4]. Since then, more ARPES experiments on graphene have

emerged [24, 25, 26, 27]. In this section we provide a review on the first ARPES

experiment on graphene performed by the group of E. Rotenberg [4]. The exper-

iment was performed on a single layer of graphene grown on a SiC substrate, and

the graphene Fermi level is changed by chemical doping with potassium atoms.

Fig. 1.6 shows the constant energy surfaces extracted from the ARPES intensity,

from which the Fermi level around the six Brillouin zone corners (i.e., the K and

K’ points) can be clearly distinguished. The dispersion relation obtained from the
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Figure 1.6: Constant energy maps adapted from Fig. 1c-d of Ref. [4], in which
the Fermi level around the six K and K’ points are clearly discernible. Fig. 1.6 c
corresponds to an electron doping with a Fermi level of 0.45eV above the Dirac point
and Fig. 1d to a hole doping with a Fermi level of 1.5eV below the Dirac point. It
can be seen that from Fig. 1.6 d that at such a large energy away from the Dirac
point the energy dispersion is no longer linear.

experiment is shown in Fig. 1.7 with different levels of doping, from which a well-

defined linear energy-momentum relationship is observed, experimentally verifying

the theoretical prediction that electrons in graphene in the vicinity of the Brillouin

zone corners are indeed Dirac-like. There are, however, subtle features observed in

the band structure: 1. There are line-shape distortions from the linear dispersion;

in particular, there are two kinks occurring at the Dirac point (indicated by the

first arrow ED in Fig. 1.7 e-h) and at about 200meV (indicated by the second arrow

ωph in Fig. 1.7 e-h) away from the Fermi level; 2. there are line-width variations in

the measured photoemission intensity. To explain these features, one must go be-

yond the single-particle tight-binding description of graphene and take into account

the many-body interactions of the electrons. The line-width distortion of the band

structure is then accounted for by the renormalization of the single-particle energy

by the real part of the self-energy, whereas the line-width is due to the finite lifetime

of the quasiparticle given by the imaginary part of the self-energy.
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Figure 1.7: Band structure of graphene at the Brillouin zone corner K adapted from
Fig. 2 of Ref. [4]. The colored plots show the measured intensity, and the dashed lines
indicate an extrapolation of the lower band. The number in each subfigure shows
the electron density in cm−2. Fig. 1.7i shows the reconstructed spectral function
using the extracted imaginary part of the self-energy from the line-width of MDCs.

Approximating the self-energy as momentum-independent, Ref. [4] extracted

the imaginary part of the self-energy by measuring the line-width of the MDCs,

which are shown in Fig. 1.8. The real part of the self-energy was then determined

by a Kramers-Kronig analysis, and the reconstructed real and imaginary parts of

the self-energy were used to calculate the spectral function, which shows a good

agreement with the measured ARPES intensity (Fig. 1.7 i).

1.3 Outline of the thesis

In this dissertation, we present a systematic study of the many-body effects

on the electronic and transport properties of graphene. In Chapter 2, we consider

the effect of Coulomb interaction on the renormalization of the electron proper-

ties in graphene. We take into account screening effects using the Random-Phase
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Figure 1.8: Measured line-widths of the MDCs at different values of electron density
n (in units of 1013cm−2) from Ref. [4].

Approximation, formulate the electron self-energy problem and then calculate ana-

lytically the renormalized quaisparticle properties, namely quasiparticle decay rate,

renormalization factor, and renormalized velocity for both extrinsic and intrinsic

graphene. The work in this chapter has led to the publication of Ref. [28].

In Chapter 3, we consider the effect of many-body Coulomb interaction on

the transport properties of a graphene double-layer system. While most transport

properties are manifestations of single electron properties, Coulomb drag is, by con-

trast, the only transport phenomenon that is directly induced by electron-electron

interaction whose effect can be measured directly in experiment. We formulate the

problem for the drag resistivity in graphene within the linear response diagrammatic
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approach, and take into account screening of the interlayer Coulomb interaction

within the random-phase approximation. We then calculate the drag resistivity as

a function of temperature, electron densities and interlayer distance. The work in

this chapter has led to the publication of Ref. [29].

We have discussed the effect of Coulomb interaction on graphene electronic

properties in Chapter 2. In Chapter 4, we consider the effect of electron-phonon in-

teraction on graphene electronic properties. In carbon nanotubes, electron-phonon

interaction is a well-studied subject, The motivation of this study came from the

ARPES band structure measurement where a kink whose origin was speculated to

be electron-phonon interaction was observed. Starting from the graphene electron-

phonon interaction, we derive the expression for the effective phonon-mediated

electron-electron interaction and formulate the electron self-energy problem. We

then calculate exactly the imaginary and real parts of the self-energy, and obtain

the quasiparticle spectral function and renormalized velocity. The work in this

chapter has led to the publication of Ref. [30].

In Chapter 2 and 4, we have considered the renormalization of the electron

properties due to Coulomb and electron-phonon interactions; in Chapter 5, we ask

the question how interaction effects will renormalize the phonon properties. We

formulate the phonon self-energy problem, and calculate the real part of the phonon

self-energy. We then obtain the renormalized phonon energy dispersion, finding

novel Kohn anomalies peculiar to optical phonons in graphene which are completely

different from q = 2kF in regular metals. The work in this chapter has led to the

publication of Ref. [31].
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In Chapter 6, we present our conclusion and finally discuss some open questions

for future exploration extending the research in this dissertation.

20



Chapter 2

Quasiparticle renormalization due

to Coulomb interaction

One of the most important concepts in condensed matter physics is Fermi

liquid theory developed by Landau, which establishes a one-to-one correspondence

between the properties of an interacting electron liquid and a non-interacting elec-

tron gas. For interactions that are weak enough, interacting electrons behave as

non-interacting dressed particles – called quasiparticles – that are elementary ex-

citations from the ground state (which is the Fermi sea in a solid). These quasi-

particles behave similarly to non-interacting electrons, except that their properties

are renormalized compared with the non-interacting electron properties. One of the

main goals of many-body theory has been to calculate these renormalized quasi-

particle parameters, namely the quasiparticle lifetime, renormalization factor and

renormalized mass/velocity; and it is our goal in this chapter to develop a self-energy
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formulation to calculate these quantities. The Hamiltonian of our system is

H =
∑

k

c
†
kH0ck +

1

2

∑

k1,k2,q

V (q)c†
k1+qck1

c
†
k2−qck2

, (2.1)

where ck = [ak bk]T is the two-component electron annihilation operator in the

momentum space for the A and B sublattices, and V (q) = 2πe2/q is the bare

Coulomb interaction. We have suppressed the spin labels in Eq. (2.1) and will

continue to do so in the rest of this dissertation since the spin degrees of freedom

are understood to be degenerate and do not play a role in the physics we consider.

However, we shall keep in mind to restore the factor of two for spin degeneracy

as well as the factor of two for valley degeneracy in the density of states and all

closed-loop diagrams.

2.1 Random-phase approximation

In a many-electron system, electron-electron Coulomb interaction is screened

by the surrounding electrons, with the consequence that both the strength and the

range of the electron-electron interaction are reduced. Within the diagrammatic per-

turbation theory, a standard approximation to take account of the effect of screening

is the Random-phase approximation (RPA) [32, 33, 34], which retains only the most

divergent (and hence having the largest contribution) bubble diagrams in the dia-

grammatic expansion. The resulting screened Coulomb interaction is thus given by

the bare Coulomb interaction dressed by a series of bubble diagrams, as shown in

Fig. 2.1. Summing the diagrammatic series yields the dynamically screened Coulomb
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Figure 2.1: The Feynman diagram for the screened Coulomb interaction within the
RPA. The thin and thick wiggly lines denote respectively the bare and the RPA-
screened interaction, and the thin straight line stands for the bare Green function.

interaction

Vsc(q, ω) =
V (q)

1 − V (q)Πcc
0 (q, ω)

, (2.2)

where Πcc
0 is the irreducible electronic polarizability represented by the bubble dia-

gram with two Coulomb interaction vertices (the superscript ‘c’ denotes a Coulomb

interaction vertex, and the subscript ’0’ denotes irreducibility). We shall drop the

subscript ’0’ in Πcc
0 , understanding that we are referring to the irreducible polar-

izability (when we come to Chapter 5, we will restore the subscript ’0’ again to

emphasize it is a “bare” or unrenormalized bubble). Πcc is given from the bubble

diagram (Fig. 2.1) by the following expression

Πcc(q, iqn) = 4kBT
∑

λλ′

∑

k,ikn

Gk+qλ′(ikn + iqn)Gkλ(ikn)〈k + qλ′|kλ〉〈kλ|k + qλ′〉

= 4kBT
∑

λλ′

∑

k,ikn

Gk+qλ′(ikn + iqn)Gkλ(ikn)
1 + λλ′cos(φk+q − φk)

2
(2.3)

Carrying out the Matsubara sum over ikn, we obtain

Πcc(q, iqn) = 4
∑

λλ′

∑

k

nF (ξkλ) − nF (ξk+qλ′)

iqn + ξkλ − ξk+qλ′

1 + λλ′cos(φk+q − φk)

2
. (2.4)
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Eq. (2.2) defines the dielectric function, given by ε(q, iqn) = 1 − V (q)Πcc(q, iqn)

within the RPA. The analytic expression of Πcc has been obtained in a number of

papers [6, 35, 36, 37], which is reproduced here for expedient reference [6]. The

polarizability consists of two contributions Πcc = Πcc
+ + Πcc

− , where Πcc
− is due to the

intrinsic electrons filled up to the Dirac point in the valence band and Πcc
+ is due to

the extrinsic electrons in the conduction band from n-doping or holes in the valence

band from p-doping. In the following, we give the results for the polarizability

separately for the real part and the imaginary part, understanding that the analytic

continuation of the Matsubara frequency iqn → ω + i0+ has been carried out [6].

We also define, for notational simplicity, the dimensionless momentum x = q/kF ,

energy u = ω/εF , and polarizability Π̃cc = Πcc/ν(εF ), where ν(εF ) = 2kF/πv is

the graphene density of states at the Fermi level.The extrinsic contribution to the

polarizability Π̃cc
+ is given by the sum of two contributions originating from intraband

and interband transitions:

Π̃cc
+ (x, u) = Π̃inter

+ (x, u)θ(u − x) + Π̃intra
+ (x, u)θ(x − u), (2.5)

where the real and imaginary parts are given by,

ReΠ̃inter
+ (x, u) = −1 +

1

8
√

u2 − x2
{f1(x, u)θ(|2 + u| − x)

+ sgn(u − 2 + x)f1(x,−u)θ(|2 − u| − x)

+ f2(x, u)[θ(x + 2 − u) + θ(2 − x − u)]} , (2.6)

ReΠ̃intra
+ (x, u) = −1 +

1

8
√

x2 − u2
{f3(x, u)θ(x − |u + 2|) + f3(x,−u)θ(x − |u − 2|)

+
πx2

2
[θ(|u + 2| − x) + θ(|u − 2| − x)]

}

, (2.7)
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ImΠ̃inter
+ (x, u) =

1

8
√

u2 − x2
{f3(x,−u)θ(x − |u − 2|)

+
πx2

2
[θ(x + 2 − u) + θ(2 − x − u)]

}

, (2.8)

ImΠ̃intra
+ (x, u) = −θ(u − x + 2)

8
√

x2 − u2
[f4(x, u) − f4(x,−u)θ(2 − x − u)]. (2.9)

Here the functions f1,2,3,4 are defined as

f1(x, u) = (2 + u)
√

(2 + u)2 − x2 − x2 ln

√

(2 + u)2 − x2 + (2 + u)

|
√

u2 − x2 + u|
(2.10)

f2(x, u) = x2 ln
u −

√
u2 − x2

x
(2.11)

f3(x, u) = (2 + u)
√

x2 − (2 + u)2 + x2 sin−1 2 + u

x
(2.12)

f4(x, u) = (2 + u)
√

(2 + u)2 − x2 − x2 ln

√

(2 + u)2 − x2 + (2 + u)

x
. (2.13)

The intrinsic contribution to the polarizability Π̃cc
− (x, u) is given simply by,

Π̃cc
− (x, u) = −πx2θ(x − u)

8
√

x2 − u2
− i

πx2θ(u − x)

8
√

u2 − x2
. (2.14)

2.2 Self-energy

We now calculate the quasiparticle self-energy in the leading order of the dy-

namically screened Coulomb interaction (also called the G0W approximation) [38],

represented diagrammatically in Fig. 2.2. Since we are interested in the self-energy

for electrons in the conduction band or holes in the valence band, we evaluate the

self-energy in the chiral basis (i.e., the basis where H0 is diagonal) Σ±, where the

subscript ± denotes the chirality and refers to electrons in the conduction band (+)
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Figure 2.2: The electron self-energy Σ Eq. (2.15), the thick wiggly line denotes the
screened Coulomb interaction within the RPA in Fig. 2.1. This is the standard ring
diagram approximation for self-energy exact in the rs � 1 limit.

or holes in the valence band (−). The quasiparticle self-energy in the chiral basis

can be written down from Fig. 2.2 as

[Σk(ikn)]µ′λ = −kBT
∑

q,iqn

G0
k+qµ(ikn + iqn)

Vq

ε(q, iqn)
〈k + qµ|kµ′〉〈kλ|k + qλ′〉δµλ′ ,

(2.15)

where G0
kλ(ikn) = 1/(ikn − ξkλ) is the bare quasiparticle Green function, ξkλ =

λεk − µ = λvk − µ is the single-particle energy (µ here is the chemical potential),

Vq = 2πe2/q is the bare Coulomb interaction, and ε(q, iqn) is the dielectric function.

Summation over repeated indices is understood. The matrix elements in Eq. (2.15)

(i.e., the vertices in the self-energy diagram) follow straightforwardly from the eigen-

states of H0 as

〈kλ|k + qλ′〉 =
1

2

[

1 + λλ′ei(φk+q−φk)
]

〈k + qµ|kµ′〉 =
1

2

[

1 + µµ′e−i(φk+q−φk)
]

, (2.16)

where φk is the azithmuthal angle of the momentum k. Eqs. (2.15)-(2.16) then give

the diagonal elements of the self-energy matrix Σk±(ikn) ≡ Σk±±(ikn)

Σk±(ikn) = −kBT
∑

λ=±

∑

q,iqn

G0
k+qλ(ikn + iqn)

Vq

ε(q, iqn)

1 ± λcos(φk+q − φk)

2
, (2.17)
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and the off-diagonal elements of the self-energy matrix

Σk±∓(ikn) = ±ikBT
∑

λ=±

∑

q,iqn

G0
k+qλ(ikn + iqn)

Vq

ε(q, iqn)

λsin(φk+q − φk)

2
= 0,(2.18)

vanish identically after performing the angular integration. The self-energy correc-

tion therefore does not “mix” the electrons in the conduction band and the holes

in the valence band. In Eq. (2.17), the factor [1 ± λcos(φk+q − φk)]/2 originates

from the chirality of the graphene band dispersion, with λ = 1 corresponding to

intraband transitions and λ = −1 to interband transitions. Decomposing Eq. (2.17)

into line and pole contributions, we get

Σk±(ikn) = −1

2

∑

λ=±

∑

q

[1 ± λcos(φk+q − φk)]Vq

{

P

∫ ∞

−∞

dω

π
nB(ω)Im

[

1

ε(q, ω + i0+)

]

1

ω + ikn − ξk+qλ

+
nF (ξk+qλ)

ε(q, ξk+qλ − ikn)

}

, (2.19)

where P denotes the principal value of the integral, nF (ε) = 1/[exp(ε/kBT ) + 1]

and nB(ε) = 1/[exp(ε/kBT ) − 1] are, respectively, the Fermi and Bose distribution

functions. Performing the analytic continuation ikn → ε + i0+, we obtain the

retarded self-energy

ΣR
k±(ε) = −1

2

∑

λ=±

∑

q

[1 ± λcos(φk+q − φk)]Vq

{

P

∫ ∞

−∞

dω

π
nB(ω)Im

[

1

ε(q, ω + i0+)

]

1

ω + ε − ξk+qλ + i0+
+

nF (ξk+qλ)

ε(q, ξk+qλ − ε − i0+)

}

. (2.20)

By virtue of Fermi liquid theory, in the presence of weak electron-electron inter-

actions, the properties of the quasiparticles are renormalized with a finite quasi-

particle lifetime τ , a renormalization factor Z < 1, and a renormalized mass m∗

or velocity v∗. In the following, we proceed to calculate the quasiparticle lifetime,
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renormalization factor and effective velocity at zero temperature for graphene in

two distinct cases: extrinsic graphene with n-doping (Fermi energy εF > 0) and

intrinsic graphene (εF = 0). We recall the Coulomb interaction coupling parame-

ter rs from Chapter 1 is defined by the ratio of the interparticle potential energy

to the single-particle kinetic energy. It is worth noting that whereas for regular

2DEG, rs = 2me2/kF εm is inversely proportional to the square root of the 2D

density, for graphene rs = (e2kF/εm)/vkF = e2/vεm is simply a constant ∼ 0.87

(with v ' 106 ms−1 and εm ' 2.5), indicating extrinsic graphene is essentially a

weakly interacting (rs < 1) system. In this context, we also note that ordinary

metals have rs ' 3 − 5 > 1, and the usual semiconductor-based 2DEG may have

rs ∼ 5 − 20 � 1! Since rs < 1 in graphene, the self-energy (Fig. 2.2) calculation

in the leading-order infinite ring-diagram single-loop expansion approximation is

essentially exact. In fact, the RPA self-energy calculation (Fig. 2.2) is a much bet-

ter quantitative approximation to graphene than the GW approximation in regular

metals and semiconductors, which are never in the high-density regime.

2.3 Extrinsic graphene

For extrinsic graphene, the quasiparticle is located in the vicinity of the Fermi

level, and we only need to consider the renormalized Fermi liquid parameters in

the conduction band (or the valence band, depending on whether electrons or holes

are the carriers as determined by doping). In the presence of interactions, the

Fermi energy will be renormalized by the real part of the self-energy. We adopt
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the on-shell approximation, which implies that the Fermi energy is taken to be

the unrenormalized Fermi energy εF without any correction coming from the real

part of the self-energy. This guarantees that our self-energy calculation within the

G0W approximation is internally consistent and different orders of the self-energy

correction do not mix [39].

2.3.1 Quasiparticle decay rate

The lifetime of the quasiparticle τ+ = −1/2ImΣR
k+(ξk) is obtained from the

imaginary part of the self-energy Eq. (2.17) within the on-shell approximation ε =

ξk = vk − εF :

ImΣR
k+(ξk) =

1

2

∑

λ=±

∑

q

[1 + λcos(φk+q − φk)]Vq [nB(ξk+qλ − ξk) + nF (ξk+qλ)]

Im

[

1

ε(q, ξk+qλ − ξk + i0+)

]

. (2.21)

At zero temperature, it can be seen that interband scattering from the valence band

λ = −1 vanishes in Eq. (2.21), since nB(−εk+q −εk) = −1 and nF (−εk+q −εF ) = 1.

Therefore, only intraband transition λ = 1 contributes to the quasiparticle decay,

and Eq. (2.21) becomes (changing the integration variable q → k′ − k):

ImΣR
+ = − e2

4π

∫ k

kF

dk′ k′

∫ 2π

0

dφk′(1 + cosφk′)
1

√

k2 + k′2 − 2kk′cosφk′

Im

[

1

ε(|k − k′|, εk′ − εk + i0+)

]

, (2.22)

where φk′ is the scattering angle from k to k′ = k + q (with φk = 0). In order

to maintain analytic tractability, we consider the long-wavelength x = q/kF � 1

limit and perform an analytical evaluation of the quasiparticle lifetime. For small
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x, the dominant contribution in Eq. (2.22) from the imaginary part of the dielectric

function comes from low energies y = ω/vq � 1, in which case the irreducible

polarizability for graphene (in the doped regime) is given in the leading order from

Eq. (2.4) by Πcc(q, ω) ' −ν(εF )(1+iy)−(q/4v). The dielectric function in Eq. (2.22)

is calculated as ε(q, ω) = 1−VqΠ
cc(q, ω), and Im[1/ε(q, ω)] ' −ω/vqTF up to leading

order in ω (here we have defined the Thomas-Fermi wavenumber as qTF = 4e2kF/v).

Substituting this expression for the dielectric function in Eq. (2.22), the following

expression is obtained:

ImΣR
+ =

e2

4πqTF

∫ k

kF

dk′ k′(k − k′)

∫ 2π

0

dφk′

1 + cosφk′

√

k2 + k′2 − 2kk′cosφk′

, (2.23)

Carrying out the angular integral, we get

ImΣR
+ =

e2

4πqTF

∫ k

kF

dk′k′(k′ − k)
2

kk′|k − k′|
[

(k + k′)2K (−z) − (k − k′)2E (−z)
]

,

(2.24)

where K, E are the complete elliptic integrals of the first and second kind, respec-

tively, and z = 4kk′/|k − k′|. Since |k − k′| � kF , z � 1, we can approximate K

and E by their asymptotic expansions: K(−z) ∼ ln(4
√

z)/
√

z and E(−z) ∼ √
z.

Eq. (2.24) then becomes

ImΣR
+ = − e2

2πkqTF

∫ k

kF

dk′ |k − k′|
2
√

kk′

[

(k + k′)2ln

(

8
√

kk′

|k − k′|

)

− 4kk′

]

. (2.25)

Let δ(k′) = k − k′ � kF and change the integration variable from k′ to δ(k′) in

Eq. (2.21). Expanding the integrand up to leading order in δ/k and integrating, we
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obtain the following result to leading order in δ(kF )/kF

ImΣR
+ =

e2

πqTF

∫ δ(kF )

0

dδδ

[

ln(
δ

8k
) + 1

]

=
e2

2πqTF
δ2(kF )

{

ln

[

δ(kF )

8kF

]

+
1

2

}

. (2.26)

Since ξk = v(k − kF ) = vδF , we can rewrite Eq. (2.26) as

ImΣR
+ =

ξ2
k

8πεF

[

ln

(

ξk

8εF

)

+
1

2

]

. (2.27)

In the following, we calculate the imaginary part of the self-energy for a regular

2DEG with a parabolic spectrum (i.e., ξk = k2/2m − µ), and make a comparison

with that for graphene presented above. The result for regular 2DEG was first

obtained in Ref. [40] but here we provide an alternative derivation. For a 2DEG,

the imaginary part of the self-energy is given by [cf. Eq. (2.21)]:

ImΣR
k (ξk) =

∑

q

Vq [nB(ξk+q − ξk) + nF (ξk+q)] Im

[

1

ε(q, ξk+q − ξk + i0+)

]

, (2.28)

At zero temperature,

ImΣR = − e2

2π

∫ 2π

0

dφk′

∫ k

kF

dk′ k′ 1
√

k2 + k′2 − 2kk′cosφk′

Im

[

1

ε(|k − k′|, ξk′ − ξk + i0+)

]

. (2.29)

For x = q/kF � 1, y = ω/vF q � 1 (here vF is the Fermi velocity vF = kF/m), the

irreducible polarizability for a regular 2DEG is given to leading order by Πcc(q, ω) '

−ν(1 + iy), where ν = m/π is the density of states for the 2DEG. Therefore

Im[1/ε(q, ω)] ' −ω/vF qTF to leading order of ω, with the Thomas-Fermi wavenum-

ber given by qTF = 2me2/~
2. Eq. (2.29) then becomes

ImΣR =
e2

4πmvF qTF

∫ k

kF

dk′ k′(k′2 − k2)

∫ 2π

0

dφk′

1
√

k2 + k′2 − 2kk′cosφk′

, (2.30)
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Carrying out the angular integral, we get

ImΣR = − 1

2πmkF

∫ k

kF

dk′ k′(k + k′)K(−z). (2.31)

Using the asymptotic formula K(−z) ∼ ln(4
√

z)/
√

z for z � 1, Eq. (2.31) becomes

ImΣR = − 1

4πmkF

∫ k

kF

dk′

√

k′

k
(k2 − k′2)ln

(

8
√

kk′

|k − k′|

)

(2.32)

Again, let δ(k′) = k − k′ � kF and change the integration variable from k′ to δ(k′)

in Eq. (2.32). Expanding the integrand to leading order in δ/k and integrating, we

obtain the following result to leading order in δ(kF )/kF ,

ImΣR =
1

2πm

∫ δ(kF )

0

dδ δln

(

δ

8kF

)

=
1

4πm
δ2(kF )

{

ln

[

δ(kF )

8kF

]

− 1

2

}

. (2.33)

Since ξk = (k2 − k2
F )/2m ' kF (k − kF )/m = kF δ(kF )/m, we can rewrite Eq. (2.33)

as

ImΣR =
ξ2
k

8πεF

[

ln

(

ξk

16εF

)

− 1

2

]

. (2.34)

We note that the sign of the subleading term [i.e. the term of O(ξ2
k)] in the expression

of the quasiparticle decay rate for extrinsic graphene is different from that for a

regular 2DEG, which is due to the presence of a chirality factor [1+cos(φk+q−φk)]/2

in the self-energy expression for graphene.

2.3.2 Renormalization factor

Next we consider the renormalization factor for the Dirac quasiparticle Z =

1/(1 − A), where A is the derivative of the real part of the self-energy Eq. (2.17)
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with respect to energy at the Fermi level:

A = − ∂

∂ξ
Re
∑

q,λ

∫ ∞

−∞

dω

2π
G0

k+qλ(ikn + iω)
1 + λcos(φk+q − φk)

2

Vq

ε(q, iω)

∣

∣

∣

∣

k=kF ,ξ=0

,

(2.35)

where the analytic continuation ikn → ξ + i0+ applies after performing the inte-

gral. In the following, we perform the analytic continuation ikn → ξ + i0+ before

the integrations [34], leading to a decomposition of a line contribution and a pole

contribution, and then move the differentiation with respect to ξ inside the integral,

thereby obtaining

A = −
∑

q,λ

Re

∫ ∞

−∞

dω

2π

∂

∂ξ
G0

k+qλ(ξ + iω)
1 + λcos(φk+q − φk)

2

Vq

ε(q, iω)

∣

∣

∣

∣

k=kF ,ξ=0

−Re
∑

q,λ

∂

∂ξ
{[θ(−ξk+qλ) − θ(ξ − ξk+qλ)]

1 + λcos(φk+q − φk)

2

Vq

ε(q, ξk+qλ − ξ)

}
∣

∣

∣

∣

k=kF ,ξ=0

, (2.36)

where the first term corresponds to the line contribution and the second to the pole

contribution. The pole contribution can be evaluated as

−Re
∑

q,λ

∂

∂ξ

{

[θ(−ξk+qλ) − θ(ξ − ξk+qλ)]
1 + λcos(φk+q − φk)

2

Vq

ε(q, ξk+qλ − ξ)

}
∣

∣

∣

∣

k=kF ,ξ=0

=
1

2

∑

qλ

δ(ξk+qλ)[1 + λcos(φk+q − φk)]
Vq

ε(q, 0)

∣

∣

∣

∣

k=kF

, (2.37)
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while the line contribution can be integrated by parts and thereby simplified as

−
∑

q,λ

Re

∫ ∞

−∞

dω

2π

∂

∂ξ
Gk+qλ(ξ + iω)

1 + λcos(φk+q − φk)

2

Vq

ε(q, iω)

∣

∣

∣

∣

k=kF ,ξ=0

=
∑

q,λ

Re

∫ ∞

0

idω

π

1 + λcos(φk+q − φk)

2

Vq

ε(q, iω)

∂

∂ω
Gk+qλ(iω)

∣

∣

∣

∣

k=kF

= −1

2

∑

qλ

δ(ξk+qλ)[1 + λcos(φk+q − φk)]
Vq

ε(q, 0)

+
1

2π
Im
∑

qλ

∫ ∞

0

dωGk+qλ(iω)[1 + λcos(φk+q − φk)]Vq
∂

∂ω

1

ε(q, iω)

∣

∣

∣

∣

k=kF

. (2.38)

Combining the line and pole contributions as obtained above, we get

A =
1

π
Im
∑

q,λ

∫ ∞

0

dωGk+qλ(iω)Vq
1 + λcos(φk+q − φk)

2

∂

∂ω

1

ε(q, iω)

∣

∣

∣

∣

k=kF

. (2.39)

The irreducible polarizability Eq. (2.5) for x � 1 and y > 1 is Π(q, ω) ' −ν(1 −

y/
√

y2 − 1) − i(q/4v)/
√

y2 − 1. For small x � 1, we approximate the chirality

factor to leading order as (1 + cosθk′,k)/2 ' 1 and (1 − cosθk′,k)/2 ' (qsinφk/2k)2.

Evaluating Eq. (2.39) up to leading order in rs, we obtain the renormalization factor

for the Dirac quasiparticle in the rs � 1 limit as

Z = 1/
[

1 +
rs

π

(

1 +
π

2

)]

. (2.40)

In the leading order of rs, Eq. (2.40) is similar to the corresponding expression for

regular 2DEG [41] Z = 1 − (rs/2π)(1 + π/2). Beyond the leading order of rs, the

q-integral in A has a logarithmic divergence due to the interband contribution to

the polarizability. Introducing a momentum cutoff kc = 1/a where a = 1.42Å is

the graphene lattice spacing, we find the corresponding logarithmic correction ∼

r2
s ln(kc/kF ) appears in the second order term of rs in the denominator of Eq. (2.40).
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2.3.3 Renormalized velocity

For quasiparticles with regular quadratic spectrum, it is well-known [34] that

electron-electron interaction gives rise to effective mass renormalization of the Fermi

liquid. In contrast, as the Dirac quasiparticle in graphene is massless, we have,

instead, a renormalization of the quasiparticle velocity. We proceed to calculate the

effective velocity renormalization below, which is given by v/v∗ = (1 − A)/(1 + B),

with B being the derivative of the real part of the retarded self-energy with respect

to momentum k and is obtained from Eq. (2.35) by replacing ∂/∂ε → (1/v)∂/∂k:

B = −1

v

∂

∂k
Re
∑

q,λ

∫ ∞

−∞

dω

2π
G0

k+qλ(ikn + iω)
Vq

ε(q, iω)

1 + λcos(φk+q − φk)

2

∣

∣

∣

∣

k=kF ,ξ=0

.

(2.41)

Since the effective velocity at zero temperature in the lowest leading order in rs is

only due to the contribution from static dielectric response [41], we can evaluate

v∗/v with the dielectric function in the static limit ε(q, ω) = ε(q, 0). It then follows

from Eq. (2.39) that A = 0, and

B =
1

πv
Im
∑

q,λ

λ
∂ξk+q

∂k

Vq

ε(q, 0)

1 + λcos(φk+q − φk)

2

∫ ∞

0

dω
∂

∂ω
Gk+qλ(iω)

− 1

πv
Re
∑

q,λ

Vq

ε(q, 0)

∂

∂k

1 + λcos(φk+q − φk)

2

∫ ∞

0

dωGk+qλ(iω) (2.42)

At k = kF , the first term yields

1

πv
Im
∑

q,λ

λ
∂ξk+q

∂k

Vq

ε(q, 0)

1 + λcos(φk+q − φk)

2
Gk+qλ(iω)

∣

∣

∣

∣

∞

0

=
∑

q

δ(εF − v|k + q|) Vq

ε(q, 0)

1 + λcos(φk+q − φk)

2

k + qcosφk

|k + q|

' −rs

π

(

5

3
+ lnrs

)

, (2.43)
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where we arrived at the last step by evaluating the angular integral, expanding in

leading order of rs, and then evaluating the resultant q integral. The second term

in Eq. (2.42) yields

− 1

2πv
Re
∑

q,λ

λ
Vq

ε(q, 0)

∂cos(φk+q − φk)

∂k

∫ ∞

0

dωGk+qλ(iω)

=
1

2v
Re
∑

q

λ
Vq

ε(q, 0)

∂cos(φk+q − φk)

∂k
θ(v|k + q| − εF )

∼ rs

4
ln

(

kc

kF

)

, (2.44)

within logarithmic accuracy, where we have arrived at the last step by keeping

only the most dominant (i.e., divergent) contribution of the q integral and have

introduced a cutoff momentum kc = 1/a (a = 2.46Å is the graphene lattice spacing)

to regularize the divergent contribution. Combining Eqs. (2.43)-(2.44), we obtain

the renormalized velocity at the Fermi level up to leading order of rs and within

logarithmic accuracy

v∗

v
= 1 − rs

π

[

5

3
+ ln(rs)

]

+
rs

4
ln

(

kc

kF

)

. (2.45)

Here, we note that the first two terms in Eq. (2.45) derive from the intraband

contribution and are similar to the expression for the regular 2DEG [42] m∗/m =

1 + (rs/2π)[2 + ln(rs/4)] whereas the last term arises solely from the interband

contribution. The velocity renormalization is in general a function of k, and in

addition to v∗ at the Fermi level, we have evaluated v∗ at the Dirac point k = 0:

v∗

v
= 1 − rs

{

1 +
1

4
ln

[

1 + 4rs

4rs

]

− 1

4
ln

(

kc

kF

)}

(2.46)

From Eqs. (2.45)-(2.46), we see that the linear single-particle band dispersion of

graphene is renormalized by many-body effects from Coulomb interaction to a band
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dispersion which is nonlinear.

2.4 Intrinsic graphene

2.4.1 Quasiparticle decay rate

We now calculate the imaginary part of the quasiparticle self-energy for in-

trinsic graphene (i.e. εF = 0). From Eq. (2.17), the intraband contribution λ = 1

vanishes at zero temperature. This makes physical sense because all the electronic

states in the valence band are fully occupied, rendering intraband transition within

the valence band impossible. The only possible type of transition that can happen

for an electron is interband transition, with a contribution to the imaginary part of

the self-energy given by

ImΣR
k±(ω) = − e2

4π

∫ ∞

0

dq

∫ 2π

0

dφq[1 ± cos(φk+q − φk)]θ(ω − εk+q)

Im

[

1

ε(q, εk+q − ω)

]

. (2.47)

The irreducible polarizability for intrinsic graphene is given by Πcc
− (q, ω) in Eq. (2.14).

Since Im[1/ε(q, εk+q − ω)] ∼ θ(|εk+q − ω| − vq), the on-shell quasiparticle lifetime

ImΣR
k+(ξk) ∼

∑

q θ(|εk+q−εk|−εq)θ(εk−εk+q) vanishes identically because of phase

space restrictions imposed by the θ-functions. In the following, we obtain an ap-

proximate analytical result of the imaginary part of the self-energy by expanding

q up to leading order inside the q integral. For interband transitions in intrinsic

graphene, we expand the dielectric function ε(q, ω) = 1 − V (q)Πcc
− [where Πcc

− is
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given by Eq. (2.14)] in the regime y = ω/vq � 1 up to leading order of 1/y, obtain-

ing ε(q, ω) ' 1 + iπrs/4y and hence Im[1/ε(q, ω)] = −πrsθ(ω − vq)/4y. Eq. (2.47)

at the Dirac point k = 0 becomes

ImΣR
k=0±(ω) ' 2πrse

2

16

∫ ∞

0

dq

∫ ω/v

0

q

vq − ω

=
πrse

2

8
(1 − 2ln2)ω. (2.48)

In fact, an exact analytical result can be obtained for ImΣR
k=0(ω) from Eq. (2.47)

[28] and is given by

ImΣR
k=0±(ω) = ωf(rs), (2.49)

where

f(rs) =
2

π2rs

[

π(1 − rs) +
8 − (πrs)

2

4
√

(πrs)2 − 4
ln

πrs −
√

(πrs)2 − 4

πrs +
√

(πrs)2 − 4

]

. (2.50)

This linear relation is exact for all ω, indicating that intrinsic graphene is a marginal

Fermi liquid. We note that there is no plasmon contribution to the imaginary

part of the self-energy for intrinsic graphene. The contribution of the interband

electron-hole excitations gives rise to the linear behavior of ImΣR
k=0±. However,

for doped graphene the contribution of the interband electron-hole excitations is

completely suppressed due to phase space restrictions at zero temperature. The

contribution of the intraband virtual single-particle excitations and/or the virtual

excitations of plasmons give rise to higher powers of ω (i.e. ω2) in the imaginary

part of the self-energy in the doped case, which restores the usual Fermi liquid

behavior. Thus, the qualitative difference between intrinsic (ImΣ ∼ ω)) and extrinsic

(ImΣ ∼ ω2) graphene can be completely understood by noting that the intrinsic
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system is an insulator (albeit a zero-gap semiconductor with no intraband single-

particle excitation) and the extrinsic case has a Fermi surface with intraband single-

particle excitations. Thus, any doping of graphene (intentional or unintentional)

will immediately suppress its marginal Fermi liquid intrinsic character, converting

it to a regular 2D Fermi liquid.

2.4.2 Renormalization factor

The renormalization factor can be obtained from Eq. (2.35), from which we

find that A ∼
∫

0
dq/q diverges logarithmically, which is due to the unscreened nature

of the Coulomb potential (the same divergence occurs for the exchange energy of a

regular 2DEG). Therefore the renormalization factor Z = 0, showing that as doping

goes to zero, the magnitude of the step at the Fermi energy ε = 0 also shrinks to zero,

approaching the Dirac point, where the notion of a “Fermi surface” no longer applies,

the quintessential behavior of a marginal Fermi liquid. Using the Kramers-Kronig

relations and from the fact that ImΣR
k=0±(ω) ∼ ω, we have ReΣR

k=0±(ω) ∼ ω lnω,

and the renormalization factor Z ∼ 1/lnω, which approaches zero logarithmically

as ω → 0 at the Fermi energy. The spectral function is defined as

Ak±(ω) ≡ −2ImGk±(ω)

=
ImΣR

k±(ω)

[ImΣR
k±(ω)]2 + [ω − ReΣR

k±(ω)]2
, (2.51)

where Gk±(ω) = 1/[ω − ξk± − Σ̃k±+(ω)] is the interacting electron Green function

with self-energy correction. At k = 0, the spectral function Ak=0(ω) = ImΣR
k=0±(ω)

/{[ImΣR
k=0±(ω)]2 + [ω − ReΣR

k=0±(ω)]2} therefore diverges as Ak=0(ω) ∼ 1/ω (lnω)2.
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2.4.3 Renormalized velocity

Similarly to the extrinsic case, the effective velocity up to leading order of rs

follows from taking the derivative of the real part of the self-energy [with a static

dielectric function ε(q, 0)] with respect to k as

v∗

v
= 1 +

(

r∗s
4

)

ln

(

kc

kF

)

, (2.52)

here r∗s = rs/(1 + πrs/2) is the renormalized interaction parameter. Therefore, it

follows from Eq. (2.52) that v∗/v diverges for the intrinsic case as doping kF → 0.

These results for the intrinsic graphene are consistent with Ref. [43], where the

renormalization group approach is used to arrive at a similar conclusion. In passing,

we note that the case for a purely undoped 3D system with a gapless linear energy

dispersion was considered in Ref. [44], and was found to exhibit marginal Fermi

liquid behavior with a logarithmic energy dependence in ReΣ comparable to the

results for intrinsic graphene.

Concluding this chapter, we have developed a theory for the quasiparticle self-

energy due to dynamically-screened Coulomb interaction in graphene from which

we calculated the renormalized quasiparticle parameters for both extrinsic and in-

trinsic graphene. We find that for extrinsic graphene the analytical results for the

quasiparticle lifetime, renormalization factor and effective velocity show no devia-

tion from the usual Fermi liquid behavior, and the Fermi liquid description is robust.

On the other hand, with precisely zero doping, intrinsic graphene exhibits a quasi-

particle decay rate linear in the excitation energy and a zero renormalization factor,

indicating that the Fermi liquid description is marginal at the Dirac point. With
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a finite Fermi energy in the extrinsic graphene, the interband single-particle exci-

tations which give rise to the linear ω-dependence of the quasiparticle decay rate

(and hence the marginal Fermi liquid behavior) in the intrinsic graphene are sup-

pressed, bringing the system back to a usual Fermi liquid. Since some finite doping

is invariable in real systems, real 2D graphene is generically a Fermi liquid.
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Chapter 3

Many-body effect in graphene

transport – Coulomb drag

3.1 The phenomenon of Coulomb drag

While electronic structure experiments such as ARPES have revealed detailed

subtle many-body effects on the graphene energy spectrum, transport experiments

have also revealed some apparently unusual features of graphene transport proper-

ties, most noticably that the conductivity has a non-zero minimum value forming a

plateau around zero bias gate voltage. Up to now, the transport experiments per-

formed have been focused only on the longitudinal and Hall transport properties,

where all of these phenomena depend only on the physics of scattering of individual

electrons from impurities with electron-electron many-body interaction effect playing

the role of a small quantitative correction. In two-dimensional electron gas (2DEG)

semiconductor bilayer structures (e.g. modulation-doped GaAs/AlxGa1−xAs dou-

ble quantum wells), electron-electron scattering between the 2DEG layers gives
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rise to the effect of Coulomb drag [45, 46, 47], where a “drag” current is induced

purely from the momentum exchanges through interlayer electron-electron scatter-

ing events. One injects a current into one of the layer, called the “active layer”, in

which electrons are driven to flow along the layer. Through Coulomb interaction

mediated across the layer, electrons in another layer, called the “passive layer”, are

also “dragged along” with the electrons in the active layer and thus flow in the same

direction. One measures the effect of Coulomb drag by the drag resistivity ρD, which

is defined by the induced drag electric field in the open-circuited passive layer per

unit applied current density in the active layer (Fig. 3.1), ρD = Epassive/Jactive. In

V

d

Figure 3.1: The experimental setting of a Coulomb drag experiment. A current is
sent through the “active layer” driving electrons to flow along the layer, this “drags
along” the electrons to move in the same direction in the open-circuited “passive
layer” via interlayer Coulomb interaction, which then induce a voltage that can be
measured.

the experimental geometry, this is equal to ρD = (W/L)(Vpassive/Iactive), where W

and L are the width and length of the layers. In high-mobility samples where the

disorder is weak, ρD goes as T 2 at low temperatures T , and as 1/d4 for large bilayer

separation d (Refs. [48, 45]).
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In this chapter, we investigate the Coulomb drag in graphene “bilayer” sys-

tems with no interlayer tunneling, considering both the intrinsic (chemical potential

µ = 0) and extrinsic (µ 6= 0) cases. We emphasize right in the beginning, so that

there is no semantic confusion, what we mean by the terminology ‘bilayer’ graphene.

Our ‘bilayer’ graphene is two isolated parallel 2D graphene monolayers separated

by a distance d, with no interlayer tunneling. When d � a, the electronic structure

of each graphene monolayer is unaffected by having the other layer. Each graphene

layer is assumed to have its own variable carrier density in the extrinsic case. Our

system is thus different from the ordinary bilayer graphene where the two mono-

layers are separated by the distance d ∼ 3.4Å with strong interlayer tunneling.

Throughout this chapter, we shall also use the terms “undoped” and “doped” in-

terchangeably with “intrinsic” and “extrinsic” respectively; keeping in mind that in

experiments the chemical potential can be changed by both chemical doping and

gating with an applied voltage. The Coulomb drag in graphene is interesting not

only because it is a novel material with a linear energy spectrum, but also because it

only spans a thickness of a single carbon atom, the electrons are much more confined

along the perpendicular direction compared with 2DEG in a quantum well, where

the finite-width thickness has to be taken into account in any quantitative compari-

son with experiments. Thus, the Coulomb drag phenomenon in graphene is expected

to be theoretically very well accounted for with two zero-thickness graphene sheets.

In addition, tunneling is only appreciable when the out-of-plane π orbitals from the

two graphene sheets start to overlap with each other at an interlayer distance d of

a few angstroms (d ' 3.5Å in naturally occuring graphite), making it possible to
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G +=

Figure 3.2: Diagram for the nonlinear susceptibility Γ, which is a three-point vertex
function.

study the effect of Coulomb drag for an interlayer separation d down to a few tens of

angstroms, about an order of magnitude smaller than is possible in the usual double

quantum well systems without appreciable tunneling.

3.2 Formalism

In the linear response formalism, we calculate the drag conductivity which is

given by σD = 1/ρD = Jactive/Epassive from the diagrammatic perturbation theory.

3.2.1 Drag conductivity

The central quantity in the Coulomb drag problem is the nonlinear suscepti-

bility [46, 47, 49], Γ, given in Fig. 3.3 by the three-point vertex diagram as:

Γ(q, ω) =

∫

dε

2πi
[nF (ε + ω) − nF (ε)]

∑

k

tr
{[

G̃A
k−q(ε) − G̃R

k−q(ε)
]

G̃A
k (ε + ω)J̃(k)G̃R

k (ε + ω)
}

+ {q, ω → −q,−ω} , (3.1)

where G̃R,A
k (ε) = (ε−H0 ± i/2τ)−1 denotes, within the Born approximation for the

self-energy, the impurity-averaged retarded/advanced Green function in the sublat-

tice basis, τ the lifetime due to impurity scattering, J the charge current vertex in

the sublattice space, nF the Fermi function and ‘tr’ the trace. In the rest of this
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chapter, we shall simply denote the x-components of Γ and J̃ as Γ and J̃ . The drag

conductivity, diagrammatically shown in Fig. 3.3, is given by [46, 47, 49]

Figure 3.3: Diagrams contributing to the drag resistivity Eq. (3.2). The double
wavy lines represent the screened interlayer Coulomb potential Eq. (3.4) and the
vertices on the left and on the right denote charge current in the two layers. Dashed
vertical lines next to the vertices denote impurity vertex correction to the charge
current.

σD =
1

16πkBT

∑

q

∫ ∞

0

dω

sinh2 (~ω/2kBT )
Γ1 (q, ω) Γ2 (q, ω) |U12 (q, ω)|2 , (3.2)

here subscripts ‘1’ and ‘2’ are the labels for the two single-layer graphene, U12 is the

screened interlayer potential, which in the random phase approximation (RPA) is

given by

U12 (q, ω) =
V (q)e−qd

[1 − Πcc
1 V (q)][1 − Πcc

2 V (q)] − Πcc
1 Πcc

2 V 2(q)e−2qd
, (3.3)

where d is the interlayer spacing, V (q) = 2πe2/q is the bare Coulomb potential,

Πcc
i (q, ω) is the graphene polarizability [Eq. (2.5) and Eq. (2.14) in Chapter 2] of

layer i. Instead of the drag conductivity, in experiments one measures the drag
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resistivity ρD = 1/σD, which is given by

ρD = σ−1
D =









σ11 σ12

σ21 σ22









−1

=
1

σ11σ22 − σ12σ21









σ22 −σ12

−σ21 σ11









. (3.4)

The drag resistivity is then obtained as ρD = σD/(σL1σL2 − σ2
D) ' σD/σL1σL2 since

σD � σL1, σL2, where σL1,2 ≡ σ11,22 is the longitudinal conductivity of the individual

layer 1 or 2.

We shall restrict ourselves to the Boltzmann regime (ωτ � 1 or ql � 1, where

l = vτ is the mean free path) corresponding to weak impurity scattering, which is

the case relevant to actual experimental situations where high-mobility samples with

dilute impurities are used. The longitudinal current for the graphene Hamiltonian

in the sublattice space is J̃ = e∂H0/∂k = evσ̂. In the presence of impurities,

vertex correction to the current is taken into account within the impurity ladder

approximation, which gives the impurity-dressed current vertex as J̃ = (τtr/τ)evσ̂,

where the transport time τtr for graphene is given by

τ−1
tr = π

∑

k′

ni|ui(k − k′)|2[1 − cos2(φk′ − φk)]δ(ξk+ − ξk′+)

∣

∣

∣

∣

k=kF

, (3.5)

with ni and ui being respectively the impurity density and impurity potential, φk is

the azithmuthal angle of the momentum k, and k′ = k+q. We have given Eq. (3.5)

for the transport time here only for the purpose of completeness, as our final results

for the drag resistivity do not depend on τtr.
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3.2.2 Nonlinear susceptibility

In the following, we derive the expression for the nonlinear susceptibility

by transforming the Green functions and the current vertices inside the trace of

Eq. (3.1) from the sublattice basis to the chiral basis (i.e., the diagonal basis of the

Hamiltonian H0):

Γ(q, ω) =

∫

dε

2πi
[nF (ε + ω) − nF (ε)]

∑

k

tr
{

Uk,k−q

[

GA
k−q(ε) − GR

k−q(ε)
]

U †
k,k−q

GA
k (ε + ω)J(k)GR

k (ε + ω)
}

+ {q, ω → −q,−ω} , (3.6)

where Uk,k−q = U †
kUk−q, and Uk is the transformation that diagonalizes the graphene

Hamiltonian Eq. (1.13),

GR,A
k (ε) = U †

kG̃R,A
k (ε)Uk

=









1/(ε − ξk+ ± i/2τ) 0

0 1/(ε − ξk− ± i/2τ)









, (3.7)

is the impurity averaged Green function in the chiral basis, and

Jk = U †
kJ̃kUk

=
ev

2

τtr

τ









cosφk −isinφk

isinφk −cosφk









, (3.8)

is the current vertex operator in the chiral basis. After evaluating the matrix prod-

ucts in Eq. (3.6), taking the trace, and considering the weak scattering (i.e., Boltz-

mann) limit ωτ � 1 [49], we obtain

Γ(q, ω) = τ
∑

λ,λ′=±

∑

k

[Jλλ(k + q) − Jλ′λ′(k)]

Im

{

[1 + λλ′cos(φk+q − φk)]
nF (ξkλ′) − nF (ξk+qλ)

ω + ξkλ′ − ξk+qλ + i0+

}

. (3.9)
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Eq. (3.9) is different from the nonlinear susceptibility for regular 2DEG with quadratic

spectrum in two ways: (1) there are contributions to the electron-hole excitations

coming from both intraband transitions (λ = λ′) and interband transitions (λ 6= λ′);

(2) there is an additional factor [1± cos(φk+q − φk)]/2, which derives from the chi-

rality of the graphene band structure. Furthermore, the nonlinear susceptibility

Eq. (3.9) is not directly proportional to the imaginary part of the polarizability as

in regular 2DEG, because here the current J(k) is not directly proportional to the

momentum k because of the linearity of the energy dispersion. Eq. (3.9) has the

same formal structure as in the case of a regular 2DEG with Rashba/Dresselhaus

spin-orbit coupling [49], where λ = ±1 describes the two spin-split bands. The

finite off-diagonal components of J drop out from the expression of the nonlinear

susceptibility, and only the diagonal components Jλλ = λ(τtr/τ)ev cosφk enter into

the expression Eq. (3.9), corresponding to electrons moving in the conduction band

(λ = 1) with a velocity of constant magnitude (τtr/τ)v and valence band (λ = −1)

with −(τtr/τ)v. In the following, we consider the Coulomb drag between intrinsic

graphene layers and extrinsic graphene layers separately.

3.3 Drag in intrinsic graphene systems

For the case where the graphene layers are undoped µ = 0, we first state the

main result: the drag conductivity between two intrinsic graphene layers, or between

one extrinsic and one intrinsic graphene layers, is identically zero. This is not at first

sight a trivial consequence of zero doping if one recalls there is a finite conductivity
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(so-called the “minimum conductivity”) at zero doping in graphene. A physical

explanation and a general argument for the reason why this is so is in order. When

the Fermi level is at the Dirac point, the only process for electron-hole pair creation

will be interband electron excitation from the valence band to the conduction band

by which equal numbers of electrons and holes are created. In the mechanism

of Coulomb drag, the applied electric field drives the electrons (or holes) in the

active layer in the, say, positive (negative) direction; through Coulomb scattering,

momentum is transferred to the passive layer, which drives the carriers (regardless

of whether these are electrons or holes) in the same direction as the momentum

transfer. In doped systems where there is only one type of carrier (either electron or

hole), this gives a finite drag current in the passive layer. Now, in undoped systems

where a perfect electron-hole symmetry exists, there are two cases for consideration:

(1) If the active layer is undoped, equal numbers of electrons and holes in the active

layer will be driven in the opposite direction by the applied electric field, and the

net momentum transfer is thus zero. There will be no drag regardless of what the

passive layer is. (2) If the active layer is doped while the passive layer is undoped,

equal numbers of electrons and holes in the passive layer will be driven in the same

direction by the momentum transfer, therefore resulting in a vanishing drag current.

The conclusion of these qualitative considerations amounts to a vanishing nonlinear

susceptibility Γ(q, ω) = 0, which we now prove as follows. We first make a change

of the integration variable k′ = −k in Eq. (3.9), and use time-reversal symmetry to
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obtain

Γ(q, ω) = τ
∑

λ,λ′=±

∑

k′

[−Jλλ(k
′ − q) + Jλ′λ′(k′)] Im {[1 + λλ′cos(φk − φk−q)]

nF (εk′λ′) − nF (εk′
−qλ)

ω + εk′λ′ − εk′
−qλ + i0+

}

. (3.10)

This is general so far. Next we impose the symmetry requirements of the bands

about ε = 0, i.e. εk′,λ = −εk′,−λ and J̃k′,λ = −J̃k′,−λ, and then change the band

labels as r′ = −λ, r = −λ′ in Eq. (3.10). Finally, using the relation nF (εk′,−r) =

1−nF (εk′,r) valid for the undoped case µ = 0, we arrive at Γ = −Γ, i.e. Γ(q, ω) ≡ 0.

This result holds true for any type of spectrum where the two bands have a mirror

symmetry across ε = 0, and any bilayer system with one or both of the layers having

such a band symmetry with zero doping always results in an overall vanishing drag

at all temperatures.

3.4 Drag in extrinsic graphene systems

3.4.1 Analytical results

We now move on to the drag between finite-doped graphene layers. First we

provide a derivation for the exact analytical result of the nonlinear susceptibility

Eq. (3.9). In the following we take Fermi energy εF > 0. To faciliate calculation,
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Eq. (3.9) can be written as

Γ(q, ω) = τ
∑

λ,λ′=±

∑

k

{[Jλλ(k + q) − Jλ′λ′(k)]

Im

{

[1 + λλ′cos(φk+q − φk)]
nF (ξkλ′)

ω + ξkλ′ − ξk+qλ + i0+

}

− [Jλλ(k) − Jλ′λ′(k − q)]

Im

{

[1 + λλ′cos(φk − φk−q)]
nF (ξkλ)

ω + ξk−qλ′ − ξkλ + i0+

}}

. (3.11)

We now separate Eq. (3.11) into two terms Γintra and Γinter, corresponding to intra-

band contribution and interband contribution, respectively:

Γ(q, ω) = Γintraθ(vq − ω) + Γinterθ(ω − vq). (3.12)

The intraband contribution, corresponding to terms in Eq. (3.11) with λ = λ′, can

be written as

Γintra = τ
∑

k

{[J++(k + q) − J++(k)]

× Im

{

[1 + cos(φk+q − φk)]
nF (ξk+)

ω + ξk+ − ξk+q+ + i0+

}

− [J++(k) − J++(k − q)]

× Im

{

[1 + cos(φk − φk−q)]
nF (ξk+)

ω + ξk−q+ − ξk+ + i0+

}

+ [J−−(k + q) − J−−(k)]

× Im

{

[1 + cos(φk+q − φk)]
nF (ξk−)

ω + ξk− − ξk+q+ + i0+

}

− [J−−(k) − J−−(k − q)]

× Im

{

[1 + cos(φk − φk−q)]
nF (ξk−)

ω + ξk−q− − ξk+ + i0+

}}

. (3.13)

At zero temperature, nF (ξk−) = 1, the last two terms in Eq. (3.13) cancel each

other. This is a direct consequence of forbidden intraband transition within the
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valence band since all states are already occupied. In the following, we assume

ω > 0. The first term (I)intra in Eq. (3.13) can be evaluated as follows:

(I)intra = − πτ

(2π)2
2ev

∫ ∞

0

kdk

∫ 2π

0

(

q + kcosφk

|k + q| − cosφk

)(

1 +
k + qcosφk

|k + q|

)

θ(εF − εk)δ(ω + εk − εk+q)

= −eτ

πq

∫ kF

0

dk
θ(1 − |t1|)
√

1 − t21

(

q − ω

v
t1

)

(

ω/v + 2k + qt1
ω/v + k

)

, (3.14)

where in the last line the angular integration has already been carried out and

t1 ≡ [(ω/v + k)2 − k2 − q2]/2kq is the value of cosφk that the delta function in the

first line of Eq. (3.14) picks up. Similarly, the second term (II)intra can be evaluated:

(II)intra = −eτ

πq

∫ kF

0

dk
θ(1 − |t2|)
√

1 − t22

(

q − ω

v
t2

)

(−ω/v + 2k − qt2
−ω/v + k

)

, (3.15)

where t2 ≡ [k2 + q2 − (−ω/v + k)2]/2kq. Combining Eqs. (3.13)-(3.15), we obtain

the intraband term as

Γintra =
eτ

πq

[

∫ kF

(q+ω/v)/2

dk
1

√

1 − t22

(

q − ω

v
t2

)

(

2k − ω/v − qt2
k − ω/v

)

−
∫ kF

(q−ω/v)/2

dk
1

√

1 − t21

(

q − ω

v
t1

)

(

2k + ω/v + qt1
k + ω/v

)

]

. (3.16)

For notational clarity, we define the following dimensionless quantities: x = q/kF

and u = ω/εF , and Γ̃ = Γ/(2ekF τ/π)). Eq. (3.16) can then be further simplified as

Γ̃intra =
1

2
√

x2 − u2

∫ 1

(x+u)/2

dk
1

k − u

(

x − u
x2 − u2 + 2ku

2kx

)

√

4k2 − 4ku − (x2 − u2) − {u → −u}. (3.17)
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Carrying out the integration over k, we finally obtain the intraband contribution as

Γ̃intra(x, u) =
1

4x

√
x2 − u2

{

2
√

(u + x − 2)(u − x − 2)

−
√

x2 − u2

[

tan−1

[

√

(u + x − 2)(u − x − 2)
√

x2 − u2

x2 − 2 − (u − 2)u

]

+πθ
[

u(u − 2) − x2 + 2
]]}

θ(2 − x − u) − {u → −u} . (3.18)

We now calculate the interband contribution Γinter, which corresponds to terms in

Eq. (3.11) with λ = −λ′ and can be written as:

Γinter = τ
∑

k

{[J++(k + q) − J−−(k)]

× Im

{

[1 + cos(φk+q − φk)]
nF (ξk−)

ω + ξk− − ξk+q+ + i0+

}

− [J++(k) − J−−(k − q)]

× Im

{

[1 + cos(φk − φk−q)]
nF (ξk+)

ω + ξk−q− − ξk+ + i0+

}

+ [J−−(k + q) − J++(k)]

× Im

{

[1 + cos(φk+q − φk)]
nF (ξk+)

ω + ξk+ − ξk+q− + i0+

}

− [J−−(k) − J++(k − q)]

× Im

{

[1 + cos(φk − φk−q)]
nF (ξk−)

ω + ξk−q+ − ξk− + i0+

}}

. (3.19)

For ω > 0, the third and fourth terms in Eq. (3.19) are zero. The first term (I)inter

in Eq. (3.19) can be evaluated as follows:

(I)inter = −eτ

πq

∫ ∞

0

dk
θ(1 − |t2|)
√

1 − t22

(

q − ω

v
t2

)

(

ω/v − 2k + qt2
ω/v − k

)

, (3.20)

and the second term (II)inter follows similarly:

(II)inter = −eτ

πq

∫ kF

0

dk
θ(1 − |t2|)
√

1 − t22

(

q − ω

v
t2

)

(

ω/v − 2k + qt2
ω/v − k

)

. (3.21)
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Combining Eqs. (3.19)-(3.21), we obtain the interband term as

Γinter = −eτ

πq

[

∫ (ω/v+q)/2

(ω/v−q)/2

dk +

∫ min[kF ,(ω/v+q)/2]

(ω/v−q)/2

dk

]

1
√

1 − t22

(

q − ω

v
t2

)

(

ω/v − 2k + qt2
w/v − k

)

, (3.22)

which can be simplified further as follows:

Γ̃inter = − 1

2
√

u2 − x2

[

∫ (x+u)/2

(u−x)/2

dk +

∫ min[1,(x+u)/2]

(u−x)/2

dk

]

1

u − k

[

x − u

2kx
(x2 − u2 + 2uk)

]√
x2 − u2 + 4uk − 4k2. (3.23)

Carrying out the integral over k, we finally obtain the following interband contribu-

tion

Γ̃inter(x, u) = − 1

4x

√
u2 − x2

{

2
√

(x + u − 2)(x − u + 2)

+
√

u2 − x2

[

tan−1

[

√

(x + u − 2)(x − u + 2)
√

u2 − x2

x2 − 2 − (u − 2)u

]

−πθ
[

x2 − 2 − (u − 2)u
]]}

θ(x + u − 2)θ(x − u + 2). (3.24)

The intraband contribution Eq. (3.18) correponds to electron-hole excitations in the

vicinity of the Fermi level within the conduction band, which occur at ω < vq;

whereas the interband contribution Eq. (3.24) corresponds to electron-hole excita-

tions from the valence band to the conduction band, which occur at ω > vq. Using

Eqs. (3.3)-(3.4), (3.12), (3.18), (3.24) and the expression for the graphene polariz-

ability Eq. (2.5), we have calculated numerically the drag resistivity ρD for different

values of interlayer distance d and density n (Fig. 3.5). Before we proceed to discuss

our numerical results, it is instructive to obtain an analytical formula for the drag

resistivity under certain approximations. To this end, we first define the standard
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dimensionless parameter for the excitation energy y = u/x = ω/vq in the Fermi

liquid theory, which is the ratio of the phase velocity of the excitation ω/q to the

quasiparticle velocity v. At low temperatures and with large interlayer separation,

the dominant contribution to the drag conductivity Eq. (3.2) comes from the region

with small q and ω; consequently the nonlinear susceptibility can be evaluated in

the limits of long wavelength x � 1 and low energy y � 1, allowing a closed-form

expression for Γ(q, ω) to be extracted. The interband (λ = −λ′) contribution in

Eq. (3.9) is in general smaller than the intraband (λ = λ′) contribution by O(x2),

and vanishes in the limit y � 1, as seen from Eq. (3.12). This is because, in

the presence of a finite Fermi level, electrons take more energy to transition from

the valence band to the conduction band (interband) than to transition within the

conduction band (intraband), and with a small excitation energy the channel of

interband transition becomes inaccessible. With the above assumptions, Eq. (3.9)

can be evaluated as

Γ̃(x, u = yx) = Γ̃intra = −4y

[

(1 − yx)
t+θ(1 − |t+|)
√

1 − t2+
− (1 + yx)

t−θ(1 − |t−|)
√

1 − t2−

]

' −4yx (3.25)

where t± = y ± x(1 − y2)/2. Eq. (3.25) is larger than the corresponding expression

for the nonlinear susceptibility in regular 2DEG by a factor of 4, due to an extra

2× 2 degrees of freedom coming from the spin and valley degeneracies in graphene,

in addition to the two sublattice degrees of freedom which give rise to the conduction

and valence bands.
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The longitudinal conductivity can be obtained from the impurity-dressed cur-

rent J = (τtr/τ)evσ̂ using the Kubo formula to give σL = e2ν(εF )D, where ν(εF ) =

2kF/πv is the graphene density of states and D = v2τtr/2 is the diffusion con-

stant. This Kubo formula result is identical with the Boltzmann theory result

σL = (e2/~)2εF τtr/h. Incidentally, for short-range impurities the transport time is

related to the lifetime simply by τtr = 2τ due to the suppression of backscattering

from impurities in graphene. There are two types of disorder in substrate-mounted

graphene, one being the charged impurities coming from the substrate; and the

other being the neutral impurities intrinsic to the graphene layer itself. In theory,

the type of disorder essentially boils down to the expression of the transport time τtr

in σL, which yield different types of functional dependence of the conductivity σL on

the carrier density. In experiments, the conductivity is observed to increase linearly

with density, a fact alluding to the dominance of the charged impuritity scattering

in substrate-mounted graphene samples. We emphasize that this dependence on dif-

ferent types of disorder does not affect the expression of the drag resistivity as the

transport time τtr is explicitly canceled out between σD and σL1σL2. Therefore, our

calculation and conclusions apply equally to bilayer systems with substrate-mounted

(where charged impurity scattering plays the more dominant role) or suspended

graphene samples (where there is only neutral impurity scattering).

In the expression of the drag conductivity Eq. (3.2), the dominant contri-

bution of the integral comes from the region where qd . 1, and for large inter-

layer separation d satisfying d−1 � kF , qTF , the interlayer potential Eq. (3.3) can
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be approximated as U12 ' q/[4πe2sinh(qd)Πcc
1 Πcc

2 ]. Furthermore, the denomina-

tor sinh2(ω/2kBT ) in Eq. (3.2) also restricts the upper limit of the ω integral to

a few ∼ kBT ; therefore at low temperatures only small values of ω/εF contribute

to Eq. (3.2). As a consequence, the polarizability for doped graphene can be ap-

proximated by the static screening result Πcc(q, ω) ' Πcc(q, 0) = ν(εF ). Now, using

Eq. (3.25) for the nonlinear susceptibility, the drag resistivity is obtained as

ρD =
h

e2

πζ (3)

32

(kBT )2

εF1εF2

1

(qTF1d)(qTF2d)

1

(kF1d)(kF2d)
, (3.26)

where qTF = 4e2kF/v is the Thomas-Fermi wavenumber for extrinsic graphene [28].

The drag resistivity Eq. (3.26), valid for low temperatures T � TF and high den-

sity and/or large interlayer separation kFd � 1, has exactly the same form as in

the regular 2DEG drag, exhibiting the same dependences of temperature (∼ T 2),

interlayer separation (∼ 1/d4) and density (∼ (n1n2)
−3/2).

3.4.2 Numerical results

Our numerical calculations and analytical results Eq. (3.26) are compared in

Fig. 3.4, showing that Eq. (3.26) becomes an increasingly accurate approximation

to the full numerical results with increasing values of kFd. The fact that the exact

numerical results shown in Fig. 3.4 disagree more strongly with the analytic result

of Eq. (3.26) for smaller values of kF d is understandable, since the analytic formula

given in Eq. (3.26) applies only in the asymptotic kFd � 1 limit, and for lower

carrier density and/or interlayer separation, Eq. (3.26) simply does not apply. In

particular, for kF d = 1, the exact numerical result for Coulomb drag is a factor
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of 4 larger than that given by Eq. (3.26). This trend of an increasing quantitative

failure of the asymptotic analytic drag formula for lower values of kFd has also

been noted in the literature [50] in the context of low-density hole drag in bilayer

p-GaAs 2D systems. For small kFd, backscattering effects in Coulomb drag, which

are unimportant for kFd � 1, become important.

On the other hand, our numerical results also show that the temperature

dependence of ρD remains very close to T 2 within a wide range of temperatures for

typical experimental values of d and n (e.g. kFd = 5 with n = 5×1011cm−2 and d '

400Å). The ratio of the Fermi temperature for graphene to that for regular 2DEG

with parabolic spectrum (with effective mass m) is TF (graphene)/TF (2DEG) =

mv/~
√

πn, so for low densities e.g. n = 1011cm−2, TF = 430K for graphene can be

larger by an order of magnitude than TF = 42K for GaAs 2DEG. The temperature

dependence of ρD for graphene drag therefore remains very closely T 2 up to about

several tens of kelvin where the low temperature regime T � TF still remains valid,

whereas for drag in regular 2DEG systems departure from the T 2 dependence of

ρD typically occurs at T . 10K. The drag resistivity is calculated numerically

for various values of d and n and higher values of temperature up to T = 0.2TF

(Fig. 3.5); ρD is seen to grow slower and slower than T 2 as temperature increases.

Similar dependence on temperature is also observed for drag in regular 2DEG bilayer

systems before T reaches & 0.2TF , beyond which ρD/T 2 starts to increase due

to plasmon enhancement to the drag resistivity [51, 52]. We discuss the effect

of plasmon enhancement to the Coulomb drag in graphene bilayer systems in the

following.

59



0 0.005 0.01 0.015 0.02
T/TF

10−3

10−2

10−1

100

101

102

|ρ
D|/

(T
/T

F)2  (Ω
) kFd = 10

kFd = 5
kFd = 1

Figure 3.4: ρD/(T/TF )2 as a function of T/TF for Coulomb drag between two identi-
cal extrinsic graphene sheets, with values of kFd = 10 (solid lines), 5 (dashed lines),
and 1 (dot-dashed lines). Numerical results are indicated with bold (black) lines
and analytical results Eq. (3.15) with thin (grey/red) lines. The analytical results
become an increasingly accurate approximation to the full numerical results with
increasing kFd (i.e. increasing n or d).

3.5 Effect of interlayer plasmon excitation

In regular 2D bilayer systems, enhancement to the drag resistivity due to cou-

pled plasmon modes comes into play with increasing temperature [51, 52]. There

exist two plasmon modes, the so-called acoustic and optical modes, for which the

electrons on the two layers move collectively in phase and out of phase, respectively,

with each other. The energy dispersion lines for these plasmon modes lie above

the electron-hole excitation continuum (i.e., the region of ω vs. q where the imag-

inary part of the polarizability is non-zero, ImΠcc(q, ω) 6= 0) at zero temperature,

and are not excited at low temperatures. They can be excited, however, at higher
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Figure 3.5: ρD/(T/TF )2 vs. T/TF for higher values of T up to 0.2TF . Upper panel:
for fixed interlayer distance d = 500Å and different values of density n = 1011cm−2

(solid line), 5×1011cm−2 (dashed line), 1012cm−2 (dot-dashed line), corresponding to
TF = 431K, 963K, 1361K respectively; lower panel: for fixed density n = 1011cm−2

and different values of interlayer distance d = 300Å (solid line), 150Å (dashed line)
and 30Å (dot-dashed line).

temperatures when the electron-hole excitation continuum occupies higher values

of the excitation energy ω, a consequence of the increasing gradient with increasing

momentum k in the parabolic energy dispersion relation. Absorption or emission of

a plasmon can occur when the electron-hole excitation continuum starts to overlap

with the plasmon dispersion. On the other hand for graphene, because the gradient

of the linear dispersion relation is constant, increasing temperature does not increase

the range of the possible intraband excitation energies, the electron-hole excitation

continuum being always bounded by ω < vq. This means that the plasmon excita-

tion energy will always be out of reach from the intraband excitation channel at all
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temperatures. However, the case is different with the interband excitation, for which

the electron-hole excitation continuum overlaps already at T = 0 with the plasmon

dispersion at about [6] ω & εF . This means that plasmon-induced enhancement

of the drag resistivity in graphene occurs, solely due to interband transitions, at a

temperature T & TF ; whereas for regular 2D systems plasmon-induced enhancement

occurs already before T reaches TF (at about T ' 0.5TF ).

Concluding this chapter, we have formulated the Coulomb drag problem for

graphene bilayers. The drag resistivity is zero for intrinsic graphene. For extrinsic

graphene, the interband contribution to the drag due to electron-hole excitations

is suppressed at low temperatures, and the Coulomb drag is due predominantly to

the intraband contribution near the Fermi surface in the conduction band. We have

obtained exact analytical results at T = 0 for both intraband and interband contri-

butions to the nonlinear susceptibility, and obtained the drag resistivity numerically.

We have also derived an approximate analytical result for the drag resistivity valid

for low temperatures, high density and/or large interlayer separation. We find both

similarities and differences for the graphene drag resistivity compared with that

for regular 2DEG with quadratic energy spectrum. At low temperatures, graphene

drag resistivity exhibits the same temperature, bilayer distance and density depen-

dences as regular 2D systems. For low densities n . 1011cm−2, the low temperature

regime where the T 2 dependence of the drag resisitivity holds extends by an order

of magnitude that for regular 2D systems, as the Fermi temperature is higher for

the same carrier density in graphene than in regular 2D systems. In contrast to
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regular 2D bilayer systems, there is no contribution to plasmon-induced enhance-

ment of the drag resistivity due to intraband excitations, and the only contribution

to plasmon-induced enhancement comes from interband excitations, which occur at

temperatures T & εF . The coupled plasmon modes in graphene bilayer systems

can therefore be probed experimentally with drag resistivity measurements at high

enough temperatures or at low densities.
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Chapter 4

Quasiparticle renormalization due

to electron-phonon interaction

4.1 Electron-phonon interaction

As we have seen in Chapter 1, the graphene band structure obtained from the

ARPES experiments [4] consists of two kink structures (Fig. 1.7), one at 200 meV

away from the Fermi level and the other at the Dirac point. We are interested in

the first kink of the band structure in this dissertation, for which electron-phonon

interaction has been suggested as the origin in the experimental paper [4, 24].

With this as a motivation, we formulate the self-energy based on the phonon-

mediated electron-electron interaction in graphene, and calculate the interaction-

induced renormalization of the band structure, showing that a kink will indeed re-

sult due to electron-phonon interaction effect. We shall focus on extrinsic graphene

since only extrinsic graphene is realized in experiments.
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It has been suggested in experiments [4, 24] that the 200meV kink in the ob-

served graphene band structure originates from the G band in-plane optical phonon.

The G band optical phonon in graphene has long been known in the Raman spec-

trum for bulk graphite [53], and corresponds to a real space in-plane lattice vibration

mode as shown in Fig. 4.1. Fig. 4.2 shows the measured Raman spectrum of graphite

and graphene with a peak at a wavenumber of 1580cm−1 corresponding to the G

band optical phonon. The phonon energy which corresponds to the wavenumber of

1580cm−1 is ω0 = 200meV.

Figure 4.1: The G band in-plane optical phonon mode of graphene. The A-sublattice
atoms and B-sublattice atoms vibrate in opposite direction with each other.

In the following, we investigate the effect of electron-phonon interactions on

band structure renormalization by calculating the electron self-energy due to the

phonon-mediated electron-electron interaction. Since we have considered the ef-

fect of Coulomb interaction in Chapter 2, in this chapter we focus on the effect of

only electron-phonon interaction on the quasiparticle properties ignoring Coulomb
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Figure 4.2: Raman spectrum obtained from experiment [5] for graphite and
graphene. The peak at the wavenumber 1580cm−1 is the G peak corresponding
to the zone-center in-plane optical phonons; the band at 2700cm−1 is the G’ band
corresponding to a second order Raman scattering of the zone-boundary phonons.

interaction. Our non-interacting system therefore comprises the free electron Hamil-

tonian and the free phonon Hamiltonian,

H̃ ′
0 =

∑

k

c
†
kH0ck +

∑

q

ω0

(

d†
qdq +

1

2

)

, (4.1)

where the tilde over H ′
0 denotes a quantity expressed in the pseudospin (i.e., sublat-

tice) basis, and ck = [ak bk]T is the two-component electron annihilation operator

in the momentum space for the A and B sublattices, and dq, d
†
q are the phonon

annihilation and creation operators.

The electron-phonon interaction in graphene in the context of carbon nanotube

was studied in Refs. [54, 55, 19, 20, 56]. The electron-phonon interaction Hamilto-

nian (in the first quantization) for the Γ point optical phonon can be derived using

a tight-binding model Refs. [20, 56] as

ṽep = g
∑

q

M(q)(dq + d†
−q)e

iq·r, (4.2)
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where M(q) is a matrix in the pseudospin space and is given, for LO/TO phonon,

by

M(q) =









0 MABe−iφq

MBAeiφq 0









, (4.3)

with MAB = −1 or i and MBA = 1 or i for LO or TO phonons, respectively, and

φq = tan−1(qy/qx) the azithmuthal angle of the momentum q. Optical phonon

modes in graphene couple neighboring A-sublattice and B-sublattice carbon atoms

through bond stretching and bending, so that the electron-phonon coupling becomes

an off-diagonal matrix in the pseudospin space [19, 20] gM , where the coupling

constant g is given by

g = −(
β~v

a2
)

√

~

2NMcω0

, (4.4)

with ω0 = 200meV the optical phonon frequency for graphene from Raman scatter-

ing experiments [13, 5], N the number of unit cells, Mc = 2.2 × 104me the mass of

a carbon atom (me is the electron mass), a = 1.42Å the equilibrium bond length

between adjacent carbon atoms and β = d lnt/d lnl ∼ 2 is a dimensionless param-

eter that gives the change of the nearest-neighbour hopping energy t with respect

to the bond length l [19, 20]. Similar tight-binding analyses give the form of the

electron-phonon interaction Hamiltonian for the Γ point acoustic phonon [19], and

for the K point phonon modes [57].

We then write the second-quantized form of the electron-phonon interaction
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Eq. (4.2) in the momentum space as:

Ṽep = g
∑

k,q

c
†
k+qM (q)ckAq

= g
∑

k,q

c
†
k+qM (q)ck(dq + d†

−q), (4.5)

where we have defined Aq = dq +d†
−q as the phonon displacement operator. We note

that Eq. (4.5) has the standard form of the electron-phonon interaction, except that

the electron-phonon coupling is given by a matrix which is a function of φq instead

of simply a constant. Eqs. (4.3)-(4.5) say that the electron-electron scattering via

phonon emission/absorption flips the pseudospin (i.e. sublattice) quantum number

from A to B or vice versa.

4.2 Phonon-mediated electron-electron interaction

The electron-phonon interaction Ṽep could be transformed to an equivalent

phonon-mediated electron-electron interaction Ṽ ph
ee by the following argument. The

non-interacting Hamiltonian of the system is given by Eq. (4.1). With the electron-

phonon interaction Eq. (4.5) turned on, the interacting Green function is given by

the standard perturbation series in the interaction picture representation [34]:

G̃kλ(τ) = −
[

∞
∑

m=0

(−1)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτm〈Tτ Ṽep(τ1) · · · Ṽep(τm)ckλ(τ)c†kλ(0)〉0
]

/

[

∞
∑

m=0

(−1)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτm〈Tτ Ṽep(τ1) · · · Ṽep(τm)〉0
]

,

(4.6)

where β = 1/kBT , Tτ is the imaginary time ordering operator, and the brackets

〈· · ·〉 indicates thermal average with respect to exp(−βH̃ ′
0). The thermal average of
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the integrand in the mth term of, say, the denominator in Eq. (4.6) decouples into

a product of a phononic and an electronic thermal average,

〈TτAq1
(τ1) · · ·Aqm

(τm)c†k+q1λ1
(τ1)ckλ′

1
(τ1) · · · c†k+qmλm

(τm)ckλ′

m
(τm)〉0

= 〈TτAq1
(τ1) · · ·Aqm

(τm)〉0〈Tτc
†
k+q1λ1

(τ1)ckλ′

1
(τ1) · · · c†k+qmλm

(τm)ckλ′

m
(τm)〉0.

(4.7)

Noticing that only an even number of phonon displacement operators will lead to a

non-zero contribution in Eq. (4.6), and by Wick’s theorem, the thermal average of

the product of phonon displacement operators factorizes into a product of pairs of

displacement operators

g2Mα′α(qi)Mβ′β(qj)〈TτAqi
(τi)Aqj

(τj)〉0

= g2Mα′α(qi)Mβ′β(qj)〈TτAqi
(τi)A−qi

(τj)〉0δqj ,−qi

= g2Mα′α(qi)Mβ′β(−qi)D0
q(τi − τj)δqj ,−qi

, (4.8)

where we have introduced the non-interacting phonon Green function D0(q, τ1−τ2) ≡

−〈TτAq1
(τ1)A

†
q2

(τ2)〉0 = −〈TτAq1
(τ1)A−q2

(τ2)〉0. The interacting Green function

Eq. (4.6) becomes

G̃kλ(τ) = −
[

∞
∑

n=0

(−1)n

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτn〈Tτ Ṽ
ph
ee (τ1) · · · Ṽ ph

ee (τn)ckλ(τ)c†kλ(0)〉0
]

/

[

∞
∑

n=0

(−1)n

n!

∫ β

0

dτ1 · · ·
∫ β

0

dτn〈Tτ Ṽ
ph
ee (τ1) · · · Ṽ ph

ee (τn)〉0
]

,

(4.9)

where n = m/2 because of the phonon displacement operator pairing Eq. (4.8), and

Ṽ ph
ee =

1

2
g2
∑

k1,k2,q

D0(q, τ2 − τ1)Mα′α(q)Mβ′β(−q)c†k1+qα′c
†
k2−qβ′ck1αck2β, (4.10)
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is the phonon-mediated electron-electron interaction operator we are looking for

(summation over repeated indices is implied). We note that Eq. (4.10) can also be

derived by starting from the Hamiltonian H̃ ′
0 + Ṽph within the functional integral

approach and integrating out the phonon degrees of freedom. Eq. (4.10) is schemat-

ically shown in the diagrammatic language in Fig. 4.3, from which the meaning of

the equation is clear: two electrons scatter off one another through the exchange

of a phonon, and by virtue of the off-diagonal electron-phonon interaction vertex

gM , the pseudospin of each electron is flipped after the scattering. Eq. (4.10) is the

k
1

k
2

a b

k  +
1

q a' k  -
2

q b'

Figure 4.3: Feynman diagram for the phonon-mediated electron-electron interaction
Eq. (4.10). The solid straight lines denote the electron Green function, and the zig-
zag line denotes the phonon Green function. The electron-phonon interaction vertex
is given by gMα′α, gMβ′β on the two vertices. An electron initially in the state |k1α〉
interacts with another electron in the state |k2β〉 through exchanging a phonon of
momentum q, and then the first electron is scattered off to the state |k1 +qα′〉 while
the second electron is scattered off to the state |k2−qβ ′〉. Since the electron-phonon
interaction vertices gMα′α, gMβ′β are off-diagonal matrices, the pseudospin labels of
the two electrons are flipped in the process: α′ = −α and β ′ = −β.

central quantity of this chapter from which other quantities such as self-energy are

derived. To find the self-energy for electrons in the conduction band/holes in the

valence band, we work in the chiral basis (i.e. the basis where the Hamiltonian H0 is
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diagonal). We shall focus ourselves only on LO phonons, as the calculations for TO

phonons parallel that for LO phonons. The matrix elements for electron scattering

from chirality λ → λ′ and µ → µ′ through phonon emission/absorption are

〈k + qλ′|M(q)|kλ〉 =
1

2
[λ′e−i(φk+q−φq) − λei(φk−φq)],

〈k − qµ′|M(−q)|kµ〉 =
1

2
[−µ′e−i(φk−q−φq) + µei(φk−φq)], (4.11)

and the corresponding phonon-mediated electron-electron interaction in the chiral

basis can be written as

V ph
ee =

1

2
g2
∑

k1,k2,q

D0(q, τ1 − τ2)〈k1 + qλ′|M(q)|k1λ〉

〈k2 − qµ′|M(−q)|k2µ〉c†k1+qλ′c
†
k2−qµ′ck1λck2µ, (4.12)

where here the operators c†kλ, ckλ in Eq. (4.12) denotes the electron creation and

annihilation operators in the chiral basis, with λ, µ = ±1 the chirality.

4.3 Self-energy

The effective many-body velocity or mass renormalization to the band struc-

ture comes in large part from the electron-phonon interaction with the Coulomb

interaction yielding a quantitatively small correction [34, 58]. Since the effective ve-

locity renormalization due to screened Coulomb interaction was considered in Chap-

ter 2, we shall focus in this chapter on the many-body effects of the electron-phonon

interaction without the effects of Coulomb interaction. The electron self-energy in

the chiral basis due to phonon-mediated electron-electron interaction can be derived
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using Eqs. (4.11)-(4.12) as

[Σk(ikn)]µ′λ = −kBT
g2

4

∑

q,iqn

D0(iqn)[λ′e−i(φk+q−φq) − λei(φk−φq)]

[−µ′e−i(φk−φq) + µei(φk+q−φq)]G0
k+qµ(ikn + iqn)δµλ′ , (4.13)

where G0
kλ(ikn) = 1/(ikn − ξkλ) is the non-interacting quasiparticle Green function

in the chiral basis, with ξkλ = λεk − εF the quasiparticle energy rendered from

the Fermi level, and D0(q, iqn) = 2ω0/[(iqn)2 − ω2
0] is the non-interacting phonon

Green function in the frequency domain. From Eq. (4.13), we find that the diagonal

elements of the self-energy matrix Σk±± ≡ Σk± are given by

Σk±(ikn) = −kBT
g2

2

∑

λ

∑

q,iqn

D0(iqn)G0
k+qλ(ikn + iqn)

[1 ∓ λcos(φk+q − 2φq)] , (4.14)

and the off-diagonal elements of the self-energy matrix

Σk±∓(ikn) = ±ikBTg2
∑

λ

∑

q,iqn

G0
k+qλ(ikn + iqn)D0(iqn)

λsin(φk+q − 2φq)

2
= 0,

(4.15)

vanish after performing the angular integration [the same is also true for the case

with only Coulomb interaction, c.f. Eq. (2.18)]. For TO phonons, Eq. (4.14) remains

the same except the chirality factor becomes 1∓ cos(φk+q − 2φq) → 1± cos(φk+q −

2φq). The Matsubara sum in Eq. (4.14) can be performed explicitly:

−kBT
∑

iqn

D0(iqn)G0
k+qλ(ikn + iqn) =

nB(ω0) + nF (ξk+qλ)

ikn − ξk+qλ + ω0

+
nB(ω0) + 1 − nF (ξk+qλ)

ikn − ξk+qλ − ω0
, (4.16)
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and we note that at zero temperature, nB(ω0) = 0.

For concreteness, we consider the case of n-doped graphene, εF > 0, and

evaluate the self-energy Σk+ for electrons in the conduction band. For p-doped

material, one should consider Σk− for holes in the valence band.

4.3.1 Imaginary part of the self-energy

The quasiparticle decay rate is proportional to the imaginary part of the self-

energy,

ImΣ̃k+(ω) = −πg2

2

∑

k′,λ

{nF (ξk′λ)δ(ω − ξk′λ + ω0) + [1 − nF (ξk′λ)] δ(ω − ξk′λ − ω0)}

[1 − λcos(φk′ − 2φk−k′)] , (4.17)

where k′ = k + q. Recalling the trigonometric identities cos(φk′ − 2φk−k′) =

cosφk′cos2φk−k′ + sinφk′sin2φk−k′, cos2φk−k′ = 1 − 2sin2φk−k′ and sin2φk−k′ =

2sinφk−k′cosφk−k′ , and noting that

k + qcosφk−k′ = k′cosφk′

qsinφk−k′ = k′sinφk′ , (4.18)

we obtain the following relation

1 − λcos(φk′ − 2φk−k′) = (k + λk′)2 1 − λcosφk′

k2 + k′2 − 2kk′cosφk′

. (4.19)

The angular integration in Eq. (4.17) can then be carried out, with

∫ 2π

0

dφk′

1 − λcosφk′

k2 + k′2 − 2kk′cosφk′

= λ
π

kk′

(

1 −
∣

∣

∣

∣

k − λk′

k + λk′

∣

∣

∣

∣

)

(k 6= k′),

= λ
π

k2
(k = k′). (4.20)
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Figure 4.4: The real and imaginary parts of the self-energy at k = kF for density
n = 1013cm−2. The red dashed line shows the position of the Dirac point. Region
ω > ω0 corresponds to the intraband term Fintra(k, ω, ω0) whereas −ω0 − εF < ω <
−ω0 corresponds to the intraband term Fintra(k, ω,−ω0). The first dip in |ImΣ| on
the left side of the Dirac point marks the onset of the interband transitions Finter

for ω < −ω0 − εF ; the second dip occurring at −ω0 − εk − εF originates from the
particular form of the angular factor in Eq. (4.14) which comes from the electron-
phonon interaction vertex Eq. (4.11).

The remaining integration over k′ can be done easily, and Eq. (4.17) then yields

ImΣk+(ω) = −1

8
g2
ee [Fintra(k, ω, ω0)θ(ω − ω0)θ(ω − ω0 + εF )

+Fintra(k, ω,−ω0)θ(−ω − ω0)θ(ω + ω0 + εF )

+Finter(k, ω,−ω0)θ(−ω − ω0)θ(−ω − ω0 − εF )] , (4.21)

where

g2
ee =

g2A
~2v2

= 2 × 10−2, (4.22)
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is the dimensionless phonon-mediated electron-electron coupling constant (A is the

area of the sample) [Eq. (1.17)], the term

Fintra(k, ω, ω0) = (ω − ω0 + εF + εk) (ω − ω0 + εF + εk − |ω − ω0 + εF − εk|) /εk,

(4.23)

corresponds to the contribution from quasiparticles making an intraband transition

in the vicinity of the Fermi level by emitting a phonon, Fintra(k, ω,−ω0) corresponds

to quasiholes making an intraband transition in the vicinity of the Fermi level by

absorbing a phonon, and the term

Finter(k, ω,−ω0) = − |ω + ω0 + εF + εk| (|ω + ω0 + εF + εk|

+ω + ω0 + εF − εk) /εk, (4.24)

corresponds to quasiparticles making an interband transition from the conduction

to the valence band by emitting a phonon.

4.3.2 Real part of the self-energy

From Eq. (4.14), We now evaluate the real part of the self-energy, which is

given by

ReΣk±(ω) =
g2

2

∑

k′λ

[

nF (ξk+qλ)

ω − ξk+qλ + ω0
+

1 − nF (ξk+qλ)

ω − ξk+qλ − ω0

]

[1 ∓ λcos(φk+q − 2φq)] .

(4.25)

The sum over λ = ±1 in Eq. (4.25) takes care of the the intraband λ = 1 and inter-

band λ = −1 contributions. Direct calculation of Eq. (4.25) gives a logarithmically
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divergent result, which is also the case for the calculation of the real part of the self-

energy with only screened Coulomb interaction. This is because in the two-band

linear dispersion model for graphene H0 = vσ · k, there exists an infinite number of

electrons in the valence band (i.e. the “Dirac sea”), which is obviously unphysical.

In reality, the linear band structure of graphene in the vicinity of the K point only

holds up to a cut-off energy scale given by the inverse lattice spacing, beyond which

the energy dispersion becomes nonlinear. The real part of the self-energy should

therefore be regularized by introducing the cut-off energy Λc = ~vkc = ~v/a in the

momentum integral in Eq. (4.25). Using Eq. (4.20) for the angular integral, and

then carrying out the k′ integral, we evaluate the intraband contribution of the first

term in Eq. (4.25) as follows:

(I)intra ≡
∑

k′

nF (ξk′+)

ω − ξk′+ + ω0

[1 − cos(φk′ − 2φk′−k)]

=
1

(2π)2

∫ kF

0

dk′k′ 1

ω − ξk′+ + ω0

π

kk′
(k + k′)2

(

1 −
∣

∣

∣

∣

k − k′

k + k′

∣

∣

∣

∣

)

=
1

4πk

{
∫ kF

0

dk′ 1

ω − vk′ + εF + ω0
(k + k′)2k′θ(k − kF )

+

[
∫ k

0

dk′ 1

ω − vk′ + εF + ω0

(k + k′)2k′

+

∫ kF

k

dk′ 1

ω − vk′ + εF + ω0
(k + k′)2k

]

θ(kF − k)

}

, (4.26)

where we have converted to dimensionless units The first integral which is multiplied

by θ(k − kF ) yields

1

4πk

∫ kF

0

dk′ 1

ω − vk′ + εF + ω0
(k + k′)2k′θ(k − kF )

=
1

2πεk

θ(k − kF )

[

−1

2
εF (2ω + 2ω0 + 2εk + 3εF )

+(ω + ω0 + εF )(ω + ω0 + εk + εF )ln

(

ω + ω0 + εF

ω + ω0

)]

, (4.27)
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while the bracketed expression containing the second and third integrals which are

together multiplied by θ(kF − k) yields

1

4πk

[
∫ k

0

dk′ 1

ω − vk′ + εF + ω0

(k + k′)2k′

+

∫ kF

k

dk′ 1

ω − vk′ + εF + ω0
(k + k′)2k

]

θ(kF − k)

=
1

2πεk

θ(kF − k)

{

−1

2
εk(2ω + 2ω0 + 4εF + εk)

+(ω + ω0 + εF )(ω + ω0 + εk + εF )ln

(

ω + ω0 + εF

ω + ω0 − εk + εF

)

+(ω + ω0 + εk + εF )εkln

(

ω + ω0 − εk + εF

ω + ω0

)}

. (4.28)

The intraband contribution of the second term in Eq. (4.25) gives

(II)intra ≡
∑

k′

1 − nF (ξk′+)

ω − ξk′+ − ω0
[1 − cos(φk′ − 2φk′−k)]

=
1

(2π)2

∫ ∞

0

dk′k′ 1 − θ(kF − k′)

ω − ξk′+ − ω0

π

kk′
(k + k′)2

(

1 −
∣

∣

∣

∣

k − k′

k + k′

∣

∣

∣

∣

)

=
1

4πk

∫ k

0

dk′ 2k′

ω − ω0 + εF − vk′
(k + k′) +

1

2π

∫ ∞

k

dk′ 1

ω − ω0 + εF − vk′
(k + k′)

−(I)intra|ω→−ω0
. (4.29)

The first integral gives

1

4πk

∫ k

0

dk′ 2k′

ω − ω0 + εF − vk′
(k + k′)

=
1

4πεk

[−εk(2ω − 2ω0 + 2εF + 3εk)

+2(ω − ω0 + εF )(ω − ω0 + εk + εF )ln

(

ω − ω0 + εF

ω − ω0 + εF − εk

)]

, (4.30)

while the second integral gives

1

2π

∫ ∞

k

dk′ 1

ω − ω0 + εF − vk′
(k + k′)

=
1

2π

[

εk − Λc + (ω − ω0 + εF + εk)ln

(

ω − ω0 + εF − εk

ω − ω0 + εF − Λc

)]

. (4.31)
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Now we calculate the interband contribution of the first term in Eq. (4.25) as follows:

(I)inter =
∑

k′

nF (ξk′−)

ω − ξk′− + ω0
[1 + cos(φk′ − 2φk−k′)]

= − 1

(2π)2

∫ ∞

0

dk′k′ 1

ω + vk′ + ω0 + εF

π

kk′
|k − k′|2

(

1 − k + k′

|k − k′|

)

=
1

2πk

[
∫ k

0

dk′ k′(k − k′)

ω + ω0 + εF + vk′
+ k

∫ ∞

0

dk′ k′ − k

ω + ω0 + εF + vk′

]

.

(4.32)

The first integral gives

1

2πk

∫ k

0

dk′ k′(k − k′)

ω + ω0 + εF + vk′

=
1

4πεk
[εk(2ω + 2ω0 + 2εF + εk)

+2(ω + ω0 + εF )(ω + ω0 + εF + εk)ln

(

ω + ω0 + εF

ω + ω0 + εF + εk

)]

, (4.33)

whereas the second integral gives

1

2π

∫ ∞

0

dk′ k′ − k

ω + ω0 + εF + vk′
=

1

2π
[−εk + Λc

+(ω + ω0 + εF + εk)ln

(

ω + ω0 + εF + εk

ω + ω0 + εF + Λc

)]

. (4.34)

The interband contribution of the second term in Eq. (4.25) (II)inter = 0 at zero

temperature. Combining the results from Eqs. (4.26)-(4.34), we obtain the following
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exact analytical expression for ReΣk+(ω):

ReΣk+(ω) =
1

4π
g2
ee

1

εk
{{θ(k − kF ) [−ω0εF

+(ω + ω0 + εF )(ω + ω0 + εF + εk) ln

(

ω + ω0 + εF

ω + ω0

)]

+θ(kF − k)

[

−ω0εk + (ω + ω0 + εF )(ω + ω0 + εk + εF ) ln

(

ω + ω0 + εF

ω + ω0 + εF − εk

)

+(ω + ω0 + εF + εk)εk ln

(

ω + ω0 + εF − εk

ω + ω0

)]

− (ω0 → −ω0)

}

+εk(2ω0 − εk) + (ω − ω0 + εF )(ω − ω0 + εF + εk) ln

(

ω − ω0 + εF

ω − ω0 + εF − εk

)

+(ω + ω0 + εF )(ω + ω0 + εF + εk) ln

(

ω + ω0 + εF

ω + ω0 + εF + εk

)

+(ω − ω0 + εF + εk)εk ln

(

ω − ω0 + εF − εk

ω − ω0 + εF − Λc

)

+(ω + ω0 + εF + εk) εkln

(

ω + ω0 + εF + εk

ω + ω0 + εF + Λc

)}

. (4.35)

In Fig. 4.4 we show the real and the imaginary parts of the self-energy. The gap

in ImΣk+(ω) between the phonon energies −ω0 and ω0, characteristic of the optical

phonon emission/absorption process, results from the Pauli blocking by electrons

located within ω0 of the Fermi level, so that decay by an electron with energy

ω ∈ [−ω0, ω0] is forbidden because there is no available final state to decay to.

Beyond the gap, ImΣk+(ω) behaves linearly as ω for large ω/ω0 on both sides of the

gap due to the linear dependence on energy of the graphene density of states. At

ω < −ω0 − εF , phonon emission can occur through interband transitions, serving

as an extra decay channel in graphene. The interband contribution Finter has two

dips in |ImΣk+(ω)| below the Dirac point (Fig. 4.4), one at −ω0 − εF which comes

from phase-space restrictions marking the onset of the interband transition and the

other at −ω0 − εk − εF which originates from the angle-dependent electron-phonon
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interaction vertex Eq. (4.11). Taking account of both LO and TO contributions to

the self-energy, the cos(φk+q − 2φq) term will be canceled out and as a result the

second dip in |ImΣk+(ω)| will disappear. In regular semiconductors/metals with a

parabolic energy dispersion, the imaginary part of the self-energy is often calculated

under the approximation of a constant density of states resulting in a square well-

shaped profile [59, 34, 58], which suffices to model the quasiparticle decay rate quite

accurately for these materials. For graphene, however, the linear ω-dependence of

ImΣk+(ω) away from the gap is a peculiar feature and we believe that a correct

modeling of the existing experimental data for the graphene quasiparticle decay

rate [4] should take this feature into account.

4.3.3 Quasiparticle spectral function

In Fig. 4.5, we show the calculated spectral function Ak(ω) ≡ −2ImGk+(ω),

where Gk+(ω) = 1/[ω − ξk+ − Σ̃k+(ω)] is the interacting electron Green function

with self-energy correction [c.f. Eq. (2.51)]. The spectral function comprises two

contributions: a delta function peak within the gap, and a background beyond the

gap. As the value of k increases (decreases), the delta function approaches ω0 (−ω0)

asymptotically from below (above), whereas the background peak at ω > 0 (ω < 0)

becomes increasingly prominent.
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Figure 4.5: The spectral function Ak(ω) (normalized to dimensionless unit by mul-
tiplying ω0) as a function of ω/ω0 and k/kF for density n = 1013cm−2, the inset
shows the locus of the position of the quasiparticle delta function inside the gap
ω/ω0 ∈ [−1, 1].

4.3.4 Renormalized energy dispersion

The derivative of the real part of the self-energy with respect to ω and k

determines the effective velocity v∗, which is given by

v∗(k)

v
=

1 + B

1 − A
, (4.36)

where A = ∂ReΣk(ω)/∂ω|ω=v(k−kF ) and B = (1/v)∂ReΣk(ω)/∂k|ω=v(k−kF ). In reg-

ular metals with a parabolic band dispersion, the relevant phonons are acoustic

phonons with a characteristic energy scale given by the Debye energy ωD. In cal-

culating v∗, it is usual practice to ignore B since in metals εF /ωD ∼ 102 and

B ∼ Σ/εF � A ∼ Σ/ωD. In graphene, however, εF /ω0 ∼ 1 and B should not

be neglected in calculating v∗/v. Although the phonon-mediated electron-electron
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coupling (whose magnitude is given by g2
ee ∼ 10−2) is in general weaker than the

Coulomb coupling (given by the interaction parameter [28] rs ∼ 0.7), electron-

phonon interaction actually contributes more significantly to the effective velocity

renormalization than Coulomb interaction, because the real part of the self-energy

due to electron-phonon interaction exhibit sharp changes near the phonon energies

which are not present in the case of Coulomb interaction. This results in a larger

value of the energy derivative of ReΣ near the phonon energy and therefore larger

value of v∗/v. In Eq. (4.35), logarithmic singularities occur in ReΣk+(ω) at ±ω0

ε−
ε F

(e
V

)

)−1(A   
O

k−kF

Figure 4.6: The renormalized conduction band energy spectrum for n = 1013cm−2.
The colored intensity plot shows the magnitude of the spectral function Ak(ω)
whereever it is non-zero, while the dashed white line shows the region within the
amount of phonon energy ω0 = 0.196eV from the Fermi level where Ak(ω) = 0. The
thin dot-dashed straight line shows the bare unrenormalized spectrum.

82



1 2 3 4 5 6 7 8 9 10
Carrier density n (1013 cm−2)

0

0.04

0.08

0.12

0.16

0.2

λ ef
f =

 v
/v

*−
1

Figure 4.7: The effective electron-phonon “coupling” parameter λeff = v/v∗(kF )− 1
as a function of doping n.

where ImΣk+(ω) goes through a finite step jump, yielding also logarithmic singu-

larities in the derivatives of ReΣk+(ω) with respect to ω and k. Fig. 4.6 shows the

calculated renormalized energy spectrum for electron densities n = 1013cm−2, the

sharp kink shows the logarithmic singularity at ω = ω0. Such a kink only occurs in

the conduction band if the phonon energy is within the Fermi sea ω0 < εF ; if the

phonon energy lies outside of the Fermi sea ω0 > εF the conduction band will be

smooth and the logarithmic singularity could occur in the valence band. Although

our theory predicts the correct position of the kink (Fig. 4.6) in agreement with

the experiment [4, 24], the observed energy spectrum differs from ours in that the

sharpness of the kink in the experiment is greatly reduced. First, we note that

our zero-temperature theory works well in the temperature regime of the experi-

ment T < 30K which is much smaller than the Fermi temperature TF ∼ 4300K at

n ∼ 1013cm−2, hence smearing of the kink due to finite temperature effect should
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be minor. We believe that the kink in the experimental spectrum is suppressed due

to the combined effect of disorder and screening – in particular, disorder effects are

considerable in the currently existing graphene samples. The combination of these

effects will remove the logarithmic singularity leading to a much smoother kink in

the energy spectrum, bringing the calculated spectrum in closer agreement with the

observed spectrum. Fig. 4.7 shows the effective electron-phonon “coupling” param-

eter [34, 58] λeff ≡ v/v∗(kF ) − 1 as a function of electron density n. Our results

agree in order-of-magnitude with the extracted value of λeff from the experiment

(Fig. 3c in the second reference of Ref. [24]), and the band velocity is shown to be

reduced by a percentage of (v − v∗)/v ∼ 4 − 13% from n = 1013 − 1014cm−2.

Concluding this chapter, we have developed a theory for the phonon-mediated

electron-electron interaction and the interaction-induced quasiparticle renormaliza-

tion in graphene. We calculated the electron self-energy, the spectral function and

the band velocity renormalization due to the electron-phonon interaction. Our re-

sults show that the electron-phonon coupling has a large effect on the band structure

renormalization, exhibiting a kink at ∼ 200meV below the Fermi surface as observed

in the experiment and a reduction of the band velocity by ∼ 4% − 13% at the ex-

perimental doping level.
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Chapter 5

Phonon renormalization due to

electron-phonon interaction

The many-body renormalization of the phonon spectrum due to the electron-

phonon interaction is an important open question. Experimentally, Raman scatter-

ing offers a means to measure the long-wavelength phonon energy whereas X-ray

and neutron scattering provide an avenue to probe the entire phonon energy disper-

sion. Due to free carrier-induced many-body interactions, one expects the observed

phonon energy in a doped system to be different from the “bare” phonon energy

in an undoped system. Physically, electrons respond to the dynamical lattice vi-

brations by screening the lattice potential, changing the elastic constants of these

vibrational modes and thereby renormalizing the phonon energy. Traditionally, the

Bohn-Oppenheimer (BO) approximation, also going by the name of static or adi-

abatic approximation, has been an important assumption in the calculation of the

phonon energy dispersion, which requires the phonon energy to be much smaller than

the characteristic energy scale for the electrons, usually the Fermi energy. Recently,
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a number of Raman scattering experiments [18, 60, 61, 62] on extrinsic graphene

(where the electron density can be tuned by gating) have emerged, with the observed

density dependence of the Raman shift (for the long-wavelength G-band optical

phonons at the Γ point) pointing to the inapplicability of the BO approximation

in graphene. This density dependence has been addressed for the long-wavelength

phonons (i.e. q = 0) using perturbation theory [18, 62] and density-functional theory

[63].

An interesting question remains as to whether the Kohn anomaly (KA) [64],

which appears as a cusp in the phonon energy dispersion at q = 2kF for ordinary

2D metals, will be substantially modified in graphene due to its quasi-relativistic

chiral band structure. The occurrence of KA is entirely a many-body effect as it

originates from the screening of the electron-phonon interaction by electrons, and

correpsonds to the singularities of the phonon self-energy or its derivatives as a

function of q. For graphite, the phonon energy dispersion has been studied with

a number of experimental technqiues (X-ray scattering, neutron scattering, double

resonance Raman scattering and electron loss energy spectroscopy) in a number

of papers [65, 66, 67, 68, 69, 70, 71, 72]. Theoretically, Ref. [73] calculated the

graphite phonon energy dispersion taking account of many-body renormalization

using density-functional theory. Ref. [63] addresses the phonon energy renormaliza-

tion in doped graphene, but only at q = 0 relevant to Raman scattering experiments.

Traditionally, KA is probed experimentally with X-ray or neutron scattering spec-

troscopy by measuring the phonon energy as a function of q, for which a systematic

theory for the phonon energy renormalization in graphene for finite wavevector q > 0
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is still lacking.

In this chapter, we formulate a theory for the renormalization of the phonon

energy dispersion in graphene due to both Coulomb and electron-phonon interaction

effects. From our theory, we obtain two major new results: (1) We find that direct

Coulomb and phonon-mediated electron-electron interactions decouple to all orders

of perturbation theory within RPA, and the electronic collective plasmon mode does

not contribute to the phonon energy renormalization; (2) we obtain the renormalized

phonon energy dispersion as a function of q, predicting the occurrence of three

distinct KAs at the phonon wavevector q = ω/v, 2kF ±ω/v for the LO mode and one

at q = ω/v for the TO mode, which arise from the chiral structure of the graphene

electron-phonon coupling. The novel pecularity that these KAs do not occur at q =

2kF (as in usual metals) originates from the fact that the phonon dynamics cannot be

neglected in the screened electron-phonon interaction, indicating the inapplicability

of the BA.

5.1 Validity of the Born-Oppenheimer

Approximation

A wider perspective of the applicability of the BO approximation is in order. In

metals, the phonon energy renormalization is usually considered within the adiabatic

BO approximation, which is equivalent to taking the phonon self-energy in the static

limit. This static approximation is justified because in metals the Fermi energy εF
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and the plasmon energy ωp are much larger than the Debye energy ωD for acoustic

phonons (which are the only important type of phonons in metals), e.g., for sodium

εF ' 3eV, ωp ' 6eV � ωD = 13meV, with the lattice vibrational motion being

essentially static compared with the electron motion. In two-dimensional systems

such as doped semiconductors, εF , ωp are of the same order of magnitude as ω0 (ω0

is the optical phonon energy), e.g., for 2D GaAs at a density n = 1011 − 1012cm−2,

εF ' 3.6 − 36meV, ωp ∼ 30 − 160meV while ω0 = 36.8meV; the lattice dynamics is

substantial compared with the electron motion and hence the static approximation

fails.

Therefore, the BO approximation breaks down in usual doped semiconductors

at low enough densities (i.e., when εF ∼ ω0). In fact, it would be strictly incor-

rect to use the static (i.e., BO or adiabatic) approximation for the phonon degree

of freedom in these systems. Within the static approximation, no plasmon-phonon

coupling can occur because the two modes are effectively decoupled; whereas in re-

ality coupled plasmon-phonon modes do occur [74] due to the hybridization of the

plasmon and phonon modes, a phenomenon which can only be described correctly

by incorporating the full dynamical screening of Coulomb and electron-phonon in-

teractions. In this vein, we emphasize that the validity of the BO approximation

should not be taken as granted, and the adiabatic condition ω0/εF � 1 for which

the approximation is justified should always be kept in mind.

Graphene, behaving as a 2D zero-gap semiconductor, has a G-band optical

phonon energy ω0 = 200meV at the Γ point which is comparable to the Fermi en-

ergy εF ∼ 110− 370meV at the usual extrinsic carrier density n = 1012 − 1013cm−2.
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This approximate equality of the phonon and electron energy scales ω0 ∼ εF im-

plies a breakdown of the static approximation for the phonon degree of freedom,

naturally explaining the violation of the BO approximation in the recent Raman

scattering experiments [18, 60, 61, 62] since the BO approximation implicitly as-

sumes the phonon dynamics to be much slower than the electron dynamics. In

addition, plasmon-phonon coupling, which has been extensively studied in doped

semiconductor systems (e.g., GaAs, SiC), is expected to occur whenever the phonon

dynamics is at a comparable time scale as the electron motion. It follows that one

cannot take the screening of the electron-phonon interaction to be simply static

while keeping the screening of the Coulomb interaction to be dynamic; instead, one

has to take into account the dynamical screening of both Coulomb and electron-

phonon interactions, i.e., direct electron-electron and electron-phonon interactions

must be treated on an equal footing [74].

5.2 Formalism

In the presence of direct electron-electron interaction and electron-phonon in-

teraction, the phonon Green function is renormalized by both, as represented in the

diagrammatic language in Fig. 5.1. Summation of these diagrams leads to the renor-

malized phonon Green function D(q, ω) = D0(q, ω)/[1 −D0(q, ω)Πpp(q, ω)], where

D0(q, ω) = 2ω0/(ω2 − ω2
0 + i0+) is the bare phonon Green function with ω0 the

optical phonon energy, Πpp(q, ω) is the RPA-screened phonon self-energy given by
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(a)

(b)

Figure 5.1: (a) Dyson equation for the renormalization of the phonon Green func-
tion. The zigzag lines denote the phonon Green function and the crosses denote
the electron-phonon interaction vertex. The shaded bubble with two cross vertices
stands for the renormalized phonon self-energy. (b) Equation for the renormalized
phonon self-energy. The unshaded bubble with two cross vertices denotes the bare
phonon self-energy, the two bubbles with one cross vertex and one dot vertex are
“hybrid bubbles” with one electron-phonon interaction vertex and one Coulomb
interaction vertex. The wavy line stands for the usual RPA-screened Coulomb in-
teraction.

the following equation [Fig. 5.1(b)]:

Πpp(q, ω) = Πpp
0 (q, ω) + Πpc

0 (q, ω)V c
ee(q, ω)Πcp

0 (q, ω), (5.1)

where V c
ee(q, ω) = V (q)/[1 − V (q)Πcc

0 (q, ω)] is the usual RPA-screened Coulomb

interaction (c.f. Chapter 2), Πcc
0 (q, ω) is the irreducible polarizability (we have

restored the subscript ’0’ emphasizing it is a “bare” bubble), Πpp
0 (q, ω) the bare

phonon self-energy, and Πpc
0 (q, ω), Πcp

0 (q, ω) are the bare “hybrid” bubbles with one

Coulomb interaction vertex and one electron-phonon interaction vertex. The su-

perscripts ‘p’ denotes an electron-phonon interaction vertex whereas ‘c’ denotes a

Coulomb interaction vertex. In regular metals or doped polar semiconductors, the
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phonon self-energy and the hydrid bubbles are the same (up to a factor given by

the electron-phonon coupling constant) as the electronic polarizability; the Dyson

equation for the renormalized phonon Green function (Fig. 5.1) simply reduces to

the usual RPA series. In graphene, due to the presence of a chiral structure of the

electron-phonon interaction Eq. (4.3), the bubbles Πpp
0 , Πpc

0 , Πcp
0 , and Πcc

0 are not

equal to one another. In particular, Πpc
0 and Πcp

0 incorporate the coupling effects

of the Coulomb and electron-phonon interactions within the RPA, and describe the

renormalization effect of the phonon energy by the Coulomb interaction. Interest-

ingly, we find that with the graphene electron-phonon interaction Eq. (4.3), these

hybrid bubbles vanish identically: Πpc
0 = Πcp

0 = kBTg
∑

ikn,k G0
kλ(ikn)G0

k+qλ′(ikn +

iqn)〈k + qλ′|M(q)|kλ〉〈kλ|k + qλ′〉 = 0, Eq. (5.1) then implies that Πpp is sim-

ply given by the bare phonon self-energy Πpp
0 , and Coulomb interaction does not

contribute to the screening of the electron-phonon interaction within the RPA. The

phonon energy dispersion, which is given by the pole of the real part of the renor-

malized phonon Green function,

ω2 = ω2
0 + 2ω0ReΠpp

0 (q, ω), (5.2)

is therefore only renormalized by the electron-phonon interaction but not by Coulomb

interaction. It follows that coupled plasmon-phonon modes do not arise in graphene,

with the phonon and plasmon modes having separate branches of energy dispersion

in the ω − q phase space despite comparable energy scales for the phonon and elec-

tron dynamics. In addition, direct Coulomb and phonon-mediated electron-electron
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interactions are simply additive, with the RPA-screened total electron-electron in-

teraction given by

V tot
ee =

V (q)

1 − V (q)Πcc
0

+
V ph

ee

1 −D0Πpp
0

, (5.3)

where V ph
ee is the unscreened phonon-mediated electron-electron interaction (c.f.

Eq. (4.10)). This decoupling is consistent with the physical picture that graphene

is non-polar and optical phonons are due to bond stretching and bending, instead

of Coulomb interaction between free carriers and polar atoms as in a polar semicon-

ductor.

5.3 Phonon self-energy

The phonon self-energy Πpp = Πpp
0 can then be derived from the electron-

phonon interaction vertex Eq. 4.3 as:

Πpp(q, iqn) = 4g2kBT
∑

λλ′

∑

k,ikn

Gk+qλ′(ikn + iqn)Gkλ(ikn)

〈k + qλ′|M(q)|kλ〉〈kλ|M(−q)|k + qλ′〉

= 4g2kBT
∑

λλ′

∑

k,ikn

Gk+qλ′(ikn + iqn)Gkλ(ikn)
1 ∓ λλ′cos(φk+q + φk)

2
,

(5.4)

where the sign −(+) corresponds to LO(TO) phonons, the factor of 4 counts the

spin and valley degeneracies, and φk = tan−1(ky/kx) is the azithmuthal angle of

the momentum k measured from q. Carrying out the Matsubara sum over ikn, we

obtain

Πpp(q, iqn) = 4g2
∑

λλ′

∑

k

nF (ξkλ) − nF (ξk+qλ′)

iqn + ξkλ − ξk+qλ′

1 ∓ λλ′cos(φk+q + φk)

2
. (5.5)
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We are interested in the real part of the phonon self-energy which renormalizes the

phonon energy dispersion. Taking the real part of the phonon self-energy in Eq. (5.5)

and dropping the notation ‘Re’ for the real part thereafter (understanding only the

real part is of interest in the rest of this chapter), the phonon self-energy can be

written from Eq. (5.5) as

Πpp(q, ω) = 2g2
∑

k

{

nF (ξk+)

[

1 ∓ cos(φk+q + φk)

ω + vk − v|k + q| +
1 ± cos(φk+q + φk)

ω + vk + v|k + q|

]

−nF (ξk+q+)

[

1 ∓ cos(φk+q + φk)

ω − v|k + q| + vk
+

1 ± cos(φk+q + φk)

ω − v|k + q| − k

]

+nF (ξk−)

[

1 ∓ cos(φk+q + φk)

ω − vk + v|k + q| +
1 ± cos(φk+q + φk)

ω − vk − v|k + q|

]

−nF (ξk+q−)

[

1 ∓ cos(φk+q + φk)

ω + v|k + q| − vk
+

1 ± cos(φk+q + φk)

ω + v|k + q| + vk

]}

. (5.6)

From Eq. (5.6), we see that the real part of the phonon self-energy comprises two

contributions Πpp
LO,TO ≡ Πpp

LO,TO+ + Πpp
LO,TO− , where

Πpp
LO,TOµ = 2g2

∑

λ

∑

k

nF (ξkµ)fµλ(k, q), (5.7)

with

fµλ(k, q) =
1 ∓ λcos(φk+q + φk)

ω + µξk+ − ξk+qλ
− 1 ∓ λcos(φk + φk−q)

ω − µξk+ + ξk−qλ
. (5.8)

Eq. (5.6) can be simplified as

Πpp(q, ω) = g2
∑

k

{

nF (ξk+)

[

ω + vk ∓ v|k + q|cos(φk+q + φk)

(ω + vk)2 − v2|k + q|2 − ω − vk ± v|k − q|cos(φk + φk−q)

(ω − vk)2 − v2|k − q|2
]

+nF (ξk−)

[

ω − vk ± v|k + q|cos(φk+q + φk)

(ω − vk)2 − v2|k + q|2 − ω + vk ∓ v|k − q|cos(φk + φk−q)

(ω + vk)2 − v2|k − q|2
]}

.

(5.9)
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Using the trigonometric relations |k± q|cos(φk±q + φk) = −k + 2k2cos2φk ± qcosφk,

we can write, for the LO mode,

Πpp
LO(q, ω) = g2

∑

k

{

nF (ξk+)

[

ω + 2vk − vqcosφk − 2vkcos2φk

(ω + vk)2 − v2|k + q|2 − ω − 2vk − vqcosφk + 2vkcos2φk

(ω − vk)2 − v2|k − q|2
]

+nF (ξk−)

[

ω − 2vk + vqcosφk + 2vkcos2φk

(ω − vk)2 − v2|k + q|2 − ω + 2vk + vqcosφk − 2vkcos2φk

(ω + vk)2 − v2|k − q|2
]}

,

(5.10)

and for the TO mode,

Πpp
TO(q, ω) = g2

∑

k

{

nF (ξk+)

[

ω + vqcosφk + 2vkcos2φk

(ω + vk)2 − v2|k + q|2 − ω + vqcosφk − 2vkcos2φk

(ω − vk)2 − v2|k − q|2
]

+nF (ξk−)

[

ω − vqcosφk − 2vkcos2φk

(ω − vk)2 − v2|k + q|2 − ω − vqcosφk + 2vkcos2φk

(ω + vk)2 − v2|k − q|2
]}

.

(5.11)

The contribution Πpp
+ is due to the extrinsic conduction band electrons whereas

Πpp
− is solely due to the intrinsic valence band electrons. In the renormalization of

the phonon energy in extrinsic graphene, Πpp
− should be subtracted from the total

Πpp to avoid overcounting of the intrinsic contribution, since the “bare” phonon

energy (i.e. when graphene is undoped), by definition, already includes the effect

of Πpp
− [19, 20]. Therefore, only Πpp

+ should be taken into account in the phonon

energy renormalization by free carriers in extrinsic graphene. We also note that,

for Πpp
+ , the largest energy scale is the Fermi energy εF whereas for Πpp

− it is much

higher, of the order of the cutoff energy Λc = 2π~v/a for the graphene linear band

dispersion (a = 2.46Å is the graphene lattice spacing). Therefore, although the BA
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is inapplicable for extrinsic graphene with ω0/εF ∼ O(1), for intrinsic graphene the

BA is strictly valid since ω0/Λc � 1.

We can then write Πpp
LO+ for the LO mode from Eq. (5.10) as

Πpp
LO+(q, ω) =

g2kF

(2π)2v

∫ 1

0

kdk

∫ 2π

0

dφk

{

1

k

[

1 +
1

2

(

b+ − a+

a+ − cosφk

− b− + a−

a− + cosφk

)]

−1

q
cos2φk

(

1

a+ − cosφk
+

1

a− + cosφk

)}

, (5.12)

and Πpp
TO+ for the TO mode from Eq. (5.11) as

Πpp
TO+(q, ω) =

g2kF

(2π)2v

∫ 1

0

kdk

∫ 2π

0

dφk

{

−1

k

[

1 − 1

2

(

b + a+

a+ − cosφk
+

b − a−

a− + cosφk

)]

+
1

q
cos2φk

(

1

a+ − cosφk
+

1

a− + cosφk

)}

, (5.13)

where in Eqs. (5.12)-(5.13) we have defined

a± =
(ω/v)2 − q2 ± 2ωk/v

2kq

b± =
ω/v ± 2k

q

b =
ω

vq
(5.14)

Using the integral identity

∫ 2π

0

dφ
1

a ± bcosφ
=

2π√
a2 − b2

sgn(a ± b), (5.15)

the angular integrals in Eqs. (5.12)-(5.13) can be carried out, giving

Π̃pp
LO+(q, ω) =

∫ 1

0

dk

{

1 +
1

2

[

b+ − a+
√

a2
+ − 1

sgn(a+ − 1) − b− + a−
√

a2
− − 1

sgn(a− + 1)

]}

−1

q

∫ 1

0

dkk

{

a+

[

a+
√

a2
+ − 1

sgn(a+ − 1) − 1

]

+ a−

[

a−
√

a2
− − 1

sgn(a− + 1) − 1

]}

,

(5.16)
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and

Π̃pp
TO+(q, ω) =

∫ 1

0

dk

{

−1 +
1

2

[

b + a+
√

a2
+ − 1

sgn(a+ − 1) − b − a−
√

a2
− − 1

sgn(a− + 1)

]}

+
1

q

∫ 1

0

dkk

{

a+

[

a+
√

a2
+ − 1

sgn(a+ − 1) − 1

]

+ a−

[

a−
√

a2
− − 1

sgn(a− + 1) − 1

]}

,

(5.17)

where we have expressed the phonon self-energy in Eqs. (5.16)-(5.17) in dimension-

less units: Π̃pp = Πpp/(2g2
eeεF/π) with g2

ee = g2A/~
2v2 the dimensionless phonon-

mediated electron-electron coupling constant (A is the sample area). The integrals

over k in Eqs. (5.16)-(5.17) can then performed in an exact analytical fashion, how-

ever extreme care needs to be exercised for the integration limits imposed by the

square roots and the sign functions. First, simpler results can be obtained by con-

sidering the two limiting cases: long wavelength limit q � kF and static limit ω = 0.

5.3.1 Long-wavelength limit

For clarity, we express our results in the following dimensionless quantities:

wavevector x = q/kF , energy u = ω/εF . We have obtained the following asymptotic

results for the phonon self-energy in the limit q/kF � 1:

Π̃pp
LO,TO+(x, u) =

1

2

[

1 +
u

4
ln

∣

∣

∣

∣

2 − u

2 + u

∣

∣

∣

∣

]

+ ∆Π̃pp
LO,TO+(x, u), (5.18)

where the next order correction to the long wavelength result is given by

∆Π̃pp
LO+(x, u) =

1

2

[

8 − 4u2 − u4

2u2(u2 − 4)2
− 1

8u
ln

∣

∣

∣

∣

2 − u

2 + u

∣

∣

∣

∣

]

x2, (5.19)

∆Π̃pp
TO+(x, u) =

1

2

[

24 − 12u2 + u4

2u2(u2 − 4)2
+

1

8u
ln

∣

∣

∣

∣

2 − u

2 + u

∣

∣

∣

∣

]

x2. (5.20)
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At x = 0, the long wavelength result [18, 63, 75] is the same for LO and TO

phonons, the two phonon modes being degenerate at the Γ point. At finite wavevec-

tor x, this degeneracy is lifted with the leading-order correction going as x2 given

by Eqs. (5.19)-(5.20).

5.3.2 Static limit

We have also obtained the following analytic results for the phonon self-energy

in the static case u = 0:

Π̃pp
TO+(x, 0) = 0

Π̃pp
LO+(x, 0) = −(π/8)xθ(2 − x) + (1/4)[(2/x)

√
x2 − 4

−xtan−1(2/
√

x2 − 4)]θ(x − 2). (5.21)

The above static phonon self-energy results are depicted in the inset of Fig. 5.2,

which clearly shows the presence of a non-analyticity at q = 2kF corresponding to

the KA for LO phonons. We also note that this non-analyticity is entirely absent in

the static electronic polarizability [6] of graphene (Fig. 5.3). This is in contrast to the

situation for regular materials with a parabolic energy dispersion where the phonon

self-energy and the polarizability are equal up to a factor given by the electron-

phonon coupling. This distinctive difference between the phonon self-energy and

the polarizability in graphene is a direct result of the presence of a chiral structure

in the graphene electron-phonon coupling Eq. (4.3), which leads to a different Berry

phase dependence in the expression of the phonon self-energy Eq. (5.4) compared
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Figure 5.2: Dynamic phonon self-energy Π̃pp
+ (x, u) versus x = q/kF at u = ω0/εF

for the LO (solid line) and TO (dashed) modes at a density n = 1013cm−2. Three
cusps are apparent which correponds to the Kohn anomalies at x = u, x = 2 ± u
for LO phonons. For TO phonons, Π̃pp

+ diverges at x = u. Inset: Static phonon
self-energy Π̃pp

+ (x, u) versus x = q/kF at u = 0. Π̃pp
+ (x, 0) for the LO mode has a

Kohn anomaly at q = 2kF . Π̃pp
+ (x, 0) for the TO mode is zero.

with the polarizability Eq. (2.4). Therefore, KAs in graphene originate entirely from

the special chiral structure of the electron-phonon coupling Eq. (4.3).

5.3.3 Finite q and ω

We have evaluated the full expression for Πpp
+ with general q and ω dependence

analytically (with numerical evaluation served as a consistency check), which is

however too cumbersome to be shown here. The main plot of Fig. 5.2 shows the

evaluated Πpp
+ as a function of x at the phonon energy ω = ω0, from which three

cusps occurring at vq = ω0, vq = 2εF ± ω0 for the LO mode are clearly discernible.
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Figure 5.3: Static polarizability of graphene (adapted from Ref. [6]), with Πtot = Πcc
0

in the notation of this dissertation. Πcc
0 does not show any cusp or kink structure

for finite values of q.

For the TO mode, there is a divergence of Πpp
+ at vq = ω0. These non-analyticities

correspond to the values of q where the denominator of the integrand of Πpp
+ vanishes

at the Fermi surface k = kF , i.e. the zeros of the equation ω ± vkF ± v|kF ± q| = 0.

5.4 Renormalized phonon energy dispersion

With the calculated phonon self-energy, the renormalized phonon energy spec-

trum can be obtained by self-consistently solving Eq. (5.2) for ω, which is shown in

Fig. 5.4 for the LO mode and Fig. 5.5 for the TO mode. For LO phonons, three

KAs which correspond to the non-analyticities of Πpp
+ are evident, occurring at the

wavevector vq = ω0, vq = 2εF ± ω0. For TO phonons, the divergence of Πpp
+ at
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Figure 5.4: Renormalized LO phonon energy spectrum ωph versus q at different
electron densities n. The bare phonon energy is shown as the horizontal solid line.
The range of phonon wavevector q shown corresponds to [0, 0.08(2π/a)] away from
the Γ point.

vq = ω0 is removed due to the self-consistency condition for ω in Eq. (5.2), but the

KA remains as a sharp but finite peak at vq = ω0. In addition, we note the KA

at vq = ω0 for both the LO and TO modes, unlike the other two KAs for the LO

mode, is independent of electron density, an interesting consequence of the quasi-

relativistic linear dispersion peculiar to graphene. For both LO and TO phonons,

our results suggest that the phonon energy first increases (i.e., phonon hardening)

with density up to a certain phonon wavevector, and then decreases (i.e., phonon

softening) with density. The critical wavevector for this transition from phonon

hardening to softening is different for LO and TO phonons, and we find numerically

q ' 5 × 108m−1 for LO phonons and q = ω0/v = 3 × 108m−1 (i.e., the KA) for TO
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Figure 5.5: Renormalized TO phonon energy spectrum ωph versus q. The legends
are the same as in Fig. 5.4.

phonons.

5.5 Understanding the Kohn anomalies

In the following, we provide a schematic picture for understanding the occur-

rence of the KAs. Fig. 5.6 shows the ω − q phase space in which single-particle

excitation can occur through virtual phonon exchange. The behavior of the phonon

self-energy is characterized by six different regions of the ω − q phase space where

Πpp
+ is analytically continuous, separated by the boundaries (indicated by the solid

lines) corresponding to the set of values of (ω, q) where Πpp
+ is non-analytic. Suffi-

cient (but by no means necessary) conditions for the KAs to occur are given by the

intersection points between the phonon dispersion line ω = ω0 and the boundaries
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Figure 5.6: Different regions for the analytical behavior of Πpp
+ . The solid lines

indicate the boundaries for these regions, and the dashed line shows the phonon
energy ω = ω0 at a density n = 1013cm−2.

for the different regions. Within the BA, phonons are treated as static with ω = 0

in the expression of the phonon self-energy, the only intersection points therefore

occur at q = 0 and q = 2kF , as in the case of, e.g., a usual metal. In graphene

where the BA is invalid, phonon dynamics must be included with ω = ω0 in the

phonon self-energy, the intersection points now occur at vq = ω0, vq = 2εF −ω0, and

vq = 2εF + ω0. For the LO mode, we find that KAs occur at all three intersection

points. This however does not apply for the TO mode, and we find two equal but

opposite contributions in the expression for Πpp
TO+ which cancel the effects of two

KAs, yielding only one KA at vq = ω0 in this case.
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The above discussion applies to the case when εF > ω0/2. With decreas-

ing density (and therefore increasing ω0/εF ), we note that the second KA for LO

phonons at vq = 2εF −ω0 will go through a transition at εF = ω0/2 to vq = ω0−2εF

for εF 6 ω0/2 (with the other two KAs remaining the same at vq = ω0 and

vq = 2εF + ω0).

In conclusion, we have developed a theory for the interaction-induced phonon

renormalization in graphene, and discovered completely new and multiple KAs in

the renormalized phonon dispersion. The novel peculiarity and the remarkable dis-

tinction of these KAs from the usual KAs in metals are signatures of the dramatic

nature of the renormalized dynamically screened electron-phonon interaction and

the special chiral structure of the electron-phonon coupling in graphene. The ex-

perimental verification of our predictions would establish that graphene has a very

unique electron-phonon many-body coupling.
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Chapter 6

Conclusion and Outlook

We first present a summary of our findings as a conclusion to the disserta-

tion and then discuss open problems that can be pursued in the future. In the

first Chapter, we presented a review of graphene physics, in particular derived the

linear energy dispersion peculiar to graphene. We also discussed the experimental

basis of angle-resolved photoemission spectroscopy (ARPES) and reviewed the im-

portant experimental findings in graphene ARPES experiments. In Chapter 2, we

considered the effect of Coulomb electron-electron interaction on the quasiparticle

properties, taking account of screening in the Random-Phase Approximation. We

formulated the electron self-energy problem, and derived analytic expressions for

the quasiparticle decay rate, renormalization factor and renormalized velocity for

extrinsic graphene and intrinsic graphene. For extrinsic graphene, we found that

the quasiparticle decay rate has a behavior characteristic of a two-dimensional Fermi

liquid, going as ∼ ω2lnω; for intrinsic graphene, we found it goes as ∼ ω signifying

the behavior of a marginal Fermi liquid. We conclude that any finite amount of

doping will change the behavior of intrinsic graphene from a marginal Fermi liquid
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to a regular Fermi liquid, with the consequence that all existing experimental sam-

ples of graphene are regular Fermi liquid since doping will invariably be present. In

Chapter 3, we presented a diagrammatic linear response theory for Coulomb drag

in a double-layer graphene system. We showed that in any double-layer system

where one layer is intrinsic graphene (whereas the other layer could be any kind of

material), the drag resistivity is identically zero by virtue of electron-hole symmetry

in the intrinsic graphene layer. In a double-layer system comprising two extrinsic

graphene sheets, we found a finite drag resistivity as the electron-hole symmetry

is already broken by the presence of a finite Fermi level. We derived an analytical

result of the drag resistivity in the regime of low temperature, high density and/or

large interlayer distance, finding it to be the same as in a double-layer system with

regular parabolic dispersion. We also derived an exact analytical expression for the

nonlinear susceptibility valid at zero temperature, and calculated the drag resistivity

numerically as a function of temperature at different values of kFd. We discussed

qualitatively the excitation of interlayer plasmons, which should occur at a temper-

ature & TF , producing an enhancement to the drag resistivity. In Chapter 4, we

considered the effect of electron-phonon interaction on the quasiparticle properties.

We derived an expression for the effective phonon-mediated electron-electron inter-

action and formulated the electron self-energy problem due to exchange of phonons.

We then obtained exact analytical expressions for the imaginary and real parts of the

self-energy, and calculated the quasiparticle spectral function. The imaginary part

of the self-energy exhibits step jumps at the phonon energy characteristic of disper-

sionless phonons, and the real part of the self-energy shows logarithmic divergences
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at the phonon energy. We then calculated the renormalized quasiparticle velocity

from the self-energy, finding it to exhibit a kink at the phonon energy due to the

logarithmic divergence and theoretically explaining the observation in the ARPES

experiment. Having considered how interaction effects renormalize the quasiparticle

properties, we turned to the question how interaction effects renormalize phonon

properties in Chapter 5. We first formulated the diagrams for the renormalization

of the phonon Green function and the problem of phonon energy renormalization.

We then formulated the problem of the phonon self-energy which we calculated in

the long-wavelength limit and the static limit, before obtaining the exact result for

general values of q and ω. We found interesting and novel Kohn anomalies from the

phonon self-energy which are completely different from the Kohn anomaly in con-

ventional metals. With the phonon self-energy, we then obtained the renormalized

phonon energy dispersion. We found the Kohn anomalies in the phonon self-energy

carry over to the phonon energy dispersion, and the phonon energy first increases

and then decreases with respect to electron density. The presence of these novel

Kohn anomalies – which are completely different from q = 2kF in conventional met-

als – are quite remarkable, originating from the dynamical nature and the chiral

structure of the electron-phonon coupling in graphene.

We now discuss open problems as possible future projects that extend the

work in this dissertation. The Coulomb drag problem in double-layer graphene

can be extended to the case of a finite magnetic field (the so-called magnetodrag

problem). Electron-hole layers can also be considered when bilayer exciton con-

densates can form. With the introduction of a dielectric material in between the
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two graphene layers, interlayer phonons will be present and phonon-mediated drag

will be interesting to study. With electron-electron Coulomb interaction, it is also

interesting to study the localization effect in the electrical conductivity from Aronov-

Altshuler correction. Finally, the theory for the quasiparticle renormalization due

to Coulomb interaction and electron-phonon interaction in Chapter 2 and 4, and

the phonon renormalization in Chapter 5, can be generalized to include the case of

bilayer graphene (where the two layers are ∼ Å apart and strongly coupled).
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