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Abstract

A fuzzy triangle T' (with a discrete-valued membership function) can be regarded as a
nest of parallel-sided triangles 7; with successively higher membership values. Such a nest
is determined by its max projections on any two of its “sides”. The area (perimeter) of T
is a weighted sum of the areas (perimeters) of the T;’s. The side lengths and altitudes of T
can also be defined as weighted sums obtained from projections; using these definitions, the
perimeter of T'is the sum of the side lengths, and the side lengths are related to the vertex
angles by the Law of Sines, but there is no simple relationship between the area of T" and
the products of the side lengths and altitudes.
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1 Introduction

For any direction 6 in the plane, let (x4, y9) be Cartesian coordinates with xy measured along
f and y4 measured perpendicular to f. A fuzzy subset of the plane is called a fuzzy halfplane in
direction @ [1] if f(xg,ys) depends only on x4 and is a monotonically nondecreasing function
of xy. Evidently, a level set of a fuzzy halfplane in direction # is either the entire plane, or a
halfplane bounded by a line perpendicular to 8, or empty. [We recall that the level set f; of
a fuzzy set f is the set of points at which f > ]

Proposition 1 A fuzzy halfplane is a fuzzy convex set.

Proof: We recall [2] that a fuzzy subset [ of the plane is called fuzzy convex if for all points
P,Q, R such that Q is on the line segment PR we have f(Q) > min[f(P), f(R)]. For any
direction 6, the z4-coordinates Py, Qg, Ry of such a collinear triple P, Q, R must satisfy either
Py < Qs < Rgor Py > Qg > Ry; hence if f is a fuzzy halfplane, min[f(P), f(Q), f(R)] must
be either f(P) or f(R). //

Fuzzy convex polygons of various types can be defined as infs of fuzzy halfplanes [1].
Note that such polygons must be fuzzy convex sets, since an inf of fuzzy convex sets is fuzzy
convex. This note will be primarily concerned with fuzzy triangles, with emphasis on the

case where the membership functions are discrete-valued.

2 Fuzzy triangles

Let a, 3.~ be three directions in the plane which are not all contained in a halfplane. Let
f,g,h be fuzzy halfplanes in directions «, 3,7, respectively. To avoid degenerate cases, we
will assume that f, ¢, and h are all nonconstant and all take on the value 0. Then f AgA R

is called a fuzzy triangle.

Proposition 2 Any nonempty level set of f AgAh is a triangle with its sides perpendicular
to a, 3, and ~.



Proof: The nonempty level sets of f are halfplanes bounded by lines perpendicular to a, and
they lie on the sides of these lines in the direction of « (i.e., the direction of nondecreasing
f); and similarly for the level sets of g and h. The level sets of f A g A h are intersections of
level sets of f, g, and h; indeed, [fAg AR > 1] iff [f >t and ¢ > ¢ and h > t]. Since «, 3,
and v are not all contained in a halfplane, an intersection of level sets of f, g, and h is either

empty or a triangle. //

Let f,g, and h be discrete-valued, and suppose that f A g A h takes on the values 0 <
t1 < --- < t, < 1. Then we can specity T" by defining a nest of triangles T; each of which
has its sides perpendicular to «, 3, and 4. On the innermost nonempty triangle 7,,, T' has
value t,,; on the remaining part of the triangle 7,,_; immediately surrounding 7),, T" takes on
value ¢,,_1;...; on the remaining part of the outermost triangle T}, T" takes on value t;; and
its value on the rest of the plane is zero. Note that the T”s can be irregularly placed, as long

as they are parallel-sided and nested; and note that the T;’s must all be similar. A simple
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example of a fuzzy triangle, involving only the membership values 0, 5, and 1, is shown in

Figure 1; as this example shows, some of the sides of the T;’s may coincide.

Figure 1: A simple example of a fuzzy triangle.



Projections

We recall [3; see also 4] that the sup projection of a fuzzy set f onto a line L is a fuzzy
subset of I whose value at P € L is the sup of the values of f on the line perpendicular to
L at P. Evidently, the projection of T onto the line L, perpendicular to « is a “wedding
cake” function whose outermost (nonzero) layer has height #; and length equal to the side
of T1 perpendicular to «; the successive inner layers have lengths and positions along L,
equal to the lengths and positions (in the direction along L) of the corresponding sides of
the successive T;’s, 2 < ¢ < n. [Note that since sides of T;’s may coincide, some of the step
“widths” of the wedding cake may be zero—in other words, some of the step heights may be

differences between nonconsecutive ¢;’s.] Evidently, we have

Proposition 3 A fuzzy triangle is completely determined by ils sup projections on lines

perpendicular to any two of the directions a, [3,~. //

These lines are parallel to the sides of the T}’s; we can think of them as defining the “directions

of the sides” of T'.

3 Area, perimeter, and side lengths

Let the areas of Ti,...,T, be Aq,..., A,, let their perimeters be P;,..., P,, and let é; =
t; — t;—1 (where to = 0). Then we have

Proposition 4 The area of T is S = 252'52'- [This sum counts the area S; of Ty with
i=1

weight 1, and counts the area 5; of each successive inner T; with additional weight 6é;.] The

perimeler of T is P =Y 6;P; [5; see also 4]. //

i=1
Let the side lengths of T; perpendicular to «, 3, and v be a;, b;, an ¢;, respectively; then
we can define the “side lengths” of T" as a = Zn:(%ai, b= Zn:(%bi, and ¢ = Zn:(%ci. Evidently
we have a + b+ ¢ = P. Note that since the ﬁ}s are par&ilzhlel—sided, they ﬁll have the same
vertex angles, say A, B,(; we can regard these as the “vertex angles” of T'. Note that by
the Law of Sines, we have for each T;

a; . bZ . C;
sinA  sinB  sinC’
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It we multiply by ¢; and sum over ¢, this gives us

a b o
sinA  sinB  sinC’

Proposition 5

Corollary 6 If two vertex angles of T are equal, their opposite side lengths must be equal,

and conversely.

4 Some concepts that don’t generalize

Many properties of ordinary triangles do not generalize to arbitrary fuzzy triangles. For
example, let the side lengths of a fuzzy right triangle be a = Z@'Gi, b = Z(Sibi, and

=1
n

¢ =Y ;c;. Since the T}’s are all right triangles, we have a? + b? = ¢? for each 7; hence we
=1
2

cannot (in general) have a* + b* = ¢*. Some other generalization failures are described in

the following paragraphs.

Altitudes

The projections of T onto the lines parallel to «, 3, and v are also “wedding cake”
functions. In this case, the outermost step is the altitude of T} in the given direction. Let
the altitudes of T; in dlrectlons a, 3, and ~ be uZ,U27 and w;, respectively; then we can
define the “altitudes” of T' as 25 s, 25 v;, and 25 w;. Unfortunately, there is no simple
relationship between the area of T and the products of its side lengths and corresponding

altitudes, even if we define the projections as in [4].

Perpendicular bisectors

Let P, be the point on L, that “bisects” the projection of T onto L, (i.e., such that the
integrals of the projections on the two half-lines terminating at P, are equal). We call the
line through P, in direction a a perpendicular bisector of T'; and similarly for directions /3
and 4. In the crisp case, the perpendicular bisectors of (the sides of) a triangle T" all meet
at a point which is equidistant from all three vertices of T'; but this property does not hold

in general for fuzzy triangles (see, however, the next paragraph).



Circumcircle and incircle

If the T}’s are placed so the centers of their circumscribed circles coincide, these circles
define a fuzzy disk which we can call the circumscribed fuzzy disk of T'; evidently it is the
minimal fuzzy disk whose membership function is not less than that of T', and its center is
equidistant from all three vertices of each T;. Similarly, if the T;’s are placed so the centers of
their inscribed circles coincide, these circles define a fuzzy disk which we can call the inscribed
fuzzy disk of T'; evidently it is the maximal fuzzy disk whose membership function does not
exceed that of T', and its center is equidistant from all three sides of each T;. Unfortunately,

neither of these properties holds for general fuzzy triangles.

5 Concluding remarks

We have seen (at least in the discrete-valued case) that some properties of ordinary triangles
(e.g., the Law of Sines) generalize to arbitrary fuzzy triangles, but that other properties
generalize only to fuzzy triangles that are suitably “symmetric”. It would be of interest to

determine necessary conditions for the validity of these properties.
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