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Abstract

A novel 3 DOF parallel manipulator is presented that employs only revolute joints
and constrains the manipulator output to translational motion. Closed-form solutions
are developed for both the inverse and forward kinematics. The inverse kinematics
produces four solutions for each leg of the manipulator. In general, the four solutions
are realized in only two unique leg configurations. The forward kinematic solution is
reduced to a quadratic equation. So that in general, there are two poses the manipu-
lator can assume for a given set of input joint angles. The manipulator workspace is
also determined for a manipulator with fixed and moving platforms of the same size.

1 Introduction

The Stewart platform has been studied extensively (Stewart [1], Hunt [2], Griffis and Duffy
[3], Innocenti and Parenti-Castelli [4], [5], and Nanua et al. [6]). Other variations of the
Stewart platform have also been proposed. Kohli [7] presented six degree-of-freedom (DOF)
parallel manipulators that utilize base-mounted rotary-linear actuators; Hudgens and Tesar
[8] introduced a six-DOF parallel micromanipulator; Pierrot, et al. [9] developed a high-speed
six-DOF parallel manipulator; and recently Tahmasebi and Tsai [10], [11], [12] conceived of
a six-DOF parallel minimanipulator with three inextensible limbs. However, most of the
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six-DOF parallel manipulators studied to date consist of six limbs which connect a moving
platform to a base by spherical joints. These six-limbed manipulators suffer the following
disadvantages:

1. Their direct kinematics are difficult to solve.
2. Position and orientation of the moving platform are coupled.

3. Precise spherical joints are difficult to manufacture at low cost.

Note that the only six-limbed, six-DOF parallel manipulators for which closed-form direct
kinematic solutions have been reported in the literature are special forms of the Stewart
platform (Nanua et al. [6], Grffis and Duffy [3], Innocenti and Parenti-Castelli [5], Lin, et
al., [13], Zhang and Song [14]). In these special forms, pairs of spherical joints may present
design and manufacturing problems. As to the general Stewart platform, researchers have to
resort to numerical techniques for the solutions. Innocenti and Parenti-Castelli [4] developed
an exhaustive mono-dimensional search algorithm to find the direct kinematics solutions of
the general Stewart platform. Raghavan [15] applied the continuation method and showed
that the general Stewart platform has 40 direct kinematics solutions.

A parallel manipulator that addresses two of the listed disadvantages was designed by
Clavel and others at the Swiss Federal Institute of Technology [16]. The mainpulator, called
the DELTA robot, has four degrees of freedom as designed by Clavel. Three of these degrees
of freedom are translational due to the constraints of the kinematic structure of the parallel
manipulator. The last degree of freedom is a rotation about an axis perpendicular to the
moving platform of the manipulator. The rotational degree of freedom is achieved by an
actuator mounted at the base of the manipulator that transmits a rotation to the end effector
at the moving platform via a telescopic arm with two universal joints. Closed-form solutions
for both the inverse and forward kinematics have been developed for the DELTA robot
(Pierrot et al. [18]). Additionally, the position and orientation of the moving platform are
uncoupled in the DELTA design. However, the DELTA robot construction does employ
spherical joints.

In order to eliminate the spherical joints, a new manipulator was invented by Tsai [17].
It uses only revolute joints to constrain the moving platform to three translational degrees
of freedom. In this paper, the kinematics and workspace are developed for a special case
of that manipulator, which mimics the motion of the DELTA robot’s moving platform. We
note that the DELTA robot, after subracting the passive degrees of freedom from each of
the spherical-spherical links and the rotation of the end-effector, has exactly three degrees
of freedom, while the manipulator designed by Tsai is kinematically an over-constrained
mechanism as discussed in the following section.
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16 - Moving Platform

0 - Fixed Platform

Figure 1: Schematic of the three-DOF manipulator.

2 Description of the Manipulator

A schematic of the special case manipulator being considered is shown in Fig. 1, where the
stationary platform is labeled 0 and the moving platform is labeled 16. Three identical limbs
connect the moving platform to the stationary platform. Each limb consists of an upper arm
and a lower arm. The lower arms are labeled 1, 2, and 3. Each upper arm is a planar four-bar
parallelogram: links 4, 7, 10, and 13 for the first limb; 5, 8, 11, and 14 for the second limb;
and 6, 9, 12, and 15 for the third limb. For each limb, the upper and lower arms, and the two
platforms are connected by three parallel revolute joints. The axes of these revolute joints
are perpendicular to the axes of the four-bar parallelogram for each limb. The manipulator
shown in Fig. 1 is a special configuration of a more general manipulator invented by Tsai
[17]. The more general manipulator includes small offsets in links 4, 5, 6, 13, 14, and 15, as
shown in Fig. 2 for links 5 and 14.

The it* leg of the special case manipulator presented in this paper is shown in Fig. 3. A
reference frame (XYZ) is attached to the fixed base at point O, located at the center of the
fixed platform. The vector j is the position vector of point P in the (XYZ) coordinate frame,
where P is attached at the center of the moving platform. Another coordinate system (UVW)
is attached to the fixed base at A, such that % is perpendicular to the a)\cis of rotation of



Figure 2: Upper arm configuration for a more general manipulator that facilitates the use
of revolute joints.

the joint at A and in the same line as OA. The angle f,; is a parameter of the manipulator
design and remains constant. The angle #; is measured from % to AB. The angle 6; is
defined from §, a vector pointing from AB, to 3, which is a vector defined by the intersection
of the parallelogram’s plane of motion and the U-W plane. The angle 63; is defined by the
angle from 5 to BC. The angle 64 is measured from £, a vector pointing from BC, to CP.
This angle is fully constrained by the interaction of the three legs so that: 04 = 7 — 6; — 0s;.
Hence, there are nine joint angles, 6y;,05;, and 03 for i+ = 1,2, and 3, associated with a
manipulator posture. For this paper, 61,62, and 6,3 are considered the actuated joints.
Other combinations of actuated joints are also possible, but actuating 6,1, 612, and 6,5 offers
the advantage of attaching each of the actuators to ground.

Considering the manipulator mobility, let F be the degrees of freedom, n the number of
links, j the number of joints, f; the degrees of freedom associated with the i joint, and
A = 6, the motion parameter. Then, the degrees of freedom of a mechanism is generally
governed by the following mobility equation:

F=/\(n_j_1)+z.fi (1)

For the manipulator shown in Fig. 1, n =17, =21, and f; =1fori=1,2,...,21. Applying
Eq. (1) to the manipulator produces: F = 6(17—21—1)+21 = —9. Hence, the manipulator
is an overconstrained mechanism. However, due to the arrangement of the links and joints,
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Figure 3: Depiction of the joint angles and link lengths for leg s.

many of the constraints imposed by the joints are redundant and the resulting mechanism
does have three translational degrees of freedom. The redundant constraints are a product
of the three revolute joints at A, B, and C (as shown in Fig. 1) having parallel axes. As
a result, any single limb constrains rotation about the z axis, while the combination of any
two limbs constrains rotation about the x and y axes. This leaves the mechanism with
three translational degrees of freedom and forces the moving platform to remain in the same
orientation as the base. This unique characteristic is useful in many applications such as an
X-Y-Z positioning device.

3 Inverse Kinematics

The objective of the inverse kinematics is to develop a set-valued function f=* : p — 0,
where 0 is the vector consisting of the nine joint angles. An intuitive feel for the solution
is developed by considering the problem geometrically. For the inverse kinematics problem,
the position of P is given, and in turn the position of C is known. Now consider, the surface
generated by the full range of motion of CB. It is a sphere centered at C. The full range of
motion of AB is a circle centered about A in the plane of motion of AB as shown in Fig. 4.
The solution of the inverse kinematics problem is found at the intersection of this circle and
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Figure 4: The two inverse kinematic solutions are shown for a single leg from a view looking
into the axis of rotation of A.
sphere. Four cases are possible.

1. Generic solution. The circle penetrates the sphere, resulting in two solutions.

2. Singular solution. The circle is tangent to the sphere, resulting in one solution.

3. Singular solution. The circle lies on the sphere, producing an infinite number of solu-
tions. This is unlikely since it requires the moving and stationary platforms to occupy
the same plane simultaneously.

4. No real solution. The circle and the sphere may not intersect at all.

With the geometry of the problem in mind, the algebraic solution is developed with the joint
angles and link lengths defined in Fig. 3. The position vector of point P for leg ¢ is given

by p; = [pzi:pyiapzi]T:
P = R (2)



where:

cos(fy;) —sin(fy;) 0
Ri: sin(90,~) COS(o(),;) 0 y
0 0 1
ro — 5 + 11 c08(61;) + 73 cos(B3;) cos(By; + 0a;)
g = T3 sin(03i)

T sin(@li) + 73 COS(93Z') sin(91,- + 921)

for i = 1,2,3. Equation (2) can be written as:
11 €08(61;) + 73 cos(83;) cos(61; + 0a;)

C; = T3 sin(03i) (3)
T sin(Hli) + 73 COS(031;) sin(ﬂli + 02;)

where ¢; = [cyi, Cyi, Cwi]” defines the position vector of point C in the UVW coordinate frame:

COS(QOi) sin(00i) 0 s —To
¢ = | —sin(fy;) cos(fy;) 0 | pi + 0
0 0 1 0

Hence, 05; is immediately found by solving the second element of Eq. (3):

63; = arcsin (%) , (4)

T3

resulting in two possible solutions for #;;. However, later it is shown that either of the two
solutions for 6;; results in the same physical pose for leg 3.

With 03; determined, an equation with 6;; as the only unknown is generated by summing
the squares of c,; and c, ;, eliminating 6y;:

72 c0s?(03i) = [cus — 71 c08(015)]% [cwi — 1 5in(61;)] . (5)
Substituting #3; into Eq. (5) produces:

r§ = cfn. + cﬁi +c2, + 13 — 211 [cyi cos(B1;) + Cus sin(6y;)] . (6)




To transform Eq. (6) into a polynomial expression, a half angle tangent substitution is

defined:
6hi
t1; = tan <71) , (7)

producing the following relationships, provided that 6; # +m:
. > e 2.
sin(6y;) = 1%5 and cos(fy;) = 17% . (8)

Substituting the relationships from (8) into (6), produces the following quadratic equation
in tlil

aits; + bty +di =0 (9)
where:
a;=c +c+cl 41 —r2 42y
bi = —4ricyi
di=c+c+c, +r—r3—2rcy .
Equation (9) is then solved for 6y; in terms of only known parameters:

—b: b2 — .
61; = 2 arctan ( b+ 21(); 4azdz) : (10)

(3

Two solutions for 6;; are produced by Eq. (9). These two solutions are independent of the
value of 65; which was determined from Eq. (4). This results in four solution sets for 6;; and
93'@'-

Once 61; and 03; are known, 6; is determined by back substitution into Eq. (3). For each
of the four solution sets of 6;; and 65; there is a single value obtained for 65;. Moreover, for
each solution of #;, the two associated values of 6,; differ by 7, while the sum of the two
associated values of 03; is w. By virtue of these relationships and the geometry of the leg,
each leg assumes the same physical pose for each unique 6;;. Hence, for each leg, the four
solution sets are realized in only two distinct poses.

The inverse kinematics solution is tested for special cases by examining Eq. (9). If
b? — 4a;d; > 0, then the two solutions correspond to the configuration where the circle swept
by AB intersects the sphere swept by CB in two locations. If b? — 4a;d; = 0, then the circle
and sphere are tangent, and the manipulator is in a singular position. If b7 — 4a;d; < 0, then
the circle and sphere do not intersect and there are no real solutions. If a; = b; = d; = 0,
then the circle lies on the sphere, and there are an infinite number of solutions.
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Figure 5: The sphere created by P’s range of motion.

4 Forward Kinematics

For the forward kinematics analysis, the input joint angles are 6;,, 6;2, and 6;3. Given these
joint angles, a set valued map f : 6;; — p is developed for i = 1,2, and 3.

First, consider the surface composed of all possible locations of P for leg 7 with a known
61;. The surface is a sphere centered at B’, which is a distance r5 from B in the direction
of CP, as shown in Fig. 5. Now, consider all three legs. P must simultaneously fall on all
the spheres created by the sweep of P for each leg. The intersection of these three spheres
represents the solution to the forward kinematics problem. In the generic case, there are
two solutions, since the intersection of two of the spheres forms a circle, which is generally
intersected by the third sphere in two locations as shown in Fig. 6. Four cases are possible.

1. Generic solution. The two solutions are realized at the intersection of a circle and a
sphere.

2. Singular solution. One sphere is tangent to the circle of intersection of the other two
spheres, hence there is only one solution possible.

3. Singular solution. The centers of any two spheres coincide, resulting in an infinite
number of solutions. This is an unlikely configuration for most practical embodiments
of the manipulator, except for the situation when 6y, = 013 = 013 = 3.

4. No solution. The three spheres do not intersect at a common point.
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Figure 6: The two forward kinematic solutions are shown at the intersection of the spheres
created by the range of motion of P for each leg.
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Algebraically, the solution is found by writing the equations that describe the three
spheres and then solving those equations for the points of intersection. An equation for the
sphere swept by point P for leg ¢ is:

=p2 + pz + p? — 2p,ry sin(By;) — 2p, cos(Bo;) [r1 cos(B1;) + o — 73]
— 2py sin(By;) [r1 cos(br;) + 1o — 75| + [r1cos(fy;) + 1o — 7”5]2 + 77 sin®(6s;) (11)

for 1=1,2, and 3.

The plane that contains the circle of intersection created by the spheres of leg 1 and leg
4, where 7 = 2 and 3, is found by subtracting Eq. (11) for 4 = 1 from Eq. (11) for ¢ = j:

a1;Pz + bijpy + c1;p, +di; =0 (12)
where:

= 2 cos(f;) [r1 cos(by;) + 7o — 73]
— 2c0s(fo1) [r1 cos(b11) + 19 — 73]
; = 2sin(fy;) [r1 cos(61;) + ro — 73]
— 2sin(0p;) [r1 cos(611) + ro — 73]
C1j = 27‘1 s1n(91j) — 27"1 sin(011)
dyj = [y cos(fn) + o — 5> + 77 sin?(611)
— [r1cos(6y;) + o — 75> — 72 5in?(8y;).
Equation (12) for j = 2 and 3 provides a system of equations that is linearly independent
as long as the centers of the spheres are not colinear, which is unlikely to be realized in
practical embodiments of the manipulator. This system of equations defines a line in R3
that must contain point P if there is a real solution. The intersection of this line with any
of the spheres described by Eq. (11) solves the forward kinematics problem. In this case,

solving Eq. (12), where j = 2 and 3, for p, and p, in terms of p, and then substituting the
resulting expressions into Eq. (11) for ¢ = 1, yields:

kop? + kipy + kg = 0. (13)

The coefficients for the quadratic are:

2 3
ko=1+ =%+ =,
l2 l5
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2ok | 2sls

b= - + - 2l cos(6p1)
2
_ # sin(6y;) — L sin(f1),
2
—_72_ 2 ﬁ —g I sin”
kz = ls T3 + 2 + 2 + T8 (911)
l2 l5
2yl 2rl
— =Pt sin(for) - = sin(0h),
Iy s

where:

ly = c12d13 — c13dss,
ly = ai13c12 — apzci3,
ly = b1ac13 — bizcia,
I3 = b13dyz — b1ads,
ly = a1ab13 — a13bya,
ls = b1aci3 — bizcio,
le = 11 cos(011) + 7o — 75,

and where a9, a13, big, b13, €12, €13, d12, and dy3 are defined in Eq. (12). The values for p, and
p, that correspond to p, are found by back substitution into Eq. (12).

The forward kinematics solution is tested for special cases by examining Eqgs. (12) and
(13). If the system of equations produced by Eq. (12) for j = 2 and 3, is linearly dependent,
then the centers of the spheres are colinear, resulting in either an infinite number of solutions
if the centers are coincident or no solutions if they are not coincident. If k% — 4koky > 0,
then two solutions are realized where the circle created by the intersection of two spheres is
intersected by the third sphere in two places. If k2 — 4koks = 0, then the circle created by
the intersection of two spheres is tangent to the third sphere. If k2 — 4koks < 0, then the
three spheres do not intersect at a common location, and there are no real solutions.

5 Workspace

The manipulator workspace is found by intersecting the workspaces of the individual legs.
A surface that bounds the workspace of leg i is found by setting the discriminant of Eq. (10)
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equal to 0:
b2 — da;d; = 0, (14)
where:

a;i=c4+ck+c +ri—12+ 2y

bi = —4’!‘10wi

di:cii+cﬁi+cﬁ,i+r% —T‘g — 2ricy; -
Equation (14) describes a torus with a central axis that is parallel to the revolute axis of
joint A for leg 7. Equation (14) is then expressed in a spherical coordinate system with
origin O’, as shown in Fig. (7). The coordinate transformation is accomplished by applying
the following substitutions: c,;= p;sin(a) cos(8), ¢y = p; sin(a) cos(B), and cy; = p; cos(c).
Assuming that the moving and fixed platforms are the same size so that ro = 5, Eq. (14) is
rewritten as:

pi + kaip? + k1ip? + kosp; = 0, (15)
where:

ko; = —8rirs cos(a) — 8ry73 cos(a),
k1; = 3r2 4 8ri7r3 + 272 + 12 cos(2a)
+4r173 cos(2a) + 273 cos(2a)
+r2 cos(2a) cos(28 — 264;) — 72 cos (26 — 264:)
kgi = —4 (r1 + r3) cos(c).
A graphical representation of the surface that bounds the manipulator workspace below

the XY plane is plotted by finding the minimum distance from the orgin of the spherical
coordinate system to the workspace boundry of any of the three legs p;, or the XY plane

Pay, 1.€.
p = min{py, p2, p3, Poy } (16)
where:

pi={p:P* +kup® + kup+ko; =0, peR},
T+ T3

Poy = cos(a)’
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A Portion of the Surface that
Bounds the Workspacs of
P as Constrained by Leg i

Figure 7: Spherical coordinate system transformation used to determine the workspace of P
associated with leg 1.
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Figure 8: Workspace of manipulator above XY plane with r; = r3 = 5.

T
0. —
ae | ,2],
B e [0,2m),
1= 1,2,3.

The workspace above the XY plane is symetrical to the workspace below the XY plane since
the manipulator kinematics are symetrical about the fixed platform. However, every point
on the XY plane is a self collision, so the usual workspace consists of points either above or
below the XY plane.

The workspace boundry above the XY plane for a manipulator with 7y = r3 = 5 is shown
in Fig. (8). The workspace above the XY plane for a manipulator with 7, = 4 and r5 =6 is
shown in Fig. (9) with a quarter removed to provide a view of the void at the origin that is
present whenever r; # 3.

6 Conclusion

In this paper, a novel parallel manipulator with three translational degrees of freedom is
presented. The general design of the manipulator is discussed, along with the mobility
that results from the unique link and joint configuration of the manipulator. Closed-formed
solutions for both the forward and inverse kinematics are also developed. These solutions
demonstrate that in general, there are two possible poses for the forward kinematics, and
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5

Figure 9: Workspace of manipulator above XY plane with r; =4 and r3 = 6.

two possible poses for each leg for the inverse kinematics. A geometric approach for both
the forward and inverse kinematics problem is also considered that provides some insights to
the nature of inverse and forward kinematics of this manipulator. An approach to determine
manipulator workspace is also presented for a manipulator with a fixed and moving platform
of the same size.
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