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With the ever increasing congestion at airports around the world, studies into ways of

minimizing delay costs on the ground while meeting the goals of the airlines are

necessary.  When arrival capacities are reduced at major airports, the Federal Aviation

Administration (FAA) issues revised departure/arrival times to prevent congestion at

restricted airports.  This is referred to as the National Ground Delay Program Problem.

A new approach to developing ground delay programs, called Collaborative Decision

Making (CDM), is being developed.  CDM goals include more information exchange

and greater participation on the part of the airlines in determining landing slot

allocations.  This thesis develops a model specifically for the CDM setting.  A key

element is the inclusion of a fairness criterion within the underlying optimization

model.  The fairness criterion seeks to “pay back” an airline for time slots that it is owed

but cannot make use of due to mechanical or other difficulties.  It also attempts to

provide incentives to the airlines to increase the exchange of information.  This thesis

investigates the Ground Delay Problem relative to a single airport.  Different

formulations of the integer programming model are given that take into account airport

capacities and airline goals and experiments are conducted with realistic data to

determine the solvability of the problem.  Results for this model are compared with

output from the Flight Schedule Monitor (FSM), the CDM decision support tool.
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Chapter 1

Introduction

The Federal Aviation Administration (FAA) is sometimes forced to respond to

congestion at airports by putting restrictions on users of the National Airspace System

(NAS).  Limited airport capacity, specifically the maximum number of arrivals that can

be performed during a fixed time interval at a given airport, is the major cause of

congestion.  This capacity, called the airport acceptance rate, fluctuates due to weather

conditions, runway configuration, and other factors.  Air traffic flow management strives

to reduce congestion delay effects while maintaining an efficient and safe utilization of

the NAS. Until 1981 [1], aircraft were routinely allowed by the FAA to take off

whenever they were ready; if there was congestion at the destination terminal, they were

placed in holding patterns until they were able to land (or until they ran low on fuel and

were directed to an alternative airport).  Flow management attempts to reduce the

congestion and allocates necessary delays elsewhere in the NAS by using a combination

of techniques.  This in turn reduces the number of airborne queues.  Glockner, in [2],

defines flow management as an efficient use of congested airspace and airports, which

minimizes the number of aircraft waiting at any single facility.  Ground delays, enroute

speeding, and enroute slowing (vectoring) are just some of the techniques used.

Solutions to these congestion problems depend on the time horizon.  Long term

approaches include construction of additional airports and additional runways at existing

airports, improved air traffic control technologies and procedures, and use of larger
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aircraft.  The new Denver International Airport is an example of the construction of an

additional airport and airlines are currently using larger aircraft in some cases.

Medium-term approaches include modification of the temporal pattern of aircraft flow to

eliminate periods of “peak” demand as defined by [3].  Short-term approaches have a

planning horizon of 6-12 hours and include ground delay programs, which are the focus

of this thesis.

A short- term solution for a single airport is given in this thesis.  The goal is to

develop a model specifically for the newly developed Collaborative Decision Making

(CDM) setting.

The remainder of this thesis is organized as follows.  In Chapter 2, background on

Ground Delay Programs (GDP) and CDM is given and an illustration of a GDP is

provided.  Grover Jack, the procedure currently in use by the FAA, is explained. We next

describe the CDM procedure compression and ration-by-schedule (RBS), which are

developed by the users to address issues of fairness.   We extract from these procedures a

definition of fairness.  Subsequently, an example is given of these procedures.

Mathematical models are presented in Chapter 3.  We initially describe the

OPTIFLOW model which was developed in the mid-90’s and which serves as the basis

for our new models.  The next section presents two formulations that include

considerations of fairness.  The first formulation is the integer programming model and

the second is a multicommodity flow formulation.

Chapter 4 documents the results of multiple experiments done to evaluate the

models.  The software used to conduct the experiments was AMPL, CPLEX and FSM.  A

brief explanation of each software package is given in this chapter and simple examples



3

are provided.  Historical data was acquired from outside sources to run the tests.  This

allowed a comparison of output from our model with output from FSM.
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Chapter 2

Background

2.1  Ground Delay Program and Collaborative Decision Making

After the air traffic controllers’ strike in 1981, the FAA was forced to introduce

the Ground Delay Program (GDP) concept which responds to reductions in the arrival

capacity at one or more major airports. When large delays are forecasted, the Air Traffic

Control System Command Center (ATCSCC) imposes ground delays on particular flights

prior to departure.  This ensures that planes are not allowed to take off until there is a

high probability that they can complete their flight without significant delays. ATCSCC

monitors airports throughout the U.S. for capacity-demand imbalances.  A GDP is

motivated by the fact that, as long as delay at the airport of destination is unavoidable, it

is both less costly and safer to absorb the delay on the ground before take-off, rather than

in the air.  GDPs are executed when factors, such as inclement weather or the closing of a

runway, cause congestion.

The current GDP process has come under scrutiny and is currently being

revamped by a cooperative effort known as Collaborative Decision Making (CDM).  This

program is a joint FAA/industry initiative aimed at improving Traffic Flow Management

through increased information exchange and improved collaboration.  The proposed set

of CDM procedures is explained in [12] and [15].  Hoffman states that flights will

initially be assigned to time slots on a first-scheduled, first-assigned basis.  The FAA

generates an initial allocation using a procedure called ration-by-schedule.  Then, in an
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iterative exchange between the airlines and the ATCSCC, each airline will have the

opportunity to reassign some of its flights to the arrival slots it has been allocated, thus

giving the airlines greater control over the economic impacts of a GDP.  As part of the

“cancellation and substitution” process, the airlines may both cancel flights and rearrange

the assignment of flights to time slots.  Lastly, the FAA eliminates any “holes” in the

schedule using the compression algorithm.

The CDM web page [5] provides the two central tenets to the CDM.  They are:

(1) better information will lead to better decision making, and (2) tools and procedures

need to be in place to enable the ATCSCC and the NAS users to more easily respond to

the changing conditions. The near-term CDM program focuses on airport arrival demand

and those instances that usually require some type of ground holding strategy.  Longer-

term objectives include using CDM to make route allocation decisions and distribute

information on the status of the NAS.

2.2  GDP Processes

GDPs essentially place NAS users into a state of irregular operations.  Airlines

respond by rescheduling, canceling, or substituting flights.  The cancellation and

substitution processes allow scheduled airlines to mitigate the adverse effects of ground

delays.

Cancellation and substitution are specific GDP processes.  We now illustrate

current GDP procedures with a simple example. Suppose a GDP is invoked.  That is, the

arrival airport’s capacity was reduced resulting in the delay of flights arriving there.  The

delayed flights are held on the ground at their current airport.  This is the process
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currently in use by the ATCSCC.  It is known as Grover Jack.  Grover Jack is the process

of delaying flights while preserving their order.

Suppose at Reagan National Airport (DCA), United Airlines (UA), for example,

had 10 arrival time slots in the first hour, 0800, with an arrival acceptance rate (AAR) of

30 flights per hour.  Now suppose, due to bad weather, this rate was cut in half to 15

flights per hour (Figure 1).

Grover Jack solves this problem by considering the estimated time of arrival

(ETA) for each flight.  These are converted to departure times by subtracting en-route

times.  We stretch the number of arrivals out over a period of time, thus preserving the

order of arrivals. The Grover Jack process, currently in use by the FAA, is based on this

concept.  Then, in the example above, United should receive 10 arrival slots in the first 2-

hour period.  The list of flights are given controlled times of arrival (CTA) such that, for

example, the first 4 flights are assigned to the first 4 slots, the next 4 flights to the next 4

slots, and so on, stretching the flights out over time.



7

Figure 1: Grover Jack Solution

Original Arrival Time Revised Arrival Time

(acceptance rate = 30 planes/hour) (acceptance rate = 15 planes/hour)
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0820   UAL3

0822   UAL4
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09000900
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Cancellation and substitution processes and the impact of “other delays” may

actually make it impossible for airlines to utilize the time slots allocated.  After

cancellations, substitutions, and other delays, some slots will be left open since a flight

cannot be assigned to a time slot earlier than its ETA.  Once the FAA issues revised

departure/arrival times, the airlines can propose changes by canceling flights and then

substituting a flight into an open slot created by the cancelled flight.

This process is complicated by the fact that flights are cancelled or delayed due to

other reasons. If mechanical delays occur prior to a GDP being run, then with the current

approach, additional delays will be incurred. This is the so-called double penalty issue. If

United must delay one of their flights, say f, by 1 hour due to mechanical problems and if

the FAA is informed of this, then f is moved down the list prior to running Grover Jack.

For example, its original 12:00 ETA is updated to 1:00, 1 hour later.  If a GDP is issued

with a 30 minute delay assigned to f, then f would be given a 1:30 CTA, 30 minutes later

than the updated ETA.  Flight f would receive 60 min + 30 min =1 ½ hours of delay.

Thus, it appears they are being penalized twice.  There is a consensus among airlines that

the ETA should not be used, but rather the original time of arrival.

Grover Jack is simply an order preserving schedule.  Thus, it is necessary to

incorporate the issue of fairness into the model.  The G-Demand model introduced in this

thesis will consist of an integer programming model that will:

• "pay back" an airline for time slots that it is owed but cannot make use of due to

mechanical delays or other difficulties;

• make use of other objectives and constraints, designated as OPTIFLOW.
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It is hoped that this will produce a solution that is fairer and provide incentives for the

airlines to provide the FAA with current flight information.

2.2.1 Example of the Cancellation/Substitution Processes

Suppose a GDP is invoked with an acceptance rate of 12 arrivals per hour while

preserving the original order of the arrivals (Grover Jack). Each flight in a GDP is

assigned a controlled time of arrival (CTA) and a controlled time of departure (CTD).

Once the CTA is fixed and since travel times can be predicted with great accuracy, the

CTD and the amount of assigned delay are easily computed: the CTD is CTA minus the

en route time and the ground delay is the CTD minus the scheduled arrival time.  Thus, a

feasible solution to the single-airport ground-holding problem can be derived once each

flight has been assigned a CTA.  We need only deal with arrival times when formulating

our models.  As a result, the airline has a flight list consisting of all flights scheduled to

arrive at the airport during the GDP, an arrival slot or CTA for each flight, and a

corresponding departure time known as CTD.  Grover Jack takes the original flight

arrival order and spaces these flights so that they exactly meet the degraded rate.  In this

example the rate revised AAR is 12 flights per hour, compared to 24 flights originally, so

there should be 5 minutes between arrivals (See Table 1).
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Table 1: GDP generated delays using Grover Jack

Airline Flt No ETA CTA Delay

A 1 0700 0700 0

A 2 0700 0705 5

B 3 0705 0710 5

B 4 0705 0715 10

B 5 0710 0720 10

B 6 0710 0725 15

A 7 0710 0730 20

C 8 0720 0735 15

B 9 0740 0740 0

C 10 0740 0745 5

A 11 0830 0830 0

Total 85
ETA - Estimated Time of Arrival: the original arrival time
CTA - Controlled Time of Arrival: arrival slots assigned after GDP by the
existing Estimated Departure Clearance Time (EDCT) software

There is a total of 85 minutes of delay assigned. Now assume Flight 1 is cancelled and

removed from the list (See Table 2).  Then Flight 2 will take the 0700 CTA slot and we

continue in the same manner as above.  This gives us a total delay of 50 minutes.  It

appears that the entire system benefited from this delay.  Looking deeper, we see that

Airline B benefited the most from Airline A’s cancellation.  Airline B saved 20 minutes

but Airline A only saved 10 minutes.
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Table 2:  Revised delay times after Flight 1 is cancelled

Airline Flt No ETA CTA Delay

A 1 0700 - -

A 2 0700 0700 0

B 3 0705 0705 0

B 4 0705 0710 5

B 5 0710 0715 5

B 6 0710 0720 10

A 7 0710 0725 15

C 8 0720 0730 10

B 9 0740 0740 0

C 10 0740 0745 5

A 11 0830 0830 0

Total 50

Consider what happens if Airline B went through with its normal substitution

process (See Table 3).  Flight 4 is cancelled and Flight 5 is substituted into Flight 4’s

CTA slot.  This substitution is allowed since Flight 5’s ETA is earlier than the CTA of

Flight 4.  Flight 6 then uses Flight 5’s CTA slot.  The revised delay (Rdly) column now

shows a total delay of 55 minutes. By removing the cancellation, total delay was 50

minutes and Airline B had 20 minutes of ground delay.  Using Table 3, total delay was 55

minutes and Airline B had 20 minutes of delay again.  It is clear from these examples

how airline and traffic management objectives, maximizing efficiency and satisfying user

preferences, could come in conflict.
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Table 3: Substitution process for Airline B

Airline Flt No ETA CTA Delay Can/Sub RTA Rdly

A 1 0700 0700 0 0700 0

A 2 0700 0705 5 0705 5

B 3 0705 0710 5 0710 5

B 4 0705 0715 10 C - -

B 5 0710 0720 10 S 0715 5

B 6 0710 0725 15 0720 10

A 7 0710 0730 20 0725 15

C 8 0720 0735 15 0730 10

B 9 0740 0740 0 0740 0

C 10 0740 0745 5 0745 5

A 11 0830 0830 0 0830 0

Total 55
RTA - Revised Time of Arrival

To illustrate how the double penalty works, consider what would happen if

Airline A, Flight 1 has a mechanical delay of 30 minutes and the ATCSCC issues a GDP

with an AAR of 6 flights per hour.  The new schedule is shown in Table 4.  The column

labeled ETA1 contains the new ETA for Airline A, Flight 1.
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Table 4: Mechanical delay

Airline Flt No ETA ETA1

A 1 0700 0730

A 2 0700 0700

B 3 0705 0705

B 4 0705 0705

B 5 0710 0710

B 6 0710 0710

A 7 0710 0710

C 8 0720 0720

B 9 0740 0740

C 10 0740 0740

A 11 0830 0830

Table 5 reorders the flights according to the new ETAs.  Notice that Airline A,

Flight 1 has moved further down the list.  If a GDP is invoked with the given AAR, we

obtain a CTA for each flight, given in the next to last column.  Airline A, Flight 1

receives an additional 40 minutes of delay after the 30 minute mechanical delay.  This is

what is known as a double penalty.
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Table 5: Mechanical delay with double penalty

Airline Flt No ETA1 CTA Delay

A 2 0700 0700 0

B 3 0705 0710 5

B 4 0705 0720 15

B 5 0710 0730 20

B 6 0710 0740 30

A 7 0710 0750 40

C 8 0720 0800 40

A 1 0730 0810 40

B 9 0740 0820 40

C 10 0740 0830 50

A 11 0830 0840 10

Total 290

These examples illustrate that individual airline criteria can conflict with an

objective of the traffic flow management provider: to maximize system efficiency.  The

following section discusses ways to reconcile these conflicting objectives.

2.3  Fairness

The concept of fairness is that in an "ideal" GDP a given airline over any time

period should receive a percentage of available time slots equal to the percentage

"owned" by that airline in the OAG schedule. The notion of “owning” a time slot was

agreed upon by participants in CDM; it is an idea presently being tested for use. Ration

by schedule (RBS), a CDM program element, allocates slots based on this concept.
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Currently, if an airline reports a mechanical delay in advance of a GDP, those

flights would simply be dropped from the database.  The airline would not be able to use

their assigned arrival slots for substitution.  The system will re-project the delayed

flights’ arrival times.  If a GDP were run at that time, that flight could receive an

additional delay on top of its mechanical delay.  This double penalty clearly produces

adverse economic consequences resulting in the airlines holding back pertinent

information.

2.3.1  Ration-by-Schedule (RBS) and Compression Algorithms

RBS and compression remove the disincentive to provide accurate information.

When arrival capacity is reduced, the limited arrival resources must be rationed.  RBS

assigns new arrival times to a set of flights.  For scheduled carriers, the rationing should

be based upon the original schedule, and not the current projections of demand.  Here the

standard schedule is the Official Airline Guide (OAG) schedule.  The preservation of

fairness and providing airlines with an incentive to provide accurate schedule information

is essential.

RBS Algorithm

The purpose of RBS is to ration arrival slots according to the original scheduled

arrival times and to serve as an initial assignment of CTAs for subsequent rounds of

collaboration between the airlines and the FAA.  The key difference between RBS and

Grover Jack is Grover Jack is based on the current adjusted schedule and RBS is based on

the OAG; flights delayed for other reasons are handled in a fair way given this allocation

approach.  RBS fixes the number of slots owned by an airline in the following manner.
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In Table 5, Airline A, Flight 1 is delayed but under RBS, Airline A owns that first slot in

addition to the second time slot.  Thus Flight 2, or some other flight of that airline, may

move up to the first slot provided that it is a feasible time.  If Flight 1 is not cancelled, it

is free to move to a feasible slot vacated by another flight.  Subsequently, each airline has

the opportunity to minimize delays during a GDP.  Therefore, even though a flight has a

mechanical delay, the airline still owns the original allocated slots.  Another part of the

solution to the double penalty issue is the compression algorithm.   The compression

algorithm from [5] is outlined below.

Compression Algorithm

After cancellations and substitutions, quite often there are gaps of time in the

schedule where no flights are scheduled to arrive (see Table 3).  This is a result of the

number of flights being reduced.  Compression assigns flights to these empty time slots

by moving them up in the schedule where feasible.

Ultimately, when a slot is left open, compression attempts to assign another flight

of that airline to that slot.  If there is no flight available then compression will search

within another airline for a feasible solution or declare the slot unusable.  The algorithm

is described below.

Based on an estimate of reduced capacity as reflected in the AAR, resources are

rationed according to the original schedule.  The rationing procedure could be the current

GDP or some other method that allocates airport arrival resources (arrival slots) to users

in some fair fashion.  This step is analogous to RBS.

Step 1: Intra-airline mapping - In this step, scheduled updates (cancellations and

delays) are applied and the new schedule is mapped to the original set of arrival slots in a
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manner that minimizes total delay for each user.  This can be accomplished centrally or

individual users can accomplish this mapping through their own substitution process.

Step 2: Compression(inter-airline mapping) - Identify a vacant slot (resulting

from a cancellation, the end of a cancellation/substitution string, a delay, or the result of

an airline delay where the arrival slots cannot be fully utilized through the exchange

process) and the owner of that slot.  Identify the owner of the slot and label the slot time

as T*.

Step 2a: Search for a flight belonging to that user (or an express carrier of

that user) that can be moved into that slot.  Eligible flights must meet the

following criteria:

1.  The original time estimates appearing in the ETA column cannot occur

later than the CTA of the available slot.

2.  Delay reduction of the eligible flight must be greater than or equal to

D=1 minute (Airlines are suggesting changing to D=10 minutes.)

3.  The new EDCT of the eligible flight must occur at least x minutes after

the present time (x=30 minutes currently) to allow prior notice to

airlines.

If an eligible flight is found, move it into that slot, and set T* equal to its previous

CTA.  Return to 2a to fill this vacancy.  If no eligible flight is found, go to 2b.

Step 2b: Search for the first flight of another user that can be moved into

the vacant slot.  The eligibility criteria are the same as 2a except for 1. ETA.

If no flight is eligible, terminate, and return to step 2.  Else, identify the

moved flight’s previous CTA as T* and go to 2a.
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The results from applying this algorithm to Table 3 are shown in Table 6 below.

Table 6: Compression algorithm delays

Airline Flt No ETA CTA Delay Can/Sub New CTA Rdly

A 1 0700 0700 0 C - -

A 2 0700 0705 5 S 0700 0

B 3 0705 0710 5 0705 0

B 4 0705 0715 10 0715 10

B 5 0710 0720 10 0720 10

B 6 0710 0725 15 0725 15

A 7 0710 0730 20 0710 0

C 8 0720 0735 15 0730 10

B 9 0740 0740 0 0740 0

C 10 0740 0745 5 0745 5

A 11 0830 0830 0 0830 0

Total 50
The arrows show the substitutions made for each flight.

This illustrates the most efficient solution, which does not penalize the airline that

substituted. This algorithm yields no delay for Airline A and a total delay of 50 minutes.

Since Flight 7 could not make use of Flight 2’s CTA, Flight 3 used Flight 2’s vacated

slot.  Flight 7 could use the slot vacated by Flight 3 so it was given a new CTA of 0710.

By moving Flight 7 of Airline A up, this provides Airline A with an incentive to provide

accurate flight information.  Also, Flight 8 used the slot vacated by Flight 7.
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The following flow chart from Hoffman depicts the process of decision making

by the ATCSCC and the industry described above:

Figure 2: Cycle of Decision Making

ATCSCC

Airlines

RBS Cancel/Subst Compression
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Chapter 3

Mathematical Models

All of the models presented here are for a single airport.  The single airport

problem can be a building block for the more complex multi-airport problem.  Arrival

operations at a determined destination airport are considered during a specific time

interval.  The time interval is then discretized into time periods with deterministic arrival

capacities.

In [6], Andreatta, Odoni, and Richetta explain the different versions of the GDP.

The models we present are deterministic and static.  Deterministic models are currently

the only problems being studied.  Airport capacities are fixed values in this case.  Static

models may be used when there are significant lags in updating capacities or weather

information, alternatively a ground delay is strategically planned at a single point in time

(the beginning of the day) and revised marginally from that point on.  As noted above,

multiple time periods are used also.

A simplified model of the GDP is given in [6].  The macro model of the single-

destination network (Figure 3) captures the essential elements needed to solve the GDP:

i.  N flights (f1,…, fN) are scheduled to arrive at the airport

ii.  The airport is the only capacitated element of the network and thus the only

source of delays.

iii.  Departure and travel times are deterministic and known in advance.

iv.  The time interval, [0, B], is discretized into I equal time periods numbered 1,

2,…, I, with the earliest arrival for the airport scheduled at 0 and the latest

arrival scheduled at B.
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v.  Delay cost functions for each flight are known.

Figure 3: Single destination Network

3.1  OPTIFLOW Model

The OPTIFLOW model is the basis for all the models discussed in this thesis.

OPTIFLOW is a formal model that minimizes delay costs while (1) satisfying the airport

capacity, (2) ensuring all flights, not cancelled, arrive at the airport, and (3)  satisfy any

banking constraints.  Banking constraints accommodate the hubbing operations of major

airlines. Discussion of OPTIFLOW and some of its enhancements is given in [7] and [8].

See [12] or [15] for more discussion on banking constraints.

3.1.1  Formulation

Consider the set of airlines A={1,2,3,…,a}.  For each airline there are

corresponding flights F={1, 2, 3,…,N}.  Let O(a) be the set of flights owned by airline a.

There is also a set of time intervals, I={1, 2, 3,…,i}.

f1

f2

f3

fN

Queue

Runway
System Airport
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Data

v fi
a = 1 if flight f of airline a arrives in interval i; 0 otherwise

c fi
a = cost of flight f of airline a arriving in interval i

di = capacity for interval i

fi = the time interval for flight f in the original schedule

Objective Function: Minimize delay costs.

Minimize  c vfi
a

fi
a

i i

I

f O aa

A

f=∈=
∑∑∑











( )1

 

Constraints:

(1) Each arrival time period is allowed (at most) a reduced number of flights.

(2)  All flights, not cancelled, are assigned to some arrival time period.

Subject to:

(1) v d ifi
a

i
fa

≤ ∀∑∑           

(2)  fav
I

ii

a
fi

f

∀∀=∑
=

,            1

(3)  { }v fi
a ∈ 0 1,

where ( )fWc iif
a
fi

ˆ 1

−
+

=
δ

with fW  a weight associated with flight f andδ < 1 a positive

number.  The parameter 1+ δ  is used for superlinear growth in the cost of tardiness of a

flight so that the model tends to favor assigning a moderate amount of delay to two

flights rather than the assigning of a large amount of delay to one and a small amount to
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another.  Consider an airline with two flights, f1 and f2, that will be assigned delay.

Suppose the choice is between f1 and f2 being assigned 30 and 120 minutes of delay,

respectively, or being assigned 60 minutes of delay each.  The model will choose the

latter.

If 1=fW , then the Grover Jack solution will be obtained.  If more general

weights are used, other solutions could be generated.

Observe that the OPTIFLOW model is a special case of the multi-airport ground-

holding problem (MAGHP) given by Vranas, Bertisimas, and Odoni in [3] (See

appendix).

3.2  Goal-Demand Model

We now extend the OPTIFLOW model to include a fairness criterion and refer to

the new model as the Goal-Demand, or G-Demand, model.  When proposing the

enhanced model, it should be clear what role OPTIFLOW plays in an environment where

a highly dynamic substitution and cancellation process are being used and if fairness

among airlines should be addressed.  In this type of environment it may be impossible for

the airline to make use of the time slots allocated by Grover Jack.  Fairness

considerations are necessary to provide an incentive for airlines to furnish accurate

information.  The G-Demand model seeks to minimize the deviation of each airline from

certain fairness goals.  For each airline a and time slot goal t, a time slot goal gt
a  is

defined (Figure 4).
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Figure 4: Concept of Fairness

Original Schedule Time Slots “Owed” to each Airline

(Acceptance rate = 30 planes/hour) (Acceptance rate = 15 planes/hour)

e.g.
0800    AAL1
0802    USA1
0804    UAL1
0806    AAL2

0808   USA2
0810   UAL2
0812   USA3
0814   AAL3

0816   AAL4
0818   AAL5
0820   UAL3
0822   UAL4

AAL=2
USA=1
UAL=1

AAL=1
USA=2
UAL=1

AAL=2
USA=0
UAL=2
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Starting with the standard OAG schedule, we expand the schedule so that it is consistent

with the projected reduced acceptance rates without sacrificing the original order.  This is

equivalent to the ration-by-schedule process explained earlier.  The number of arrivals

allocated to each airline in each time period represents a goal for that airline.  This is

represented by a “goal” demand (g-demand) denoted by gt
a .  These g-demands are used

in RBS to allocate or ration the limited number of arrival resources among the airlines.

The g-demand for period t is represented as a demand in period t.  The g-demand for

period t must be achieved by some incoming flight.  No penalty occurs if the g-demand is

met by an incoming flight that arrives in the same time period or by a flight that arrives in

an earlier time period.  If the g-demand is met by a later flight, then a penalty is incurred.

There is a relationship between flight arrival times and these penalties: the later the flight,

the larger the penalty.  This is depicted in Figure 5.  The model will always try first to

satisfy the g-demand by a flight that arrives in the same period or in an earlier period.

Second, it will attempt to satisfy the g-demand with the closest flight arrival time.
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Figure 5: Fairness Costing

FLIGHTS            TIME SLOTS/INTERVALS       AIRLINE G-DEMANDS

0800-0806

Airline XYZ = 3

0807-0814

0815-0822
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on ability to

meet
g-demands

G-demand met by
earlier arrival

G-demand met
by on-time
arrival

G-demand met by
later arrival implies
PENALTY
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3.2.1  Integer Programming Formulation

New Data

gt
a =  number of flights owed to airline a in interval t

wit
a =  number of flights of airline a arriving in interval i to satisfy its g-demand in

interval t

kit
a =  cost of airline a arriving in interval i to satisfy its g-demand in interval t

Objective Function: Add new term to the OPTIFLOW objective function.

Minimize ∑ ∑ ∑ ∑∑
= ∈ = = = 











+
A

a aOf

I

ii

T

i

T

t

a
it

a
it

a
fi

a
fi

f

wkvc
1 )( 1 1

Constraints:  Add two new constraints to the OPTIFLOW constraints.

(3)  The number of flights of airline a arriving in time interval t equals the number

assigned to a g-demand from time period t.

(4)  The number of flights arriving in period i must equal the number of flights owed for

period t for each airline.

(3)  v w a ifi
a

it
a

tf O a
= ∀ ∀∑∑

∈ ( )
,                     

(4)        w g a tit
a

i
t
a∑ = ∀ ∀                         ,
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The OPTIFLOW costs have changed from the original definition in the

OPTIFLOW model. The new cost functions are defined by (1) and (2) below.

(1) ( )                  ˆ                         ˆ-
1

ffff
a
fi iiifiiWc ≤=

+δ

     0=a
fic         otherwise 

where the g-demand costs are defined as follows:

 (2) ( ) tiiftiPk a
it >                             -= +1

                                              0= otherwisek a
it

G-demand costs are incurred if a flight meets its demand late.  If the demand is met by an

earlier flight, as in (2), the cost is 0. P  is a parameter used to trade off the overall penalty

with other cost components and δ < 1 is some positive parameter.  Now the cost function

kit
a  should dominate the function a

fic , for 0<- fii , which means fWP >> . The cost

function k() insures that flights meet their airlines’ g-demands as early as possible and the

function c() guarantees minimal delay costs.  We seek to meet the airlines’ g-demands

first and then minimize delay costs which explains the need for k() to dominate c().  In

our experiments, we set

fW = 1 so that P can be as large as possible.

Thus, we can see the model in its entirety below:

Minimize ∑ ∑ ∑ ∑∑
= ∈ = = = 











+
A

a aOf

I

ii

T

i

T

t

a
it

a
it

a
fi

a
fi

f

wkvc
1 )( 1 1

Subject to:

(1)  v d ifi
a

i
fa

≤ ∀∑∑            
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(2)  fav
I

ii

a
fi

F

∀∀=∑
=

,              1

(3) iawv
aOf t

a
it

a
fi ∀∀=∑ ∑

∈

,         
)(

(4)  w g a tit
a

i
t
a∑ = ∀ ∀             ,

(5)  { }v fi
a ∈ 0 1,

3.2.2  Reformulation as a Multicommodity Flow Problem

In this section we formulate the model as a minimum-cost multicommodity

network flow problem.  We use the multicommodity problem structure to take advantage

of special properties that make solving these problems easier.  It is possible that this

formulation could lead to a more efficient problem solution.  Recall from network flow

theory that unimodularity provides sufficient conditions for integer optimal solutions to

the associated linear program.  Since single-commodity flow problems have this

property, highly efficient algorithms have been devised.    Special algorithms for

multicommodity flow problems exist.  A multicommodity problem can be viewed as a

single-commodity problem plus some side constraints.  This structure provides an

advantage in solving these types of problems.

It will be shown that the structure of this problem is similar to a transportation

model.  The major differences are that several commodities can share common arcs, and

that flow of all commodities on an arc is constrained by the arc capacity.

For our formulation, each commodity is represented by a different airline.  There

are three sets of nodes.  One set represents flights, the second represents arrival time

periods, and the third represents the airlines’ goals.  Supply is located at the flight nodes
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and demand is located at the g-demand nodes.  The time period nodes are similar to

transshipment nodes or distribution centers in a network which models warehouse

shipments.  The general multicommodity flow problem from [9: p. 389] follows.

General Multicommodity Flow Problem

ai
k = supply at node i

bj
k = demand at node j 

j) (i, arcover k commodity  of flow =k
ijx

kcommodity  of j) (i, arcover  flow ofcost portation unit trans =k
ijc

uij =  capacity of arc (i, j)

E   = set of arcs

Minimize c xij
k

ij
k

i j Ak

r

( , )∈=
∑∑

1

subject to

x x aij
k

ji
k

jj
i
k− =∑∑      if node i is a source for commodity k     

x xij
k

ji
k

jj
− =∑∑ 0     if node i is a transhipment node

x x bij
k

ji
k

j
k

ii
− = −∑∑      if node j is a sink for commodity k

∑ ∈≤
k

ij
k
ij ux E  j)(i,for      

Exk
ij ∈≥ j)(i, andk  allfor       0    .
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Let A, F, I, and T be defined as before, let E be the set of all feasible arcs and let

V={V1, V2 , V3 } be the set of all nodes with {V2’’, V2’}= V2 . There is one node in V1 for

each flight and two nodes in V2 representing each arrival time. The second set of nodes is

broken into two parts to handle the capacity during the time intervals.  There is also one

node in V3 representing each time slot that contains the g-demands for the airlines.  The

set of feasible arcs contains arcs from V1 to V2’’, V2’’ to V2’, and V2’ to V3.

Formulation

Data

Define 
)
a f( ) =  the airline that owns flight f.  V2´ consists of a set of copies of each node

in V2''.  For each j ∈ V2 '', denote by j´ the copy of j in V2´.

xij
a  = flow of airline a across arc (i,j)

Dj ′ = flow constraint

cij
a f$ ( )  = unit cost of flow on arc (i,j) for flight f of airline a

)(ˆ fa
jjc = unit cost of flow on arc (j, j′) for flight f of airline a

)(ˆ fa
kjk  = unit cost of flow on arc (j′,k) for flight f  of airline a

Gt
a = g-demand for airline a during interval t

Objective Function:  Minimize costs.

Minimize ∑ ∑ ∑ ∑ ∑ ∑
∈ ∈′ ∈′

′′′′ ++
)(ˆ ),( )(ˆ ),( )(ˆ ),(

)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ

fa Eji fa Ejj fa Ekj

fa
kj

fa
kj

fa
jj

fa
jj

fa
ij

fa
ij xkxcxc
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Constraints:

(1) Supply at each flight node is 1.

(2) The demand for each airline must be met.

(3), (4) Capacity at nodes must not be violated.

(5) Flow across the arc cannot exceed the arc capacity.

(1)   x fj
a f
)

( ) = ∀∑ 1                       
j=i

I

f

f∈V1

(2)   x Gj t
a

t
a

j

I

′
′=

= ∀∑
1

                     a∈A, ∀ t∈ V3

(3)   x xfj
a

jj
a

f O a i jf

− = ∀′
∈ ≤

∑ 0
( ):

          a∈A, ∀ j∈ V2’’

(4)   x xjj
a

j t
a

t

I

′ ′
=

− = ∀∑
1

0               j′∈V2´ and ∀ a∈A

(5)                             1
1

∀≤∑
=

′

A

a

a
jjx  j∈ V2''

(6)   xij
a ≥ 0

The cost function is the same as the cost function for the OPTIFLOW model for

the first set of arcs (see Figure 7). The cost function for the second set is always 0 since

these arcs simply carry the node capacities.  The last set of arcs uses the fairness cost

function from the G-demand model.  The costs are defined as follows:

Case 1: ( )fWc iif
fa

ij
ˆ-

1
)(ˆ

δ+

= for all f and for all Iii f ≤≤ .

Case 2: )(ˆ fa
jjc ′ =0  for all f

Case 3: ( ) δ+
′ −′= 1)(ˆ kjPk fa
kj
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Again we have 1=fW and δ < 1.  The graphical representation of the directed

multicommodity network can be seen in Figure 6.

Figure 6:  Directed Network
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Chapter 4

Experiments and Results

Experiments were conducted using the Goal-demand formulation given

previously to determine if the new formulation, which takes fairness into consideration, is

actually more equitable to the airlines than the current FSM.  Data sets from actual GDPs

were used here.  The G-Demand model was translated into code, using various software,

in order to test the model

4.1  Software Environment

Some background information about the software used for this experiment is

necessary.  AMPL is a relatively new entry into the field of algebraic modeling languages

for mathematical programming.  AMPL is notable for the similarity of its arithmetic

expressions to customary algebraic notation, and for the generality of its set and

subscripting expressions.  AMPL also extends algebraic notation to express common

mathematical programming structures such as network flow constraints.  AMPL uses the

solver CPLEX 4.0. The UNIX version was used for this experiment.  Further

explanations about AMPL can be found in [11].

CPLEX 4.0 is a math programming problem solver that solves problems quickly

and accurately.  CPLEX can handle large-scale, difficult problems in commercial settings

where demand for performance and reliability are critical.  CPLEX is available in a wide

range of environments; the UNIX environment was used for the example problem that

follows.  More information is available at the CPLEX/ILOG web page [13].
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The Flight Schedule Monitor (FSM) is the decision support tool developed for

CDM.  It contains three essential components:  1) graphical and timeline presentation of

demand, 2) information extraction, and 3) ground delay utilities.

Through FSM, users will have the same picture of the problem that ATCSCC specialists

see: the same information and the same capability to do the “what if” analysis and

explore alternatives.  NAS users can measure the expected effects of the program and

begin developing their cancellation strategies or otherwise reschedule to mitigate the

effects of irregular operations.  FSM makes use several program elements.  These include

GDP Advisories, Ration by Schedule (RBS), Compression, and Simplified Substitutions.

See [5] for more about FSM.

4.2  Example

First, the G-Demand model was translated into AMPL code (see code in

appendix) and run with small data sets to test the validity of the model.  A small data set

was used consisting of two airlines, four flights per airline, and four time intervals.  Each

airline was given a g-demand for each interval and each interval had a specified arrival

capacity.  Following the definitions given previously in the g-demand formulation, each

airline incurs a cost when it is assigned to a later time interval.

Because this problem is so small, a pictorial solution can be given easily.  Using a

specific example, we can observe how the model works.  Using the data above, the two

airlines are American Airlines (AAL) and United Airlines (UAL).  The g-demands for

AAL are 1, 2, 1, and 1 for intervals 1, 2, 3, and 4, respectively; UAL g-demands are 1, 1,

2, and 0 for intervals 1, 2, 3, and 4, respectively.  Each time interval has a capacity of 2
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arrivals. The costs are given in the tables below.  The scheduled arrival times, which

determine the costs, were arbitrarily chosen.

Table 7

a
fic AAL

1 2 3 4
 1 0 2 5 9
 2 0 0 2 5
 3 0 0 0 2
 4 0 0 0 0

Table 8
a
fic UAL

1 2 3 4
 1 0 2 5 9
 2 0 0 2 5
 3 0 0 0 2
 4 0 0 0 0

Table 9
a
itk AAL

1 2 3 4
 1 0 0 0 0
 2 4 0 0 0
 3 10 4 0 0
 4 18 10 4 0

Table 10
a
itk UAL

1 2 3 4
 1 0 0 0 0
 2 4 0 0 0
 3 10 4 0 0
 4 18 10 4 0

Recall that a
fic = cost of flight f of airline a arriving during interval i and a

itk = cost

of airline a arriving during interval t to satisfy the g-demands for interval i.  It was earlier
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stated that a
itk  should dominate a

fic .  This is obvious from the tables above. Suppose

American cancels a flight in interval 2.  Below is the solution from AMPL.

Figure 7:  AMPL Solution 1

There are a few possible solutions to this example.  A cost is incurred where flight

AAL3 arrives in slot 3 to meet AAL’s g-demand in interval 2.  If we observe the cost

tables, AAL incurs a cost of 4.  Likewise, flight AAL4 incurs a cost of 4 and flight UAL4

incurs a cost of 4.  The total cost is 12.

Suppose we change the capacity in interval 2 to 3 arrivals.  The solution is as

follows.
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Figure 8, AMPL Solution 2

Since the capacity was increased in interval 2, flight AAL3 may arrive in interval

2, if feasible, yielding a cost of 0.  This satisfies AAL’s g-demand for interval 2 at no cost

since it’s an earlier flight.  For an explanation of what AMPL sees, observe flight UAL4.

Its choices were to arrive in an earlier time slot (cost =0), satisfying the g-demand in 3, at

no cost, or land in its original time slot, satisfying the g-demand with a later arrival in 3,

at a cost of 4.  Subsequently, AMPL chose the former because it minimizes costs.  The

total cost for this problem is 0.  Once the model was tested with small sets of data, larger

data sets were used.  The larger sets took into account the cost functions.
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4.3  Tests on Real Data

For the larger experiments, instead of time intervals, time slots were used.  A time

slot is an actual clock time that denotes the arrival time of a flight.    This was done to

simplify the comparison process since FSM assigns flights this way. We set

P = 100 and 025.=δ  in our experiments.

Four sets of data were used for the experiments, three from Newark International

Airport (EWR) and one from Los Angeles International Airport (LAX).  Two of the three

Newark sets were for the same day, which indicates there were two GDPs run on that

day. The GDPs were created by reducing the arrival capacities by half for each

experiment.  For each data set there was a flight list, RBS list, and compression list.

These were merged using a C program that produced a data file containing all the

variables and parameters necessary for input into the AMPL code.

The flight list contains all flight information, such as carrier, flight number, origin

airport, destination airport, arrival and departure times, flight status, etc. The RBS lists

and compression lists contain the assignments made by RBS and compression,

respectively.  Information such as EDCT, CTA, and slot are also included. Table 11

shows some of the statistics for each data set used.
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Table 11:  Airport Information

EWR(1)
01/01/96

EWR(2)
01/01/96

EWR
01/02/96

LAX
01/01/97

Total number of flights 73 94 54 62

Total number of cancelled flights
12 21 6 10

Objective function value 15487.08 17735.70 12668.57 5899.39

Solution Time (in seconds) 1.85 4.05 0.67 0.95

The first large set of data used was historical data from Newark International

Airport (EWR).  The data was downloaded from FSM and included all cancelled flights.

The Newark data was analyzed using the AMPL code for the G-Demand model (using

time slots instead of intervals) with the results displayed in Table 12.  The amount of

delay reduction (in minutes) and the relative delay reduction were calculated for each

airline for the compression algorithm, which FSM uses, and the G-Demand model.

The delay was calculated by subtracting the compression slot time from the initial

slot time and the g-demand slot time from the initial slot time yielding the difference in

minutes for each.  There were a few instances where a flight remained in its original slot.

Baseline savings for each airline were also found.  The baseline savings for a

specific airline is the amount of delay reduction for that airline if each g-demand was

filled by that airline’s flights only.  It provides a convenient basis for comparison of delay

reduction on an airline-by-airline basis.  In some sense it is the amount an airline should

hope to achieve.  In all cases each airline receives at least this amount.  The fact that more

total savings are available results from flight cancellations.
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Table 12:  Delay Reduction for Experiment 1 (EWR)

Airlines Comp

absolute

Comp

relative

G-Demand

absolute

G-Demand

relative

Baseline

Savings

absolute

Baseline

Savings

relative

COA 402 46.53 391 42.25 281 57.00

UAL 200 23.15 199 23.03 142 28.80

TWA 17 1.97 17 1.97 0 0.0

AAL 123 14.24 126 14.58 70 14.20

ACA 2 0.23 0 0.0 0 0.0

USA 38 4.40 39 4.51 0 0.0

BSK 2 0.23 0 0.0 0 0.0

NWA 19 2.20 22 2.55 0 0.0

AWE 14 1.62 18 2.04 0 0.0

DAL 19 2.20 28 3.24 0 0.0

KMR 3 0.35 0 0.0 0 0.0

CAA 0 0.0 0 0.0 0 0.0

LOT 2 0.23 2 0.23 0 0.0

SJI 10 1.16 8 0.93 0 0.0

COM 13 1.50 14
1.62

0 0.0

TOTAL 864 100.00 864 100.00 493 100.00

The second experiment used data from a GDP run at EWR on the same day as

Experiment 1.  Two GDPs were run possibly due to inclement weather (snow, ice, etc.)

since they occur in the winter.  The results are shown in Table 13.
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Table 13:  Delay Reduction for Experiment 2 (EWR)

Airlines Comp

absolute

Comp

relative

G-Demand

absolute

G-Demand

relative

Baseline

Savings

absolute

Baseline

Savings

relative

FDX 0 0.0 0 0.0 0 0.0

COA 521 50.63 469 45.58 420 75.0

NWA 79 7.68 80 7.77 0 0.0

ACA 4 0.39 0 0.0 0 0.0

UAL 171 16.62 169 16.42 68 12.14

AAL 81 7.87 104 10.11 72 12.86

USA 84 8.16 82 7.97 0 0.0

DAL 29 2.82 35 3.40 0 0.0

DLH 0 0.0 0 0.0 0 0.0

TWA 2 0.19 3 0.29 0 0.0

BSK 6 0.58 0 0.0 0 0.0

AWE 6 0.58 21 2.04 0 0.0

BAW 6 0.58 28 2.72 0 0.0

KMR 16 1.55 14 1.36 0 0.0

LOT 24 2.33 24 2.33 0 0.0

TOTAL 1029 100.00 1029 100.00 560 100.00
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Results from Experiment 3 are given in Table 14.

Table 14:  Delay Reduction for Experiment 3 (EWR)

Airlines Comp

Absolute

Comp

relative

G-Demand

absolute

G-Demand

 Relative

Baseline

Savings

absolute

Baseline

Savings

relative

COA 231 64.71 187 52.38 167 85.20

ACA 40 11.20 40 11.20 0 0.0

SJI 3 0.84 0 0.0 0 0.0

COM 2 0.56 5 1.40 0 0.0

N4I 2 0.56 2 0.56 0 0.0

UAL 60 16.81 60 16.81 29 14.80

MXA 2 0.56 0 0.0 0 0.0

NWA 5 1.40 0 0.0 0 0.0

VIR 3 0.84 22 6.16 0 0.0

TWA 3 0.84 7 1.96 0 0.0

PAL 2 0.56 5 1.40 0 0.0

AJM 1 0.28 0 0.0 0 0.0

USA 1 0.28 0 0.0 0 0.0

AAL 1 0.28 15 4.20 0 0.0

CAA 1 0.28 14 3.92 0 0.0

TOTAL 357 100.00 357 100.00 196 100.00
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The large amounts of reduction for COA in the second and third experiments may be

attributed to the fact that EWR is a hub for COA.  This simply means COA uses EWR as

a base of operation and a central point of transfer for passengers.

The last experiment used data from Los Angeles International Airport (LAX).

The results are shown in Table 15.
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Table 15:  Delay Reduction for Experiment 4 (LAX)

Airlines Comp

absolute

Comp

relative

G-Demand

absolute

G-Demand

relative

Baseline

Savings

absolute

Baseline

Savings

relative

UAL 153 42.62 131 36.49 127 53.59

AAL 72 20.06 70 19.50 70 29.54

SWA 25 6.96 29 8.08 18 7.59

TWA 38 10.58 36 10.03 0 0.0

ASA 6 1.67 6 1.67 0 0.0

SER 0 0.0 0 0.0 0 0.0

DAL 8 2.23 6 1.67 0 0.0

FDX 4 1.11 6 1.67 0 0.0

RKT 2 0.56 0 0.0 0 0.0

ROA 9 2.51 11 3.06 0 0.0

AMX 2 0.56 16 4.46 0 0.0

ANZ 2 0.56 2 0.56 0 0.0

AWE 0 0.0 0 0.0 0 0.0

USA 24 6.69 22 6.13 22 9.28

COA 2 0.56 10 2.79 0 0.0

NWA 6 1.67 9 2.51 0 0.0

FFT 6 1.67 5 1.39 0 0.0

TOTAL 359 100.00 359 100.00 237 100.00
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From the previous tables, it is clear that our objective, to mimic the compression

model, was met.  Generally, the solutions are similar, although, compression tends to

allocate more to the dominant airline where as our model tends to spread savings among

all airlines.

Each solution was validated to check that the model was performing properly.

Then the solutions from the G-Demand model and compression were compared.  As an

example, a small sample was extracted from Experiment 4 for a closer look. Figure 9

shows the flights, the flight’s earliest flight time (EFT), time slots, and g-demands for

Experiment 4.  The earliest flight time is the slot time assigned to that flight before the

GDP was run.  A flight cannot arrive earlier than this time.  The table illustrates the flight

assignments from the OPTIFLOW model (first set of dashed arcs) and the g-demands

(second set of dashed arcs).  The solid arcs represent the compression solution.  In order

to understand how the G-Demand model works, we can observe the differences in the

figure below.

Figure 9:  Experiment 4, Sample Solution

SKW730
EFT:2310

SDU3
EFT:2310

2316

2316 DAL

2318 SWA

SWA1578
EFT:2308
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Compression reordered the flights based on internal allocation of each airline’s

flights.  This is known as intra-airline mapping.  The flights were then pushed up

according to this new order.  Looking at Figure 9 above, it seems rather arbitrary to base

assignments on this.  G-Demand pushes the flights up according to the EFT. Flight

SWA1578 had the earliest EFT so it was assigned to the earliest slot.

The second set of arcs simply shows which flights met the airlines’ goals.  Delta

Airlines had its g-demand at 2316 met by flight SKW730, which arrived in the same slot.

This was the first available g-demand slot belonging to DAL that had not been met.  In

the G-Demand model, flight SWA1578 arrived in slot 2310 and satisfied the goal in slot

2318. This means the goal was met early.  The United Airlines (UAL) g-demand at 2312

was met by flight SDU3, which arrived in this same slot.

For all of the experiments, the G-Demand model attempted to satisfy the g-

demand by a flight that arrives in the same slot first.  If there was no available flight, it

then looked for an earlier flight.  If this does not work, it simply looks for a flight with

the closest arrival time.  The flights were assigned such that they all are approximately

the same distance from their original arrival times.  This fits our objective of minimizing

the deviation from the original flight time.

The differences explained above also explain the aggregate differences from the

earlier tables showing delay reduction and baseline savings.  Taking a closer look, we see

the dominating airline at each airport gets special treatment in the compression model.

Since UAL has more flights using LAX in Experiment 4, compression gave the UAL

flight preference and allowed it to arrive first.
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Chapter 5

Conclusions

 The Goal-demand model presented in this thesis provides a solution to the air

traffic management problem of minimizing the amount of ground-holding delay incurred

by an airline during a Ground Delay Program.  It uses criteria, previously defined by

participants in CDM, to generate “fair” solutions.  The benefits obtained in the model by

each airline are not negatively impacted by the disclosure of up-to-date schedule changes.

This will, hopefully, encourage improved data exchange among those involved.

The G-Demand model was formulated first to mimic the compression model.  Our

goal was to formulate a formal model that could replace compression.  A formal model

could then provide a basis for further research and be used in later models. Accordingly,

we attempt to find ways to improve upon the compression model. The G-Demand model

uses integer programming to solve the minimization problem.  The practicality of the

model is also important to note because it can be solved very quickly using commercial

integer programming solvers.  The fact that the G-Demand model is practical makes it a

good candidate for future use in CDM decision support tools or other tools.   An alternate

multicommodity formulation was given that may be more efficient than the

G-Demand model.

Experiments were conducted on the integer-programming model and output was

compared from FSM and the IP model.  Comparisons were then made between the

G-Demand and Compression output and the baseline savings.  The solutions are largely

similar but there are some differences. We uncovered areas where the G-Demand
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solution had more desirable characteristics than the compression solution.  Thus, we feel

the G-Demand model provides a very promising approach for use in GDP planning.
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Appendix A

The Multi-Airport Ground-Holding Problem in Air Traffic Control

In Vranas, Bertsimas, and Odoni’s paper [3], a ground-holding problem is

formulated for multiple airports.  Their formulation takes into account deterministic

airport capacities and that ground delays (or airborne delays) are decided once at the

beginning of the day.  Consider a set of airports, K ={1,…, K}, time intervals, I ={1,…,

I}, and flights, F={1,…,F}(A single aircraft may perform several of these flights).  Here

F is a closed network of airports, where departures from and arrivals to the external world

are not considered important.  For each flight f ∈F, the following is assumed:

k f
d ∈ K, the airport from which f is scheduled to depart

k f
a ∈ K, the airport to which f is scheduled to arrive

d f ∈ I, the scheduled departure time of f

rf ∈ I, the scheduled arrival time of f

( )c f
g ⋅ = the ground delay cost function of f (whose argument is the ground delay of

f in time intervals)

( )c f
a ⋅ = the airborne delay cost function of f (whose argument is the airborne delay

of f in time intervals)

( )D ik = the departure capacity for each (k,i)∈K × I

( )R ik =the arrival capacity for each (k,i)∈K × I

G f = maximum number of time periods that flight f may be held on the ground

Af = maximum number of time periods that flight f may be held in the air
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Now consider the set F′ ⊂ F of continued flights.  A flight is continued if the

aircraft which is scheduled to perform it is also scheduled to perform at least one more

flight later in the day.  For each flight f′, assume that the next flight f scheduled to be

performed by the same aircraft, and the “slack” or “absorption” time s f ′  such that, if f′

arrives at its destination at most s f ′  time periods late, the departure of the next flight f

will not be affected.  Then s f ′  is equal to the difference between the time interval

between the scheduled departure time of f and the scheduled arrival time of f′; and the

minimum turnaround time of the aircraft performing both flights.

The decision variables are:

g f = the number of time periods that flight f is held on the ground before being

allowed to take-off, f ∈ F

a f = the number of time periods that flight f is further held in the air before being

allowed to land f ∈ F

(Recall that the above delays are determined once at the beginning of the day for

all flights.)

u fi = 1 if flight f is assigned to take-off at period i, and 0 otherwise

v fi = 1 if flight f is assigned to land at period i, and 0 otherwise

Following is the integer programming (IP) formulation for the multi-airport ground delay

problem.

Minimize  ( )c g c af
g

f f
a

f
f

F

+
=

∑
1

subject to
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1) ( ) ( )u D i k ifi k
f k kf

d

≤ ∈
=

∑
:

, , K × I

2) ( ) ( )v R i k ifi k
f k kf

a

≤ ∈
=

∑
:

, ,  K × I

3) u fi
i I f

d

= ∈
∈
∑ 1      f   where ( ){ }I i I d i d G If

d
f f f= ∈ ≤ ≤ +: min ,

4) v fi
i I f

d

= ∈
∈
∑ 1      f   where ( ){ }I i I r i r G A If

a
f f f f= ∈ ≤ ≤ + +: min ,

5) g a s gf f f f′ ′ ′+ − ≤ ′ ∈ ′       f

6) a f ≥ ∈0        f

     { }u vfi fi, ,∈ 0 1

Constraints 5) are the coupling constraints:  They transfer any excessive delay of flight f′

to its next flight f.  The delay variables may be expressed in terms of the assignment

variables:

g iu df fi f
i I f

d

= − ∈
∈
∑ ,     f

a iv r gf fi f f
i I f

a

= − − ∈
∈
∑ ,     f .

Thus these variables may be eliminated totally from the formulation leaving u fi  and v fi

as the only decision variables.

To derive the OPTIFLOW model, mentioned in an earlier section of this

thesis, let K=1 for one airport; a f = 0 since we are only concerned with ground delays;

s f ′ = 0  because there are no continuing flights in our model; and ( )D ik = 0  and

d f = 0 since we only want to observe arrival capacities and arrival times.  By making any

necessary substitutions, we get the OPTIFLOW model.
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Appendix B

AMPL Code

set AIRLINE;       # different airlines
set TIME1 ordered; # actual time intervals
set FLT{AIRLINE};  # different flights for each airline
set ALL_FLIGHTS := union {a in AIRLINE} FLT[a];

   # set of all possible flights
set COMPRESSION_ASSIGNMENTS within (ALL_FLIGHTS cross TIME1);

   # compression assignments

param P;    # constant value used in cost equation

param W;    # constant value used in cost equation

param goal {AIRLINE, TIME1} >= 0, default 0;
# goal for airline a in interval t

param cap {TIME1} >= 0;         # capacity for interval t

param flttime{a in AIRLINE, f in FLT[a]};
# scheduled arrival time interval for
# each flight

param flttime_earliest{a in AIRLINE, FLT[a]};
# the earliest interval each flight can
# arrive in

param cost1 {a in AIRLINE, f in FLT[a], i in TIME1:
flttime_earliest[a,f] <= i <= flttime[a,f]}

:=if (i - flttime_earliest[a,f])=0 then 0 else
 (W*((i-flttime_earliest[a,f])^1.025));

# cost of airline a arriving during interval i

param cost2 {a in AIRLINE, i in TIME1, t in TIME1}
:=if (i - t)<0 then 0 else

 (P*((i - t)^1.025));
# cost of airline a arriving during interval i
# to satisfy interval t

var air1 {a in AIRLINE, f in FLT[a], i in TIME1 :
ord(flttime_earliest[a,f],TIME1) <= ord(i,TIME1) <=
ord(flttime[a,f],TIME1)} binary;
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# 1 if flight f of airline a is assigned to interval i

var air2 {a in AIRLINE, i in TIME1, t in TIME1} >= 0;

# The total number of flights of airline a arriving in
# i to satisfy the goal in t

minimize TOTAL_COST:
     sum {a in AIRLINE} ((sum {i in TIME1, f in FLT[a]:

flttime_earliest[a,f] <= i <= flttime[a,f]}
cost1[a, f, i] * air1[a, f, i])+(sum {i in TIME1,t in TIME1}
cost2[a, i, t] * air2[a, i, t]));

subject to FLT_ASSGN {a in AIRLINE, f in FLT[a]}:
     sum {i in TIME1: flttime_earliest[a,f] <= i <= flttime[a,f]}

air1[a,f, i] = 1;

# A flight can only be assigned to one time interval

subject to INT_CAP {i in TIME1}:
      sum {a in AIRLINE,f in FLT[a] : flttime[a,f] >= i >=

flttime_earliest[a,f]} air1[a, f, i]<=cap[i];

# The total number of flights cannot exceed the arrival capacity for
# interval i

subject to FLOW {a in AIRLINE, i in TIME1}:
   sum {f in FLT[a]: flttime_earliest[a,f] <= i <= flttime[a,f]}

air1[a, f, i] - sum {t in TIME1} air2[a, i, t] = 0;

# The total number of flights arriving to satisfy i must equal the
# total arriving during t

subject to TOT_GOAL {a in AIRLINE, t in TIME1}:
   sum {i in TIME1} air2[a, i, t] = goal[a, t];

#The total number of flights arriving in t must equal the total owed for i
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