
1. INTRODUCTION

Developments in the last decade have given us computers that are faster and more

versatile, yet smaller and more affordable. These machines are no longer restricted to

scientific and educational institutions; nor is their accessibility limited to a privileged and

well trained group of people.

With the improved hardware and a greater diversity of users, software products

have gained functionality and complexity. One of the many problems of complex systems

is the difficulty of training beginners to become proficient users [1].

1.1 Forms of Online Aid

Many methods of online aiding have been proposed, implemented and tested. The

simplest and most common form is the online manuals. Online manuals are usually

nothing more than electronic versions of the traditional user manuals. An example of this

form of online aid is the man command in UNIX.

More sophisticated help facilities are intelligent tutoring systems (ITS) or

intelligent computer-aided instructions (ICAI) like the Lisp Tutor [2] and Proust[3]. They

challenge users with relatively simple tasks to work on and provide guidance when the

users make mistakes. Even more sophisticated facilities provide users with assistance as

they do their everyday work. They allow users to “learn by doing.” A good example of

such online advising facilities is the UNIX Consultant(UC) [4].

Many other novel approaches to online help have been proposed and developed

[Carroll and McKendree, 5]. Examples are Carroll and Carrithers’ “training wheel’s

approach” [6] and Owen’s DYK (Do-You-Know) [7].

1.2 Problems of Online Aid

Most of the above forms of online aid are designed to assist users in the

completion of their current tasks. Indeed, “current work has focused on system-initiated

Page 1

advice given in the context of error recovery” [5]. However, research has shown that

advice on error recovery is particularly difficult as users are always directed to follow the

advice immediately. If the advice is misunderstood or incorrect, users become angry and

are likely to ignore future advice.

In an experiment conducted by Hill and Miller [8], subjects were asked to play the

role of statistical analysts who are analyzing data for Consumer Reports. They were

taught to seek advice by pressing a help key. After hitting the help key, the subjects could

send English questions to a hidden-operator advisory-system. The operator then provided

the subjects with the answers to their questions. Detailed analysis of the subjects’ actions

“indicates that clients followed prescriptive advice1 effectively and efficiently in slightly

more than half the cases. For other cases, clients performed twice as many actions as

needed in three times as much time without ever reaching prescribed states” [9]. These

findings are attributed to the incorrect presumptions made by the hidden operator with

regards to what the subjects knew. This experiment highlights the importance and

necessity of having a good understanding of the user.

Carroll and Aaronson [10] added a simulated active help system to a database and

report application. This study indicates that “although intelligent help can support users,

there are also specific potential problems.” Two of the problems noticed are: (1)

participants do not always notice what is on their display; (2) users’ goals are constantly

changing and rather unpredictable.

1.3 Motivation for UNIX NOTICES

UNIX Notices (UN) was developed to study the concept of providing non-error

recovery help to computer users. Such a facility will hopefully avoid most of the

problems related to error recovery help and thus be available as a simple but useful tool for

novices. It aims to satisfy a secondary (yet still important) objective of online aid facilities:

Page 2

1 Prescriptive adviceare prescriptions of what to do at the interface; as opposed to descriptive

advicewhat are descriptions of the interface.

to help users learn to complete future tasks as efficiently and effectively as possible.

UN provides help to its user by ‘posting’ helpful notices on the user’s screen

whenever appropriate. In other words, it ‘advertises’ new concepts or commands in the

hope that the user will find some used for the concepts or commands in the future. UN is

related to David Owen’s DYK [7] system as it adopts the “answer first, then questions”

paradigm. However, UN is active, context-sensitive and user adaptive; it has been

designed to ‘volunteer’ helpful notices even at the risk of interrupting users and to post

only notices that are relevant to the users and their current activities.

2. ABOUT UNIX NOTICES (UN)

UN is a simple active advisory facility designed to help UNIX novices expand

their mental model of the operating system. The two main goals of UN are:

(1) introduce users to more efficient ways of doing their work. For example, if the

user is using the commands cp and rm to rename files, UN will advise the user to

use the command mv.

(2) introduce new commands/concepts that may be of use to the user. For example, the

command head will be introduced to users who are continuously more -ing files.

And if the user is already aware of the head command (though not totally familiar

with it), UN may inform the user that head has an option that will change the

number of lines that are displayed (instead of the default of 10).

2.1 Implementation of UN

Theoretically, any advisory facility should be designed together with the actual

system. However, this is usually not possible. As noted by Carroll and Aaronson [10],

“developing advisory solutions for the leading edge of human-computer interaction is

hampered by the fact that the leading edge must have already been codified and deployed

Page 3

before advisory problems can even exist.”

Thus, UN was built on top of the UNIX operating system. However, care was

taken to make sure that the new routines do not interfere with the ‘normal’ performance of

the system. In particular, the program must not take up too much memory nor decrease

performance. Hence, the detector-verifier mechanism for detecting situations suitable for

posting advice notices was developed (figure 1).

Detectors

Verifier

Presenter

user's
commands Parser

advice
presented

user
model

command
history

domain
model

Figure 1: Flow diagram of UN

Every command entered by the user is logged and passed to the parser. The

parser breaks the command line down into the command name (e.g. cp , rm, mv), its

options, its arguments (e.g. file or directory names), and UNIX shell symbols (e.g. output

re-direction: <, >; history command: !$) if any. This information is then passed to the

detectors. It is also used to update the user model.

The detectors identify situations that may be appropriate for posting helpful

notices. There are two main detectors. The first detectorwatches for patterns in file

usage. For example, if a file was used as the input to a cp command and then used as an

input to a rm command, it is likely that the file was renamed by the user. The detectorwill

note that a “use mv to rename” notice may be appropriate.

Page 4

The second detectorwatches for patterns in command usage. For example, if the

user uses two rm commands consecutively, it is likely that the user does not know how to

delete more than one file with a single rm command. A possible situation for posting a

notice is thus detected.

The verifier verifies that the advisory situations detected by the detectorsare really

correct. In other words, it filters the detected notices so as to prevent users from receiving

inappropriate notices. For instance, if the mvcommand has been used by the user recently,

the “use mv to rename” notice will be rejected as inappropriate. Notices validated by the

verifier are then passed to the presenterto be given to users.

2.2 Problems Studied

A central concern was the design of the presentersince it determines the overall

effectiveness of UN. Two specific questions that we tried to answer were: “How to

present the advice notices?” and “When to present the notices?”

How to present the advice notices?

The presenterdisplays the advice notices in a separate window. This method of

‘advertising’ information is analogous to roadside posters; we hoped that the users will

glance at the display while they are waiting for something else to happen. We compared

the multi-window presentation method with two others:

(1) when an advice is considered appropriate, the user’s prompt is changed and the user

is required to enter a command in order to read the advice notice.

(2) the advice notice is shown in the user’s window as soon as an advisory situation is

detected and verified.

The experiment is described in detail in section 3.

When to present the notices?

Our initial belief was that the feedback should be immediate. This way, users will

Page 5

be able to relate the advice with their current activities. They will also be in a position to

try out the information given in the notice immediately. However, the problem with

immediate feedback is that it may disrupt the user’s work.

Corbett and Anderson [11, 12] conducted several experiments that examined the

effects of feedback control on learning to program with the Lisp Tutor. They studied three

feedback conditions along with a control group (no feedback). The three conditions are:

(1) Immediate feedback -- the feedback message is given as soon as the user makes an

error.

(2) Error flagging -- errors are displayed in bold; the user can ask for more information

or continue coding.

(3) Feedback on demand -- the user must take the initiative and ask the tutor to check

over the code.

The results showed that the three forms of feedback conditions did not affect how

well the students learned the Lisp lessons. However, in the second experiment [12] where

the lessons were made more difficult, subjects with the first two conditions were able to

complete their exercises faster. Among Corbett and Anderson’s observations are:

(1) Subjects generally preferred more control over the Tutor. However, they don’t take

full advantage of the added flexibility.

(2) Feedback conditions affect the subjects self-perception. “Students who received

less assistance from the tutor seemed more confident of the skill . . . Students who

received immediate feedback seemed to assess their knowledge more realistically”

[11].

Our second experiment on the effects of feedback delay considered two feedback

conditions:

(1) immediate feedback -- the user is informed of advice notices as soon as they are

found appropriate;

(2) feedback at end of session -- all appropriate advice notices are shown at the end of

Page 6

the user’s work session.

An additional treatment with no feedback was added to form the control group. The

experiment is described in detail in section 4.

3. EXPERIMENT 1: PRESENTATION STYLE

3.1 The 3 Presentation Styles

Separate window

Once an advice is identified as possible and then validated, a notice will be

displayed in a window to the upper-right of the users’ window. Figure 2 shows what the

advice window may look like in the middle of a session. At the start of the session, when

no advisory situation has been detected yet, the advice window displays a quotation. This

is considered better than leaving the window blank.

All
Seen

Mark

Remove

Forward

Backward 1/1

Shortcut...

 there is a command to move a file
from one directory to another.
The command is 'mv', short for 'move'
 To move the file cmsc.pro1 to CMSC/
simply type 'mv cmsc.pro1 CMSC/'.

Figure 2: Advice window display

The advice notices that are given to the users are not automatically removed after

they are seen. Instead, they are maintained by UN. The users can read previous notices

by using the mouse to click the Forward and/or Backwardbuttons. Sometimes a few

advisory situations may appear so close together that last new notice over-laps the other

new notices before they had a chance to be read. If this situation should happen, a See

Newbutton will be shown and users can click on this button to see the ‘hidden’ notices.

Page 7

In addition to the three buttons mentioned above, there are the Removeand the

Mark buttons. If users click the Removebutton, the notice that is currently displayed is

removed from the list of advice notices maintained by UN. The notice will never appear

again in the on-going session. This button is provided to allow the users to get rid of

notices they do not like.

The examples provided with the advice notices will change if UN detects new

situations where the same notices are appropriate; in other words, the examples are kept

up-to-date with what the user is doing. To stop an example from changing, the users have

to click the Mark button when viewing the advice notice. This button is also provided to

help users organize the notices.

Change of prompt

As soon as an advisory situation is validated by the verifier, the users’ prompt is

changed (a smiley face is added to the front of the prompt, see figure 3) to alert them to the

existence of an advice notice. The users have to type the command hello to read the

notice (see figure 4).

Shortcut...

 there is a command to move a file

 from one directory to another.
 The command is ̀ mv', short for ̀ move'.

 To move the file cmsc.pro1 to CMSC/ ,
 simply type ̀ mv cmsc.pro1 CMSC/'.

 ...message 1 of 1

 All messages have been seen.

Type <F> to go forward; to go backward

 <M> to mark this advice; <N> to see new
 <R> to remove this advice; <Q> to quit

ADDRESS/ FALL91/ RESEARCH/ RESUMES/ SPRING91/

<JOHN> cd SPRING91
<SPRING91> ls

ARTH/ arth.final cmsc.pro1 cmsc.term
CMSC/ arth.rep1 cmsc.pro2

<SPRING91> cp cmsc.pro1 CMSC/
<SPRING91> cp cmsc.pro2 CMSC/

<SPRING91> cp cmsc.term CMSC/

<SPRING91> rm cmsc.pro1
rm: remove cmsc.pro1? y

:-) <SPRING91>

smiley
face

Figure 3: Smiley face Figure 4: Sample notice

They can read previous notices by typing the characters ‘F’ (for forward) and

‘B’ (for backward). To read a previously unread notice, they can type ‘N’ (for new). The

users can also ‘R’emove or ‘M’ark a notice. When they are done reading the notices, they

have to type ‘Q’ (for quit) to return to the normal UNIX screen. The prompt is also

Page 8

returned to normal.

The users are allowed to enter the hello command even when the normal

prompt is showing. This allows users to read previous advice notices at any time. If UN

has no notices for users, it will simply display a quotation.

Immediate display

CMSC/ arth.rep1 cmsc.pro2
*************** ;-) *****************
Shortcut...

 you can change from one sub-directory
to another directly without going to
the main directory first.

 Simply type ̀ cd ~/ SPRING91'.
**
<SPRING91> cp cmsc.pro1 CMSC/
<SPRING91> cp cmsc.pro2 CMSC/

<SPRING91> cp cmsc.term CMSC/
<SPRING91> rm cmsc.pro1
rm: remove cmsc.pro1? y
*************** ;-) *****************
Shortcut...

 there is a command to move a file
from one directory to another.
The command is ̀ mv', short for ̀ move'.

 To move the file cmsc.pro1 to CMSC/ ,
simply type ̀ mv cmsc.pro1 CMSC/'.
**
<SPRING91>

Figure 5: Sample session of user using Immediate display

The advice notice is shown in the user’s window as soon as it is validated. To

make sure that the notice does not appear while the user is listing or editing a file, the

appearance of the notice is delayed until immediately before the next prompt. Only one

notice is shown at a time before a prompt; other advice notices are put in a queue to wait

for the next prompt. Figure 5 shows what the user’s window may look like after the

presentation of two advice notices. Unlike the other two methods of presentation, it is not

possible for users to read previous notices.

3.2 Experimental Design

Subjects with no UNIX experience were first given a tutorial on the basics of

UNIX. They were then asked to perform a series of tasks with UN executing in the

background. Each subject is only required to work with one of the three presentation

styles. Hence the experiment is a between-groups, 1 by 3 factorial design.

Page 9

The three presentation styles mentioned above are the different treatments of the

independent variable. The dependent variables are (1) subjective preference and (2) advice

effectiveness. The methods for measuring the two dependent variables are described

below in the section on Calculation of Scores.

3.3 Hypotheses

Before the experiment was run, we hypothesized that the third method of

presenting advice would perform significantly poorer (at the 10% level) than the other two

methods in both subjective preference and advice effectiveness because it interrupts the

user’s train of thought. The participants were also hypothesized to prefer the first method

rather than the second method (also at the 10% level of significance). However, no

conjectures were made on how the two methods would compare with each other in the

context of advice effectiveness; the second method gives the users more control over the

system but the first method has the advantage of allowing the users to glance at a notice

while they are waiting for the system to complete a long process.

3.4 Subjects

Twenty-four students from an undergraduateIntroduction to Computingclass were

used as subjects. The class is mainly for non-computer science majors and teaches the

students to use only applications on the IBM personal computers. Hence, all the subjects

were familiar with DOS but had no experience with UNIX. The subjects were highly

motivated students; almost all of them volunteered for the experiment because they wanted

to learn more about computers.

3.5 Materials

The computers used were DEC2000 workstations running UNIX and X

Windows. The software for the experiment is described in the previous section.

Each subject was given a set of paper printouts consisting of five parts:

Page 10

(1) experimental consent form;

(2) questionnaire on the computer background of the subject;

(3) tutorial;

(4) list of tasks; and

(5) post-experiment questionnaire.

3.6 Procedure

Students who signed up for the experiment were permitted to choose the date and

time most convenient for them to take part in the experiment. They were randomly

assigned to the different presentation styles: the first subject was assigned to the first

presentation style; the second subject to the second style; the third subject to the third style;

the fourth subject to the first style again and so on.

As subjects arrived and settled down, they were given the materials listed above.

A brief explanation of the experiment was provided before the subjects were asked to sign

the consent form. They were then asked to complete the pre-experiment questionnaire and

directed to start on the tutorial.

The tutorial was designed to teach only the basics of the file system, five simple

UNIX commands (cd , ls , cat , cp , rm) and the concept of output redirection. Subjects

were allowed to take as much time as they needed for the tutorial. The tutorial session was

not monitored and no computer-generated advice notices were given. We helped the

subjects during the tutorial by correcting their mistakes and/or misconceptions.

After the subjects indicated that they were done with the tutorial, the UN program

was started and the appropriate directory was set up. The subjects were given six tasks but

were told that it is not necessary to do them in the given order or even to complete all of

them. The tasks are worded such that only the goals are stated; the choice of commands

necessary to reach the goals was left to the subjects. However, minor hints on how to go

about doing things were provided just in case the subjects could not relate the goals to the

material taught in the tutorial.

Page 11

Interaction with the subjects during the experiment was kept as limited as possible.

However, sometimes it was considered necessary to clarify some of the tasks. At times,

the meaning of error messages had to be explained to the subjects. Nevertheless, no

UNIX information not already given in the tutorial was volunteered.

Finally, before the subjects left, they were asked to complete the post-experiment

questionnaire.

3.7 Calculation of Scores

The post-experiment questionnaire (Appendix A) is made up of four parts. Only

the first part is used in the measurement of subjective preference. This part of the

questionnaire consists of eight short questions. To answer these questions, the subject has

to choose a number between 1 and 7 where 1 means ‘Yes’, 4 means ‘Neutral’ and 7

means ‘No’. Subjective preference is calculated using the following formula: SP= a + b

+ c + d - e - f - g + h where a refers the subject’s answer to question (1a), b refers the

subject’s answer to question (1b), etc. Hence, a lower score means that the subject prefers

his/her presentation style more.

The calculation for advice effectiveness is much more complicated. Four main

rules for assigning values were followed. For every advisory situation that was detected

and validated:

(1) if the advice is relevant to a task that the subject was working on after the advice

notice had been detected, but notapplied, one point is taken off the score.

(2) if the advice is relevant to a task that the subject was working on after the advice

notice had been detected, and applied correctly, one point is added to the score.

(3) if the advice notice is not relevant to any task that the subject was working on, and

used incorrectly, half a point is taken off.

(4) if the advice notice is not relevant to any task that the subject was working on, but

used correctly, half a point is added.

In contrast to subjective preference, a higher effectivenessscore means that the

Page 12

corresponding presentation style is better.

3.8 Results

Group's
mean
and

standard
deviation

Advice Effectivenesss
Subjective Preference

Notices in
Separate Window

Notices only
on Request

Notices posted
Immediately

One-
way

ANOVA

F

df

p

Separate Window
vs

On Request

On Request
vs

Immediate

Immediate
vs

Separate Window

Two-
sample
t-tests

(t-value
and

probability)

-2.9
4.3

-6.5
8.8

-0.7
6.1

-6.0
9.9

3.0
4.1

-2.5
5.0

2.94 0.57

2, 21 2, 21

0.08 0.57

-1.36
0.19

-0.89
0.39

2.82
0.01

-0.11
0.92

-0.89
0.39

1.12
0.28

df=14

Table 1: Experiment 1 statistics

The SPSSstatistical package was used to analyze the data collected. The one-way

analysis of variance (ANOVA) technique was applied twice to examine if different

presentation styles had any overall effects on subjective preferences and advice

Page 13

effectiveness. Two-sample t-tests were then done to study differences between individual

presentation styles. The results of the tests are summarized in table 1.

Since aggregate subjective preference was not statistically different, each individual

component of the preferencescore was analyzed. Table 2 summarizes the mean and

standard deviation of each of the test questions. ANOVA and t-tests were performed on

the individual question scores but all the results -- with the exception of one -- proved to be

insignificant. The only significant result found was for the seventh question: “Are the

messages disruptive?” Two one-directional t-tests were performed (the null hypothesis is:

the third presentation style is not more disruptive than the first and the second presentation

styles) on this question and the results are shown in table 3.

D
o you like U

nix?

D
o you like the advice?

D
o you find the advice helpful?

D
o you like the advice m

essages?

Are the m
essages m

isleading?

Are the m
essages threatening?

Are the m
essages disruptive?

D
o you like the idea of a

com
puter providing advice?

bold numbers represent the mean.
italic numbers represent the standard deviation.
A smaller value represents a more positive answer to the question: 1 - Yes, 4 - Neutral, 7 - No.

Presentation style

1) display advice in
 separate window

2) prompt user and
 wait for hello
 command

3) display advice
 immediately in the
 user's window

2.8
2.2

2.6
1.8

3.2
1.2

2.1
1.8

2.2
1.7

3.1
1.6

2.5
2.1

1.9
1.0

2.4
0.9

2.5
1.4

2.0
1.3

2.4
0.7

6.8
0.5

5.5
2.0

6.2
1.4

5.6
1.1

5.4
2.2

3.9
2.0

1.5
0.8

1.5
1.1

1.2
0.5

5.5
2.0

5.4
1.6

4.8
1.7

Table 2: Statistics on answers to questionnaire

Page 14

t-val = 2.22
prob = 0.022

t-val = 1.44
prob = 0.086

display advice
in separate

window

prompt user
and wait for

command

display advice
immediately in
user's window

df = 14 for both tests;
one-tail probability
is given

Table 3: Two sample t-test results for “Are the messages disruptive?”

3.9 Analysis

The results obtained from the experiment did not agree totally with our initial

hypotheses. The ANOVA tests showed that different presentation styles affected advice

effectiveness(F(2,21)=2.94, p = 0.08) but not subjective preferences2 (F(2,21)=0.57, p =

0.57).

Surprisingly, the third presentation style -- which was hypothesized as the worst of

the three styles -- turned out to be the best in the context of advice effectiveness; it is

significantly better that the first style (t(14)= -2.82, p = 0.01) though not significantly

better than the second style (t(14)= -1.36, p = 0.19).

The initial belief that the third presentation style is more disruptive was supported.

The experiment showed significantly that the subjects judged the third style more

disruptive than the second style (t(14)= 1.44, p = 0.09), and the first style (t(14)= 2.22, p =

0.02).

The above findings suggest that it is proper to disrupt the users in order to give

them useful advice. However, from the subjects’ comments and observations made

during the experiment, other explanations are possible. It is possible that the first and

second presentation styles did not perform as well because:

(1) the subjects did not notice changes in the advice window / subjects did not notice

the change in the prompt.

Page 15

2 The insignificant ANOVA result could be because of the way the preferencesscore was

calculated.

(2) the subjects were not familiar with advisory facilities and hence unwilling to

experiment with ours.

3.10 Subjects’ comments and observations

From personal observations and the comments collected, we learned that each one

of the three presentation styles has its problems.

Problems with the first style (separate window)

The main disadvantage with the first presentation style (notices displayed in

separate window) is that the subjects do not seem to notice the advice window. Subject 22

wrote, “Sometimes (actually most of the time) I missed [the notices] because I was

concentrating on what I was doing . . .” Subject 7 suggested having “a sign on the middle

screen saying that there is advice to be given.”

Most of the subjects were observed not using the buttons to read previous advice

notices or to organize the notices. Hence, when they looked at the advice window, they

only noticed the latest notice which may be concealing a more relevant notice.

Problems with the second style (change of prompt)

The subjects seem unwilling to use the UN with this presentation style. One

subject was observed working through the entire experiment with a smiley face in front of

every prompt. When asked why he did not type hello and read the advice notices, he

replied that he knew he was doing the right things and did not believe that the advisory

facility has anything relevant for him.

Another problem is the fact that users have to stop whatever they are doing to read

an advice notice. Subject 8 commented that the advice notices were “above/separate from

what I was doing. [So] I had to look at it [and] then go back to what I was trying to do.”

Problems with third style (immediate display)

The biggest problem with this style is that it is very disruptive. Subject 15 said this

Page 16

about the style: “In the beginning, the advice was helpful. But often the same advice

showed up even though I had understand it and it was disruptive . . .” Subject 18 said that

“I dislike the fact that it scrolls off the screen information previously appearing on it that I

had wanted to see . . .”

Another problem is that subjects could not re-read previous advice notices.

Subject 9 wrote “Sometimes they are not available when you need [the messages], . . .

they are difficult to recall once they are gone.”

General problems

The concept of advisory facilities is relatively new and it is understandable that the

subjects do not fully comprehend what UN does. A few of the subjects were observed

trying to use the advisory facility only when they were stuck with a problem. They

appeared frustrated when they did not see the advice notice they were hoping for. One of

the subjects suggested incorporating error recovery advice into the system.

Several subjects suggested that a help key/menu would be better. Subject 10

commented that he does not “like the advice to come after I needed them, it would be

easier to have a help menu.” Subject 3 would like to “have a help key to look for the

advice rather than just waiting for advice to come up.”

3.11 Improvements

These comments suggest that all three presentation styles studied can still be

improved. The first style should become more effective if users are alerted (in a non-

disruptive way) whenever a new advice notice appears in the advice window. The third

presentation style could be made less disruptive by limiting the number of advice notices

given in any time period; notices should also not be repeated unless they are really relevant

to what users are doing. And both the first and the second styles will benefit if the advice

notices previously seen can be arranged in order of relevance.

A possible improvement might be to combine presentation styles. For example,

Page 17

an notice may be displayed using the third presentation style when it is first deemed

appropriate. If another situation requiring the same notice is detected, the first or second

presentation style may be used instead. Subject 15 had this suggestion: “. . . have the

advice on-screen in the window for beginners. But for intermediate users it would be

better [to have the advice messages] on-screen outside the window, and for advanced

users, just a notation that advice is now available [should be enough].” This interesting

suggestion agrees with what was discovered in this study, and should be studied further.

Page 18

4. EXPERIMENT 2: FEEDBA CK DELA Y

4.1 Independent Variable

The independent variable in this experiment is the delay in feedback. Three

treatments of this variable are studied.

Immediate feedback

The presentation style of this treatment is a combination of the second and third

styles of the previous experiment3. All the advisory situations are first judged for their

level of importance. Advice notices considered more important are presented using the

third style (immediate display) while the rest are presented using the second style (change

of prompt). However, all the advice notices (including those displayed immediately) are

kept on an internal list. The user is allowed to refer to the list at any time by using the

hello command.

Feedback at end of session

 Shortcut...

 there is a command to rename a file. The command is ̀ mv', short
 for ̀ move'.

 To rename the file apple to orange, simply type ̀ mv apple orange'.

 ...message 1 of 1

 All messages have been seen.

 Type <F> go forward; go backward
 <Q> quit

Figure 6: Sample advice notice

In this treatment, advisory situations are detected and validated as normal.

Page 19

3 The first style of the previous experiment (messages in a separate window) is not used

because the subjects are likely to do their work on terminals that do not support multi-

windowing.

However, all the advice notices immediately go onto an internal list. Users are not aware

of the existence of any notices until they try to quit the session. They cannot even access

the advice notice with the hello command. When they logout, they are placed in a

routine to read advice messages. (The routine is similar to that used by the second style of

the first experiment except that users are not given the Remove, Mark, and Newoptions.

See figure 6.)

No feedback (the control group)

A control group is included to test whether the differences between the two

previous treatments (if any) are caused by UN. To ensure that system performance is the

same among all three groups, subjects in the control group were given a version of UN

that had the presenterdisabled.

4.2 Dependent Variables and Hypotheses

Four dependent variables are studied in this experiment.

Subjective preference

At the end of the experiment, the subjects were asked the following questions.

a) Do you like UNIX?

b) Do you consider yourself a proficient UNIX user?

c) Do you like the idea of a computer providing advice?

d) Do you like the advice messages?

e) Do you find the messages helpful?

The answers are numbers from 1 to 7 where 1 means “Yes, very much”; 4 means

“Neutral”; and 7 means “No, not at all”. I performed one-way ANOVAs on the first 3

questions. It is not possible to do ANOVAs on the last 2 questions as the control group

did not get any advice notices. However, two-sample t-tests were attempted on these

questions. Two-sample t-tests were also done on the results of the first three questions.

These tests study differences between pairs of groups.

Page 20

We believed that the participants who are given advice would like UNIX better and

consider themselves better users of UNIX (at 10% level of significance). Users of the

immediate feedback method were hypothesized to like the advice notices and find them

more helpful that those users using the delay feedback method.

Commands familiarity

At the start of the experiment, the participants were required to list (in five

minutes) all the commands (and options) they could remember at that moment. They

were required to do the same at the end of the experiment. Differences between each

subject’s lists are attributed to changes in the users’ mental model. The difference in the

length of each subject’s lists was calculated. An one-way ANOVA and three two-sample

t-tests were performed on the data.

The initial hypothesis was: the participants who are given UN notices would gain

familiarity with more commands than those without the notices (10% level of

significance).

Commands used

The user modeling component of UN records the date that a user uses a command

that is in the domain model. From this information, we counted the number of different

commands4 (and their related options) used by each participant during the experiment5 .

An one-way ANOVA and three two-sample t-tests were performed on this number.

It was initially believed that users of the immediate feedback method would use

more different commands than users of the delay feedback method. Users of both these

methods were also hypothesized to use more commands than the control group.

Inefficient command usage

Page 21

4 Commands that are not in the domain model are not counted.

5 Because I represented each date as a special code, I found it much easier to count only those

commands used after the 19th of June.

Among all the advisory situations, there are a few that will only be detected if a

user performed a very specific sequence of non-optimal commands. UN was modified to

count the number of times these advisory situations were detected. A high value implies

that the participant was not following the advice notices (if notices were provided). An

one-way ANOVA and three two-sample t-tests were also performed on this variable.

The hypothesis for this variable was: immediate feedback would result in more

notices being followed. Participants in the control group were believed to have the highest

detection count as they have no notice to follow.

4.3 Procedure

The lecturer of a Summer 1992 undergraduate computer science class gave us the

last fifteen minutes of the first class to explain my experiment and solicit volunteers.

Almost the entire class signed up, hoping that the system would help them with the

course. The volunteers were asked to sign a consent form and answer a short

questionnaire.

The necessary changes6 to the students’ accounts were made before the accounts

were assigned. Two accounts (numbers 2 and 3) were left unchanged for those students

who decided not to participate in the experiment. The rest of the accounts (numbered 4 to

38) were assigned one of the three possible treatments in a modulo-3 fashion. Accounts

4,7,10 and so forth were given the first treatment (immediate feedback); accounts 5,8,11

and so forth were given the second treatment (feedback at end of session); the rest of the

accounts had no feedback.

Each student was randomly assigned to an account by the teaching assistant. The

non-volunteers were given their accounts first while the volunteers were handed a set of

materials that included their account number, the temporary account password and a sheet

Page 22

6 Certain system parameters were changed using the .cshrc file; the .login file was modified to

execute a version of my program.

of paper explaining how to use UN. The explanations varied depending on the version of

the program that the student would be using. Due to the random nature of the account

assignment, accounts 6 and 32 were not assigned.

Because most of the subjects were new to UNIX, the teaching assistant and the

lecturer asked that the UN program be disabled for the first two weeks while they taught

the students the fundamentals of UNIX. They felt that this was necessary as they did not

want the students to think that UN (with its possible side effects) was a standard part of

UNIX. Hence, data collection for the experiment started only on the fifteenth of June.

The experiment was run over a period of about one and a half months. During this

time, the data necessary for the calculation of the dependent variables were captured

automatically by the program. At the end of the experiment, the subjects were again asked

to answer a short questionnaire .

4.4 Subjects

The subjects in the Summer experiment were students taking the undergraduate

computer science course CMSC112 (Computer Science I). They are first year students

with almost no experience in UNIX. A majority of the volunteers could not list a single

UNIX command on the first day of class. Thirty-three students volunteered for the

experiment when first approached.

During the experiment, one of the subjects (account number 30) dropped the

course and another two subjects (numbers 5 and 35) opted out of the experiment by

undoing the changes that I had made in their accounts. Of the remaining subjects, we

were able to get only sixteen to answer the end-of-experiment questionnaire. The rest did

not reply to our electronic mail nor attend the last regular class.

By pure coincidence, ten of the sixteen who answered the final questionnaire were

from the group given the first treatment (immediate feedback), four were from the third

group (no feedback), with only two subjects from the second group (feedback at end of

session). This unfortunately makes it more difficult to draw conclusion for the first two

Page 23

dependent variables (subjective preferences and command familiarity).

The data for the other two dependent variables (commands used and advice

followed) is complete as it is collected whenever the volunteers logged in. However, the

data of one of the subjects was rejected because (s)he logged less than two hundred

commands during the entire course (subject 21 used only 57 commands). The cutoff

value of two hundred was decided before the experiment was conducted. Hence, data of

twenty-nine subjects was used in the calculations of the last two dependent variables.

4.5 Results

The twenty-nine subjects were monitored using a total of 48401 commands.

During this time, a total of 2665 advisory situations were detected and verified. However,

it is unknown how many of these notices were actually read.

Page 24

 # of Subjects
Immediate Feedback 12
Feedback at end . . . 9
No Feedback 8
TOTAL 29

Group's
mean
and

standard
deviation

Inefficient U
sage

C
om

m
ands used

D
o you like U

N
IX?

D
o you like the idea of a

 com
puter providing advice?

D
o you consider yourself

 a proficient U
N

IX user?

C
om

m
ands fam

iliarity

17.7
13.2

Immediate
feedback

17.1
3.6

3.4
1.4

4.6
1.8

2.4
1.9

7.7
3.7

21.3
16.7

16.4
3.0

1.5
0.71

3.5
0.71

3.5
0.71

9.0
1.4

35.5
27.3

16.3
4.9

1.5
0.58

3.5
0.58

1.8
1.0

6.8
4.2

Feedback at
end of session

No feedback

One-
way

ANOVA

F

df

p

2.23

0.13

0.13

2, 26

0.88

4.92

2, 13

0.03

0.97

0.40

0.75

0.49

0.26

0.78

Immediate feedback
vs

Feedback at end ...

Feedback at end ...
vs

No feedback

No feedback
vs

Immediate feedback

Two-
sample
t-tests

(t-value,
df and

probability)

-0.56
19

0.58

0.44
19

0.67

1.89
10

0.09

0.84
10

0.42

-0.78
10

0.45

-0.48
10

0.64

-1.31
15

0.21

0.10
15

0.92

0.00
4

1.00

0.00
4

1.00

2.24
4

0.09

0.70
4

0.52

1.96
18
0.07

-0.44
18

0.67

-2.91
11

0.01

-0.96
11

0.36

-0.55
11

0.60

-0.84
11

0.42

2, 13 2, 13 2, 13 2, 26

 # of Subjects
Immediate Feedback 10
Feedback at end . . . 2
No Feedback 4
TOTAL 16

* * *

* A smaller value represents a more positive answer: 1 - Yes, 4 - Neutral, 7 - No.

Table 4: Experiment 2 statistics

Using the SYSTAT 5 statistical package on the Macintosh machines, one-way

ANOVAs were preformed on the advice followed, commands usedand commands

familiarity dependent variables as well as on the answers to the first three questions on the

end-of-experiment questionnaire. Two-sample t-tests were also done on all these variables

and questions to study the relationship (if any) between any two treatments (table 4).

ANOVAs were not performed on the last two questions on the end-of-experiment

Page 25

questionnaire (“Do you like the advice messages?”, “Do you find the messages helpful?”)

because these questions are meaningless to those subjects given the no-feedback treatment.

We performed t-tests using only the answers by the groups given feedback but were

unsuccessful because of insufficient data (the feedback-at-end-of-session group has only

two data points).

4.6 Analysis

As expected, few statistically significant differences were found in the results. The

expectation arises because this type of experiment has many uncontrollable factors. The

difficulties are described below.

The only significant ANOVA result is from the question “Do you like UNIX?”

(F(2,13)=4.92, p = 0.03). This shows that the feedback delay factor does affect the users’

feelings towards UNIX. However the data collected directly contradict the initial

hypothesis: the group given immediate feedback likes UNIX significantly less than the

group with delayed feedback (t(10)=1.89, p = 0.09) and the group with no feedback

(t(11)=2.91, p = 0.01).

Another significant result is that the group with immediate feedback performed

significantly better -- as measured by inefficient command usage-- than the group with no

feedback (t(18)=-1.96, p = 0.07). This result agrees with the initial hypothesis. The

subjects from the group with no feedback were given no help from UN and thus produced

more occurrences of inefficient usage. The group with delayed feedback performed

poorer than the group with immediate feedback but better than the group with no feedback.

However these results are not significant at the 10% level.

The final significant result is from the second t-test of the question “Do you like

the idea of a computer providing advice?” Surprisingly, the group with no feedback likes

the idea significantly more (t(4)=-2.24, p = 0.09) than the group with feedback at end of

session. We do not have an explanation for this result. It is very possible that the small

number of valid data points in these two groups affected the result.

Page 26

4.7 Subjects’ Comments and Conclusions

The subjects have two main comments to make about the system. First, some of

them noted that they hardly saw the program in action. Subject 7 wrote “I didn’t get to

use your program very much; but the few times I saw it, it gave me some helpful advice.”

This deficiency arises because of the limited number of notices that are currently handled

by UN. If the subject has sufficient experience with UNIX, none of the advisory

situations would be detected and hence UN will have no opportunity to activate its

presenter.

The second comment is from subjects who were given immediate feedback.

Some of them found the advice notices too repetitious. Subject 34 commented “It helped

me several times and showed me easier ways of doing things, but some messages were

repeated too much.” It could be this reason (too repetitious) that led the first group

(immediate feedback) to like UNIX less than the other two groups.

However, we received quite a few favorable comments. When advice notices do

appear, the subjects seemed to appreciate them and learn from the notices. This “learning”

result showed up in the analysis of the inefficient command usage variable.

This experiment demonstrates that immediate feedback helped users to improve

their UNIX skills but it may have caused them to dislike UNIX.

4.8 Limitations

In conducting any complex experiment with computer training effects over a

period of weeks, there are many factors that may affect the outcome.

First of all, it is not possible to control what the subjects do when they logged on.

Some of the students used their accounts to do other activities (like talk -ing to other

computer users) in addition to their course work. In other words, some subjects used their

accounts more intensively than others. This would have affected the type and frequency of

Page 27

advisory situations that are detected. Subjects who used their accounts solely for their

course work will not appreciate UN as much as the other users.

It is also difficult to judge if UN does teach anything. Even if a subject learns a

new concept or command during the experiment, it is not possible to conclude that the

subject indeed learned it from UN and not somewhere else (like a friend or a book). The

only way to be sure of UN’s effectiveness is to restrict the subjects’ interaction with the

outside world. However, this is impossible due to of the length of the experiment (one

and a half months).

5. CONCLUSIONS

UN shows that an effective advisory facility can be developed for a complex

system without the problems of error-recovery help. Instead, UN guides the users in their

learning process, slowly expands their mental models and encourages exploration of the

underlying system.

However, there are many questions that must be answered before such help

facilities can be put to widespread use. We have tried to answer two of those questions --

“how to present the advice notices?” and “when to present the notices?” -- via

experimentation. The two experiments suggest the following guidelines for designers of

new advisory facilities:

1) Notices should be posted such that they are easily noticeable by the user, even

though this style may be very disruptive.

2) Notices should be posted as soon they are deemed appropriate.

Most importantly, the experiments showed that people like the concept behind UN.

Twenty-three out of the twenty-four subjects from the first experiment (presentation style)

said that they like the idea of a computer providing advice; the only remaining subject was

neutral. And of the sixteen who completed our end-of-experiment questionnaire in the

Page 28

second experiment, only one student replied in the negative while another was neutral; the

rest of the subjects like the idea.

5.1 More Experiments

More experiments are needed to better understand the design issues and confirm

our intuitions. The most important but most difficult experiments to conduct will be on

advice presentation:

1) How does users’ level of expertise affect their opinions of the different presentation

styles in the first experiment? Do beginners prefer a particular style while experts

prefer another style? Subject 15 of this experiment suggested a way of assigning

the different presentation styles to users of different expertise (see section 3.12).

This suggestion is worth looking into.

2) Are the opinions about presentation styles (first experiment) affected by the tasks

the users do? For example, if the subjects were asked to use commands that are

slow to execute, the subjects may have more idle time and may glance at the advice

window more often. Thus, the subjects may have a more favorable opinion of the

‘Separate Window’ presentation style.

3) Is it really desirable to repeat advice? How many repetitions are acceptable before

users become annoyed? During the design phrase, we felt that repetitions are

necessary as they remind users of the notices they had received. We hoped that the

constant reminders would discourage improper usage and encourage correct

command usage. Is this intuitive thinking correct?

5.2 Future Directions

UN is still very much in its infancy. It is currently useful only to people who are

starting to learn UNIX. Once these novices have learned the basics of UNIX, they will

have little use for the advice notices provided by UN. To make UN more useful, more

advice notices have to be added. This can be done with more detectorsand a better

Page 29

verifier.

The method of providing help advanced by UN need not be restricted to the UNIX

operating system. Any complex system that has lots of options and many variety of users

should become more popular if it has this type of help facility.

An example of another operating system that may benefit from this form of help

facility is DOS. DOS is quite similar to UNIX and thus it should be easy to modify UN

such that it will provide advice notices for DOS. The most difficult part of this task is in

the development of another method for monitoring the user.

The help-via-advice concept advanced by UN can also be applied in systems with

graphical interfaces (for example, Macintosh machines). A new monitoring method and

parser will be needed as menu selections with the mouse (or other pointer devices) must

be monitored and differentiated. However, if we treat each menu selection or each mouse

action as an individual command, it is possible to use UN’s method of detecting and

verifying advice notices.

With graphical interfaces, more styles of presenting the advice notices are possible.

The notice-in-separate-window style considered in the first experiment should be studied

again. Another style worth examining is to have a blinking icon or a beep to indicate the

presence of an advice notice.

In general, to develop a similar advisory facility for another system, studies must

first be done to determine common errors and collect useful advisory situations. The

designer of the new help facility should then decide on a method of detecting, verifying

and presenting notices. Designing and developing help facilities of this form is not easy.

But as more studies are done and more experiments conducted, the task will be

progressively simplified.

Page 30

REFERENCES

1. Nickerson, R. S. (1981). Why interactive computer systems are sometimes not used

by people who might benefit from them. Int. J. Man-Machine Studies 15, 469-483.

2. Anderson, J.R. (1985). The lisp tutor. Byte 10(4), 159-175.

3. Johnson, M.L., and Soloway, E. (1985). PROUST: an automatic debugger for

Pascal programs. Byte 10(4), 179-190.

4. Wilensky, R., Arens, Y., and Chin D.N. (1984). Talking to UNIX in English: an

overview of UC. Communications of the ACM 27(6), 574-593.

5. Carroll, J.M., and McKendree, J. (1991). Interface design issues for intelligent

advisory systems. In Kent, A. and Williams, J.G. eds. Encyclopedia of Computer

Science and Technology, 111-142. New York, NY: Marcel Dekker, Inc.

6. Carroll, J.M., and Carrithers, C. (1984). Training wheels in a user interface.

Communications of the ACM 27, 800-806.

7. Owen, D. (1986). Answers first, then questions. Norman, D.A., and Draper,

S.W., eds. User centered system design: new perspectives on human-computer

interaction, 361-375. Hillsdale, NJ.

8. Hill, W.C., and Miller, J.R. (1988). Justified advice: a semi-naturalistic study of

advisory strategies. Proceedings of the CHI’88 Human Factors in Computer

System, 185-189.

9. Hill, W.C. (1989). How some advice fails. Proceedings of the CHI’89 Human

Factors in Computer Systems, 85-90.

10. Carroll, J.M., and Aaronson, A.P. (1988). Learning by doing with simulated

intelligent help. Communications of the ACM 31(9), 1064-1079.

11. Corbett, A.T., and Anderson, J.R. (1990). The effect of feedback control on

learning to program with the Lisp Tutor. Proceedings of the Twelfth Annual

Conference of the Cognitive Science Society, 796-803.

Page 31

12. Corbett, A.T., and Anderson, J.R. (1989). Feedback tutoring and student control in

the LISP Intelligent Tutoring System. Artificial Intelligence and Education, 64-72.

Page 32

APPENDIX A: Experiment 1 (Presentation style)
post-experiment questionnaire

Before-you-leave questionnaire

We know you are tired and would like to get out of here. But before you do so, we

would like your opinions on a few matters. There are no right answers to these questions.

Yes Neutral No

1a) Do you like UNIX? 1 2 3 4 5 6 7

1b) Do you like the advice? 1 2 3 4 5 6 7

1c) Do you find the advice helpful? 1 2 3 4 5 6 7

1d) Do you like the advice messages? 1 2 3 4 5 6 7

1e) Are the messages misleading? 1 2 3 4 5 6 7

1f) Are the messages threatening? 1 2 3 4 5 6 7

1g) Are the messages disruptive? 1 2 3 4 5 6 7

1h) Do you like the idea of a computer providing advice? 1 2 3 4 5 6 7

2) What do you like or dislike about this method of presenting advice? Why?

3) How would you improve on the advice presentation?

Page 33

