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ABSTRACT

Title of Thesis: OPTIMIZATION MODEL WITH FAIRNESS OBJECTIVE
FOR AIR TRAFFIC MANAGEMENT

Degree Candidate: ~ Taryn Darnella Butler

Degree and year: Master of Arts, 1998

Thesisdirected by:  Professor Michael Ball
Robert H. Smith School of Business

With the ever increasing congestion at airports around the world, studies into ways of
minimizing delay costs on the ground while meeting the goals of the airlines are

necessary. When arrival capacities are reduced at major airports, the Federal Aviation
Administration (FAA) issues revised departure/arrival timesto prevent congestion at

restricted airports. Thisisreferred to asthe National Ground Delay Program Problem.

A new approach to developing ground delay programs, called Collaborative Decision

Making (CDM), is being developed. CDM goals include more information exchange

and greater participation on the part of the airlinesin determining landing slot

alocations. Thisthesis develops amodel specifically for the CDM setting. A key

element is the inclusion of afairness criterion within the underlying optimization

model. The fairness criterion seeks to “pay back” an airline for time slots that it is owed
but cannot make use of due to mechanical or other difficulties. It also attempts to
provide incentives to the airlines to increase the exchange of information. This thesis
investigates the Ground Delay Problem relative to a single airport. Different
formulations of the integer programming model are given that take into account airport
capacities and airline goals and experiments are conducted with realistic data to
determine the solvability of the problem. Results for this model are compared with

output from the Flight Schedule Monitor (FSM), the CDM decision support tool.
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Chapter 1

I ntroduction

The Federal Aviation Administration (FAA) is sometimes forced to respond to
congestion at airports by putting restrictions on users of the National Airspace System
(NAYS). Limited airport capacity, specifically the maximum number of arrivals that can
be performed during a fixed time interval at a given airport, is the major cause of
congestion. This capacity, called the airport acceptance rate, fluctuates due to weather
conditions, runway configuration, and other factors. Air traffic flow management strives
to reduce congestion delay effects while maintaining an efficient and safe utilization of
the NAS. Until 1981 [1], aircraft were routinely allowed by the FAA to take off
whenever they were ready; if there was congestion at the destination terminal, they were
placed in holding patterns until they were able to land (or until they ran low on fuel and
were directed to an alternative airport). Flow management attempts to reduce the
congestion and allocates necessary delays elsewhere in the NAS by using a combination
of techniques. Thisin turn reduces the number of airborne queues. Glockner, in[2],
defines flow management as an efficient use of congested airspace and airports, which
minimizes the number of aircraft waiting at any single facility. Ground delays, enroute
speeding, and enroute slowing (vectoring) are just some of the techniques used.

Solutions to these congestion problems depend on the time horizon. Long term
approaches include construction of additional airports and additional runways at existing

airports, improved air traffic control technologies and procedures, and use of larger



aircraft. The new Denver International Airport isan example of the construction of an
additional airport and airlines are currently using larger aircraft in some cases.

M edium-term approaches include modification of the temporal pattern of aircraft flow to
eliminate periods of “peak” demand as defined by [3]. Short-term approaches have a
planning horizon of 6-12 hours and include ground delay programs, which are the focus
of this thesis.

A short- term solution for a single airport is given in this thesis. The goal is to
develop a model specifically for the newly developed Collaborative Decision Making
(CDM) setting.

The remainder of this thesis is organized as follows. In Chapter 2, background on
Ground Delay Programs (GDP) and CDM is given and an illustration of a GDP is
provided. Grover Jack, the procedure currently in use by the FAA, is explained. We next
describe the CDM procedure compression and ration-by-schedule (RBS), which are
developed by the users to address issues of fairness. We extract from these procedures a
definition of fairness. Subsequently, an example is given of these procedures.

Mathematical models are presented in Chapter 3. We initially describe the
OPTIFLOW model which was developed in the mid-90’s and which serves as the basis
for our new models. The next section presents two formulations that include
considerations of fairness. The first formulation is the integer programming model and
the second is a multicommodity flow formulation.

Chapter 4 documents the results of multiple experiments done to evaluate the
models. The software used to conduct the experiments was AMPL, CPLEX and FSM. A

brief explanation of each software package is given in this chapter and simple examples



are provided. Historical data was acquired from outside sources to run the tests. This

allowed a comparison of output from our model with output from FSM.



Chapter 2

Background

2.1 Ground Delay Program and Collaborative Decision Making

After the air traffic controllers’ strike in 1981, the FAA was forced to introduce
the Ground Delay Program (GDP) concept which responds to reductions in the arrival
capacity at one or more major airports. When large delays are forecasted, the Air Traffic
Control System Command Center (ATCSCC) imposes ground delays on particular flights
prior to departure. This ensures that planes are not allowed to take off until there is a
high probability that they can complete their flight without significant delays. ATCSCC
monitors airports throughout the U.S. for capacity-demand imbalances. A GDP is
motivated by the fact that, as long as delay at the airport of destination is unavoidable, it
is both less costly and safer to absorb the delay on the ground before take-off, rather than
in the air. GDPs are executed when factors, such as inclement weather or the closing of a
runway, cause congestion.

The current GDP process has come under scrutiny and is currently being
revamped by a cooperative effort known as Collaborative Decision Making (CDM). This
program is a joint FAA/industry initiative aimed at improving Traffic Flow Management
through increased information exchange and improved collaboration. The proposed set
of CDM procedures is explained in [12] and [15]. Hoffman states that flights will
initially be assigned to time slots on a first-scheduled, first-assigned basis. The FAA

generates an initial allocation using a procedure called ration-by-schedule. Then, in an



iterative exchange between the airlines and the ATCSCC, each airline will have the
opportunity to reassign some of its flights to the arrival slotsit has been allocated, thus
giving the airlines greater control over the economic impacts of a GDP. As part of the
“cancellation and substitution” process, the airlines may both cancel flights and rearrange
the assignment of flights to time slots. Lastly, the FAA eliminates any “holes” in the
schedule using the compression algorithm.

The CDM web page [5] provides the two central tenets to the CDM. They are:
(1) better information will lead to better decision making, and (2) tools and procedures
need to be in place to enable the ATCSCC and the NAS users to more easily respond to
the changing conditions. The near-term CDM program focuses on airport arrival demand
and those instances that usually require some type of ground holding strategy. Longer-
term objectives include using CDM to make route allocation decisions and distribute

information on the status of the NAS.

2.2 GDP Processes

GDPs essentially place NAS users into a state of irregular operations. Airlines
respond by rescheduling, canceling, or substituting flights. The cancellation and
substitution processes allow scheduled airlines to mitigate the adverse effects of ground
delays.

Cancellation and substitution are specific GDP processes. We now illustrate
current GDP procedures with a simple example. Suppose a GDP is invoked. That is, the
arrival airport’s capacity was reduced resulting in the delay of flights arriving there. The

delayed flights are held on the ground at their current airport. This is the process



currently in use by the ATCSCC. It isknown as Grover Jack. Grover Jack is the process
of delaying flights while preserving their order.

Suppose at Reagan National Airport (DCA), United Airlines (UA), for example,
had 10 arrival time slotsin the first hour, 0800, with an arrival acceptance rate (AAR) of
30 flights per hour. Now suppose, due to bad weather, this rate was cut in half to 15
flights per hour (Figure 1).

Grover Jack solves this problem by considering the estimated time of arrival
(ETA) for each flight. These are converted to departure times by subtracting en-route
times. We stretch the number of arrivals out over a period of time, thus preserving the
order of arrivals. The Grover Jack process, currently in use by the FAA, is based on this
concept. Then, in the example above, United should receive 10 arrival slotsin the first 2-
hour period. Thelist of flights are given controlled times of arrival (CTA) such that, for
example, thefirst 4 flights are assigned to the first 4 slots, the next 4 flights to the next 4

dots, and so on, stretching the flights out over time.



Figure 1: Grover Jack Solution

Origina Arrival Time Revised Arrival Time
(acceptance rate = 30 planes/hour) (acceptance rate = 15 planes/hour)
0800 AAL1 —> 0800
0802 USA1l
— 0804
0804 UAL1 -
0806 AAL2 0808
0808 USA2 \
0812
0810 UALZ2
0816
0812 USA3
0816 AAL4
0824
0818 AALS5
0820 UAL3 0828
0822 UALA4 0832
0836
0840
0844
0900 0900



Cancellation and substitution processes and the impact of “other delays” may
actually make it impossible for airlines to utilize the time slots allocated. After
cancellations, substitutions, and other delays, some slots will be left open since a flight
cannot be assigned to a time slot earlier than its ETA. Once the FAA issues revised
departure/arrival times, the airlines can propose changes by canceling flights and then
substituting a flight into an open slot created by the cancelled flight.

This process is complicated by the fact that flights are cancelled or delayed due to
other reasons. If mechanical delays occur prior to a GDP being run, then with the current
approach, additional delays will be incurred. This is the so-called double penalty issue. If
United must delay one of their flights, daypy 1 hour due to mechanical problems and if
the FAA is informed of this, theins moved down the list prior to running Grover Jack.

For example, its original 12:00 ETA is updated to 1:00, 1 hour later. If a GDP is issued
with a 30 minute delay assignedffehenf would be given a 1:30 CTA, 30 minutes later

than the updated ETA. Flightvould receive 60 min + 30 min =1 % hours of delay.

Thus, it appears they are being penalized twice. There is a consensus among airlines that
the ETA should not be used, but rather the original time of arrival.

Grover Jack is simply an order preserving schedule. Thus, it is necessary to
incorporate the issue of fairness into the model. The G-Demand model introduced in this
thesis will consist of an integer programming model that will:

» "pay back" an airline for time slots that it is owed but cannot make use of due to
mechanical delays or other difficulties;

* make use of other objectives and constraints, designated as OPTIFLOW.



It is hoped that thiswill produce a solution that is fairer and provide incentives for the

airlines to provide the FAA with current flight information.

2.2.1 Example of the Cancdllation/Substitution Processes

Suppose a GDP isinvoked with an acceptance rate of 12 arrivals per hour while
preserving the original order of the arrivals (Grover Jack). Each flightina GDP is
assigned a controlled time of arrival (CTA) and a controlled time of departure (CTD).
Once the CTA isfixed and since travel times can be predicted with great accuracy, the
CTD and the amount of assigned delay are easily computed: the CTD is CTA minus the
en route time and the ground delay isthe CTD minus the scheduled arrival time. Thus, a
feasible solution to the single-airport ground-holding problem can be derived once each
flight has been assigned a CTA. We need only deal with arrival times when formulating
our models. Asaresult, the airline has aflight list consisting of all flights scheduled to
arrive at the airport during the GDP, an arrival slot or CTA for each flight, and a
corresponding departure time known as CTD. Grover Jack takes the original flight
arrival order and spaces these flights so that they exactly meet the degraded rate. Inthis
examplethe rate revised AAR is 12 flights per hour, compared to 24 flights originally, so

there should be 5 minutes between arrivals (See Table 1).



Table 1: GDP generated delays using Grover Jack

Airline | FtNo ETA CTA Delay
A 1 0700 0700 0
A 2 0700 0705 5
B 3 0705 0710 5
B 4 0705 0715 10
B 5 0710 0720 10
B 6 0710 0725 15
A 7 0710 0730 20
C 8 0720 0735 15
B 9 0740 0740 0
C 10 0740 0745 5
A 11 0830 0830 0

Total 85

ETA - Estimated Time of Arrival: the original arrival time

CTA - Controlled Time of Arriva: arrival dots assigned after GDP by the

existing Estimated Departure Clearance Time (EDCT) software
Thereisatotal of 85 minutes of delay assigned. Now assume Flight 1 is cancelled and
removed from thelist (See Table 2). Then Flight 2 will take the 0700 CTA slot and we
continue in the same manner as above. This gives us atotal delay of 50 minutes. It
appears that the entire system benefited from this delay. Looking deeper, we see that

Airline B benefited the most from Airline A’s cancellation. Airline B saved 20 minutes

but Airline A only saved 10 minutes.
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Table2: Revised delay timesafter Flight 1 is cancelled

Airline | FtNo ETA CTA Delay
A 1 0700 - -
A 2 0700 0700 0
B 3 0705 0705 0
B 4 0705 0710 5
B 5 0710 0715 5
B 6 0710 0720 10
A 7 0710 0725 15
C 8 0720 0730 10
B 9 0740 0740 0
C 10 0740 0745 5
A 11 0830 0830 0

Total 50

Consider what happens if Airline B went through with its normal substitution
process (See Table 3). Flight 4 is cancelled and Flight 5 is substituted into Flight 4’s
CTA slot. This substitution is allowed since Flight 5’s ETA is earlier than the CTA of
Flight 4. Flight 6 then uses Flight 5’'s CTA slot. The revised delay (Rdly) column now
shows a total delay of 55 minutes. By removing the cancellation, total delay was 50
minutes and Airline B had 20 minutes of ground delay. Using Table 3, total delay was 55
minutes and Airline B had 20 minutes of delay again. It is clear from these examples
how airline and traffic management objectives, maximizing efficiency and satisfying user

preferences, could come in conflict.
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Table 3: Substitution processfor AirlineB

Airline | FItNo | ETA CTA Delay | Can/Sub | RTA Rdly
A 1 0700 0700 0 0700 0
A 2 0700 0705 5 0705 5
B 3 0705 0710 5 0710 5
B 4 0705 0715 10 C - -
B 5 0710 0720 10 S 0715 5
B 6 0710 0725 15 0720 10
A 7 0710 0730 20 0725 15
C 8 0720 0735 15 0730 10
B 9 0740 0740 0 0740 0
C 10 0740 0745 5 0745 5
A 11 0830 0830 0 0830 0

Total 55

RTA - Revised Time of Arrival

To illustrate how the double penalty works, consider what would happen if
Airline A, Flight 1 has amechanical delay of 30 minutes and the ATCSCC issues a GDP
with an AAR of 6 flights per hour. The new scheduleisshownin Table 4. The column

labeled ETA; contains thenew ETA for Airline A, Flight 1.

12



Table 4: Mechanical delay

Airline | Flt No ETA ETA;
A 1 0700 0730
A 2 0700 0700
B 3 0705 0705
B 4 0705 0705
B 5 0710 0710
B 6 0710 0710
A 7 0710 0710
C 8 0720 0720
B 9 0740 0740
C 10 0740 0740
A 11 0830 0830

Table 5 reorders the flights according to the new ETASs. Noticethat Airline A,
Flight 1 has moved further down thelist. If a GDP isinvoked with the given AAR, we
obtain a CTA for each flight, given in the next to last column. Airline A, Flight 1
receives an additional 40 minutes of delay after the 30 minute mechanical delay. Thisis

what is known as a double penalty.
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Table5: Mechanical delay with double penalty

Airline | FtNo ETA; CTA | Deay
A 2 0700 0700 0
B 3 0705 0710 5
B 4 0705 0720 15
B 5 0710 0730 20
B 6 0710 0740 30
A 7 0710 0750 40
C 8 0720 0800 40
A 1 0730 0810 40
B 9 0740 0820 40
C 10 0740 0830 50
A 11 0830 0840 10

Total 290

These examplesillustrate that individual airline criteria can conflict with an
objective of the traffic flow management provider: to maximize system efficiency. The

following section discusses ways to reconcile these conflicting objectives.

2.3 Fairness
The concept of fairnessisthat in an "ideal" GDP agiven airline over any time
period should receive a percentage of available time slots equal to the percentage
"owned" by that airline in the OAG schedule. The notion of “owning” a time slot was
agreed upon by participants in CDM,; it is an idea presently being tested for use. Ration

by schedule (RBS), a CDM program element, allocates slots based on this concept.
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Currently, if an airline reports a mechanical delay in advance of a GDP, those
flights would simply be dropped from the database. The airline would not be able to use
their assigned arrival slots for substitution. The system will re-project the delayed
flights’ arrival times. If a GDP were run at that time, that flight could receive an
additional delay on top of its mechanical delay. This double penalty clearly produces
adverse economic consequences resulting in the airlines holding back pertinent

information.

2.3.1 Ration-by-Schedule (RBS) and Compression Algorithms

RBS and compression remove the disincentive to provide accurate information.
When arrival capacity is reduced, the limited arrival resources must be rationed. RBS
assigns new arrival times to a set of flights. For scheduled carriers, the rationing should
be based upon the original schedule, and not the current projections of demand. Here the
standard schedule is the Official Airline Guide (OAG) schedule. The preservation of
fairness and providing airlines with an incentive to provide accurate schedule information

is essential.

RBS Algorithm

The purpose of RBS is to ration arrival slots according to the original scheduled
arrival times and to serve as an initial assignment of CTAs for subsequent rounds of
collaboration between the airlines and the FAA. The key difference between RBS and
Grover Jack is Grover Jack is based on the current adjusted schedule and RBS is based on
the OAG; flights delayed for other reasons are handled in a fair way given this allocation

approach. RBS fixes the number of slots owned by an airline in the following manner.
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In Table 5, Airline A, Flight 1 is delayed but under RBS, Airline A ownsthat first slot in
addition to the second time slot. Thus Flight 2, or some other flight of that airline, may
move up to thefirst slot provided that it isafeasibletime. If Flight 1 is not cancelled, it
Isfree to move to afeasible slot vacated by another flight. Subsequently, each airline has
the opportunity to minimize delays during a GDP. Therefore, even though aflight hasa
mechanical delay, the airline still ownsthe original allocated slots. Another part of the
solution to the double penalty issue is the compression algorithm. The compression

algorithm from [5] is outlined below.

Compression Algorithm

After cancellations and substitutions, quite often there are gaps of timein the
schedule where no flights are scheduled to arrive (see Table 3). Thisisaresult of the
number of flights being reduced. Compression assigns flights to these empty time slots
by moving them up in the schedule where feasible.

Ultimately, when adlot is left open, compression attempts to assign another flight
of that airlineto that dlot. If thereis no flight available then compression will search
within another airline for afeasible solution or declare the slot unusable. The algorithm
is described below.

Based on an estimate of reduced capacity as reflected in the AAR, resources are
rationed according to the original schedule. The rationing procedure could be the current
GDP or some other method that allocates airport arrival resources (arrival slots) to users

in some fair fashion. This step is analogous to RBS.

Step 1: Intra-airline mapping - In this step, scheduled updates (cancellations and

delays) are applied and the new schedule is mapped to the original set of arrival dotsina

16



manner that minimizes total delay for each user. This can be accomplished centrally or
individual users can accomplish this mapping through their own substitution process.

Step 2: Compression(inter-airline mapping) - Identify a vacant slot (resulting

from a cancellation, the end of a cancellation/substitution string, a delay, or the result of
an airline delay where the arrival slots cannot be fully utilized through the exchange
process) and the owner of that slot. Identify the owner of the slot and label the slot time
asT*.

Step 2a: Search for aflight belonging to that user (or an express carrier of
that user) that can be moved into that slot. Eligible flights must meet the
following criteria:

1. Theorigina time estimates appearing in the ETA column cannot occur

later than the CTA of the available dlot.

2. Delay reduction of the eligible flight must be greater than or equal to
D=1 minute (Airlines are suggesting changing to D=10 minutes.)

3. Thenew EDCT of the eligible flight must occur at least x minutes after
the present time (x=30 minutes currently) to allow prior notice to
airlines.

If an eligible flight isfound, moveit into that slot, and set T* equal to its previous
CTA. Returnto 2ato fill thisvacancy. If no eligible flight isfound, go to 2b.

Step 2b: Search for the first flight of another user that can be moved into
the vacant lot. The dligibility criteria are the same as 2a except for 1. ETA.

If noflight iseligible, terminate, and return to step 2. Else, identify the

moved flight's previous CTA as T* and go to 2a.

17



The results from applying this algorithm to Table 3 are shown in Table 6 below.

Table 6: Compression algorithm delays

Airline Flt No ETA CTA | Delay | Can/Sub | New CTA | Rdly
A t 0700 0700 0 C - -
A If 2 0700 0705 5 S 0700 0
B Al 3 0705 0710 5 0705 0
B 4 0705 0715 10 0715 10
B 5 0710 0720 10 0720 10
B 6 0710 0725 15 0725 15
A T 7 0710 0730 20 0710 0
C | 8 0720 0735 15 0730 10
B 9 0740 0740 0 0740 0
C 10 0740 0745 5 0745 5
A 11 0830 0830 0 0830 0

Total 50

The arrows show the substitutions made for each flight.

Thisillustrates the most efficient solution, which does not penalize the airline that
substituted. This algorithm yields no delay for Airline A and atotal delay of 50 minutes.
Since Flight 7 could not make use of Flight 2’'s CTA, Flight 3 used Flight 2’s vacated
slot. Flight 7 could use the slot vacated by Flight 3 so it was given a new CTA of 0710.
By moving Flight 7 of Airline A up, this provides Airline A with an incentive to provide

accurate flight information. Also, Flight 8 used the slot vacated by Flight 7.

18



The following flow chart from Hoffman depicts the process of decision making

by the ATCSCC and the industry described above:

Figure 2: Cycle of Decision Making

A

RBS Cancel/Subst ! Compression

Airlines
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Chapter 3

Mathematical M odels

All of the models presented here are for asingle airport. The single airport
problem can be a building block for the more complex multi-airport problem. Arrival
operations at a determined destination airport are considered during a specific time
interval. Thetimeinterval isthen discretized into time periods with deterministic arrival
capacities.

In [6], Andreatta, Odoni, and Richetta explain the different versions of the GDP.
The models we present are deterministic and static. Deterministic models are currently
the only problems being studied. Airport capacities are fixed valuesin this case. Static
models may be used when there are significant lags in updating capacities or weather
information, alternatively a ground delay is strategically planned at asingle point in time
(the beginning of the day) and revised marginally from that point on. As noted above,
multiple time periods are used also.

A simplified model of the GDP isgivenin[6]. The macro model of the single-
destination network (Figure 3) captures the essential elements needed to solve the GDP:

i. Nflights(f,..., fn) are scheduled to arrive at the airport

ii. The airport is the only capacitated element of the network and thus the only

source of delays.
iii. Departure and travel times are deterministic and known in advance.
iv. The time interval, [0, B], is discretized into | equal time periods numbered 1,
2,..., |, with the earliest arrival for the airport scheduled at 0 and the latest

arrival scheduled at B.

20



v. Delay cost functions for each flight are known.

Figure 3: Single destination Network

Runway
’ System ’

Queue

3.1 OPTIFLOW Model

The OPTIFLOW model isthe basisfor all the models discussed in this thesis.
OPTIFLOW isaformal model that minimizes delay costs while (1) satisfying the airport
capacity, (2) ensuring al flights, not cancelled, arrive at the airport, and (3) satisfy any
banking constraints. Banking constraints accommodate the hubbing operations of major
airlines. Discussion of OPTIFLOW and some of its enhancementsis givenin[7] and [§].

See [12] or [15] for more discussion on banking constraints.

3.1.1 Formulation
Consider the set of airlines A={1,2,3,a}, For each airline there are
corresponding flights F={1, 2, 3,...,N}. L&(a) be the set of flights owned by airliae

There is also a set of time intervals, 1={1, 2, 3}...,
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Data

vg = 1if flight f of airlinea arrivesin interval i; 0 otherwise
ct = cost of flight f of airlineaarrivingininterval i

d, = capacity for interval i

I, = thetimeinterva for flight f in the original schedule

Objective Function: Minimize delay costs.

e A [J |
Minimize § O c2y?
fi ¥ fi

a=1 [ do(a) i,

[ |

Constraints:
(1) Each arrival time period is allowed (at most) a reduced number of flights.

(2) All flights, not cancelled, are assigned to some arrival time period.

Subject to:

@WyIvisd O

|
2 Zv';‘i =1 Oa, Of

3) v ofod}
A ~ +J
where c§ =W, G—| f ) with W, aweight associated with flight f and ¢ <1 apositive

number. The parameter 1+ ¢ isused for superlinear growth in the cost of tardiness of a
flight so that the model tends to favor assigning a moderate amount of delay to two

flights rather than the assigning of alarge amount of delay to one and a small amount to

22



another. Consider an airline with two flights, f; and f,, that will be assigned delay.
Suppose the choice is between f; and f, being assigned 30 and 120 minutes of delay,
respectively, or being assigned 60 minutes of delay each. The model will choose the
latter.

If W, =1, then the Grover Jack solution will be obtained. If more general

weights are used, other solutions could be generated.
Observe that the OPTIFLOW model is a special case of the multi-airport ground-

holding problem (MAGHP) given by Vranas, Bertisimas, and Odoni in [3] (See

appendix).

3.2 Goal-Demand M odel

We now extend the OPTIFLOW model to include afairness criterion and refer to
the new model as the Goal-Demand, or G-Demand, model. When proposing the
enhanced model, it should be clear what role OPTIFLOW plays in an environment where
a highly dynamic substitution and cancellation process are being used and if fairness
among airlines should be addressed. In thistype of environment it may be impossible for
the airline to make use of the time slots allocated by Grover Jack. Fairness
considerations are necessary to provide an incentive for airlines to furnish accurate

information. The G-Demand model seeks to minimize the deviation of each airline from
certain fairness goals. For each airlinea and time slot goal t, atime dlot goa g7 is

defined (Figure 4).
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Origina Schedule

(Acceptance rate = 30 planes/hour)

Figure4: Concept of Fairness

Time Slots “Owed” to each Airline

(Acceptance rate = 15 planes/hour)

e.g.
0800 AAL1 AAL=2
0802 USA1l USA=1
0804 UAL1 " UAL=1
0806 AAL2
0808 USA2
0810 UAL2
0812 USAS
0814 AAL3
AAL=1
USA=2
UAL=1
0816 AAL4
0818 AALS
0820 UAL3
0822 UAL4
AAL=2
USA=0
UAL=2
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Starting with the standard OAG schedule, we expand the schedule so that it is consistent
with the projected reduced acceptance rates without sacrificing the original order. Thisis
equivalent to the ration-by-schedule process explained earlier. The number of arrivals
allocated to each airline in each time period represents a goal for that airline. Thisis

represented by a “goal” demand (g-demand) denotegf byThese g-demands are used

in RBS to allocate or ration the limited number of arrival resources among the airlines.
The g-demand for peridds represented as a demand in petiothe g-demand for

periodt must be achieved by some incoming flight. No penalty occurs if the g-demand is
met by an incoming flight that arrives in the same time period or by a flight that arrives in
an earlier time period. If the g-demand is met by a later flight, then a penalty is incurred.
There is a relationship between flight arrival times and these penalties: the later the flight,
the larger the penalty. This is depicted in Figure 5. The model will always try first to
satisfy the g-demand by a flight that arrives in the same period or in an earlier period.

Second, it will attempt to satisfy the g-demand with the closest flight arrival time.
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FLIGHTS

Figure5: Fairness Costing

TIME SLOTS/INTERVALS

Flight
assignmentsto
timeintervals

0807-0814

0815-0822

0856-0900
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3.2.1 Integer Programming Formulation

New Data

g7 = number of flightsowed to airlinea ininterval t

w? = number of flights of airlinea arriving ininterval i to satisfy its g-demand in
interval t

ki = cost of airlinea arriving in interval i to satisfy its g-demand in interval t

Objective Function: Add new term to the OPTIFLOW objective function.

A a | T T
.. . a..a a a
Minimize D% zcﬁvﬂ + ki Wig
a= Ef a)i=lg

1=1 t=

T

Constraints: Add two new constraints to the OPTIFLOW constraints.

(3) The number of flights of airline a arriving in time interval t equals the number
assigned to a g-demand from time period t.

(4) The number of flights arriving in period i must equal the number of flights owed for

period t for each airline.

1@

@ Y vi=yw Ja, 0l

@  Ywi=9 Da, Ot
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The OPTIFLOW costs have changed from the original definition in the

OPTIFLOW model. The new cost functions are defined by (1) and (2) below.

@ e =w, -7, it T

cg =0 otherwise

where the g-demand costs are defined as follows:

() k* = P( -t it i>t

ki =0 otherwise

G-demand costs are incurred if aflight meetsits demand late. If the demand is met by an

earlier flight, asin (2), the cost is0. P isaparameter used to trade off the overall penalty

with other cost components and ¢ <1 is some positive parameter. Now the cost function

a

k: should dominate the function c§, for i-i, <O, which meansP >>W, . The cost

function k() insures that flights meet their airlines’ g-demands as early as possible and the

functionc() guarantees minimal delay costs.

We seek to meet the airlines’ g-demands

first and then minimize delay costs which explains the need)ftm dominatec(). In

our experiments, we set

W, = 1 so thaP can be as large as possible.

Thus, we can see the model in its entirety below:

L A E I T T E
Minimize D% Zc';‘iv';‘i + kiws O
B

it "Vt

a)i=l; 1=1 t= a

Subiject to:

1) Y Svi<d, Oi
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@ yvi=1 Da, Of

(3 Vi = Z\NiT Oa, Dli
t

fO(a)

4 Ywi=9’ Da, Ot
) v; ooy}

3.2.2 Reformulation asa Multicommodity Flow Problem

In this section we formulate the model as a minimum-cost multicommodity
network flow problem. We use the multicommodity problem structure to take advantage
of specia properties that make solving these problems easier. It is possible that this
formulation could lead to a more efficient problem solution. Recall from network flow
theory that unimodularity provides sufficient conditions for integer optimal solutions to
the associated linear program. Since single-commaodity flow problems have this
property, highly efficient algorithms have been devised. Special agorithms for
multicommodity flow problems exist. A multicommodity problem can be viewed as a
single-commodity problem plus some side constraints. This structure provides an
advantage in solving these types of problems.

It will be shown that the structure of this problem is similar to a transportation
model. The major differences are that several commodities can share common arcs, and
that flow of all commodities on an arc is constrained by the arc capacity.

For our formulation, each commaodity is represented by a different airline. There
are three sets of nodes. One set represents flights, the second represents arrival time

periods, and the third represents the airlines’ goals. Supply is located at the flight nodes
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and demand is located at the g-demand nodes. The time period nodes are similar to
transshipment nodes or distribution centers in a network which models warehouse
shipments. The general multicommodity flow problem from [9: p. 389] follows.
General Multicommodity Flow Problem

a* = supply at nodei

b = demand at node |

>q'j‘ =flow of commodity k over arc(i, j)

c,‘j‘ = unit transportation cost of flow over arc (i, j) of commodity k

capacity of arc (i, ))

E =seatof arcs

r
Minimize Y 5 cfxf
k=1, 50A

subject to

Z X = Z i =a if nodei isasourcefor commodity k
Z X = Z xi =0 if nodei is atranshipment node

> % =Y xi =-b if nodejisasink for commodity k

Z)g'j‘ <y, for(i,j)OE

x; 20 foralkand(i,j)JE.
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Let A, F, I, and T be defined as before, let E be the set of al feasible arcs and let
V={V1,V,,V3} betheset of al nodeswith{V,", V,}=V,. Thereisone nodein V, for
each flight and two nodesin V;, representing each arrival time. The second set of nodesis
broken into two parts to handle the capacity during the time intervals. Thereisalso one
node in V3 representing each time slot that contains the g-demands for the airlines. The

set of feasible arcs contains arcs from V4to V5", V" to V', and V5'to Va.

Formulation
Data

Define a(f) = theairline that ownsflight f. V," consists of a set of copies of each node
in V2" For eachj O V,", denote by the copy of jin .

x; = flow of airline a across arc (i,j)

D, = flow constraint

cah =

| unit cost of flow on arc (i,j) for flight of airline a

A -

CJJ

unit cost of flow on arc (j, j') for flight f of airlinea
kit" = unit cost of flow on arc (j' k) for flight f of airlinea

G = g-demand for airline aduring interval t

Objective Function: Minimize costs.

Minimize Z) ; ca(Mxam +Z} ZD ca() ya(h) +Z} %k%”ﬁy)
) ] ii ii j j
a(t)(,))tEe a(t)(j,))oE a(t)(j"k)oE
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Constraints:

(1) Supply at each flight nodeis 1.

(2) The demand for each airline must be met.
(3), (4) Capacity at nodes must not be violated.

(5) Flow across the arc cannot exceed the arc capacity.

|
D >xP=1 O fOv,

1=t

2 Yxi, =G 0 adA, OtO Vs

@ > xi-x3=0 OalA 0jOVy

|
4 xj->x,=0 O j'0OV2 andd adA
t=1
A
(5) X <1 O jOVy"
; ]
(6) x;=0

The cost function is the same as the cost function for the OPTIFLOW model for
the first set of arcs (see Figure 7). The cost function for the second set is always 0 since
these arcs simply carry the node capacities. The last set of arcs uses the fairness cost

function from the G-demand model. The costs are defined as follows:
. Ao 5
Case 1.cj'" =W, (|-I ; | foralfandfordl i, <i<I.
Case 2: cf}m:O for all f

Case 3: ki\" =P(j' - k)™
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Againwehave W, =1and ¢ <1. The graphical representation of the directed

multicommodity network can be seen in Figure 6.

Figure 6: Directed Network

G-DEMANDS (demands)

FLIGHTS(SUpPY)  1y\mE INTERVALS (distribution) V
rrs ’ 3

1 2 V>
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13

A 4

14
)@

15
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Chapter 4

Experiments and Results

Experiments were conducted using the Goal-demand formulation given
previously to determine if the new formulation, which takes fairness into consideration, is
actually more equitable to the airlines than the current FSM. Data sets from actual GDPs
were used here. The G-Demand model was translated into code, using various software,

in order to test the model

4.1 Software Environment

Some background information about the software used for this experiment is
necessary. AMPL isarelatively new entry into the field of algebraic modeling languages
for mathematical programming. AMPL is notable for the similarity of its arithmetic
expressions to customary algebraic notation, and for the generality of its set and
subscripting expressions. AMPL also extends algebraic notation to express common
mathematical programming structures such as network flow constraints. AMPL uses the
solver CPLEX 4.0. The UNIX version was used for this experiment. Further
explanations about AMPL can be found in [11].

CPLEX 4.0 isamath programming problem solver that solves problems quickly
and accurately. CPLEX can handle large-scale, difficult problemsin commercial settings
where demand for performance and reliability are critical. CPLEX isavailablein awide
range of environments; the UNIX environment was used for the example problem that

follows. Moreinformation is available at the CPLEX/ILOG web page [13].



The Flight Schedule Monitor (FSM) is the decision support tool developed for
CDM. It contains three essential components. 1) graphical and timeline presentation of
demand, 2) information extraction, and 3) ground delay utilities.
Through FSM, users will have the same picture of the problem that ATCSCC specialists
see: the same information and the same capability to do the “what if” analysis and
explore alternatives. NAS users can measure the expected effects of the program and
begin developing their cancellation strategies or otherwise reschedule to mitigate the
effects of irregular operations. FSM makes use several program elements. These include
GDP Advisories, Ration by Schedule (RBS), Compression, and Simplified Substitutions.

See [5] for more about FSM.

4.2 Example

First, the G-Demand model was translated into AMPL code (see code in
appendix) and run with small data sets to test the validity of the model. A small data set
was used consisting of two airlines, four flights per airline, and four time intervals. Each
airline was given a g-demand for each interval and each interval had a specified arrival
capacity. Following the definitions given previously in the g-demand formulation, each
airline incurs a cost when it is assigned to a later time interval.

Because this problem is so small, a pictorial solution can be given easily. Using a
specific example, we can observe how the model works. Using the data above, the two
airlines are American Airlines (AAL) and United Airlines (UAL). The g-demands for
AAL are 1, 2, 1, and 1 for intervals 1, 2, 3, and 4, respectively; UAL g-demands are 1, 1,

2, and O for intervals 1, 2, 3, and 4, respectively. Each time interval has a capacity of 2
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arrivals. The costs are given in the tables below. The scheduled arrival times, which

determine the costs, were arbitrarily chosen.

Table?7
cs AAL
2
1 0 2 5 9
2 0 0 2 5
3 0 0 0 2
4 0 0 0 0
Table8
(o UAL
2
1 0 2 5 9
2 0 0 2 5
3 0 0 0 2
4 0 0 0 0
Table9
k2 AAL
2
1 0 0 0 0
2 4 0 0 0
3 10 4 0 0
4 18 10 4 0
Table 10
k2 UAL
2
1 0 0 0 0
2 4 0 0 0
3 10 4 0 0
4 18 10 4 0

Recall that cf = cost of flight f of airline a arriving during interval i and k= cost

of airline a arriving during interval t to satisfy the g-demands for interval i. It was earlier
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stated that k' should dominate cf. Thisis obvious from the tables above. Suppose

American cancelsaflight ininterval 2. Below isthe solution from AMPL.

Figure7: AMPL Solution 1

AALL - AAL=1 - AAL goalil

UAL1 > UAL=1 > UAL goa=1
AAL=1 B

AAL- > AAL goal=2
AAL2 > — > ~

UAL2 . UAL=1 UAL goa=1

AAL=1
AAL3 > UAL=1 AAL goalil
UAL3 > > UAL goal=2
AAL=1
AALY —> AAL goa=0
UAL4 >
UAL goa=0

There are afew possible solutions to this example. A cost isincurred where flight
AAL3 arrives in slot 3 to meet AAL’s g-demand in interval 2. If we observe the cost
tables, AAL incurs a cost of 4. Likewise, flight AAL4 incurs a cost of 4 and flight UAL4
incurs a cost of 4. The total cost is 12.

Suppose we change the capacity in interval 2 to 3 arrivals. The solution is as

follows.
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Figure 8, AMPL Solution 2

AAL1L . AAL=1 . AAL goalil
UAL1 > UAL=1 > UAL goa=1
AAL=2 AAL goa=2
—AAE- > E
AAL2 > UAL=L UAL goal=1
UAL2
DAL > AAL goa=1
AAL3 - : g :
UAL3 > > UAL goa=2
N 4
AAL=1 '
UnLe [© 5 @ AAL goal=0
uAL4 ] UAL goal=0

Since the capacity was increased in interval 2, flight AAL3 may arrivein interval
2, if feasible, yielding a cost of 0. This satisfies AAL's g-demand for interval 2 at no cost
since it's an earlier flight. For an explanation of what AMPL sees, observe flight UAL4.
Its choices were to arrive in an earlier time slot (cost =0), satisfying the g-demand in 3, at
no cost, or land in its original time slot, satisfying the g-demand with a later arrival in 3,
at a cost of 4. Subsequently, AMPL chose the former because it minimizes costs. The
total cost for this problem is 0. Once the model was tested with small sets of data, larger

data sets were used. The larger sets took into account the cost functions.
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4.3 Testson Real Data

For the larger experiments, instead of time intervals, time slots were used. A time
dot isan actual clock time that denotesthe arrival time of aflight. Thiswasdoneto
simplify the comparison process since FSM assigns flights this way. We set
P =100 and¢ =.025 in our experiments.

Four sets of data were used for the experiments, three from Newark International
Airport (EWR) and one from Los Angeles International Airport (LAX). Two of the three
Newark sets were for the same day, which indicates there were two GDPs run on that
day. The GDPs were created by reducing the arrival capacities by half for each
experiment. For each data set there was aflight list, RBS list, and compression list.
These were merged using a C program that produced a data file containing all the
variables and parameters necessary for input into the AMPL code.

Theflight list contains all flight information, such as carrier, flight number, origin
airport, destination airport, arrival and departure times, flight status, etc. The RBS|ists
and compression lists contain the assignments made by RBS and compression,
respectively. Information such as EDCT, CTA, and slot are also included. Table 11

shows some of the statistics for each data set used.
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Table11

. Airport Information

EWR(1) | EWR(2) EWR LAX
01/01/96 | 01/01/96 | 01/02/96 | 01/01/97
Total number of flights 73 9 54 62
12 21 6 10
Total number of cancelled flights
Objective function value 15487.08 | 17735.70 | 12668.57 | 5899.39
Solution Time (in seconds) 1.85 4.05 0.67 0.95

Thefirst large set of data used was historical datafrom Newark International

Airport (EWR). The data was downloaded from FSM and included al cancelled flights.

The Newark data was analyzed using the AMPL code for the G-Demand model (using

time dotsinstead of intervals) with the results displayed in Table 12. The amount of

delay reduction (in minutes) and the relative delay reduction were calculated for each

airline for the compression algorithm, which FSM uses, and the G-Demand model.

The delay was cal culated by subtracting the compression sot time from the initial

dlot time and the g-demand slot time from the initial slot time yielding the differencein

minutes for each. There were afew instances where aflight remained in its original slot.

Baseline savings for each airline were also found. The baseline savings for a

specific airline is the amount of delay reduction for that airline if each g-demand was

filled by that airline’s flights only. It provides a convenient basis for comparison of delay
reduction on an airline-by-airline basis. In some sense it is the amount an airline should
hope to achieve. In all cases each airline receives at least this amount. The fact that more

total savings are available results from flight cancellations.
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Table 12: Delay Reduction for Experiment 1 (EWR)

Airlines | Comp Comp | G-Demand | G-Demand | Baseline | Basdline
absolute | relative | absolute relative Savings | Savings
absolute | relative
COA 402 46.53 391 42.25 281 57.00
UAL 200 23.15 199 23.03 142 28.80
TWA 17 1.97 17 1.97 0 0.0
AAL 123 14.24 126 14.58 70 14.20
ACA 2 0.23 0 0.0 0 0.0
USA 38 4.40 39 451 0 0.0
BSK 2 0.23 0 0.0 0 0.0
NWA 19 2.20 22 2.55 0 0.0
AWE 14 1.62 18 2.04 0 0.0
DAL 19 2.20 28 3.24 0 0.0
KMR 3 0.35 0 0.0 0 0.0
CAA 0 0.0 0 0.0 0 0.0
LOT 2 0.23 2 0.23 0 0.0
SJl 10 1.16 8 0.93 0 0.0
COM 13 1.50 14 0 0.0
1.62
TOTAL 864 100.00 864 100.00 493 100.00

The second experiment used data from a GDP run at EWR on the same day as
Experiment 1. Two GDPs were run possibly due to inclement weather (snow, ice, etc.)

since they occur in the winter. The results are shown in Table 13.
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Table 13: Delay Reduction for Experiment 2 (EWR)

Airlines | Comp Comp | G-Demand | G-Demand | Baseline | Basdline
absolute | relative | absolute relative Savings | Savings
absolute | relative
FDX 0 0.0 0 0.0 0 0.0
COA 521 50.63 469 45.58 420 75.0
NWA 79 7.68 80 1.77 0 0.0
ACA 4 0.39 0 0.0 0 0.0
UAL 171 16.62 169 16.42 68 12.14
AAL 81 7.87 104 10.11 72 12.86
USA 84 8.16 82 7.97 0 0.0
DAL 29 2.82 35 3.40 0 0.0
DLH 0 0.0 0 0.0 0 0.0
TWA 2 0.19 3 0.29 0 0.0
BSK 6 0.58 0 0.0 0 0.0
AWE 6 0.58 21 2.04 0 0.0
BAW 6 0.58 28 2.72 0 0.0
KMR 16 1.55 14 1.36 0 0.0
LOT 24 2.33 24 2.33 0 0.0
TOTAL 1029 100.00 1029 100.00 560 100.00
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Results from Experiment 3 are given in Table 14.

Table 14: Delay Reduction for Experiment 3 (EWR)

Airlines | Comp Comp | G-Demand | G-Demand | Baseline | Baseline
Absolute | relative | absolute Relative | Savings | Savings
absolute | relative
COA 231 64.71 187 52.38 167 85.20
ACA 40 11.20 40 11.20 0 0.0
Sl 3 0.84 0 0.0 0 0.0
COM 2 0.56 5 1.40 0 0.0
N4l 2 0.56 2 0.56 0 0.0
UAL 60 16.81 60 16.81 29 14.80
MXA 2 0.56 0 0.0 0 0.0
NWA 5 1.40 0 0.0 0 0.0
VIR 3 0.84 22 6.16 0 0.0
TWA 3 0.84 7 1.96 0 0.0
PAL 2 0.56 5 1.40 0 0.0
AM 1 0.28 0 0.0 0 0.0
USA 1 0.28 0 0.0 0 0.0
AAL 1 0.28 15 4.20 0 0.0
CAA 1 0.28 14 3.92 0 0.0
TOTAL 357 100.00 357 100.00 196 100.00




The large amounts of reduction for COA in the second and third experiments may be
attributed to the fact that EWR isahub for COA. This simply means COA uses EWR as
abase of operation and a central point of transfer for passengers.

The last experiment used data from Los Angeles International Airport (LAX).

The results are shown in Table 15.



Table 15: Delay Reduction for Experiment 4 (LAX)

Airlines | Comp Comp | G-Demand | G-Demand | Baseline | Basdline
absolute | relative | absolute relative Savings | Savings
absolute | relative
UAL 153 42.62 131 36.49 127 53.59
AAL 172 20.06 70 19.50 70 20.54
SWA 25 6.96 29 8.08 18 7.59
TWA 38 10.58 36 10.03 0 0.0
ASA 6 1.67 6 1.67 0 0.0
SER 0 0.0 0 0.0 0 0.0
DAL 8 2.23 6 1.67 0 0.0
FDX 4 111 6 1.67 0 0.0
RKT 2 0.56 0 0.0 0 0.0
ROA 9 251 11 3.06 0 0.0
AMX 2 0.56 16 4.46 0 0.0
ANZ 2 0.56 2 0.56 0 0.0
AWE 0 0.0 0 0.0 0 0.0
USA 24 6.69 22 6.13 22 9.28
COA 2 0.56 10 2.79 0 0.0
NWA 6 1.67 9 251 0 0.0
FFT 6 1.67 5 1.39 0 0.0
TOTAL 359 100.00 359 100.00 237 100.00




From the previous tables, it is clear that our objective, to mimic the compression
model, was met. Generally, the solutions are similar, although, compression tends to
allocate more to the dominant airline where as our model tends to spread savings among
al airlines.

Each solution was validated to check that the model was performing properly.
Then the solutions from the G-Demand model and compression were compared. As an
example, asmall sample was extracted from Experiment 4 for a closer look. Figure 9
shows the flights, the flight’s earliest flight time (EFT), time slots, and g-demands for
Experiment 4. The earliest flight timeis the slot time assigned to that flight before the
GDPwasrun. A flight cannot arrive earlier than thistime. The table illustrates the flight
assignments from the OPTIFLOW model (first set of dashed arcs) and the g-demands
(second set of dashed arcs). The solid arcs represent the compression solution. In order
to understand how the G-Demand model works, we can observe the differencesin the
figure below.

Figure9: Experiment 4, Sample Solution

SKW730
EFT:2310

SWA1578

EFT:2308 2316 DAL

SDU3
EFT:2310

2318 SWA

46



Compression reordered the flights based on internal allocation of each airline’s
flights. This is known as intra-airline mapping. The flights were then pushed up
according to this new order. Looking at Figure 9 above, it seems rather arbitrary to base
assignments on this. G-Demand pushes the flights up according to the EFT. Flight
SWA1578 had the earliest EFT so it was assigned to the earliest slot.

The second set of arcs simply shows which flights met the airlines’ goals. Delta
Airlines had its g-demand at 2316 met by flight SKW730, which arrived in the same slot.
This was the first available g-demand slot belonging to DAL that had not been met. In
the G-Demand model, flight SWA1578 arrived in slot 2310 and satisfied the goal in slot
2318. This means the goal was met early. The United Airlines (UAL) g-demand at 2312
was met by flight SDU3, which arrived in this same slot.

For all of the experiments, the G-Demand model attempted to satisfy the g-
demand by a flight that arrives in the same slot first. If there was no available flight, it
then looked for an earlier flight. If this does not work, it simply looks for a flight with
the closest arrival time. The flights were assigned such that they all are approximately
the same distance from their original arrival tim&is fits our objective of minimizing
the deviation from the original flight time.

The differences explained above also explain the aggregate differences from the
earlier tables showing delay reduction and baseline savings. Taking a closer look, we see
the dominating airline at each airport gets special treatment in the compression model.
Since UAL has more flights using LAX in Experiment 4, compression gave the UAL

flight preference and allowed it to arrive first.
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Chapter 5

Conclusions

The Goal-demand model presented in this thesis provides a solution to the air
traffic management problem of minimizing the amount of ground-holding delay incurred
by an airline during a Ground Delay Program. It uses criteria, previousy defined by
participants in CDM, to generate “fair” solutions. The benefits obtained in the model by
each airline are not negatively impacted by the disclosure of up-to-date schedule changes.
This will, hopefully, encourage improved data exchange among those involved.

The G-Demand model was formulated first to mimic the compression model. Our
goal was to formulate a formal model that could replace compression. A formal model
could then provide a basis for further research and be used in later models. Accordingly,
we attempt to find ways to improve upon the compression model. The G-Demand model
uses integer programming to solve the minimization problem. The practicality of the
model is also important to note because it can be solved very quickly using commercial
integer programming solvers. The fact that the G-Demand model is practical makes it a
good candidate for future use in CDM decision support tools or other tools. An alternate
multicommodity formulation was given that may be more efficient than the
G-Demand model.

Experiments were conducted on the integer-programming model and output was
compared from FSM and the IP model. Comparisons were then made between the
G-Demand and Compression output and the baseline savings. The solutions are largely

similar but there are some differences. We uncovered areas where the G-Demand
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solution had more desirable characteristics than the compression solution. Thus, we feel

the G-Demand model provides a very promising approach for use in GDP planning.
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Appendix A

The Multi-Airport Ground-Holding Problem in Air Traffic Control

In Vranas, Bertsimas, and Odoni’s paper [3], a ground-holding problem is
formulated for multiple airports. Their formulation takes into account deterministic
airport capacities and that ground delays (or airborne delays) are decided once at the
beginning of the day. Consider a set of airports, K ={1,..., K}, time intervals, | ={1,...,
[}, and flights, F={1,...,F}(A single aircraft may perform several of these flights). Here
F is a closed network of airports, where departures from and arrivals to the external world

are not considered important. For each flighi, the following is assumed:
k¢ 0K, the airport from whicli is scheduled to depart
ki O K, the airport to whiclfiis scheduled to arrive
d, O, the scheduled departure timef of

r. O, the scheduled arrival time bf

c? ()= the ground delay cost functionfofiwvhose argument is the ground delay of

fin time intervals)

c2 ()= the airborne delay cost functionfafivhose argument is the airborne delay

of f in time intervals)

D, (i) = the departure capacity for eadti)IK x |

R, (i) =the arrival capacity for eack,i) OK x |

G; =maximum number of time periods that flighhay be held on the ground

A; =maximum number of time periods that flighthay be held in the air
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Now consider the set F' O F of continued flights. A flight is continued if the
aircraft which is scheduled to perform it is also scheduled to perform at least one more

flight later in the day. For each flight f’, assume that the next flight f scheduled to be

performed by the same aircraft, and the “slack” or “absorption” s§meuch that, if’
arrives at its destination at mast time periods late, the departure of the next flight
will not be affected. Thes,. is equal to the difference between the time interval

between the scheduled departure timeasfd the scheduled arrival timef¢fand the

minimum turnaround time of the aircraft performing both flights.
The decision variables are:

g, = the number of time periods that flight f is held on the ground before being
allowed to take-offf O F
a, = the number of time periods that flight further held in the air before being

allowed to land O F
(Recall that the above delays are determined once at the beginning of the day for
all flights.)

u, =1 if flight f is assigned to take-off at perigcand O otherwise
v, =1 if flight f is assigned to land at period i, and O otherwise

Following is the integer programming (IP) formulation for the multi-airport ground delay

problem.
F

N o a
Minimize fZl(cfgf +cfaf)

subject to
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) 3 ous D, (i), (k,i) OK x|

fiki=

2) f:kZ:kvﬁ <R (i) (k,i)OKxI

3 yu,=1 fO7 WhereI?:{iDI:dfsismin(df+Gf,I)}
i

4) vaizl f 07 where|? {iDI:rfsismin(rf+Gf+Af,I)}
iar

5 0 ta; —s;, <0 fros
6) a, 20 f O
u;,v, 0{0,}
Constraints 5) are the coupling constraints: They transfer any excessive delay of flight f*
toitsnext flight f. The delay variables may be expressed in terms of the assignment

variables;

g; = Yiug —-d,, f 07

i

a; = yivy—r,—g,, f0OJ.

o2
Thus these variables may be eliminated totally from the formulation leaving u; and v

asthe only decision variables.
To derive the OPTIFLOW model, mentioned in an earlier section of this

thesis, let K=1 for one airport; a, = 0since we are only concerned with ground delays;
s,. = 0 because there are no continuing flightsin our model; and D, (i) = 0 and
d, =0sincewe only want to observe arrival capacities and arrival times. By making any

necessary substitutions, we get the OPTIFLOW model.
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Appendix B

AMPL Code

set AIRLINE; # different airlines

set TIMEL ordered; # actual time intervals

set FLT{AIRLINE}; # different flights for each airline

set ALL_FLIGHTS:=union{ain AIRLINE} FLT[al;
# set of al possible flights

set COMPRESSION_ASSIGNMENTS within (ALL_FLIGHTS cross TIMED);
# compression assignments

param P; # constant value used in cost equation
param W, # constant value used in cost equation

param goa { AIRLINE, TIME1} >= 0, default O;
# goal for airlineain interval t

param cap { TIME1} >=0; # capacity for interval t

param flttime{ain AIRLINE, fin FLT[a]};
# scheduled arrival time interval for
# each flight

param flttime_earliest{ain AIRLINE, FLT[a]};
# the earliest interval each flight can
#arrivein

param costl {ain AIRLINE, fin FLT[a], i in TIMEL:
flttime_earliest[af] <=i <= flttime[a,f]}
=if (i - flttime_earliest[a,f])=0then 0 else
(W*((i-flttime_earliest[a,f])"1.025));
# cost of airlineaarriving during interval i

param cost2 {ain AIRLINE, i in TIMEL, tin TIMEL}
=if (i - t)<Othen O else

(P*((i - Y"1.025));
# cost of airlineaarriving during interval i
#to satisfy interval t

var airl {ain AIRLINE, f in FLT[a], i in TIMEL :

ord(flttime_earliest[a,f], TIMEL) <= ord(i,TIMEL) <=
ord(flttime[a,f], TIMEL)} binary;
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# 1if flight f of airlineaisassigned to interval i
var air2 {ain AIRLINE, i in TIMEL, tin TIMEL} >=0;

# The total number of flights of airlineaarriving in
#ito satisfy thegoa int

minimize TOTAL_COST:
sum {ain AIRLINE} ((sum{iinTIMEL, fin FLT[a]:
flttime_earliest[af] <=i <= flttime[a,f]}
costlfa, f, i] * airl[a, f, i])+(sum{i in TIMELt in TIME1}
costZ[a, i, t] * air2[a i, t]));

subject to FLT_ASSGN {ain AIRLINE, fin FLT[a]}:
sum {i in TIMEL: flttime_earliest[af] <=i <= flttime[af]}
arlfaf,i] = 1;

# A flight can only be assigned to one time interval

subject to INT_CAP{iin TIME1}:
sum {ain AIRLINE,f in FLT[d] : flttime[af] >=1>=
flttime_earliest[af]} airl[a, f, i]<=cap[i];

# The total number of flights cannot exceed the arrival capacity for
#interval i

subject to FLOW {ain AIRLINE, i in TIME1}:
sum {f in FLT[a]: flttime_earliest[af] <=1 <= flttime[a,f]}
airlfa f,i] -sum{tin TIMEL} air2[a,i,t] =0;

# The total number of flights arriving to satisfy i must equal the
# total arriving during t

subject to TOT_GOAL {ain AIRLINE, tin TIMEL}:
sum{i in TIMEL} air2[a, i, t] = god[a, t];

#The total number of flights arriving in t must equal the total owed for i
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