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Interactions between fruiting plant and frugivorous species are considered to 

be highly generalized, resulting in diffuse mutualisms.  Specialization has frequently 

been found to be either asymmetrical or the result of restricted options for frugivores.  

This dissertation documents a highly unusual case of reciprocal specialization 

between the myrtle group of yellow-rumped warblers (Dendroica coronata coronata) 

and wax myrtle (Myrica cerifera).  Far from being one of a group of ecologically 

redundant dispersers, these warblers are the most valuable quantitative and qualitative 

contributors to this plant’s recruitment on Assateague Island National Seashore, 

U.S.A.  

  



Fecal samples collected over four years from migrant and wintering passerines 

and feeding trials in two years demonstrated that wax myrtle fruit was both the most 

preferred fruit and a consistently major food item for myrtle warblers throughout a 7-

month residence.  Abundance of wax myrtle fruit significantly affected this warbler’s 

abundance in all years.   Similarly, compared to all other frugivorous species, myrtle 

warbler were the most frequent and consistent consumer of wax myrtle fruit in all 

years.  Wax myrtle seed dispersal was significantly affected by yellow-rumped 

warbler abundance.   

In order to evaluate disperser contributions to wax myrtle, I examined factors 

influencing seedling recruitment.  Data derived from three sources 1) seed trap data 

from three replicated habitats, 2) experimental evaluation of the effect of time and 

place of seed deposition, and 3) seedling surveys confirmed that deposition was wide-

spread, lasting until late April.   Recruitment was greatest in both scrub and meadow 

habitats, but seeds deposited in meadows, especially in spring, established at higher 

rates than in scrub because of post-dispersal predation rates associated with 

microhabitat seed deposition patterns of predation among habitats.    

Fecal samples and observations indicated that wax myrtle has three primary 

dispersers: myrtle warblers, gray catbirds and tree swallows.  Myrtle warblers, the 

only documented disperser after December, provided the greatest quantitative 

dispersal services.  Although the germination rate and time of  ingested seeds were 

unaffected by species identity of dispersers, post-foraging observations demonstrated 

that myrtle warblers were most likely to be the agent of wax myrtle seed emigration 

from established thickets to sites suitable for colonization.   
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 Chapter 1: Wax myrtle (Myrica cerifera) and myrtle warblers 
(Dendroica coronata coronata): A reciprocally specialized fruit 

- frugivore interaction 

 

Abstract 

Current dogma is that specialization, especially reciprocal specialization, is rare 

among fruiting plants and frugivores.  Supported by a sizeable body of literature, this 

view suggests that generalized or diffuse interactions are more beneficial to both 

fruiting plants and frugivores than specialized interactions.  Exceptions to this trend 

are explained by unusual fruit morphology or pulp nutrient composition. Here, I 

document that the myrtle group of yellow-rumped warblers (Dendroica coronata 

coronata) and wax myrtle (Myrica cerifera), whose fruit is largely composed of wax, 

are reciprocally specialized on Assateague National Seashore, MD.  During four 

seasons of field work, wax myrtle was found in over 98% of myrtle warbler feces 

throughout this migrant’s seven-month residence.  Feeding trials with four common 

fruit species indicated that the high frequency of use of wax myrtle fruit in the field 

was due to preference.  Similarly, fecal samples from seven different bird species 

indicated that myrtle warblers were the most common frugivore to use wax myrtle 

fruit, although gray catbirds (Dumatella caroliniensis) were frequent consumers of 

wax myrtle fruit in autumn.   These data, however, were not simply an 

epiphenomenon of relative species abundance.  Comparison of the relative frequency 

of different fruit species in the fecal samples of myrtle warblers and gray catbirds 

indicated that catbirds had a significantly more diverse fruit diet.  Feeding trials with 
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four fruit species confirmed that, in contrast to myrtle warblers, gray catbirds had no 

preference for wax myrtle fruit and that their use of wax myrtle fruit was based on 

relative abundance.  Tree swallows (Tachycineta bicolor) commonly consumed wax 

myrtle fruit, but their sporadic presence suggested an opportunistic relationship.  

Survey data collected over three years indicated that in each year, wax myrtle fruit 

abundance significantly influenced myrtle warbler abundance.  Seed trap and warbler 

abundance data collected in one season confirmed that the numbers of wax myrtle 

seeds dispersed were significantly related to myrtle warbler abundance.  These data, 

together with previously published results, suggest that this relationship is among the 

most specialized of fruit-frugivore interactions investigated to date. 

 

Introduction 

.Ecologists have focused on the importance of specialization in fruiting plant – 

frugivore interactions since the publication of Snow’s (1971) landmark paper.  In 

spite of initial predictions, an abundance of evidence has indicated that very few 

interactions are specialized below the family level (e.g. Wheelwright and Orians 

1982, Gautier-Hion et al. 1985, Fuentes 1995).  When it does occur, specialization 

appears to be largely asymmetrical (Jordano 1987, Herrera 1998) or the result of 

restricted options (Hallwachs 1986, Hampe 2003).   Most avian frugivores forage on 

a wide variety of fruits in both the tropical (e.g. Wheelwright 1983, Wheelwright et 

al. 1984, Loiselle and Blake 1990, Sun et al. 1997) and temperate zones (Skeate 

1985, White and Stiles 1990, Whelan and Willson 1994, Parrish 1997) – a trend seen 

also among primate frugivores (Lambert and Garber 1998).  Similarly, most bird-
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dispersed fruiting plants attract avian and primate frugivores that are taxonomically 

distant (e.g. McDiarmid et al. 1977, Carr 1992, Poulin et al. 1994, Kaplan and 

Moermond 1998, Lambert and Garber 1998).  The current consensus, unchanged in 

nearly twenty years, is that fruiting plants and frugivores participate in diffuse, rather 

than specialized mutualisms (Janzen 1980, Howe 1984, Fleming 1991, Whelan and 

Willson 1994).  

An array of ecological factors constrains the possibility of specialization in 

these interactions during periods of fruit presentation.  First, ranges of individual 

mutualists rarely overlap completely (Wheelwright and Orians 1982, Jordano 1993).  

Even within areas of overlap, there may be significant habitat differences between 

mutualists (Willson 1986, Jordano 1993, 1995).  Second, considerable spatio-

temporal variability in fruiting phenology (Skeate 1985, Willson and Whelan 1993) 

and its seasonal nature (Stapanian 1982, Janzen 1985, Jordano 1987, see also Waser 

et al. 1996), as well as variability in the arrival time, abundance, and diet of 

frugivores can further deter specialized interactions (Martin et al. 1951, Thompson 

and Willson 1979, Carr 1992, Willson and Whelan 1993).   

Additionally, generalized interactions are hypothesized to provide greater 

benefits to participants than specialized ones.  A diverse fruit diet may be more 

balanced (White and Stiles 1990, Whelan et al. 1998) because the pulp of individual 

fruit species may not be nutritionally complete (Jordano 1987, Studier et al. 1988).  A 

more catholic fruit diet also allows frugivores to respond to seasonal changes in 

nutritional needs (Wheelwright 1988, Bairlein 1990), energetic condition (Sorensen 

1984), and digestive efficiency (Lepczyk et al. 2000).  Furthermore, like vertebrate 
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herbivores (Freeland and Janzen 1974, Sorensen and Dearing 2003), those frugivores 

that adopt a generalist diet may avoid accumulating high levels of particular toxins 

(Herrera 1982, Izhaki and Safriel 1990, Cipollini and Levey 1997) and the consequent 

stress associated with their detoxification (Gugliemo et al. 1996, but see Streumpf et 

al. 1999).   

Fruiting plants, too, may benefit from generalized interactions.  Fruit 

abundance may exceed the ability of frugivores to remove them (Burger 1987, Snow 

and Snow 1988, Herrera 1995), resulting in competition among plants for avian and 

mammalian dispersers (Snow 1966, Herrera 1981, Denslow and Moermond 1982, 

Moermond and Denslow 1983, Thies and Kalko 2004).  In such situations, fruiting 

plants attracting a larger number of species, and consequently a larger number of 

potential frugivores, may increase the likelihood of fruit removal and, consequently, 

seed removal.  A larger disperser assemblage is also likely to remove seeds more 

rapidly (Snow 1971), decreasing the exposure time of crops to predispersal seed 

predators or abiotic elements that can substantially reduce fruit crop size (Courtney 

and Manzur 1985, Jordano 1987, Howe 1993, Willson and Whelan 1993, but see 

Herrera et al. 1994).  Finally, a diverse group of dispersers may deposit seeds in a 

wider variety of habitats and microsites, thereby benefiting plants whose seeds do not 

have predictable or identifiable germination sites (Howe and Estabrook 1977, 

Wheelwright and Orians 1982, Courtney and Manzur 1985). 

The only specialized fruit-frugivore relationships documented thus far in 

North America are between the phainopepla (Phainopepla nitens) and mistletoe 

(Phoradendron californicum) (Walsburg 1975, Larson 1996, Chu and Walsberg 
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1999) and possibly between Townsend’s solitaire (Myadestes townsendi) and 

Juniperus species (Lederer 1977, Salomonson 1978, Poddar and Lederer 1982).  Few 

other examples of specialization have been identified elsewhere (e.g. Greenberg et al. 

1995, Hampe 2003).  Although further investigations about the strength of these 

interactions at larger scales may be warranted (Burns 2004). 

Identifying other specialized systems, especially those with reciprocal 

specialization, is relevant to ecology and conservation biology, alike.  Specialized 

interactions provide an unusual opportunity to test both the validity of hypotheses 

about the ecological disadvantages associated with specialization (see Wheelwright 

and Orians 1982, Janzen 1983, Howe 1984, Herrera 1985), as well as its causes – 

questions recently considered in other types of mutualisms (e.g. Waser et al. 1996, 

Caillaud and Via 2000, Johnson and Steiner 2000, Bolnick et al. 2003, Vasquez and 

Aizen 2003).  For conservation biologists, the identification of such restricted 

interactions would facilitate the preservation of the long term population viability of 

the species involved; specialization has been associated with extinction vulnerability 

(Bond 1994, Korkeamaki and Suhonen 2002, Davies et al. 2004).  More particularly, 

such information could aid in identifying critical stopover and wintering habitat for 

migrant passerines, since abundance of preferred fruit can be a significant factor in 

determining habitat suitability for frugivores (Rey 1995, Parrish 1997, Carlo et al. 

2003, Borgman et al. 2004, Kwit et al. 2004). 

Observations by natural historians have long suggested that the interaction 

between the myrtle group of yellow-rumped warblers (Dendroica coronata coronata, 

Parulidae) and the dioecious shrub wax myrtle (Myrica cerifera, Myricaceae) may be 
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reciprocally specialized (Chapman 1907, Whittle 1922, Bent 1963).  There is no 

evidence of a similar relationship between the Audubon group (D. coronata 

auduboni) and western Myrica species.  More recent studies confirm that at sites 

where myrtle warblers and wax myrtle are coincident, wax myrtle fruit is a major 

component of myrtle warbler diet (Skeate 1985, Davidar and Morton 1986) and an 

influence on the local abundance of myrtle warblers, but not of other more casual 

consumers (Borgman et al. 2004).  On a geographic scale, myrtle warblers winter 

largely along the Atlantic coast from Massachusetts to the Gulf of Mexico (Hunt and 

Flaspohler 1998), but their greatest concentration lies within the range of wax myrtle 

(Root 1988).  Similar results have been reported north of wax myrtle’s range 

regarding the interaction of myrtle warblers and bayberry (M. pensylvanica) 

(Hausman 1927, Wiltz and Giampa 1978, Parrish 1997). Only recently, however, has 

this interaction attracted attention among ecologists (e.g. Borgman et al. 2004, Kwit 

et al. 2004), although the unusual chemical composition of the fruit (wax and not 

carbohydrates) that renders the fruit indigestible to most bird species, has been noted 

previously (Place and Stiles 1992).  The objective of this paper is to examine the 

degree of specialization between migrating and wintering myrtle warblers and wax 

myrtle on Assateague Island National Seashore.   

Specialization in plant-animal interactions has been defined in a variety of 

ways (Wheelwright and Orians 1982, Recher 1990, Sherry 1990).  Some authors 

advocate identifying specialization by comparing relative resource use with 

abundance (e.g. Chesson 1983, Morse 1989).  But this approach is ineffective if 
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relative resource abundance is so highly skewed that trends are not detectable 

(Johnson 1980).   

Here I consider that reciprocal specialization has two parts.  Firstly, 

specialization is indicated by the nearly exclusive interaction of one species with 

another (see Herrera 1984, Malmborg and Willson 1988).  A necessary corollary is to 

determine whether an observed high frequency of association is due to choice rather 

than context (see Cushman and Beattie 1991, Bronstein 1994, Fuentes 1995, Herrera 

1998).  Feeding trials with different fruit species can establish a frugivore’s fruit 

preference (e.g. Borowicz 1988).   

Determining a plant’s preference for particular frugivores is more problematic 

since in this context at least, fruiting plants are passive partners.  Unlike pollination 

interactions where plant preference may be inferred from a match between floral and 

pollinator morphology (e.g. Nilsson 1988, but see Hurlbert et al. 1996, Waser et al. 

1996, Johnson and Steiner 2000), most fruiting plants have few mechanisms for 

excluding different frugivores (Wheelwright and Orians 1982, Herrera 1985), aside 

from fruit size (see McKey 1975, Pratt and Stiles 1985, Wheelwright 1985, Snow and 

Snow 1988), which does not appear to be a common determinant of disperser identity 

in the temperate zone (Johnson et al. 1985).  Fruit morphology (e.g. Greenberg et al. 

1995) and pulp composition may also restrict a plant’s potential visitors (Greenberg 

1981, Tewksbury and Nabhan 2001).  However, even if phenotypic traits of a fruit 

species do restrict the number of species that consume it (Fuentes 1995, Greenberg et 

al. 1995), assuming that present traits reflect current selective pressures exerted by 

current avian or mammalian frugivores is unwarranted without further evidence 
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(Janzen and Martin 1982, Herrera 1985, Hallwachs 1986).  A convincing test for 

preference, therefore, is applicable only to an animal partner.   

The second element of specialization is the dependence of one species on 

another for a reward, food for birds and seed removal for plants in fruit-frugivore 

interactions (Herrera 1984, Wheelwright et al. 1984, Larson 1996).  Seed removal is, 

of course, only the first in a sequence of necessary steps for plant recruitment 

(Herrera 1985, Schupp 1993, 1994).  However, its importance should not be ignored 

since the possibility of reaching subsequent steps [e.g., escape from predators 

(Kollman and Pirl 1995, Howe and Miriti 2000), germination (Barton 1932, Traveset 

and Verdu 2002) and seedling survival (Augspurger 1984, Augspurger and Kitajima 

1992)] largely depends on its successful completion.   

To address the question of whether myrtle warblers and wax myrtle are 

reciprocally specialized, three types of data were collected.  To test whether each was 

the other’s primary partner, I documented fruit abundance, frugivore fruit use and the 

identity of each fruiting plant’s frugivores throughout the fruiting season.  Second, 

two main passerine frugivores, myrtle warblers and gray catbirds (Dumatella 

carolinensis, Mimidae), participated in feeding trials to determine the relative 

influence of preference and context on fruit use.  Data on relative preferences of tree 

swallows, the third main consumer of wax myrtle fruit, were not included because 

these birds were never captured in mist nets.  Third, I tested whether myrtle warblers 

and wax myrtle were dependent on each other by measuring the effect of declining 

wax myrtle fruit levels on myrtle warbler abundance over the course of three seasons 
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and by comparing wax myrtle seed appearance in seed traps with myrtle warbler 

abundance during one season.   

Individually, tests of these hypotheses offer only partial insight into the 

question of specialization.  However, the combination provides an opportunity to 

measure reciprocal use, preference, and dependence.  I hypothesized that if a 

reciprocally specialized interaction existed each would be the other’s primary partner, 

and that myrtle warblers would show a preference for wax myrtle over fruits of other 

plant species.  Additionally, myrtle warblers and wax myrtle would be dependent on 

each other for food and seed removal, respectively. 

 

Methods 

Study Area 

Assateague Island is a dynamic barrier island located off the coast of 

Maryland and Virginia, approximately 45 kilometers in length, totaling 

approximately 16, 066 hectares.  Over historical time, the island, which has a general 

north-south orientation, has moved westward, eroding on the ocean side and accreting 

on the westward coast, which is bordered by Sinepuxent Bay and Chincoteague Bay 

(Dolan et al. 1977).  Herbaceous plants dominate vegetation communities on the sand 

dunes on eastern portion of the island, e.g. Ammophila brevigulata, Panicum 

amarum.  Very few woody species are found in the vicinity of the primary dunes, 

with the exception of bayberry (Myrica pensylvanica), which is frequently found on 

the primary dunes and in other areas exposed to salt spray.  Woody species become 

more prominent in scrub communities where wax myrtle tends to replace bayberry 
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toward the bayside.  Other common woody species are groundsel (Baccharis 

halimifolia), blueberry (Vaccinium spp.) and poison ivy (Toxicodendron radicans).  

Winged sumac (Rhus copallina) and Virginia creeper (Parthenocissus quinquefolia) 

are also present.  Forest communities, dominated by a loblolly pine (Pinus taeda) 

overstory, are found toward the west coast of the island, where they grade into high 

marsh.  Small, nearly pure islands of wax myrtle dot the high marsh.  Greenbrier 

(Smilax spp.) is a frequent component of the forest understory, also present in the 

understory, but less common, are poison ivy, blueberry (Vaccinium spp.) and wax 

myrtle. More detailed descriptions of the island’s vegetation have been compiled 

previously (Higgins et al. 1971, Hill 1986, Stalter and Lamont 1990).  Data were 

collected along an approximately 19 kilometer stretch of the island.  Sites are 

identified with reference to the dune crossing to which they were closest (e.g. DC5).  

The only exceptions are Hungerford forest and marsh sites which are identified by 

these names.  

 

Fecal Collection 

Examining the seed and pulp composition of fecal samples provided an 

unambiguous evidence of diet (e.g. Parrish 1997).  To sample the fruit selection by 

frugivores in the field, I captured birds using a total of 14 mist nets each year (2.6m in 

height and 6m in length, 36mm mesh size) in the Off Road Vehicle section of 

Assateague National Seashore during 1997 – 2000 and 2001-2002.  Mist nets were 

generally operated during the period of greatest bird activity, from dawn to noon, 

approximately 5 days a week in autumn (October-December) and less frequently 
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afterwards (January-April).  To obtain insight into among-site variation, up to seven 

mist nets were set up at each of two different locations per year; the number of nets in 

operation was influenced by weather and logistics.  In 2001-2002, three sites were 

sampled.  Nets were arranged to maximize capture rates of passerines and were no 

more than 150m from a central banding station at each site.  In the first two seasons 

(1997-1999), nets were located in both forest and scrub habitat.  Because there was no 

obvious distinction in fruit selection by birds between habitats, all nets in 1999 – 

2000 and 2001 – 2002 were located in scrub habitats where bird abundance was 

greater.  Nets were checked approximately every 30 minutes and operated in 

accordance with the principles outlined by Gaunt et al.  (1997).  All individuals 

caught were identified to species, and sexed and aged when possible, following Pyle 

et al. (1987).   

Fecal samples of all birds were collected by using fecal bags (Parrish et al. 

1994), and labeled with date, time of removal from net, net location, species of bird, 

and unique U. S. Geological Survey band number that was applied to birds before 

release.  Fecal bags were made from athletic socks the toes of which had been 

replaced with wire mesh.  A re-sealable, plastic bag was then pinned to the sock so 

that any fecal matter would be caught.  Individuals that did not defecate within 20-30 

minutes were released.  Samples were frozen at the end of each day.  Later these were 

examined under a dissecting scope (0.7X – 3X). A sample was considered to contain 

fruit if seeds, pulp or fruit skins were present (Jordano 1988); relying on seeds alone 

could be biased if certain fruits tended to be regurgitated because these seeds would 

be voided more rapidly than those defecated (e.g. Johnson et al. 1985, Levey 1987).  
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With the exception of Myrica, all seeds, pulp and fruit skins were identified to species 

by means of a reference collection of all fleshy-fruited species on Assateague Island.  

The presence of all species and the number of seeds present was recorded.   

Although the fruits of wax myrtle and its congener, bayberry, are easily 

distinguished in the field based on fruit size, identification of their seeds was more 

difficult.  To estimate relative consumption of these species by birds, I collected and 

measured the diameter of 45 seeds selected at random from 3 individual plants of 

each species.  The mean diameter for wax myrtle was 2.2mm ± 0.05, for bayberry, 

2.7 ± 0.05.   Discriminate analysis (Proc Discrim, SAS version 8), indicated that seed 

size was an effective means for determining the species of collected seeds, correctly 

identifying wax myrtle and bayberry 95.6% and 91.3% of the time, respectively.  To 

gauge the relative use of bayberry and wax myrtle during autumn, the only time 

bayberry was present in detectable amounts, the diameter of seeds in fecal samples 

from 4 different sites were compared to the confidence interval.  Seeds with a 

diameter greater than the upper limit of wax myrtle and beneath the lower limit of 

bayberry were considered of unknown origin. 

 

Fecal Collection: Fruit abundance 

Relative fruit abundance was measured by surveys.  On each day that fecal 

samples were collected, at a fixed point central to the mist nets, a haphazard direction 

was selected by spinning a pencil.  Along this heading, two 300m transects radiating 

from the central point and two similar transects perpendicular to this initial line were 

established.  Along each transect, a 10m radius circle was drawn every 50m, 
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providing a total of 24 circles for each day.  The number of all fruits (up to 1,000) 

borne by all species located within each circle was recorded.  Fruit abundance of 

individual species > 1,000 was recorded in increments of 1000, up to 10,000.  When 

fruit abundance was >10,000, only the occurrence was reported, since more accurate 

estimation of such amounts was not deemed possible.  Fruit abundance was 

subsequently recorded on a log scale.   

 To compare fruit use by gray catbirds and myrtle warblers in the field, I 

determined the number of fecal samples for each that contained (1) only evidence of 

Myrica consumption, (2) evidence of Myrica and another fruit species, (3) only other 

fruit species.  Because gray catbirds were not always captured in sufficient abundance 

to analyze their relative fruit use, I was able to test four different data sets from three 

different sites in four years.  Data were analyzed using Fisher’s exact test (SAS 

Institute 1999). 

 

Fruit preference trials 

Fruit preference trials with captive birds were conducted in October 1999 and 

2001.  Gray catbirds and myrtle warblers were captured with mist-nets.  All captive 

birds were housed singly at the study site in protected outdoor rabbit cages, 

measuring approximately 0.6 X 0.6 X 0.3 meters.  A tray (fecal tray) was suspended 

beneath each cage  to collect all fecal remains of captive birds.  Each bird was 

provided with an acclimation diet of ad libitum water, semi-synthetic maintenance 

diet (Denslow et al. 1987) and wax worms (Galleria mellonella) purchased from 

Rainbow Mealworms and Crickets.  Captive birds were acclimated for at least two 
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days before fruit preference experiments began.  Food and water were inspected at 

least twice a day. 

Preference trials in 1999 included gray catbirds (n=5) and myrtle warblers 

(n=8); data from trials in 2001 included only myrtle warblers (n=6).  After 

acclimation, trials began at 0730 and lasted 48 hours.  In addition to water, captive 

birds received wax worms (32 for gray catbirds, 20 for myrtle warblers) and an ad lib. 

amount of different local, bird dispersed fruits collected on Assateague Island: 

Virginia creeper (Parthenocissus quinquefolia), poison ivy (Toxicodendron 

radicans), winged sumac (Rhus copallina), and wax myrtle (Myrica cerifera) in 

separate, randomly placed bowls.  In 2001, captive birds also received juniper fruit 

(Juniperus virginiana), which was rare at the study site but has been reported to be a 

major food item elsewhere (Martin et al 1951, Yarbough and Johnston 1965).  All 

fruit species were considered to be suitable food items for both warblers and catbirds 

(Martin et al. 1951, Yarbrough and Johnston 1965, Hoppes 1987, Malmborg and 

Willson 1988, Parrish 1997).  Because nutrient levels in fruits may differ between 

parent plants (Howe and Smallwood 1982), fruit was removed from five genets.  To 

insure that the fruit contents of all bowls were inspected by each bird, the daily was 

divided equally between bowls.  The heads of all worms were crushed prior to 

presentation to prevent their burrowing deep into the fruit.  There was no indication 

that this affected their attractiveness to captive birds.  Fruit and water were inspected 

each afternoon. Fouled water and fruit were replaced as were any wax worms that had 

been dropped into the fecal trays but not consumed.  Seeds that had been deposited in 

either fruit or water bowls were removed and placed in the fecal trays so that they 
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would be counted.  Water and fruit were replaced on the second morning shortly after 

dawn, and an additional allotment of wax worms provided. On the third morning, 

captive birds were released and the contents of each fecal tray were collected for 

analysis.   

The numbers of fruits ingested were calculated by the number of seeds 

deposited in each tray.  Although the number of Virginia creeper seeds varied 

between fruits, the shape of seeds in each fruit was distinctive.  Based on these 

shapes, it was possible to reconstruct the number of seeds that each fruit contained 

and thus the total number of fruits consumed. 

Based on the numbers of fruit consumed, each species received a preference 

rank.  These data were analyzed using Friedman’s X2 (SAS Institute 1999) to 

determine whether captive birds showed preference for any of the fruit species 

provided.  A Bonferroni adjustment was used to determine which species was 

preferred when results from Friedman’s test were significant. 

 

Transect Surveys: Myrtle warbler abundance 

During the non-breeding season in all years (1997-2000, 2001-2002), I 

recorded the number of myrtle warblers detected by sight and sound along a total of 

10 transects; five transects were located in each the two major habitat types on 

Assateague Island in which warblers consistently were found: forest and scrub.  Each 

transect was 500m in length with a fixed width of 50m (2.5 hectares in total) and 

divided into 50m segments.  All transects were separated by at least 700m to increase 

likelihood of independence and were located in areas with characteristic vegetation.   
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Transects were deliberately paired (one scrub and one forest).  On days that 

surveys were conducted, a single pair of transects was visited.  A sampling period 

was concluded when all 5 transect pairs had been visited once.  The length of time 

(days) between sampling periods and the duration of each sampling period, which 

ranged from 5-14 days, were influenced by weather and logistical issues.  The order 

of transect pairs within a sampling period was randomized to prevent a time bias.   

To increase consistency of counts, I conducted surveys only on mornings with 

little or no precipitation and when wind did not interfere with auditory detection (see 

Rosenstock et al. 2002).    Surveys began approximately 90 – 180 minutes after dawn 

so that migrants had an opportunity to assess and choose from available habitats 

(Moore et al. 1990).  Warblers were counted only when judged to be using the 

habitat.  This did not include, for example, warbler flocks flying more than 5m over 

scrub habitat, which were apparently passing over habitat, but did include those flying 

beneath, but not over, tree canopies at forest sites.   

 

Transect Surveys: Fruit abundance 

Wax myrtle fruit abundance was measured at the conclusion of each day’s 

survey in all years in scrub transects and for two years (1997-1998, 2001-2002) in 

forest transects.  To estimate relative fruit abundance in each scrub transect and to 

assure balanced sampling throughout that transect, individual female wax myrtle 

plants were marked in each segment.  Three females per segment were marked in the 

first two years of data collection (1997 – 1999), four females were marked in the 

following two seasons (1999 – 2000, 2001 – 2002).  The number of female 
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individuals marked varied among forest transects since these frequently contained 

fewer than four female plants per segment.  In such cases, all females present were 

considered.  The number of fruits on each plant was extrapolated from counts of the 

number of fruit on a single branch. Fruit abundance per plant was recorded on a 

logarithmic scale.  Estimated abundance ranged from 0 to >10,000 fruits per 

individual.   Since the vast majority of fruit was ripe by the start of each year’s 

earliest survey, fruit ripeness was not recorded. 

To account for differences in the abundance of wax myrtle females between 

transects, the mean number of female wax myrtle plants in each transect was 

estimated from vegetation data collected in 1998 - 2000.   Three circles of 10m radius 

(0.0314 ha) were randomly located in each segment.  In each circle, the number of 

female wax myrtle individuals was recorded.  These data were collected only once 

because the number of individual plants on any transect did not change substantially 

over the course of the study. Multiplying the mean number of wax myrtle females 

present by the mean log number of fruit found on each transect provided an estimate 

of the number of wax myrtle fruit available at any one time. 

Repeated measures analysis (Proc Mixed, SAS Institute 1999) was used to 

determine the relationship between myrtle warbler abundance and wax myrtle fruit 

abundance in scrub and forest habitats.  To account for the temporal autocorrelation 

(see Verdu and Garcia-Fayos 1994), the spatial power law covariance structure 

[SP(POW)] was used, suitable for unequally spaced longitudinal data (Littell et al. 

1996).  Because mixed model analysis in SAS does not provide a coefficient of 

determination ( r2), this was calculated using regression (Proc Reg, SAS Institute 
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1999)).  An insufficient amount of data was collected in 1997-1998 for analysis.  

Abundances of birds and fruit from both scrub and forest habitats were log 

transformed to meet the normality and homoscedasticity assumptions of regression. 

 

Seed Dispersal 

To examine the relationship between myrtle warbler abundance and numbers 

of wax myrtle seed dispersal, I measured the number of seeds and the number of 

seeds dispersed in two different habitats: forest and scrub.  

To measure seed dispersal rates in different habitats over time, 100 seed traps 

were placed in a 100m by 100m grid (placing one every 10m) in three different 

habitats: salt grass meadows, scrub, and forest.  Each trap was constructed using a 28 

X 56 cm plant flat, lined with plastic screen to prevent seed loss and covered with 

hardware cloth to exclude rodents (see Chapter 2 for a more detailed description).  

Each habitat type was replicated three times.  Seed traps were located along existing 

survey transects to allow for the comparison of bird and seed rain.  Because bird 

surveys were not conducted in meadow habitat, only data from scrub and forest traps 

are presented here. A more complete treatment of seed dispersal in all habitats 

sampled, including salt grass meadows, will be presented in Chapter 2.  I included 

bird survey data only from those three transects on which traps were located. 

Data were collected between November 17, 2001 and April 30, 2002.  The 

number and species of all seeds were recorded six times during the season in 

approximately 30 day intervals.  After each inspection, all fruit and seeds contained in 
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each trap were placed in a plastic bag and removed from the site, in order not to 

influence concurrent seed predation experiments (See Chapter 2). 

The total number of seeds present in forest and scrub traps during each period 

was regressed against myrtle warbler abundance on corresponding survey transects 

using Proc Reg (SAS Institute 1999).  Because warbler surveys were not conducted 

between December 9, 2001 and January 8, 2002, seed rain data from that period were 

not included in this analysis.  Data from forest sites required a log transformation to 

meet assumptions of normality and homoscedasticity.  Scrub site data required no 

transformations. 

 

Results 

Fruit Use and Abundance 

Fruit remains were detected in more than 95% of the fecal samples collected 

from myrtle warblers each month, although these warblers were highly insectivorous 

as well (Figure 1-1).  Over 99% of the 1,866 fecal samples from these warblers that 

contained seeds or pulp displayed evidence of only Myrica fruit consumption (Table 

1-1), indicating a consistent pattern of heavy, nearly exclusive use between late 

September and April.  The diameter of Myrica seeds in fecal samples collected in two 

years (1998, 1999) were compared to mean diameter of seeds collected from both 

wax myrtle and bayberry.  Seventy-two percent of 327 seeds measured in 1998, and 

87% of 2,136 in 1999 fell within the 95% confidence limits of wax myrtle diameter.  

These results confirm that the majority of Myrica seeds in fecal samples were wax 

myrtle, even when bayberry fruit was also available.  This reliance on fruit in general 
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and on wax myrtle fruit in particular contrasted with the diets of the other 

facultatively frugivorous passerine species which were almost exclusively 

insectivorous when they were present in autumn (Table 1-2).  

The composition of Myrica’s consumer assemblage changed seasonally but 

showed less interannual variation.  In autumn (late September-November), a variety 

of frugivores consumed Myrica fruit, but myrtle warblers and gray catbirds were the 

only consistent passerine consumers in this period (Table 1-2).  However, myrtle 

warblers were significantly less likely to forage on other fruit species than were gray 

catbirds (Table 1-3).  After November, myrtle warblers were the only passerine 

species that consumed Myrica fruit; gray catbirds were never mist netted between 

December and March and were very rarely observed.  The two individuals caught in 

spring (2000) had been foraging only on Smilax fruit.  

Wax myrtle was the most abundant fruit in most sites and in most months, 

with the exception of DC11 in autumn 1998 (Figure 1-2).  At this site, bayberry fruit 

levels were responsible for the relatively high abundance of other fruit species.  After 

November, however, wax myrtle fruit was substantially more plentiful than all other 

species combined.  At all other fecal collection sites, bayberry fruit were present in 

very low numbers.  At all sites, wax myrtle abundance declined substantially over the 

course of each season at each site, although fruit was still present at all sites visited in 

April.  Wax myrtle fruit levels displayed some interannual variation in abundance at 

Hungerford Marsh.  However, this appears to be either a localized phenomenon or an 

artifact of sampling methodology, because similar variability was not observed in 

fruit abundance patterns on survey transects (see Figure 1-3). 
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Fruit Preference 

Captive myrtle warblers significantly preferred wax myrtle to other locally 

available fruit in two different preference trials (Table 1-4).  In 1999, when presented 

with four fruit species, warblers did not randomly consume fruits (Friedman’s X2
0.05,3 

=23.4156, P  < 0.0001).  Multiple comparisons confirmed that wax myrtle was 

significantly preferred to all others (P < 0.01).  There was no inter-individual 

variation in the identity of the rank order of the two most preferred fruits: wax myrtle 

and poison ivy.  No individual’s diet, however, was confined only to wax myrtle.  

A second preference trial (2001) that included juniper with the previously 

used fruit species provided similar results.  Captive warblers (n = 5) again 

significantly preferred wax myrtle (P < 0.05), although the identity of the second 

most popular fruit was no longer unanimous.  No warblers consumed either Virginia 

creeper or winged sumac in this trial and so these categories were not included in the 

analysis.   

In contrast, gray catbirds (n = 5) showed no significant preference for any 

individual fruit species (Friedman’s X2
0.05,3

 =2.28, P  > 0.2) (Table 1-5). Contrary to 

the relatively uniform preference rankings demonstrated by myrtle warblers in both 

trials, there was substantial inter-individual variation among gray catbirds in the 

preference rankings of all fruits. 

 

Myrtle warbler abundances 

Myrtle warbler and wax myrtle fruit abundance in scrub habitats on 

Assateague Island followed similar seasonal abundance patterns in all years (Figure 
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1-3).  In the two years when survey data were collected in the early fall (1997 and 

2001), annual warbler abundance peaked in October, and then declined.  In all four 

years, abundance reached a second peak in mid-winter, the timing of which differed 

among years.  Prior to this increase in abundance, myrtle warbler abundance showed 

no clear relationship to the amount of wax myrtle fruit.  After mid-winter, however, 

myrtle warbler abundance consistently declined in concert with wax myrtle fruit 

abundance.  The timing of this decline began each year when the number of wax 

myrtle fruit dipped below 1,500 on the abundance index.   

Analyses indicated a significant relationship between abundance of myrtle 

warblers and wax myrtle in scrub habitat in all three years (Figure 1-4), suggesting 

that myrtle warblers consistently tracked wax myrtle fruit abundance in scrub 

habitats.  The relationship between warblers and wax myrtle fruit abundance in forest 

habitats showed a similar trend, but was not significant (F1,13 = 0.97, P > 0.1). 

 

Wax myrtle seed dispersal 

Mixed model analysis indicated that the number of Myrica seeds dispersed in 

scrub habitats per day was significantly influenced by the abundance of myrtle 

warblers over time (Figure 1-5).  This relationship was not significant at forest sites 

(P  > 0.2).  However, a post hoc power analysis indicated that a much larger sample 

size (n = 155) at forest sites was needed to detect significance at α = 0.05 than the one 

available (n = 18). 
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Discussion 

Myrtle warblers 

These results indicate that migrating and wintering myrtle warblers on 

Assateague Island specialize on wax myrtle fruits.  Warblers ate wax myrtle fruits 

from their fall arrival until their departure (October-April) and only rarely used other 

fruit species.  This pattern of consistent, heavy use contrasts with specialized foraging 

behavior documented in other systems where specialization was most noticeable in 

times of low resource abundance (e.g. Morton 1971, Skutch 1980, Robinson and 

Wilson 1998).  Myrtle warblers ate wax myrtle fruit whether it was fall, winter or 

spring, suggesting that the importance of wax myrtle fruit as a food item for myrtle 

warblers did not depend on falling insect abundance, a trend seen in food use of other 

temperate frugivorous species (Parrish 1997).  Similarly, frequency of use did not 

decline in late autumn after the departure of more dominant congeners (Morse 1980), 

as seen elsewhere (Morse 1967, Pimm et al. 1985).  The lack of interannual variation 

in diet is also noteworthy and in contrast with reports from other systems (Jordano 

1988, Malmborg and Willson 1988, Herrera 1998).  Although seed size 

measurements used to distinguish wax myrtle and bayberry seeds were collected in 

only two years, the large percentage of seeds whose diameter fell within the 95% 

confidence limits of wax myrtle and the documented relative abundance of the two 

species strongly suggest that the Myrica seeds collected from autumn fecal samples in 

all years were wax myrtle, and not bayberry. 

 Results from feeding trials confirmed that the nearly exclusive use of wax 

myrtle fruit by myrtle warblers was due to preference and not to the relative 
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abundance of local fruit species, considered a major determinant of avian and 

mammalian fruit choice in other systems (Baird 1980, Jordano and Herrera 1981, 

Holthuijzen and Sharik 1985, Jordano 1989, Gautier-Hion et al. 1993, but see Guitian 

et al. 1994).  Indeed, previously reported cases of apparent frugivore specialization 

frequently were more the result of diminished opportunity rather choice (Crome 1975, 

Sorensen 1981, Wheelwright et al. 1984, Jordano 1988, Banack 1998, Carlo et al. 

2003).  The unanimity in the top ranking of wax myrtle by captive warblers in both 

trials, unanimity not extending to any other fruit, further supports the hypothesis of 

specialization because specialists are expected to show little variability in choice 

(Seamon and Adler 1996, but see Robinson and Wilson 1998).  The strong 

preferences of captive myrtle warblers also suggest that these frugivores would 

display similar fruit use patterns in the field at other locations as well and that these 

results not due to the restricted scale of this study (Burns 2004).  The agreement 

between the controlled preference trials and field studies contrasts with results from 

trials with gray catbirds as well as with similar comparisons in other species 

(Sorensen 1984, McPherson 1988, Whelan and Willson 1994).   

 These findings are largely in agreement with other studies that examined 

systems containing both myrtle warblers and either of the Myrica species.  Although 

myrtle warblers do consume other fruit species at sites lacking Myrica fruit 

(Yarbrough and Johnston 1965, Holthuijzen and Sharik 1985, Hoppes 1987, 

Malmborg and Willson 1988, Suthers et al. 2000), these warblers have displayed a 

remarkable appetite for the waxy drupes of this genus whenever present.  For 

example, Wiltz and Giampa (1978) observed that myrtle warblers wintering in 
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Pennsylvania never foraged outside the distribution of bayberry at their site.  On 

Block Island, a stopover site in Rhode Island containing over six fruiting species 

commonly used by other species, bayberry was found in over 97% of myrtle warbler 

fecal samples and other fruit species were rarely taken by myrtle warblers (Parrish 

1997).  Warblers wintering in Florida, the Carolinas and New Jersey were all heavy 

consumers of wax myrtle fruit (Yarbrough and Johnston 1965, Holthuijzen and 

Sharik 1985, Skeate 1985, Hoppes 1987, Malmborg and Willson 1988, Borgman et 

al. 2004, Kwit et al. 2004).  Such agreement among results of fruit use at distant sites 

and among a variety of habitats by either avian or primate frugivores is highly 

unusual (Herrera and Jordano 1981, Gautier-Hion et al. 1993, Fuentes 1995, Levey 

and Martinez del Rio 2001).  This geographical consistency strongly suggests that 

results reported here are not due to context and may be applicable to myrtle warblers 

throughout their wintering range wherever wax myrtle is present.   

 Results of the present study, on the other hand, represent a clear departure 

from those reported in previous investigations of avian fruit use patterns.  Most 

frugivores display a generalized foraging strategy when selecting fruit (Greenberg 

1981, Jordano and Herrera 1981, Wheelwright et al. 1984, Herrera 1985, Skeate 

1985, White and Stiles 1990, Blake and Loiselle 1992).  Even the resplendent quetzal 

(Pharomachrus mocinno) which feeds predominantly on Lauraceous fruit may eat 

over 40 species of fruit from 17 different families (Wheelwright 1983).     

Survey data showing that myrtle warblers in scrub habitat tracked fruit in all 

years support the hypothesis that their abundance on Assateague Island was 

dependent on wax myrtle fruit abundance.  This dependence was clearest in late 
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winter after wax myrtle fruit abundance dipped below 1500 on the fruit abundance 

index in all years.  This does not imply that myrtle warblers are indifferent to fruit 

abundance earlier in the year or are responding to the fluctuations of an alternate 

resource (see Herrera 1981, Loiselle and Blake 1994).  Instead, I suspect that apparent 

independence of myrtle warblers from wax myrtle fruit abundance was due to two 

factors.  First, wax myrtle abundance was so vast  in autumn and early winter that 

even substantial reductions in fruit levels were unlikely affect myrtle warblers’ 

assessment of resource availability (see Johnson et al. 1985, Blake and Loiselle 

1991).  Second, the size of the local warbler population was also affected by arrival of 

waves of new migrants in mid-winter.  The arrival of these transients, probably 

prompted by deterioration of conditions in the more northern parts of their range (see 

Herrera 1982), necessarily weaken the statistical association between birds and fruit 

on Assateague Island.   

An alternative hypothesis that the decline in myrtle warblers is due to spring 

migration rather than declines in fruit abundance is rendered unlikely since myrtle 

warblers do not migrate until April from North Carolina (Yarbrough and Johnston 

1965) and migrants can still be found in Maryland by late April (Lowe pers. obs.).  

Based on twelve years of data, Herrera (1998) speculated that in the northern portion 

of winter ranges, frugivore numbers may be affected by weather, whereas further 

south, food abundance may exert a greater influence.  Whether this is true of the 

various populations of myrtle warblers wintering along the Atlantic coast, as seems 

reasonable, is currently unknown (Root 1988). 
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 I suspect that the lack of a significant relationship between warbler and wax 

myrtle fruit abundance in forest habitat was caused by the relatively low levels of 

fruit present at all times in these sites.  Survey data (Figure 1-3) suggested that, below 

a certain threshold, the ability of wax myrtle fruit to attract myrtle warblers 

diminished.  Observations made during surveys in these transects suggest that myrtle 

warblers, which were frequently observed foraging in the canopy (Lowe unpublished 

data), visited pine forests to hunt for insects (Suhonen et al. 1992) and spent little 

time in the shrub understory.  However, because the substantial differences in 

vegetation and structure of scrub and forest habitats are confounding variables, any 

comparisons must be made with caution.  Nonetheless, at other sites, myrtle warblers 

have appeared plastic in habitat selection, responding opportunistically to food 

abundance, indifferent to different vegetative structure (Parnell 1969, Hutto 1985, 

Suthers et al. 2000, Kwit et al. 2004). 

 Based on the entire period of warbler residence on Assateague Island, these 

results are consistent with recent studies examining the relationship between myrtle 

warblers and wax myrtle over shorter periods of time in only winter.  In South 

Carolina, Kwit et al. (2004) demonstrated that the abundance of myrtle warblers in 

different habitats was related to wax myrtle fruit abundance in January.  However, the 

authors acknowledged that, although significant, the relationship was relatively weak 

and indicated that their results somewhat confounded by other habitat effects.  More 

persuasively, when Borgmann et al. (2004) experimentally augmented wax myrtle 

abundance in February warbler numbers increased in treatment plots.  Further, 

foraging observations indicated a significant increase in the number of birds foraging 
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in the shrub layer and, in particular, on wax myrtle plants after the fruit augmentation.  

It is not clear, however, whether such a relationship exists between myrtle warblers 

and bayberry fruit over time.  The only data published thus far comes from Block 

Island, where myrtle warblers’ abundance declined with experimental removal of 

bayberry fruit in autumn (Parrish 1997).   

 In general, results that show responsiveness of frugivores to fruit abundance 

are not unusual.  Studies involving other fruiting plants and frugivores have 

frequently shown that changes in fruit abundance at a community level may influence 

frugivore abundance on a variety of scales (Levey 1988, Blake and Loiselle 1991, 

Jordano 1993, Loiselle and Blake 1994, Santos et al. 1999, Burns 2004).  This 

phenomenon is not restricted to frugivores only.  The abundance of Clark’s 

nutcrackers may also be substantially determined by abundance of seeds of a variety 

of pine species (Tomback 1998).  However, studies indicating that birds track the 

abundance of a single fruit species over time are rare.  Blackcaps (Sylvia atricapilla) 

have been shown to track abundance of cultivated olives on a local and geographic 

scale in Spain (Rey 1995).  However, this response of S. atricapilla may have 

reflected more the high density of olives in orchards relative to other fruit species 

than a dependence on olives per se, since blackcaps have been reported using a wide 

variety of other fruit species at other sites (Jordano and Herrera 1981, Jordano 1988).  

Perhaps the most convincing data to date come from phainopeplas, the abundance of 

which appears determined by fluctuations in mistletoe fruit abundance (Anderson and 

Ohmart 1978, Chu and Walsberg 1999).  Similarly, my results indicate that myrtle 

warblers prefer wax myrtle to other fruits, use it consistently and begin to leave 

 28 
 



Assateague Island when its levels decline below a certain threshold.  Together these 

combined data suggest that myrtle warblers leave Assateague Island not only because 

the major fruit source is becoming scarcer, but because their preferred fruit source is 

disappearing.   

 

Wax Myrtle 

Results generally supported the hypothesis that wax myrtle is itself specialized 

on myrtle warblers.  Fecal samples indicated that, among passerines, myrtle warblers 

are the most frequent consumers of wax myrtle fruit throughout the entire fruiting 

season.  When present, two other seasonal frugivores, tree swallows (Tachycineta 

bicolor) and gray catbirds, also consistently used wax myrtle fruit.  Tree swallows 

can occur in flocks numbering in the thousands and are noted for their consumption 

of Myrica species (Hausman 1927, Martin et al. 1951).  Indeed, examination of tree 

swallow feces deposited by resting flocks on Assateague Island revealed that these 

birds ate only Myrica species when frugivorous (Lowe pers. obs.).  However, tree 

swallows were not commonly frugivorous nor was their abundance affected by 

changes in wax myrtle fruit abundance over time.  In fact, if tree swallow migratory 

patterns are influenced by resource abundance and not endogenously determined, data 

from DC 11 (Figure 1-2) suggests that they may be more influenced by bayberry fruit 

abundance, because tree swallows were rarely seen after mid-November when 

bayberry fruit levels dropped precipitously but when wax myrtle was still abundant.  

Further, tree swallows have been reported roving far north of their wintering grounds 

and subsisting on bayberry (Hausman 1927, Robertson et al. 1992) but only one 
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flock, of 8 individuals, was ever seen after December in all years on Assateague 

Island.   

Gray catbirds, which are fruit generalists elsewhere (e.g. Parrish 1997, Suthers 

et al. 2000), were also frequent consumers of wax myrtle fruit.  However, they were 

less constant than myrtle warblers and were significantly more likely to forage on 

other fruit species.  Comparison of fruit use in the field with feeding trial results 

confirmed that gray catbirds had no innate preferences among local fruits and thus 

fruit use in the field was a function of wax myrtle’s relative abundance and not 

indicative of preference.  The very high degree of inter-individual variation in the 

preference rankings of the different fruits in feeding trials by gray catbirds is 

consistent with the hypothesis that gray catbirds are generalists. 

 These results correspond with those few that report the identity of Myrica seed 

dispersers at other sites.  Borgmann et al. (2004) noted that other frugivores consume 

wax myrtle fruit which may be an important winter food for them, too.  Yet only 

myrtle warblers responded to an experimental increase in wax myrtle fruit abundance 

(see also Kwit et al. 2004).  Similarly, Parrish (1997) found that myrtle warblers 

consumed the vast majority of bayberry fruits during fall migration.  In New Jersey, 

White (1989) documented that myrtle warblers and northern flickers (Colaptes 

auratus) were both major dispersers of Myrica seeds.  But his data do not allow 

comparison of the patterns of relative use and were potentially biased by his data 

which were based on discovery of droppings at his site. 
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Assessing the interaction 

The results presented here indicate that myrtle warblers and wax myrtle on 

Assateague Island are reciprocally specialized.  Each is the other’s primary partner 

and each is dependent on the other for food and dispersal, respectively, and there is 

no evidence of ecological asymmetry typical of many fruit – frugivore relationships 

(Jordano 1987, 1988, Murray 1988, Herrera 1998), and also plant-pollinator 

interactions (Bascompte 2003, Vazquez and Aizen 2004).  Results presented here 

document the relationship between myrtle warblers and wax myrtle at only a single 

location, yet the congruence of these data with those from other geographically 

distinct sites strongly suggests that the tight relationship observed on Assateague 

Island may be typical at other locations is not merely a question spatial scale  (Burns 

2004).   

These findings indicate that on Assateague Island, the interaction between 

myrtle warblers and wax myrtle is as mutually dependent as that between the more 

celebrated relationship between phainopeplas and mistletoe.  Both are characterized 

by a large degree of range overlap (Root 1988, Chu and Walsberg 1999, USDA 

2004), digestive adaptation by frugivores to unusual fruit chemistry (Walsberg 1975, 

Place and Stiles 1992), restricted disperser assemblage, and the influence of fruit crop 

on frugivore abundance (Anderson and Ohmart 1978). 

Considered individually, both myrtle warblers and wax myrtle have 

characteristics that may predispose them to specialization.  As a species, yellow-

rumped warblers are facultative migrants capable of leaving sites with low food 

availability in the non-breeding season (Terrill and Ohmart 1984, Terrill and 
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Crawford 1988), allowing them to track fruit abundance on a geographic scale and to 

avoid the consequences of local resource depletion (Jordano 1993).  Wax myrtle fruit, 

on the other hand, has unusual fruit chemistry rendering it indigestible to most 

vertebrates (Place and Stiles 1992), a trait associated with a restricted avian and 

mammalian disperser assemblages (Greenberg 1981, Fuentes 1995, Tewksbury and 

Nabhan 2001).  What appears exceptional in this system is that these two specialize 

on each other. 

The ecological consequences of such an interaction are important for both 

participants.  These data provide evidence supporting the frequent claim that 

specialization on wax myrtle fruit allows myrtle warblers to remain further north than 

the majority of their congeners (e.g. Hunt and Flaspohler 1998), therefore 

experiencing lower mortality (Sillett and Holmes 2002), and also to migrate earlier in 

the spring than other Parulids (Hunt and Flaspohler 1998).  This latter feature may, in 

turn, be of substantial consequence in territorial establishment and therefore nesting 

success (Marra et al. 1998) for these warblers which are considered to be socially 

subordinate to the majority of their congeners (Morse 1980).   

The effects of specialization on wax myrtle are less clear.  Waser et al. (1996) 

speculated that flowering plants would benefit from specialization if their pollinator 

were both abundant and effective.  The relative effectiveness of wax myrtle’s various 

dispersers will be more fully addressed in Chapter 3.   However, my data indicate that 

myrtle warblers are indeed the most abundant and faithful disperser of wax myrtle 

seeds.  Further, wax myrtle, growing well north of the wintering ranges of most 

neotropical migrants and producing an abundant crop of persistent fruits, does benefit 
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from a specialized relationship with a frugivore disposed to linger until fruit 

abundance drops to relatively low levels.   

The degree to which this relationship has been shaped by selection is 

unexplored.  The ability of myrtle warblers to digest wax appears to be the result of 

digestive adaptations (e.g. intestinal retrograde reflux, high levels of bile salts), which 

other warblers may lack (Place and Stiles 1992).  Indeed, the most common 

consumers of wax myrtle and bayberry fruits are heterogeneric (Martin et al.1951, 

Parrish 1997).  This suggests that the adaptation to digest wax has been driven by the 

benefits of exploiting the abundant and predictable crops of Myrica fruit available 

along the Atlantic coast of North America.  

Alternatively, a visual review of the National Museum of Natural History’s 

specimens of Myrica species found in North and South America reveal a striking 

similarity in the appearance of all species.  This phenotypic congruence strongly 

suggests that wax myrtle’s fruit composition and abundance is not the result of any 

recent selective pressure but is a plesiomorphic feature of the genus.  In contrast to 

capsacin content of chillies which have been shown to reduce the likelihood of 

mammalian ingestion (Tewksbury and Nabhan 2001), the wax on wax myrtle fruit 

does not deter foraging mammals (Lowe, pers. obs.). 

Regardless of the ecological benefits and the evolutionary origins, such a 

mutually specialized relationship inherently puts both participants at risk.  These data 

suggest that declines, especially sudden declines, in the population of one partner will 

adversely impact the other.  Concern about the long term viability of these species 

may appear to be alarmist since both myrtle warblers and wax myrtle are common.  
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However, projected climate change with the concomitant rise in sea level, increase in 

storm frequency and intensity and the resulting damage to coastal marshes (Gregory 

and Oerlemans 1998, Najjar et al. 2000, Rogers and McCarty 2000, Scavia et al. 

2002, Knutson and Tuleya 2004) could reduce coastal populations of wax myrtle 

substantially (see Young et al. 1992, Aarssen 2000, Conner and Inabinette 2003, 

Graves and Gallagher 2003).   Data presented here suggest that faced with local fruit 

scarcity, myrtle warblers would be forced either to winter further south in locations 

with sufficient insect levels to compensate for the lack of fruit availability or to move 

to more inland populations of wax myrtle, the fruits of which would be presumably 

depleted earlier in the season.  In such a scenario, non-breeding mortality could to 

increase as migratory distances lengthen (see Terrill and Crawford 1988, Sillett and 

Holmes 2002).  Additionally, if local wax myrtle fruit abundance dropped beneath the 

threshold needed to attract and then detain migrating warblers, remnant wax myrtle 

populations along the coast could be expected to disperse fewer seeds on a per capita 

basis. 

These results highlight the need for more information about which species 

eats what fruit and which species is eaten by which frugivore.  Over the past thirty 

years during which fruiting plant – frugivore interactions have been studied 

rigorously; great strides have been made in the field of fruiting plant-frugivore 

interactions.  Yet there have been few studies that present comprehensive data on the 

degree of association between both fruiting plants and avian frugivores (Bronstein 

1994).  In spite of their potential importance, the role of mammalian dispersers has 

been largely neglected, especially in the temperate zone (Willson 1993, Motta-Junior 
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and Martins 2002).  Such data are necessary both to understand better the ecology of 

fruiting plant – frugivore interactions as well as to understand how these interactions 

are likely to affect the viability of the species involved.  Similar studies, quantifying 

use, preference and dependence, would also indicate whether the results presented 

here are reflective of the interaction between myrtle warblers and both Myrica species 

at other geographical locations as other studies suggest (e.g. Parrish 1997, Wiltz and 

Giampa 1978), or whether specialization at this one location is a quirk of context and 

not representative of the interaction elsewhere (Herrera 1998).   
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Table 1-1.  Number (%) of fecal samples containing different fruit species collected 

from frugivorous myrtle warblers on Assateague Island National Seashore 1997-

2000, 2001-2002.  Data are pooled from all years and sites because there was no 

indication of interannual or between-site variation. 

 
Fecal Contents 

 
Month 

 Myrica fruit Non-Myrica fruit Myrica + Other 
species 

September/October 1056 (99.6) 1 (0.1) 3 (0.3) 
 

November 456 (99.6) 1 (0.2) 1 (0.2) 

December 215 (98.6) 0 3 (1.4) 

Januaryψ 28 (96.6) 0 1 (3.4) 

February/March± 44 (95.7) 0 2 (4.3) 

April§ 55 (100) 0 0 
 
ψ Data collected in 1997 only 
± Data collected in 1998 and 2000 
§ Data collected in 2000 and 2002  
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Table 1-2.  Number (%) of all fecal samples from mist-netted birds containing 

evidence of frugivory and of Myrica fruit consumption in autumn (September-

November), 1997-1999, 2001 on Assateague Island National Seashore, 

Maryland.  All species listed are facultative frugivores during non-breeding 

season at other sites in North America (Martin et al. 1951, Parrish 1997). 

Fecal Contents 
 

Facultative  Frugivores (n) 

number (%) 
containing 

fruit remains 

number (%) 
containing 

 Myrica remains 
 
Carolina Chickadee (7) 0 0 
 
Eastern Phoebe (5) 0 0 
 
Brown Creeper (12) 0 0 

Golden-crowned Kinglet (33) 1  (3.0) 1  (3.0) 

Ruby-crowned Kinglet (19) 4  (21.1) 3  (15.8) 

Gray Catbird (119) 83 (69.7) 64 (53.8) 

Swainson's Thrush (11) 3  (27.3) 1  (9.1) 

Hermit Thrush (9) 1  (11.1) 1  (11.1) 
 
Red-eyed Vireo (8) 0 0 

White-eyed Vireo (5) 0 0 

Black-throated Blue Warbler (55) 1  (1.82) 1  (1.82) 

Myrtle Warbler (1537) 1519 (98.8) 1516 (98.6) 
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Table 1-3.  Number (%) of fecal samples from gray catbirds and myrtle warblers 

containing remains of different fruit species collected in autumn from three different 

sites over three different years.  Myrtle warblers and gray catbirds differed 

significantly in their use of non-Myrica fruit.  Data were analyzed using Fisher’s 

exact test and probabilities were calculated using Monte Carlo simulations for all 

comparisons, except Hungerford Forest. 

 

Fecal contents 

Year Site Species 

 
Only 

Myrica 
species 

Myrica + 
another 
species 

Only non-
Myrica 
species P < 

1998 
Hungerford 

forest 
Gray 

Catbird 14 (93.3) 1 (6.7) 0 0 .10 

  

Yellow-
rumped 
Warbler 177 (100) 0 0  

1999 
Hungerford 

Marsh 
Gray 

Catbird 15 (83.3) 1 (5.6) 2 (11.1) 0 .001 

  

Yellow-
rumped 
Warbler 373 (100) 0 0  

2001 
Hungerford 

Marsh 
Gray 

Catbird 24 (77.4) 5 (16.3) 2 (6.45) 0 .001 

  

Yellow-
rumped 
Warbler 106 (99.07) 1 (0.93) 0  

2001 DC5 
Gray 

Catbird 7 (53.8) 4 (30.8) 2 (15.4) < 0 .001 

  

Yellow-
rumped 
Warbler 198 (100) 0 0  
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 Table 1-4.  Preference ranks of local fruit species in two different feeding trials based 

on number eaten by captive myrtle warblers on Assateague Island in October.  Fruit 

identity significantly affected preference rank in 1999 (Friedman’s X2
0.05, 3=23.4156, P 

< 0.0001) and in 2001(Friedman’s X2
0.05, 2 = 10.1739, P < 0.01).  J. virginiana was not 

presented to warblers in 1999. 

                   Preference Ranks (number eaten) 
 

Year Individual M. 
cerifera 

J. 
virginiana

T. 
radicans 

R. 
copallina 

P. 
quinquefolia 

 
1 1  (418) 

 
. 2  (19) 3  (9) 4  (1) 

 
2 1  (268) 

 
. 2  (9) 3  (1) 4  (0) 

 
3 1  (404) 

 
. 2  (46) 3.5  (0) 3.5  (0) 

 
4 1  (245) 

 
. 2  (8) 3.5  (1) 3.5  (1) 

 
5 1  (416) 

 
. 2  (82) 3  (2) 4  (0) 

 
6 1  (124) 

 
. 2  (17) 3  (1) 4  (0) 

 
7 1  (437) 

 
. 2  (3) 3.5  (0) 3.5  (0) 

 
1999 

 
8 1  (471) 

 
. 2  (4) 3  (1) 4   (0) 

 
1 1  (180) 2  (24) 3  (8) 

 
0 

 
0 

 
2 1  (126) 2  (6) 3  (4) 

 
0 

 
0 

 
3 1  (383) 3  (11) 2  (48) 

 
0 

 
0 

 
4 1  (92) 2  (70) 3  (11) 

 
0 

 
0 

 
5 1  (113) 1.5  (12) 1.5  (12) 

 
0 

 
0 

 
2001 

 
6 1  (323) 2  (98) 3  (4) 

 
0 

 
0 
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Table 1-5.  Preference ranks of four local fruit species based on number eaten over two 

days by captive gray catbirds on Assateague Island, October 1999.  Ranks were based 

on total number of fruits consumed over a two day period.  There was no significant 

relationship between fruit species and preference rank when analyzed with Friedman’s 

X2 (P > 0.5). 

 
Preference Ranks (Number eaten) 

 

Individuals M. cerifera T. radicans R. copallina P. quinquefolia 
 
1 1  (449) 3  (49) 2  (352) 4  (61) 
 
2 3  (40) 4  (28) 2  (190) 1  (346) 
 
3 3  (227) 1  (298) 4  (168) 2  (268) 
 
4 2  (305) 4  (22) 1  (527) 3  (281) 
 
5 3 (122) 4  (32) 1  (379) 2  (306) 
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Table 1-6.  Repeated measures analysis of the effect of wax myrtle fruit 

abundance on myrtle warbler abundance on Assateague Island in three different 

years.  Data were collected over the course of each fruiting season (autumn to 

spring).  Year 2 = 1998-1999, year 3 = 1999 – 2000, year 4 = 2001 – 2002.  Year 

1 was not analyzed because of insufficient data. 

 
Year Numerator DF Denominator DF F P < 

2 1 39 15.71 0.001 

3 1 29 39.56 0 .001 

4 1 34 35.44 0 .001 
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Figure 1-1.  Percentage of fecal samples containing insect and fruit remains collected 

from myrtle warblers on Assateague Island National Seashore 1997 – 2000, 2001 -

2002.  Data are pooled from all years and sites of collection.  Monthly data were 

collected in all years except for January (collected in 1997 only), February and March 

(collected in 1998 and 2000), and April (collected in 2000 and 2002). 
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Figure 1-2. Comparative abundances of wax myrtle and all other fruit species 

combined at different fecal collection sites.  Data points are the pooled results of fruit 

censuses conducted at individual sites in each month.  Abundance is reported on a log 

scale.  Minimum sample size is 24 survey circles/data point. 
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Figure 1-3.  Relative abundances of myrtle warblers and wax myrtle fruit on transects 

(n=5) in scrub habitats on Assateague Island.  Individual points are means (± SE) of 

warblers detected/transect/census period and of log number of wax myrtle fruits 

/plant [n = 30 (1997-1999), n = 40 (1999-2000, 2001-2002)] /transects/survey period 

X mean number of female wax myrtle individuals/transect.  Mean survey date is the 

mean day on which surveys in each period were conducted. 
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Figure 1-4.  Relationship between wax myrtle fruit and myrtle warbler abundance in 

scrub habitat for three individual years.  Data are presented on a log scale.  Individual 

points are the sum of warbler numbers detected/transect/count and wax myrtle fruit 

abundance is the mean log number of wax myrtle fruit/transect/count multiplied by 

the mean number of individuals/transect (see text for further details). 
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Figure 1-5.  Relationship between the total number of wax myrtle seeds captured in 

seed traps in scrub habitat and the number of myrtle warblers detected at the same 

sites during the same period as seed capture.  Data points represent individual counts. 
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Chapter 2: Spatial and temporal contributions of seed dispersal, seed 
predation and seedling survival to wax myrtle (Myrica cerifera) 
recruitment 

 

Abstract 

Recently have ecologists begun to investigate the multiple factors affecting 

plant recruitment rather than focusing on just one recruitment stage.  However, the 

effect that time and habitat of deposition both have on recruitment of fruiting plants 

has received little attention.  Here I present data on seed dispersal of wax myrtle 

(Myrica cerifera) during six months of a single seven and a half month long dispersal 

season on Assateague Island National Seashore and the seed predation and seedling 

survival rates associated with time and habitat of deposition (salt grass meadow, 

scrub, and forest).  I indicate how microsite variables influenced the within habitat 

rates of deposition, seed predation and seedling survival.  These data were then used 

to interpret the causes of that season’s seedling recruitment in each habitat.   

Wax myrtle seed was dispersed throughout the season and into all habitats.  

By the conclusion of the season, scrub sites received more seed than either of the 

other habitats.  Seed dispersal in scrub and meadow was consistently influenced by 

the presence of fruiting conspecifics, but location of dispersal throughout the season 

was random in forests.  Seed predation rates within and between habitats changed 

over time.  Most notable was the significant reduction in seed predation rates of wax 

myrtle seeds after December in meadow habitat and the strong increase in predation 

rates in forests during the same time. Seed predation in scrub remained consistent and 
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was strongly associated with abundance of fruiting conspecifics. Seed germination 

and seedling survival in rodent exclosures were unaffected by time of experimental 

seed deposition.  However, a greater percentage of seeds survived their first summer 

in scrub habitat.  In spite of differences in seed rain and experimental seedling 

survival, natural seedling abundance did not differ between scrub and meadow 

habitats.  Meadows had a significantly greater seedling:seed ratio because of spatial 

concordance between seed and seedling stages in meadows and spatial discordance in 

scrub.  These data demonstrate that wax myrtle recruitment is increased by seed 

dispersal throughout its entire season and highlight the importance of considering 

multiple recruitment stages, multiple habitats and time periods when assessing 

seedling recruitment.  

 

Introduction 

Seed dispersal by avian and mammalian frugivores is considered central to the 

population dynamics of animal dispersed plants, determining the density, shape and 

extent of seed shadows (Howe and Smallwood 1982, Gorchov et al. 1993, Schupp 

1993, Herrera et al. 1994, Wenny 2000, Garcia 2001, Howe and Miriti 2004), which 

are considered the template for future recruitment (Schupp and Fuentes 1995).  

Although seed rain may generally conform to a leptokurtic curve (e.g. Willson 1992, 

Clark et al. 1998), seed dispersal can occur at substantial distances from the parent 

plant (Erickson and Hamrick 2003, Fragoso 2003, Levin et al. 2003) and has been 

shown to be influenced by a wide array of microsite variables, varying in importance 

with disperser species (Sorensen 1981, Jordano 1992, Schupp 1993, Calvino-Cancela 
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2002).  The significance of seed dispersal is illustrated by the frequency of reports of 

seed limitation in a wide variety of systems (Rand 2000, Turnbull et al. 2000, Dalling 

et al. 2002, Jordano and Godoy 2002, Muller-Landau 2002), the positive correlation 

between the number of seeds deposited and the seedlings appearing at a site (Hughes 

and Fahey 1988, Debussche and Lepart 1992, Herrera et al. 1994, De Steven and 

Wright 2002) and the evidence that deposition patterns can be responsible for the 

distribution of adults (Fragoso 1997, Rand 2000, Aukema and Martinez del Rio 2002, 

Svenning and Skov 2002). 

However, plant recruitment is a multistage process and seed shadows can be 

substantially altered by the subsequent impact of seed predators and of differential 

survival of seedlings and juveniles (e.g. Willson 1989, De Steven 1991, Crawley 

1992, Herrera et al. 1994, Rey and Alcantara 2000, Wang and Smith 2002).  

Although some general patterns have emerged (e.g. Janzen 1970, Connell 1971), the 

effect of these post-dispersal factors on recruitment frequently varies with seed 

species, habitat, microhabitat and year (Janzen et al. 1976, Wellington and Noble 

1985, Howe 1990, Bazzaz 1991, Gill and Marks 1991, Crawley 1992, Clark et al. 

1999, Diaz et al. 1999, Hulme 2002).  Nor are the habitats and microhabitats that best 

contribute to the completion of one stage necessarily the best for another, an 

uncoupling that can result in spatial discordance between seed and seedling stages, 

with substantial implications for the numbers and spatial distribution of recruits (Gill 

and Marks 1991, Herrera et al. 1994, Schupp 1995, Schupp and Fuentes 1995, Forget 

1997, Rey and Alcantara 2000).  
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Therefore, only if the combined effects of seed dispersal, predator escape and 

seedling survival are considered is it possible to understand the workings of plant 

population dynamics and the relative importance of dispersal, escape and survival 

(Herrera et al. 1994, Jordano and Herrera 1995, Schupp and Fuentes 1995, see also 

Muller-Landau 2002).  However, in spite of a growing trend to consider multiple 

variables when investigating the population dynamics of animal dispersed species and 

evidence that ecological conditions may change over time (Johnson 2004), relatively 

few studies (e.g. Willson and Whelan 1990, Forget et al. 1998) have addressed how 

time of dispersal impacts recruitment.  The effect of habitat on the relative stages of 

recruitment has rarely been investigated by using large samples sizes at replicated 

sites (Clark et al. 1999, Nathan and Muller-Landau 2000).   

The objective of this study was to determine the relative influences of seed 

dispersal, seed predation and seedling survival on the recruitment of wax myrtle, a 

shrub commonly found on barrier islands along the Atlantic coast of the United 

States.  Although the population dynamics and ecology of this species have been 

investigated from a variety of perspectives (Sande and Young 1992, Young et al. 

1995, Crawford and Young 1998, Shao et al. 1998, Wijnholds and Young 2000), no 

previous study has addressed which factors actually promote or limit recruitment.  

Because wax myrtle is found in different habitat types and because its seeds are 

dispersed during a seven and a half month period (late September – April), wax 

myrtle provides an opportunity to assess how the relative effects of post-dispersal 

stages are likely to change between habitat and time of deposition.  A better 

understanding of the population ecology of this species is of further interest because 
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of its role in vegetative succession on barrier islands (e.g. Levy 1983) and because its 

fruits are an important food source for passerines wintering along the coast, in 

particular the wax myrtle specialist, the myrtle warbler (Chapter 1).  Further, only by 

identifying the factors influencing wax myrtle recruitment is it possible to compare 

the relative contributions provided by different disperser species (Herrera et al. 1994, 

Jordano and Herrera 1995, Schupp and Fuentes 1995, Rey and Alcantara 2000) (see 

Chapter 3).  The specific questions addressed in this study are: (1) What are the 

temporal and spatial patterns of seed deposition at both habitat and microsite scales? 

(2) Do the time and/or habitat/microhabitat of deposition significantly affect the 

likelihood of seed predation and of seedling survival? (3) Is there evidence of spatial 

discordance between recruitment stages? 

 

Methods 

Natural History of Wax Myrtle 

Wax myrtle, a frequent understory component of longleaf and slash pine 

forests throughout the southeastern US (e.g. Pearson et al. 1987), is also a common 

dioecious shrub on barrier islands along the Atlantic coast of the United States.  This 

woody pioneer of newly stabilized soils plays an important role in vegetative 

succession (see also Morris 1974, Collins and Quinn 1982, Young et al. 1995, Day 

1996, Crawford and Young 1998).  Its establishment follows shoreline accretion 

(Shao et al. 1998), and eventually develops into dense thickets.  In concert with its 

abundant actinomycete partner, Frankia, wax myrtle enriches nutrient-poor soils 

(Levy 1983, Young et al. 1992, Wijnholds and Young 2000), and its branches provide 
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perches for avian seed dispersers (see McDonnell and Stiles 1983), aiding in both the 

deposition and recruitment of other woody species.  These subsequent, heterospecific 

immigrants eventually replace wax myrtle and its recruitment in individual habitat 

patches declines as thickets mature and senesce (Young et al. 1995).  Eventually, 

maritime forests dominate these patches where wax myrtle recruitment is rare (Levy 

1983).  Abiotic factors like freshwater availability and salinity also limit 

establishment and survival of wax myrtle seedlings and adults (Young 1992, Young 

et al. 1992, Shao et al. 1998, Day et al. 2001).  Although adults may survive brief 

pulses of salinity due to storm surge (Young et al. 1995), long-term elevation of soil 

salinity frequently devastates wax myrtle in affected areas (Conner 1995, Tolliver et 

al. 1997, Conner and Inabinette 2003).  While there is little evidence of herbivory on 

adults, herbivores may limit wax myrtle seedling distribution in some habitats 

(Barimo and Young 2002).  

 Wax myrtle fruit is a wax-covered drupe and individual females on 

Assateague Island commonly produce >1000 berries and sometimes >10,000 fruits.  

These are persistent and seeds are dispersed on Assateague Island over seven and a 

half months, between late September and late April (Chapter 1).  Fruit quality does 

not appear to decline during this period, although germinability declines 9 months 

after fruit presentation (Erickson and Hamrick 2003), suggesting that seed banks are 

not a significant source of recruits; pre-dispersal predators inflicted minimal damage 

to crops prior to fruit removal (Lowe, pers. obs.).  There is no evidence for masting or 

substantial between-year variation in fruit abundance in this species.   
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General 

I selected sites in three major habitat types on Assateague Island, representing 

three distinct seral stages (salt grass meadow, scrub, forest) to document the effect of 

time and habitat on wax myrtle seed dispersal as well as the rates of seed predation 

and seedling survival associated with deposition in these habitats and at different 

times.   By pooling data from each habitat, I also measured the influence of microsite 

vegetative composition and structure on dispersal, predation and seedling survival.  

Each habitat type was replicated three times (a total of nine sites) and replicates were 

>2 km distant to promote independence.   Sites were judged to be typical of each 

habitat type.  However, given the highly patchy nature of vegetation communities on 

Assateague Island, no habitat location was uniform in its vegetative composition or 

structure.  Meadow sites, containing the most recently stabilized soils and occasional 

woody pioneers, were characterized by abundant Spartina patens, interrupted by 

infrequent islands of wax myrtle and Baccharis halimifolia.  Shrub habitats, an 

intermediate stage along the chronosequence, contained large numbers of wax myrtle 

adults interspersed with poison ivy (Toxicodendron radicans) , B. halimifolia and 

occasional loblolly pines (Pinus taeda).  Loblolly pine dominated the overstory of the 

forest sites, the oldest seral stage, and Smilax spp. were abundant in the understory, 

occurring as both thickets and lianas; wax myrtle and Vaccinium were also present.  

   At each site, a 100 m X 100 m (1 hectare) grid was established.  Seed traps 

(n = 100) were attached to the ground every 10 m on this grid.  Seed predation and 

seedling survival experiments were placed within 10 cm of seed traps, allowing for 

prediction of the fate of seeds deposited at that particular location at different time 
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periods.  Special care was taken not to disturb the vegetation structure of these sites.  

To determine the influence that different microsite vegetation parameters had on 

dispersal, predation and seedling survival, I recorded the number of wax myrtle 

female individuals (Females) as well as the sum of the number of males and non-

Myrica shrubs (Other Shrubs) within a 1m radius circle centered around each trap at 

all sites (hereafter Circles).  I also estimated the vertical vegetative profile 

(Vegetative Density) by placing a 2m pole vertically in the center of the trap and at 4 

separate randomly determined locations along the circle perimeter.  I recorded 

whether or not vegetation touched the pole in 5 height strata (<0.5 m, 0.5 m - .99 m, 1 

m – 1.49 m, 1.5 m – 2 m, >2 m).  Strata where vegetation touched the pole received a 

1, untouched strata received a 0, so each stratum in a Circle could have a score 

ranging from 0 - 5  and total Vegetative Density scores of an individual Circle could 

range between 0 – 25.   

 

Seed Deposition 

Seed traps (n = 100) at each site were constructed of a 28 X 56 cm flat with a 

slotted bottom to facilitate drainage.  A lining of plastic screen prevented seed loss 

through the bottom and a hardware cloth top excluded rodents but allowed seed entry.  

Seed traps were set in place on November 17, 2001.  The number and species of all 

seeds and all whole fruits were recorded at 6 different time periods, ranging between 

22 and 30 days, until April 30, 2002.  Only wax myrtle seed data will be presented 

here.  Because time between data collection periods varied, I calculated the number of 

seeds deposited/day to allow comparison of seed deposition rates over time.  
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Although bayberry (M. pensylvanica) also occurs on Assateague Island, I assumed 

that all Myrica seeds recovered were wax myrtle because bayberry fruit abundance 

was negligible by early November due to fruit consumption and relatively low 

numbers of individuals (Chapter 1). After each trap inspection, all fruit and seeds 

contained in each trap were placed in a plastic bag and removed from the site, so as 

not to influence ongoing seed predation experiments. 

To determine whether habitats differed in the total number of wax myrtle 

seeds received, I compared the sum of different habitat types with ANOVA, using 

square root transformed data to meet assumptions of normality and homoscedasticity; 

independent mean comparisons were made using Least Significant Difference (LSD) 

tests.  I also tested whether habitats differed in the total number of traps that 

contained at least one seed by the end of the season, using ANOVA and LSD tests for 

subsequent multiple comparisons; no data transformation was necessary.  I used 

repeated measures analysis (Proc Mixed, SAS Institute 1999) with a first-order 

autoregressive covariance structure [AR(1)] suitable for approximately equally 

spaced time periods (see Littell et al. 1996), to compare the numbers of wax myrtle 

seeds deposited over time in different habitats.  These data were log transformed to 

meet assumptions.  Multiple comparisons were made using the Tukey-Kramer test.   

The influence of microhabitat composition on the number of seeds deposited 

within habitats was assessed by using stepwise logistic regression on seed trap data in 

each time period.  Females and Other Shrubs were the independent variables in 

regression analyses used for all habitats.  Vegetative Density was also added to 

regression models for forest habitat data because much of the understory structure 
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was due to Smilax whereas wax myrtle and other woody shrubs were the primary 

determinants of structure in scrub and meadow habitats.   

For this analysis, I assumed that the number of seeds deposited in any 

individual trap was independent of the number deposited in other traps, and so pooled 

all data from replicate sites.  Such an assumption may be questionable if dispersers 

maintained coherent flocks during the period of data collection or if individual traps 

were close together.  However, myrtle warblers, the primary disperser during this 

time (Chapter 1), form only very tenuous, opportunistic associations (Lowe, pers. 

obs.).  Because the movement and foraging behavior of individuals appeared casually 

influenced by other conspecifics and because individual traps were located at a 

minimum distance of 10m, this assumption of independence seems reasonable.   

 

Seed Predation 

To determine the rate of predation of dispersed seeds, I placed screen cones 

containing 10 manually depulped seeds at fifteen trap locations on each of the nine 

grids in three time periods (every 50 days): December 19, January 28, and March 18.  

Cones were located systematically on each grid.  In December, cones were placed 

next to each trap in the second column of the grid and next to every other trap in the 

third column. Cones in January were placed beside each trap in the fifth column and 

beside alternating traps in the sixth.  This pattern was the same for seed cone 

placement in March in the eighth and ninth columns.  Because subsequent analysis 

with Kruskal-Wallis confirmed that there was no significant difference in vegetative 

variables between the columns used for the different time periods within habitats 
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(Lowe, unpub. data), I am confident that the test for a time effect is not confounded 

with either vegetation or edaphic differences associated with column location and this 

non-random methodology. 

Screen cones were used because they were judged to be both less conspicuous 

than the frequently used Petri dishes or trays (e.g. Casper 1987, Kollman et al. 1998, 

Traveset et al. 2003)  and less susceptible to flooding.  Each cone was approximately 

5 cm tall and had an opening with a diameter of approximately 2.5 cm.  I placed each 

cone in a small depression that had been dug into the soil at least four days earlier so 

that the top of the cone extended approximately 6 mm above the lip of the depression.  

The cone was filled with soil so that soil level in the cone was comparable to the level 

outside and seeds were placed within.  By digging depressions prior to placement of 

seed cones, I hoped to reduce the likelihood that rodents would associate soil 

disturbance with a food reward.  All cones were planted within 10 cm of seed traps.  

Extra care was taken however to not disturb these sites during the subsequent 

collection of seed trap data. 

On April 30, by which time wax myrtle seeds had germinated, I recorded 

whether seeds remained in each cone.  Because rodent seed predators have been 

shown to consume the vast majority of seeds that they encounter (e.g. Webb and 

Willson 1985, Hulme 1996), I recorded only whether seeds were absent or present.  

Cones that were either trampled by horses or that had disappeared because of 

flooding were not included in the analysis.  Otherwise, I concluded that missing seeds 

were the result of seed predators; intact cones without seeds were commonly 

surrounded by shell fragments indicating rodent predation. 
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To measure the effect of habitat and time of deposition on seed predation 

rates, I compared the percent of individual cones whose contents were uneaten, 

testing for the effect of habitat, time, and habitat X time interaction. These data, 

transformed by an arcsine-square root transformation, were analyzed as a split plot 

with ANOVA (Proc Mixed, SAS Institute 1999).  Habitat was the whole plot and 

time periods were the subplots.  Multiple comparisons were made using the Tukey-

Kramer test. 

I used stepwise logistic regression (SAS Institute 1999) to determine the effect 

of microsite vegetative variables on the likelihood of seed predation in different 

habitats, pooling all data from each habitat type; as above, I assumed that the fate of 

individual cones was independent because all cones were a minimum of 10m apart.  

Female abundance and Other Shrubs were the two microsite variables entered into the 

model in all habitats, and Vegetative Density was also used for forest site data.  

 

Seedling survival 

I tested the effects of habitat and of time of deposition on seedling survival by 

planting seeds in meadow, scrub and forest sites in three time periods (every 50 

days): December 19, January 28 and March 18.  Two days prior to planting, I 

collected fruits from 5 different individual females and manually removed the waxy 

exocarp covering the seed.  Because there is no significant difference between the 

germination rate or time of manually depulped wax myrtle seeds and frugivore-

voided seeds (Chapter 3), I assume that germination rates of these seeds are similar to 

those dispersed by frugivores.  Seeds were then mixed in a paper bag to ensure 
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random assignment to the different habitats.  On each day, I placed 50 seeds at 5 

locations in each habitat replicate; in December seeds were placed beside every other 

trap in column 3 of the grid, by traps in column 6 in January, in March by column 9.  

As above, analysis indicated that there were no systematic edaphic changes associated 

with columns along grids.  Seeds were placed on the mineral soil to remove 

previously deposited seeds and to anchor adequately the hardware cloth exclosure (3 

X 4 X 3 inch) that prevented rodent access.  No exclosure showed signs of rodent 

entrance.  The top and sides of the exclosure were covered with nylon screen to 

prevent access by seeds subsequently dispersed by frugivores and to prevent seeds 

from being washed away in the case of local flooding.  Screen on the top of the 

exclosure was removed in late April after the conclusion of the seed dispersal season.  

The percentage of seedlings surviving in each exclosure was recorded in August 

2002.   

I tested the effect of habitat and time of deposition on percent of seedlings 

surviving, by analyzing these data as a split plot, using Proc Mixed (SAS Institute 

1999) as well as determining whether habitats differed in the number of circles in 

which seedlings survived.  I also tested the effect of microsite variables on percent 

survival in all habitats by pooling data from each replicate and using stepwise logistic 

regression.  The explanatory variables used were those in the seed dispersal 

regression above: Females, Other Shrubs for all habitats, and also Vegetative Density 

for Forest sites.  I assume that results from exclosures at individual sites are 

independent due to the distance between exclosures (≥15 m). 
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To determine the actual seedling abundance in each habitat, I surveyed 

seedling abundance in each Circle.  Because wax myrtle can reproduce vegetatively 

via rhizomatous shoots (Thieret 1966), I confirmed seedling status by pulling up 

potential seedlings.  I tested for differences in abundance between habitats by using 

ANOVA on log transformed data.  I tested for microsite effect with stepwise logistic 

regression on data from scrub and meadow habitats, using the same variables 

employed above; seedlings appeared in too few Circles in forest habitat to perform 

analysis. 

 

Results 

Seed Deposition 

Wax myrtle seeds were widely dispersed on Assateague Island, landing in all 

three habitat types (meadow, scrub and forest) throughout the entire period of data 

collection (November 7 - April 30), approximately 80% of the actual dispersal 

season.  After relatively low levels of seed rain during the first dispersal period 

(November 7 – December 9) in all habitats, seed deposition rates remained high well 

into spring, dropping noticeably only in April (Figure 2-1).   

Repeated measures analysis of the numbers of seeds deposited into meadow, 

scrub, and forest habitat over time showed a significant time X habitat interaction 

(Table 2-1).  This interaction appears to be due to a very low rate of seed deposition 

in forest traps during the first time period.  This was confirmed when a second 

repeated measures analysis was conducted without the November – December data, 

in which the interaction term was no longer significant and the main effects were 
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highly significant (P < 0.01); contrasts of these data indicated that all habitats 

consistently received different (P < 0.05) numbers of wax myrtle seed: scrub > forest 

> grass.   

Using the full data set, multiple comparison of seed rain between habitats 

indicated that with the exception of the first and last collection periods, wax myrtle 

seed rain was always significantly greater in scrub sites than in either of the other two 

habitats, which never differed significantly from each other (Table 2-2). 

Within-habitat comparisons indicated that the number of wax myrtle seeds 

deposited in all habitats varied, but remained relatively constant throughout this 

period (Table 2-3).  Significant differences among time periods most evident toward 

the end of the period of seed deposition in late April for both scrub and forest 

habitats.  In contrast, there was no significant difference in the amount of wax myrtle 

seed that meadow habitats received between time periods. 

 The number of traps at forest and scrub sites receiving wax myrtle seeds 

changed among time periods (Table 2-4), yet regression analyses of the influence of 

microsite vegetation on the number of seeds deposited in individual traps appeared 

relatively consistent among time periods in all habitats (Tables 2-5, 2-6).  Abundance 

of female wax myrtle individuals within one meter of the trap consistently had a 

significantly positive effect on deposition in meadow and scrub habitats; occasionally 

the presence of other shrubs was significant as well.  In contrast, in only one period 

did any variable explain the presence of wax myrtle seed rain at forest sites.  During 

April, Vegetation Density significantly increased seed deposition in forests (X2 = 

4.02, P < 0.05, Point Estimate = 1.13).   
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Habitats differed significantly in total numbers of seeds deposited (F2,6 = 

10.06, P < 0.05).  Scrub habitats received significantly more seeds than either 

meadow (P < 0.005) or forest sites (P < .05), which did not differ significantly in 

their total seed rain (Figure 2-2).  Analysis of the mean percentage of traps receiving 

at least one wax myrtle seed indicate that the seed rain differed spatially among 

habitats (F2,6 = 30.47, P < 0.001) (Figures 2-3, 2-4, 2-5).  Significantly fewer traps in 

salt grass meadows received any seeds than in either scrub or forest sites.   

 

Seed Predation 

Analysis of predation rates of experimentally dispersed seeds showed a highly 

significant time X habitat interaction (Table 2-7, Figure 2-6).  Comparison of escape 

rates of wax myrtle seeds between habitats over time revealed no difference in 

survivorship for seed deposition in December (Table 2-8).  However, rates did differ 

significantly between habitats in the two subsequent time periods. 

Comparison of seed escape rates over time within habitats revealed two 

different trends (Table 2-9).  Likelihood of avoiding predators in scrub habitats did 

not change significantly between times, displaying an overall rate of 60.9%.  In 

contrast, the likelihood of escape from predators was dramatically different between 

time periods for seeds deposited in meadows and forests.  Seeds deposited in 

December in both habitats differed significantly in probability of escape from those 

deposited subsequently, but the trends were opposite.  Seeds deposited in forest 

habitats in December enjoyed an initial 88 ± 8.5 % escape rate, which dropped to 34 
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± 4%.  In meadow habitats, only 52 ± 7.8 % of seed cones deposited in December 

were not attacked, but 95 ± .4 % for seeds deposited in later months survived.   

The influence of microsite vegetative variables on seed predation differed 

between sites (Table 2-10). Density of vegetation in forest habitats increased rates of 

wax myrtle seed predation while the presence of heterospecific shrubs reduced it to a 

lesser extent.  In scrub habitats, the presence of female wax myrtle adults 

significantly increased predation rates.  No microsite variable measured affected 

predation rates in meadow habitats.  

 

Experimental Seedling Survival 

The mean number of seeds that germinated and survived their first summer 

was very low in all habitats.  The time of experimental deposition played no 

significant role in the likelihood of seeds germinating and surviving until August (P > 

0. 05).  However, the habitat in which seeds were placed did significantly affect the 

likelihood of survival (F2,6 = 8.37,  P < 0.05).  A significantly greater percentage of 

seeds deposited into scrub habitats survived their first summer than those in either 

meadow or forest habitats.  Survival rates were not significantly different between 

forest and meadow habitats (Figure 2-7).  However, habitats did not differ in the 

number of Circles that contained at least one seedling (P > 0.2). 

Although microsite vegetation had no significant influence on the likelihood 

of seeds to germinate and survive their first growing season in scrub or forest 

habitats, the presence of Other Shrubs significantly improved the likelihood of 

survival in meadow habitats (Wald X2 = 4.01, P < 0.001, Point Estimate = 2.234).   
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Seedling abundance 

Wax myrtle seedlings were relatively rare in all three habitats on Assateague 

Island, yet density of seedlings differed significantly between habitats (F2,6 = 8.47  P 

< 0.05) (Figure 2-8).  Independent contrasts showed that forests had significantly 

fewer seedlings than either scrub or meadow habitats.  Meadow and scrub habitats 

were also similar in that seedlings tended to have a clumped distribution (Figures 2-3, 

2-4).  Although no microsite variable was a significant explanatory factor in seedling 

abundance in either forest or scrub sites, stepwise logistic regression indicated that 

abundance of Females increased the likelihood of seedling presence significantly 

(Wald X2 =  11.91, P < 0.001, Point Estimate = 1.24) in meadow habitat. 

Seedling:seed ratios from the three habitats were significantly different (X2 = 

205.3, P < 0.0001).  Subsequent pair-wise comparisons demonstrated that ratios from 

all three habitats differed significantly from each other (Table 11, Figure 2-9). 

 

Discussion 

Seed Dispersal 

Seed deposition occurred throughout the entire study period in all habitats.  

After early December, a period characterized by low seed dispersal in all habitats, the 

differences in the number of seeds that each habitat received were consistent, 

suggesting constancy in relative habitat use over time by seed dispersers.   Similarly, 

the number of seeds deposited in each habitat was relatively uniform over time after 

December, as well. This uniform rate of dispersal well into spring is consistent with 
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the relatively large number of myrtle warblers present and their heavy use of wax 

myrtle between autumn and spring (Chapter 1). 

Although the number of traps containing wax myrtle seeds also changed 

significantly over time in both forest and scrub sites, the vegetation characteristics of 

the microsites into which seeds fell did not change substantially.  Greater abundance 

of female wax myrtle individuals always increased seed deposition in scrub and 

meadow sites; the presence of heterospecific shrubs was also an occasional factor in 

both habitats, indicating the importance of perches to deposition.  In contrast, seed 

deposition in forest sites was always random, unaffected throughout the study season 

by any of the understory variables measured, a result attributed to the abundance of 

perches provided by the nearly ubiquitous canopy cover.  These trends are largely 

consistent with previous work that has emphasized the positive effect on seed 

deposition at a microsite level of both fruiting plant abundance (Herrera and Jordano 

1981, Hoppes 1988, Murray 1988, but see Willson and Crome 1989, Izhaki et al. 

1991, Debussche and Lepart 1992, Herrera et al. 1994, Alcantara 2000, Aukema and 

Martinez del Rio 2002, Traveset et al. 2003) and perch availability (McDonnell and 

Stiles 1983, Debussche and Isenman 1994, Wenny and Levey 1998, Alcantara 2000, 

Jordano and Schupp 2000, Rey and Alcantara 2000).   

By the end of April, habitats differed significantly in the total numbers of 

seeds they had received and in the number of traps that had received seeds, as seen 

elsewhere (Jordano and Herrera 1995, Calvino-Cancela 2002, Muller-Landau 2002).  

Scrub habitats, characterized by high wax myrtle abundance, received significantly 

more seed than did either forest or meadow sites which both contained low levels of 
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wax myrtle adults.  These results are consistent with previous studies that have 

reported a positive relationship between seed rain and fruiting plant abundance at a 

habitat scale (Hoppes 1987, but see Forget 1992, Jordano and Herrera 1995, Kollman 

and Pirl 1995).  

Similarly, as seen elsewhere, habitats differed in the number of traps 

containing seeds (Clark et al. 1998, Muller-Landau 2002).  Seed shadows in forest 

and scrub habitats were both more extensive than those in salt grass meadows.  

Although source limitation, resulting from low abundance of fruiting plants, can be 

responsible for limited seed dispersal (Clark et al. 1998, Muller-Landau 2002), 

regression analyses strongly suggest that limited dispersal, due to low perch 

availability, was the cause (Table 2-6, see also  Dalling et al. 2002).  Woody plants 

occurred in only 9% of Circles at meadow sites. 

Together, these data indicate two important points.  First, the relative 

consistency of the seed deposition patterns over time at the habitat and microhabitat 

scale, in conjunction with low interannual variability of fruit abundance (Chapter 1), 

suggest that the spatial patterns and quantity of wax myrtle seed rain may not vary 

widely between years (Schupp 1995, see Calvino-Cancela 2002, Traveset et al. 2003).  

One weakness of these data is the fact that deposition patterns were not measured in 

the first 6 weeks of the dispersal season.  However, because myrtle warblers 

dispersed the vast majority of seeds in all months over 3 years and because their 

habitat use appears relatively consistent (Lowe, unpub. data), seed rain in this 

unmeasured period may not be substantially different.  Second, at the end of the seed 

dispersal season, each habitat contained very different seed shadows.  Wax myrtle 
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seeds in meadow habitats were rare and clumped beneath female adults and to a lesser 

extent around heterospecific shrubs.  In scrub habitat, seeds were numerous, widely 

scattered, but concentrated beneath female plants (Table 2-5), while wax myrtle seeds 

in forest habitat were rare, widespread and randomly distributed, an artifact of the 

tendency of dispersers to perch in the abundant over story.  

 

Seed Predation 

Post-dispersal predation rates of wax myrtle seeds were significantly 

influenced by both time of deposition and habitat.  In the absence of observations and 

rodent trapping, I can only speculate about the identity of wax myrtle’s seed 

predators.  However, only occasional evidence of wax myrtle consumption by  

several granivorous sparrows (e.g. Melospiza georgiana, M. melodia, Zonotrichia 

albicollis) and the high frequency of seed coat fragments observed near cones 

strongly suggest that rodents were the most important seed predator (Herrera et al. 

1994, Garcia 2001). 

The strong time X habitat interaction demonstrates that here, as frequently in 

other systems, escape from granivores has a temporal as well as spatial component 

(Schupp and Frost 1989, Forget 1992, Hulme 1994, Diaz et al. 1999, Yamashita et al. 

2003).  This demonstration that predation rates can change significantly over only 50 

days on Assateague Island indicates that estimates of predation over even a short 

period that are based on a single sample in time are inadequate (e.g. Gill and Marks 

1991, Herrera et al. 1994, Jordano and Herrera 1995, Hulme 1996, Rey and Alcantara 

2000, Diaz 2001, Calvino-Cancela 2002). 
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Although post-dispersal predation rates may vary unpredictably (Whelan et al. 

1991), the change in predation rates over time and habitats on Assateague Island 

presented clear patterns.  Likelihood of predation within scrub habitats did not vary 

over time, but seed predation rates in both meadow and forest habitats changed 

dramatically after the first experimental deposition (early December).  Seeds 

deposited in forests in late January and March were 40% less likely to escape than 

those in December, while later deposition at meadow sites led to the escape of over 

90% of seed cones.  Analysis of predation rates between habitats at different time 

periods showed that after no initial difference in predation pressure, seeds deposited 

in meadows always had the highest survival rate in January and March and forests the 

lowest.  Predation rates in scrub habitats were not significantly different from forest 

sites in January or from meadow sites in March.   

The trends in predation rates over time in both scrub and forest habitats 

appeared to be strongly affected by temporal changes in food abundance as frequently 

observed in other systems (Webb and Willson 1985, Willson and Whelan 1990, 

Forget 1992, Bowers and J. L. Dooley 1993, Hulme 1993, Kollman et al. 1998).   

In scrub habitat, a relatively steady rate of seed deposition was matched by an 

unvarying rate of seed predation.  The importance of wax myrtle seeds to granivores 

was indicated by the positive effect wax myrtle female abundance on predation 

likelihood (Table 2-10), suggesting that seed predators act in a density-dependent 

manner consistent with the Janzen-Connell hypothesis (Janzen 1970, Connell 1971) 

and concentrate foraging activities in areas of greatest seed deposition (see also 

Janzen et al. 1976, Becker and Wong 1985, Webb and Willson 1985, Kitajima and 
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Augspurger 1989, Bustamante and Simonetti 2000), a pattern seen also in primate 

dispersed seeds (Hallwachs 1986).  Although post-dispersal predator satiation has 

been documented under fruiting plants (De Steven and Putz 1984, Courtney and 

Manzur 1985, Wellington and Noble 1985, Willson and Whelan 1990, Forget 1992, 

Crawley and Long 1995, Alcantara 2000) and may be likely to occur in habitats 

dominated by one species (Curran and Webb 2000, Hulme 2002), the high rate of 

consumption of experimental seed depots suggests that predators in scrub habitat 

were not satiated (see also Kwit et al. 2004).   

In contrast, there was no relationship between rates of wax myrtle seed 

deposition and predation rates at forest sites.  Instead, the relatively low rates of wax 

myrtle seed predation in this habitat, which coincides with the time of loblolly seed 

deposition (Burns and Honkala 1990), appear to be due to the presence of an alternate 

food source for granivores (Thompson 1985).  Although the use of loblolly seeds by 

granivores on Assateague was not investigated, loblolly seeds are a common food 

source for granivorous rodents (DeSteven 1991), as are other conifer seeds elsewhere 

(e.g. Abbott and Quink 1970, McCracken and Hunter 2001, Cote et al. 2003).  The 

increased rates of seed predation seen in late January and in March may thus be due 

to a subsequent drop in pine seed abundance due either to depletion of the crop or to 

the escape of the remaining seeds in litter (Crawley 1992, Myster and Pickett 1993, 

Yamashita et al. 2003).  Because interannual variation of seed production by loblolly 

pines is not dramatic (Burns and Honkala 1990) and because rodent preferences 

display little interannual variability (Kollman et al. 1998),  I suspect that, as in scrub 
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habitats, predation likelihood associated with different time periods would be 

relatively constant between years. 

Predation rates in pine forest microsites were significantly increased by 

vegetation density which itself had only a slight effect on seed deposition, suggesting 

that granivores favored these microhabitats which would provide the greatest 

protection from predators (Rood and Test 1968, Schupp and Frost 1989, Simonetti 

1989, Gill and Marks 1991, Kollman and Pirl 1995, Hulme 1996, Diaz et al. 1999, 

Trejo and Guthmann 2003) – a sensible tactic because great horned owls are present 

in all forest sites (Comrich et al. 2002).  The reduction in seed predation associated 

with heterospecific shrubs was likely due to the fact that these shrubs tend to grow in 

the less dense areas of the forest sites which are generally dominated by thickets of 

Smilax species. 

Potential explanations for the decrease in predation rates in meadows are more 

problematic.  Seed deposition rates were constant over time and seed rain was 

predictably concentrated beneath fruiting conspecifics.  In contrast with forest habitat, 

the dominant plant species at these sites, Spartina patens, does not produce the large 

numbers of seeds that might be expected to produce such a drastic change.  It is 

possible that seasonal changes in granivore abundance might account for observed 

changes (Kollman et al. 1998, Diaz et al. 1999).  In the absence of small mammal 

trapping and surveys of granivorous birds, I am unable to evaluate this hypothesis. 

Predation rates in meadow habitats were random with respect to microsite 

variables, demonstrating that the response of seed predators to seed shadows can 

differ between habitats (see also Schupp 1988).  Relative rarity of both fruiting plants 
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(present in only 10% of meadow vegetation circles) and low levels of seed rain in this 

habitat presumably made these foci of deposition both hard to find and relatively 

unrewarding when found for foraging rodents (Whelan et al. 1991, Hulme 1994).  

 

Experimental Seedling Survival 

Time of experimental deposition, which has influenced seedling survival in 

other systems (DeSteven 1991, Forget 1997), had no significant effect on the 

likelihood of wax myrtle seeds’ germination and survival through their first growing 

season.  This lack of a temporal effect indicates that the only impact that dispersal 

time has is on likelihood of escape from post-dispersal predators.  Percent survival 

differed between habitats and was greater in scrub than either forest or meadow sites.  

However, because the density of seeds in exclosures was greater than the actual 

density of dispersed seeds at meadow and forest sites, these results must be 

interpreted with caution.  In contrast, the number of exclosures containing at least one 

seedling also did not differ among habitats, indicating that the number of microsites 

suitable for germination and seedling survival do not differ among habitats.  Given 

the very different conditions among habitat types, wax myrtle seedling establishment 

does not appear to be constrained by a narrow range of microsite requirements.  

Because exclosures were not monitored throughout the summer, it is impossible to 

determine the causes of seedling mortality during this period.  I suspect, however that 

drought, which has been cited as a primary cause of seedling mortality in other 

temperate systems (DeSteven 1991, Traveset et al. 2003), was a major factor in 

summer mortality rates of this drought-intolerant species (Young 1992). 
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The low numbers of surviving seedlings in forest habitat were not surprising.  

Wax myrtle seeds can readily germinate in this habitat (Haywood 1994, Lowe pers. 

obs.), yet soils beneath a pine overstory on barrier islands tend to be poor in nutrients 

(Levy 1983).  Further, in the understory of a pine forest, competition is likely to be 

intense as seedlings compete with established understory vegetation and adult pine 

trees for light and water.  The role of pathogens in pathogens was not assessed.  

However, given the rarity of adult wax myrtle individuals, I suspect that the impact of 

pathogens was minimal.  The lack of any microsite effect on survival suggests 

frequency of pine trees and their extensive cover created a uniformly hostile 

environment for seedlings throughout each site.  

In contrast, the presence of heterospecific adults in meadows greatly improved 

the likelihood of seedling survival, presumably by ameliorating the potentially harsh 

conditions of salt marsh.  Facilitation by heterospecifics is not uncommon (De Steven 

1991, Gill and Marks 1991, Herrera et al. 1994, Pugnaire et al. 1996, Rey and 

Alcantara 2000).  Heterospecific adults have been reported to improve seedling 

survivorship by reducing water loss and increasing surface water availability through 

“hydraulic lift” (Bustamente and Simonetti 2000).  But in a salt grass meadow, a 

highly saline environment frequently flooded with salt water where salinity restricts 

recruitment (Bertness and Ellison 1987), heterospecific adults have also been shown 

to benefit seedlings by reducing local soil salinity through shading (Bertness 1991, 

Bertness and Shumway 1993).  Because the recruitment (Young et al. 1994), growth 

(Graves and Gallagher 2003), survival (Conner and Inabinette 2003) and nitrogen 

fixing abilities (Young et al. 1992) of wax myrtle are all substantially reduced by soil 
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salinity, this effect is likely to be of great value.  Thus, the relatively low abundance 

of experimental seedlings in this habitat may be attributable to the low numbers of 

shrubs present at any site. 

The fact that adult wax myrtle plants had no significant effect on seedling 

survival in meadow habitat is itself interesting.  Numerous studies have reported a 

negative relationship between seedling density and proximity to adults, unrelated to 

seed predation (Howe 1984, Howe et al. 1985, Debussche and Lepart 1992, Herrera 

et al. 1994, Rey and Alcantara 2000).  The absence of a negative effect on seedling 

survival suggests that any passive facilitative advantages adult conspecifics may have 

provided were countered by disadvantages associated with proximity to conspecific 

adults: changes in soil biota (Packer and Clay 2003), pathogen infection (Augspurger 

1984, Masaki and Nakashizuka 2002) or by competition for nutrients (Clark and 

Clark 1984), a struggle that may be especially intense between mychorrhizal adult 

and seedlings (Kytoviita et al. 2003).  Competition for light with adults, considered 

important elsewhere (e.g. De Steven and Putz 1984, Debussche and Lepart 1992, 

Forget 1997, Packer and Clay 2003), was not likely to be a limited resource in this 

habitat with low density of both conspecifics or woody heterospecifics.   

Seedling abundance at scrub sites was unaffected by any microsite variable, 

suggesting that the relatively numerous adults in this habitat created uniform 

conditions (see Bustamante and Simonetti 2000).  As in meadow sites, competitive 

disadvantages associated with proximity to adult conspecifics may have been 

balanced by passive facilitation.      
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Actual Seedling Demography 

Although wax myrtle seedlings were rare at all sites, patterns of recruitment 

differed between habitats (see also Traveset et al. 2003). As above, habitats differed 

significantly in both the number of Circles containing seedlings and in mean seedling 

density.  Seedlings occurred in a greater number of Circles in scrub than elsewhere, 

indicating that the spatially extensive seed shadow generated by frugivores was 

maintained to the seedling stage in this habitat but lost in forests.  Seedling 

abundances between habitats were similar, except that both scrub and meadow 

contained more seedlings than did forest habitat – demonstrating that in this system, 

even large differences in seed deposition could be overcome in subsequent 

recruitment stages (see Jordano and Herrera 1995).  This resulted in seedling:seed 

ratios that differed by an order of magnitude among the habitats: meadow > scrub > 

forest.  These results are consistent with the population dynamics of wax myrtle 

previously reported (e.g. Young et al. 1995) and fit the expectation of lower 

recruitment in pioneer (meadow) than in established (scrub) habitats (Fleming and 

Williams 1990).   

The low likelihood of seeds in forest sites to survive to become seedlings 

appears to be a product of the combination of high predation rates and low 

survivorship of escaped seeds.  Yet, seed deposition in pine forests could substantially 

benefit parent plants in the event of tree-fall gaps or the reduction of the pine 

overstory via drought, beetle infestation (Lowe, pers. obs.), or fire.  Although, I am 

unaware of any data on the effect of fire on the germination rates of dispersed seeds, 

wax myrtle adults are able to survive such events and to resprout vigorously (Terry 
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and White 1979, Taylor and Herndon 1981), but are unlikely to survive fires in 

successive years (Lay 1956).  Seed banks, however, are unlikely to contribute 

substantially because germinability of wax myrtle seeds declines after nine months 

(Erickson and Hamrick 2003).  Historically, fire may have played an important role in 

providing sites suitable for colonization.  However, the effect of fire on wax myrtle 

colonization is context dependent, increasing rates in moist areas, suppressing it at 

more xeric sites (Richardson 1977, Bridges and Orzell 1989).  

In contrast, the relative abundances of seedlings and the differences in the 

seed:seedling ratio between scrub and meadow habitats appear not to be determined 

by stage specific survival but by spatial concordance and discordance (Schupp 1995).  

Presence of seed rain and seedling abundance both rose with increasing wax myrtle 

abundance in meadow habitats, a positive relationship seen also for many other plant 

species, (Hughes and Fahey 1988, Herrera et al. 1994, Forget 1997, De Steven and 

Wright 2002).  This concordance also demonstrates the importance of frugivore 

foraging behavior to the seedling shadow (Jordano and Herrera 1995).   

At scrub sites, however, the relationship between seed rain and recruitment 

was negative (Augspurger 1986, Augspurger and Franson 1988, Houle 1992).  This 

inverse relationship was caused by spatial discordance between seed rain and seed 

escape, both positively affected by the abundance of female adults (see also Traveset 

et al. 2003).  Previous reports have documented spatial discordance occurring 

between a variety of recruitment stages (Schupp 1988, Huenneke and Sharitz 1990, 

Herrera et al. 1994, Houle 1998, Clark et al. 1999, Traveset et al. 2003).   
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Of course, spatial discordance between these stages does not necessarily 

impact the relative distribution of seedlings (e.g. Herrera 1984, Callaway 1992, 

Schupp and Fuentes 1995, Hulme 1996), especially if predators are satiated or 

alternate microsites are even more unsuitable.  The extent to which this discordance 

reduces seedling recruitment in scrub is indicated by the fact that only 50% of all wax 

myrtle seedlings were found in the 281 circles containing a wax myrtle adult, the 

remaining 19 without wax myrtle contained the remainder – an effect that is due 

exclusively to predation and not to seedling survival.  This  indicates that predators 

play a substantial role in shaping seedling distributions, as is frequently reported in a 

wide variety of habitats (Bochert and Jain 1978, Inouye 1980, Davidson et al. 1984, 

Risch and Carroll 1986, Watkinson et al. 1989, Augspurger and Kitajima 1992, 

Crawley 1992, Forget 1992, Hughes 1994, Murray and Garcia-C. 2002).  Escape is an 

important benefit of seed dispersal in this habitat (Howe and Smallwood 1982, Clark 

and Clark 1984, Howe 1993), but unimportant in meadows. 

The primary limitation of this investigation is that these data were collected 

during only one seed dispersal season and so provide no measure of interannual 

variation (Clark et al. 1999).  Although seed dispersal patterns may not display great 

interannual variability, seed predation patterns frequently do change between years 

(Ostfeld et al. 1997, Kollman et al. 1998, Traveset et al. 2003).  Yet even if the 

relative likelihoods of escape associated with habitat, microhabitat and time of 

deposition reported here are not representative, they do testify to the need to sample 

predation rates over the course of even short seed dispersal seasons.  Similarly, 

seedling survival and the factors affecting it can change annually (Titus and del Moral 
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1998, Bustamante and Simonetti 2000).  However, because these results concur with 

the previous work on wax myrtle population dynamics, I speculate that they may be 

an adequate representation of what occurs in other years.  Finally, it is clear that 

tracking the fate of seeds to the sapling stage provides more robust data on the factors 

affecting recruitment (Louda 1983, Schupp 1995, Balcomb and Chapman 2003).  

Nonetheless, conclusions drawn from seedling data may not be without value because 

the early stages of recruitment can be critical (Wellington and Noble 1985, Kitajima 

and Augspurger 1989, Rey and Alcantara 2000, Traveset et al. 2003). 

Additionally, it should be noted that while these results may be describe how 

dispersal, predation and seedling survival affect wax myrtle recruitment on other 

barrier islands, different dynamics may determine recruitment patterns in inland 

longleaf and slash pine communities where fire has been shown to have an important 

impact.  To determine this, further work is necessary. 

 

Conclusion 

Wax myrtle recruitment on Assateague Island benefited from seed dispersal in 

the 6 months that were considered in the two habitats where recruitment was most 

likely to occur.  Seed rain was generally higher in scrub habitats than in either forests 

or meadows.  Time of deposition influenced the likelihood of escape in forests, but 

less so in meadows, which provided the greatest likelihood of escape throughout the 

season.  Seed germination and seedling survival were greatest in scrub habitats.  But 

comparison of these data with seedling abundances indicated that meadow habitat 

provided the best possibility for successful seedling recruitment, due primarily to 
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spatial concordance between recruitment stages in meadow and spatial discordance in 

scrub.  

The results of this study underscore the insufficiency of predicting recruitment 

from seed arrival and conversely the inadequacy of relying on seedling abundance to 

determine the recruitment potential of habitats.  Understanding the mechanisms 

responsible for recruitment patterns requires the documentation of the spatial and 

temporal patterns of seed dispersal and their effect on seed predation and seedling 

survival when considering seedling recruitment.  The results presented here also 

provide further evidence of the important impact that spatial discordance can have on 

recruitment.   
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Table 2-1.  Repeated measures analysis of the number of wax myrtle seeds deposited 

per day in three different habitat types (forest, meadow, scrub) in 6 time periods of 

approximately 30 days (November 7, 2001 – April 30, 2002). 

Effect Numerator DF Denominator DF F P <  

Habitat 2 6.61 12.68 0.01 

Time 5 29.7 11.78 0.0001 

Time X 

Habitat 

 

10 

 

29.5 

 

2.78 

 

0.05 
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Table 2-2.  Results from multiple comparisons of mean number of wax 

myrtle seeds deposited per day in individual habitat types at 6 different 

time periods.  Traps were set out on November 7, 2001.  Superscripts 

indicate that deposition rates/time period is significantly different (P < 

0.05) according to the Tukey-Kramer mean comparison test. 

 
Time of 

Collection 
Habitat Mean Standard Error 

Forest 
0.64 a 0.33 

Meadow 
0.71 a 0.69 

 
Dec. 9 

Scrub 
7.56  a 2.07 

Forest 
3.03 a 0.56 

Meadow 
0.32 a 0.26 

 
Jan. 8 

Scrub 
15.25 b 5.1 

Forest 
4.94 a 1.58 

Meadow 0.69  a 0.65 
 

Feb. 3 

Scrub 
14.71  b 4.1 

Forest 
5.31  a 1.75 

Meadow 
0.87 a 0.68 

 
Mar. 5 

Scrub 
18.36 b 5.65 

Forest 
3.39  a 1.39 

Meadow 
0.71 a 0.70 

 
Apr. 3 

Scrub 
18.07  b 7.65 

Forest 
0.83  a 1.39 

Meadow 
0.22  a 0.20 

 
Apr. 30 

Scrub 
7.41  a 4.15 
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Table 2-3. Results from multiple comparisons of mean number of wax myrtle 

seeds deposited per day in individual habitat types between time periods.  Traps 

were set out on November 7, 2001 and collected on April 30, 2002.  Superscripts 

indicate that deposition rates/time period are significantly different (P < 0.05) 

according to Tukey-Kramer mean comparison test. 

Habitat Time of 
Collection 

Mean Standard Error 

Dec. 9 0.64 a 0.33 
Jan. 8 3.03 b, c 0.56 
Feb. 3 4.94 b, c 1.58 
Mar. 5 5.31 c 1.75 
Apr. 3 3.39 a, c 1.39 

 
 

Forest 

Apr. 30 0.83  a, b 0.29 

Dec. 9 0.71 a 0.69 
Jan. 8 0.32 a 0.26 
Feb. 3 0.69  a 0.65 
Mar. 5 0.87  a 0.68 
Apr. 3 0.71  a 0.70 

 
 

Meadow 

Apr. 30 0.22 a 0.20 

Dec. 9 7.56 a, b 2.07 
Jan. 8 15.25  a, b , 5.1 
Feb. 3 14.71 a, b 4.1 
Mar. 5 18.36  a 5.65 
Apr. 3 18.07 a 7.65 

 
 

Scrub 

April 30  7.41 b 4.15 
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Table 2-4.  Results of repeated measures analysis indicating that the number of 

seed traps receiving at least one wax myrtle seed changed significantly between 

different time periods in two of the habitats sampled.  The number of traps in 

meadow habitat containing wax myrtle seeds did not differ significantly between 

collection dates. 

Habitat Numerator DF Denominator DF F P  

Meadow 5 10 1.78 > 0.2 

Scrub 5 10 11.88 < 0.001

Forest 5 10 6.08  < 0.01 
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Table 2-5. Results from analysis of the effect of scrub microsite variables on wax 

myrtle seed deposition at individual traps (n = 300) during different time periods 

(2001 – 2002) using stepwise logistic regression.  The number of individual wax 

myrtle females and the number of heterospecific woody shrubs were the two 

explanatory variables entered into the model.  Data collection began on Nov. 7, 2001. 

Date Variable Parameter 
Estimate 

Standard 
Error 

X2 Value P < Point 
Estimate 

 
Dec. 9 

Wax 
myrtle 
females 

 
0.1187 

 
0.0295 

 
16.24 

 
0.001 

 
1.126 

 
Jan. 8 

Wax 
myrtle 
females 

 
0.2068 

 
0.0319 

 
41.89 

 
0.001 

 
1.23 

 
Feb. 3 

Wax 
myrtle 
females 

 
0.1635 

 
0.0296 

 
30.4616 

 
0.001 

 
1.178 

Wax 
myrtle 
females 

 
0.1822 

 
0.0321 

 
32.46 

 
0.001 

 
1.20 

 
 

Mar. 5 
Other 
shrub 

0.0697 0.0314 4.932 0.05 1.072 

 
Apr. 3 

Wax 
myrtle 
females 

 
0.1717 

 
0.0301 

 
32.58 

 
0.0001 

 
1.187 

 
Apr. 30 

Wax 
myrtle 
females 

 
0.1307 

 
0.0279 

 
21.91 

 
0.001 

 
1.14 
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Table 2-6.  Results from analysis of the effect of meadow microsite variables on wax 

myrtle seed deposition at individual traps (n = 300) during different time periods 

(2001 – 2002) using stepwise logistic regression.  The number of individual wax 

myrtle females and the number of heterospecific woody shrubs were the two 

explanatory variables entered into the model.  Data collection began on Nov. 7, 2001. 

Date Variable Parameter 

Estimate 

Standard 

Error 

X2 P < Point 

Estimate 

 
Dec. 9 

Wax 
myrtle 
females 

 
0.3243 

 
0.0812 

 
15.94 

 
0.001 

 
1.383 

Wax 
myrtle 
females 

 
0.1577 

 
0.0769 

 
4.203 

 
0.05 

 
1.17 

 
Jan. 8 

Other 
shrubs 

0.2665 0.0834 10.22 0.01 1.303 

 
Feb. 3 

Wax 
myrtle 
females 

 
0.3453 

 
0.0863 

 
15.99 

 
0.001 

 
1.412 

Wax 
myrtle 
females 

 
0.1643 

 
0.067 

 
6.01 

 
0.05 

 
1.179 

 
Mar. 5 

Other 
shrubs 

0.1465 0.053 7.618 0.01 1.158 

 
Apr. 3 

Wax 
myrtle 
females 

 
0.3243 

 
0.0812 

 
15.94 

 
0.0001 

 
1.32 

Wax 
myrtle 
females 

 
0.2773 

 
0.107 

 
6.695 

 
0.01 

 
1.32 

 
Apr. 30 

Other 
Shrub 

0.3049 0.1118 7.43 0.01 1.357 
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Table 2-7.  Analysis of the effects of time and habitat on the percentage of wax 

myrtle seeds depots escaping post-dispersal predation in three habitats (forest, 

meadow, scrub) at three different time periods (December 9, January 28, March 18) 

in 2001 – 2002 on Assateague Island. 

Effect Numerator DF Denominator DF F P < 

Habitat 2 6 2.33 0. 1 

Time 2 12 3.58 0. 05 

Time X 

Habitat 

4 12 19.31 0. 0001 
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Table 2-8.  Results of multiple comparisons of mean percentage of wax myrtle seed 

depots escaping post-dispersal predation (n = 15) between habitats at three different 

time periods on Assateague Island. Each habitat was replicated three times. 

Comparisons were made using the Tukey – Kramer test.  Superscripts indicate 

significant differences (P < 0.05) between habitats within time periods. 

 
Time Habitat % Mean Survival Standard Error 

Meadow 52.2 a 7.8 
Scrub 63.9 a 9.3 

 
Dec. 9 

Forest 88.1 a 8.5 

Meadow 94.4  a 2.8 
Scrub 51.2 b 18.2 

 
Jan. 28 

Forest 30.2  b 8.4 

Meadow 95.2 a 4.8 
Scrub 67.6 a, b 11.8 

 
Mar. 18 

Forest 38.1  b 8.6 
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Table 2-9.  Results of multiple comparison of mean percentage of wax myrtle seed depots 

that escaped post-dispersal seed predation between times in three different habitat types 

on Assateague Island.  Each habitat was replicated three times.  Comparisons were made 

using the Tukey – Kramer test and significance (P < 0.05) between time periods is 

indicated by superscripts. 

Habitat Date % Mean Survival  Standard Error 

12/9 52.2  a 7.8 
1/28 94.4 b 2.8 

 
Meadow 

3/18 95.2  b 4.8 

12/9 63.9  a 9.3 
1/28 51.2  a 18.2 

 
Scrub 

3/18 67.6  a 11.8 

12/9 
88.1  a 8.5 

1/28 30.2  b 8.4 
 

Forest 
3/18 38.1  b 8.6 
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Table 2-10.  Results of stepwise logistic regression analysis of the influence of 

vegetative microsite variables on the percent of wax myrtle seed depots consumed by 

post-dispersal predators.  No variables were significant in analysis of data from 

meadow sites. 

Habitat Variable Estimate Standard 

Error 

Wald 

X2

P < Odds Ratio 

 

Scrub 

Wax myrtle 

Females 

 

0.1449 

 

0.0512 

 

8.0065 

 

0.005 

 

1.156 

Vegetation 

Density 

0.1923 0.0797 5.822 0.05 1.212  

Forest 

Heterospecific 

Shrubs 

-0.3786 0.1819 4.3309 0.05 0.685 
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Table 2-11. Relationship of the number of wax myrtle seeds and seedlings from 

three habitat types on Assateague Island.  Data from all replicates of each 

habitat type were pooled and analyzed using Chi Square.  Superscripts indicate 

significant (P < 0.0001) differences in the seedling:seed ratio between all 

habitat types. 

Habitat Seed Number 
(%) 

Seedling 
Number (%) 

Seedling:seed 

 
Meadow 

 
289 (3) 

 
38 (24) 

 
0.13 a

 
Scrub 

 
6845 (79) 

 
115 (74) 

 
0.016 b

 
Forest 

 
1541 (18) 

 
3 (2) 

 
0.0019 c
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Figure 2-1.  Number of wax myrtle seeds deposited per day into traps (n = 100) into 

three different habitats on Assateague Island.  Individual points represent the mean ± 

SE number of wax myrtle seeds derived from the three replicates of each habitat.  

Repeated measures analysis indicated a significant time X habitat interaction (P  < 

0.005). 
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 Figure 2-2.  Mean ± SE number of the total number of wax myrtle seeds deposited in 

three different habitat types on Assateague Island over approximately six months.  

Each habitat type contained 100 seed traps and had three replicates.  Letters indicate 

significant differences (P  < 0.05) in the total number of seeds deposited. 
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Figure 2-3.  Representation of the occurrence of wax myrtle seed deposition and 

subsequent presence of naturally occurring wax myrtle seedlings at three salt grass 

meadow sites (identified by number in top left corner).  Individual rectangles 

represent Circles, which in the field were separated by at least 8m; at the center of 

each was located a single seed trap.  Seedling surveys were conducted around each 

trap (see Methods for further details). 
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     At least one wax myrtle seed deposited in Circle 

    ●     Presence of wax myrtle seedling in Circle 
 

Figure 2-4.  Representation of the occurrence of wax myrtle seed deposition and 

subsequent presence of naturally occurring wax myrtle seedlings at three scrub sites 

(identified by number in top left corner).  Individual rectangles represent Circles, 

which in the field were separated by at least 8m; at the center of each was located a 

single seed trap.  Seedling surveys were conducted around each trap (see Methods for 

further details). 
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          At least one wax myrtle seed deposited in Circle 

 
   ●     Presence of wax myrtle seedling in Circle 

 
 
 

Figure 2-5.  Representation of the occurrence of wax myrtle seed deposition and 

subsequent presence of naturally occurring wax myrtle seedlings at three forest sites 

(identified by number in top left corner).  Individual rectangles represent grid location 

of Circles, which in the field were separated by at least 8m; at the center of each was 

located a single seed trap.  Seedling surveys were conducted around each trap (see 

Methods for further details).  
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Figure 2-6.  Survival rates of wax myrtle seeds experimentally deposited in three 

habitats on different dates on Assateague Island, 2001-2002 demonstrated a 

significant habitat X time interaction (P < 0.0001).  Survival data was collected on 

April 30, 2002.  Individual points are the mean ± SE survival rate of three replicate 

sites. 

 95 
 



Meadow Scrub Forest

M
ea

n 
pe

rc
en

ta
ge

 o
f s

ur
vi

vi
ng

 se
ed

lin
gs

0

10

20

30

40

50

a

a

b

  

Figure 2-7.  Comparison of the mean percentage (± SE) of wax myrtle seeds that 

germinated and survived until the end of the first summer from seeds experimentally 

planted at three different dates and in three habitats on Assateague Island.  Time 

effect was not significant, but habitat exerted a significant effect (P < 0.05).  Letters 

above column indicate significant differences between habitat treatments. 
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 Figure 2-8. Mean ± SE number of wax myrtle seedlings detected per Circle in 

August 2002 in three different replicated habitat types on Assateague Island.  Letters 

indicate significant differences (P < 0.05) in seedling abundance. 
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Figure2-9.  Comparison of the mean (±SE) number of wax myrtle seeds dispersed 

into three different habitats (n = 3) and mean (±SE) number of seedlings subsequently 

detected within 1m of seed traps.  All habitats differed in seedling:seed ratio (P < 

0.0001).  Columns are presented in order of magnitude of seedling:seed ratio.  
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Chapter 3: Qualitative and quantitative contributions of seed dispersers 

to wax myrtle (Myrica cerifera) recruitment on Assateague Island 

 

Abstract 

Frugivorous seed dispersers are assumed to play an important role in plant 

population dynamics, although few studies have considered simultaneously  both the 

quantitative and qualitative contributions of individual disperser species.  The impact 

of dispersers is especially important for a pioneer plant like wax myrtle (Myrica 

cerifera) whose recruitment and population viability on a barrier island are ultimately 

contingent on colonizing new sites to avoid more competitive species and on avoiding 

encroachment of the ocean due to island erosion and overwash.  In this study, I 

document the quantitative and qualitative contributions that wax myrtle receives from 

its primary dispersers: gray catbirds (Dumatella carolinensis), tree swallows 

(Iridoprocne bicolor) and, the wax myrtle specialist, myrtle warblers (Dendroica 

coronata coronata).  Over three years, myrtle warblers dispersed a substantially 

greater proportion of wax myrtle seeds than all other species combined, both within 

and between years.   

Because seed trap data indicated that there was no difference in the number 

fruits falling from parent plants and dispersed seeds, I also tested the reproductive 

potential of seeds encased in fruit.  Seed germination experiments revealed that wax 

myrtle seed germination rates are not affected by disperser identity and that seeds that 

passed through dispersers were as likely to germinate as those in fallen fruits.  
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However, median germination date of seeds in fruit was significantly later than the 

dates of those depulped or ingested.  Post-foraging observations of all three avian 

dispersers suggested that in scrub habitat where recruitment was determined largely 

by escape from post-dispersal predators, seed shadows generated by myrtle warblers 

and gray catbirds were likely to be similar.  However, myrtle warblers were the 

primary agent of emigration for seeds produced in scrub, a clear benefit especially for 

seeds produced in mature thickets where survival and establishment were contingent 

on colonization of new sites.  Tree swallows contributed little to recruitment since 

their primary defecation sites were located on beaches and primary dunes, a highly 

saline habitat devoid of both wax myrtle adults and seedlings.  This study 

demonstrates that fruiting plants may benefit from the focused attention of specialist 

frugivores, that the contribution of dispersers can be contextual and that members of a 

disperser assemblage should not be assumed to be functionally redundant. 

 

Introduction 

Seed dispersal by birds and mammals is widely accepted as a major influence 

on plant recruitment (Fleming and Heithaus 1981, Hallwachs 1986, Jordano 1992, 

Gorchov et al. 1993, Rey and Alcantara 2000, Calvino-Cancela 2004), by enabling 

the escape from density-dependent mortality around the parent, colonization of new 

sites, and directed dispersal to sites especially suitable for seedling establishment 

(Howe and Smallwood 1982, Augspurger 1984, Wenny 2001).  Seed dispersal for 

fruiting plants is commonly accomplished by assemblages of endozoochorous 

frugivores; the physiology and behavior of which have been shown to impact 
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substantially plant recruitment and population dynamics (Estrada and Fleming 1986, 

Fleming and Estrada 1993, Levey et al. 2002).  Because fruit has been shown to be an 

important resource, successful establishment of fruiting plants ultimately has 

important consequences for the life histories of breeding, migrating and over-

wintering frugivores (Greenberg 1981, Herrera 1981, Wheelwright 1983, Parrish 

1997).   

Coevolution was at the heart of the first models proposed to explain how 

different disperser species affect plant recruitment.   These models rested on two 

assumptions: that a sizeable proportion of interactions were specialized and that 

specialist frugivores, i.e. those with an annual  diet largely composed of fruit, 

provided predictable benefits to the plants whose seeds they dispersed (McKey 1975, 

Howe and Estabrook 1977).  Both of these assumptions have largely been rejected, 

however (Wheelwright and Orians 1982, Herrera 1985, Jordano 1993, but see Howe 

1993).  The current consensus is that interactions between fruiting plants and 

frugivores are mostly generalized (Wheelwright and Orians 1982, Wheelwright et al. 

1984, Gautier-Hion et al. 1985, Jordano 1987, Fuentes 1995, but see Chapter 1).    

Similarly, the effect of dispersers is no longer considered a constant primarily 

determined by disperser identity.  Instead, as in other mutualisms (e.g. Cushman and 

Whitham 1989, Cushman 1991, Bronstein 1994), the benefit a plant receives is 

contextual, influenced by the biotic environment (Howe and Primack 1975, Herrera 

1984, Gautier-Hion et al. 1993, Kaplan and Moermond 1998), variability in the 

abundance of disperser species (e.g. Parrish 1997, Herrera 1998) and the vagaries of 

their fruit use (Malmborg and Willson 1988).  The current consensus is that most 
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interactions are examples of diffuse mutualisms in which no individual avian 

frugivore consistently provides greater benefit than does the entire disperser 

assemblage as a whole (Howe 1984, Herrera 1985, Jordano 1987, Herrera 2002), 

although results from investigations of myrmechores are more ambiguous (e.g. 

Hughes and Westoby 1992, Gorb and Gorb 1999, Garrido et al. 2002). 

Yet conflating generalized interactions with diffuse mutualisms is problematic 

because here generalized refers to the strength of association whereas diffuse refers to 

the result of the interaction (Cushman and Beattie 1991).  In fact, in other 

mutualisms, generalists can provide substantial benefits to their partners (Motten et 

al. 1981).  Not only is the current understanding of the impact of frugivores on plant 

recruitment limited (Sun et al. 1997, Bohning-Gaese et al. 1999, Jordano and Schupp 

2000, Herrera 2002), but data on the relative contributions of specialist and generalist 

frugivores are sparse and come almost exclusively from systems where mistletoe is 

the fruiting plant (e.g. Reid 1989, Murphy et al. 1993, Larson 1996,  but see also 

Calvino-Cancela 2002, Calvino-Cancela 2004).  However, understanding the 

dependence of fruiting plants on any disperser, especially a specialist frugivore, may 

have significant implications for conservation as well as for community dynamics 

(Loiselle and Blake 1999, Loiselle and Blake 2002, McConkey and Drake 2002). 

The most convincing assessments of the value of avian and mammalian 

frugivores to plant recruitment are based on considerations of how dispersal by 

frugivorous species differs quantitatively and qualitatively (Schupp 1993, Kaplin and 

Lambert 2002) and how these differences correspond with a particular plant species’ 

dispersal needs (Herrera and Jordano 1981, Howe and Smallwood 1982, Willson 
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1989, Schupp 1993).  Quantitative dispersal is simply the number of seeds removed 

by each species.  Although this can be influenced by a variety of factors, including 

degree of frugivory (e.g. Jordano 1982, Herrera 1984, Malmborg and Willson 1988, 

Schupp 1993), fidelity to a particular fruiting species (Boddy 1991, Ladley and Kelly 

1996) and feeding rate (Schupp 1993, Sun et al. 1997), the number of visits by each 

species frequently appears to have the greatest effect (Schupp 1993).  Qualitative 

dispersal, or the likelihood of a seed surviving to adulthood, is determined by the 

location and time of deposition (Schupp 1993), although the latter has rarely been 

addressed (but see Chapter 2), as well as by the effect of gut passage on germination 

time and rate.  

Assessing all three of these parameters (quantitative and qualitative dispersal, 

and how individual plant species benefit from dispersal) is important for several 

reasons.  First, an investigation focusing on just quantity or quality may produce 

erroneous conclusions since the two are not necessarily of equivalent importance to a 

plant (Reid 1989, Schupp 1993, Loiselle and Blake 1999, Calvino-Cancela 2002, 

Godinez-Alvarez et al. 2002, Calvino-Cancela 2004), nor is their relative importance 

absolute.  One disperser may remove more fruit than another, but ultimately 

contribute less to recruitment if it deposits seeds in sites less suitable for 

establishment (e.g. Howe 1981, Schupp 1993, Compton et al. 1996, Calvino-Cancela 

2002, 2004).  For example, resplendent quetzals (Pharomachrus mocinno) deposit  up 

to 90% of seeds beneath the parent plant  (Wheelwright 1983), which is not typically 

optimal for recruitment.  Conversely, the value of the superior deposition and 

treatment of seeds produced by one frugivore may be outweighed by substantially 
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greater quantitative contribution of another species (Reid 1989, Godinez-Alvarez et 

al. 2002, see also Motten et al.1981).  Second, considering both quantity and quality 

provides ecologists with an opportunity to add to the limited understanding of the 

mechanisms influencing fruit-frugivore mutualisms (Sun et al. 1997, Bohning-Gaese 

et al. 1999, Jordano and Schupp 2000), and also to predict the effect of frugivore 

population fluctuations on plant population viability, especially since quantitative 

dispersal can be heavily dependent on disperser abundance.  Understanding the 

relative importance of these types of dispersal may be a valuable tool when modeling 

the possible impacts of habitat fragmentation and destruction as well as global 

warming.  Finally, by determining the way in which a fruiting plant actually benefits 

from dispersal allows for an accurate prediction of how disperser species will affect 

recruitment.  A species relying on colonization of tree fall gaps, for example, is more 

likely to benefit from a disperser providing an extensive seed shadow (Murray 1986, 

Hoppes 1988) than plants requiring very specific establishment conditions (Wenny 

2001) or those surrounded by inhospitable habitat (Watkinson 1978). 

In this paper, I consider the quantitative and qualitative contributions to wax 

myrtle (Myrica cerifera) recruitment on Assateague Island of the three most common 

dispersers: gray catbirds (Dumatella carolinensis) and tree swallows (Iridoprocne 

bicolor), myrtle warblers (Dendroica coronata coronata) and fallen fruit.    

In this study I posed three questions. 1) Is there a significant difference in 

quantitative dispersal provided by dispersers and is any observed difference 

consistent between years?  2) Is there a significant difference in the quality of 

dispersal provided, and is the ranking of qualitative dispersers equivalent to rankings 
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of quantitative dispersers?  3) Is wax myrtle recruitment dependent on any particular 

species or does it, indeed, benefit from a diffuse mutualism?   

 
 

Study Site and Species 

Assateague Island is a dynamic barrier island located off the coast of 

Maryland and Virginia, approximately 45 kilometers in length, totaling 

approximately 16, 066 hectares.   This study was conducted primarily in scrub, which 

of all habitats was most dominated by wax myrtle. 

Wax myrtle is a common, dioecious woody pioneer of newly stabilized soils 

and an important link in vegetative succession on the barrier islands stretching south 

along the mid-Atlantic coast of the United States (Young et al. 1992, Young et al. 

1995).  Individual females commonly produce vast crops (> 1000) of wax-covered 

drupes with no sign of interannual variation.  On barrier islands, wax myrtle seedling 

establishment does not appear limited by Frankia, its nitrogen-fixing bacterium 

which is abundant (Young et al. 1992), but by edaphic conditions, especially soil 

salinity (Conner and Inabinette 2003) and fresh water availability (Shao et al. 1995).  

Actinorhizal wax myrtle thickets develop rapidly after establishment and facilitate 

subsequent heterospecific colonization of these sites by increasing soil nitrogen 

content (Permar and Fisher 1983, Young 1992, Young et al. 1992, Young et al. 1995), 

and by providing perches for seed dispersing birds (see McDonnell and Stiles 1983, 

Hoppes 1988, Holthuijzen 1993).     

In the early stages of thicket development, wax myrtle seedling recruitment 

can be relatively high (Young et al. 1995, Chapter 2).  In these patches, proximity to 
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plants does not increase mortality (Chapter 2) in contrast to other systems (e.g. Janzen 

1972, Clark and Clark 1984, Dirzo and Dominguez 1986, Howe 1986, Crawley 

1992).   

Wax myrtle recruitment halts within patches as thickets mature and other 

more competitive species arrive, eventually dominating the community (Levy 1983, 

Young et al. 1995, Crawford and Young 1998).  Thus in the absence of a major 

disturbance like fire which can create open sites for colonization and which adults can 

survive (Richardson 1977, Terry and White 1979, Taylor and Herndon 1981), the 

emigration to new sites becomes increasingly important in these later stages of thicket 

development.  While colonizing fruiting plants in other systems may benefit if 

dispersed only a short distance (Levey 1988), wax myrtle seeds in such a context are 

unlikely to survive if dispersed only short distances.  Due to the patchy availability of 

freshwater and suitable edaphic conditions, illustrated in the defined mosaics of 

vegetation communities seen on Assateague Island (Higgins et al. 1971, NBS-NPS 

Pilot Veg Map1995, Shao et al. 1995, see also Snow 1984), the nearest safe site for 

seeds may be located across large stretches of unsuitable habitat (Chapter 2, NBS-

NPS Pilot Veg Map Project 1995). Because barrier islands are highly dynamic (Clark 

1986, Stalter and Lamont 1990), colonization via dispersal also benefits wax myrtle 

by allowing it to retreat from areas currently or soon to be exposed to the lethal 

effects of salinity levels due to overwash and island erosion (Dolan et al. 1977, Levy 

1983, Clark 1986, Ehrenfeld 1990, Conner and Inabinette 2003) and to colonize new 

open sites. 
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Methods 

Quantitative Dispersal 
 

The relative quantitative contributions of fallen fruit and frugivore-dispersed 

seeds to seedling recruitment were determined by comparing the numbers of entire 

fruits and voided seeds in seed traps located in three habitat types: forest, scrub, and 

meadows (see Chapter 2 methods).  Data collection began approximately 45 days 

after the start of the seed dispersal season, on November 17, 2001.  Trap contents 

were collected approximately every 30 days subsequently until the final day of trap 

inspection, April 30, 2002.  To determine the relative quantitative contribution of 

frugivores and fallen fruits, I compared the total number of wax myrtle fruits and 

seeds collected in each habitat using Proc Mixed (SAS Institute 1999).  I used 

Spearman rank correlation (Proc Corr, SAS Institute 1999) to examine the 

relationship between fallen fruits and seeds over time.  

To measure the relative numbers of wax myrtle fruit consumed by myrtle 

warblers and gray catbirds, I collected fecal samples from birds captured in mist nets 

in the Off Road Vehicle section of Assateague National Seashore from late 

September – April, 1997 – 2000 and 2001-2002 (see Chapter 1 methods for further 

details).  Data from the first year will not be presented here because no gray catbirds 

were mist netted in 1997 – 1998.  Fecal samples of all birds were collected by using 

fecal bags, which were labeled with each bird’s date, location and time of capture, 

and unique U.S. Geological Survey band number.  Fecal bags were made from 

athletic socks that have had the toe removed and replaced with hardware cloth.  A re-

sealable plastic bag was suspended from the body of the sock to catch all voided 
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contents.  Samples were frozen, thawed, placed in methanol solution, broken apart 

with forceps, and examined under a dissecting scope (0.7X – 3X).   

Identification of Myrica seeds on Assateague Island where bayberry (M. 

pensylvanica) and wax myrtle are sympatric was accomplished by measuring seed 

diameter, which is an effective way to distinguish between these species.  In 1998, I 

measured the diameter of 327 Myrica seeds (22% of all Myrica seeds recovered from 

fecal samples), 72% of which met the diameter criterion of wax myrtle.  In 1999, 72% 

of all Myrica seeds from myrtle warbler fecal samples were measured, 87% of which 

were wax myrtle.  All Myrica seeds from gray catbirds were measured; 85% were 

identified as wax myrtle.  I did not collect these data from gray catbirds in 1998 or 

2001 and so assumed that this proportion in 1998 was similar to the proportions in the 

previous and subsequent years.  Because data on seed diameter were not collected in 

2001 from myrtle warbler fecal samples, I used the mean of the two previous falls, 

79.5%, to estimate the percentage of all Myrica seeds made up by wax myrtle.  All 

Myrica seeds collected after October were assumed to be wax myrtle since fruit 

censuses indicated that bayberry fruit levels were negligible (Chapter 1).  

I relied on fecal samples for these data rather than reporting the number of 

each species visiting focal plants and the number of fruits removed per visit because 

the latter method restricts data collection to a limited number of trees (e.g. Herrera 

and Jordano 1981, Howe and Vande Kerckhove 1981, Bronstein and Hoffmann 1987) 

and because the dense habitat at my site made thorough assessment of visitor foraging 

behavior difficult (see also Blake and Loiselle 1992).  However, fecal data can be 

biased if the target species differ in their habitat preferences or ability to be captured.  
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Although gray catbirds appeared slightly more confined to areas of denser vegetation 

than were myrtle warblers, there was a large degree of overlap in habitat use (Lowe, 

pers. obs.).  Mist nets were located to maximize capture rates of both species.  There 

was no indication that these species differed in their ability to avoid mist nets.  

Relative abundances of myrtle warblers and gray catbirds were calculated by 

comparing the numbers captured/100 mist net hours per month during the months that 

catbirds were caught on the island.  The data were analyzed using repeated measures 

(Proc Mixed, SAS Institute, 1999) and the covariance structure within subjects was 

modeled using compound symmetry (CS).   

 Tree swallows avoided all mist nets, rendering impossible any direct 

comparison of their quantitative contribution with myrtle warblers’.  However, I 

tested whether tree swallows were likely to remove as much fruit during their three 

months residence as myrtle warblers did during their seven months stay, by 

estimating the amount of fruit removed by warblers and considering whether tree 

swallow abundance was sufficient to remove a similar amount.  To accomplish this, I 

used the following calculations: 

Total number fruit removed by myrtle warblers  = (Monthly mean ± SE myrtle 

warbler abundance) x (Mean ±  SE number fruit eaten/day) x (Number of 

days/Month) x (Total area of scrub habitat/area of transect) 

Monthly warbler abundance was estimated by using survey data for warblers 

in scrub habitat (see Chapter 1 for details regarding survey methods).  Because 

transects were established in scrub habitat and because the vegetative composition 

and structure were not uniform but reflected heterogeneity observed throughout wax 
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myrtle dominated scrub, I assumed that myrtle warbler abundance on these transects 

was representative of  the abundance found in this habitat elsewhere on the island.   

Surveys were not conducted in every month during the season (October – April) in 

each year.  However, monthly means were based on data from at least two years, and 

each year’s monthly mean was based on at least one survey of five transects. 

The estimated number of fruits removed/day by myrtle warblers was based on 

the number of wax myrtle fruits consumed by captive warblers in ad libitum fruit 

preference experiments in 1999 (see Chapter 1 for details regarding fruit preference 

methods).  My estimate of the total area of habitat containing wax myrtle was based 

on the estimated area of vegetative communities in which wax myrtle was a major 

component.  These data were collected by the National Park Service in conjunction 

with the Nature Conservancy as part of a survey of vegetation communities on 

Assateague Island National Seashore (NBS-NPS Pilot Veg Map Project 1995).   

Estimates of tree swallow abundance were collected opportunistically in 

1997-1999 and 2001-2002 by observers within an approximately 14 km stretch of the 

Maryland portion of Assateague Island.  This location was visited approximately six 

days a week between late September and mid- December each year, when tree 

swallows were most common.  Between late December and April, this area was 

visited at least one week per month.  The length of the study site was traversed on 

most days observers were present.  Observers reported the presence of tree swallows 

and estimated flock size to the nearest 100 and to the nearest 1,000 with flocks 

composed of <1,000 and >1,000 individuals, respectively.  I extrapolated island 
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abundance by increasing monthly estimates by 66%, because my study site occupied 

only 33% of Assateague Island National Seashore’s total length. 

The validity of these estimates rests on important assumptions.  I assume that 

the amount of fruit consumed by captive warblers in autumn approximates the 

number consumed in the field throughout the entire seven-month fruiting season.  

This assumption appears justified, if not conservative, for several reasons: wild birds 

can be expected to experience greater energetic costs and so to consume greater 

amounts of food than captive individuals; wax myrtle fruit is abundant and a major 

food item and energy source for warblers throughout their entire seven-months of 

their residence on Assateague (Chapter 1); warblers respond to reduced fruit 

availability with facultative migration rather than diet switching and fecal samples 

provide no indication of decreased consumption (Chapter 1).  In fact, using fruit 

consumption of birds in autumn likely underestimates daily fruit consumption of 

warblers in the winter, since consumption of wax myrtle fruit by myrtle warblers 

increases as temperatures decline in winter (Kwit et al. 2004). 

I also assume that tree swallows were consistently detected when present, 

although systematic surveys of their abundance were not conducted.  The 

conspicuous nature of tree swallow flocks renders it unlikely that flocks went 

systematically undetected.  Rather I suspect that tree swallow abundance was 

overestimated, making the overall comparison conservative. While the double-

counting of warblers during surveys was rigorously avoided, daily estimates of 

swallow abundance were frequently comprised of swallows observed at multiple 

locations, all of which were assumed to be different individuals.   
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Because tree swallows are up to 33% heavier than myrtle warblers (Robertson 

et al. 1992), I assumed that they could eat up to 33% more fruit (see Howe and 

Primack 1975, Herrera and Jordano 1981, White and Stiles 1990).  This assumption 

again conservative since myrtle warblers are substantially more frugivorous than tree 

swallows (Bent 1963, Yarbrough and Johnston 1965).  Tree swallows on Assateague 

Island more commonly foraged as aerial insectivores than as frugivores, in contrast 

with heavy and consistent use of wax myrtle by myrtle warblers (Lowe unpub. data, 

Chapter 1).  Further, the rarity of tree swallows on Assateague after November, when 

wax myrtle fruit is still abundant (Chapter 1) but flying insect populations are 

dramatically reduced (pers. obs., see also Parrish 1997), further indicates the relative 

importance of fruit and insects in the swallow diet.   

 
Qualitative Dispersal 
 
Germination 
 

I used greenhouse experiments to determine the effect of the following 

treatments on the rate (%) and time (median date) of wax myrtle seed germination: 

(1) the presence of pulp (fruit encased seeds vs. ingested and manually depulped 

seeds); (2) exposure to gastric acids (ingested vs. manually depulped seeds); (3) 

frugivore identity (seeds defecated by myrtle warblers vs. gray catbirds); (4) mode of 

voiding (seeds regurgitated by gray catbirds vs. those defecated by gray catbirds); and 

(5) presence of feces accompanying seeds defecated by both species. 

One hundred control fruits were removed from each of five randomly selected 

female wax myrtle individuals on November 3, 1999.  Wax was manually removed 

from 250 randomly selected fruits. The remaining fruits remained intact. All fruits 
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and seeds were stored in paper bags outdoors until planting.  Seeds voided by myrtle 

warblers (n = 5) and gray catbirds (n = 5) were collected from the fecal trays of 

captive gray catbirds and myrtle warblers  in fruit preference experiments (late 

October/early November 1999, see Chapter 1, fruit preference methods for details).  

Seeds defecated by individual gray catbirds and myrtle warblers were randomly 

assigned to be accompanied (n = 50) and unaccompanied by feces (n = 50).  All seeds 

in the former group were covered by a slurry of rehydrated feces recovered from the 

fecal trays of the appropriate avian species. The amount of gray catbird feces applied 

to these seeds (0.0075 g) was based on the mean amount of fecal material 

accompanying each seed for all catbirds (n = 9).  The mean amount of myrtle warbler 

feces was not calculable with the scale in use because its mass, <0.01 g, was less than 

the scale could register.  Instead, the total amount of warbler feces was added to the 

seeds, an overestimation of the actual amount associated with each seed since not all 

seeds defecated by warblers were used.  Seeds (n = 50) regurgitated by catbirds (n = 

3) were separated from those defecated.  Although the captive birds were not 

observed when processing fruit, regurgitated seeds were identifiable since they were 

free of fecal material and tended to roll to the edge of the trays.  Seeds whose method 

of voiding was ambiguous were not included. 

  On November 7, all seeds were placed on a mixture of 50% sand and 50% 

topsoil in flats that were divided into narrow, separate compartments to reduce the 

likelihood of any contamination of non-fecal treatments.  All treatments, except for 

regurgitated seeds and seeds defecated by warblers and planted with feces, were 

replicated in 5 flats of 50 seeds each.  Regurgitated seeds were replicated 3 times, 
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warbler defecated seeds with feces were replicated 4 times.  Flats were then covered 

and subjected to a 131 day cold stratification treatment at 5 º C. (Barton 1932).  On 

March 17, flats were removed from cold treatment and put in the greenhouse at the 

University of Maryland under misters (mist for 14 seconds every 8 minutes), 

experiencing natural photoperiod and temperature.  Data were collected weekly for 

three weeks and a final determination of germination was made after a total of 38 

days.  Observations were discontinued at this point since no remaining seed showed 

any sign of germination.  Viability of these remaining seeds was not determined.  

However, because seeds were randomly assigned to treatments, I have no reason to 

suspect that the frequency of non-viable seeds differed between treatments, biasing 

the results. 

The data were analyzed with ANOVA, using Proc Mixed (Institute 1999).  

Although this experiment was designed as a randomized incomplete block (RIBD), 

the data were analyzed as a completely randomized design (CRD), since the block 

effect did not account for any variation.  These experiments were not repeated for 

fruits collected at different times within a year, since wax myrtle germinability 

remains constant for 9 months (Erickson and Hamrick 2003, see also Chapter 2).   

 

Seed Deposition 

Comparison of the actual seed rain generated by gray catbirds and myrtle 

warblers was not logistically possible, due to the distance at which these species were 

observed and to their highly vagile nature.  Instead, I used observations to determine 

whether they differed in post-foraging flight patterns.   

 114 
 



Foraging observations were conducted in 1998 between early October and 

mid-December in scrub habitat in the study area.  This habitat is composed of discrete 

thickets of wax myrtle separated by large open areas of Spartina grasses and mixed 

occasionally with Baccharis halimifolia, Vaccinium, and occasional Pinus taeda and 

Acer rubrum saplings (see Chapter 1 for a more complete habitat description).  Forest 

habitats were not surveyed since these areas contain very few fruiting females and 

myrtle warblers were largely found in the pine canopy (Lowe, unpublished data).  

Observers moved opportunistically throughout scrub habitat, and halted upon 

encountering either a myrtle warbler or gray catbird.  Using binoculars and a 

stopwatch, observers recorded the number of fruits ingested from each wax myrtle 

plant, the number dropped, and the time spent on each plant.   

To determine post-foraging habitat selection of these species, observers 

recorded the movements of all individuals after consuming fruit.  Observations were 

concluded when the focal individual disappeared.   Observers recorded where each 

individual frugivore was lost, then assigned the bird to one of three categories: (1) the 

frugivore retreated into the fruiting plant or thicket in which they had been feeding, 

(2) flew to another location within the same habitat patch, or (3) left the patch 

altogether.  No data were included when there was any indication that the frugivore’s 

behavior was altered by observer presence.  Since myrtle warblers were present in 

very large numbers and since this species showed no sign of territoriality, the 

likelihood of pseudo-replication was considered to be minimal.  Gray catbirds were 

far less numerous, but care was taken to avoid repeating observations on the same 

individual during that day’s observations.   
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 As with tree swallow abundances, seed deposition patterns by tree swallows 

were collected opportunistically and without established survey protocol.  The 

location of all resting swallow flocks was recorded; voided Myrica seeds were 

abundant at all such sites upon later inspection, consistent with previous studies 

reporting that after bouts of frugivory, foragers tend to rest until ingested seeds are 

either defecated or regurgitated (see McDonnell and Stiles 1983, Hoppes 1985).  I 

assume that observations are not biased since, during the period of tree swallow 

presence at my site, each of the island’s gross habitat types (beach, dune, scrub, 

forest, marsh, salt flat) was visited approximately six days a week, in the course of 

conducting warbler surveys and collecting fecal data.  All swallow resting sites were 

revisited by July of the following year and surveyed for wax myrtle seedlings.   

 

Results 

Quantitative Dispersal 
 

Seed trap data indicated that there was no significant difference in the total 

number of voided seeds and fallen fruits present in traps in the meadow (P > 0.5) and 

scrub habitats (P > 0.1).  In contrast, seeds were significantly more numerous than 

fruit in forest traps (F1,4 = 53.94, P  < 0.01).  There was a significant correlation (P < 

0.001) between the number of fruits and seeds in traps over time in both meadow (r = 

.76) and scrub (r = 0.74) habitats. 

Among the three major consumers of wax myrtle fruit, myrtle warblers made 

the greatest quantitative contribution to wax myrtle seed dispersal in all four years 

(1997-2000, 2001-2002) on Assateague Island.  The total number of wax myrtle seeds 

 116 
 



recovered from myrtle warbler fecal samples each year was far greater than the 

number recovered from gray catbirds both in late September and October (Figure 3-

1A), when catbirds were most abundant, and throughout the remaining 6 months of 

fruit presentation (Figure 3-1B).  There was no significant difference in the number of 

seeds per fecal sample of warblers and gray catbirds (P > 0.05).  But myrtle warblers 

were significantly more numerous in all months that gray catbirds were present (P < 

0.01) (Table 3-1).  These data indicate that the relatively slight impact of gray 

catbirds on wax myrtle seed removal was influenced by both their comparatively 

short residence time as well as their limited abundance (Figure 3-2).  

In contrast to catbirds, tree swallows could achieve very great abundance.  

Tree swallow flocks frequently numbered more than 1,000 individuals (Lowe pers. 

obs.).  However, these flocks were highly sporadic in their occurrence and generally 

were present in only three (late September – December) of the seven months of wax 

myrtle fruit presentation.  Only in 2002 were swallows (a flock of eight individuals) 

spotted after December. 

During their seven-month residence on Assateague Island, I calculated that 

myrtle warblers annually removed between mean (±SE) 483 X 106 (± 147 X 106) 

(Table 3-2).  Removal of a comparable amount of fruit in three months by tree 

swallows would require the a monthly abundance at my study site of flocks of at least 

160,000 individuals eating 360 fruits/day (a weight adjusted estimate of 33 % more 

fruit than myrtle warblers are estimated to consume) between the end of September 

and the end of November.  However, observations indicate that monthly totals of 

swallow abundance were never present in such numbers (Table 3-3).  The mean 
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monthly total abundance of swallows observed throughout late September and 

October was approximately 14,500.  For November the mean was 8,100 and 167 for 

December.  This comparison strongly suggests that although tree swallows may 

provide superior fruit removal services than do gray catbirds by virtue of greater 

abundance, myrtle warblers remove far greater numbers of fruit than tree swallows.  

The quantitative contribution of tree swallows appears to have been limited not only 

by their short residence time relative to myrtle warblers, but also by the high 

variability in their presence on the island (Lowe, unpub. data).   

 
Qualitative Dispersal 
 
Germination 
 

Germination rates of wax myrtle were not significantly affected by any 

treatment (P > 0.1): presence of fruit pulp, exposure to gastric acid, disperser identity, 

method of voiding, presence or absence of feces.  The median date of germination did 

differ significantly between treatments, however (F6,19.7 =  3.74, P  >0.05).  

Independent multiple comparisons using test for Least Significant Difference (LSD) 

revealed that seeds encased in waxy pulp had a significantly later germination date (P 

< 0.001),  by approximately 4 days, than seeds whose wax had been removed, 

whether by digestive processes of either frugivore or by hand (Figure 3-3).   

 

Seed Deposition 

Both myrtle warblers and gray catbirds were frequently observed resting in 

wax myrtle thickets.  Similarly, both species commonly left fruiting shrubs after fruit 

consumption, sometimes flying as far as 25 m to another fruiting shrub.  However, 
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not infrequently after foraging, warblers would leave a shrub, rapidly ascend to a 

height of > 4m, and leave the habitat patch altogether; catbirds were rarely observed 

leaving the habitat patch after foraging.  Myrtle warblers (n = 283) and gray catbirds 

(n = 21) differed significantly in their post-foraging behavior (X2
  = 6.2889, P < 

0.05).  Multiple comparisons using a Bonferroni adjustment indicated that myrtle 

warblers were significantly more likely to leave a habitat patch after consuming wax 

myrtle than gray catbirds (Fisher’s exact test, P < 0.05) (Figure 3-4). There was no 

significant difference in their likelihood, however, to remain in the fruiting plant after 

fruit consumption. 

Tree swallows, in contrast, invariably left wax myrtle plants shortly after 

foraging on fruit (Lowe, pers. obs.) and so seed deposition in the immediate vicinity 

of the maternal plant was considered to be minimal.  Unlike warblers and catbirds, 

however, flocks of resting tree swallows were highly conspicuous.  The majority of 

such flocks were observed most commonly resting on the beach and primary dunes.  

Less frequently tree swallows settled on salt pannes.  Only once were swallows 

observed resting in scrub habitat (Table 3-4).  Inspection of all sites confirmed that 

resting swallow flocks defecated Myrica seeds in large numbers. Although some 

seeds were presumably defecated in flight, these observations suggest that large 

numbers of Myrica seeds ingested by swallows were ultimately deposited in this 

habitat.  No seedlings were ever observed growing in these sites on subsequent 

surveys.   
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Discussion 

Results from this study indicate that myrtle warblers in all years contributed 

more to wax myrtle recruitment than did either of the two more generalist dispersers 

considered here or than did fallen fruit.  This is in agreement with previous work 

showing that dispersers differ in their impact on recruitment (e.g. Schupp 1993), that 

individual disperser species can provide significantly better services to plants 

(Godinez-Alvarez et al. 2002) and that specialist dispersers can provide the most 

valuable services to a fruiting plant (Reid 1989, Murphy et al. 1993, Larson 1996).   

 
Quantitative Dispersal 
 

Fruit removal is only the first of many steps that need to be accomplished for 

a seed to reach adulthood (Herrera 1985, Herrera et al. 1994).  Because subsequent 

variables can substantially influence recruitment, the most important quantitative 

disperser does not always provide the largest benefit to its plant partner (Snow 1962, 

Howe 1980).  Nonetheless, its importance to recruitment should not be discounted 

(Murray 1988, Jordano and Schupp 2000, McConkey and Drake 2002).  Recruitment, 

especially among early successional species, is frequently seed-limited (Turnbull et 

al. 2000).  Further, frequently all fruits are not removed from fruiting plants (e.g. 

Howe 1980, e.g. Burger 1987, Snow and Snow 1988, Englund 1993, Herrera 1995).   

In all years (1997-2000, 2001-2002), myrtle warblers were clearly the most 

important quantitative dispersers of wax myrtle seeds.  While it is common for 

disperser species to differ widely in their abundance (e.g. Jordano 1982, e.g. Skeate 

1985, Parrish 1997) and for the relative quantitative contribution of frugivores to be 

highly skewed (Murray 1988, Schupp 1993, Parrish 1997, Jordano and Schupp 2000), 
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the within and between year consistency reported here contrasts with other systems in 

which the identity of the primary disperser varied within a fruiting season 

(Holthuijzen and Sharik 1985, Bronstein and Hoffmann 1987, see also Boddy 1991) 

and between years (Jordano 1984, Malmborg and Willson 1988, Loiselle and Blake 

1990, 1994, Herrera 1998).  Also worthy of note is the finding that myrtle warblers 

are the only major disperser of wax myrtle seeds on Assateague Island after 

December when tree swallows and gray catbirds have for the most part left for their 

more southerly wintering grounds (Robertson et al. 1992, Cimprich and Moore 1995), 

but when a large proportion of the fruit crop remains undispersed (Chapter 1) and 

when post-dispersal predation is especially low in colonization sites (Chapter 2). 

The total number of seeds recovered annually from myrtle warbler fecal 

samples was at least one order of magnitude greater than those recovered from gray 

catbirds in all years.  Even when only those fecal samples collected between late 

September and the end of October were considered, the period of greatest and most 

consistent catbird abundance, myrtle warblers dispersed a substantially greater 

number of seeds.   

These results are not unexpected given the difference in the frequency of 

warbler and gray catbird fecal samples containing evidence of Myrica consumption 

(Chapter 1).  It should be noted, however, that the magnitude of difference between 

the percentages of wax myrtle seeds removed by warblers and catbirds indicated by 

these data is a substantial underestimation, since fecal samples were collected only 

sporadically between mid-December and April each year – a period when gray 

catbirds were largely absent but warblers were highly abundant and consistently 
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consuming wax myrtle (see also Whittle 1922, see also Borgman et al. 2004, Kwit et 

al. 2004, Kwit et al. 2004).  The primary cause of the difference in the quantity of 

fruit removed by myrtle warblers and gray catbirds appears to be the far greater 

warbler abundance (see also Jordano and Schupp 2000), since there was no difference 

in the number of seeds per fecal sample.  This is in agreement with other studies that 

illustrated the importance of the number of visitations for quantitative dispersal (e.g. 

Schupp 1993).    

Fecal data provide only a rough assessment of the relative contribution of 

these two species, however, since they do not account for the cost of dropped fruit 

and further may not include seeds dispersed via regurgitation.  Forty-five percent of 

warblers observed foraging in the field dropped approximately an average 18% of the 

fruit that they handled (Lowe pers. obs.), a clumsiness they also displayed when 

foraging on fruit in other systems (Willson and Whelan 1993).  Gray catbirds, on the 

other hand, were observed to be always successful in their handling.  Similarly, these 

species differed in their tendency to regurgitate wax myrtle seeds.  Myrtle warblers in 

captivity only defecated seeds.  In contrast, 3 out of 4 captive gray catbirds 

regurgitated a mean 33% of ingested wax myrtle seeds (Lowe, unpub. data).  

Comparison of the percent of all the fecal samples from these two species containing 

evidence of Myrica consumption (either seeds or bractioles) that also contained seeds, 

strongly suggest that gray catbirds commonly regurgitate wax myrtle seeds in the 

field as was observed.  This suggests that reliance on fecal samples may 

underestimate the number of wax myrtle seeds removed.  However, given the large 

percentage of the annual wax myrtle crop removed by myrtle warblers relative to gray 
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catbirds, even increasing the number of seeds removed by gray catbirds by 33% does 

not change the conclusion that myrtle warblers are the most important quantitative 

disperser.  But they do illustrate that reliance on fecal samples alone may not provide 

a complete picture of the relative costs and benefits associated with each disperser. 

In contrast to catbirds, whose abundance was always relatively low, tree 

swallows could be present in very large numbers between late September and 

November.  When frugivorous, a flock of several thousand swallows were able to 

strip a thicket’s fruit crop during a single, spectacular foraging bout (Lowe pers. 

obs.).  Yet, tree swallows occurred very sporadically, a pattern displayed by other 

flocking frugivores (Holthuijzen and Sharik 1985, Greenberg et al. 2001), whereas 

warblers were consistently present.  Indeed, the number of tree swallows required to 

remove an amount of wax myrtle fruit equivalent to the number consumed by myrtle 

warblers exceeded the swallow abundance actually observed by more than a factor of 

ten.  Even though the calculations presented here are rough, they clearly illustrate the 

relative importance of these two species as quantitative dispersers.   

Other investigations of the relationship between wax myrtle and myrtle 

warblers suggest that these findings are not anomalous and likely are typical of the 

quantitative effect of myrtle warblers at other sites containing wax myrtle (Whittle 

1922, Skeate 1985, Borgman et al. 2004) or its congener bayberry (Wiltz and Giampa 

1978, Parrish 1997).  If true, such a geographic consistency would be highly unusual 

(Howe and Kerckhove 1979, Guitian 1992, Vander Wall 1994, Ladley and Kelly 

1996, Carlo et al. 2003) and suggests a dependence rare in fruit-frugivore 

interactions. 
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The most surprising finding was that a substantial portion of the fruit crop was 

never ingested by frugivores, but fell to the ground beneath the parent plant.  The 

significant correlation between the number of bird-passed seeds and the number of 

fruits in traps located in scrub and meadow habitats strongly suggests that such fruits 

fell as a result of frugivore activity and not because of abiotic factors like gusting 

winds.  The lack of a relationship between these two variables in forest habitat, I 

imagine, is due to the low density of wax myrtle plants growing in these areas.  

Because these data were collected when warblers were largely the only disperser 

present at my site (November – April), I suspect that myrtle warblers are the principal 

cause of the observed relationship between voided seeds and fallen fruits in scrub and 

meadow habitats.  The tendency of these frugivores to drop wax myrtle fruit (Lowe, 

unpub. data, Willson and Whelan 1993) may be a factor.  Since a cursory inspection 

of whole fruits in traps revealed no obvious sign of infestation or rot, dropping fruit 

appears to be more a matter of dexterity than actual rejection.  Though these data 

were collected in only one year, the relatively large numbers fallen or dropped fruit 

indicate the importance of determining whether such propagules are likely to 

contribute to plant recruitment. 

 

Qualitative Dispersal 
 
Germination  

 

Greenhouse experiments testing the effects of pulp removal, seed coat 

abrasion by gastric acids, disperser identity, method of voiding, and the influence of 

feces on germination suggest that dispersers provide no benefit to the plant in terms 
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of germination likelihood.  However, these results should be interpreted with some 

caution since such treatments could produce important effects later in the seedling 

stage (Soto-Gamboa and Bozinovic 2002). 

The most unexpected result was the high germination rate of wax myrtle seeds 

encased in fruit.  Because wax myrtle fruits are surrounded by a waxy exocarp that 

presumably inhibits water absorption (see Meyer and Witmer 1998) and because M. 

faya germination rates improved with fruit removal (Walker 1990), I expected these 

fruits to germinate at much lower rates than manually depulped or voided seeds as 

reported by Fordham  (1983).   However, the comparatively low germination rates 

that he reported in other trials suggest that our results may not be comparable.  

Similarly, the presence of pulp has been shown to depress germination in a variety of 

species, whether dispersed by birds or ants (McDiarmid et al. 1977, Hickey et al. 

1999, Pizo and Oliviera 2001, Godinez-Alvarez et al. 2002), sometimes even 

rendering it impossible (Izhaki and Safriel 1990, Ladley and Kelly 1996, Yagihashi et 

al. 1998). For example, only 1.2% of Virginia creeper seeds (Parthenocissus 

quinquefolia) remaining within pulp germinated, while manually depulped seeds 

exhibited a mean germination rate of 80% (Lowe unpub. data).   

Avian and mammalian ingestion, and consequent seed coat abrasion (Barnea 

et al. 1990),  also commonly produce an increase in germination rates, as shown in 

the recent, comprehensive review by Traveset and Verdu (2002) and work by Motta-

Junior and Martins (2002).  For example, germination rates of Juniperus virginiana 

seeds improved nearly 40% after ingestion by myrtle warblers (Holthuijzen and 

Sharik 1985).  As with fruit removal, seed scarification is assumed to increase water 
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and oxygen absorption (Mayer and Plojakoff-Mayber 1989), breaking down a seed 

coat evolved to be thick enough to withstand the rigors of digestive processes.  It is 

possible, however, that these results (and those herein), obtained in a greenhouse 

where water was plentiful, may not be applicable to habitats like barrier islands where 

fresh water is limiting (Young et al. 1992, Shao et al. 1995) and where efficiency in 

water use may be critical (see Rey and Alcantara 2000).   

Although the effect of disperser identity is perhaps less important than 

initially expected (see Snow 1971, McKey 1975), conspecific seeds passed through 

different disperser species commonly display significantly different rates of 

germination success (Krefting and Roe 1949, Holthuijzen and Sharik 1985, 

Lieberman and Lieberman 1986, Izhaki and Safriel 1990, Murphy et al. 1993, 

Godinez-Alvarez et al. 2002, Calvino-Cancela 2004).  Indeed, specialist frugivores 

improve germination likelihood in mistletoe (Reid 1989, Murphy et al. 1993, Larson 

1996). The cause of these differences are as of yet unclear (Lieberman and Lieberman 

1986, but see Murphy et al. 1993), though differential passage times (McKey 1975, 

Murray et al. 1994, but see Wahaj 1998) and species-specific bacterial composition of 

feces (Crossland and Kloet 1996) seem likely causes.   

In contrast to the treatments above, the relative effects of method of voiding 

(regurgitation versus defecation) and the presence and amount of feces on 

germination rates are largely unexplored.  Corema album seeds had significantly 

higher viability when regurgitated by gulls (Calvino-Cancela 2002), whereas Meyer 

and Witmer (1998) found that the method of voiding had no impact on germination 

on seeds from three temperate fruiting plants. The presence of mammalian and avian 
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feces has been shown to depress germination (Dinerstein and Wemmer 1988, Meyer 

and Witmer 1998, Hickey et al. 1999, but see Rogers 1998, Balcomb and Chapman 

2003, Calvino-Cancela 2004).  Any fertilizing effect, I suspect, would be negligible 

given the size of the defecation. 

In contrast, the timing of germination was significantly slowed by the 

presence of the waxy exocarp (see also Traveset et al. 2001), but did not differ 

between species or depulped seeds (Greenberg et al. 2001).  This suggests that seeds 

in fallen fruit are less likely to survive the seedling stage if earlier emergence date 

increases seedling survivorship as commonly assumed (Murray 1988, Izhaki and 

Safriel 1990, Loiselle 1990, Traveset et al. 2003), especially in nutrient poor 

communities (Hutchings et al. 2003).  Although the ecological significance of 

different germination dates for wax myrtle seedling establishment was not explicitly 

tested in this study, a speedier emergence would not only reduce exposure time of 

seeds to predators, but also provide an advantage when competing for water with 

neighbors over the course of the summer (see Shao et al. 1995). 

  

Seed Deposition 

 Observations of the post-foraging behaviors and habitat preferences of 

frugivores have proven to be a useful means of assessing the value of seed shadows 

generated by avian and mammalian dispersers to fruiting plant recruitment (Howe 

and Primack 1975, Herrera and Jordano 1981, Sorensen 1981, Hoppes 1987, 

Malmborg and Willson 1988, Fuentes et al. 2001, Calvino-Cancela 2002, Kaplin and 

Lambert 2002, Calvino-Cancela 2004).  While the effects of tree swallow post-
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foraging behavior on wax myrtle are relatively clear, results presented here strongly 

suggest that those of myrtle warblers and gray catbirds are stage dependent (Bronstein 

1994). 

The lack of a significant difference between the within patch post-foraging 

movements of warblers and catbirds suggests that they generate similar seed shadows 

with respect to distance from the parent plant.  In younger, but established thickets 

patches where seedling recruitment is limited largely by escape (Chapter 2), both 

species could therefore be expected to provide equivalent dispersal services.  

Although post-foraging microhabitat preferences of dispersers have been shown 

elsewhere to influence seedling recruitment (Herrera 1984, Herrera et al. 1994, 

Calvino-Cancela 2002, 2004), vegetation analysis indicates that those microhabitat 

variables perceptible to dispersers had no effect on seedling recruitment in scrub 

habitat (Chapter 2).    

Yet for seeds produced in a mature thicket in scrub habitat, where local 

recruitment is highly unlikely and establishment is contingent on either emigration to 

a younger patch or on colonization of a new site altogether (Young et al. 1995), only 

deposition outside the patch’s boundaries can be expected to improve the likelihood 

of establishment (Murray 1986, Hoppes 1988).  Although the value of within-patch 

dispersal could increase if followed by a fire that removed heterospecifics, the effect 

of fire on dispersed seeds is as yet unexamined. In the absence of such data I 

conclude that myrtle warblers, with their significantly greater tendency to leave 

patches after frugivory, provide greater benefit to wax myrtle.  While these data do 

not provide information on the likelihood that departing warblers fly to patches 
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suitable for colonization, they do suggest that myrtle warblers are the most likely 

agent of seed deposition beyond the boundaries of a particular patch.  Additionally, 

unlike catbirds, these warblers were commonly observed in a variety of habitats in 

addition to wax myrtle thickets.  For example, myrtle warblers were observed in 

Spartina meadows many meters away from scrub patches, potential sites for wax 

myrtle colonization (see Chapter 2).  Catbirds were never observed in these open 

grasslands. 

  Other studies suggest that the observed behavior of both species on 

Assateague is typical at other locations.  In Illinois, myrtle warblers left fruiting 

plants after foraging more often than expected, while gray catbirds did not 

(Malmborg and Willson 1988).  Elsewhere, both species also have been reported to 

differ in their habitat use. While gray catbirds are generally associated with shrubby 

habitats (Hoppes 1987, Cimprich and Moore 1995), myrtle warblers are highly plastic 

in their habitat selection during the non-breeding season (Parnell 1969, Wiltz and 

Giampa 1978, Zeller 1995, Hunt and Flaspohler 1998, Suthers et al. 2000), increasing 

the number of potential sites in which they might deposit seeds.     

Tree swallows were the only disperser for which direct observation of 

defecation sites was possible.  Unlike myrtle warblers, which form casual and loose 

flocks on Assateague Island, tree swallow flocks have highly cohesive even when 

processing a fruit meal.  This cohesion, in combination with a generally large flock 

size and relatively short tarsi, restricts swallows to relatively large and dry expanses 

when food processing.  Flocks of tree swallows were most commonly observed 

resting on beaches and primary dunes and less so in dry salt pannes along 
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Assateague’s western flank; very few flocks were observed resting in scrub habitat.  

Inspection of these areas after flocks had departed confirmed that these were sites of 

heavy Myrica seed deposition.   

Seeds deposited either in the highly saline environment of beaches or salt 

pannes were highly unlikely to survive (Miller and Egler 1950, Salter and Lamont 

1990, Young et al. 1995).  Neither wax myrtle adults nor seedlings were observed on 

subsequent surveys of these locations.  These data clearly demonstrate the pitfalls of 

estimating contributions of disperser species to plant recruitment without considering 

qualitative factors (e.g. Moran et al. 2004).   However, even if their seed shadow does 

not contribute substantially to the recruitment of wax myrtle, tree swallows may be 

adequate dispersers of bayberry seeds indicated by adults commonly found on 

Assateague Island’s primary dunes (Ehrenfeld 1990).  Although observations of their 

seed deposition sites were collected opportunistically, these observations provide a 

clear trend to post-foraging habitat preferences.  It is quite possible, however, that tree 

swallows did provide higher quality seed shadows previously prior to the removal of 

power lines in 1999 that stretched south along the length of Assateague Island and 

traversed suitable habitat for wax myrtle recruitment.   

 

Conclusion 

 
Seed dispersal is essential for the population viability of wax myrtle on 

Assateague Island, allowing seeds to escape high mortality beneath fruiting plants in 

young thickets and those in older thickets to colonize new sites, thus outrunning both 

woody heterospecifics and the encroaching ocean.  Myrtle warblers were both the 
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primary and the best disperser of wax myrtle.  These frugivores provided the greatest 

quantitative contribution of any disperser in all years and also appeared to provide a 

seed shadow most consistent with wax myrtle’s ecological needs.  Although gray 

catbirds may provide similar qualitative benefits to fruiting individuals in younger 

patches, seed shadows generated by catbirds are not likely to be as broad as those 

produced by myrtle warblers and are therefore less likely to include distant sites 

available for colonization.  Since seeds encased in fruits germinated at the same rate 

as and appeared to be far more numerous than those removed by gray catbirds, fallen 

fruits in areas of local flooding could in toto potentially contribute more to 

recruitment than seeds dispersed by catbirds.  However, any benefit from fallen fruit 

is likely to be restricted to younger thickets since it is improbable that fruit-encased 

seeds falling in more mature thickets could float a sufficient distance to reach a new 

site.  In contrast, the tendency of tree swallows to defecate on beaches and primary 

dunes, suggests that tree swallows, whatever their quantitative contribution, 

ultimately act more as predators in this interaction than as mutualists. 

Wax myrtle does benefit in part from a diffuse mutualism on Assateague 

Island in the sense that gray catbirds are likely contributors to recruitment.  However, 

there is no evidence of functional redundancy of dispersers given the myrtle warblers’ 

vastly superior quantitative dispersal, especially in winter and springs when predation 

rates are lowest in salt grass meadows (Chapter 2), and the fact that their qualititative 

contribution is not stage dependent.  These data suggest that decreases in the number 

of myrtle warblers would severely impact wax myrtle recruitment (see Howe 1984, 

Loiselle and Blake 2002, Moran et al. 2004), paralleling the converse changes 
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discussed in Chapter 1.  Whether myrtle warblers play an equivalently significant role 

in wax myrtle recruitment in other locations with different ecological conditions and a 

potentially different dispersal assemblage is unknown, however.  Future research 

might profitably examine the effect of dispersers on wax myrtle elsewhere as well as 

investigating other relationships that have the suggestion of specialization (e.g. Bates 

1992, Greenberg et al. 1995). 
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 Table 3-1. Repeated measures analysis of the relative monthly abundance of 

myrtle warblers and gray catbirds on Assateague Island during the months in 

which both were present (late September/October, November and April.)  

Autumn data were collected in three years (1998, 1999, 2001), spring data 

were collected only in 2001. 

 
 

Effect 
 

Numerator 
DF 

 
Denominator 

DF 

 
F  

 
P 

 
Species 

 
1 

 
3.01 

 
90.13 

 
< 0.01 

 
Month 

 
2 

 
22.5 

 
26.39 

 
<.0001 

 
Month*Species 

 
2 

 
22.5 

 
2.88 

 
0.770 
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Table 3-2.  Estimate of both monthly and annual total number of wax myrtle 

fruits consumed by myrtle warblers.  Estimates are the product of monthly 

mean warbler abundance and on the number of fruits eaten in captivity 

(Chapter 1). Warbler abundance for the Maryland portion of the island was 

calculated by multiplying the expected fruit consumption of the number of 

birds sampled by the total area of wax myrtle scrub on Assateague Island.  

 
 
 

Month 

 
Mean ± 

SE 
warbler 

abundance 

 
Mean ± 

SE 
fruit/day 

Area 
(ha) of 

M. 
cerifera 

 
Upper 

estimate 
consumed/ 

month 

 
Lower 

estimate 
consumed/

month 
 

Oct. 
 
100.3±33 

 
174 ± 21.4

 
178 

 
143 X 106

 
568 X 105

 
Nov. 

 
83.1±18 

 
174 ± 21.4

 
178 

 
105 X 106

 
530 X 105 

 
Dec. 

 
91.8±8.9 

 
174 ± 21.4

 
178 

 
109 X 106

 
698 X 105

 
Jan. 

 
89.7±8.6 

 
174 ± 21.4

 
178 

 
106 X 106

 
698 X 105

 
Feb. 

 
69.7±7.5 

 
174 ± 21.4

 
178 

 
751 X 105

 
472 X 105

 
Mar 

 
56.0±12.1 

 
174 ± 21.4

 
178 

 
734 X 105

 
370 X 105

 
April 

 
11.5±2.7 

 
174 ± 21.4

 
178 

 
148 X 105

 
740 X 104

 
Estimate of total wax myrtle fruit consumed 

per year 

 
627 X 106

 
339 X 106
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Table 3-3.  Monthly totals of tree swallows observed on Assateague 

Island National Seashore in multiple years.  Observations were not 

collected during late September – October 1997 nor in 1999. 

 

Month 

 

Year 

 

Total No. swallows observed 

1998 15,680  
Sept/Oct 2000 13,300 

1997 3700 

1998 20,600 

 
 

Nov 
2000 0 

1997 500 

1998 0 

 
 

Dec. 
2000 0 
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Table 3-4.  Frequency of the occurrence of resting tree 

swallow flocks in three gross habitat types on Assateague 

Island.  All flocks were observed between late September and 

mid-November.   

Year Beach/Dunes Scrub Low marsh/panne 

1998 5 1 2 

1999 6 0 1 

2001 7 0 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 136 
 



 

1998-1999 1999-2000 2001-2002
0

500

1000

1500

2000

2500

3000

Myrtle Warblers 
Gray Catbirds 
All Other Dispersers 

         A
Autumn Total

  

N
o.

 W
ax

 se
ed

s r
ec

ov
er

ed
 fr

om
 d

is
pe

rs
er

 sp
ec

ie
s 

1998-1999 1999-2000 2001-2002
0

1000

2000

3000

4000

5000

Myrtle Warblers
Gray Catbirds

All Other Dispersers

         B
Season Total

 
 
Figure 3-1.  Number of wax myrtle seeds recovered from the fecal samples collected 

from mist netted birds on Assateague Island National Seashore in multiple years.  

Figure 3-1A presents data collected between late September and the end of October.  

Figure 3-1B presents total number of seeds removed that dispersal season (late 

September –April).  These data do not include percentage of wax myrtle seeds 

removed by tree swallows (see text). 
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Figure 3-2.  Comparison of the numbers of myrtle warblers and gray catbirds 

captured/100 mist net hours each month.  Data points are the monthly means (± SE) 

of capture rates from 1998 – 2000, 2001-2002.  The only exception is data from 

April, which are only  from 2002. 
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Figure 3-3.  Effect of fruit pulp, gastric acid exposure, species identity, presence of 

feces and mode of voiding on the median germination date of wax myrtle seeds.  

Seeds encased in waxy pulp germinated significantly more slowly than other 

treatments (p < .001).  Each line represents data from an individual seed flat.  The 

treatments are abbreviated as follows: mcf = seeds in wax myrtle fruit, mcnf = 

manually depulped seeds, mcnsg = catbird defecated seeds without feces added, 

mcnsy = warbler defecated seeds without feces added, mcrg = catbird regurgitated 

seeds, mcsg = catbird defecated seeds with feces added, mcsy = warbler defecated 

seeds with feces added.  
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Figure 3-4.  Comparison of the post-foraging movements of myrtle warblers (n = 

283) and gray catbirds (n = 21) after consumption of wax myrtle fruit in scrub habitat.  

Columns represent relative frequency of species to remain in the fruiting plant after 

frugivory, leave the parent plant and fly to another location in the habitat patch or to 

leave the patch altogether prior to defecation of ingested seeds.  Myrtle warblers 

significantly more likely to leave habitat patches after foraging (see text).  Data were 

collected in scrub habitat in 1998. 
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