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There is a growing interest in utilizing graph formulations and graph-based

algorithms in different subproblems of genomic analysis. Since graphs provide a

natural and efficient representation of sequences of data where some structural

relationships are observed within the data, we study some graph applications in

quantitative analysis of typical RNA sequencing (RNA-seq) and Whole Genome

Sequencing pipelines.

Analysis of differential alternative splicing from RNA-seq data is complicated

by the fact that many RNA-seq reads map to multiple transcripts, besides, the an-

notated transcripts are often a small subset of the possible transcripts of a gene.

This work describes Yanagi, a tool for segmenting transcriptomes to create a library

of maximal L-disjoint segments from a complete transcriptome annotation. That

segment library preserves transcriptome substrings and structural relationships be-

tween transcripts while eliminating unnecessary sequence duplications.

First, we formalize the concept of transcriptome segmentation and propose an



efficient algorithm for generating segment libraries. The resulting segment sequences

can be used with pseudo-alignment tools to quantify gene expression and alternative

splicing at the segment level and provide gene-level visualization of the segments for

more interpretability. The notion of transcript segmentation as introduced here and

implemented in Yanagi opens the door for the application of lightweight, ultra-fast

pseudo-alignment algorithms in a wide variety of RNA-seq analyses.

Furthermore, we show how transcriptome quantification can be performed

from segment-level statistics. We present an EM algorithm that uses segment counts

as features to estimate transcripts relative abundances in a way that maximizes

the likelihood of the observed sequenced data. Then we tackle the problem of

quantification in an incomplete annotation setting. We propose an assembly-free

correction procedure that reduces bias in the estimated abundances of the annotated

transcripts caused by the presence of unannotated transcripts in an RNA-seq sample,

while avoiding the need to assemble the missing transcripts first.

Another use case of our graph segmentation approach is representing popu-

lation reference genome graphs used in Whole Genome Sequencing (WGS), which

can be crucial for some genomic analysis studying highly polymorphic genes like

HLA. Usually graph-based aligners are slow and computationally demanding. Us-

ing segments empowers any linear aligner with the efficient graph representation

of population variations, while avoiding the expensive computational overhead of

aligning over graphs.

Lastly, we explore the use of Generative Adversarial Networks (GANs) for im-

puting the sparse and noisy expression data obtained in single cell RNA sequencing



(scRNA-seq) experiments. scRNA-seq provides a rich view into the heterogeneity

underlying a cell population which is usually lost when performing bulk RNA-seq.

However, these datasets are usually noisy and very sparse, and a number of methods

have been proposed to impute zeros in these datasets with the goal of improving

downstream analysis. In this work, we propose an approach, scGAIN, to impute

zero counts of dropout genes in single cell data using Generative Adversarial Net-

works (GANs) by learning an approximation of the data distribution. The work

presented here discusses an approach to adopt GAIN, a GAN model developed to

impute data in image data, into the domain of imputing single cell data. Experi-

ments show that scGAIN gives competitive results compared to the state-of-the-art

imputation approaches while showing superiority in various aspects in simulation

and real data. Imputation by scGAIN successfully recovers the underlying cluster-

ing of cell sub-populations, provides sharp estimates around true mean expression,

reducing variability in the data, and increases the correspondence with matched

bulk RNA-seq experiments.
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Dedication

For Maha, Jannah and Fares!

For all healthcare workers who sacrifice a lot during pandemics!

For those who disembark into darkness hoping to create something

different,

it is a worthwhile adventure!
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Chapter 1: Introduction

1.1 Overview

Advances in research that studies human genomes to understand biological

systems in health and disease continue to grow. Research in that area faces signifi-

cant challenges not only from the fact that many of the problems in the area are not

well defined, with many latent factors that may play major roles in the study as-

sumptions and hypotheses, but also an inherent challenge in the tremendous amount

of data to be processed for many of the high throughput assays required to address

these problems.

With the rising age of BigData, some research efforts became dedicated to

developing algorithms and tools that are lightweight, ultra-fast and efficiently im-

plemented, capable of processing the huge amount of data available. The need

for both lightweight and accurate technologies is essential to remove bottlenecks

in the analysis pipelines. In addition, there is a growing interest in utilizing graph

formulations and graph-based algorithms in different subproblems of bioinformatics.

Since graphs usually provide natural and efficient representation of sequences of data

where some structural relationships are observed within the data, we explore some

graph applications in quantitative genomics. In addition, we plan to use some of the

1



graph features obtained into prediction models that uses state-of-the-art machine

learning approaches

1.2 Lightweight Approaches for Analyzing Short RNA-Seq Reads

Over the years, various approaches have addressed the joint problems of (gene

level) transcript expression quantification and differential alternative RNA process-

ing. Much effort in the area has been dedicated to the problem of efficient alignment,

or pseudo-alignment, of reads to a genome or a transcriptome, since this is typically a

bottleneck in the analytical processes that start with RNA-Seq reads and yield gene-

level expression or differentially expressed transcripts. Among these approaches are

alignment techniques such as bowtie [1], Tophat [2, 3], and Cufflinks [4], and newer

techniques such as sailfish [5], RapMap [6], Kallisto [7] and Salmon [8], which pro-

vide efficient strategies through k-mer counting that are much faster, but maintain

comparable, or superior, accuracy.

These methods simplified the expected outcome of the alignment step to find

only the sufficient read-alignment information required by the quantification step.

Given a transcriptome reference, an index of k-mers is created and used to find a

mapping between reads and the list of compatible transcripts based on each ap-

proach’s definition of compatibility. The next step, quantification, would be to

resolve the ambiguity in reads that were mapped to multiple transcripts. Multi-

mapping reads are common even assuming error free reads, due to shared regions

produced by alternative splicing. The ambiguity in mapping reads is resolved using

2



probabilistic models, such as the EM algorithm, to produce the abundance estimate

of each transcript [9]. It is at this step that transcript-level abundance estimation

still faces substantial challenges that inherently affect the underlying analysis.

The presence of sequence repeats and paralogous genes in many organisms

creates ambiguity in the placement of reads. More importantly, the fact that alter-

natively spliced isoforms share substantial portions of their coding regions, greatly

increases the proportion of reads coming from these shared regions and consequently

reads being multi-mapped becomes more frequent when aligning to annotated tran-

scripts (Figure 2.1 A-B). In fact, local splicing variations can be joined combinator-

ically to create a very large number of possible transcripts from many genes. An

extreme case is the Drosophila gene Dscam, which can produce over 38,000 tran-

scripts by joining less than 50 exons [10]. More generally, long-read sequencing

indicates that although there are correlations between distant splicing choices [11],

a large number of possible combinations is typical. Thus, standard annotations,

which enumerate only a minimal subset of transcripts from a gene (e.g. [12]) are in-

adequate descriptions. Furthermore, short read sequencing, which is likely to remain

the norm for some time, does not provide information for long-range correlations

between splicing events.

1.3 Gene and Transcript Expression Analyses

The standard RNA-seq pipeline for gene expression analysis depends on per-

forming k-mer based alignment over the transcriptome to obtain transcripts abun-

3



dances, e.g. transcripts per million (TPMs). Then depending on the objective of the

differential analysis, an appropriate hypothesis test is used to detect genes that are

differentially expressed. Methods that perform differential gene expression (DGE)

prepares gene abundances by summing the underlying transcript abundances. Con-

sequently, DGE methods aims at testing for differences in the overall gene expres-

sion. Among these methods are: DESeq2 [13] and edgeR [14]. Such methods fail

to detect cases where some transcripts switch usage levels while the total gene

abundance is not significantly changing. Note that estimating gene abundances by

summing counts from the underlying transcripts can be problematic, as discussed

in [15]. RATs [16] on the other hand is among those methods that target to cap-

ture such behavior and tests for differential transcript usage (DTU). Regardless of

the testing objective, both tests entirely depend on the transcript abundances that

were obtained from algorithms like EM during the quantification step to resolve the

ambiguity of the multi-mapped reads, which requires some bias-correction modeling

( [8,17]) adding another layer of complexity to achieve the final goal of gene analysis.

1.4 Alternative Splicing Analysis

Within a gene, the study of how certain genomic regions are alternatively

spliced into different isoforms is related to the study of relative transcript abun-

dances. Each local splicing event describes a possible variation of splicing of the

described genomic region. For instance, an exon cassette event (exon skipping) de-

scribes either including or excluding an exon between the upstream and downstream
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exons. Consequently, isoforms are formed through a sequential combination of local

splicing events. For binary events, the relative abundance of an event is commonly

described in terms of percent spliced-in (PSI) [18] which measures the proportion

of reads sequenced from one splicing possibility versus the alternative splicing pos-

sibility, while ∆PSI describes the difference in PSI across experimental conditions

of interest.

Several approaches were introduced to study alternative splicing and its im-

pact in studying multiple diseases. [19] surveyed eight different approaches that are

commonly used in the area. These approaches can be roughly categorized into two

categories depending on how the event abundance is derived for the analysis. The

first category is considered count-based where the approach focuses on local mea-

sures spanning specific counting bins (e.g. exons or junctions) defining the event,

like DEXSeq [20], MATS [21] and MAJIQ [22]. Unfortunately, many of these ap-

proaches can be expensive in terms of computation and/or storage requirements

since it requires mapping reads to the genome, and then processing the huge ma-

trix of counting bins. The second category is isoform-based where the approach

uses the relative transcript abundances as basis to derive PSI values. This direc-

tion utilizes the transcript abundance (e.g. TPMs) as a summary of the behavior

of the underlying local events. Cufflinks [4, 15], DiffSplice [23] and SUPPA [24, 25]

are of that category. Unlike Cufflinks and DiffSplice which perform read assembly

and discovers novel events, SUPPA succeeds in overcoming the computational and

storage limitations by using transcript abundances that were rapidly prepared by

lightweight k-mer counting alignment like Kallisto [7] or Salmon [8].
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A main drawback of SUPPA and other transcript-based approaches alike is

that it assumes a homogeneous abundance behavior across the transcript making

it prone to coverage biases. Previous work showed that RNA-seq data suffers from

coverage bias that needs to be modeled into methods that estimate transcript abun-

dances [17, 26]. Sources of bias can vary between fragment length, positional bias

due to RNA degradation, and GC content in the fragment sequences. Consider

the diagram in figure 1.1 with a case of two isoforms where isoform1 has higher

abundance than isoform2. Both isoforms involve two exon skipping events (E1, E2).

The diagram shows the read coverage over different regions of both isoforms with

exon E1 in particular has low relative coverage. Considering the real evidence of

reads supporting the first skipping event E1, gives an incorrect conclusion when the

overall abundances of the two isoforms involved is considered. More importantly,

transcript-based approaches fail to provide different measures of confidence for dif-

ferential analysis of events E1 and E2 since both events will have the same PSI

values, whereas there is a significant difference in coverage supporting both events.

1.5 Population Genome Reference

For next-generation sequencing (NGS), the task of read alignment and extrac-

tion is crucial to most downstream genome analyses. Linear aligners depend on a

genome reference that usually represent a single consensus haplotype, or a small

set of individual contig variations in case of alt-aware aligners [27]. With the sheer

diversity in genome sequences among individuals in many organisms like humans,
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Figure 1.1: Diagram illustrates the coverage bias problem with AS transcript-based
approaches. Given the two given isoforms where isoform1 has higher abundance
than isoform2. The diagram shows the read coverage over different regions of both
isoforms with exon E1 in particular has low relative coverage. Using the overall
transcript abundances gives PSI > 0.5 for the first skipping event E1, whereas
using the read evidence of the event gives PSI < 0.5. Additionally, using transcript
abundances gives equal PSI values for both events E1 and E2 without any measure
of confidence corresponding to their actual evidence.

the need to consider these characterized variations become inevitable to maintain

accuracy in targeted analyses like genotyping and disease phenotyping.

A typical genome reference is a monoploid representation of the average genome

during the assembly step. For example, a typical human genome differs from the ref-

erence genome at around 5.0 million sites [28]. Most sites encounter single nucleotide

polymorphisms (SNPs), short insertions or deletions (INDELs), and significantly

less frequent yet as important structural variants (SVs), with the actual number of

variants highly varies depending on the individual’s population [28]. Some genes

are especially rich with such variants like the highly polymorphic human leukocyte

antigen (HLA) genes. HLA genes encodes proteins that play a crucial role in the im-

mune system and many disease phenotypes, in particular, the HLA Class I (HLA-A,

-B, -C) and Class II (HLA-DQA1, -DQB1, -DRB1) genes, with over 3000 variants

seen in HLA-B alone [29]. Studying such genes is of high medical importance but

depending only on the reference genome for mapping sequenced reads is challeng-
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Figure 1.2: Examples of known HLA alleles. Three alleles from Class I genes and
two alleles of Class II genes. Red marks show genomic variants from the reference
sequence.

ing since a significant number of the reads are expected to have many mismatches

leading to low quality mapping or a significant loss of reads. This challenge makes

using a rather richer reference inevitable.

Since GRCH37 [30] attempts have been made to add several alternative scaf-

folds of some of the highly variable regions in the genome along with the primary

assembly into the reference. Now the current human reference (GRCH38.p12) has

261 alternate sequences covering 178 regions. However, not only this approach is

limited in the amount of data it provides, but also this approach fails at providing

homology relationships among the alternative sequences. It is very likely to have

multiple scaffolds share a major portion of their sequences, which leads to another

challenge where several reads can be multi-mapped.

Some recent projects are devoted into building more comprehensive catalogs of
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Figure 1.3: Yearly growth of IPD-IMGT/HLA database.

known genomic variants and providing it publicly. E.g. IPD-IMGT/HLA Database

[29] provides up to 4000 alleles for each class I gene, and up to 2000 alleles for class

II genes. Other projects like the 1000 Genomes Project [28,31] can be used to derive

similar information for other regions of the human genome. Although such archives

are rapidly growing, approaches in the field that efficiently utilize the available data

are scarce.

Consider the hypothetical example in figure 1.4 with a set of alleles, each has a

different set of variants. The sequence colors in the left panel shows how much of the

sequences is shared. So even without the presence of structural variants, it is appar-

ent that the alternative alleles share a common structure which branches over the

possible variations at the corresponding loci, hence a graph can be a reasonable and

efficient representation of these alleles. That observation ignited a growing interest

into developing graph representations of such rich references. Hence, more research
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Figure 1.4: Two directions to incorporate alleles into alignment. (Left) Linear
Approach: appends known alleles to the reference as decoy sequences. (Right)
Graph Approach: builds a graph of the reference and known alleles and perform
alignment over the graph.

now targets building graph-based aligners [32–34] either specifically over HLA genes

or the whole genome in general. Paten et. al. provides a review of the different ap-

proaches and tools to build genome graphs [35]. Unfortunately, graph-based aligners

are not mature yet facing a few challenges ahead. The lack of efficient implementa-

tions and algorithms make graph-based approaches very computationally expensive

for practical application.

1.6 Thesis Contributions

The work discussed in this thesis presents a line of research that addresses

the use of graph representation and algorithms in the kinds of genomic analyses

discussed above. The benefits of our work vary from providing faster and more

efficient pipelines, empowering available approaches with more capabilities or intro-

ducing new perspectives into existing challenges. We summarize the contributions

of our work in the following points:

• Introducing the concept of transcriptome segmentation and formulating the

definitions of segments and segment counts as summarized statistics of RNA-
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seq experiments that preserve a localized measure across the genome.

• Illustrating how our framework can be used to run analyses on the three reso-

lutions of RNA-seq: i.e. Gene-level, Transcript-level and Alternative Splicing-

level analyses.

• Empowering lightweight, ultra-fast pseudo-alignment tools like Kallisto or

Salmon with capabilities to provide alternative splicing measures that achieves

comparable accuracy to count-based approaches while maintaining the speed

and efficiency of such tools.

• Tackling the problem of transcript quantification under incomplete annotation

and propose a segment-based correction procedure to reduce the bias in the

estimated abundances present in such scenarios, without the need to assemble

the missing transcripts first.

• Introducing Yanagi an open source tool that provides an efficient RNA-seq

workflow where we implement most ideas present here.

• Bridging the gap between linear and graph alignment over whole genome pop-

ulation references and evaluating its benefits on handling allelic variations of

highly polymorphic genes like HLA genes.

• Proposing a generative model approach to impute single cell RNA-seq data to

correctly recover the missing values of dropout genes by adopting deep GANs

for that purpose.
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Chapter 2: Yanagi: Transcript Segment Library Construction for

RNA-seq Quantification

2.1 Overview

Messenger RNA transcript abundance estimation from RNA-Seq data is a

crucial task in high-throughput studies that seek to describe the effect of genetic or

environmental changes on gene expression. Transcript-level analysis and abundance

estimation can play a vital role in performing fine-grained analysis studying local

splicing events and coarse-grained analysis studying changes in gene expressions.

In this work, we propose a novel strategy that aims at constructing a set

of transcriptome segments that can be used in the read-alignment-quantification

steps instead of the whole transcriptome without loss of information. Such a set of

segments (a segment library) can fully describe individual events (primarily local

splicing variation, but also editing sites or sequence variants) independently, leaving

the estimation of transcript abundances as a separate problem. Here we introduce

and formalize the idea of transcriptome segmentation, propose and analyze an algo-

rithm for transcriptome segmentation, through a tool called Yanagi. To show how

the segments library can be used in downstream analysis, we show results of using
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Yanagi for gene-level and alternative splicing differential analysis.

2.2 Transcriptome Segmentation

Figure 2.1 shows a typical situation in RNA-seq data analysis and provides

an overview of the transcript segmentation strategy. In particular, it summarizes

how reads that would be multi-mapped when aligning to a transcript library would

be aligned to segments. In the latter case, all reads are aligned to a single target

sequence and read counts are obtained per segment without the need of probabilistic

quantification methods to resolve ambiguity. The next few subsections present a few

more specifics of the method for transcriptome segmentation in Yanagi [36, 37].

2.2.1 Segments Properties

Yanagi’s objective is to generate a minimal set of disjoint sequences (where

disjointness is parameterized by the experimental sequencing read length) while

maintaining transcriptome sequence completeness.

The following definitions are for a given transcriptome T, and parameter L.

Definition 1 A Segment

A segment seg defined by the tuple 〈exs, loc, w〉 is a genomic region of width w

beginning at genomic location loc and spanning the sequence of consecutive exonic

regions exs ∈ ExsT (either exons or retained introns). Exonic regions are considered

consecutive if they are consecutively spliced into at least one possible isoform in T.

The Width w of each segment in a segments library ST,L is at least L bases.
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Definition 2 Segments Sequences Completeness

The set of segments ST,L is Complete if and only if

seq ∈ ST,L;∀seq ∈ Substring(T ), len(seq) ≤ L

and

seq ∈ Substring(T );∀seq ∈ Substring(ST ,L)

Definition 3 L-disjoint Segments

Each segment in the set ST,L is L-disjoint if and only if

width[overlap(segi, segj)] < L;∀segi, segj ∈ S, i 6= j

The L-disjointness property restricts any pair of L-disjoint segments to have

an overlap region shorter than parameter L, which typically equals to the sequencing

read length. In other words, no read of length at least L can be mapped to both

segments of an L-disjoint segment pair, assuming error-free reads.

Another property of the generated segments is to be maximal. For seg :

〈exs, loc, w〉, denote Txs(seg) as the set intersection of annotated transcripts splicing

exons exs. We can define a subsumption relationship between segments as seg1 �

seg2 if and only if exs1 = exs2, loc1 = loc2, Txs(seg1) = Txs(seg2) and w1 > w2.

With this relationship we can define the following property of a segment library ST,L

Definition 4 Maximal Segments
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For each segment in the set ST,L to be Maximal

seg1 � seg2 ⇒ seg2 /∈ ST,L,∀seg1 ∈ ST,L

Thus, a maximal segment is the longest common sequence of genomic regions

starting at loc, such that these regions are spliced similarly, i.e. the entire sequence

belongs to the same set of transcripts. That is why in figure 2.1 (C) segment S5 is

extended to include two exons and their junction, while segment S2 is interrupted

by the different splicings of Tx1 and Tx2.

2.3 Yanagi’s Segmentation Algorithm

Given the transcriptome annotation (GTF format file) and the transcript se-

quences (FASTA format files) as input, Yanagi generates the set of segments and its

sequences (as a FASTA file) as the output of the segmentation process. Figure 2.1

(F) illustrates an example of how Yanagi perform transcriptome segmentation given

the splicing graph of a complex AS event studied in [22]. Recall, that in splicing

graphs, nodes represent genomic regions and edges represent how the regions are

spliced, while paths represent possible transcripts.

The transcriptome segmentation process can be summarized into three steps:

(1) Preprocessing the transcriptome annotation to obtain disjoint exonic bins, (2)

Constructing a Segments Graph (SgG), and finally (3) Generating the segment

library. Transactions in Figure 2.1 (F) represent these three steps.
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Figure 2.1: An overview of transcriptome segmentation and Yanagi-based
workflow. The leftside shows a typical RNA-seq example along with the output
from Yanagi. (A) Shows the example set of exons and its corresponding sequenced
reads. (B) shows the result of alignment over the annotated three isoforms spliced
from the exons. (C) shows the splice graph representation of the three isoforms
along with the generated segments from yanagi. (D) shows the alignment out-
come when using the segments, and its segment counts (SCs). (E) Yanagi-based
workflow: segments are used to align a paired-end sample then use the segments
counts for downstream alternative splicing analysis. Dotted blocks are components
of Yanagi. (F) Three steps for generating segments starting from the splice graph
for an example of a complex splicing event. Assuming no short exons for simplicity.
Step two and three are cropped to include only the beginning portion of the graph
for brevity.
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Figure 2.2: An example of naive segmentation based on exons and junc-
tions. Two cases are shown, each is represented using a splicing graph of two
transcripts, along with a set of possible RNA-seq reads and the generated segments
following the naive approach. (Left) The first case shows a simple case where the
naive approach successfully generates segments spanning all possible reads. (Right)
The second case shows a case of two short exons (E2, E3 of width k < L) where the
naive approach fails to span the given read.

2.3.1 1. Annotation Preprocessing

In our algorithm, exons and junctions serve as initial candidates for segment

generation. We apply a preprocessing step to eliminate exon overlaps present in

the transcriptome reference from events involving alternative 3’/5’ splice sites, or

transcription start/end sites. This step ensures that any splicing event is occurring

either at the beginning or the end of a genomic segment, which makes the process

of generating L-disjoint and max covering segments easier. The preprocessing step

is independent from the parameter L, so it can be done only once per transcriptome

reference. We implemented the preprocessing step based on the GenomicRanges

package in R , specifically, the disjoin function, which takes less than a few seconds

to run on the human genome.
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2.3.2 2. Constructing Segments Graph

Currently Yanagi builds a separate segment graph for each gene, since there

are no alternative splicing events between transcripts of different genes. However,

future work may use segment graphs that connect different genes sharing regions of

identical sequence length L or greater, but we have yet to address this.

Definition 5 Segment Graph

A segment graph GT,L is an acyclic directed graph defined by the pair (N,E),

where N is a set of nodes representing segments, and E is the set of directed edges

between the nodes. An edge e : (ni, nj) ∈ E is created if the segment corresponding

to node ni directly precedes the segment corresponding to node nj in some transcript.

Definition 6 Segment Node

A segment node n is a vertex in segment Graph G that represents a seed of

an L-disjoint segment such that wn ≥ L. A maximal segment may consist of one or

more consecutive segment nodes.

2.3.3 3. Generating Segments

While full details of the algorithm are given in Appendix B, here we present

a high-level description. For a given gene, the algorithm iterates over the set of

annotated transcripts in that gene. A cursor loc starting at the beginning of a

transcript slides over the sequence of genomic regions forming that transcript. Given

the current cursor location locn, a seed of the node n is initiated. Then a refinement

18



step, explained further in the next paragraph, is used to handle cases involving

exons shorter than L. The segment node is then added to the graph with the key

pair (exsn, locn) as the node identifier, and the cursor loc is advanced to the new

location. It should be noted that the out-degree of each segment node corresponds to

the number of upcoming alternative splices. The final step is generating the actual

segments. Any segment with an out-degree greater than one is a candidate start of

a segment. Each possible path beginning at a start-segment node till the following

start-segment node (or a leaf node) produces an output segment. See Figure 2.1

(F) and Appendix B for the full details of the segmentation algorithm. It is worth

mentioning that a segment graph may look like a de Bruijn graph (DBG) that is

commonly used in assembly problems. However, a path of nodes in DBG represents

a sequence of k-mer components while a path of nodes in SgG represents a sequence

of genomic regions spliced into an isoform. As a result, the DBG built from the list

of transcripts and the DBG built from the list of segments should be identical, since

both graphs represent the same sequences of nucleotides.

Back to the issue of short regions which raises the possibilities of generating

segment nodes of length L spanning more than two exonic regions. Once the key

pair (exsn, locn) is determined, the node refinement step determines the extent of

that node and how the cursor loc should be advanced in order to preserve the

L-disjointness constraint. Figure 2.3 shows a diagram of how a segment node is

refined. The logic behind the refinement step is aggregating the sequence of nodes

expected to be created spanning the same set of regions exsn; since it is guaranteed

that there are no splicing events occurring between the start and end of region
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Exn, the next necessary segment node would be the node spanning part of Exn+1.

Consequently, the new location of the cursor loc would be the location where the

first segment spanning Exn+1 starts. That aggregation improves the time and space

complexity of the algorithm as it reduces the number of generated nodes and avoids

shredding the genome in dense areas of short exons which may impose a problem

in the quantification step as discussed in next subsection. In fact, the refinement

step ensures that for every distinct value of exs, there is a maximum of two segment

nodes generated and that reduces the algorithm complexity by factor of L.

As an attempt to analyze the complexity of the algorithm, we can estimate

a loose upper bound of the number of segment nodes N in G. Consider a gene

with Tg transcripts and Eg disjoint genomic regions (obtained by the preprocessing

step), where the maximum width of such a region is wmax. Recalling the property

mentioned in the previous paragraph, that a maximum of two nodes can be generated

for the same set of regions, a segmentation iteration for a transcript that spans

Et ≤ Eg regions can generate 1 < o(Et −
⌈

L
wmax

⌉
) < o(Et) segment nodes. That

gives the upper bound of o[
∑

Tg
(Et −

⌈
L

wmax

⌉
)] or o[Tg.(Eg −

⌈
L

wmax

⌉
)] for N . That

means the time and space complexity of the graph construction increases when

using lower values of parameter L, or with organisms of longer and more complex

transcriptome structure. Table 2.1 shows time and memory analysis for constructing

the segments library for two organisms used in our later analysis. The results show

that running Yanagi is an efficient and fast process that does not add a burden in

terms of time and space requirements.
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Figure 2.3: Diagram illustrates the node refinement step, for a node spanning n
genomic regions. The step determines the extent of the node and how the cursor
loc should advance in each of the two candidate cases.

Table 2.1: Running time (seconds) and memory usage (gigabytes) by Yanagi to
generate segment library for fruit fly (Dm6) and human (Hg38) genomes, for both
the preprocessing and segmentation steps. Time for the preprocessing step does not
include the time to load the FASTA and GTF files. Most of the memory usage is from
loading the input data in both steps. Running on a 6-core 2.1 GHz AMD processor,
using single-threaded processes. The lower half shows the time and memory usage
for running quasi-mapping step in RapMap [6] using either the segments library or
the full transcriptome, to quantify samples of 40M paired-end reads, each of length
101bp.

Dm6 Hg38

time(s) memory(GB) time(s) memory(GB)

Preprocessing 13 0.9 112 1.5
Segmentation

L=40 20 0.4 248 1.3
L=108 20 0.4 250 1.3

L=1000 20 0.4 228 1.3
L=10000 8.5 0.4 77 1.3

Rapmap Indexing
L=108 103 0.8 420 2.6

Txs 121 1.1 480 3.7
Rapmap Quantification

L=108 236 0.7 220 2.1
Txs 292 1.2 416 3.1
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2.4 Yanagi-based Workflow

Figure 2.1 (E) gives an overview of a Yanagi-based workflow which consists of

three steps. The first step is the transcriptome segmentation, in which the segments

library is generated. Given the transcriptome annotation and the genome sequences,

and for a specific parameter value L, Yanagi generates the segments in FASTA

file format. This step of library preparation is done once independently from the

samples. The second step is the alignment step. Using any k-mer based aligner e.g.

kallisto or RapMap, the aligner uses the segments library for library indexing and

alignment. The outcome of this step is read counts per segments (in case of single-

end reads) or segment-pair counts (in case of paired-end reads). These segment

counts (SCs) are the statistics that Yanagi provides to be used in any downstream

analysis. The third step depends on the specific target analysis. Later on this work,

we describe two use cases where using segment counts shows to be computationally

efficient and statistically beneficial.

2.5 Analysis of Generated Segments

For practical understanding of the generated segments, we used Yanagi to build

segment libraries for the fruit fly and human genomes: Drosophila melanogaster

(UCSC dm6) and Homo sapiens (UCSC hg38) genome assemblies and annotations.

These organisms show different genome characteristics, e.g. the fruit fly genome

has longer exons and transcripts than the human genome, while the number of
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transcripts per gene is much higher for human genome than the fruit fly. A summary

of the properties of each genome is found in [38].

2.5.1 Sequence lengths of generated segments

Since L is the only parameter required by the segmentation algorithm, we tried

different values of L to understand the impact of that choice on the generated seg-

ments library. Recall that the choice of L is based on the expected read length of the

sequencing experiment. For this analysis we chose the set L = (40, 100, 1000, 10000).

Figure 2.4 shows the histogram of the lengths of the generated segments com-

pared to the histogram of the transcripts lengths, for each value of L, for both fruit

fly (left) and human (right) genomes. The figure shows the expected behavior when

increasing the value of L; using small values of L tends to shred the transcriptome

more (higher frequencies for small sequence lengths), especially with genomes of

complex splicing structure like the human genome. While with high values of L,

such as L = 10, 000, the minimum segment length anticipated tends to be higher

than the length of most transcripts, ending up generating segments such that each

segment represents a full transcript.

2.5.2 Number of generated segments per gene

Figure 2.5 shows how the number of generated segments in a gene is compared

to the number of the transcripts in that gene, for each value of L, for both fruit fly

(left) and human (right) genomes. A similar behavior is observed while increasing
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Figure 2.4: Histogram of transcripts lengths vs. segments lengths for both fruit
fly (left) and human (right) genomes, with different values of L (40, 108, 1000,
10,000). Dotted vertical line represents the used value of L during the transcriptome
segmentation.

the value L, as with the segment length distribution. The fitted line included in

each scatter plot provides indication of how the number of target sequences grows

compared to the original transcriptome. For example, when using L = 100 (a

suitable value with Illumina’s short reads), the number of target sequences per gene,

which will be the target of the subsequent pseudo-alignment steps, almost doubles.

It is clear from both figures the effect of the third step in the segmentation stage.

It is important not to shred the transcriptome so much that the target sequences

become very short leading to resulting complications in the pseudo-alignment and

quantification steps, and not to increase the number of target sequences leading to

increasing the processing complexity of these steps.

2.5.3 Library Size of the generated segments

As a summary, Table 2.2 shows the library size when using segments compared

to the reference transcriptome in terms of the total number of sequences, sequence

bases, and file sizes. The total number of sequence bases clearly shows the advan-

24



Figure 2.5: Number of transcripts vs. number of segments, per gene, for both fruit
fly (left) and human (right) genomes, with different values of L (40, 108, 1000,
10,000). The figure shows how a fitted line (solid blue) compares to the identity line
(dotted black).

tage of using segments to reduce repeated sequences appearing in the library that

corresponds to genomic regions shared among multiple isoforms. For instance, using

L = 100 achieves 54% and 35% compression rates in terms of sequence lengths for

fruit-fly and human genomes, respectively. The higher the value of L is, the more

overlap is allowed between segments, hence providing less the compression rate.

Moreover, that necessarily hints on the expected behavior of the alignment step in

terms of the frequency of multi-mappings.

Table 2.2: Library size summary of the generated segments for fruit fly (Dm6) and
human (Hg38) genomes

Txome
Segments

L = 40 L = 100 L = 1000 L = 10000

Dm6
Number of bases (Gb) 90 39 41 71 90
Number of Sequences 34,681 54,680 53,694 48,741 34,625

FASTA File Size (MB) 89 44 47 76 92

Hg38
Number of bases (Gb) 278 147 181 308 281
Number of Sequences 182,435 544,991 541,361 264,083 183,165

FASTA File Size (MB) 276 206 239 338 302
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2.5.4 Impact of using segments on Multi-mapped Reads

To study the impact of using the segments library instead of the transcriptome

for alignment, we created segments library with different values of L and observed

the number of multi-mapped and unmapped reads for each case and how it is com-

pared to when the transcriptome is used. We used RapMap [6] as our k-mer based

aligner, to align samples of 40 million simulated reads of length 101 (samples from

the dataset discussed in Datasets section) in a single-end mode. The experimented

values of L were centered around the value of L = 101 with more value points close

to 101 to test how sensitive the results are towards slight changes in the selection

of L. Figure 2.6 shows the alignment performance in terms of the number of multi-

mapped reads (red solid line) and unmapped reads (blue solid line), compared to

the number of multi-mapped reads (red dotted line) and unmapped reads (blue dot-

ted line) when aligning using the transcriptome. Using segments highly reduces the

number of multi-mapped reads. The plot shows that too short segments compared

to the read length results in a lot of unmapped reads. Consequently, choosing L to

be close to the read length is the optimal choice to minimize multimappings while

maintaining a steady number of mapped reads. It is important to note that the best

segments configuration still produces some multimappings. That is a result of the

presence of reads sequenced from paralogs and sequence repeats that are not tack-

led in the current version of Yanagi. However, using segments can achieve around

10-fold decrease in the number of multimappings.
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Figure 2.6: Alignment performance using Segments from hg37, tested for differ-
ent values of L, to align 40 million reads of length 101 (first sample in simulated
dataset 4.5. Performance is shown in terms of the number of multi-mapped reads
(red solid line) and unmapped reads (blue solid line), compared to the number of
multi-mapped reads (red dotted line) and unmapped reads (blue dotted line) when
aligning using the transcriptome.

2.5.5 The importance of maximality property

Recalling that the generated segments are maximal segments, as mentioned in

definition 2.2.1. It is the property that segments are extended as much as possible

between branching points in the segments graph. The purpose of this property

is to maintain stability in the produced segment counts; Since shorter segments

will inherently produce lower counts which introduces higher variability that can

complicate the downstream analysis. Figure 2.7 shows the distribution of coefficient

of variation (CV) of the produced segment counts from segments with and without

maximal property. To examine the effect of the maximal property, we simulated 10

replicates from 1000 random genes (with more than two isoforms) from the hg38

transcriptome using Ployester [39]. When segments are created without maximal
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Figure 2.7: Distribution of coefficient of variation for segment counts produced from
maximal segments versus segments without the maximal property enforced. Reads
of 10 replicates are simulated from 1000 random genes (with more than two isoforms)
from hg38 transcriptome.

property, the scatter plot clearly shows that maximal segments have lower CVs to

their corresponding short segments for a majority of points (40% of the points has a

difference in CVs > 0.05). That corresponds to generating counts with lower means

and/or higher variances if the maximal property was dropped.

2.6 Discussion

In this chapter we introduce Yanagi, an efficient tool that creates disjoint

segments of reference transcriptomes amenable for quantification of RNA-seq reads

using pseudo-alignment techniques. We have formalized the notion of transcrip-

tome segmentation and proposed an efficient algorithm for constructing L-disjoint,

max-spanning segments. We report on the characteristics of segment libraries in

Drosophila melanogaster and Homo sapiens and use the resulting segments in a use

case of differential analysis of exon skipping events across samples in two conditions
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of interest.

Although it may appear that the discussed Yanagi-based workflow can perform

quantification only for the annotated transcripts, the workflow can be extended to

discover unannotated transcripts. An unannotated junction can be detected during

the segment quantification stage by relaxing the restriction of accepting alignments

of a pair of reads only if the pair of segments belong to at least one annotated

transcript. When this restriction is relaxed, an unannotated junction can be detected

when reads show enough evidence of that junction. I.e. when a segment pair that

has no transcripts in common has high enough count. That problem is further

discussed in chapter 5.

Finally, the issues of paralogs and intersecting genes are not tackled in the

scope of this chapter. However, it is clear that there is no extra alignment complexity

added due to these issues over the transcriptome-based alignment. Consequently,

the occurrence of multi-mapping resulting from such cases also remains the same

as the transcriptome-based quantification. So, a warranted extension to the current

approach of Yanagi is to consider distinct genes that share identical exonic regions

of length greater than L altogether.

The concept of transcriptome segmentation, and a tool that can build a seg-

ments library, opens the door for more extended RNA-seq analyses which we will

discuss in the next few chapters. For instance, segment counts can serve as statistics

into algorithms for differential isoform usage analysis, for which existing pseudo-

alignment methods are commonly used. Moreover, segment level quantification can

provide much more flexible opportunities for analysis including quantification of
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RNA editing or other non-splicing variations. Currently we are exploring the possi-

bility of utilizing the concept of segmentation into the problem of variant calling.
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Chapter 3: Segment-based Gene Expression Analyses

3.1 Overview

A typical segment-based approach to do gene expression analysis would start

by performing k-mer based alignment over the segments library prepared earlier

by Yanagi using high-throughput tools like Kallisto, Sailfish or RapMap, to derive

segment counts (SCs). The segment counts are then used to perform differential

gene expression.

Our segment-based approach aims at breaking the coupling between the quan-

tification, bias modeling, and gene expression analysis, while maintaining the ad-

vantage of using ultra-fast pseudo-alignment techniques provided by k-mer based

aligners. When Aligning over the L-disjoint segments, the problem of multimapping

across target sequences is avoided and as a result the quantification step can be

dropped. Then the hypothesis test for differences across conditions are performed

on SCs count matrix instead of TPMs.
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3.2 Gene Expression Analysis: Kallisto’s TCC-based approach

Yi et al. introduces a comparable approach in [40]. This approach uses an

intermediate set defined in Kallisto’s index core as equivalence classes (ECs). Specif-

ically, a set of k-mers are grouped into an equivalence class (EC) if it belongs to the

same set of transcripts during the transcriptome reference indexing step. Then dur-

ing the alignment step Kallisto derives a count statistic for each EC. The statistics

are referred to as transcripts compatibility counts (TCCs). In other words, Kallisto

produces one TCC per EC representing number of fragments that appeared com-

patible with the corresponding set of transcripts during the pseudo-alignment step.

Then the work in [40] uses these TCCs to directly perform gene-level differential

analysis by skipping the quantification step using logistic regression. We will refer

to that direction as TCC-based approach. To put that approach into perspective

with our segment-based approach, we will discuss how the two approaches are com-

pared to each other.

3.3 Gene Expression Analysis: Comparison between segment-based

and TCC-based approaches

Both segment-based and TCC-based approaches avoid the quantification step

when targeting gene-level analysis. This is considered an advantage in efficiency,

speed, simplicity, and accuracy, as previously discussed. One difference is that

segment-based approach is agnostic to the alignment technique used, while TCC-
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based approach is a Kallisto-specific approach. More importantly, the statistic used

in segment-based approach is easily interpretable. Since segments are formed to

preserve the genomic location and splicing structure of genes, SCs can be directly

mapped and interpreted with respect to the genome coordinates. However, ECs

do not have a direct biological meaning in this sense. For instance, all k-mers

that belong to the same transcript yet originated from distinct locations over the

genome will all fall under the same EC, making TCCs less interpretable. While

on the contrary, these k-mers will appear in different segments depending on the

transcriptome structure. This advantage can be crucial for a biologist who tries

to interpret the outcome of the differential analysis. In the next section we show

a segment-based gene visualization that allows users to visually examine, for genes

determined to be differentially expressed, what transcripts, exons and splicing events

contributed to that difference.

Figure 3.1-bottom shows the number of segments per gene in Yanagi versus the

number of equivalence classes per gene in Kallisto. The number of equivalence classes

were obtained by building Kallisto’s index on hg37 transcriptome, then running

the pseudo command of Kallisto (Kallisto 0.43) on the 6 simulated samples in the

SwitchTx dataset (section 4.5).Note that, in principle there should be more segments

than ECs since segments preserve localization, however in practice Kallisto reports

more ECs than those discovered in the annotation alone in some genes. The extra

ECs are formed during pesudo-alignment when reads show evidence of unannotated

junctions.
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Figure 3.1: Segment-based gene-level differential expression analysis. Top ROC
curve for simulation data for DEX-Seq based differential gene-level differential ex-
pression test based on segment counts (SC) and Kallisto equivalence class counts
(TCC) for D. melanogaster and H. sapiens. Bottom Scatter plot of number of
segments per gene (x-axis) vs. equivalence classes per gene in Kallisto (y-axis) for
the same pair of transcriptomes.

34



3.4 Segment-based Gene Differential Expression Analysis

In this work we adopt the DEXSeq [20] method to perform segment-based

gene differential analysis. DEXSeq is a method that performs differential exon

usage (DEU). The standard DEXSeq workflow begins by aligning reads to a ref-

erence genome (not to the transcriptome) using TopHat2 or STAR [41] to derive

exon counts. Then, given the exon counts matrix and the transcriptome annota-

tion, DEXSeq tests for DEU after handling coverage biases, technical and biological

variations. It fits, per gene, a negative binomial (NB) generalized linear model

(GLM) accounting for effect of the condition factor and compares it to the null

model (without the condition factor) using a chi-square test. Exons that have their

null hypotheses rejected are identified as differentially expressed across conditions.

DEXSeq can then produce a list of genes with at least one exon with significant

differential usage and controls the false discovery rate (FDR) at the gene level using

the Benjamini–Hochberg procedure.

We adopt the DEXSeq model for the case of segments by replacing exons

counts with segments counts, the latter derived from pseudo-alignment. Once seg-

ments are tested for differential usage across conditions, the same procedure provided

by DEXSeq is used to control FDR on the list of genes that showed at least one

segment with significant differential usage.

We tested that model on simulated data (SwitchTx dataset in section 4.5)for

both human and fruit fly samples and compared our segment-based approach with

the TCC-based approach since they are closely comparable. Since the subject of
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study is the effectiveness of using either SCs or TCCs as a statistic, we fed TCCs

reported by Kallisto to DEXSeq’s model as well to eliminate any performance bias

due the testing model. As expected, figure 3.1-middle shows that both approaches

provide highly comparable results on the tested dataset. Recall that using segment

counts to test for differentially expressed genes adds to the interpretability of the

test outcomes.

Although that experiment was chosen to test the use of SCs or TCCs as statis-

tics to perform differential usage, different gene-level tests can also be performed on

segment counts. For instance, testing for significant differences in overall gene ex-

pression is possible based on segment counts as well. A possible procedure for that

purpose would be using DESeq2. One can prepare the abundance matrix by R pack-

age tximport [42], except that the matrix now represent segment instead of transcript

abundances. The next section shows how visualizing segment counts connects the

result of some hypotheses testing with the underlying biology of the gene.

3.5 Segment-based Gene Visualization

Figure 3.2 shows Yanagi’s proposed method to visualize segments and the

segment counts of a single gene with differentially expressed genes. The plot in-

cludes different panels combined, each showing a different aspect of the mechanisms

involved in differential expression calls. The main panel of the plot is the segment-

exon membership matrix (Panel A). This matrix plot shows the structure of the

segments (rows) over the exonic bins (columns) prepared during the annotation
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preprocessing step. Recall that an exon (or a retained intron) in the genome can

be represented with more than one exonic bin in case of within-exon splicing events

(Step 1 in section 2.3). Panel B is a transcript-exon membership matrix. It encap-

sulates the transcriptome annotation with transcripts as rows and the exonic bins

as columns. Both membership matrices together allow the user to map segments

(through exonic bins) to transcripts.

Panel C shows the segment counts (SCs) for each segment row. Panel D shows

the length distribution of the exonic bins. Panel E is optional. It adds the transcript

abundances of the samples, if provided. This can be useful to capture cases where

coverage biases over the transcriptome is considered, or to capture local switching

in abundances that are inconsistent with the overall abundances of the transcripts

The gene in figure 3.2 is on the reverse strand, that’s why the exonic bins axis

is reversed and segments are created from right to left. Consider segment S.0674

for instance. It was formed by spanning the first exonic bin (right-most bin) plus

the junction between the first two bins. This junction is present only at transcript

T.1354 and hence that segment belongs to only that transcript. In the segment-

exon matrix, red-colored cells mean that the segment spans the entire bin, while

salmon-colored cells represent partial bin spanning; usually at the start or end of a

segment with correspondence to some junction.

Alternative splicing events can be easily visualized from figure 3.2. For in-

stance, segments S.0672 and S.0671 represent an exon-skipping event where the

exon is spliced in T.6733 and skipped in both T.1354 and T.9593.
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Figure 3.2: Visualizing segments and segment counts of a single gene
with differentially expressed transcripts. It shows human gene EFS (Ensembl
ENSG00000100842, genome build Hg37). The gene is on the reverse strand, so the
bins axis is reversed, and segments are created from right to left. (A) Segment-
exonic bin membership matrix, (B) Transcript-exonic bin membership matrix. (C)
Segment counts for three control and three case samples, fill used to indicate seg-
ments that were significantly differential in the gene. (D) Segment length bar chart,
(E) (optional) Estimated TPMs for each transcript.

.
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3.6 Discussion

In this chapter, we illustrate how segment counts can be utilized as statistics

to perform gene expression analysis and provide comparable performance to one of

the state-of-the-art factorization techniques like Kallisto. Besides, we designed a

gene visualization plot that summarizes the RNA-seq experiment to provide better

interpretability of how the samples behave under that gene and provides insightful

combination of analysis outcomes on the levels of genomic regions, transcripts and

splicing events.
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Chapter 4: Segment-based Alternative Splicing Analysis

4.1 Overview

Our segment-based approach works as a middle ground between count-based

and transcript-based approaches. It provides local measures of splicing events while

avoiding the computational and storage expenses of count-based approaches by using

the rapid lightweight aligners that transcript-based approaches use. Our pipeline

begins by running k-mer based lightweight alignment tools like Kallisto over the

segments library prepared by Yanagi and obtain the segment counts. Yanagi’s script

is then used to map splicing events to their corresponding segments, e.g. each event

is mapped into two sets of segments: The first set spans the inclusion splice, and

the second for the alternative splice. Current version of Yanagi follows SUPPA’s

notation for defining a splice event and can process seven event types: Skipping

Exon (SE), Retain Intron (RI), Mutually Exclusive Exons (MX), Alternative 5’

splicec-site (A5), Alternative 3’ splicec-site (A3), Alternative First Exon (AF) and

Alternative Last Exon (AL).

Several approaches were introduced to study alternative splicing and its im-

pact in studying multiple diseases. [19] surveyed eight different approaches that are

commonly used in the area. These approaches can be roughly categorized into two
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categories depending on how the event abundance is derived for the analysis. The

first category is considered count-based where the approach focuses on local mea-

sures spanning specific counting bins (e.g. exons or junctions) defining the event,

like DEXSeq [20], MATS [21] and MAJIQ [22]. Unfortunately, many of these ap-

proaches can be expensive in terms of computation and/or storage requirements

since it requires mapping reads to the genome and subsequent processing of the

large matrix of counting bins. The second category is isoform-based where the ap-

proach uses the relative transcript abundances as basis to derive PSI values. This

direction utilizes the transcript abundance (e.g. TPMs) as a summary of the behav-

ior of the underlying local events. Cufflinks [4,15], DiffSplice [23] and SUPPA [24,25]

are of that category. Unlike Cufflinks and DiffSplice which perform read assembly

and discovers novel events, SUPPA succeeds in overcoming the computational and

storage limitations by using transcript abundances that were rapidly prepared by

lightweight k-mer counting alignment like Kallisto or Salmon.

One drawback of SUPPA and other transcript-based approaches alike is that

it assumes a homogeneous abundance behavior across the transcript making it sus-

ceptible to coverage biases. Previous work showed that RNA-seq data suffers from

coverage bias that needs to be modeled into methods that estimate transcript abun-

dances [17, 26]. Sources of bias can vary between fragment length, positional bias

due to RNA degradation, and GC content in the fragment sequences.

Another critical drawback with transcript-based approaches is that its accu-

racy highly depends on the completeness of the transcript annotation. As mentioned

earlier standard transcriptome annotations enumerate only a parsimonious subset of
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Figure 4.1: Diagram illustrating a problem with transcript-based ap-
proaches for calculating PSI in the presence of unannotated transcripts.
(Left) shows the truth, with three isoforms combining two exon skipping events
(E1, E2). However, isoform 3 is missing from the annotation. Reads spanning
both events are shown along their true source. Reads spanning an exon incluion
are colored green whereas reads spanning a skipping junction are colored orange.
(Right) shows the problem with PSI values from transcript abundance. Because
these two alternative splicing events are coupled in the annotation, their PSI values
calculated from transcript abundances will always be the same (ψTPM1 = ψTPM2 ),
even though the true values are not (Trueψ1 6= Trueψ2). Furthermore, changes in
the estimated abundances (TPM1, TPM2) make the calculated PSI values unpre-
dictable. Count-based PSI values (ψC1 , ψC2 ) on the other hand correctly reflect the
truth.

all possible sequential combinations of the present splicing events. Consider the dia-

gram in figure 4.1 with a case of two annotated isoforms (Isoform 1 and 2) whereas a

third isoform (isoform 3) is missing from the annotation. The three isoforms repre-

sent three possible combinations of two splicing events (skipping exons E1 and E2).

If the two events are sufficiently far apart in genomic location, short reads would

fail to provide evidence of the presence of isoform 3, leading to mis-assignment of

reads into the other two isoforms (Figure 4.1 right). That behavior can bias the

calculated PSI values of both events E1 and E2. Even if the mis-assigned reads

did not change the estimation of TPM1 and TPM2, the calculated PSIs for both

events can be significantly far from the truth. Further in this chapter we refer to

any pair of events that involves such behavior as coupled events.

Our segment-based approach works as a middle ground between count-based
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and transcript-based approaches. It provides local measures of splicing events while

avoiding the computational and storage expenses of count-based approaches by us-

ing the rapid lightweight alignment strategies that transcript-based approaches use.

Once the segment counts are prepared from the alignment step, Yanagi maps splicing

events to their corresponding segments, e.g. each event is mapped into two sets of

segments: The first set spans the inclusion splice, and the second for the alternative

splice (See Methods 4.2). Current version of Yanagi follows SUPPA’s notation for

defining a splice event and can process seven event types: Skipping Exon (Skipped

Exon (SE)), Retain Intron (Retained Intron (RI)), Mutually Exclusive Exons (Mu-

tually Exclusive Exons (MX)), Alternative 5’ splice-site (Alternative 5’ splice-site

(A5)), Alternative 3’ splice-site (Alternative 3’ splice-site (A3)), Alternative First

Exon (AF) and Alternative Last Exon (AL).

4.2 Segment-based calculation of PSI

While Yanagi uses the transcriptome annotation to prepare the segments along

with the splicing events, it generates mapping between each event and its corre-

sponding segments spanning the event. For each event, Yanagi takes into consid-

eration the transcripts involved and the event genomic coordinates to decide the

set of transcriptome segments that correspond to each of the two possibilities of

the splicing event. This step becomes complicated in case of overlapping events.

The current version of Yanagi selects segments that spans either the event exon or

junctions while the segment belong to at least one transcript that undergoes the
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corresponding splicing.

After alignment, Yanagi provides segment counts or segment-pair counts in

case of paired-end reads. For each splicing event, we calculate the PSI value of

event e in sample x as follows:

PSI(e, x) =

∑
s∈Si(e)

SC(s, x)∑
s∈Si(e)∪Se(e)

SC(s, x)

where Si(e) and Se(e) are inclusion and exclusion segments, respectively, and SC(s, x)

is the segment count in the sample. That means segment-based PSI values uses

reads spanning both the junctions and the target inclusion exon towards the inclu-

sion count. In fact, read counts will also include reads extended around the event

as long as the segment extends on both sides. This extension takes advantage of

situations where splicing events are near to include as much discriminative reads

into the counts to achieve higher levels of confidence when calculating PSI values.

4.2.1 Comparing Segment-based and isoform-based PSI values with

incomplete annotation

To show how the estimated transcript abundances in the case of incomplete an-

notations can affect local splicing analysis, we ran both SUPPA and Yanagi pipelines

on dataset simulating situations like the one in Figure 4.1. We simulated reads from

2454 genes of the human genome. A novel isoform is formed in each gene by com-

bining two genomically distant events in the same gene (coupled events) where the

inclusion of the first and the alternative splicing of the second does not appear in
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any of the annotated isoforms of that gene (IncompTx dataset in section 4.5). Af-

ter reads are simulated from the annotated plus novel isoforms, both SUPPA and

Yanagi pipelines where run with the original annotation which does not contain the

novel isoforms.

Figure 4.2 shows the calculated PSI values of the coupled events compared to

the true PSI values. It is clear how the PSI values for both events can be severely

affected by the biased estimated abundances. In SUPPA’s case, abundance of both

sets of inclusion and exclusion isoforms were overestimated. However, the error

in abundance estimates of inclusion transcripts were consistently higher than the

error in exclusion transcripts. Therefore, the PSI values of the second event were

consistently overestimated by SUPPA whereas PSI values of the first events were

consistently underestimated. Furthermore, splicing events involving the affected

isoforms will be inherently affected as well even when they were unrelated to the

missing transcript. This coupling problem between events inherent in transcript-

based approaches is circumvented in values calculated by Yanagi, and generally, by

count-based approaches.

Figure 4.3 shows the trends in estimation error of PSI across methods for the

2454 coupled events. ∆PSI of an event is calculated here as the difference between

the calculated PSI of that event obtained either by Yanagi or SUPPA, and the true

PSI. For each splicing event couple, a line connecting ∆PSI of the first event to

the second’s is drawn to show the trend of change in error between the first and

second event in each pair. We found that estimates by SUPPA drastically exhibit

a trend we refer to as overestimation-to-underestimation (or underestimation-to-
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Figure 4.2: The PSI values of 2454 coupled events formulating novel isoforms used
in data simulating scenarios of incomplete annotation, similar to figure 4.1. Each
novel isoform consists of combining the inclusion splicing of the first event and the
alternative (skipping) splicing of the second event. PSI values obtained by Yanagi
and SUPPA are compared to the true PSI values. Red points are measures of error
larger than 0.2. SUPPA tends to underestimate the PSI of the first event and
overestimate in the second event (43% of the points are red compared to only 7%
in Yanagi).

overestimation) in 50% of the pairs while 36% of the pairs showed minor errors

(∆PSI < 0.2). Yanagi’s estimates on the other hand showed the further trend only

in 7% of the pairs while 87% of the pairs showed minor errors.

4.2.2 Comparing Segment-based and isoform-based PSI values on

drosophila melanogaster

Based on known complexity and incompleteness of the Drosophila melanogaster

transcript annotation we examined an RNA-seq dataset of male fly head (available

online with GEO accession number GSM2108304) for evidence of similar behavior

to that studied in the previous simulation. Since the true PSI values are unknown,

we compare the trends of the difference in PSI between SUPPA and Yanagi. We
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Figure 4.3: Trends of error in event PSI values across methods. ∆PSI of an event is
calculated here as the difference in the calculated PSI of that event obtained either
by Yanagi, SUPPA, or the truth. For each coupled event, a line connecting ∆PSI of
the first event to the second’s is drawn to show the trend of change in error among
the first and second event in each pair. Overestimation-to-underestimation (and
underestimation-to-overestimation) trends are colored red. Orange colored trends
represent trends where both events were either overestimated or underestimated.
Trends with insignificant differences (|∆PSI| < 0.2) are colored grey.

add to the comparison the PSIs obtained from a count-based approach, rMATS.

The scenario studied in the simulation is just one possible scenario of missing

isoforms. More complex scenarios are likely to occur in real situations. Complex

scenarios may include missing more than one isoform or when the event coupling

problem involves more than two events. Such scenarios make detecting the full scale

of the problem more complicated. Here we focus on the issue of coupled events as

described in our simulation.

We follow the same analogy used in the simulation to define coupled events

and find candidate genes of at least one missing isoform that couples two sufficiently

distant events. By searching genes only in the forward strand and only events of

type SE, A3, A5, we found 172 candidate genes and pair of coupled events where

some splicing combination is possibly missing. Note that this candidate search is
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Figure 4.4: Trends in ∆PSI across methods Yanagi, SUPPA, rMATS for 172 cou-
pled events in candidate genes for incomplete annotation in drosophila melanogaster
(SRR3332174). Overestimation-to-underestimation (and underestimation-to-
overestimation) trends are colored red. Orange colored trends represent trends
where both events were either overestimated or underestimated. Trends with in-
significant differences (|∆PSI| < 0.2) are colored grey. Out of the 172 cases, 33%
showed Overestimation-to-underestimation (or underestimation-to-overestimation)
trends in Yanagi-SUPPA, 11% in Yanagi-rMATS, 29% in rMATS-SUPPA.

independent of the RNA-seq data, or the segment generation process. Figure 4.4

shows the trends in ∆PSI between Yanagi, SUPPA and rMATS for the 172 cases of

coupled events. Evidence of overestimation-to-underestimation trends were found

between SUPPA and both Yanagi and rMATS, suggesting a similar behavior to

the phenomenon present in our simulation (33% in Yanagi-SUPPA, 11% in Yanagi-

rMATS, 29% in rMATS-SUPPA). It should be noted that those 172 cases of coupled

events were only selected from part of the genome as candidates of one scenario of

missing isoforms which means it is very likely for more cases to exist at the scale of

the whole transcriptome. Figure 4.5 shows a scatter plot of the PSI values of full

list of events found in the transcriptome annotation.

We study the Bruchpilot gene (FBgn0259246) as a specific illustration of a can-

didate gene with coupled events exhibiting overestimation-to-underestimation trend
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Figure 4.5: Comparing PSI values calculated using Yanagi (SCs), rMATS and
SUPPA. Plots are stratified by event types on drosophila melanogaster sample
(SRR3332174).

in SUPPA’s ∆PSIs on Drosophila sample SRR3332174. Figure 4.6 shows three pan-

els: (top panel) the read coverage of the genomic region of the gene by IGV alongside

the 9 annotated transcripts, (bottom left panel) the segments visualization and its

counts along with the transcripts abundances estimated by Kallisto, (bottom right

panel) the PSI values of the coupled events E1, E2 calculated by SUPPA, Yanagi

and rMATS. The read coverage for both events supports Yanagi’s results rather

than SUPPA’s. The overestimation of one particular transcript, NM 001259298.2

(T.5059 in figure), can be one potential cause of such deviation. As the read cov-

erage panel shows, most of the reads supporting that transcript are in fact coming

from the first coding exon (its junction segment is highlighted grey) whereas the rest

of the junctions, e.g. the skipping junction in E1, does not show sufficient coverage
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supporting its high abundance estimated by Kallisto. One possible explanation is

that the annotation is missing isoform X (colored green on the top panel). It is the

same as the present transcript T.5059 except it combines the skipping splicing for

E1 and the inclusion splicing for E2. The inclusion of isoform X in the annotation

during transcript abundance estimation would have directed most reads aligned to

the first exon towards isoform X rather than T.5059 for a more consistent cover-

age over both transcripts. Consequently, SUPPA’s PSI values for both E1 and E2

would align better with Yanagi and rMATS values.

4.3 Comparing segment-based PSI values with counting-based and

isoform-based PSI values

Here we are comparing PSI values obtained from Yanagi versus counting-based

approaches like rMATS and isoform-based approaches like SUPPA on a very con-

trolled setting. In that setting, we expect no significant difference between measures

obtained from each of the three approaches. We used the simulation of switching

abundance dataset (SwitchTx dataset in 4.5). Since each tool provides separate

set of events, we focus our comparison on the intersection set of events between

SUPPA and rMATS. That includes events from five types of splicing events. Table

4.1 summarizes the number of events subject to the study. Two levels of filtering are

applied to observe how the different approaches behave in different scenarios. Non-

overlapping events is the smallest subset of events. Those events exclude complex

splicings where more than two splicings define the event. While highTPM events is
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Figure 4.6: The Bruchpilot gene in Drosophila melanogaster (SRR3332174) serves
as an example of a gene likely to have incomplete annotation. (Bottom-Right)
The PSI values of the coupled events E1 and E2 exhibit severe overestimation and
underestimation, respectively, by transcript-based approaches compared to Yanagi
and rMATS. (Top) illustrates read coverage across the gene prepared using IGV,
aligned with the 9 annotated isoforms. (Bottom-Left) The segments visualization
of the gene is compared to transcript-level expression (TPM) obtained from kallisto,
and the segment counts (normalized) from Yanagi’s pipeline. Refer to section 3.5
for details on this panel’s components. Postulating a isoform X (shown as a green-
colored track on the top panel) missing from the annotation explains the deviation
in both PSI values and the inconsistency in coverage across transcript T.5059.
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a subset of events in which inclusion and exclusion isoform levels are relatively high

(TPMinc > 1, TPMex > 1). This is a typical filtering criterion adopted by isoform-

based approaches. This filter excludes events involving isoforms of low levels of

expression which inherently suffer from low estimation accuracy. Note that when

complex events are included, they are treated as a set of separate binary events.

Table 4.1: Number of Events in GRCh37 common between MATS and SUPPA for
the five event types reported by both tools. Two levels of filtering are applied to
obtain three subsets. Non-overlapping events are the simplest events where there is
no more splicing other than the two possibilities defining the event. While highTPM
events are events where inclusion and exclusion isoform levels are relatively high
(TPMinc > 1, TPMex > 1).

Events Subset SE MX A3 A5 RI Total

Non-overlapping 4,180 68 1,435 885 323 6,891
HighTPM Events 9,756 354 2,327 1,483 793 14,713

All Events 13,650 1,024 3,131 2,053 1,711 21,569

Figure 4.7 (Top) shows a scatter plot of PSI values calculated by the three

approaches for all events. Separate plots for the filtered events in figure 4.8. Among

the five different splicing types exon skipping, alternative 3’ and alternative 5’ events

give the highest correlation between segment counts and rMATS approaches. In our

experiments we noticed that rMATS (v4.0.1) does not behave as intended for intron

retention events. We noticed that counts including junction reads only and counts

including both junction and intron reads (which we use in this study) are the same.

In other words, rMATS fails to report reads spanning the intron, which explains the

underestimated inclusion counts and PSI values for retained introns.

It should be noted that most count-based approaches require aligning to the

genome which is usually the bottle-neck process in the pipeline that some try to over-
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Figure 4.7: (Top) Comparing PSI values calculated using segment counts versus
rMATS (first row), segment counts vs SUPPA (second row) and rMATS versus
SUPPA (third row) on human samples from SwitchTx simulated dataset. Columns
indicate seven types of alternative splicing events. (Bottom) Comparing ROC
curves for differential alternative splicing using segment counts, rMATS and SUPPA
for simulation dataset of switched abundance. Plots are stratified by event types.
See Table 4.1 for number of events of each AS event type shown.
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come in the expense of storage by storing large intermediate data (BAM files). The

major motivation of transcript-based approaches is to achieve fast and light-weight

pipelines that is not that expensive in terms of time and memory. For instance,

even when using STAR, which is one of the fastest genome mappers in the field,

using pseudo-alignment tools can be several orders of magnitude faster (or efficient

in terms of storage and memory). That is why our segments approach is unique

in leveraging such light-weight tools that utilizes pseudo-alignment algorithms with

the capability of obtaining local measurements.

Table 4.2: Running time per sample (either single or paired-end reads) required by
three approaches: using Segment Counts (SCs), counting-based (rMATS), isoform-
based (SUPPA). Elapsed time is measured in minutes per pipeline including align-
ment/mapping step and the generation of PSI values (running using 64 threads
on Dual E5-2690 2.90GHz). Both SCs and SUPPA approaches use RapMap for
alignment, rMATS uses STAR.

Elapsed Time (mins) rMATS (STAR) SCs (RapMap) SUPPA (RapMap)

Single-End

Alignment 48 12 12
AS Quant < 1 < 1 < 1

Paired-End

Alignment 99 30 12
AS Quant < 1 < 1 < 1

Among the five different splicing types exon skipping, alternative 3’ and alter-

native 5’ events gives the highest correlation between segment counts and rMATS

approaches. In our experiments we noticed that rMATS (v4.0.1) does not behave

as intended for intron retention events. We noticed that counts including junction

reads only and counts including both junction and intron reads (which we use in

this study) are the same. In other words, rMATS fails to report reads spanning
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Figure 4.8: Comparing PSI values calculated using segment counts, rMATS (based
on STAR’s spliced alignment to genome) and SUPPA (based on estimated TPMs
from kallisto’s pseudo-alignment and quantification). Plots are stratified by event
types. Plots are shown for two subsets of filtered events: non-overlapping events,
events with high TPM in the annotation. See Table 4.1 for number of events of each
AS event type shown.

55



Figure 4.9: Comparing ROC curves for differential alternative splicing using segment
counts, rMATS and SUPPA for simulation dataset of switched abundance. ROC
curves are stratified by event types. See Table 4.1 for number of events of each AS
event type shown. Plots are shown for two subsets of filtered events: non-overlapping
events, events with high TPM in the annotation.
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the intron, which explains the underestimated inclusion counts and PSI values for

retained introns.

4.4 Segment-based Differential Alternative Splicing

Since the scope of this chapter is to introduce the use of segment counts as

a statistic for studying alternative splicing, we want to use the simplest statistical

model for differential splicing to exclude any advantage obtained by the model it-

self. In that matter we used the PSI values of the three approaches (SCs, rMATS,

SUPPA) as discussed in the previous section. Then we used a linear model for

differential hypothesis testing (implemented with Limma-voom R Package [43,44]).

However, more advanced models of differential analysis can be used instead. For

example, a similar model to SUPPA2 can be developed to test the significance of

∆PSI by considering all events genome-wide [25]. Figure 4.7 (Bottom) shows ROC

plots for sensitivity and specificity measures. Using segment counts achieves com-

parable performance to both rMATS and isoform-based approaches in that setting.

4.5 Simulation Datasets

Simulation of Switching Abundance (SwitchTx): We used the simula-

tion data provided by [38] for both fruit fly and human organisms (E-MTAB-3766).

Each dataset consists of six samples from two conditions. Each condition has three

replicates. The reads for the replicates are simulated from real RNA-seq samples, to

get realistic expression values, after incorporating a variance model and the change
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required between conditions. The simulation is restricted to protein-coding genes

in the primary genome assembly. The difference in transcript usage across condi-

tions was simulated in 1000 genes randomly selected from genes with at least two

transcripts and high enough expression levels. For each of these 1000 genes, the ex-

pression levels of the two most abundant transcripts is switched across conditions.

Refer to [38] for full details of the preparation procedure of the dataset.

Simulation of Incomplete Annotation (IncompTx): Starting from the

transcriptome annotation of the human genome, we searched for candidate cases

where one combination of splicing events can be missing from the annotation. For

a given gene, a combination of two splicing events (e1, e2) can form a candidate

case if two conditions are satisfied. 1) If the two splicing events (ordered by their

genomic coordinates) have at least one transcript common in their inclusion splicing

T inc1 ∩ T inc2 = T incc while there are no transcripts common between the inclusion of

the first event and exclusion of the second event T inc1 ∩ T alt2 = φ (which will later

form the missing isoform in that gene). 2) If the transcript sets T incc and T alt2 share

“long enough” contig in the splice graph between the two events. In our simulation,

we searched genes on the forward strand for only combinations of SE, A3, A5 typed

events. We used a cutoff of 100bp required for the common contig between the two

events to be long enough. 2454 genes were found as candidate cases of possible

missing isoforms and were used to simulate the data. In each of these genes a single

novel isoform is formed by combining the inclusion splicing path of the first event

with the alternative splicing path of the second event. Then we used polyester [39]

to simulate RNA-seq reads (100bp single end reads) including the novel isoforms
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which were given high expression levels.

Experiments run throughout the RNA-seq chapters used Ensembl GRCh37

and BDGP5 (unless mentioned otherwise) reference genomes and transcriptomes

for human and fruit fly annotations, respectively.

4.6 Discussion

Recent work done on alternative splicing, e.g. Whippet [45] and ASGAL [46],

may seem similar to Yanagi’s approach since they all rely on processing the splice

graph. ASGAL uses graph-based alignment approach to align reads directly into

the splice graph which may introduce more complexity processing and traversing

the graph. Whippet prepares and indexes what it defines as contiguous splice graph

(CSG) before linear alignment of reads is performed. Both methods are built solely

for the purpose of alternative splicing analysis. Yanagi’s motivation and objective

is different. It is important to note that the intent of this work is not to propose

another alternative splicing method, but rather to introduce a conceptual frame-

work that extends pseudo-alignment techniques through decoupling the alignment

and quantification steps to generate statistics suitable to a variety of downstream

analyses, including alternative splicing.

For the moment, analysts using ultra-fast pseudo-mapping will need to decide

if they prefer possible loss of performance in AS analysis from using only local

information, or from using an incomplete annotation. We believe that the results

we show in this chapter are informative in this situation. In Section 2.6, we showed
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how severely an incomplete annotation can decrease the correlation of PSI estimates

with the truth (0.6 compared to 0.9 when using segments). Incomplete annotations

are common in species with multiple introns per gene because the standard is to

report a parsimonious set of transcripts rather than a complete set that represents all

combinations of local splicing choices. We also showed in Section 2.8 an analysis on

simulated data where the annotation is complete comparing the performance of the

segments approach to an approach that makes use of information from other parts of

the transcript (SUPPA). We observed that segment-based PSIs, that didn’t use the

information in the other parts of the transcript unlike transcript-based PSIs, obtain

a 0.92 correlation with those PSI values estimated using that information. Given

these results indicating there is greater loss of performance when using an incomplete

annotation compared to the exclusive use of local information, we suggest that a

conservative approach based on segment counts, which is more robust to incomplete

annotation, is used for AS analysis.

Alternative Splicing (AS) methods that use transcript abundance, provided

that a complete transcript annotation and a transcript quantification method that

sufficiently addresses coverage bias across a transcript is used, can provide an ad-

vantage over methods that only use local information for AS analysis, including

AS based on segment counts produced by Yanagi. Nonetheless, as we discussed

elsewhere in the manuscript, there is no loss of information in segment counts and

they may be used to perform transcript quantification or as statistics into a AS

method that borrows information across splicing events to take advantage of their

correlation.
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This type of extension on the use of segment counts to perform transcript quan-

tification is a fruitful direction for future research. Another interesting extension

of our work would be to study the use of segments in discovering novel transcripts.

Using paired-end reads mapped to two segments that do not share any common

transcripts can be a potential direction.
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Chapter 5: Segment-based Transcriptome Quantification

5.1 Overview

One main advantage of the Yanagi-based pipeline is that it decouples the

transcriptome quantification task from the pseudo-alignment pipeline where it is

actually unnecessary for performing analyses on both alternative splicing and gene

level resolutions, leaving it only necessary when transcript-level analysis is targeted.

In this section we discuss a quantification approach that uses the segment counts

and their annotation structure to provide abundance estimates for the annotated

isoforms in the reference transcriptome.

5.2 Problem Definition

Given a set of annotated transcripts T , the set of segments S created by

Yanagi from that set of transcripts (i.e. Txs(si) ∈ T ;∀si ∈ S), and the segments-

to-transcripts mapping maintained in the metadata of the segments which we will
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represent by the indicator function

∀s ∈ S and t ∈ T : γ(s, t) =


1 if t ∈ Txs(s)

0 otherwise

In addition to the annotation information, the outcome of the alignment step

for each sample obtained in the form of segment counts (or segment-pair counts

in case of paired-end reads). We denote the set of segment counts as SC, where a

count of single segment si is denoted ci representing the number of fragments aligned

to segment si. Equivalently for paired-end experiments, a count of segment-pair

< si, sj > is denoted cij representing the number of fragments where one end aligned

to si and the other end aligned to sj. For the next few sections, we will describe

the model assuming single-end reads for simplicity, but the ideas are extended for

handling segment-pairs accordingly.

The objective of the quantification step is to correctly estimate the true relative

abundance of each transcript present in a sample. One quantity measure of relative

abundance is Transcripts per Million (TPM). For a specific transcript ti, to have a

relative abundance of TPMi means that in a collection of one million transcripts,

it is expected to have TPMi number of copies of transcript ti.

Similar to several state-of-the-art tools in the field [7–9], we adopt a generative

model for the RNA-seq reads as being sequenced from a certain transcript propor-

tional to the relative abundance of that transcript and its effective length. That is

the general model assuming no sequencing bias. However, in the presence of bias,
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the generative model is adapted to reflect the change in likelihood of generating

fragments from each position within the transcript. For the next section, we focus

on discussing the model on a bias-free assumption, leaving the bias correction into

a separate discussion later.

5.3 Segment-based Expectation Maximization (EM):

Denote: cs count for segment s, ˜̀
s effective length of segment s, and ˜̀

t effective

length of transcript t. With a generative model under equal probability across

transcript (no coverage bias), we define the probability that a read is generated by

transcript t as p(t) = θt. The conditional probability of transcript t to generate a

read in segment s is denoted p(t|s) ∝ θt
`t

. The likelihood function of a set of RNA-seq

fragments F can be defined using the following function L(θ) ∝
∏

f∈F
∑

t∈T γ̃(f, t) θt
`t

,

where γ̃(f, t) is a step function indicating whether fragment f is compatible with

transcript t [7].

In order to optimize the likelihood function, we use EM algorithm to itera-

tively optimize the parameters θ in a factorized fashion where fragments are fac-

torized into segment counts. The EM algorithm consists of two steps that are

performed iteratively until every transcript has a change in the number of assigned

reads ∆θiNg < 0.01 from an iteration to iteration or the maximum number of iter-

ations is reached.

E-Step: In this step, given the current estimates of θt, the algorithm computes
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the conditional probability p(t|s) as follows:

p(t|s) =
γ(s, t) θt˜̀

t∑
t′∈T γ(s, t′)

θt′
˜̀
t′

M-Step: In this step, given the current conditional probabilities, the algorithm

adjusts the parameters θi to maximize the likelihood of the observed segment counts:

θt =

∑
s p(t|s)cs
Ng

5.3.1 Implementation Details in Yanagi:

Unlike the factorization approach in current methods [7, 8] to use equivalence

class (EC) counts, the use of segment counts for factorized EM allows more genomic

location separation in most cases. Since most segments are gene-specific, that divides

the full-scale likelihood function that EM tries to optimize into a set of independent

subproblems on the gene level which can be a desired feature to achieve better

scalability through parallelism. The exceptions are cases where genes overlap or

generally share common sequences due to gene duplication or some other biological

causes. In such cases, the alignment steps will report some reads (hence read counts)

as multi-mapped to multiple segments that could come from one or more genes. In

such cases it is essential to run the EM for that cluster of genes together, in order

to resolve the ambiguity in assigning those multi-mapped reads to their most likely

gene and hence transcript.

Consequently, our implementation of transcriptome quantification first per-
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Figure 5.1: Histogram of the number of genes clustered together for individual EM
runs. Out of 56,515 genes present in the human annotation (genome build Hg37),
50,219 clusters were formed. 95% of the clusters contain a single gene, whereas there
is a single cluster with 70 genes.

forms a procedure while loading the annotation and segment counts information in

order to form data-driven clusters of genes. A cluster of genes is formed if a signifi-

cant read count is observed to be multi-mapped across segments from those genes (a

count of three or more reads has to be observed for it to be considered significant).

Once a cluster of genes is identified, a single call for the EM procedure is invoked

with the combined input from each gene. e.g. for a cluster C of the set of genes

gi, .., gk, the combined input includes Tc = ∪giTi, Sc = ∪giSi, SCc = ∪giSCi and

γc(s, t) = γgi(s, t) if s, t ∈ gi. Figure 5.1 shows the distribution of gene cluster sizes

formed from human genome (annotation Hg37) driven by simulation data described

in section

5.4 Preliminary Results (Complete Annotation Case):

In this section, we evaluate the performance of our segment-based quantifica-

tion against one of the state-of-the-art k-mer based methods Kallisto [7] on simu-
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Figure 5.2: Plotting estimated raw counts for each transcript (using Yanagi and
Kalisto) against the true counts in two simulated datasets, one with no coverage
bias and another with both positional and GC biases. Yanagi and Kallisto show
comparable performances.

lation data. We used Polyester [39] as a simulator to generate two datasets. One

without any biases, and another with two common sources of biases: positional bias

and GC bias [17].

Both current implementations of Yanagi and Kallisto do not have elaborate

model handling for such sources of biases, resulting into some drop in performance

in case of coverage bias. However, we believe our segment-based approach provide a

natural framework to account for these sources of bias since the count statistics are

based on location-preserving factors. Yet we leave tackling that challenge for future

extensions.
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5.5 Quantification with Incomplete Annotation:

In chapter 4 we started the discussion on the possibility of having incomplete

transcriptome annotation and its negative effect on transcript-based approaches for

alternative splicing analysis and showed an example of Drosophila melanogaster for

a known complex and incomplete annotation. Here we directly tackle that problem

since we are discussing transcript-level analysis.

Intuitively, the problem of incomplete annotation is plausible when dealing

with RNA-seq. One possible cause are issues arising from a transcriptome assem-

bly stemming from an its accuracy, comprehensiveness and parsimony. Annotation

completeness would also depend on the diversity of transcriptome data across tis-

sues used to construct it. These issues are more prevalent in complex and poorly

studied organisms. Another type of plausible causes could arise in the presence of

novel splicing events present in specific biological conditions of interest. Consider

some rare disease where cells undergo some novel splicing that is not present in the

reference annotation. Without a framework handles such possibilities, these cases

would go unidentified and may lead to wrong or biased conclusions. Hence, it is

essential to tackle those challenges.

5.5.1 Possible Missing Junctions:

A transcript is defined as a uni-directed sequence of splicing events of expressed

genomic regions (exons or retained introns) along the genomic axis. Therefore to

break down the problem of unannotated transcripts, it can be viewed as either (1)
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Figure 5.3: Diagram of possible scenarios of missing junctions from annotation.
Type I. only the junction splicing is missing. Type II. missing splicing position.
Type III. missing exon splicing (both the junction and the exon are missing)

missing one of more splicing events from the annotation, (2) having an unannotated

combination of individual annotated events, or (3) a combination of both cases

together. Figure 5.3 illustrates three possible cases of missing junctions from the

annotation. For the rest of this Chapter, we are focusing only on missing junction

type (1) where only the junction itself is unannotated as a proof of concept, leaving

the other more complex cases for future extensions of this line of research.

When considering the missing junction type (1) from the perspective of the

annotated transcripts, it could be viewed as one of two possibilities: either the

pair of exons on the two ends of the junction are never co-spliced (there is not a

single annotated transcript that splices-in both exons), or there is at least one such

transcript while the missing junction forms an immediate connection between the

two exons. The second case could be much more challenging to detect depending on

the difference in path distance between the annotated path and the missing path.

In other words, it would be much harder to detect if the two exons are a few bases

apart within some annotated transcript.

Our segment-based approach for novel junction discovery targets both cases

using paired-end reads. During the alignment step, fragments that are reported as

unaligned are further examined for the possibility of spanning a novel junction. If

both read ends are aligned to two different segments with high scores [47], whilst
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there was no common annotated transcript between the two segments, then that read

will be counted as an evidence of the first case. Whereas if a fragment was reported

as unmapped while both ends have alignments of high score yet it was rejected

by the aligner because that mapping doesn’t conform with the expected fragment

length distribution observed from the data, then it would be counted as an evidence

of the second case. Alignment step in Yanagi outputs a separate file containing such

counts in the form of segment-pair counts as counts for novel junctions which are

used as input in the quantification step.

5.5.2 Incomplete Annotation Bias:

To evaluate the bias effect of incomplete annotation on the performance of

state-of-the-art quantification methods, we performed a simulation procedure to

produce scenarios of missing junction type (1). We adopted that procedure on

human transcriptome Hg19 for experimental results on this chapter, however, the

same procedure could be extended to other genomes as well.

Simulation Setting: First task is to prepare a version of the annotation which

is incomplete by defining a set of transcripts to be dropped from the original an-

notation. That set of transcripts will represent the missing transcripts from the

annotation during the alignment. For a transcript to be considered as a candi-

date dropped transcript, it must have a unique junction of type (1). The segment

formulation facilitates identifying that uniqueness condition as follows:

∃si s.t. len(si) = 2(L− 1) and |Txs(si)| = 1 and @sj where Txs(si) = Txs(sj)
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Given the transcripts abundance profile of one sample from the dataset used in

chapter 3, we randomly selected transcripts to be dropped proportional to their

relative abundance (TPM) such that only one transcript is dropped from any given

gene and with at least TPM > 10. That criteria resulted on 944 genes with one

transcript to be dropped from each gene. The incomplete annotation is formed by

removing those selected transcripts from the full set of transcripts. Next step is to

simulate paired end reads from the full set of transcripts (i.e. using the complete

annotation) using polyester [39]. We generate two datasets, one with no bias and

another with positional and GC biases. That generates samples of around 38 million

pair-end reads per sample. Lastly, Yanagi is used to generate segments from the

incomplete annotation. That segments library will be used as the reference during

the alignment and quantification steps.

Quantification Performance

First, we want to stratify the resulting performance depending on the abun-

dance of the missing transcript. Based on the way the simulation setting is prepared,

we obtain the distribution shown in figure 5.4 of the relative abundances of the miss-

ing transcript (measured on TPMs) from the 944 genes.

Figure 5.5 shows a comparison between the performance of the quantification

process under complete or incomplete annotation on the same dataset defined earlier

in this section. We prefer to use the local transcript fraction θt [48] as our metric

here since it is normalized between 0 to 1 in order to show the bias impact on all

genes regardless of the total gene expression level. For transcript t in gene g the

local transcript fraction is calculated as θt = count(t)
count(g)

. The plot is stratified (columns)
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Figure 5.4: Histogram of the relative abundance of 944 transcripts removed from the
annotation to simulate genes with a single missing transcript. Three dotted vertical
lines show the stratification thresholds we use to distinguish performance on four
groups of genes.

Figure 5.5: Performance of quantification when complete and incomplete annotation
is used on the same dataset for Yanagi (left) and Kallisto (right). Points repre-
sent local transcript fractions within a gene. Each plot is stratified (columns) into
four groups according to the thresholds shown in figure 5.4. Red points represent
transcripts with absolute difference between true and estimated fractions > 0.25.
Pearson Correlations of Yanagi are 0.99 and 0.86 for complete and incomplete anno-
tation respectively. Pearson Correlations of Kallisto are 0.99 and 0.84 for complete
and incomplete annotation respectively.

into four groups according to the thresholds shown in figure 5.4. Performance clearly

suffers under the incomplete annotation setting. Both methods tend to overestimate

the abundance of many transcripts with more observed overestimations when the

missing transcript have a moderate to high abundance (e.g. more red points in the

second group than the first group even though the first group have more overall

points).
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These preliminary results show how bad the performance of standard quantifi-

cation approaches can get under the presence of unannotated transcripts in RNA-seq

data and that motivates our attempt to tackle that problem in the next few sections

to correct for incomplete annotation bias in transcript abundance estimation.

5.6 Incomplete Annotation Bias Correction:

The problem of removing the negative impact of quantifying over an incom-

plete annotation may sound difficult to be solved without attempting to assemble

the missing transcripts at first; since uniquely mapped reads to the missing tran-

scripts are likely to end up not being mapped while most ambiguous reads from those

transcripts will be aligned to other annotated transcripts ending up overestimating

their abundances to some extent because algorithms like EM prioritize assigning all

mapped reads to one annotated transcript. However, we take a different approach

to tackle that problem by trying to reduce that bias in the annotated transcripts

without attempting to assemble the missing set of transcripts. Yet another use of

segment-level counts from Yanagi is apparent in that challenge, showing the power

of our segment statistics and framework.

Since segments carry along their positional information within each transcript

that each segment is compatible with, that could provide a possible direct measure

of the observed read coverage within each transcript. We utilize that observation

to identify transcripts that have large differences between observed and expected

coverage across one or multiple regions of the transcript. In other words, segments
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Figure 5.6: Procedure for incomplete annotation bias correction based on segment
counts.

represent such regions and we calculate the expected and observed coverage and

hence the residuals in segment coverage ∆cov(si). The intuition is to calculate the

error in the estimated abundances of each transcript then adjust those abundance

estimates to minimize an error function guided by the calculated residuals in seg-

ment coverages and the novel segment-pair counts that provide evidence for missing

junctions (as discussed in Section 5.5.1).

Our bias correction procedure begins after the EM algorithm is run and for

genes with significant counts observed for a new segment-pair. That measure of sig-

nificance can be a user-defined parameter, or it can be calculated as a percentage of

the overall gene expression observed in the sample. Each of those genes is identified

as a candidate gene with possible incomplete annotation and the annotation bias

correction procedure is run. Figure 5.6 shows the steps of that correction procedure.

We define the abundance residuals for each transcript as δt = ˆthetat− θtruet where

ˆthetat is the estimated abundance from running EM. These residuals are used to
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minimize the error function shown in figure 5.6. That function consists of two er-

ror terms. The first term entails the abundance residuals to explain the difference

in coverage of the corresponding segments. The second term on the other hand

restricts the sum of the abundance residuals to match the coverage of the novel

junction discovered through the new segment-pair.

5.7 Preliminary Results (Incomplete Annotation Case):

As a preliminary experiment, we evaluate our correction approach over the

simulation data prepared as explained in section 5.5.2. Since the optimization func-

tion depends on the new segment-pair counts that are obtained from the alignment

step, we wanted to evaluate the strength of our correction model independently from

that junction discovery step. Therefore, we ran the correction procedure assuming

we have a perfect observation of that novel junction. We calculate sp0 from the true

abundance of the missing transcript. That would work as a practical upper-bound of

how well our correction model can get. Figure 5.7 shows the estimated abundances

(as transcript fractions) against the truth and compares that with the estimates

before correction. Our correction procedure was able to recover most overestimated

abundances leading to a Pearson correlation of 0.97 instead of 0.86 before correction.

Another essential aspect to evaluate is the dependency of the correction model

on the new segment-pair counts; how sensitive our model to that discovery step.

Thus, we calculated various levels of sp0 reflecting different observation efficiencies

during the junction discovery step. We calculated sp0 based on 100%, 70%, 50%,
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Figure 5.7: Performance of the correction procedure on simulation data (Corrected).
It shows the estimated abundances (as transcript fractions) against the truth and
compares that with the estimates before correction (Incomplete) and when the com-
plete annotation is used (Complete). The correction procedure was able to recover
most overestimated abundances leading to a Pearson correlation of 0.97 instead of
0.86 before correction.

30% of the true abundance of the missing transcript and ran our correction model

under each setting. Table 5.1 shows the Pearson correlation under each scenario.

The table shows a small drop in performance going from 100% to 70% or even

50% which is reassuring that our model is not highly sensitive to sp0 and it poten-

tially could have positive effect in reducing the annotation bias even if the observed

coverage of the novel junction was relatively far from its true coverage.

Table 5.1: Pearson correlation of the true and estimated abundances (transcript
fractions) after correction for incomplete annotation, under different levels of cal-
culated sp0. Each level represents if the new segment-pair is observed with a count
reflecting k% of the true abundance of the missing transcript. The correlation is
shown for 100%, 70%, 50%, 30% and no correction at all. Figure 5.8 shows the
scatter plots of estimated abundances for both 70% and 30% runs.

100% 70% 50% 30% No Correction

Pearson 0.97 0.96 0.95 0.93 0.86
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Figure 5.8: Performance of the correction procedure on simulation data given an
observed coverage of novel junction calculated from 70% (Top) and 30% (Bottom)
of the true abundance of the missing transcript.

5.8 Discussion

In this chapter we have shown how our Yanagi framework can be used to

perform transcriptome quantification. We have shown that using segment counts

as summarizing statistics of the RNA-seq sample can give comparable results with

k-mer based pseudo-alignment approaches in the regular cases of quantifying over

a complete annotation. Moreover, we tackled a more challenging case where tran-

scriptome quantification is performed in the presence of unannotated transcripts.

We have shown through simulations how algorithms like EM can overestimate abun-

dances of the annotated transcripts. Then we proposed a segment-based bias cor-

rection procedure that showed positive results an effectiveness on preliminary ex-

periments. Here we demonstrated a proof of concept of how the bias caused by the

incomplete annotation can be corrected without the need to perform assembly of
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the full splicing path of the missing transcripts. In order to establish more solid

conclusions, the experiments present here must be extended on real data, compar-

ing the performance with other assembly-based approaches and handle the other

possible cases of missing junctions.
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Chapter 6: Bridging Linear to Graph Alignment for Whole Genome

Population Reference

6.1 Overview

As mentioned in Chapter 2, the linear approach for building a population

genome reference is not preferred mainly for two reasons. First, it is very ineffi-

cient representation of sequences that inherently share a majority of their subse-

quences, especially with a large number of sequences. Consequently, the presence of

multi-mapped reads becomes more likely and adds ambiguity during quantification.

Second, it does not provide fine-grained information regarding the structure of the

alternative alleles which is essential when studying specific variants. The same two

challenges are present in RNA-seq.

In RNA-seq, the input graph that Yanagi processes is a splice graph where

vertexes mainly represent exons (expressed regions in the genome axis) and paths

represent transcripts. Whereas the sequences subject to Yanagi’s segmentation in

our case here represent alternative alleles instead of transcripts. Thus, the input

graph in our case would be both location and sequence dependent rather than being

solely location dependent. Fortunately, Yanagi’s method is agnostic of what the
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input graph actually represents. In other words, the same segmentation approach

can be adopted in problems where representing data as graph is desired yet pro-

cessing the graphs can be challenging. In that sense linearizing the graph can assist

in balancing the efficient structural representation of the data while maintaining

processing simplicity, regardless of what the vertexes and paths represent.

6.2 Population Alleles MSA Graph

We begin by projecting the population genome graph into a similar format

that Yanagi originally accepts as an input. First, we prepare the multiple sequence

alignment of the provided alleles. Some databases already provide the alleles’ MSA

(e.g. IPD-IMGT/HLA Database for HLA genes). If not available, MSA can be

derived given the list of variants (from VCF file) or by running some multiple se-

quence alignment algorithm offline over the list of available alleles. In the scope of

this chapter, we assume that the MSA data is already provided as an input to our

method. Figure 6.1 shows how our method takes the alleles MSA as an input to

construct a graph format similar to that which Yanagi accepts.

The first step is to build the equivalent graph representation (MSA Graph)

of the allelic sequences obtained from the MSA step (Figure 6.1 A). The MSA

Graph is constructed as a partial-order graph [49]. The MSA Graph is a sequence

of layers (dashed rectangles in figure 6.1 B) where a layer contains one or more

vertices reflecting the alternative sequences in the set of bases corresponding to that

layer. In other words, edges in the graph are formed exclusively between vertexes in
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adjacent layers, while no edges can exist between vertexes of the same layer. Note

that the graph is collapsed during construction to form a compact representation

with the least number of vertexes and edges. Thus, the width of a vertex (the

number of bases it represents) varies depending on the polymorphism of the region.

Each vertex is also labeled by the set of alleles containing this vertex’s sequence.

The projection of MSA graph into Yanagi’s standard graph is achieved by

applying two modifications into the MSA graph. First, we flatten the graph. By

flattening we mean eliminating the layered structure maintained during constructing

the graph. That can be obtained by sorting vertexes according to a breadth-first

search (BFS) traversal mechanism. The second modification is handling INDELs.

Recall that an INDEL is represented in the MSA sequences as a sequence of dots

in either reference allele (insertion) or in an alternative allele (deletion). INDEL

vertexes are eliminated from the flattened MSA graph and replaced by edges con-

necting the preceding and the following vertexes of the INDEL vertex. Note that,

unlike the original MSA graph, the flatten MSA graph may contain edges connecting

vertexes far apart, depending on the INDEL’s length and the polymorphism of the

region (Figure 6.1 C). Moreover, alleles labels are maintained by the edges in the

flattened MSA graph rather than vertexes in the MSA graph.

6.3 Segment-based Linear Population Genome Reference

For each gene, a flattened MSA graph is built and processed separately. Then

Yanagi is run to create a set of maximal L-disjoint segments as discussed in section
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Figure 6.1: The process of preparing the population graph into the graph format of
Yanagi. (A) Starts by preparing the alleles MSA. (B) Builds MSA Graph of each
genes’ alleles as a partial-order graph. (C) Flattening MSA Graphs and replacing
INDEL vertexes by new edges.

2.3. Segment sequences are reported into FASTA file along with some header infor-

mation regarding how the segment was formed, e.g. genomic coordinates and set of

alleles it belongs to, in addition to a segmentID reflecting its corresponding geneID.

The segments of each gene are then combined to form genes-specific or genome-

wide population reference. If segments were created for only a specific set of genes

(e.g. HLA genes), a genome-wide population reference is formed by combining the

segments of these genes and the reference sequence of the rest of the genome (exclud-

ing the regions of these genes). Figure 6.2 shows how a segment-based population

genome reference is formed by including allelic segments of two genes.

The resulting FASTA file can be considered an efficient linear reference of the

population genome which preserves the relative structure of different alleles and

maintains a sufficient level of disjointness between sequences. The segment-based

genome reference can be then used by any alt-aware alignment algorithm. After
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Figure 6.2: How a segment-based population genome reference is formed by in-
cluding allelic segments of two genes with the rest of the genome reference. (A)
shows the genome reference and the alternative alleles of two genes. (B) shows the
resulting segment-based population genome reference produced by Yanagi.

reads are aligned, the resulting BAM file is processed to extract reads mapped into

segments of the genes of interest. Extracting reads mapped to a specific gene can be-

come as easy as scanning the BAM file for alignment records with the corresponding

geneID.

6.4 HLA Segments Analysis

Our experiments in this chapter focuses on building segments-based linear

population genome for HLA genes. However, the same approach can be applied to

other genes as well. We obtained the set of alleles present from IPD-IMGT/HLA

Database (as of May 2018). For each HLA gene, its alleles MSA is used to build

maximal L-disjoint segments. In addition, we use the primary assembly in GRCH38

as our reference genome throughout the experiments.

Figure 6.3 shows the number of generated segments per gene (left) and the

distribution of the sequences length (right) for L = 150. One may have concern

that linearizing the graph may cause exponential growth in the number of segments
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Figure 6.3: Some characteristics of the generated segments (L=150) for
HLA genes (based on alleles from IPD-IMGT/HLA Database, May 2018).
(Left) The number of generated segments versus the number of alleles per gene. The
dotted line represents the identity line. (Right) Sequence length distribution of the
generated segments with a zoom over the third quartile of the skewed distribution.
Blue dotted line marks length=150. The distribution is bimodal with a peak at
length of 299 which corresponds to 1-base SNPs. 1-base SNPs generates a segment
spanning the SNP besides L-1 bases before and after the SNP. Segments falling into
the third quartile range mostly correspond to cases where consecutive variations
(including multi-base SNPs) are less than L bases apart. The distribution tail
beyond 300 mostly represent long genomic regions absent from variations.

generated. However, the left panel shows that the number of generated segments

grows linearly with the number of alleles per gene. On the other hand, the right

panel shows the length distribution of the segments. 75% of the segments are of

length within the range [L, 2L]. There is a peak at length of 299 (2L − 1) which

corresponds to 1-base SNPs. 1-base SNPs generates a segment spanning the SNP

besides L−1 bases before and after the SNP. In addition, most segments falling into

the third quartile range correspond to cases where consecutive variations (including

multi-base SNPs) are less than L bases apart. Whilst the distribution tail beyond

2L mostly represent long genomic regions absent from variations.

To study the final linear population genome generated from alleles of the six

HLA genes, Table 6.1 and Table 6.2 summarizes two factors: k-mers found and
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Table 6.1: Genome library size for the six HLA genes using reference+alleles con-
catenated and reference+segments (L = 150) in three metrics (reference-only and
graph-based library sizes are provided as a reference when applicable). In case of
graph, number of bases is estimated as the summation of bases of the graph nodes.

Reference Ref+Alleles Ref+Segments Graph

Number of bases (Gb) 0.045 9.25 2.39 0.048
Number of sequences 6 2,094 45,609 2,094
FASTA file size (MB) 0.03 10 2.4 NA

library size. In table 6.1, we compare the library sizes of the six HLA genes between

using reference+alleles concatenated, and reference+segments (L = 150) in three

metrics (reference-only and graph-based library sizes are provided as a reference

when applicable). The total number of bases with segments is 4x lower than linearly

concatenating alleles to the reference. Despite the increase in number of sequences

when using segments, these sequences are much shorter which reflects on a smaller

size FASTA file in case of segments.

Since we also target studying the use of segments with k-mer based lightweight

alignment approaches, it was important to study the number of k-mers found in

segments that are absent from the reference. Table 6.2 provides a detailed summary

for each of the six HLA genes. Even with the low value of k = 16, around 36% of the

k-mers found in alleles are novel to the reference. Consequently, it is expected for

k-mer based approaches to highly suffer if used to align reads to only the reference.

Whilst segments can empower such approaches with the new k-mers to achieve

better alignment accuracy. That is part of our next analysis.
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Table 6.2: Number of K-mers found in alleles of the six HLA genes (K = 16, 30, 60)
and the percentage of new k-mers not found in the k-mers table built from the
reference alone.

(ClassI) (ClassII)
HLA-A HLA-B HLA-C HLA-DQA1 HLA-DQB1 HLA-DRB1 Total

Number of Alleles 976 1,144 1,141 72 196 88 3,617

Segments 16-mers 19,115 18,865 20,691 19,274 26,830 53,076 148,764
New 16-mers (%) 45.7 49.8 49.6 19.2 40.7 27.9 36.6

Segments 30-mers 34,088 33,198 36,124 27,795 39,031 75,509 237,349
New 30-mers (%) 85.4 97.1 96.9 70.5 99.1 88.5 90.4

Segments 60-mers 68,483 67,837 72,026 39,699 56,232 105,267 403,371
New 60-mers (%) 93.7 99.7 99.6 82.8 99.8 95.6 96.1

6.5 Simulated Datasets

We prepared two simulated datasets to perform different perspectives of the

analysis. In both datasets, a sample is prepared by simulating reads from two alleles

for each gene selected from the HLA alleles database. Paired end Reads of length

100 are simulated using wgsim tool [50] with read coverage 40x.

The first simulated dataset (SimData1) simply contains just three samples.

Each sample represent different scenario. In the first sample, ClassI-Easy, reads

are simulated from only ClassI genes (-A, -B, -C) and alleles are manually selected

not much different from the reference. This would represent cases where a sample

is very close to the standard human genome. While in the second, ClassI-Hard,

alleles are selected to be relatively different from the reference. This sample would

represent divergent samples from the reference genome. The third sample, ClassII-

Hard, focuses only on ClassII genes (-DQA1, -DQB1, -DRB1). ClassII genes are

much more polymorphic than ClassI, so alleles in ClassII are more diverse and
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Table 6.3: Number of correctly aligned reads from simulated reads using: HISAT-
genotype (graph aligner), BWA-MEM (linear alt-aware aligner), and RapMap
(RNA-seq lightweight aligner). In case of both BWA-MEM and RapMap, results
are shown either when using only the reference genome or the reference combined
with Yanagi’s segments for the six HLA genes.

Num. HISAT- BWA-MEM RapMap

Reads genotype Ref Ref+Segs Ref Ref+Segs

ClassI-Easy 6,000 5,900 6,000 6,000 4,163 5,990
ClassI-Hard 6,000 5,966 5,797 6,000 3,553 5,990
ClassII-Hard 14,000 13,844 12,232 13,997 7,628 13,975

richer of variations.

The second simulated dataset (SimData2) aims at testing stability of results

when a sample read of the whole genome is tested. This dataset contains 10 simu-

lated samples. For each sample, two alleles were randomly selected from each of the

six genes (ClassI and ClassII), then reads simulated from the six genes are combined

with 2 million reads simulated from the rest of the genome.

Last experiment is done to test performance on real data by aligning reads

(2x151bp) from replicate of NA12878 obtained from Illumina’s NovaSeq: TruSeq

PCR-Free 350 library.

6.6 Extracting reads from Simulated Data

Here we target the problem of reads extraction for the six HLA genes and

the goal is to achieve high accuracy retaining reads sequenced from these genes.

The problem of read extraction is crucial to many further analyses including HLA

typing, since the more correct reads extracted for the genes, the more accurate the

prediction of the typing model.
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Table 6.4: Running time for alignment of sample NA12878 (24 threads on Dual
E5-2690 2.90GHz)

HISAT-genotype BWA-MEM RapMap
(Graph) (Ref+Segs) (Ref+Segs)

Running Time 20 hours 8 hours 2 hours

Table 6.3 shows the preliminary results of running different approaches on

simulated data (SimData1). The use of segments with linear aligners can boost

the read extraction efficiency. By examining the separate scenarios of each sample,

although the increase in the number of extracted reads may look insignificant for

the first sample (ClassI-Easy), since the reads were simulated from allele that is

not much different from the reference. Whereas the significance increases with the

second sample (ClassI-Hard) especially when using RapMap. While reference only

approaches misses a greater number of reads with the third sample (ClassII-Hard)

where alleles are from ClassII genes which are harder and denser in variants.

We also experimented on the second dataset (SimData2) to examine the sta-

bility of the different approaches with several different alleles randomly selected.

Figure 6.4 shows that aiding the two linear aligners with segments boot the method

recall (ratio of correctly extracted HLA reads) back to(or even slightly higher than)

the level of the graph aligner. Table 6.4 shows the difference in alignment running

time between linear aligners with segments versus graph aligner (HISAT-genotype)

that can reach up to 10x speedup.
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Figure 6.4: Simulation Dataset of 10 samples. Each sample of 56k HLA reads simu-
lated from two randomly selected alleles for each of the six HLA genes. Plot shows
recall rates of extracted HLA reads using 5 approaches: HISAT-genotype (graph
aligner), BWA-MEM (linear aligner) with HG38 reference only, BWA-MEM with
reference + HLA segments, RapMap (k-mer based lightweight aligner) with reference
only, RapMap with reference + HLA segments. Both linear aligners performance
are elevated compared to graph aligner when HLA segments are used.
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Chapter 7: scGAIN: Single Cell RNA-seq Data Imputation using

Generative Adversarial Networks

7.1 Overview

Until the recent advent of single cell methods, measurements of gene expression

based on RNA sequencing (RNA-seq) were obtained in bulk over a cell population.

Unfortunately, cell-to-cell variability in gene expression within the cell population is

lost when RNA sequencing is applied in bulk. Single cell RNA sequencing (scRNA-

seq) is designed to capture heterogeneity across cells within a cell population.

While providing a rich view into the heterogeneity underlying a cell population,

data generated by current scRNA-seq technologies are much noisier and sparser

than data obtained by bulk RNA-seq. Since the amount of mRNA captured from

individual cells is usually low, single-cell assays may fail to capture molecules from

transcripts with low-to-moderate expression in a considerable number of cells. Genes

suffering from this phenomenon are referred to as dropdown genes. Another observed

phenomenon is dropout (although recently shown to be less prevalent as originally

thought in the literature [51, 52], and see Appendix B) where transcripts fail to be

captured even in genes with high expression due to technical reasons. Furthermore,
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because single cell datasets usually include a heterogeneous population of cells, the

gene expression distribution in a single gene may show a large number of zeros as

some cell types express the gene and other cell types may not. In other words, a

gene expression can be observed as zero in a cell either due to biological (cell types

where gene is not expressed) or technical (low sampling or capture failure) reasons.

Typical downstream analysis of scRNA-seq data must deal with a highly sparse

expression matrix of about 80-90% zeros, arising due to a variety of factors, which

can bias the outcome of the analysis if dropouts are not carefully handled.

7.2 Related Work

Most clustering, cell type identification, and dimensionality reduction pipelines

incorporate methods to handle zeros in their models either through implicit im-

putation (e.g., CIDR [53]) or directly modeling the dropout phenomenon (e.g.,

ZIFA [54]). A different approach taken by other pipelines is to differentiate between

true zeroes (gene not expressed) and zeroes arising from dropdown and dropout.

Many statistical algorithms developed for imputation recently show effective-

ness in recovering dropouts. MAGIC [55], SAVER [56], and scImpute [57] are three

leading methods in the field. MAGIC builds a Markov transition matrix constructed

from a cell-to-cell similarity matrix. SAVER builds a Bayesian model to predict the

dropouts based on the information of the observed genes. scImpute builds a regres-

sion model for each cell and imputes only genes with high dropout rates within a

cell type by borrowing information from observed genes in that cell type. scImpute
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requires running cell clustering first to detect cell types before building its impu-

tation model. Most of these algorithms often demand expensive time and memory

resources limiting their application on very large single cell datasets.

Another category of single cell imputation models are based on deep neural

networks. DeepImpute [58] belongs to the category of predictive methods that uses

a feed forward neural network to predict a missing gene expression in a cell given the

observed values of genes that are highly correlated with that target gene. Recently, a

group of methods were proposed to target that problem inspired from the emerging

success of generative models. Among these methods are AutoImpute [59], scVI [60]

and DCA [61]. scVI uses stochastic optimization and learns cell-specific embed-

dings using deep neural networks that best explain the observed data, whereas both

AutoImpute and DCA uses autoencoders as their interior models. DCA encapsu-

lates data denoising by learning the parameters of a zero-inflated negative binomial

distribution using an autoencoder network. AutoImpute on the other hand trains

an autoencoder to learn a latent representation of the data in lower dimension in

hope that this representation will focus only on learning the important aspects of

the dataset and hence reconstructing a denoised matrix correcting zeros if appro-

priate. However, both approaches have some limitations. DCA assumes that the

dropout distribution follows a predetermined noise distribution which works well for

simulated data, it is not clear if these assumptions work well in real data [62]. As

for AutoImpute, it works on imputing only the top 1000 differential genes in the

dataset, leaving the majority of the genes without imputation.

Here we present a novel approach, scGAIN (Figure 7.2), that tackles the single
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cell imputation problem using Generative Adversarial Networks (GANs). GANs

use adversarial learning to build a generative model of the data distribution [63–65].

Generative models are powerful tools that not only learn the distribution of data, but

also generate synthesized data points that follow similar characteristics of the input

data. Despite some recent efforts on utilizing the powerful capabilities of GANs

into modeling scRNA-seq data [66, 67], they do not explore the usage of GANs to

impute zero values in single cell data. As a result, the data distribution learned

by these GANs, and thus data generated by them, will include the same dropout

phenomenon that affects the input data and suffer from the same sparsity problem.

In contrast, our proposed model modifies the standard GAN network architecture to

accurately and efficiently impute missing gene expressions due to technical dropdown

and dropouts in scRNA-seq data. Experimental results on simulated data show

scGAIN can accurately impute zeroes and provide better estimates of true mean

gene expression, and improves concordance between single cell and matched bulk

datasets. scGAIN scales to large scRNA-seq datasets with thousands and millions of

cells, which is infeasible for most existing statistical approaches. To our knowledge,

this is the first work done on using GANs to impute scRNA-seq data.

7.3 Single Cell Generative Adversarial Imputation Nets (scGAIN)

7.3.1 Generative Adverserial Networks

A standard GAN [63] consists of two network components: Generator and Dis-

criminator. The Generator network attempts to map samples from a low-dimensional
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Figure 7.1: Diagram of a standard GAN architecture. Generator G takes
low-dimensional random noise vector Z as input and generates a d-D sample Xg.
Discriminator D takes either a real sample X or a fake sample Xg and outputs
whether the input sample is real of fake.

high entropy distribution such as a Normal distribution, into a low-dimensional

manifold within the high-dimensional space from which data is observed. The Dis-

criminator network attempts to differentiate between samples from the real dataset

and fake samples generated by the generator. Both components are trained jointly

in an adversarial fashion where a min-max optimization problem forms a game be-

tween the generator and the discriminator. The generator’s goal is to generate fake

samples that are very close to the real samples such that the discriminator unable

to distinguish between them, while the discriminator’s goal is to learn the real data

well that it would be able to accurately distinguish fake from real samples. When

training converges, the generator would have reached a point that it can generate

fake samples resembling the real distribution such that the well-trained discrimina-

tor is no longer able to distinguish between a sample present in the dataset and a

sample generated by the generator.

Figure 7.1 shows a diagram of a standard GAN. Generator G takes low-
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dimensional random noise vector Z = (z1, z2, ..., zl); zi ∼ N (0, 1) as input and gen-

erates a sample Xg = (xg1, x
g
2, ..., x

g
d). Discriminator D takes either a real sample X

or a fake sample Xg and outputs whether the input sample is real of fake. A well-

trained generator can generate random samples that follows the same distribution

of X by drawing random values of Z. The training of a GAN typically tries to solve

the optimization problem

min
G

max
D

EX log[D(X)] + EZ log[1−D(G(Z))] (7.1)

7.3.2 GAIN Architecture and Model

In this section we briefly discuss the main changes that GAIN proposes. Figure

7.2 shows a diagram of the GAIN model we use for imputing dropouts in single cell

datasets.

The Generator (G)

The main goal of the generative model in GAIN is to learn to infer the missing

values in a sample X = (x1, x2, .., xk) for k features (genes) rather than focusing

on generating the entire feature vector. The generator takes as part of the input

a mask vector M = (m1,m2, ..,mk);mi ∈ {0, 1} dependent on X whereas mi = 0

marks dropdown and dropout genes. The top part in figure 7.2 shows how the

input to the generator is prepared. The vector X is prepared by filling the missing

values in X with random noise values from noise vector Z. The generator takes a

2k-dimensional vector by concatenating X and M . The output layer in generator
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network is a d-dimensional vector Xg where only the imputed values are of interest.

By combining the imputed values from Xg with the rest of the observed values X

we obtain X̃ which represent the generated sample from the generator and is fed to

the discriminator as input. It should be noted that even though the values of Xg

that doesn’t correspond to dropout genes are replaced by the true observed values

in X before given to the discriminator as input, the generator still gets penalized by

the prediction error in those values as part of the generator’s loss function optimized

during training as a measure of how well the generator learned the observed part of

the data.

The Discriminator (D)

Similar to the generator, the discriminator’s model in GAIN is different from

the standard GAN. The main difference is instead of having a single prediction of

whether the entire input sample is real or fake, GAIN’s discriminator gives separate

prediction of whether each component x̃i ∈ X̃ is real or fake given the entire sample.

Since the discriminator outputs M̃ tends to have zeros for weakly imputed values

and ones for true observed values, equivalently it tends to learn the mask vector M

itself. Yoon et al. [68] showed theoretically in their paper that the discriminator

needs as input what they called as a Hint Mechanism. A hint vector H must carry

”enough” information about M , otherwise there would be multiple solutions of G

that all can be optimal from the perspective of D. Whilst H should not be strictly

equal to M otherwise the discriminator may trivially converge to H. As shown

in figure 7.2 the hint component generates a small variation of M by setting a few

randomly selected values in M to 0.5. Components of M with 0.5 values say nothing
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Figure 7.2: An illustration of scGAIN’s GAN architecture and input prepa-
ration for scRNA-seq imputation. Top row describes how single cell dataset X
is processed to produce input vector X to the scGAIN network. The binary mask
vector M identifies which entries in the input matrix X are a target for imputation
(Mi = 0 if Xi = 0). To create input vector X, we fill imputation targets (where
Mi = 0) with random noise Zi, and fill the rest (where Mi = 1) with the original
data Xi. The bottom row sketches the overall architecture of the scGAIN model.
G is the GAN’s generator: given input vector X and mask M it generates synthetic
vector X̃ where imputation targets have been filled in. The hint generator produces
hint vector H as a perturbed version mask M by setting small portions of values
Mi = 0 to 0.5. D is the GAN’s discriminator: it’s task is to discriminate between
the synthetic vector X̃ and hint H. Entries H are unknown to the discriminator D
whether they were imputed or observed.
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about their corresponding values in X̃ and its the discriminator job to classify.

Objective Function

Along with the changes in the generator and discriminator models from a

standard GAN, the loss functions are also slightly different. First, the discriminator

no longer takes two sets of samples (real or fake). But rather for a given (imputed)

sample, the discriminator should distinguish between observed and imputed values

of that sample. Consequently, the discriminator’s objective function would be for a

given G:

max
D

EX̃,M,H{M � log[D(X̃,H)]+

(1−M)� log[1−D(X̃,H)]}
(7.2)

While the generator’s objective function would be for a given D:

min
G

: EX,Z,M,H{(1−M)� log[1−D(X̃,H)]}+

λEX,Z,M [M �X −M �G(X,M)]2
(7.3)

The first term in the loss function represents the cross entropy of the imputed

values of X̃. The second regularized term reflects a mean squared error (MSE) of

the observed values of X.

Imputation Mask Generation

During either training or imputation steps, a mask matrix is required to iden-
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tify which entries in the input matrix are a target for imputation. The mask marks

if an entry in the data matrix is missing, unless it belongs to a gene of zero or sig-

nificantly low mean expression determined by a parameter threshold θ. Therefore,

the mask value of gene i in cell j is determined as follows:

mij =


0, if xij = 0 and xi > θ.

1, otherwise.

(7.4)

where xi is the mean expression of gene i calculated from non-zero values.

Note that the threshold θ aims at keeping genes of true zeros out of the scope of

imputation.

7.3.3 scGAIN Stratified Training

Throughout our experiments, we noticed that the original GAIN [68] training

was not stable when directly applied to single cell data. In single cell, data is much

sparser (samples can have up to 95% zeros) compared to the standard application

of GAIN in image analysis (usually tested against up to 50% sparsity). In addition,

in single cell data, as opposed to image data, sparsity depends on values of the

observed data. Figure 7.3 shows the distribution of zeros in each gene with respect

to its mean expression calculated over non-zero observations in the data. Genes

with lower mean expressions are more prone to dropdowns.

During training, since most zeros in a sample belong to genes with low mean

expression, dropouts in genes of high expression (which are rare events) were poorly
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Figure 7.3: Distribution of zeros in each gene with respect to its mean ex-
pression calculated over non-zero observations in simulation data from figure 7.4
(Left) and PBMC (Right). Vertical dotted lines represent the different stratifica-
tion thresholds used during the training on each dataset. Red dotted lines represent
the zero cutoff, genes beyond that point were not attempted for imputation. In
PBMC, both horizontal and vertical cutoffs are used to stratify the really dense
area with low mean expressions, resulting in 7 stratification rounds.

trained. These genes are rarely selected by the hint mechanism to contribute to the

discriminator’s loss function, resulting in a generator with poor accuracy to impute

genes with rare dropout events. To remedy that issue, we stratify the training

process by applying an expression threshold to the genes that may be to be masked

for imputation. For example, during the first few epochs, the model trains to impute

only genes of high mean expression (i.e., dropouts), that controls the number of

zeros in the training mask and gives genes with rare sparsity to be learned first

(section imputation mask generation). Then gradually the threshold is reduced to

include more and more genes with higher sparsity rates (i.e., dropdowns). Figure

7.3 shows vertical lines with different stratification thresholds used during training

on simulated dataset from figure 7.2.
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7.3.4 scGAIN Architecture and Parameter Configuration

Both the generator and the discriminator networks have similar network struc-

ture. Both consist of an input layer of size 2k (k is the number of genes), then two

hidden fully connected layers of 256 and 128 nodes each. Then an output layer

of size k with a sigmoid activation function to ensure that the output values are

in the range [0, 1]. Training is done alternatively between the generator and the

discriminator in a fusion of mini-batches of 128 cells at a time. Unless mentioned

otherwise, the hint generator would randomly select 10% of the mask vector H to

mask its values to 0.5. We chose λ = 10 as the regularization parameter of MSE

term in the loss function of the generator.

7.3.5 Data Normalization

Before data is input to our model, the raw count matrix undergoes several

steps of pre-processing. First, the counts are normalized by the total number of

UMIs to account for different sequencing depth between cells. Then the normalized

data is transformed into log scale similar to the normalization procedure described

by Zhang et al. [69]. Finally, each cell expression vector is divided by the maximum

gene expression present in that cell to ensure that the network takes input values in

the range [0, 1].
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7.4 Datasets

7.4.1 Simulated Datasets using Splatter

We used Splatter’s R/Bioconductor package [62] to generate two simulated

datasets containing three and six cell type groups. In both, we simulated 1000 genes

for 20,000 cells. We generated cells such that the proportions the group are 40%,

30% and 30% in the three groups case, and 30%, 20%, 10%, 20%, 10% and 10% in

the six groups case. We used parameters dropout.shape = −1, dropout.mid = 3.2

and 5 in R function splatSimulate() to add 65% and 85% dropouts to the count

matrix, respectively.

7.4.2 SimData60k

In this dataset, we simulated the gene expression matrix of 2000 genes for

three cell types. We recreated the simulation design and used the same parameters

suggested by [57]. log10-transformed read counts were directly generated in the

following configuration. For each gene, its mean expression is drawn from a Normal

distribution N (1.8, 0.5) and its standard deviation is drawn from a Normal distri-

bution N (0.6, 0.1). Then 900 genes were randomly selected to be differential across

cell types; each cell type has different 300 genes showing higher expression levels

in that cell types than the other two types. We then generate 20,000 cells per cell

type using gene means and standard deviations as calculated earlier for each type.

Then dropout genes are introduced into both datasets. Dropout rates are calculated
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using a double exponential function of each gene’s mean expression. Finally, zeros

are placed into the expression matrix using a Bernoulli distribution based on the

calculated dropout rates.

7.4.3 PBMC Dataset

This is a dataset of approximately 68,000 cells of peripheral blood mononuclear

cells collected from a healthy donor [69]. This dataset is provided publicly on 10x

Genomics website.

The data is pre-processed to detect dropouts from genes that consistently show

zero expression. This is done by filtering out genes that are zero in 99% of the cells.

Then a subset of cells was used as training data in our scGAIN model. To guarantee

that the network is trained on samples with enough data rather than outliers, sig-

nificantly sparse cells that have less than 2% non-zero genes were excluded from the

training data. That leaves a subset of approximately 18,000 cells used as training

data to impute about 3000 genes. It should be noted that this filtering criteria is

not mandatory. scGAIN can still accept the full normalized and log-transformed

matrix as its input.

7.5 scGAIN imputes zeros without adding biases in simulated data

To study the effectiveness of imputation using scGAIN in a controlled setting,

we applied scGAIN to simulated scRNA-seq data generated using Splatter ( [62])

with sparsity levels of 85% (see Section Simulated Dataset using Splatter for data

103



details) and compared it’s performance with representative state-of-the-art imputa-

tion methods.

Figure 7.4 summarizes results of this comparison. We compare performance in

four different aspects. First, imputation accuracy: we plot all missing values after

imputation versus the true values (gene expression without dropouts). We summa-

rize the plot by calculating two metrics: pearson correlation and mean square error

(MSE). scGAIN shows best performance in both metrics: 0.94 correlation vs. DrIm-

pute’s 0.88 which was second highest, and 0.005 MSE vs. DrImpute’s 0.035 which

was second lowest. Second, clustering cell types: we show the effect of imputation

in recovering underlying structure of the different cell types, through calculating

t-distributed stochastic neighbor embedding (t-SNE) of the true data, raw data

without any imputation, and data after imputation by each method. scGAIN and

DrImpute successfully recovered the clustering of cells which was relatively distorted

in the raw data due to dropouts. Third, t-SNE plots of the same cells using 100

genes that are not differentially expressed in the simulated (no dropout) data. These

group of genes remain not differentially expressed in scGAIN, whereas methods like

DrImpute and Magic showed undesired clustering introducing false signals into the

data. In summary, even though the overall clustering of a method like DrImpute

may look slightly better, the formation of new clusters in truly non-differential genes

suggest against its use for real data. Lastly, heatmap of expression for the top 50

variable genes in the true data. With dropouts, the heatmap is distorted with an ex-

cessive number of low-to-zero values across the entire heatmap, whereas scGAIN and

DrImpute produces the closest heatmap to the truth with most dropouts recovered.
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Figure 7.4: Overall performance comparison on simulated data. Performance
of five imputation methods (DrImpute, scImpute, Magic, Viper, scGAIN) on simu-
lated dataset (ncells = 20,000, ngenes = 1000) containing six cell types with sparsity
85%. a) Scatter plots of imputed vs. (non-dropout) simulated data showing the cor-
relation and MSE measures between the truth and imputed values. scGAIN shows
best performance in both metrics b) t-SNE visualization of random 1000 cells using
the 100 most variable genes from each method. scGAIN and DrImpute successfully
recovered the clustering of cells which was distorted in the simulated data with the
dropouts. c) t-SNE visualization of 100 non-differentially expressed genes. These
group of genes remain non-differentially expressed after imputation with scGAIN,
whereas methods like DrImpute and Magic showed undesired clustering introducing
false signals into the data. d) Heatmap of the top 50 variable genes between cell
types in the full data. scGAIN and DrImpute generate the closest heatmaps to the
simulated data.
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7.6 scGAIN produces stable imputations around the true mean ex-

pression with lower variance than other methods

We compare three imputation tools, each representing a category of imputa-

tion approaches, on a simulated data (see Section Simulated Data). We chose scIm-

pute as a statistical decomposition method, DeepImpute as a prediction method

that uses feed-forward neural, and our approach (scGAIN) as a generative method.

DeepImpute works as a point estimator of each imputed value. scGAIN on the other

hand as a generative model it can give multiple draws of possible imputed values

of the missing values based on the learnt distribution observed in the population.

We did not include DrImpute in this comparison as it was not able to scale to data

of this size. One way to illustrate this is to observe how the individual imputed

values are distributed around the true mean expression of the gene in a certain cell

type. Figure 7.5 shows how the individual gene expressions in the imputed matrix

(Y-axis) are compared to the corresponding true mean expression (X-axis) used in

the simulation. scGAIN shows more stable point estimates around the simulation

means compared to the other two methods. Decreased variablity (around precise

imputated values) is desirable in real experiments since it may increase power of

downstream statisitcal analyses. scGAIN consistently gives accurate estimates cor-

responding to true means even at low expression levels whereas DeepImpute tends

to overestimate low and moderate-level expressions.
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Figure 7.5: Bias and variance comparison of imputed data. For three im-
putation methods: scGAIN, scImpute, DeepImpute on simulated data, we plot the
individual gene expressions in the imputed matrix obtained from each method are
compared to the corresponding true mean expression used in the simulation. (Left)
Box plot of absolute imputation error for each mean expression bin. True mean
expressions are divided into bins with equal number of genes. (Right) Scatter
plot of imputed gene expressions in different cells of one type versus the true mean
expression of that gene. scGAIN shows accurate estimates around the true mean
with smaller variance compared to the other two methods. DeepImpute tends to
overestimate expression in genes with low and moderate-level expression.

7.7 scGAIN increases correspondence with matched bulk expression

of marker genes in PBMC dataset

To evaluate scGAIN on real data and compare its imputation with other meth-

ods, we used the PBMC [69] dataset to study the effect of imputation on a set of

marker genes for CD4+ vs CD8+ T-cells. First, we determined genes that are dif-

ferentially expressed between the two cell types from a bulk RNA-seq cell-sorted

dataset [70] as the gold standard (by running DESeq [13] and selecting genes with

p-value < 0.05). Since not all imputation methods are scalable to impute PBMC

in reasonable time, we only include DCA, DeepImpute and MAGIC as a subset for

comparison in this analysis. Figure 7.6a) shows expression of seven marker genes
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Figure 7.6: scGAIN increases correspondence with matched bulk expres-
sions of marker genes in PBMC dataset. a) shows expression of seven marker
genes that distinguish between CD4+ and CD8+ cells in bulk, and how their ex-
pression levels look like in raw single cell data and data imputed by scGAIN. b)
shows that scGAIN produces the most robust imputation and the highest correlation
among the methods.

that distinguish between CD4+ and CD8+ cells in bulk, and how their expression

levels look like in raw single cell data and data imputed by scGAIN. ScGAIN recov-

ers some of the differential expression in these genes which is lost when computing

differential expression on the non-imputed data.

Next we wanted to measure the robustness of that correspondence for the top

50 differentially expressed genes based on the bulk data with the imputed single-

cell data from each method. Robustness is measured by generating 100 bootstrap

single-cell samples for 100 random cells, and then computing the Pearson correlation

of the difference in log median expression for the two celltypes between the imputed

single-cell data and the bulk data for each bootstrap sample. Figure 7.6b) shows

that scGAIN produces the most robustness and the highest correlation among the

methods.
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Figure 7.7: scGAIN scales to large datasets. Imputation Running Time for
60,000 cells of Simulated Data (simData60K) used by the three methods. scImpute
has two columns: one for imputing a small subset of the dataset of only 3,000 cells,
and another for the full dataset. scImpute’s run over the entire 60,000 cells was
terminated after running for a full day without finishing.

7.8 scGAIN is efficient and scalable to large scRNA-seq experiments

Since scGAIN uses neural network models, it scales well to efficiently deal with

large datasets which provide enough samples for the network parameters to converge.

SimData60k is a simulated dataset with 60,000 cells (see Simulated Data). Figure

7.7 summarizes the running time used by each of scGAIN, DeepImpute and scIm-

pute. scGAIN and DeepImpute both have a significant advantage over statistical

approaches like scImpute which needs to process the full dataset at once. For in-

stance, scImpute requires calculation of pairwise cell distances to perform clustering

as an early step of its pipeline which can be an intense time and memory consuming

process.
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Chapter 8: Discussion and Conclusion

The work discussed in this thesis presents a line of research that addresses

the use of graph representation and algorithms in a variety of genomic analyses.

Specifically, we introduced the concept of transcriptome segmentation and formu-

lating the definitions of segments and segment counts as summarized statistics of

RNA-seq experiments that preserve a localized measure across the genome. Then

we illustrated how our framework can be used to run analyses on the three reso-

lutions of RNA-seq: i.e. Gene-level, Transcript-level and Alternative Splicing-level

analyses. We showed how our approach can empower lightweight, ultra-fast pseudo-

alignment tools like Kallisto or Salmon with capabilities to provide alternative splic-

ing measures that achieves comparable accuracy to count-based approaches while

maintaining the speed and efficiency of such tools. Then we tackled the problem of

transcript quantification under incomplete annotation and propose a segment-based

correction procedure to reduce the bias in the estimated abundances present in such

scenarios, without the need to assemble the missing transcripts first. After that,

we explored the possibility to Bridge the gap between linear and graph alignment

over whole genome population references and evaluating its benefits on handling

allelic variations of highly polymorphic genes like HLA genes. Lastly, we proposed a
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generative model approach to impute single cell RNA-seq data to correctly recover

the missing values of dropout genes by adopting deep GANs for that purpose.

The benefits of our work vary from providing faster and more efficient pipelines,

empowering available approaches with more capabilities or introducing new perspec-

tives into existing challenges. In this Chapter we discuss the implications of the work

presented in this dissertation, place it in context of existing work, and give pointers

to future work.

8.1 Yanagi is a fast and interpretable segment-based approach for

gene, transcript and alternative splicing level analysis:

In this work, we have formalized the concept of transcriptome segmentation

and proposed an efficient algorithm for generating segment libraries from tran-

script libraries based on a length parameter L (typically chosen dependent on

an experiment-specific RNA-seq library construction). The resulting segment se-

quences are used with pseudo-alignment tools to quantify expression at the seg-

ment level, providing enough information for a variety of expression analyses. We

have characterized segment libraries for the reference transcriptomes of Drosophila

melanogaster and Homo sapiens for various read-length RNA-seq experimental de-

signs. We also provide a novel gene-level visualization of transcriptome segments

and transcript structure for ease of interpretation. Finally, we have demonstrated

the use of segment-level quantification in differential gene expression and alternative

splicing analysis.
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Using a segment library rather than the standard transcriptome succeeds in

significantly reducing ambiguous alignments where reads are multi-mapped to sev-

eral sequences in the reference, thereby decoupling the pseudo-alignment and quan-

tification steps used in current k-mer based pipelines for gene expression analysis.

Moreover, using segment counts as statistics for gene-level differential expression,

transcript quantification and alternative splicing analyses achieves performance com-

parable to counting-based approaches (e.g. rMATS for splicing analysis) while using

fast and lightweight pseudo-alignment. The notion of transcript segmentation as

introduced here and implemented in Yanagi has the potential to extend the appli-

cation of lightweight, ultra-fast, pseudo-alignment algorithms to a wider variety of

RNA-seq analyses.

We discussed at the end of each chapter how our completed work can be further

extended in the future. One extension is to adjust our models to handle the different

sources of biases seen in RNA-seq data. We focused on one source that is usually

being ignored by most present tools; the bias due to incomplete annotation. The

preliminary results shown here provides a positive proof of concept. However, more

elaborate experiments are essential to have a better understanding of the various

aspects of the problem and how our proposed work handle them.
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8.2 Linearizing whole genome population reference graph for certain

genes combines the advantages of both linear and graph-based

alignment:

We proposed an approach that takes advantage of representing population

haplotypes as a graph, and efficiently linearizes the graph through segmentation

model in Yanagi. Our method generates a set of maximal L-disjoint segments rep-

resenting the linearized population graph into a reference sequence library that can

be used by any alt-aware linear aligner. Using segments empowers any linear aligner

with the efficient graph representation of population variations, while avoiding the

expensive computational overhead of aligning over graphs. We tested our approach

on the highly polymorphic HLA genes which have significant medical importance.

Preliminary results showed that we can achieve comparable performance to

graph aligners using linear aligners assisted with population segments without com-

promising their space and computational requirements. However, experiments were

only evaluated on the read extract of HLA reads. A future extension to that ap-

proach would be to perform HLA typing and comparing its results. Another ex-

tension would be to examine developing a similar approach based only on the list

of variations, e.g. provided by the 1000 Genomes project. Without the multi-

sequence alignment being provided as input, it would be interesting challenge to see

how practical our approach would be.
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8.3 GAN-based approaches can be efficient and successful in imput-

ing single cell RNA-seq data:

Successful use of imputation in a single-cell expression analysis requires meth-

ods that can perform stable and accurate imputation, that recapitulates underlying

features of the cell populations that would be observed with higher throughput (e.g.,

from cell-sorted bulk RNA-seq), without introducing additional bias or structure in

the data. Furthermore, these methods need to scale to large datasets. We have

shown that while architectures like DrImpute and DeepImpute are scalable and can

perform accurate imputation, their stability can suffer, and in the case of DrImpute

introduces artificial structure in the data. scGAIN showed similar scalability while

improving the stability of these methods and without introducing artificial structure

in the data.

scGAIN uses GANs as the core method to learn a data distribution from

which imputation can be performed. In their standard formulation, GANs learn

the distribution of input data using a deep network capable of generating samples

that resemble the input data. Implicitly, the generated samples have the same

characteristics of the learned data i.e. if the input data is sparse, the generator

will also generate sparse samples. So, implementing a standard GAN model will

not solve the imputation problem. Recent efforts have established the use of GANs

to impute missing data in vision and image processing [68, 71]. The key idea in

these methods is to use GANs to learn the structure of missing data rather than
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the structure of the entire data space. This makes the GAN more focused, effective

and speeds up model convergence. We adopt the GAIN model discussed in [68],

introduced to impute missing pixels of images.

Imputing dropdowns and dropouts in scRNA-seq data can be more challenging

than the vision case. The amount of missing data is significantly large in single cell

RNA-seq data compared to the training data used in vision. In addition, missing

data in the single-cell case occurs as a function of the missing values (low expression)

whereas this is not necessarily the case in vision problems. Moreover, the evaluation

metric used in vision is quite different. When imputing portions of an image, the

accuracy of prediction of individual pixels is not that important as long as the final

imputed image looks coherent and realistic. While in scRNA-seq single value predic-

tions of individual genes are essential. This increases the complexity of the model

when adopting imputation algorithms from vision to our domain of interest. We

overcame some of these issues by developing a novel method to create an imputa-

tion mask based on the values of the non-missing data, i.e., the observed expression

of genes across cells. Also, we used a stratified training strategy for scGAIN that

addresses these issues as well.

While scGAIN has shown accuracy, stability and scalability without intro-

ducing artificial structure to imputed data, there are several ways in which this

approach can be improved. First, a limitation of GANs in general, since they are

non-parametric methods, we are unable to provide a statement of uncertainty around

imputed values that could be used in downstream analyses. Recent work showing

the connection between GANs a probabilistic structure can be used to alleviate this
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problem. Second, while the method used here to produce a mask vector produced

satisfactory results, ideas from parametric models of dropouts may be useful to gen-

erate a more accurate mask. Finally, the GAIN architecture requires the generation

of a hint vector as a reference from which to evaluate the GAN’s discriminator’s per-

formance. A revised architecture that removes this dependence on a hint generator

would be preferable.
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Appendix A: Transcriptome Segmentation Algorithm

Algorithm 1 Yanagi’s Segments Library Generation
Require: Transcriptome Annotation (GTF File), Transcripts Sequences (FASTA Files)
1: TxDB ← makeTxDBFromGTFFile . Preprocessing Step
2: DExs← disjoinExons(TxDB)
3: TxDB ← adjustTxDB(TxDB,DExs)

Step 2 - Segment Graph Construction

4: procedure CONSTRUCT SEG GRAPH(TxDB, g, L) . SgG of gene g
5: G← emptygraph
6: St← φ
7: prev ← DUMMY NODE
8: for each Tx ∈ T xDB(g) do . For each transcript in gene g
9: loc← start(Tx)

10: while loc < end(Tx) do . Iterate till the end of transcript
11: gr ← GenomicRange(Tx, loc, loc+ L)
12: Exs← exons[TxDB(gr)]
13: w, locnew ← refine node(Exs, loc, L) . Node refinement step
14: node← getOrCreateNode(G,< Exs, loc, w >)
15: Txs(node)← Txs(node) + Tx
16: Next(prev)← Next(prev) + node . Make an edge
17: if Txs(prev) 6= Txs(node) then . Mark branches in graph
18: for each n ∈ Next(prev) do
19: St← St+ n

20: prev ← node . Advance loop
21: loc← locnew
22: return G,St . The SgG of gene g

Step 3 - Segments Library Generation

23: procedure GENERATE SEGMENTS(G,St)
24: for each node ∈ St do . Iterate over branching points in G
25: seg ← newsegment . Initialize a new segment
26: seg.appendNode(node)
27: while |Next(node)| = 1 do . Aggregating chain of nodes into a segment
28: node← Next(node)
29: seg.appendNode(node)

30: outputSegment(seg)
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Appendix B: Homogenous Cell Population from PBMC are Zero-

Inflated

Recent work argues that droplet scRNA-seq data, for example the PBMC

data, is not zero-inflated when considering technical replicates [51]. This would

imply observed zeros are the result of dropdown and cell-type heterogeneity. In

order to confirm that the observed zero-inflation in single cell raw data is not strictly

the result of having heterogenous population of cells, we subset one subpopulation

(CD19+ B) from PBMC. Figure B.1 shows that zero-inflation fits data better even

when looking at a homogenous cell population of CD19+ B cells.
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Figure B.1: Plot showing the distribution of raw counts and mean-variance expres-
sions of genes from PBMC dataset. It shows that the data is zero-inflated with
heterogenous cell population (PBMC All) as well as homogenous cell population
(PBMC CD19+ B).
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