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ULLNs and LLNs for weakly dependent random fields that are applicable to a broad 
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1 Introduction

Recent years have seen a marked increase in the application of spatial models

in economics and the social sciences, in general. Apart from traditional appli-

cations in agricultural economics and economic geography, spatial methods

have increasingly been used to model and estimate interaction among eco-

nomic agents in various other �elds of economics including IO, labor and

public economics, international economics, political economy and macroeco-

nomics. In these models, economic agents are located in some space with

a speci�ed metric.1 Strategic behavior of agents as well as common factors

such as shared resources, shocks and trade induce dependence in agents�char-

acteristics. Furthermore, economic agents are often heterogenous in various

dimensions, e.g., size. All these diverse economic applications thus share a

common mathematical structure: an agent�s observation can be viewed as a

realization of a dependent heterogenous spatial process indexed by a point

in a �nite-dimensional metric space, or a random �eld.

Statistical inference in these models is typically based on the large sam-

ple properties of estimators. To the present date, the asymptotic properties

of spatial estimators have been established, to the best of our knowledge,

only for special classes of models: (i) linear �rst-order spatial autoregressive

1The space and metric here are not restricted to physical space and distance, but

refer to more general spaces and notions of proximity. For instance, in their study of the

productivity co-movements across sectors, Conley and Dupor (2003) de�ne the distance

between industries in terms of input shares, i.e., two industries are deemed to be close if

they use the same inputs in the same proportions.
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models;2 and (ii) stationary models.3 Clearly, many interesting empirical

models are nonlinear, e.g., discrete choice and limited dependent variable

models, and their underlying data-generating processes are often nonstation-

ary. Thus, the existing asymptotic foundation of spatial models has become

increasingly inadequate to sustain the growing complexity and diversity of

empirical applications. These applications call for a less restrictive large

sample theory that accommodates nonlinearity and more general forms of

heterogeneity and dependence.

The development of such an asymptotic theory has been hampered by

a lack of uniform laws of large numbers (ULLNs), pointwise laws of large

number (LLN), and central limit theorems (CLTs) for random �elds under

the assumptions relevant to economic applications. These limit theorems are

the key tools for analyzing the large sample properties of estimators, i.e., for

establishing consistency and the asymptotic distribution of estimators.

There exists a vast literature on limit theorems for random �elds. A

detailed review of this literature is provided in the next section. Here, we

highlight only the generic features of these results that prevent their appli-

cation in socioeconomic models. First, all CLTs and LLNs for discrete-index

random �elds are, to the best of our knowledge, for processes on evenly spaced

2The asymptotic theory for spatial autoregressive models has been developed in a

number of important contributions by Kapoor, Kelejian and Prucha (2007); Kelejian and

Prucha (1998, 1999, 2001, 2004, 2007a,b); Lee (2002, 2004, 2007a); Pinkse and Slade

(1998); Pinkse, Shen and Brett (2002); Pinkse, Shen and Slade (2006); Robinson (2007b);

Yu, de Jong and Lee (2006).
3Consistency and asymptotic normality of nonlinear GMM estimators for stationary

�-mixing random �elds are established in Conley (1999).
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lattices, while locations of economic data are rarely evenly spaced. Second,

the existing theorems rely either on homogeneity/stationarity of the random

�eld or the existence of uniform bounds on moments, which restricts het-

erogeneity. However, spatial processes encountered in economic applications

often exhibit di¤erent forms of heterogeneity/nonstationarity. For example,

many spatial processes in applications are heterosckedastic. Furthermore,

similar to time series processes, their moments may increase or "trend" with

indices so that there is no uniform bound on them. Spatial processes with

trending moments arise frequently in applications. For instance, real estate

prices often shoot up as one moves from the periphery towards the center

of a big city. Bera and Simlai (2005) report sharp spikes in the variances of

housing prices in Boston. Such irregular behavior of second moments may

cause problems for the CLT and therefore should be dealt with explicitly.

The third hurdle is a lack of ULLNs for random �elds, which are essential

for proving consistency of nonlinear optimization or M-estimators, including

generalized method of moments (GMM) and maximum likelihood (MLE)

estimators.

These features of the random �elds limit theory are mirrored in the exist-

ing large sample theory of spatial M-estimators, and in particular, in Conley

(1999) paper, which is one of the �rst important applications of the random

�eld apparatus in econometrics. The paper makes use of Bolthausen�s (1982)

CLT for �-mixing stationary random �elds on Zd to show asymptotic nor-

mality of nonlinear GMM estimators. It assumes that the data-generating

process is (i) stationarity; and (ii) evenly spaced. Furthermore, to prove con-

sistency, it e¤ectively postulates uniform convergence instead of proving it
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from low-level conditions.

To �ll this gap in the literature, the �rst part of the dissertation derives

a CLT, ULLN and LLN for nonstationary mixing random �elds suitable for

econometric applications. In contrast to the existing literature, the proposed

limit theorems (i) accommodate nonstationary random �elds with asymptot-

ically unbounded or trending moments, (ii) allow for doubly-indexed arrays

of random �elds on unevenly spaced lattices in d-dimensional spaces, and

(iii) relax assumptions on the con�guration and growth behavior of sample

regions imposed by existing theorems. A discussed earlier, all these features

are critical for many econometric models.

Mixing is perhaps the most common notion of weak dependence employed

in the literature. It dates back to Rosenblatt (1956), Ibragimov (1962) and

Billingsley (1968). Loosely speaking, under the mixing property, autocor-

relation of the process decays with the distance. It is quite a reasonable

assumption satis�ed in many econometric applications. However, it has one

undesirable feature: it is not preserved under general data transformations,

and in particular, those involving an in�nite number of lags. Yet, there are

spatial processes that are generated as in�nite lag transformations of some

input mixing process, e.g., in�nite moving average random �elds, which are

also referred to as linear random �elds. Therefore, limit theorems for mixing

random �elds are not directly applicable to such processes.

To address this problem, the second part of the dissertation extends the

concept of near-epoch dependent (NED) processes used in the time series lit-

erature to spatial processes, and obtains a CLT and LLN for such processes.

The basic idea is that a NED process can be approximated by a process
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de�ned as a function of only a �nite number of spatial lags of some input

process. As a result, the approximating process inherits the mixing prop-

erty of the input process and the limit theorems for mixing �elds can be

applied to infer the limiting behavior of the approximating process. Under

some mild conditions, the approximation error can be shown to be asymptot-

ically negligible, i.e., to have no e¤ect on the limiting behavior of the NED

process. Consequently, the NED process will satisfy a CLT or an LLN. The

NED property is compatible with considerable amount of heterogeneity and

dependence. The class of NED spatial processes, which subsumes mixing

processes, is su¢ ciently broad to cover many spatial processes of interest, for

example, ARMA random �elds and Cli¤-Ord type processes used widely in

applications.

The CLT and LLN for NED random �elds thus cover a larger class of de-

pendent spatial processes than mixing �elds. As the theorems of the �rst part

of the dissertation, they also allow for nonstationary processes with asymp-

totically unbounded moments, located on unevenly spaced lattices. To the

best of our knowledge, there have been no similar results in the random �elds

literature. In the time series literature, CLTs for NED processes have been

obtained by Wooldridge (1986), Davidson (1992, 1993), and de Jong (1997).

Interestingly, our CLT contains as a special case the CLTs of Wooldridge

(1986) and Davidson (1992), whereby establishing direct connection and

consistency in the asymptotic properties of spatial (multi-dimensional) and

time-series (one-dimensional) processes.

The proposed limit results can be readily used to investigate the large

sample properties of nonlinear econometric estimators and test statistics in
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a wide range of spatial models. More generally, they will also be useful in

cross-sectional and panel data models (especially those with small T and

large N) with cross-sectionally dependent observations when distances be-

tween observations are known. In separate work, building on these limit

theorems, the author establishes consistency and asymptotic normality of

spatial M-estimators including MLE and GMM estimators. These results

form a fundamental basis for statistical inference, e.g., testing hypothesis

and constructing con�dence intervals, in a broad range of spatial models.

However, we do not pursue them here. Aside from the asymptotic theory

of econometric estimators, the areas of potential applications also include

biology, psychology, sociology, political and environmental sciences.

The dissertation is organized as follows. Section 2 provides a review of the

literature on CLTs and LLNs for mixing random �elds. Section 3 presents

a CLT, ULLN and LLN for mixing random �elds. Section 4 introduces the

concept of near-epoch dependent random �elds and establishes the corre-

sponding CLT and LLN. Section 5 concludes. All proofs are contained in

appendices.

2 Review of Literature

The literature on limit theory of weakly dependent random �elds is truly

massive. We will therefore restrict our attention to discrete-index mixing

random �elds.

Unlike to what one might expect, limit theorems for multi-dimensional

processes or random �elds are not straightforward generalizations of those
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for one-dimensional or time series processes. There are a number of distin-

guishing characteristics of the limit theory of random �elds. First, there are

two principally di¤erent ways in which the sample can grow to the limit, or in

other words, asymptotic structures: increasing domain and in�ll asymptot-

ics, see, e.g., Cressie (1993), p. 480. Under increasing domain asymptotics,

the growth of sample is ensured by unbounded expansion of the sample re-

gion. In contrast, under in�ll asymptotics, the sample region remains �xed,

and the growth of the sample size is achieved by sampling points arbitrar-

ily dense in the given region. Second, unlike R, there is no natural order

in Rd. Consequently, some of the dependence structures commonly used in

the time series literature such as martingales and mixingales are not well-

de�ned (without imposing additional structure on Rd). Third, there are also

di¤erences in the de�nition of mixing. Unlike mixing coe¢ cients in the stan-

dard time series literature, those of random �elds depend not only on the

distance between two datasets, but also their sizes. Given a distance, it is

natural to expect more dependence between two larger sets than between

two smaller sets. Failure to take into account the sizes/cardinalities of index

sets may result in trivial notions of dependence and leave out many depen-

dent processes encountered in applications. For instance, Dobrushin (1968a)

demonstrated that the multidimensional analogue of the standard time se-

ries �-mixing condition is not satis�ed by simple two-state Markov chains on

Z2. The mixing coe¢ cients in this condition are de�ned over two half-spaces

containing in�nite number of elements, and as such, they do not account for

cardinalities index sets. Later, Bradey (1993) proved that this condition in

the case of stationary random �elds reduces to �-mixing, which is a more
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restrictive form of dependence. The formal de�nitions and a more detailed

discussion of mixing conditions are given in Section 3. For a comprehensive

review of various mixing conditions, see Doukhan (1994). Finally, con�gura-

tion and growth behavior of (multi-dimensional) sample regions also play an

important role in the limit theory of random �elds. This has to do with the

need to obtain bounds on the variances or other moments of partial sums

over the sample region. For example, the rates of convergence in the strong

laws of large numbers depend on the con�guration of sample regions, see

Smythe (1974). Thus, the limit theorems for time series processes are not

directly applicable to spatial processes or random �elds.

Central limit theorems establish convergence in distribution of normalized

partial sums to a normal law. Their primary application in statistics is to as-

certain asymptotic normality of various estimators and test statistics, which

in turn provides the basis for inference. In general, CLTs for weakly depen-

dent random �elds rely on three sets of conditions: (i) conditions restricting

the degree of heterogeneity of the processes; (ii) conditions restricting the

range of dependence of the process, and (iii) conditions on the index sets.

Various central limit theorems di¤er mainly in these three major dimensions.

Therefore, we will focus on these conditions in our subsequent discussion of

CLTs.

Early central limit theorems for random �elds were motivated by the

study of Gibbs states of lattice systems in statistical physics. The central

limit results for �- and �-mixing conditions satis�ed by Gibbs �elds �rst

appeared in the works of Neaderhouser (1978a,b, 1981); Nahapetian (1980,

1987, 1991); McElroy and Politis (2000). The common feature of these CLTs
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is that they consider random �elds on Zd and impose quite stringent con-

ditions on the con�guration and growth behavior of sample regions. They

require the index set to expand in all directions and the border of the index

set to be asymptotically negligible in size relative to the size of the entire set.

Furthermore, Nahapetian (1980, 1987), McElroy and Politis (2000) restrict

sample regions to rectangles in Zd. These CLTs are also more restrictive

than our CLTs in other dimensions. Nahapetian (1980, 1987, 1991) exploits

stationarity. Neaderhouser (1978a,b), and McElroy and Politis (2000), while

permit nonstationarity, rely on stronger moment and mixing assumptions.

In passing, we note that the restrictions on con�guration of sample re-

gions in these CLTs stem from their method of proof �Bernstein�s blocking

method �a common approach to prove CLTs for weakly dependent variables.

The method involves splitting the sum into alternating big-small blocks and

showing that the big blocks behave asymptotically as independent or mar-

tingale di¤erence random variables.

Bolthausen (1982) obtains a CLT for strictly stationary �-mixing random

�elds on Zd. The CLT relies on �nite 2 + � moments and stationarity. In

contrast to the above-cited results, the proof of Bolthausen�s (1982) CLT is

based on Stein�s lemma (1972); see Lemma B.1 in Appendix B. It exploits the

di¤erential equation satis�ed by the characteristic function of the standard

normal law. Stein�s method allows to circumvent mixing conditions in which

both index sets are of in�nite cardinality as well as to relax conditions on

the sample regions. We follow Bolthausen in using Stein�s lemma to prove

our CLT for mixing random �elds.

Guyon and Richardson (1984), and Guyon (1995), p. 11, derive CLTs for
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nonstationary �-mixing random �elds on Zd. Both results assume uniformly

(over the index space) bounded 2+ � moments, which restricts heterogeneity

of the random �eld. As such, they do not allow for asymptotically unbounded

moments and unevenly spaced locations. Moreover, the CLT of Guyon and

Richardson (1984) exploits mixing conditions in which both index sets are

of in�nite cardinality. As discussed earlier, these conditions are generally

restrictive.

Bulinskii (1988), see also Bulinskii (1989), establishes a CLT for non-

stationary �-mixing �elds on Zd. This CLT improves on some of earlier

results in the literature including Neaderhouser (1978a,b; 1981), Nahapetian

(1980, 1987), Bolthausen (1982) and Bulinskii (1986). While the CLT ac-

commodates nonstationarity, it does not, however, allow for unevenly spaced

locations. Bulinskii and Doukhan (1990) further examine the rate of the

convergence in Bulinskii�s (1988) CLT.

Bradley (1992) proves a CLT under the condition �(r) ! 0 as r ! 1

and some additional restrictions on the spectral density of the process. As is

well-known, �-mixing is a stronger dependence concept than �-mixing. The

CLT is for strictly stationary �elds on Zd.

Nahapetian and Petrossian (1992), and Nahapetian (1995) generalize the

notion of martingales and martingale di¤erences to random �elds by intro-

ducing partial order structure in Zd. They propose two CLTs for martin-

gale di¤erence random �elds. The �rst CLT deals with strictly station-

ary ergodic martingale di¤erence random �elds. Nahapetian and Petrossian

show that the existence of �nite second moments is su¢ cient to guaran-

tee a CLT for such �elds. This is in fact a multi-dimensional analogue of
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the Billingsley-Ibragimov CLT for strictly stationary ergodic martingale dif-

ference sequences. The second theorem considers nonstationary martingale

di¤erence �elds with �nite 2 + � moments under an additional �-mixing

condition. This combination of two di¤erent dependence structures seems

unnecessarily restrictive. Furthermore, the scope of potential applications of

martingale random �elds in econometrics may be limited due to the lack of

obvious order structure in many economic models.

Comets and Janµzura (1998) do not use any mixing conditions. Instead,

they consider a special class of conditionally centered random �elds on Zd de-

rived from some underlying "well-behaved" random �eld. Their CLT allows

for nonstationarity, but assumes uniformly bounded fourth moments, which

is quite restrictive. Moreover, conditional centering may not be satis�ed by

mixing �elds. As noted in Dedecker (1998), conditions of Bolthausen�s CLT

cannot be inferred from this CLT.

Perera (1997) relaxes the moment conditions in Bolthausen�s (1982) CLT.

Yet, the result is still for stationary �elds on Zd. Dedecker (1998) obtains

a CLT for stationary random �elds under an alternative projective crite-

rion which, roughly speaking, involves convergence of the sum of conditional

covariances. This criterion enables him to further re�ne the moment and

dependence conditions in Bolthausen�s (1982) CLT. However, the proof de-

pends critically on stationarity, and therefore, it is not clear if the CLT could

extend to the nonstationary case. Dedecker (2001) establishes exponential in-

equalities and uses them to derive a functional form of his CLT for stationary

�elds.

A di¤erent kind of CLT that does not employ any mixing coe¢ cients is
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proposed by Pinkse, Shen and Slade (2006). The CLT allows for nonsta-

tionarity and dependence on the sample. However, it relies on a set of high

level assumptions including conditions on the rates of decay of the correla-

tion among Bernstein�s blocks, and the ability to select appropriate blocks.

Of course, a crucial step in proving a CLT by Bernstein�s blocking method

is to demonstrate that it is indeed possible to form appropriate blocks. We

note that there are �-mixing processes that are covered by our CLT but not

by Pinkse, Shen and Slade (2006). Thus, on a technical level, neither of the

CLTs contains nor dominates the other.

More recent literature focuses on functional central limit theorems (FCLTs)

for partial sums indexed with general Borel sets. El Machkouri (2002) proves

a set-indexed FCLT for stationary �elds under a �nite exponential moment

condition. It covers �-mixing but not �-mixing �elds. El Machkouri and

Ouchti (2005) provide a FCLT for stationary martingale-di¤erence �elds.

Given their complex nature, all these results are for stationary �elds and

employ stronger moment, dependence, and additional metric entropy con-

ditions. Establishing general positive-entropy-set-indexed FCLTs for Lp-

bounded (0 < p < 1) �-mixing �elds remains an open problem, see coun-

terexamples in El Machkouri and Volný (2002).

There is an equally extensive literature on laws of large numbers for ran-

dom�elds. Vast majority of this literature focuses on almost sure convergence

rather than convergence in probability. Just as with central limit theorems,

extension of one-parameter laws of large numbers to random �elds is fraught

with technical di¢ culties stemming from complex geometry of index sets.

Yet, these complications become even more pronounced in the case of strong
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laws of large numbers (SLLNs). The proof of CLTs for mixing processes

makes use of mixing covariance inequalities which do not depend on order-

ing of index sets. In contrast, maximal inequalities, which are the key tools

for proving SLLNs, depend critically on ordering of index sets. Maximal in-

equalities place a bound on the extreme behavior of the maximum of partial

sums over a succession of steps, and hinge upon ordering of index sets. As

a consequence, SLLNs for random �elds impose restrictions on con�guration

of index sets. Most SLLNs are formulated for partially ordered rectangular

sets. We now brie�y discuss these results.

Early results in the SLLN literature are concerned with independent ran-

dom �elds. Smythe (1973, 1974) establishes SLLNs for i.i.d. random �elds

on Zd. Fazekas (1983) generalizes Smythe�s (1973) SLLN to Banach space

valued i.i.d random �elds indexed by partially ordered rectangular sets in Zd+:

Gut (1978) extends Marcinkiewicz-Zygmund SLLN to the case of i.i.d. ran-

dom �elds. Marcinkiewicz-Zygmund SLLNs are generalization of the classical

Kolmogorov SLLN to the case of �nite moments of order 0 < p < 2:

Using the concept of �-mixing �elds introduced by Bradley (1992), Peligrad

and Gut (1999) obtain a maximal inequality for �-mixing random �elds and,

building on it, establish a SLLN on Zd. Moricz (1977) derives more general

maximal inequalities for rectangular sets in Zd+: The distinguishing feature

of his inequalities is that no assumptions are made with respect to the de-

pendence structure and the degree of heterogeneity of the random �eld. This

allows Moricz (1978) to derive a SLLN under quite general dependence as-

sumptions. However, the SLLN requires �nite second moments and imposes

restrictions on the norming factor.
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A slightly di¤erent approach is taken by Klesov (1981), Noczaly and

Tomacs (2000). It is based on the modi�ed version of maximal inequalities

known as Hajek-Renyi type inequalities. The main advantage of Hajek-

Renyi type maximal inequalities over standard maximal inequalities is that

they allow for arbitrary norming factors, for example, those increasing at a

logarithmic rate. Like Moricz�inequalities, they are �exible to cover di¤erent

dependence structures. Klesov (1981) establishes a SLLN for a larger class

of random �elds comprising martingales, orthogonal and stationary (in the

wide sense) random �elds on Zd. He also relaxes the moment condition to

1 < q � 2:

The natural question that arises is whether the dependence conditions in

the latter SLLN could be further relaxed, for example, whether a SLLN could

be obtained for d-dimensional mixingales and how the conditions of such a

SLLN would compare with those of SLLNs for one-dimensional processes,

e.g., McLeish (1975a) and Hansen (1991). This problem is investigated by

Noczaly and Tomacs (2000). They derive SLLNs for d-dimensional martin-

gale di¤erence sequences and d-dimensional mixingales on rectangular index

sets in Zd: This result generalizes Hansen�s (1991) SLLN for one-dimensional

mixingales. While the mixingale conditions in Noczaly and Tomacs (2000)

are similar to those in Hansen (1991), the former result rests on a stronger

moment condition (moment of order r � 2) than its one-dimensional coun-

terpart, which relies only on r > 1: This ine¢ ciency stems from the lack of

linear ordering and higher dimensionality of the index space. To date, there

seems to be no known SLLNs for mixing random �elds that are based on

moments of strictly less than 2:
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To summarize, the existing SLLNs for random �elds rely on fairly strong

moment conditions and ordering of index sets, which are typically assumed

to be rectangular sets. Clearly, this limits applicability of the SLLN for

random �elds in econometrics, and in particular, their use in the proof of

strong consistency of econometric estimators.

Fortunately, weak consistency of estimators is su¢ cient for showing va-

lidity of asymptotic inference procedures in many econometric applications.

It is also easier to verify especially when the data-generating process is a

complicated function of some underlying dependent process. Therefore, we

derive weak LLNs for mixing random �elds and their functions. Our LLNs

do not depend on con�guration of index sets and require �nite moments of

order slightly greater than 1. Furthermore, they hold under a subset of as-

sumptions maintained for our CLTs, which facilitates their joint application

in the proof of consistency and asymptotic normality of spatial estimators.

3 Mixing Spatial Processes

3.1 Introduction

Spatial-interaction models have a long tradition in geography, regional sci-

ence and urban economics. For the last two decades spatial-interaction mod-

els have also been increasingly considered in economics and the social sci-

ences, in general. Applications range from their traditional use in agricul-

tural, environmental, urban and regional economics to other branches of eco-

nomics including international trade, industrial organization, labor, public

economics, political economics, and macroeconomics.
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The proliferation of spatial-interaction models in economics was accom-

panied by an upsurge in contributions to a rigorous theory of estimation

and testing of spatial-interaction models.4 Much of those developments have

focused on Cli¤-Ord type models; cp. Cli¤ and Ord (1973, 1981). How-

ever, the development of a general theory of estimation for nonlinear spatial-

interaction models under sets of assumptions that are both general and acces-

sible for interpretation by applied researchers has been hampered by a lack

of pertinent central limit theorems (CLTs), uniform laws of large numbers

(ULLNs), and laws of large numbers (LLNs). Evidently, such limit theorems

form the basic modules one would typically employ in deriving the asymptotic

properties of M-estimators for nonlinear spatial-interaction models, such as

maximum likelihood (ML) and generalized method of moments (GMM) esti-

mators. The purpose of this paper is to introduce a CLT, ULLN and LLN for

spatial processes (or random �elds or multi-dimensional processes) under as-

sumptions appropriate for many spatial processes in economics. As discussed

in more detail below, our assumptions allow for nonstationary processes; in

particular we allow processes to be heteroskedastic, and to have trending mo-

ments. Our assumptions also allow for sample regions of general con�gura-

4Some recent contributions to the theoretical econometrics literature include Baltagi

and Li (2001a,b), Baltagi, Song, Jung and Koh (2005), Baltagi, Song and Koh (2003), Bao

and Ullah (2007), Brock and Durlauf (2001, 2007), Conley (1999), Conley and Molinari

(2007), Conley and Topa (2007), Das, Kelejian and Prucha (2003), Driscol and Kraay

(1998), LeSage and Pace (2007), Kapoor, Kelejian and Prucha (2007), Kelejian and Prucha

(2007a,b, 2004, 2002, 2001, 1999, 1998), Korniotis (2005), Lee (2007a,b,c, 2004, 2003,

2002), Pinkse and Slade (1998), Pinkse, Slade, and Brett (2002), Robinson (2007a,b),

Sain and Cressie (2007), Su and Yang (2007), Yang (2005), and Yu, de Jong and Lee

(2006).
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tion and, more importantly, for unevenly spaced locations. To accommodate

Cli¤-Ord type processes, we furthermore permit random variables to depend

on the sample, i.e., to form triangular arrays. For short, we consider arrays

of weakly dependent nonstationary random �elds on irregular lattices in Rd.

There is a vast literature on CLTs for weakly dependent random �elds un-

der various mixing conditions, including Neaderhouser (1978a,b, �-mixing),

Nahapetian (1980, 1987, �- and �-mixing), Bolthausen (1982, �-mixing),

Guyon and Richardson (1984, �-mixing), Bulinskii (1988, �-mixing), Bradley

(1992, �-mixing), Guyon (1995, �-mixing), Perera (1997, �-mixing), Dedecker

(1998, 2001) and McElroy and Politis (2000, �-mixing). These results have

been obtained for random �elds on the integer lattice Zd and are, therefore,

not immediately applicable to many spatial processes of interest, e.g., real

estate prices, given that housing units are frequently unevenly spaced. More-

over, some of these theorems, e.g., Neaderhouser (1978a,b) and McElroy and

Politis (2000) rest on more stringent moment and mixing assumptions.

Apart from allowing for unevenly spaced locations, our CLT di¤ers from

the previous results in other critical aspects. First, our CLT relies only on

fairly minimal assumptions with respect to the geometry and growth behavior

of sample regions. This is in contrast to the existing CLTs, e.g., Nahapetian

(1980, 1987), McElroy and Politis (2000) who restrict the sample regions

to rectangles and adopt, respectively, Van Hove and Fischer modes of con-

vergence of index sets.5 Neaderhouser (1978a,b) also exploits the Van Hove

mode of convergence. Bolthausen (1982) and Guyon (1995) require the sam-

ple regions to form a strictly increasing sequence, in which each subsequent

5For formal de�nitions, see, e.g., Nahapetian (1991).
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set contains the preceding one, and Bolthausen (1982) additionally requires

the size of the border to be negligible relative to that of the whole region.

Second, spatial processes encountered in applications are often nonsta-

tionary and, in particular, heteroskedastic, since spatial units often di¤er in

various important dimensions such as size. However, most of the available

results, e.g., Bolthausen (1982), Nahapetian (1980, 1987), Bradley (1992),

Perera (1997), Dedecker (1998, 2001) maintain strict stationarity. Our CLT

accommodates nonstationary processes. Furthermore, to the best of our

knowledge, there seem to be no results that allow for processes with trend-

ing moments, to which we will also refer to as trending spatial processes

in analogy with time series processes. Spatial processes with asymptotically

unbounded moments may arise in a wide range of economic applications. For

instance, real estate prices usually shoot up as one moves from the periph-

ery to the center of a big city. Individual incomes in the European Union

countries rise in the northwestern direction. For more examples, see Cressie

(1993).

Third, our CLT handles arrays of random �elds, i.e., allows random vari-

ables to depend on the sample. This is important since spatial processes

de�ned by the widely used class of Cli¤-Ord models depend on the sample.

ULLNs are essential tools for establishing consistency of nonlinear esti-

mators; cp., e.g., Gallant and White (1988), p. 19, and Pötscher and Prucha

(1997), p. 17. Generic ULLN for time series processes have been introduced

by Andrews (1987, 1992), Newey (1991) and Pötscher and Prucha (1989,

1994a,b). These ULLNs are generic in the sense that they transform point-

wise LLNs into uniform ones, given some form of stochastic equicontinuity
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of the summands.6 ULLNs for time series processes, by their nature, assume

evenly spaced observations on a line. They are not immediately suitable for

�elds on unevenly spaced lattices. The generic ULLN for random �elds in-

troduced in this paper is an extension of the one-dimensional ULLNs given

in Pötscher and Prucha (1994a) and Andrews (1992). In addition to the

generic ULLN, we also provide low level su¢ cient conditions for stochastic

equicontinuity that are easy to check.7

Our pointwise weak LLN for spatial processes on general lattices in Rd is

based on a subset of the assumptions maintained for our CLT, which facili-

tates their joint use in the proof of consistency and asymptotic normality of

spatial estimators. The overwhelming majority of the existing LLNs includ-

ing, among others, Smythe (1973, 1974), Gut (1978), Moricz (1978), Klesov

(1981), Peligrad and Gut (1999), Noczaly and Tomacs (2000) are strong laws

for �elds on partially ordered rectangles in Zd, which prevents their use in

more general settings.

3.2 Mixing De�nitions and Inequalities

We consider spatial processes located on a (possibly) unevenly spaced

lattice D � Rd, d � 1, where the index space Rd is endowed with the max-

imum metric: �(i; j) = max1�l�d jjl � ilj, and the corresponding norm jij =
6For di¤erent de�nitions of stochastic equicontinuity see Section 3 of the present paper

or Pötscher and Prucha (1994a).
7The existing literature on the estimation of nonlinear spatial models has maintained

high-level assumptions such as �rst moment continuity to imply uniform convergence; cp.,

e.g., Conley (1999). The results in this paper are intended to be more accessible, and in

allowing, e.g., for nonstationarity, to cover larger classes of processes.
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max1�l�d jilj, where il denotes the l-th component of i. The distance between

any subsets U; V � D is de�ned as �(U; V ) = inf f�(i; j) : i 2 U and j 2 V g.

Furthermore, let jU j denote the cardinality of a �nite subset U � D. Through-

out the sequel, we maintain the following assumption concerning D:

Assumption 1 The lattice D � Rd, d � 1, is in�nite countable. All ele-

ments in D are located at distances of at least d0 > 0 from each other, i.e.,

8 i; j 2 D : �(i; j) � d0; w.l.o.g. we assume that d0 > 1.

The assumption of a minimum distance has also been used by Conley

(1999). It ensures unbounded expansion of sample regions, i.e., increasing

domain asymptotics, and rules out in�ll asymptotics. It turns out that this

single restriction on irregular lattices also provides su¢ cient structure for the

index sets to permit the derivation of our limit results. Based on Assumption

1, Lemma A.1 in the Appendix establishes bounds on the cardinalities of some

basic sets in D that will be used in the proof of the limit theorems.

We now turn to the weak dependence concepts employed in our theorems.

Let X = fXi;n; i 2 Dn; n 2 Ng be a triangular array of real random �elds

de�ned on a common probability space (
;F; P ), where Dn is a �nite subset

of D, and D satis�es Assumption 1. Further, let A and B be two sub-

�-algebras of F. Two common measures of dependence between A and B

, are �- and �-mixing introduced, respectively, by Rosenblatt (1956) and

Ibragimov (1962), de�ned as:

�(A;B) = sup(jP (A \B)� P (A)P (B)j; A 2 A; B 2 B);

�(A;B) = sup(jP (A j B)� P (A)j; A 2 A; B 2 B; P (B) > 0):
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The concepts of �- and �-mixing have been used extensively in the time series

literature as measures of weak dependence. Recall that a time series process

fXtg1�1 is �-mixing if

lim
m!1

sup
t
�(Ft�1;F

+1
t+m) = 0;

where Ft�1 = �(:::; Xt�1; Xt) and F1t+m = �(Xt+m; Xt+m+1:::): This de�nition

captures the basic idea of diminishing dependence between di¤erent events

as the distance between them increases.

To generalize these concepts to random �elds, one could use formulations

in close analogy with those employed for time-series processes. For instance,

let Ha
k be a collection of all half-spaces of the type fi = (i1; :::; id) 2 Rd; ik �

ag and let Hb
k be a collection of all half-spaces of the type fi = (i1; :::; id) 2

Rd; ik � bg, with a < b; a; b 2 R; which are formed by the hyperplanes per-

pendicular to the k-th coordinate axis, k = 1; ::; d. De�ne �-mixing coe¢ cient

in the k-th direction as

�k(r) = supf�(V1; V2) : V1 2 Ha
k ; V2 2 Hb

k; �(V1; V2) � rg;

where �(V1; V2) = �(�(Xi; i 2 V1); �(Xi; i 2 V2)): The multidimensional

counterpart to the conventional �-mixing coe¢ cient is then obtained by tak-

ing supremum over all ddirections, i.e.,

e�(r) = sup
1�k�d

�k(r):

These conditions were considered by Eberlein and Csenki (1979) and Hegerfeldt

and Nappi (1977), who showed that some Ising ferromagnet lattice systems

satisfy the condition e�(r) ! 0 as r ! 1. However, as demonstrated by

Dobrushin (1968a,b), the latter condition is generally restrictive for d > 1.
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It is violated even for simple two-state Markov chains on D = Z2. The prob-

lem with de�nitions of this ilk is that they neglect potential accumulation

of dependence between �-algebras �(Xi; i 2 V1) and �(Xi; i 2 V2) as sets V1
and V2 expand while the distance between them is kept �xed. Given a �xed

distance, it is natural to expect more dependence between two larger sets

than between two smaller sets.

Thus, extending mixing concepts to random �elds in a practically useful

way requires accounting for the sizes of subsets on which �-algebras reside.

Mixing conditions that depend on subsets of the lattice date back to Do-

brushin (1968b). They were further expanded by Nahapetian (1980, 1987)

and Bolthausen (1982). Following these authors, we adopt the following

de�nitions of mixing:

De�nition 1 For U � Dn and V � Dn, let �n(U) = �(Xi;n; i 2 U),

�n(U; V ) = �(�n(U); �n(V )) and �n(U; V ) = �(�n(U); �n(V )). Then the

�- and �-mixing coe¢ cients for the array of random �elds X are de�ned as

follows:

�n(k; l; r) = sup(�n(U; V ); jU j � k; jV j � l; �(U; V ) � r);

�n(k; l; r) = sup(�n(U; V ); jU j � k; jV j � l; �(U; V ) � r);

with k; l; r; n 2 N: Furthermore, we will refer to

�(k; l; r) = sup
n
�n(k; l; r);

�(k; l; r) = sup
n
�n(k; l; r);

as the corresponding uniform �- and �-mixing coe¢ cients.
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As shown by Dobrushin (1968a,b), the weak dependence conditions based

on the above mixing coe¢ cients are satis�ed by a large class of random �elds

including Gibbs �elds. These mixing coe¢ cients were also used by Doukhan

(1994) and Guyon (1995), albeit without dependence on the sample. Given

the array formulation, our de�nition allows for the latter dependence. The

�-mixing coe¢ cients for arrays of random �elds used in McElroy and Politis

(2000) are identical to ours. Doukhan (1994) provides an excellent overview

of various mixing concepts.

We further note that if Yi;n = f(Xi;n) is a Borel-measurable function of

Xi;n, then �Yn (U) = �(Yn;i; i 2 U) � �Xn (U), and hence c
Y
n (U; V ) � cXn (U; V ),

cYn (k; l; r) � cXn (k; l; r), c
Y (k; l; r) � cX(k; l; r) for c 2 f�; �g. Thus �- and

�-mixing conditions are preserved under transformation.

The key role in establishing CLTs for mixing processes is played by co-

variance inequalities. For convenience and ease of reference, we collect the

covariance inequalities for �- and �-mixing variables, which are central for

the proof of our limit theorems, in the following lemma.

Lemma 1 Suppose U and V are �nite sets in D with jU j = k; jV j = l and

h = �(U; V ): Let f and g be respectively �n(U)- and �n(V )-measurable and

let kfkp = (Ejf jp)1=p.

(i) If kfkp <1 and kgkq <1 with 1
p
+ 1

q
+ 1

r
= 1, p; q > 1 and r > 0, then

jE(fg)� E(f)E(g)j < 8�
1
r
n (k; l; h) kfkp kgkq

(ii) If kfkp <1 and kgkq <1 with 1
p
+ 1

q
= 1, p; q > 1, then

jE(fg)� E(f)E(g)j < 2�
1
p
n (k; l; h kfkp kgkq
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(iii) If jf j < C1 <1 and jgj < C2 <1 a.s., then

jE(fg)� E(f)E(g)j < 4C1C2�n(k; l; h)

jE(fg)� E(f)E(g)j < 2C1C2�n(k; l; h)

For a proof of the above inequalities, see, e.g., Hall and Heyde (1980), p.

277. The inequalities were originally derived by Ibragimov (1962).

3.3 Central Limit Theorem

Let Z = fZi;n; i 2 Dn; n 2 Ng be an array of centered real random �elds on

a probability space (
;F; P ), where the index sets Dn are �nite subsets of

D � Rd, d � 1, which is assumed to satisfy Assumption 1. In the following,

let Sn =
P

i2Dn Zi;n and �
2
n = V ar(Sn).

In this section, we present a CLT for the normalized partial sums ��1n Sn

of the array Z with asymptotically unbounded moments. Our CLT focuses

on �- and �-mixing �elds and is based, respectively, on the following sets of

assumptions.

Assumption 2 (Uniform L2+� integrability) There exists an array of posi-

tive real constants fci;ng such that

lim
k!1

sup
n
sup
i2Dn

E[jZi;n=ci;nj2+� 1(jZi;n=ci;nj > k)] = 0;

where 1(�) is the indicator function.

Assumption 3 (�-mixing) The uniform �-mixing coe¢ cients satisfy

(a)
P1

m=1m
d�1�(1; 1;m)�=(2+�) <1;
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(b)
P1

m=1m
d�1�(k; l;m) <1 for k + l � 4;

(c) �(1;1;m) = O(m�d�") for some " > 0:

Assumption 4 (�-mixing) The uniform �-mixing coe¢ cients satisfy

(a)
P1

m=1m
d�1�(1; 1;m)(1+�)=(2+�) <1;

(b)
P1

m=1m
d�1�(k; l;m) <1 for k + l � 4;

(c) �(1;1;m) = O(m�d�") for some " > 0:

Assumption 5 lim infn!1 jDnj�1M�2
n �2n > 0, where Mn = maxi2Dn ci;n.

Theorem 1 Suppose fDng is a sequence of arbitrary �nite subsets of D,

satisfying Assumption 1, with jDnj ! 1 as n ! 1: Suppose further that

Z = fZi;n; i 2 Dn; n 2 Ng is an array of real random �elds with zero mean,

where Z is either

(a) �-mixing satisfying Assumptions 2 and 3 for some � > 0, or

(b) �-mixing satisfying Assumptions 2 and 4 for some � � 0.

Suppose also that Assumption 5 holds, then

��1n Sn =) N(0; 1):

Clearly, the CLT can be readily extended to vector-valued random �elds

using the standard Cramér-Wold device. The uniform Lp integrability con-

dition postulated in Assumption 2 is a standard moment assumption seen

in the CLTs for one-dimensional trending processes, e.g., Wooldridge (1986),
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Wooldridge and White (1988), Davidson (1992, 1993), and de Jong (1997). It

ensures the existence of the (2+ �)-th absolute moments of Zi;n. A su¢ cient

condition implying uniform L2+� integrability of Zi;n=ci;n is their uniform Lr

boundedness for some r > 2 + �; i.e., supn supi2Dn E jZi;n=ci;nj
r < 1, see,

e.g., Billingsley (1986), pp. 219.

The constants ci;n are scale factors that account for potentially trending

moments of summands. For example, in the case of unbounded variances

v2i;n = EZ2i;n the scale factors may be chosen as ci;n = max(vi;n; 1), and

Assumption 2 would require uniform L2+� integrability of the array Zi;n=vi;n

for some � > 0:Within the context of time series processes, Davidson (1992)

refers to the case with unbounded variances as global nonstationarity to

distinguish it from the case of asymptotic covariance stationarity where the

variance of normalized partial sums converges. In case the Zi;n are uniformly

Lr bounded for some r > 2 the scale factors ci;n can be set to 1. While this

case allows for some heterogeneity of the marginal distributions of Zi;n, it

would, e.g., not accommodate asymptotically unbounded variances.

Spatial processes with asymptotically unbounded moments, which corre-

spond to trending processes in the time series literature, arise frequently in

economics, geostatistics, epidemiology, regional and urban studies. A simple

example from economics is real estate prices in a big city which frequently

spike up as one moves from the outskirts of the city to its center. Cressie

(1993) contains numerous examples of spatial data exhibiting considerable

heterogeneity and trend.

Presently, to the best of our knowledge, there are no limit results for such

spatial processes. All CLTs in the random �elds literature rely on some form
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of uniform boundedness of Zi. Therefore, when comparing our CLT with the

existing results for d > 1, we shall always refer to the case ci;n = 1: For the

reference case, our moment Assumption 2 is slightly stronger than that in

Bolthausen (1982), who assumes L2+� boundedness instead of integrability.

This is not surprising since Bolthausen (1982) deals with strictly stationary

processes, whereas our result allows for nonstationarity.

Assumptions 3 and 4 restrict the dependence structure of the process Z:

Assumption 3 is identical to the �-mixing conditions in Bolthausen (1982),

seemingly, with the exception of Assumption 3c, in place of which Bolthausen

postulates �(1;1;m) = o(m�d): However, as pointed out by Goldie andMor-

row (1986), p. 278, Bolthausen (1982) assumes polynomial decay of mixing

coe¢ cients. Therefore, our assumption and those in Bolthausen (1982) are

equivalent. Assumption 4a parallels the �-mixing condition used by Na-

hapetian (1991) to derive a CLT for strictly stationary �-mixing random

�elds, see Theorem 7.2.2. Since �-mixing is generally stronger than �-mixing,

the rate of decay of mixing coe¢ cients in Assumption 4a is slower than in

Assumption 3a, and the corresponding moment condition (Assumption 2

with � = 0) in the �-mixing case is weaker than that in the �-mixing case

(Assumption 2 with � > 0).

Finally, Assumption 5 limits the growth behavior of v2i;n = EZ2i;n. For

example, consider the case where Dn = [�n;n]d � Zd, Zi;n satis�es Assump-

tion 2 with ci;n = max(vi;n; 1), the Zi;n are uncorrelated, and v2i;n grows with

jij. Then, Assumption 5 rules out exponential growth of the variances. How-

ever, Assumption 5 allows v2i;n to grow at the rate of any �nite nonnegative

power of jij : To see this, let v2i;n � jij
 for some 
 > 0, then Mn � n
=2
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and �2n =
P

i2Dn v
2
i;n � n(
+d). Observing that jDnj = (2n + 1)d, it is then

readily seen that Assumption 5 holds for arbitrary 
 > 0. In the reference

case, where v2i;n = O(1) and hence Mn = O(1); Assumption 5 reduces to

lim infn!1 jDnj�1�2n > 0. In the stationary case, an analogous condition

was employed by Bolthausen (1982). It rules out asymptotically degener-

ate distributions. In the literature on CLTs for time series processes with

unbounded moments, similar assumptions were used by Wooldridge (1986)

and Davidson (1992). These authors assume supn nM
2
n <1, while adopting

the normalization �2n = 1. We note that in the case of D = Z and normal-

ized variances �2n = 1, Assumption 5 becomes lim infn!1 n�1M�2
n > 0, or

equivalently lim supn!1 nM
2
n <1.

Thus, the �-mixing part of Theorem 1 extends Bolthausen�s (1982) CLT

in a number of important directions. In particular, it has the following at-

tributes essential for economic applications discussed in Introduction: i) it

allows moments to depend on indices, ii) it accommodates asymptotically

unbounded or trending second moments, and iii) it allows for more general

index sets than subsets of Zd, including unevenly spaced locations. In par-

ticular, it relaxes Bolthausen�s restrictions on the growth behavior of sets,

namely that Dn " D and j@Dnj= jDnj ! 0, where @Dn is the border of Dn.

The latter condition requires sets to grow in at least two non-opposing di-

rections, and as a result, rules out sets that stretch in one direction. These

patterns may arise under various spatial sampling procedures described in

Ripley (1981), p. 19. To the best of our knowledge, there are no results in

the literature that combine these features and/or contain Theorem 1 as a

special case.

28



3.4 Uniform and Pointwise Law of Large Numbers

Uniform laws of large numbers (ULLNs) are a key tool for establishing con-

sistency of nonlinear estimators. Suppose the true parameter of interest is

�0 2 �, where � is the parameter space, and b�n is a corresponding estimator
de�ned as the maximizer of some real valued objective functionQn(�) de�ned

on �, where the dependence on the data is suppressed. Suppose further that

EQn(�) is maximized at �0 and that �0 is identi�ably unique. Then for b�n to
be consistent for �0, it su¢ ces to show that Qn(�)�EQn(�) converge to zero

uniformly over the parameter space; see, e.g., Gallant and White (1988), pp.

18, and Pötscher and Prucha (1997), pp. 16, for precise statements, which

also allow the maximizers of EQn(�) to depend on n. For many estimators

the uniform convergence of Qn(�)� EQn(�) is established from a ULLN.

In the following, we give a generic ULLN for spatial processes. The ULLN

is generic in the sense that it turns a pointwise LLN into the corresponding

uniform LLN. This generic ULLN assumes (i) that the random functions

are stochastically equicontinuous in the sense made precise below, and (ii)

that the functions satisfy a LLN for a given parameter value. For stochastic

processes this approach was taken by Newey (1991), Andrews (1992), and

Pötscher and Prucha (1994a).8 Of course, to make the approach operational

for random �elds we need an LLN, and therefore we also introduce a new

8We note that the uniform convergence results of Bierens (1981), Andrews (1987),

and Pötscher and Prucha (1989, 1994b) were obtained from closely related approach by

verifying the so-called �rst moment continuity condition and from local laws of large

numbers for certain bracketing functions. For a detailed discussion of similarities and

di¤erences see Pötscher and Prucha (1994a).
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LLN for random �elds. This LLN matches well with our CLT in that it holds

under a subset of the conditions maintained for the CLT. We also report on

two sets of su¢ cient conditions for stochastic equicontinuity that are fairly

easy to verify.

As for our CLT, we consider again arrays of random �elds residing on a

(possibly) unevenly spaced lattice D, where D � Rd, d � 1, is assumed to

satisfy Assumption 1. However, for the ULLN the array is not assumed to be

real-valued. More speci�cally, in the following let fZi;n; i 2 Dn; n 2 Ng, with

Dn a �nite subset of D, denote a triangular array of random �elds de�ned

on a probability space (
;F; P ) and taking their values in Z, where (Z;Z)

is a measurable space. In applications, Z will typically be a subset of Rs,

i.e., Z � Rs, and Z � Bs, where Bs denotes the s-dimensional Borel �-�eld.

We remark, however, that it su¢ ces for the ULLN below if (Z;Z) is only a

measurable space. Further, in the following let ffi;n(z; �); i 2 Dn; n 2 Ng and

fqi;n(z; �); i 2 Dn; n 2 Ng be doubly-indexed families of real-valued functions

de�ned on Z � �; i.e., fi;n: Z � �! R and qi;n: Z � �! R, where (�; �)

is a metric space with metric �. Throughout the paper, the fi;n(�; �) and

qi;n(�; �) are assumed Z=B-measurable for each � 2 � and for all i 2 Dn,

n � 1: Finally, let B(�0; �) be the open ball f� 2 � : �(�0; �) < �g.

3.4.1 Generic Uniform Law of Large Numbers

The literature contains various de�nitions of stochastic equicontinuity. For a

discussion of di¤erent stochastic equicontinuity concepts see, e.g., Andrews

(1992) and Pötscher and Prucha (1994a). We note that apart from di¤erences

in the mode of convergence, the essential di¤erences in those de�nitions relate

30



to the degree of uniformity. We will employ the following de�nition.9

De�nition 2 Consider array of random functions ffi;n(Zi;n; �); i 2 Dn; n � 1g.

Then fi;n is said to be

(a) L0 stochastically equicontinuous on � i¤ for every " > 0

lim sup
n!1

1

jDnj
X
i2Dn

P (sup
�02�

sup
�2B(�0;�)

jfi;n(Zi;n; �)� fi;n(Zi;n; �
0)j > ") !

�!0
0 ;

(b) Lp stochastically equicontinuous, p > 0, on � i¤

lim sup
n!1

1

jDnj
X
i2Dn

E(sup
�02�

sup
�2B(�0;�)

jfi;n(Zi;n; �)� fi;n(Zi;n; �
0)jp) !

�!0
0 ;

(c) a.s. stochastically equicontinuous on � i¤

lim sup
n!1

1

jDnj
X
i2Dn

sup
�02�

sup
�2B(�0;�)

jfi;n(Zi;n; �)� fi;n(Zi;n; �
0)j !

�!0
0 a.s.

Andrews (1992), within the context of one-dimensional processes, refers to

L0 stochastic equicontinuity as termwise stochastic equicontinuity. Pötscher

and Prucha (1994a) refer to the stochastic equicontinuity concepts in De�ni-

tion 2(a) [ (b)], [[ (c)]] as asymptotic Cesàro L0 [Lp], [[a.s.]] uniform equicon-

tinuity, and adopt the abbreviationsACL0UEC [ACLpUEC], [[ a:s:ACUEC]].

The following relationships among the equicontinuity concepts are immedi-

ate: ACLpUEC =) ACL0UEC (= a:s:ACUEC.

In formulating our ULLN, we will allow again for trending moments. We

will employ the following domination condition.

9All suprema and in�ma over subsets of � of random functions used below are assumed

to be P -a.s. measurable. For su¢ cient conditions see, e.g., Pollard (1984), Appendix C,

or Pötscher and Prucha (1994b), Lemma 2.
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Assumption 6 (Domination Condition): There exists an array of positive

real constants fci;ng such that for some p � 1 :

lim sup
n!1

1

jDnj
X
i2Dn

E( dpi;n1(di;n > k))! 0 as k !1

where di;n(!) = sup�2� jqi;n(Zi;n(!); �)j =ci;n.

We now have the following generic ULLN.

Theorem 2 Suppose fDng is a sequence of arbitrary �nite subsets of D,

satisfying Assumption 1, with jDnj ! 1 as n ! 1. Let (�; �) be a totally

bounded metric space, and suppose fqi;n(z; �); i 2 Dn; n 2 Ng is a doubly-

indexed family of real-valued functions de�ned on Z �� satisfying Assump-

tion 6. Suppose further that the qi;n(Zi;n; �)=ci;n are L0 stochastically equicon-

tinuous on �, and that for all � 2 �0; where �0 is a dense subset of �, the

stochastic functions qi;n(Zi;n; �) satisfy a pointwise LLN in the sense that

1

Mn jDnj
X
i2Dn

[qi;n(Zi;n; �)� Eqi;n(Zi;n; �)]! 0 i.p. [a.s.] as n!1, (1)

where Mn = maxi2Dn ci;n. Let Qn(�) = [Mn jDnj]�1
P

i2Dn qi;n(Zi;n; �), then

(a)

sup
�2�

jQn(�)� EQn(�)j ! 0 i.p. [a.s.] as n!1 (2)

(b) Qn(�) = EQn(�) is uniformly equicontinuous in the sense that

lim sup
n!1

sup
�02�

sup
�2B(�0;�)

��Qn(�)�Qn(�
0)
��! 0 as � ! 0: (3)
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The above ULLN adapts Corollary 4.3 in Pötscher and Prucha (1994a)

to arrays of random �elds, and also allows for trending moments. The case

of bounded moments is covered as a special case with ci;n = 1 and Mn = 1.

The ULLN allows for in�nite-dimensional parameter spaces. It only main-

tains that the parameter space is totally bounded rather than compact. (Re-

call that a set of a metric space is totally bounded if for each " > 0 it can

be covered by a �nite number of "-balls). If the parameter space � is a

�nite-dimensional Euclidian space, then total boundedness is equivalent to

boundedness, and compactness is equivalent to boundedness and closedness.

By assuming only that the parameter space is totally bounded, the ULLN

covers situations where the parameter space is not closed, as is frequently

the case in applications.

Assumption 6 is implied by uniform integrability of individual terms, dpi;n,

i.e., limk!1 supn supi2Dn E(d
p
i;n1(di;n > k)) = 0, which, in turn, follows from

their uniform Lr-boundedness for some r > p, i.e., supn supi2Dn kdi;nkr <1.

Su¢ cient conditions for the pointwise LLN and the maintained L0 sto-

chastic equicontinuity of the normalized function qi;n=ci;n are given in the

next two subsections. The theorem only requires the pointwise LLN (1) to

hold on a dense subset �0, but, of course, also covers the case where �0 = �.

As it will be seen from the proof, L0 stochastic equicontinuity of qi;n=ci;n

and the Domination Assumption 6 jointly imply that qi;n=ci;n is Lp stochastic

equicontinuous for p � 1; which in turn implies uniform convergence of Qn(�)

provided that a pointwise LLN is satis�ed. Therefore, the weak part of ULLN

will continue to hold if L0 stochastic equicontinuity and Assumption 6 are

replaced by the single assumption of Lp stochastic equicontinuity for p � 1.
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3.4.2 Pointwise Law of Large Numbers

The generic ULLN assumes a pointwise LLN for the stochastic functions

qi;n(Zi;n; �) for �xed � 2 �. In the following, we introduce a LLN for arrays

of real random �elds fZi;n; i 2 Dn; n 2 Ng taking values in Z = R with

possibly trending moments, which can in turn be used to establish a LLN for

qi;n(Zi;n; �). The LLN below holds under a subset of assumptions of the CLT,

Theorem 1, which facilitates their joint application. The CLT was derived

under the assumption that the random �eld was uniformly L2+� integrable.

As expected, for the LLN it su¢ ces to assume uniform L1 integrability.

Assumption 2 * (Uniform L1 integrability) There exists an array of posi-

tive real constants fci;ng such that

lim
k!1

sup
n
sup
i2Dn

E[jZi;n=ci;nj1(jZi;n=ci;nj > k)] = 0;

where 1(�) is the indicator function.

A su¢ cient condition for Assumption 2* is supn supi2Dn E jZi;n=ci;nj
1+� <

1 for some � > 0. We now have the following LLN.

Theorem 3 Suppose fDng is a sequence of arbitrary �nite subsets of D,

satisfying Assumption 1, with jDnj ! 1 as n ! 1: Suppose further that

fZi;n; i 2 Dn; n 2 Ng is an array of real random �elds satisfying Assumption

2* and where the random �eld is either

(a) �-mixing satisfying Assumption 3(b) with k = l = 1, or
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(b) �-mixing satisfying Assumption 4(b) with k = l = 1.

Then
1

Mn jDnj
X
i2Dn

(Zi;n � EZi;n)
L1! 0;

where Mn = maxi2Dn ci;n.

The existence of �rst moments is assured by the uniform L1 integrability

assumption. Of course, L1-convergence implies convergence in probability,

and thus the Zi;n also satis�es a weak law of large numbers. The theorem

also covers uniformly bounded variables as a special case with ci;n = 1 and

Mn = 1: Comparing the LLN with the CLT reveals that not only the moment

conditions employed in the former are weaker than those in the latter, but

also the dependence conditions in the LNN are only a subset of the mixing

assumptions maintained for the CLT.

There is a massive literature on weak LLNs for time series processes.

Most recent contributions include Andrews (1988) and Davidson (1993b),

among others. Andrews (1988) established an L1-law for triangular arrays of

L1-mixingales. Davidson (1993b) extended the latter result to L1-mixingale

arrays with trending moments. Both results are based on the uniform in-

tegrability condition. In fact, our moment assumption is identical to that

of Davidson (1993b). The mixingale concept, which exploits the natural or-

der and structure of the time line, is formally weaker than that of mixing.

It allows these authors to circumvent restrictions on the sizes of mixingale

coe¢ cients, i.e., rates at which dependence decays. Mixingales are not well-

de�ned for random �elds, without imposing a special order structure on the

index space. Therefore, we cast our LLN in terms of mixing variables. Fur-
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thermore, due to the higher dimensionality and unevenness of the lattice, we

have to make assumptions on the rates of decay of mixing coe¢ cients.

The above LLN can be readily used to establish a pointwise LLN for

stochastic functions qi;n(Zi;n; �) under the �- and �-mixing conditions on

Zi;n postulated in the theorem. For instance, suppose that qi;n(�; �) is Z=B-

measurable and supn supi2Dn E jqi;n(Zi;n; �)=ci;nj
1+� < 1 for each � 2 �

and some � > 0, then qi;n(Zi;n; �)=ci;n is uniformly L1 integrable for each

� 2 �. Recalling that the �- and �-mixing conditions are preserved under

measurable transformation, we see that qi;n(Zi;n; �) also satis�es a LNN for

a given parameter value �.

3.4.3 Stochastic Equicontinuity: Su¢ cient Conditions

In the previous sections, we saw that stochastic equicontinuity is a key in-

gredient of a ULLN. In this section, we explore various su¢ cient conditions

for L0 and a:s: stochastic equicontinuity of functions fi;n(Zi;n; �) as in De�n-

ition 2. These conditions place smoothness requirement on fi;n(Zi;n; �) with

respect to the parameter and/or data. In the following, we will present two

sets of su¢ cient conditions. The �rst set of conditions represent Lipschitz-

type conditions, and only requires smoothness of fi;n(Zi;n; �) in the parameter

�. The second set requires less smoothness in the parameter, but maintains

joint continuity of fi;n both in the parameter and data. These conditions

should cover a wide range of applications and are relatively simple to ver-

ify. Lipschitz-type conditions for one-dimensional processes were proposed

by Andrews (1987, 1992) and Newey (1991). Joint continuity-type condi-

tions for one-dimensional processes were introduced by Pötscher and Prucha
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(1989). In the following we adapt those conditions to random �elds.

We continue to maintain the setup de�ned at the beginning of the section.

Lipschitz in Parameter

Assumption 7 The array fi;n(Zi;n; �) satis�es for all �; �0 2 � and i 2 Dn,

n � 1 the following condition:

jfi;n(Zi;n; �)� fi;n(Zi;n; �
0)j � Bi;nh(�(�; �

0)) a.s.,

where h is a nonrandom function such that h(x) # 0 as x # 0, and Bi;n are

random variables that do not depend on � such that for some p > 0

lim sup
n!1

jDnj�1
X
i2Dn

EBp
i;n <1 [ lim sup

n!1
jDnj�1

X
i2Dn

Bi;n <1 a.s.]

Clearly, each of the above conditions on the Cesàro sums of Bi;n is implied

by the respective condition on the individual terms, i.e., supn supi2Dn EB
p
i;n <

1 [ supn supi2Dn Bi;n <1 a.s.]

Proposition 1 Under Assumption 7, fi;n(Zi;n; �) is L0 [ a:s:] stochastically

equicontinuous on �:

Continuous in Parameter and Data In this subsection, we assume addi-

tionally that Z is a metric space with metric � and with Z the corresponding

Borel �-�eld. Also, let B�(�; �) and BZ(z; �) denote �-balls respectively in

� and Z.

We consider functions of the form:
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fi;n(Zi;n; �) =
KX
k=1

rki;n(Zi;n)ski;n(Zin; �); (4)

where rki;n : Z ! R and ski;n(�; �) : Z ! R are real-valued functions, which

are Z=B-measurable for all � 2 �, 1 � k � K, i 2 Dn, n � 1. We maintain

the following assumptions.

Assumption 8 The random functions fi;n(Zi;n; �) de�ned in (4) satisfy the

following conditions:

(a) For all 1 � k � K

lim sup
n!1

1

jDnj
X
i2Dn

E jrki;n(Zi;n)j <1:

(b) For a sequence of sets fKmg withKm 2 Z the family of nonrandom func-

tions ski;n(z; �), 1 � k � K; satisfy the following uniform equicontinuity-

type condition:

sup
n
sup
i2Dn

sup
z2Km

sup
�02�

sup
�2B(�0;�)

jski;n(z; �)� ski;n(z; �
0)j ! 0 as � ! 0:

(c) Also, for the sequence of sets fKmg

lim
m!1

lim sup
n!1

1

jDnj
X
i2Dn

P (Zi;n =2 Km) = 0:

We now have the following proposition, which extends parts of Theorem

4.5 in Pötscher and Prucha (1994a) to arrays of random �elds.

Proposition 2 Under Assumption 8, fi;n(Zi;n; �) is L0 stochastically equicon-

tinuous on �:
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We next discuss the assumptions of the above proposition and provide

further su¢ cient conditions. We note that the fi;n are composed of two

parts, rki;n and ski;n, with the continuity conditions imposed only on the

second part. Assumption 8 allows for discontinuities in rki;n with respect to

the data. For example, the rki;n could be indicator functions. A su¢ cient

condition for Assumption 8(a) is the uniform L1 boundedness of rki;n, i.e.,

supn supi2Dn E jrki;n(Zi;n)j <1.

Assumption 8(b) requires nonrandom functions ski;n to be equicontinu-

ous with respect to � uniformly for all z 2 Km: This assumption will be

satis�ed if the functions ski;n(z; �), restricted to Km � �, are equicontinu-

ous jointly in z and �. More speci�cally, de�ne the distance between the

points (z; �) and (z0; �0) in the product space Z � � by r((z; �); (z0; �0)) =

max f�(�; �0); �(z; z0)g : This metric induces the product topology on Z ��:

Under this product topology let B((z0; �0); �) be the open ball with center

(z0; �0) and radius � in Km � �. It is now easy to see that Assumption 8(b)

is implied by the following condition for each 1 � k � K

sup
n
sup
i2Dn

sup
(z0;�0)2Km��

sup
(z;�)2B((z0;�0);�)

jski;n(z; �)� ski;n(z
0; �0)j ! 0 as � ! 0,

i.e., the family of nonrandom functions fski;n(z; �)g, restricted to Km � �,

is uniformly equicontinuous on Km � �: Obviously, if both � and Km are

compact, the uniform equicontinuity is equivalent to equicontinuity, i.e.,

sup
n
sup
i2Dn

sup
(z;�)2B((z0;�0);�)

jski;n(z; �)� ski;n(z
0; �0)j ! 0 as � ! 0:

Of course, if the functions furthermore do not depend on i and n, then the

condition reduces to continuity on Km � �. Clearly if any of the above

conditions holds on Z ��, then it also holds on Km ��.
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Finally, if the sets Km can be chosen to be compact, then Assump-

tion 8(c) is an asymptotic tightness condition for the average of the mar-

ginal distributions of Zin. Assumption 8(c) can frequently be implied by

a mild moment condition. In particular, the following is su¢ cient for As-

sumption 8(c) in case Z = Rs: Km " Rs is a sequence of Borel mea-

surable convex sets (for example, a sequence of open or closed balls), and

lim supn!1 jDnj�1
P

i2Dn Eh(Zin) < 1 where h : [0;1) ! [0;1) is a

monotone function such that limx!1 h(x) =1.10

We note that, in contrast to Assumption 7, Assumption 8 will generally

not cover random �elds with trending moments since in this case part (c)

would typically not hold.

10For example h(x) = xp for some p > 0. The claim follows from lemma A4 in Pötscher

and Prucha (1994b) with obvious modi�cation to the proof.
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4 Near-Epoch Dependent Spatial Processes

4.1 Introduction

In Section 3, we established a CLT, uniform and pointwise LLNs for non-

stationary �- and �-mixing spatial processes. These limit theorems are the

essential tools for analyzing the asymptotic properties of spatial estimators

and test statistics. Our results are primarily motivated by the need to develop

a more general asymptotic estimation and inference theory for the growing

body of spatial statistical models in economics. Over the last decade, this has

been an active area of research in spatial econometrics. While a signi�cant

progress has been made for some important classes of models including linear

spatial autoregressive models and stationary models11, the asymptotic prop-

erties of nonlinear estimators for nonstationary dependent spatial processes

have not been formally examined. This is mainly due to the lack of CLTs,

uniform and pointwise LLNs for spatial processes or random �elds under the

assumptions relevant to socioeconomic applications. As discussed in the pre-

vious section, existing limit theorems for random �elds maintain stationarity

or allow only for some restrictive forms of nonstationarity. Furthermore, they

do not allow for processes with unevenly spaced locations and impose restric-

tions on the sample regions. These features of the existing limit theorems

prevent their application to econometric models in which spatial processes

11E.g., Kelejian and Prucha (1998, 1999, 2001, 2004, 2007a,b); Conley (1999); Pinkse

and Slade (1998); Lee (2002, 2004, 2007a); Pinkse, Shen and Brett (2002); Pinkse, Shen

and Slade (2006); Yu, de Jong and Lee (2006), Robinson (2007b); Kapoor, Kelejian and

Prucha (2007).
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are often nonstationary and located on unevenly spaced lattices. The CLT,

ULLN and LLN for nonstationary �- and �-mixing random �elds derived in

Section 3 relax these restrictions.

However, the class of mixing random �elds may not be su¢ ciently large

to cover some applications of interest such as spatial ARMA processes, also

called linear processes, and Cli¤-Ord (1971, 1981) type spatial processes.

These important spatial processes are generated as functions of some input

process, which is usually assumed to be spatially mixing. The function may

involve in�nitely many spatial lags of the input process. As is well-known,

while measurable functions of �nite number of lags of a mixing process are

also mixing, the mixing property is not preserved under transformations in-

volving in�nite number of lags. For instance, in the time series context,

Andrews (1984) showed that a simple �rst-order autoregressive process fails

to be �-mixing although its innovation/input process is independent, and

hence mixing.

In general, linear processes whose input process is �-mixing (�-mixing)

will not be �-mixing (�-mixing) without further restrictions on the probabil-

ity density of the input process and the rate of decay of its mixing coe¢ cients.

Su¢ cient conditions for preservation �-mixing property under moving aver-

age transformations for time series processes were established by Gorodetskii

(1977) and Withers (1981). These conditions were generalized to moving av-

erage random �elds by Doukhan and Guyon (1991), see also Guyon (1995).

They include invertibilty of the moving average process, restrictions on the

mixing coe¢ cients and smoothness of the probability density function of the

input process. Clearly, these conditions are di¢ cult to verify, and may not
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be satis�ed in many applications.

Aside from linear processes, there are also important classes of processes

generated as nonlinear transformations of mixing processes. Bernoulli shifts

are one of important examples of such processes. In the time series litera-

ture, Bernoulli shifts are de�ned as nonlinear functions of an in�nite history

of some independent input process. Doukhan and Louhichi (1999) demon-

strated that under some mild conditions, these processes are weakly depen-

dent, i.e., their autocovariances decay su¢ ciently fast with the distance. Yet,

they are not generally mixing although their input process is independent,

see Rosenblatt (1980).

To accommodate a larger class of weakly dependent spatial processes,

we extend the concept of near-epoch dependent (NED) processes used in

the time series literature to random �elds. The NED concept dates back to

Ibragimov (1962), Billingsley (1968), Ibragimov and Linnik (1971), although

these authors did not employ the present term. It has been used extensively

in the time series literature by McLeish (1975a, 1975b), Wooldridge (1986),

Gallant and White (1988), Andrews (1988), Hansen (1991), Davidson (1992,

1993a,b), Pötscher and Prucha (1997), and de Jong (1997).

The basic idea is that a NED process can be approximated by a function

of only a �nite number of spatial lags of the input process, which is assumed

mixing. As a result, the approximating process inherits the mixing property

of the input process. One can then use the limit theorems for mixing �elds

of Section 3 to establish a CLT and an LLN for the approximating process.

Under some weak conditions, the approximation error can be shown to be

asymptotically negligible in the sense that it does not a¤ect the limiting
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behavior of the NED process. Consequently, the NED process will satisfy a

CLT or an LLN.

The NED property is compatible with considerable heterogeneity and

dependence, and is preserved under in�nite lag transformations under fairly

general conditions. Therefore, it is convenient for modeling many processes

encountered in applications. The class of NED random �elds is su¢ ciently

broad to cover many important applications. It includes, but is not limited to,

mixing processes. It is also shown to cover Cli¤-Ord type processes, spatial

in�nite moving average processes and some in�nite nonlinear transformations

of random �elds. All these processes need not be mixing. Thus, the class of

NED spatial processes is strictly larger than that of mixing random �elds.

In this part of the dissertation, we provide a central limit theorem and

law of large numbers for NED spatial processes. Just as the limit theorems

of Section 3, the CLT and LLN for NED spatial processes accommodate

nonstationary random �elds with trending moments. They also allow for

more general unevenly spaced index sets. All these attributes are critical

in many applied settings where unevenly spaced data observations exhibit

considerable heterogeneity and dependence.

To the best of our knowledge, NED processes have not been considered in

the spatial literature. In the time series literature, CLTs for NED processes

have been obtained by Wooldridge (1986), Wooldridge and White (1988),

Davidson (1992, 1993a,b), and de Jong (1997). Interestingly, our CLT con-

tains as a special case the CLTs for time-series NED processes of Wooldridge

(1986) [Theorem 3.13 and Corollary 4.4] and Davidson�s (1992). As such, the

proposed CLT reveals direct connection and consistency in the asymptotic
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properties of spatial (multi-dimensional) and time-series (one-dimensional)

processes.

The LLN is an L1-law based on the subset of assumptions maintained in

the CLT, which facilitates their joint application in the proof of consistency

and asymptotic normality of spatial estimators. It requires the existence of

absolute moments of order slightly greater than one. This is a reasonably mild

assumption commonly used in weak LLNs for NED processes, for example,

in Andrews (1988) and Davidson (1993b). Andrews (1988) establishes an

L1-law for triangular arrays of L1-NED processes. Davidson (1993b) extends

the latter result to processes with trending moments.

Our limit theorems for NED spatial processes can be used to develop an

asymptotic theory of spatial econometric estimators for dependent nonsta-

tionary data-generating processes. In particular, these results should allow

extension of the asymptotic theory for spatial GMM estimators proposed by

Conley (1999) in two critical directions: (i) from mixing processes to the

larger class of weakly dependent NED processes; and (ii) from stationary to

nonstationary processes. Some progress in this direction has been made by

the author. Furthermore, these limit theorems can be also used to study

the large sample properties of cross-sectional and panel data models with

cross-sectionally dependent observations when data locations and distances

are known.
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4.2 De�nition and Examples of NED Processes

We continue with the basic set-up of Section 3 and consider spatial processes

located on a possibly unevenly spaced lattice D � Rd, d � 1. The distance

between elements i = (i1; : : : ; id) and j = (j1; : : : ; jd) of D is de�ned as

�(i; j) = max1�l�d jjl�ilj. As in Section 3, we assume that there is a minimum

positive distance between any two elements of the lattice D, i.e., we maintain

Assumption 1.

In this section, we will introduce the notion of near-epoch dependent

(NED) random �elds, which encompasses mixing random �elds and many

non-mixing weakly dependent random �elds. NED processes have nice prop-

erties similar to mixing processes, e.g., stability under smooth transforma-

tions. More importantly, they will be shown to satisfy a CLT and LLN under

some fairly mild conditions.

Although some weakly dependent spatial processes are not mixing, they

can often be represented as functions of mixing processes. To �x ideas,

suppose that the random �eld Z = fZi;ng can be written as

Zi;n = fi;n(Xj;n; j 2 D)

for some �-mixing �eld X = fXi;ng and a measurable function fi;n: Observe

that Z need not be �-mixing since it depends on an in�nite number of spatial

lags of X. However, if the functions fi;n are "well-behaved", this structure

of dependence is often su¢ cient to derive limit theorems for Zi;n. Intuitively,

we can expect a CLT (or an LLN) to hold if functions fi;n are such that

they put "declining weights" on the spatial lags of Xj;n that are remote from

point i, thus e¤ectively ensuring that the behavior Zi;n is mainly driven by
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Xj;n located in this some bounded neighborhood of i. The idea of "declining

weights" can be formalized by approximating fi;n(Xj;n; j 2 D) by a mea-

surable function that depends on �nitely many spatial lags of X, e.g., by

hsi;n(Xj;n; j 2 D: �(i; j) � s). Since measurable functions of �nitely many

lags of a mixing process are also mixing, the approximating function hsi;n will

inherit the mixing property of the process X, and hence one can apply the

limit theorems for mixing random �elds to establish the asymptotic behavior

of hsi;n. Finally, if the approximating error can be made arbitrarily small (in

some norm) by increasing the size of the neighborhood, i.e.,

Zi;n � hsi;n



p
! 0 as s!1, (5)

then Zi;n will satisfy a CLT and LLN under some reasonable regularity con-

ditions. This is, in a nutshell, the basic idea behind approximating concepts

used in the time series literature. Various approximating concepts mainly

di¤er in the choice of the approximating functions hsi;n and the measure for

the approximating error.

We now extend this approximation concept to random �elds. We will use

the conditional expectations of Zi;n as the approximating functions hsi;n. More

speci�cally, let Z = fZi;n; i 2 Dn; n � 1g and X = fXi;n; i 2 Tn; n � 1g be

two vector-valued arrays of random �elds de�ned on a common probability

space (
;F; P ) and taking their values in Rpz and Rpx, respectively.12 In the

following, we assume that Rpy is a normed metric space equipped with the

Euclidian norm: jyj =
�Ppy

k=1 y
2
k

�1=2
: For any random vector Y , let kY kp =

[E jY jp]1=p , p � 1; denote its Lp-norm. Finally, let Fi;n(s) = �(Xj;n; j 2 Tn :
12Note that the vectors Z and X may have di¤erent dimensions. For the approximation

to be well-de�ned, it is assumed that Dn � Tn.
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�(i; j) � s) be the �-algebra generated by X�s located in the s-neighborhood

of Zi;n.

De�nition 3 Random �eld Z = fZi;n; i 2 Dn; n � 1g is said to be Lp-near-

epoch dependent (p � 1) on the �eld X = fXi;n; i 2 Tn; n � 1g with Dn � Tn,

if there exist positive constants fdi;ng such that

kZi;n � E(Zi;njFi;n(s))kp � di;n (s) (6)

for some non-increasing sequence  (s) such that lims!1  (s) = 0. The  (s)

are referred to as the NED coe¢ cients, and the di;n - as the NED magnitude

indices. Z is said to be Lp-NED on X of size �� if  (s) = O(s��) for

some � > � > 0: Furthermore, if supn supi2Dn di;n � c, then Z is said to be

uniformly Lp-NED on X:

Typically, Tn will be an in�nite subset of D, and often Tn = D. But,

to cover the practically important case of triangular arrays, and in particu-

lar Cli¤-Ord type processes, Tn is allowed to depend on n and to be �nite

provided that it increases in size with n.

The magnitude indices fdi;ng account for processes with potentially trend-

ing moments. Thus, the NED property is compatible with considerable

amount of heterogeneity. In many cases, di;n can be chosen as di;n � 4 kZi;nkp.

This follows from application of Minkowski�s and conditional Jensen�s in-

equalities to the left-hand side of (6):




Zi;n � eZsi;n



p
� kZi;n � EZi;nkp +




EZi;n � eZsi;n



p

� 2 kZi;n � EZi;nkp � 4 kZi;nkp

48



where eZsi;n = E(Zi;njFi;n(s)). Thus, we can choose di;n such that di;n �

4 kZi;nkp, and consequently, assume  (s) � 1, with no loss of generality.

Clearly, if the Zi;n are uniformly Lp-bounded, then supn supi2Dn di;n � c

and, hence, Z is uniformly Lp-NED on X.

Using the convention di;n = 4 kZi;nkp, one can also avoid the possibility

that condition (6) might be trivially satis�ed by choosing di;n arbitrarily big

so that d�1i;n



Zi;n � eZsi;n




p
becomes arbitrarily small for any process, even if

it does not have the required NED property. This situation is ruled out by

imposing the restriction di;n � 4 kZi;nkp : Furthermore, note that by Lya-

punov�s inequality, if Zi;n is Lp-NED, then it is also Lq-NED with the same

coe¢ cients fdi;ng and f (s)g for any q � p.

To the best of our knowledge, the NED concept has not yet been consid-

ered in the random �elds literature. In the time series literature, the idea �rst

appeared in the works of Ibragimov (1962), Ibragimov and Linnik (1971), and

Billingsley (1968), although they did use the present term. The concept of

time series NED processes was later formalized by McLeish (1975a, 1975b),

Wooldridge (1986), Gallant and White (1988). These authors considered

only L2-NED processes. Andrews (1988) generalized it to Lp-NED processes

for p � 1: Davidson (1992, 1993a,b, 1994) further extended it to allow for

trending time series processes.

A more general concept of approximation for time series processes was

introduced by Pötscher and Prucha (1997). They call the process Zt;n Lp-

approximable by Xt;n if there exist a function hst;n = hst;n(Xt�s;n; :::; Xt+s;n)

such that

lim sup
n!1

n�1
nX
t=1



Zt;n � hst;n



p
! 0 as s!1, (7)
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A similar approximation concept is used by Davidson (1994). Loosely

speaking, he de�nes Lp-approximable time series processes as those satisfy-

ing condition (5). Since the hsi;n can be chosen as the conditional expecta-

tions, Lp-approximable processes include Lp-NED processes as a special case.

Clearly, the conditional expectation is one of candidates for the approximat-

ing function, but other approximating functions are also possible. However,

in the case p = 2 the conditional mean is the best approximator in the sense

that it minimizes the mean squared error. Therefore, the CLT in the next

section is derived for L2-NED processes, and our use of the NED concept is

not restrictive.

We will now show that some practically important classes of spatial

processes have the NED property. More speci�cally, we establish the NED

property for the following classes of processes: (i) in�nite moving average

random �elds, (ii) Cli¤-Ord type processes and (iii) spatial Bernoulli shifts.

These processes are used widely in applications.

Example 1 In�nite Moving Average (or Linear) Random Fields

Consider an in�nite moving average random �eld Y = fYi; i 2 D = Zdg

de�ned as:

Yi =
X
j2Zd

gi;jXj (8)

where X = fXi; i 2 Zdg is a vector-valued random �eld and gi;j are some real

numbers: This class of linear random �elds on Zd were studied by Doukhan

and Guyon (1991), see also Doukhan (1994). The linear spatial processes on

Z2 considered in the well-known paper by Whittle (1954) is a special case
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of the linear �eld (8). Just as in the time series literature, Yi is de�ned as

the limit of the partial sum process Y s
i =

P
j2Zd;�(i;j)�s gi;jXj; s 2 N; which

exists under some weak conditions. More speci�cally, Doukhan (1994), pp.

75-81, proves the following lemma.

Lemma 2 [Doukhan, 1994] The distribution of random �eld Y in (8) is

well de�ned under the following assumptions:

(a) X = fXi; i 2 Zdg is uniformly Lp (p � 1) bounded, i.e.,

sup
i2Zd

kXikp <1 (9)

(b)

lim
s!1

sup
i2Zd

X
j2Zd;�(i;j)>s

jgi;jj = 0 (10)

Moreover, the �nite dimensional distributions of Y are limits of the

those of the random �elds Y s
i =

P
j2Zd;�(i;j)�s gi;jXj.

We show that under the same conditions, the linear �eld Y is Lp-NED

on the �eld X.

Lemma 3 Under conditions (9)-(10) maintained in its de�nition, the linear

�eld Y in (8) is uniformly Lp-NED on the �eld X:

The nice feature of this result is that to verify the NED property, it

does not impose any additional conditions over and above those incorporated

in the de�nition of the linear �eld. Assumption (10) is satis�ed if jgi;jj =

O(jjj�
) uniformly in i for some 
 > d. In the case d = 1, the latter
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condition reduces to jgi;jj = O(j�1��); uniformly in i for some � > 0, which

is a standard su¢ cient condition for the absolute convergence of series.

Example 2 Cli¤-Ord Type Spatial Processes

Consider the following Cli¤-Ord type model:

Yn = �MnYn + Zn� + un

un = �Wnun + "n

where Yn = (Y1;n; :::; Yn;n) is n-vector of endogenous variables, Zn is n � k

matrix of regressors, Mn and Wn are known n � n weight matrices that

generally depend on the sample size, �; � are unknown scalar parameters

and � is unknown k-vector of slope coe¢ cients. The "n are n-vector of

disturbances. The reduced form of the model is

Yn = (In � �Mn)
�1Zn� + (In � �Mn)

�1(In � �Wn)
�1"n;

Assume for simplicity that Zn is a column vector. Let Xi;n = (Zi;n; "i;n)
0 be

uniformly (in i and n) Lp-bounded for some p � 1: Note that Xi;n need not

be independent. The reduced form of the model is

Yi;n = �
nX
j=1

aij;n Zj;n +
nX
j=1

bij;n "j;n; i = 1; :::; n (11)

where An = (aij;n) = (In � �Mn)
�1 and Bn = (bij;n) = (In � �Mn)

�1(In �

�Wn)
�1.

Although for �xed n; the output process Yi;n depends on only �nite num-

ber of spatial lags of the input process Xi;n, the mixing property of Xi;n may

52



not carry over to Yi;n: The reason is that the number of spatial lags grows un-

boundedly with the sample size so that the mixing property can break down

in the limit. This is especially important when analyzing the asymptotic

properties of Cli¤-Ord type processes.

Observations in Cli¤-Ord models are typically indexed by natural num-

bers, e.g. i; j 2 f1; ::; ng. Although coordinates/locations in Rd correspond-

ing to various observations are not explicitly speci�ed, the distances between

observations are often known. They are used to construct the weighting

matrices Wn and Mn.

We will now show that despite the lack of explicitly speci�ed locations,

the NED concept can be applied to Cli¤-Ord type processes provided that

the distances between observations are known. Suppose observations reside

in some bounded region Dn of the lattice D satisfying Assumption 1, with

the sample size jDnj = n, and also suppose that the distances �(i; j) between

any two observations i and j are known. [Strictly speaking, one has to write

�(li; lj) instead of �(i; j) where li; lj 2 Rd are locations corresponding to

observations i and j]. We emphasize that one does not have to know the

sample region Dn and the locations since our results hold for arbitrary Dn

and do not depend on ordering of observations, as shown below.

It turns out that the Cli¤-Ord process (11) will satisfy the NED property

under the following relatively weak conditions.

lim
s!1

sup
n
sup
1�i�n

X
1�j�n:�(i;j)>s

jaij;nj = 0 (12)

lim
s!1

sup
n
sup
1�i�n

X
1�j�n:�(i;j)>s

jbij;nj = 0
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and

sup
n
sup
1�i�n

kXi;nkp <1: (13)

Lemma 4 Under conditions (12)-(13), the process Yi;n given by (11) is uni-

formly Lp-NED on the process Xi;n = (Zi;n; "i;n)
0.

Condition (12) implies the absolute summability of the weighting coe¢ -

cients, i.e.,

sup
n
sup
1�i�n

X
1�j�n

jaij;nj < 1 (14)

sup
n
sup
1�i�n

X
1�j�n

jbij;nj < 1

Since any re-arrangement of the terms of an absolutely convergent series

converges to the same limit, the ordering of observations does not a¤ect

the NED property. Hence, one does not have to know the locations, and

observations may be indexed in arbitrary way by naturals.

Condition (12) is satis�ed if uniformly in i and n: jaij;nj = O(j�
) for

some 
 > 1, which can be veri�ed by simple calculations as follows:

sup
n
sup
1�i�n

X
1�j�n:�(i;j)>s

jaij;nj � C

Z 1

s

x�
dx � C 0s1�
:

for some �nite constants C and C 0. Hence, condition (12) follows immediately

if 
 > 1.

We note that condition (12) on the weights of the Cli¤-Ord type process

is analogous to those used by Kelejian and Prucha (1998, 1999, 2001, 2004,

2007a,b). In particular, Kelejian and Prucha require the row sums of the

weighting matrices (aij;n) and (bij;n) to be uniformly bounded, i.e., maintain
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condition (14), which is implied by condition (12). So, condition (12) is

slightly stronger than uniform boundedness of row sums of the weighting

matrices. However, in addition, Kelejian and Prucha require the column

sums of the weighting matrices to be also uniformly bounded. The latter

condition is not imposed here. Thus, overall, condition (12) and the set

of conditions used by Kelejian and Prucha are similar, but neither of them

dominates the other. The uniform boundedness of row and column sums of

the weighting matrices is the standard assumption maintained in the Cli¤-

Ord literature, e.g., Lee (2002, 2004, 2007a), Kapoor, Kelejian, and Prucha

(2007). Thus, the NED concept �ts quite naturally into the existing Cli¤-Ord

literature.

Example 3 Spatial Bernoulli Shifts

Consider a real-valued random �eld Y = fYi; i 2 Dg de�ned as:

Yi = H(Xi+j; j 2 D) (15)

where D � Rd is a lattice satisfying Assumption 1, X = fXi; i 2 Dg is a

real-valued random �eld and H : RD ! R is a measurable function. (Note

thatH is a function of countably in�nite number of scalar arguments u). The

process (15) generalizes the one-dimensional Bernoulli shift process studied

by Doukhan and Louhichi (1999) to random �elds. A simple example of

in�nitely dependent Bernoulli shift is the in�nite moving average (or linear)

random �eld discussed in Example 1. In more general cases, H may be a

complicated nonlinear function. Following Doukhan and Louhichi (1999), we
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assume that H satis�es the following Lipschitz-type regularity condition:

jH(ui; i 2 D)�H(vi; i 2 D)j �
X
i2D

wi jui � vij (16)

for some positive constants fwj; j 2 Dg such that

lim
s!1

sup
i2D

X
j2D:jjj>s

wi+j = 0: (17)

Finally, we assume that the innovation process X = fXi; i 2 Dg has uni-

formly bounded second moments, i.e.,

sup
i2D

kXik2 <1 (18)

Then, one can establish the following result.

Lemma 5 Under conditions (16)-(18), the random �eld Y = fYi; i 2 Dg

de�ned by (15) is uniformly L2-NED on the random �eld X = fXi; i 2 Dg.

Conditions (16)-(18) are analogous to those used by Doukhan and Louhichi

(1999), p. 324 for time-series Bernoulli shifts. Condition (16) is ful�lled if the

functionH is di¤erentiable in each of its arguments and its partial derivatives

with respect to each argument are bounded as follows:����@H@ui
���� � wi:

Condition (17) is in turn satis�ed if wi = O(jij�
) for some 
 > d.

To summarize, the class of NED random �elds covers not only linear

functions of mixing �elds but also more general in�nite-lag nonlinear trans-

formations of mixing random �elds under reasonably weak conditions.
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4.3 Central Limit Theorem for NED Processes

In this section, we provide a CLT for arrays of L2-NED random �elds. Let

Z = fZi;n; i 2 Dn; n � 1g be a real-valued random �eld, which is L2-NED

on a vector-valued �eld X = fXi;n; i 2 Tn; n � 1g with the NED coe¢ cients

f (s)g and the magnitude indices fdi;ng, where Dn � Tn � D and the lattice

D satis�es Assumption 1. In the following, we will use the following notation

and conventions for the �eld Z:

EZi;n = 0; Sn =
X
i2Dn

Zi;n; �2n = var(Sn):

As for the input process X; we assume that X is either �- or �-mixing.

We employ the same de�nition of mixing as in Section 3, see De�nition 1. Ac-

cording to this de�nition, the mixing coe¢ cients of X - �(k; l; r) or �(k; l; r)

- depend not only on the distance, r, between two datasets but also sizes

of the two index sets, k and l. As discussed in Section 3, mixing conditions

with both k = 1 and l = 1 are restrictive. Bradey (1993) shows that for

stationary random �elds the condition limr!1 �(1;1; r) = 0 is equivalent

to �-mixing, which is a more restrictive form of dependence. Furthermore,

stationary random �elds satisfying the condition limr!1 �(1;1; r) = 0 (or

limr!1 �(1;1; r) = 0) reduce to r-dependent processes, which is a trivial

form of dependence. Nevertheless, this di¢ culty can be overcome if the size

of at least one of the index sets in the mixing coe¢ cient is �nite. Bradley

(2005), p.315, remarks: These pitfalls can be avoided if in the de�nition of

the dependence coe¢ cients, at least one of the two index sets is �nite and its

cardinality plays a suitable role. Indeed, in the formulation of strong mixing

conditions for random �elds, that has been common practice at least since the
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paper of Dobrushin (1968a).

Therefore, researchers have employed mixing conditions of the following

type:

�(k; l;m) � f(k; l)b�(m) (19)

�(k; l;m) � f(k; l)b�(m)
where f(k; l) is some non-decreasing in both arguments function (which

will be speci�ed later) and b�(m) and b�(m) are non-increasng functions. The
idea is to account separately for two di¤erent aspects of dependence: (i)

decay of dependence with the distance, and (ii) accumulation of dependence

with the growth of the sample size. To derive limit theorems, researchers

have further specialized the function f(k; l). One of most common choices

is f(k; l) = (k + l)� for some � � 0, e.g. Neaderhouser (1978a,b), Takahata

(1983), Nahapetian (1987, 1991), Bulinskii (1989), Bulinskii and Doukhan

(1990).

We follow this approach and assume that the mixing coe¢ cients of the

input random �eld X satisfy the following two sets of assumptions.

Assumption 9 (�-mixing) The uniform �-mixing coe¢ cients of X satisfy

(a)

�(k; l;m) � (k + l)�b�(m) (20)

for some � � 0 and b�(m) such that P1
m=1m

d(�+1)�1b� �
2(2+�) (m) <1.

(b) for each given k and some " > 0:

�(k;1;m) = O(m�d�") (21)
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Assumption 10 (�-mixing) The uniform �-mixing coe¢ cients of X satisfy

(a)

�(k; l;m) � (k + l)�b�(m) (22)

for some � � 0 and b�(m) such that P1
m=1m

d(�+1)�1b�(m)(1+�)=(2+�) <
1.

(b) �(k;1;m) = O(m�d�") for each given k and some " > 0.

Mixing conditions of this type have been used extensively in the random

�elds literature. In particular, conditions (20) and (22) have been employed

by Neaderhouser (1978a,b), Takahata (1983), Nahapetian (1987, 1991), Bu-

linskii (1989), Bulinskii and Doukhan (1990). Conditions similar to (21) have

been exploited by Neaderhouser (1981), Tran (1990), Carbon, Tran and Wu

(1997).

Unlike mixing conditions based on �(1;1;m) or �(1;1;m); the above

conditions are satis�ed by large classes of random �elds encountered in appli-

cations. For instance, Dobrushin (1968a) provides examples of Gibbs �elds

used widely in statistical physics that satisfy the �-mixing condition (21), but

not the condition limm!1 �(1;1;m) = 0. Bradley (1993) gives examples

of random �elds satisfying condition (20) with k = l and � = 1. Bulinskii

(1989) constructs, for any given b�(m), in�nite moving average random �elds
satisfying the �-mixing condition (20) with � = 1: The standard mixing co-

e¢ cients used in the time series literature are also covered by conditions (20)

and (21) by setting � = 0 and d = 1.

The CLT relies on the same moment conditions as the CLT for mixing

random �elds in Section 3, see Theorem 1. For ease of reference, we restate
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them below.

Assumption 11 (Uniform L2+� integrability) There exists an array of pos-

itive constants fci;ng and a � � 0 such that

lim
k!1

sup
n
sup
i2Dn

E[jZi;n=ci;nj2+� 1(jZi;n=ci;nj > k)] = 0;

where 1(�) is the indicator function:

Assumption 12 lim infn!1 jDnj�1M�2
n �2n > 0, where Mn = maxi2Dn ci;n

and fDng is a sequence of arbitrary �nite subsets of D such that jDnj ! 1

as n!1:

Finally, we need to control the sizes of the NED coe¢ cients and NED

magnitude indices:

Assumption 13 NED coe¢ cients satisfy
P1

m=1m
d�1 (m) <1:

Assumption 14 NED magnitude indices satisfy supn supi2Dn c
�1
i;ndi;n � C <

1:

We can now state our CLT for L2-NED random �elds.

Theorem 4 Suppose fDng is a sequence of arbitrary �nite subsets of the

lattice D, satisfying Assumption 1, with jDnj ! 1 as n!1. Let Tn be a

sequence of subsets of D such that Dn � Tn: Let Z = fZi;n; i 2 Dn; n � 1g

be an array of real-valued centered random �elds, which is L2-NED on X =

fXi;n; i 2 Tn; n � 1g with the NED coe¢ cients f (s)g satisfying Assumption

13 and magnitude indices fdi;ng satisfy Assumption 14. Suppose that either
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(a) X is �-mixing satisfying Assumptions 9a-b, and Z satis�es Assumption

11 with � > 0, or

(b) X is �-mixing satisfying Assumptions 10a-b and Z satis�es Assumption

11 with � � 0:

If Assumption 12 holds, then

��1n Sn =) N(0; 1):

Clearly, the CLT can extended vector-valued �elds using the standard

Cramér-Wold device.

Assumptions 11 and 12 are identical to those of the CLT for mixing ran-

dom �elds in Section 3. Similar conditions have been used in the time-series

literature by Wooldridge (1986), Wooldridge and White (1988), Davidson

(1992, 1993a,b), and de Jong (1997).

Assumption 11 is satis�ed if the Zi;n=ci;n are uniformly Lr-bounded for

some r > 2+�, i.e., supn supi2Dn kZi;n=ci;nkr <1. The nonrandom constants

ci;n allow for processes with asymptotically unbounded (trending) moments.

They can be thought of as upper bounds on the moments of the individual

terms, i.e., kZi;nkr � ci;n < 1. In the case of uniformly Lr-bounded vari-

ables, i.e., when supn supi2Dn kZi;nkr �M <1 , constants ci;n can be set to

1, without loss of generality.

In the case of asymptotically unbounded moments, there is no �nite uni-

form upper bound M on the moments. For example, such behavior is exhib-

ited by some linear processes Zi;n = ai;nXi;n; where supn supi2Dn kXik2+� <

1 and ai;n are nonrandom constants increasing unboundedly with n. This
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example suggests that it is often possible to choose the scaling constants ci;n

so that the Zi;n=ci;n are uniformly L2+�-bounded. For instance, this can be

done by setting ci;n = kZi;nk2+�.

To obtain a CLT, the asymptotic behavior of individual terms�moments

needs to be further restricted by some kind of asymptotic negligibility con-

dition, which rules out situations in which individual summands in�uence

disproportionately the entire sum. Assumption 12 serves precisely this pur-

pose by limiting the growth behavior of moments. In the case of uniformly

L2+�-bounded �elds, Assumption 12 reduces to lim infn!1 jDnj�1�2n > 0, cp.

Bolthausen (1982) and Guyon (1995).

We now illustrate Assumption 12 with two examples of random �elds with

asymptotically unbounded moments. Assumption 12 is satis�ed in the �rst

example, and is violated in the second example. First, let fZi; i 2 D = Ndg

be an independent random �eld with Zi uniformly distributed on [� jij
 ; jij
]

for some 
 > 0 and consider the sums Sn =
P

Dn
Zi on Dn = [1;n]

d. Then,

jDnj = nd, EZ2i = 3
�1 jij2
, M2

n = maxi2Dn EZ
2
i = 3

�1n2
 and �2n � n(2
+d).

Clearly, Assumption 12 is satis�ed for all 
 > 0 in this example.

Second, consider an independent random �eld
�
Zi; i 2 Nd

	
with Zi uni-

formly distributed on [�2gi ; 2gi ] where gi =
Pd

p=1 ip: In this case, EZ
2
i =

3�14gi; M2
n = 3

�14dn and �2n = 3
�1�d4d(4n � 1)d, and hence

lim inf
n!1

jDnj�1M�2
n �2n = 0:

Thus, Assumption 12 is violated. It can easily be shown that the Lindeberg

condition is also violated.

Assumptions 9 and 10 restrict the dependence structure of the input

process X: They re�ect the usual trade-o¤ between the moment and mixing
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conditions: lower moment conditions are associated with faster rates of de-

cay of mixing coe¢ cients. In addition, they capture the trade-o¤ between

decay of dependence with the distance, on the one-hand, and accumulation

of dependence with the growth of the sample region, on the other hand.

Assumptions 9 and 10 are stronger than the mixing assumptions of the

CLT for mixing �elds, Theorem 1 of Section 3. First, the rate of decrease of

the �-mixing coe¢ cients with the distance in Theorem 4 is twice as faster as

that in Theorem 1. These rates are the same for the �-mixing case.

Second, in contrast to Theorem 1, Theorem 4 accounts explicitly for po-

tential accumulation of dependence with the expansion of index sets. More

speci�cally, mixing coe¢ cients in Assumptions 9a and 10a are assumed to

increase at the rate of � in the cardinalities of index sets, while no such rates

are assumed in Theorem 1. This strengthening of the mixing conditions is

necessitated by the transition from mixing to NED random �elds. Intuitively,

this can be explained as follows. Recall that Zi;n need not be mixing, but

can be approximated su¢ ciently well by X�s located in the s-neighborhood

of Zi;n. Under Assumption 1, the s-neighborhood of any point on the lattice

D contains at most (2 [s] + 2)d points of D (for proof see Lemma A.1(ii) in

Appendix A). Therefore, to control for dependence between, say, Zi;n and

Zj;n, one has to check dependence between their approximating functions,

each of which involves (2 [s] + 2)d spatial lags of X. This leads to mixing co-

e¢ cients of the type �X(k; k; h) with k = (2s+2)d, in which the cardinalities

of index sets increase with s. Therefore, the mixing coe¢ cients of the input

�eld have to decline at a faster rate to compensate for the accumulation of

dependence with the increase in s. Hence, we have the above mentioned
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trade-o¤. In contrast, if Z is itself mixing, the dependence between any Zi;n

and Zj;n is measured by �Z(1; 1; h) so that there is no need to account for

the cardinalities of index sets.

Interestingly, for the case d = 1, Assumptions 9 and 10 imply the same

rates of the decay of �- and �-mixing coe¢ cients as in the CLTs ofWooldridge

(1986) for time series NED processes, see Theorem 3.13 and Corollary 4.4.

In the time series case, mixing coe¢ cients do not depend on sizes of index

sets, and hence, � = 0. Setting d = 1 and � = 0 in Assumptions 9a and

10a gives
P1

m=1 b� �
2(2+�) (m) < 1 and

P1
m=1

b�(m)(1+�)=(2+�) < 1, which are

analogous to the conditions exploited by Wooldridge (1986).

Our �-mixing condition in the case d = 1 is weaker than that in Davidson

(1992), who requires
P1

m=1
b�(m)�=(2+�) <1. At the same time, our �-mixing

conditions are slightly stronger compared to Davidson (1992) and de Jong

(1997), who assume
P1

m=1 b� �
(2+�) (m) <1 . This is due to the fact that these

authors exploit the concept of mixingales for d = 1 and the related sharper

inequalities. For d > 1, the concept of mixingales is not well-de�ned, and

therefore, we cannot take advantage of the mixingale inequalities.

Assumption 13 controls for the size of the NED coe¢ cients. The NED

coe¢ cients measure the error in the approximation of Zi;n by X. Intuitively,

for a CLT to hold, the approximation errors have to decline su¢ ciently fast

with each successive approximation. This idea is re�ected in Assumption 13.

It is satis�ed if  (m) = O(m�d�
) for some 
 > 0, i.e., if the size of the

NED coe¢ cients is �d, according to De�nition 3. When d = 1, the required

NED size is �1; which is precisely the assumption maintained by Wooldridge

(1986) and Davidson (1992).
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Lastly, Assumption 14 is a technical condition, which ensures that the

magnitudes of 2 + � moments and the NED magnitude indices grow at the

same rate as the sample size increases. As discussed earlier, ci;n are, in

most cases, chosen as ci;n = kZi;nk2+� , and the NED magnitude indices di;n
are usually chosen as di;n = 4 kZi;nk2. By Lyapunov�s inequality, kZi;nk2 �

kZi;nk2+�. Hence, Assumption 14 is automatically satis�ed. It has also been

used by de Jong (1997) and Davidson (1992) in the time series context.

Theorem 4 is applicable to one-dimensional processes. It contains as a

special case some of the CLTs for time series NED processes. In particular, it

generalizes Theorem 3.13 and Corollary 4.4 of Wooldridge (1986). Our CLT

also contains the �-mixing part of Davidson�s (1992) CLT. In the spatial

context, Theorem 4 extends the CLT for �- or �-mixing random �elds of

Section 3 to a larger class of weakly dependent random �elds.

4.4 Law of Large Numbers for NED Processes

In the previous section, we established a CLT for NED random �elds. We

now give a LLN which holds under a subset of the assumptions used in that

CLT. Thus, the two theorems can be used jointly in the proof of consistency

and asymptotic normality of spatial estimators.

The LLN is an L1-norm LLN for L1-NED random �elds. It relies on the

following set of moment and mixing assumptions.

Assumption 15 There exist nonrandom positive constants fci;n; i 2 Dn; n � 1g

such that Zi;n=ci;n is uniformly Lp-bounded for some p > 1, i.e.,

sup
n
sup
i2Dn

E jZi;n=ci;njp <1:

65



Assumption 16 �(k; l;m) � f(k; l)b�(m) for some non-decreasing function
f(�; �) and b�(m) such that P1

m=1m
d�1b� (m) <1

Assumption 17 �(k; l;m) � f(k; l)b�(m) for some non-decreasing function
f(�; �) and b�(m) such that P1

m=1m
d�1b�(m) <1.

Theorem 5 Let fDng be a sequence of arbitrary �nite subsets of D such

that jDnj ! 1 as n ! 1; where D � Rd, d � 1 is as in Assumption

1, and let Tn be a sequence of subsets of D such that Dn � Tn: Suppose

that Z = fZi;n; i 2 Dn; n � 1g satis�es Assumption 15 and is L1-NED on

X = fXi;n; i 2 Tn; n � 1g with magnitude indices di;n. If Xi;n is either

(a) �-mixing satisfying Assumption 16 , or

(b) �-mixing satisfying Assumption 17, then

a�1n
X
i2Dn

(Zi;n � EZi;n)
L1! 0;

where an =Mn jDnj and Mn = maxi2Dn max(ci;n; di;n):

Of course, L1-convergence implies convergence in probability, and hence

the Zi;n also satisfy a weak law of large numbers. We also note that Z and

X can be vector-valued random �elds, possibly of di¤erent dimensions. In

this case, jZi;nj should be understood as the Euclidean norm in the respective

vector-space.

Assumption 15 is a standard moment assumption employed in weak laws

of large numbers for dependent processes. It requires existence of absolute

moments of order slightly greater than 1, which in turn implies existence of

�rst moments. Clearly, this moment assumption is weaker than that of the
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CLT for NED random �elds, Theorem 4. However, it is slightly stronger than

its counterpart in the LLN for mixing random �elds of Section 3.4.2. The

latter theorem relies on uniform integrability, which is implied by uniform

Lp-boundedness for some p > 1. Strengthening of the moment condition can

be explained by weakening of the restrictions on the dependence structure of

the random �eld: the NED condition is weaker than mixing conditions.

As in Theorem 4, ci;n and di;n are the normalizing constants that re�ect

the magnitudes of potentially trending moments. They can be chosen as

kZi;nkp. The case of variables with uniformly bounded moments is covered

by setting ci;n = di;n = 1:

Assumptions 16 and 17 restrict the dependence structure of the mixing

input �eld X. These conditions are weaker than the mixing assumptions

maintained in the CLT for NED �elds. First, the mixing coe¢ cients in

Assumptions 16 and 17 may decrease with the distance at a slower rate than

those in Assumptions 9 and 10. Second, there is no loss associated with the

cardinalities of index sets. Recall that to obtain the CLT, we had to impose

speci�c structure on the functions f(k; l) and to account for the growth of

this function in k and l. It turns out that the cardinalities of index sets do

not play the same role in the LLN. This is not surprising since LLNs are

weaker results than CLTs. Furthermore, note that in contrast to the CLT

for NED �elds, the LLN does not require any assumptions with respect to

the size of the NED coe¢ cients.

In the time series literature, weak LLNs for NED processes have been

obtained by Andrews (1988) and Davidson (1993b), among others. Andrews

(1988) derives an L1-law for triangular arrays of L1-mixingales. He then
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shows that NED processes are L1-mixingales, and hence, satisfy his LLN.

Davidson (1993b) extends the latter result to processes with trending mo-

ments. The mixingale concept, which exploits the natural order of the time

line, is weaker than that of mixing. It allows these authors to circumvent re-

strictions on the mixingale sizes, i.e., the rates at which dependence declines.

Mixingales are not well-de�ned for random �elds, without imposing a special

order structure on the index space. Therefore, we cast our LLN in terms of

NED random �elds with a mixing input process. Due to the higher dimen-

sionality and unevenness of the index sets, we have to restrict the rates of

decay of mixing coe¢ cients with the distance.

5 Conclusion

The dissertation develops an asymptotic theory for spatial processes exhibit-

ing considerable heterogeneity and dependence. More speci�cally, it derives

new central limit theorems, uniform and pointwise laws of large numbers for

arrays of weakly dependent random �elds that can be readily used to establish

the asymptotic properties of spatial estimators in many socioeconomic mod-

els. Relative to the existing literature, the contribution of the dissertation

is threefold. First, the proposed limit theorems accommodate nonstationary

random �elds with asymptotically unbounded or trending moments. Second,

they cover a larger class of weakly dependent random �elds than mixing ran-

dom �elds. Third, they allow for arrays of �elds located on unevenly spaced

lattices in Rd, and place minimal restrictions on the con�guration and growth

behavior of index sets.
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All these features are critical for many econometric applications. Clearly,

processes encountered in applications are often nonstationary, and in par-

ticular, heteroscedastic. Sometimes, their second moments may grow un-

boundedly or trend as the index set expands. This form of nonstationarity

may lead to violation of the asymptotic negligibility condition essential for

CLTs, and therefore, needs to be checked. Furthermore, some weakly de-

pendent processes do not generally satisfy the mixing property, e.g., linear

random �elds and Cli¤-Ord type spatial processes used widely in applica-

tions. Therefore, limit theorems that cover not only mixing random �elds

but also more general weakly dependent random �elds are required. This

goal is achieved by considering the class of near-epoch-dependent random

�elds which is richer than that of mixing random �elds. The limit theorems

for NED random �elds generalize nicely their one-dimensional counterparts

in the time series literature.

In contrast to the previous results, the proposed limit theorems allow for

random �elds located on unevenly spaced lattices and sampled over regions

of arbitrary con�guration, which signi�cantly facilitates their application in

socioeconomic models. In addition, each of the theorems is supplied with

low-level su¢ cient conditions which are fairly easy to verify in applications.

Central limit theorems, uniform and pointwise laws of large numbers are

the fundamental building blocks for the asymptotic theory of statistical es-

timators, which in turn serves as the basis for statistical inference. As such,

our limit theorems can be used to establish consistency and asymptotic nor-

mality of estimators and tests statistics in a wide range of nonlinear spatial

models with nonstationary dependent data-generating processes.
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A Appendix: Cardinalities of Basic Sets on

Irregular Lattices

This Appendix contains a series of calculations for the cardinalities of basic

sets in D that will be used in the proof of the limit theorems. For any

i = (i1; : : : ; id) 2 Rd let

(i; i+ 1] = (i1; i1 + 1]� :::� (id; id + 1];

[i; i+ 1] = [i1; i1 + 1]� :::� [id; id + 1];

denote, respectively, the half-open and closed unitary cubes with "south-

west" corner i. Note that given the metric, [i; i + 1] = B(j; 1=2), i.e., is the

ball centered at j of radius 1=2; where j = (i1 + 1=2; :::; id + 1=2).

Lemma A.1 Suppose that Assumption 1 holds. Then,

(i) Any unitary cube B(i; 1=2) with i 2 Rd contains at most one element of

D, i.e., jB(i; 1=2) \Dj � 1:

(ii) There exists a constant C <1 such that for h � 1

sup
i2Rd

jB(i; h) \Dj � Chd;

i.e., the number of elements of D contained in a ball of radius h centered

at i 2 Rd is O(hd) uniformly in i.

(iii) For m � 1 and i 2 Rd let

Ni(1; 1;m) = jfj 2 D : m � �(i; j) < m+ 1gj
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be the number of all elements of D located at any distance h 2 [m;m+1)

from i. Then, there exists a constant C <1 such that

sup
i2Rd

Ni(1; 1;m) � Cmd�1:

(iv) Let U and V be some �nite disjoint subsets of D. For m � 1 and i 2

U let

Ni(2; 2;m) = jf(A;B) : jAj = 2; jBj = 2; A � U with i 2 A;

B � V and 9 j 2 B with m � �(i; j) < m+ 1gj

be the number of all di¤erent combinations of subsets of U composed

of two elements, one of which is i, and subsets of V composed of two

elements, where for at least for one of the elements, say j, we have

m � �(i; j) < m+ 1. Then there exists a constant C <1 such that

sup
i2U

Ni(2; 2;m) � Cmd�1 jU j jV j :

(v) Let V be some �nite subset of D. For m � 1 and i 2 Rd let

Ni(1; 3;m) = jfB : jBj = 3; B � V and 9 j 2 B with m � �(i; j) < m+ 1gj

be the number of the subsets of V composed of three elements, at least

one of which is located at a distance h 2 [m;m+1) from i. Then there

exists a constant C <1 such that

sup
i2Rd

Ni(1; 3;m) � Cmd�1 jV j2 :

Proof of Lemma A.1(i). We prove it by contradiction. Suppose that there

is a unitary cube B(i; 1=2) contains two elements of D, say, x and y: Then
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�(x; i) � 1=2 and �(y; i) � 1=2: Using the triangle inequality yields:

�(x; y) � �(x; i) + �(i; y) � 1=2 + 1=2 = 1 < d0;

which contradicts Assumption 1.

Proof of Lemma A.1(ii). First, observe that for any i 2 Rd and h � 1, we

have B(i; h) � B(i; [h] + 1), where [h] denotes the largest integer less than

or equal to h. Note that B(i; [h] + 1) is a d-dimensional cube with sides of

length 2[h]+2. Clearly, B(i; [h]+1) can be partitioned into (2[h]+2)d closed

a half-open unitary cubes. Hence, in light of Lemma A.1(i)

jB(i; h) \Dj � jB(i; [h] + 1) \Dj � (2[h] + 2)d

� 2d(h+ 1)d � Chd

with C = 22d+1 > 0 observing that h � 1. Since C depends only on d and

not on i; it follows that supi2Rd jB(i; h) \Dj � Chd.

Proof of Lemma A.1(iii). Consider the annulus A(i;m) = fj 2 Rd : m �

�(i; j) < m+ 1g of width 1, then

A(i;m) � B(i;m+ 1)nB(i;m� 1)

(If m = 1, the ball B(i;m � 1) collapses into a point.) Now observe that

B(i;m + 1) is composed of exactly [2 (m+ 1)]d closed an half-open unitary

cubes, and B(i;m � 1) is composed of exactly [2 (m� 1)]d unitary cubes.

Hence, the number of unitary cubes making up B(i;m + 1)nB(i;m � 1) is
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given by

2d
�
(m+ 1)d � (m� 1)d

�
= 2d

"
dX
s=0

�
d

s

�
md�s �

dX
s=0

�
d

s

�
md�s(�1)s

#

� 2d+1

"
md�1

dX
s=1

�
d

s

�
m�s+1

#
� 2d+1

"
dX
s=1

�
d

s

�#
md�1 � Cmd�1

for some C > 0 that does not depend on i observing that m�s+1 � 1 for

s � 1. By Lemma A.1(ii), we have

Ni(1; 1;m) = jfj 2 D : m � �(i; j) < m+ 1gj

= jA(i;m) \Dj � jB(i;m+ 1)nB(i;m� 1)j � Cmd�1;

and hence supi2Rd Ni(1; 1;m) � Cmd�1.

Proof of Lemma A.1(iv). By Lemma A.1(iii), the number of the one-

element subsets of V located at some distance h 2 [m;m+1) from i 2 U is less

than or equal to Ni(1; 1;m) � Cmd�1, C <1. For each point j 2 V one can

form at most jV j di¤erent two-elements subsets of V that contain j: Thus, the

number of the two-element subsets of V that have at least one element located

at some distance h 2 [m;m+1) from i is less than or equal toNi(1; 1;m) jV j �

Cmd�1 jV j. Furthermore, one can form at most jU j di¤erent two-element

subsets of U that include i. Hence, Ni(2; 2;m) � Ni(1; 1;m) jV j jU j �

Cmd�1 jV j jU j. Thus, supi2U Ni(2; 2;m) � Cmd�1 jU j jV j, where C does not

depend on i:

Proof of Lemma A.1(v). By Lemma A.1(iii), the number of the one-

element subsets of V located at some distance h 2 [m;m + 1) from i 2 Rd

is less than or equal to Ni(1; 1;m) � Cmd�1, C < 1. For each point
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j 2 V , one can form at most jV j2 di¤erent three-elements subsets of V that

contain j: Then, the number of the three-element subsets of V that include

at least one point located at some distance h 2 [m;m + 1) from i, obeys:

Ni(1; 3;m) � Ni(1; 1;m) jV j2 � Cmd�1 jV j2. Since C does not depend on i

furthermore supi2Rd Ni(1; 3;m) � Cmd�1 jV j2 :
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B Appendix: Proof of CLT forMixing Processes

The proof of Theorem 1 builds on the approach taken by Bolthausen (1982)

towards establishing his CLT (for stationary random �elds on regular lat-

tices). In particular, rather than using the Bernstein blocking method, we

will employ the following lemma to establish asymptotic normality.

Lemma B.1 (Stein (1972), Bolthausen (1982), Lemma 2). Let f�ng be a

sequence of probability measures on (R;B), where B is the Borel �-�eld.

Suppose the sequence f�ng satis�es (with i denoting the imaginary unit):

(i) supn
R
y2�n(dy) <1; and

(ii) limn!1
R
(i�� y) exp(i�y)�n(dy) = 0 for all � 2 R:

Then �n =) N(0; 1).

As part of the proof, we will also show that it su¢ ces to establish the

convergence of the normalized sums for bounded random variables. To that

e¤ect, we will utilize the following lemma.

Lemma B.2 (Brockwell and Davis (1991), Proposition 6.3.9). Let Yn, n =

1; 2; ::: and Vnk, k = 1; 2; :::; n = 1; 2; :::, be random vectors such that

(i) Vnk =) Vk as n!1 for each k = 1; 2; :::; ;

(ii) Vk =) V as k !1, and
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(iii) limk!1 lim supn!1 P (jYn � Vnkj > ") = 0 for every " > 0:

Then Yn =) V as n!1:

Proof of Theorem 1.We give the proof for �-mixing �elds. The argument

for �-mixing �elds is analogous. The proof is lengthy, and for readability we

break it up into several steps.

1. Notation and Reformulation. Consider

Xi;n = Zi;n=Mn

whereMn = maxi2Dn ci;n is as in Assumption 5. Let �
2
n;Z = V ar

�P
i2Dn Zi;n

�
and �2n;X = V ar

�P
i2Dn Xi;n

�
=M�2

n �2n;Z . Since

��1n;X
X
i2Dn

Xi;n = ��1n;Z
X
i2Dn

Zi;n;

to prove the theorem, it su¢ ces to show that ��1n;X
P

i2Dn Xi;n =) N(0; 1).

In light of this, it proves convenient to switch notation from the text and to

de�ne

Sn =
X
i2Dn

Xi;n; �2n = V ar(Sn):

That is, in the following, Sn denotes
P

i2Dn Xi;n rather than
P

i2Dn Zi;n, and

�2n denotes the variance of
P

i2Dn Xi;n rather than of
P

i2Dn Zi;n.

We next establish the moment and mixing conditions for Xi;n implied by

the assumptions of the CLT. Observe that by de�nition of Mn

1(jXi;nj > k) = 1(jZi;n=Mnj > k) � 1(jZi;n=ci;nj > k);
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and hence

E[jXi;nj2+� 1(jXi;nj > k)] � E[jZi;n=ci;nj2+� 1(jZi;n=ci;nj > k)]:

Thus in light of Assumption 2,

lim
k!1

sup
n
sup
i2Dn

E[jXi;nj2+� 1(jXi;nj > k)] = 0: (B.1)

Clearly, the mixing coe¢ cients for Xi;n and Zi;n are identical, and hence

Assumptions 3 also covers the Xi;n process.

In light of our change in notation, Assumption 5 implies:

lim inf
n!1

jDnj�1�2n > 0: (B.2)

2. Truncated Random Variables. In proving the CLT, we will consider trun-

cated versions of the Xi;n. For k > 0 we de�ne

Xk
i;n = Xi;n1(jXi;nj � k); eXk

i;n = Xi;n1(jXi;nj > k);

and the corresponding variances as

�2n;k = V ar

"X
i2Dn

Xk
i;n

#
; e�2n;k = V ar

"X
i2Dn

eXk
i;n

#
:

Since by (B.1) the Xi;n are uniformly L2+� integrable, they are also uniformly

L2+� bounded. Let

kXk2+� = sup
n
sup
i2D

kXi;nk2+�,

then we have the following



Xk
i;n




2+�

� kXk2+� and



 eXk

i;n





2+�

� kXk2+�:
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Furthermore, by (B.1)

lim
k!1

sup
n
sup
i2D

k eXk
i;nk2+� =

�
lim
k!1

sup
n
sup
i2D

E jXi;nj2+� 1(jXi;nj > k)

�1=(2+�)
= 0:

(B.3)

3. Bounds and Limits for Variances and Variance Ratios. Using the mixing

inequality of Lemma 1(i) with k = l = 1, p = q = 2 + �, and r = (2 + �)=�

gives:

jcov(Xi;n; Xj;n)j � 8���=(2+�)(1; 1; �(i; j))kXk22+� (B.4)

Since Xk
i;n and eXk

i;n are measurable functions of Xi;n, their covariances and

cross-covariances satisfy the same inequality.

We next derive bounds for �2n. Let K1 = kXk2+� < 1 and observe that

K2 =
P

m�1m
d�1���=(2+�)(1; 1;m) <1 in light of Assumption 3(a). Utilizing

Lemma A.1(iii), (B.4) and Lyapunov�s inequality yields:

�2n �
X
i2Dn

EX2
i;n +

X
i;j2Dn;j 6=i

jcov(Xi;n; Xj;n)j (B.5)

�
X
i2Dn

EX2
i;n + 8

X
i;j2Dn;j 6=i

��
�

2+� (1; 1; �(i; j))kXk22+�

� jDnjkXk22+� + 8kXk22+�
X
i2Dn

1X
m=1

X
j2Dn:�(i;j)2[m;m+1)

��
�

2+� (1; 1; �(i; j))

� jDnjkXk22+� + 8kXk22+�
X
i2Dn

1X
m=1

Ni(1; 1;m)��
�

2+� (1; 1;m)

� jDnjkXk22+� + 8CkXk22+�
X
i2Dn

1X
m=1

md�1��
�

2+� (1; 1;m)

� jDnj
"
1 + 8C

1X
m=1

md�1��
�

2+� (1; 1;m)

#
K2
1 � jDnjB2
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with B2 = [1 + 8CK2]K
2
1 <1. In establishing the above inequality we also

used the fact that for �(i; j) 2 [m;m+ 1): ��(1; 1; �(i; j)) � ��(1; 1;m).

Thus, lim supn jDnj�1�2n <1. By condition (B.2)

lim
n!1

inf
l�n
jDlj�1�2l > 0

and hence there exists an N� and B1 > 0 such that for all n � N�; we have

B1jDnj � �2n. Combining the last two inequalities yields for n � N�:

B1jDnj � �2n � B2jDnj; (B.6)

where 0 < B1 � B2 <1.

Using analogous arguments, one can bound the variances and covariances

of
P

Dn
Xk
i;n,
P

Dn
eXk
i;n for each k > 0; as follows:

�2n;k = V ar

"X
Dn

Xk
i;n

#
� B2jDnj;

e�2n;k = V ar

"X
Dn

eXk
i;n

#
� jDnjB0

2

�
sup
n
sup
i2Dn

k eXk
i;nk2+�

�2
;�����cov

(X
i2Dn

Xk
i;n;
X
i2Dn

eXk
i;n

)����� � jDnjB00
2

�
sup
n
sup
i2Dn

k eXk
i;nk2+�

�
;

where B0
2 = [1 + 8CK2] <1 and B00

2 = [2 + 8CK2]K1 <1: Furthermore,

�2n � �2n;k = 2cov

(X
i2Dn

Xk
i;n;
X
i2Dn

eXk
i;n

)
+ e�2n;k

� 2jDnjB00
2

�
sup
n
sup
i2Dn

k eXk
i;nk2+�

�
+ jDnjB0

2

�
sup
n
sup
i2Dn

k eXk
i;nk2+�

�2
In light of (B.1), (B.6) and the above inequalities we have:

0 �
�2n;k
�2n

� B2
B1

<1 for all n � N� and all k; (B.7)
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and

lim
k!1

sup
n�N�

�����2n � �2n;k
�2n

���� (B.8)

� 2B00
2

B1

�
lim
k!1

sup
n
sup
i2D

k eXk
i;nk2+�

�
+
B0
2

B1

�
lim
k!1

sup
n
sup
i2D

k eXk
i;nk2+�

�2
= 0:

lim
k!1

lim sup
n!1

e�2n;k
�2n

� lim
k!1

lim sup
n!1

(
B0
2

B1

�
sup
n
sup
i2D

k eXk
i;nk2+�

�2)
(B.9)

=
B0
2

B1

�
lim
k!1

sup
n
sup
i2D

k eXk
i;nk2+�

�2
= 0:

4. Truncation Technique. Our proof employs a truncation argument in con-

junction with Lemma B.2. For k > 0 consider the decomposition

Yn = ��1n
X
i2Dn

Xi;n = Vnk + (Yn � Vnk)

with

Vnk = ��1n
X
i2Dn

(Xk
i;n � EXk

i;n); Yn � Vnk = ��1n
X
Dn

( eXk
i;n � E eXk

i;n);

and let V � N(0; 1). We next show that Yn =) N(0; 1) if

��1n;k
X
Dn

(Xk
i;n � EXk

i;n) =) N(0; 1) (B.10)

for each k = 1; 2; : : : We note that the claim in (B.10) will be veri�ed in

subsequent steps.

We �rst verify condition (iii) of Lemma B.2. By Markov�s inequality

P (jYn � Vnkj > ") = P (

�������1n X
i2Dn

( eXk
i;n � E eXk

i;n)

����� > ") �
e�2n;k
"2�2n

:

80



In light of (B.8)

lim
k!1

lim sup
n!1

P (jYn � Vnkj > ") � lim
k!1

lim sup
n!1

e�2n;k
"2�2n

= 0;

which veri�es the condition.

Next, observe that

Vnk =
�n;k
�n

"
��1n;k

X
i2Dn

(Xk
i;n � EXk

i;n)

#
:

Suppose r(k) = limn!1 �n;k=�n exists, then Vnk =) Vk � N(0; r(k)2) in

light of (B.10). If furthermore, limk!1 r(k) ! 1, then Vk =) V � N(0; 1),

and the claim would follow by Lemma B.2. However, in the case of nonsta-

tionary variables limn!1 �n;k=�n need not exist, and therefore, we have to

use a di¤erent argument to show that Yn =) V � N(0; 1). We shall prove

it by contradiction.

LetM be the set of all probability measures on (R;B). Observe that we

can metrize M by, e.g., the Prokhorov distance, say d(:; :). Let �n and �

be the probability measures corresponding to Yn and V , respectively, then

�n =) � i¤ d(�n; �) ! 0 as n ! 1. Now suppose that Yn does not

converge to V . Then for some " > 0 there exists a subsequence fn(m)g

such that d(�n(m); �) > " for all n(m). Observe that by (B.7) we have

0 � �n;k=�n � C < 1 for all k > 0 and all n � N�, where N� does

not depend on k. W.l.o.g. assume that with n(m) � N�, and hence 0 �

�n(m);k=�n(m) � C < 1 for all k > 0 and all n(m). Consequently, for k = 1

there exists a subsubsequence fn(m(l1))g such that �n(m(l1));1=�n(m(l1)) !

r(1) as l1 ! 1. For k = 2 there exists a subsubsubsequence fn(m(l1(l2)))g

such that �n(m(l1(l2)));2=�n(m(l1(l2))) ! r(2) as l2 ! 1. The argument can
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be repeated for k = 3; 4::::. Now construct a subsequence fnlg such that n1
corresponds to the �rst element of fn(m(l1))g, n2 corresponds to the second

element of fn(m(l1(l2)))g, and so on, then for k = 1; 2; : : : ;we have:

lim
l!1

�nl;k
�nl

= r(k): (B.11)

Moreover, since by (B.9)

lim
k!1

sup
n�N�

����1� �n;k
�n

���� � lim
k!1

sup
n�N�

����1� �n;k
�n

���� ����1 + �n;k
�n

����
= lim

k!1
sup
n�N�

�����2n � �2n;k
�2n

���� = 0
and

jr(k)� 1j =
����r(k)� �nl;k

�nl
+
�nl;k
�nl

� 1
����

�
����r(k)� �nl;k

�nl

����+ sup
nl�N�

�����nl;k�nl
� 1
���� ;

it follows from (B.11) that

lim
k!1

jr(k)� 1j � lim
k!1

lim
l!1

����r(k)� �nl;k
�nl

����+ lim
k!1

sup
n�N�

�����n;k�n
� 1
���� = 0: (B.12)

Given (B.12), it follows that Vnlk =) Vk � N(0; r(k)2): Then, by Lemma

B.2, Ynl =) V � N(0; 1) as l ! 1. Since fnlg � fn(m)g, this contradicts

the hypothesis that d(�n(m); �) > " for all n(m).

Thus, we have shown that Yn =) N(0; 1) if (B.10) holds. In light of

this it su¢ ces to prove the CLT for bounded variables. In the following, we

assume that jXi;nj � CX <1.

5. Renormalization. Since jDnj ! 1 and ��(1;1;m) = O(m�d�") it is

readily seen that we can choose a sequence mn such that

��(1;1;mn)jDnj1=2 ! 0 (B.13)
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and

md
njDnj�1=2 ! 0 (B.14)

as n!1. Now, for such mn de�ne:

an =
X

i;j2Dn;�(i;j)�mn

E(Xi;nXj;n);

bn =
X

i;j2Dn;�(i;j)>mn

E(Xi;nXj;n);

so that

�2n = V ar(Sn) =
X
i;j2Dn

E(Xi;nXj;n) = an + bn

Using the mixing inequality of Lemma 1(iii) with k = l = 1, Lemma

A.1(ii), and argumentation analogous to that used in (B.5) yields

jbnj �
X

i;j2Dn;�(i;j)>mn

jcov(Xi;nXj;n)j � 4CC2X jDnj
1X

l=mn

ld�1��(1; 1; l):

Since Assumption 3b implies
P1

l=mn
ld�1��(1; 1; l)! 0 as n!1, it follows

that bn = o(jDnj): Moreover, by (B.2) we have

lim inf
n!1

jDnj�1an

� lim inf
n!1

jDnj�1�2n + lim inf
n!1

�
�jDnj�1bn

	
= lim inf

n!1
jDnj�1�2n > 0:

Hence, for some 0 < B1 <1 and su¢ ciently large n we have 0 < B1jDnj <

an. From the inequalities established in (B.5) it follows furthermore that

janj �
P

i;j2Dn;�(i;j)�mn
jcov(Xi;n; Xj;n)j � B2jDnj. Hence, for su¢ ciently

large n, say n � N�� � N�:

0 < B1jDnj � an � B2jDnj; 0 < B1 � B2 <1; (B.15)
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i.e., an � jDnj and, consequently,

�2n = an + o(jDnj) = an + o(an) = an(1 + o(1)):

For n � N�� de�ne

�Sn = a�1=2n Sn = a�1=2n

X
i2Dn

Xi;n:

To demonstrate that ��1n Sn =) N(0; 1); it now su¢ ces to show that �Sn =)

N(0; 1).

6. Limiting Distribution of �Sn: From the above discussion supn�N�� E �S
2
n <

1. In light of Lemma B.1, to establish that �Sn =) N(0; 1), it su¢ ces to

show that

lim
n!1

E[(i�� �Sn) exp(i� �Sn)] = 0

In the following, we take n � N��, but will not indicate that explicitly for

notational simplicity. De�ne

Sj;n =
X

i2Dn;�(i;j)�mn

Xi;n and �Sj;n = a�1=2n Sj;n,

then

(i�� �Sn) exp(i� �Sn) = A1;n � A2;n � A3;n;

with

A1;n = i�ei�
�Sn(1� a�1n

X
j2Dn

Xj;nSj;n);

A2;n = a�1=2n ei�
�Sn
X
j2Dn

Xj;n[1� i� �Sj;n � e�i�
�Sj;n ];

A3;n = a�1=2n

X
j2Dn

Xj;ne
i�( �Sn� �Sj;n):
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To complete the proof we show that EjAk;nj ! 0 as n!1 for k = 1; 2; 3.

7. Proof that EjA1;nj ! 0: Note that

jA1;nj2 =
���i�ei� �Sn��� 1� a�1n

X
j2Dn

Xj;nSj;n

!2

= �2

8<:1� 2a�1n X
j2Dn

Xj;nSj;n + a�2n

"X
j2Dn

Xj;nSj;n

#29=;
and hence, observing that an = E

P
j2Dn Xj;nSj;n,

E jA1;nj2 = �2

(
1� 2a�1n

X
j2Dn

EXj;nSj;n

+a�2n

24var X
j2Dn

Xj;nSj;n

!
+

 X
j2Dn

EXj;nSj;n

!2359=;
= �2

(
1� 2a�1n an + a�2n

"
var

 X
j2Dn

Xj;nSj;n

!
+ a2n

#)

= �2a�2n var

 X
j2Dn

Xj;nSj;n

!
= �2a�2n var

0BB@ X
i2Dn;j2Dn
�(i;j)�mn

Xi;nXj;n

1CCA
= �2a�2n

X
i2Dn;j2Dn;i02Dn;j02Dn
�(i;j)�mn;�(i0;j0)�mn

cov (Xi;nXj;n;Xi0;nXj0;n) :
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By (B.15), we have

EjA1;nj2 � C�jDnj�2
X

i;j;i0;j02Dn
�(i;j)�mn;�(i0;j0)�mn

jcov (Xi;nXj;n;Xi0;nXj0;n)j (B.16)

= C�jDnj�2
X

i;j;i0;j02Dn
�(i;j)�mn;�(i0;j0)�mn;�(i;i0)�3mn

jcov (Xi;nXj;n;Xi0;nXj0;n)j

+C�jDnj�2
X

i;j;i0;j02Dn
�(i;j)�mn;�(i0;j0)�mn;�(i;i0)<3mn

jcov (Xi;nXj;n;Xi0;nXj0;n)j ;

for some C� <1. We next obtain bounds for the above inner sums for �xed

i 2 Dn corresponding to �(i; i0) � 3mn and �(i; i0) < 3mn, respectively.

7(a) First consider the case where r = �(i; i0) � 3mn. Since �(i; j) � mn and

�(i0; j0) � mn; clearly �(i; j0) � r � 2mn, �(j; i0) � r � 2mn and �(j; j0) �

r � 2mn. Take U = fi; jg and V = fi0; j0g, then �(U; V ) � r � 2mn � 1.

Since jXj;nj � CX ; using the �rst inequality of Lemma 1(iii) with k = l = 2;

and observing that ��(k; l; h) is nonincreasing in h yields

jcov (Xi;nXj;n;Xi0;nXj0;n) j � 4C4X ��(2; 2; r � 2mn): (B.17)

Now de�ne Ni(2; 2; l) as the number of all di¤erent combinations consisting

of subsets of fj : �(i; j) � mng composed of two elements, one of which is i,

and subsets of fj0 : �(i0; j0) � mng composed of two elements, one of which

is i0, where �(i; i0) � 3mn and l � �(i; i0) < l + 1, l 2 N; i.e.,

Ni(2; 2; l) = jf(A;B) : jAj = 2; jBj = 2; A � fj : �(i; j) � mng with i 2 A;

B � fj0 : �(i0; j0) � mng with i0 2 B and 3mn � l � �(i; i0) < l + 1gj
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By Lemmata A.1(iv) and A.1(ii)

sup
i2Rd

Ni(2; 2; l) � Mld�1 jfj : �(i; j) � mngj jfj0 : �(i0; j0) � mngj

� M�m
2d
n l

d�1 (B.18)

for some M < 1 and M� < 1. Note that if l � r < l + 1, then ��(2; 2; r �

2mn) � ��(2; 2; l � 2mn):

In light of (B.17) and (B.18), we now have for �xed i 2 Dn:X
j;i0;j02Dn

�(i;j)�mn;�(i0;j0)�mn;�(i;i0)�3mn

jcov (Xi;nXj;n;Xi0;nXj0;n)j (B.19)

� 4C4X

" 1X
l=3mn

Ni(2; 2; l)��(2; 2; l � 2mn)

#

� 4C4XM�m
2d
n

1X
l=3mn

ld�1��(2; 2; l � 2mn)

� 3d�14C4XM�m
2d
n

1X
l=mn

ld�1��(2; 2; l) � C1m
2d
n

for some C1 <1.

7(b) Next consider the case where r = �(i; i0) < 3mn. Let Vi = fx 2 Dn :

�(x; i) � 4mng be the collection of the elements of Dn contained in the ball

of the radius 4mn centered in i. This set will necessarily include all points

i0; j; j0 such that �(i; i0) < 3mn; �(i; j) � mn; and �(i0; j0) � mn: Further, let

h(j; i0; j0) = min f�(i; i0); �(i; j); �(i; j0)g :
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Then using the �rst inequality of Lemma 1(iii) twice, �rst with k = 1; l = 3,

and then with k = l = 1 gives

jcov (Xi;nXj;n;Xi0;nXj0;n) j � jE(Xi;nXj;nXi0;nXj0;n)j (B.20)

+jE(Xi;nXj;n)jjE(Xi0;nXj0;n)j

� 4C4X ��(1; 3; hi(j; i
0; j0))

+4C4X ��(1; 1; hi(j; i
0; j0))��(1; 1; �(i0; j0))

� 4C4X ��(1; 3; h(j; i
0; j0)) + 4C4X ��(1; 1; h(j; i

0; j0))

� 8C4X ��(1; 3; h(j; i
0; j0)):

observing that �(k; l; h) is less than or equal to one and nondecreasing in k; l.

Now, let Wi(l) = fA � Vi : jAj = 3; l � �(i; A) < l + 1g denote the

set of three element subsets of Vi located at distances h 2 [l; l + 1) from i.

Clearly, the number of such sets, jWi(l)j is no greater than Ni(1; 3; l); de�ned

in Lemma A.1(v), and by Lemmata A.1(v) and A.1(ii), we have

sup
i2Rd

jWi(l)j � sup
i2Rd

Ni(1; 3; l) �Mld�1 (4mn)
2d =M�l

d�1m2d
n (B.21)

for some M < 1 and M� = 2
4dM < 1. Using (B.20) and (B.21) we have

for �xed i 2 Dn: X
j;i0;j02Dn

�(i;j)�mn;�(i0;j0)�mn;�(i;i0)<3mn

jcov (Xi;nXj;n;Xi0;nXj0;n)j (B.22)

�
X

j;i0;j02Vi

jcov (Xi;nXj;n;Xi0;nXj0;n)j

� 8C4X
X

j;i0;j02Vi

��(1; 3; h(j; i0; j0)) = 8C4X

4mnX
l=1

X
A2Wi(l)

��(1; 3; l)

� 8C4XM�m
2d
n

4mnX
l=1

ld�1��(1; 3; l) � C2m
2d
n

88



for some C2 <1, using Assumption 3(b).

From (B.14), (B.16), (B.19) and (B.22) we have:

EjA1;nj2 � C�jDnj�2
X
i2Dn

(C1 + C2)m
2d
n � const � jDnj�1m2d

n ! 0

as n!1.

8. Proof that EjA2;nj ! 0: Observe that by Lemma A.1(ii) and (B.15)

j �Sj;nj = a�1=2n jSj;nj � a�1=2n

X
i2Dn;�(i;j)�mn

jXi;nj

� CCXa
�1=2
n md

n � C4jDnj�1=2md
n.

for some C4 < 1. By (B.14) it follows that j �Sj;nj ! 0. Observe further

that if z is a complex number with jzj < 1=2, then j1� z � e�zj � jzj2.

Since j �Sj;nj ! 0, there exists N��� � N�� such that for n � N��� we have

j �Sj;nj < 1=2 a.s. and hence���1� i� �Sj;n � e�i�
�Sj;n

��� � �� �Sj;n��2 a:s:
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Since jXi;nj � CX < 1, using this inequality and the same arguments as

before gives:

EjA2;nj � const � jDnj�1=2
X
j2Dn

E �S2j;n � const � jDnj�1=2jDnj sup
j2Dn

E( �S2j;n)

� const � jDnj1=2a�1n sup
j2Dn

X
i;i02Dn;

�(i;j)�mn;�(i0;j)�mn

jE(Xi;nXi0;n)j

� const � jDnj�1=2 sup
j2Dn

X
i;i02Dn;

�(i;j)�mn;�(i0;j)�mn

��(1; 1; �(i; i0))

� const � jDnj�1=2 sup
j2Dn

X
i2Dn;�(i;j)�mn

X
1�l�2mn

Ni(1; 1; l)��(1; 1; l)

� const � jDnj�1=2md
n

X
1�l�2mn

ld�1��(1; 1; l)

� C5jDnj�1=2md
n

for some C5 <1. The last inequality used Assumption 3. Hence, by (B.14),

EjA2;nj ! 0 as n!1.

9. Proof that jEA3;nj ! 0: Note that

jEA3;nj =
�����Ea�1=2n

X
j2Dn

Xj;ne
i�( �Sn� �Sj;n)

����� � const�jDnj�1=2
X
j2Dn

���EXj;ne
i�( �Sn� �Sj;n)

���
and that ei�( �Sn� �Sj;n) is �(Xi;n; �(j; i) > mn)-measurable. Using the �rst in-

equality of Lemma 1(iii) with k = 1; l = jDnj gives���EXj;ne
i�( �Sn� �Sj;n)

��� � 4CX ��(1; jDnj;mn)

and hence as n!1 by (B.13). This completes the proof of the CLT.
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C Appendix: Proofs of ULLN and LLN

Proof of Theorem 2: In the following we use the abbreviations ACL0UEC

[ACLpUEC] [[ a:s:ACUEC]] for L0 [Lp], [[a.s.]] stochastic equicontinuity

as de�ned in De�nition 2. We �rst show that ACL0UEC and the Domina-

tion Assumptions 6 for gi;n(Zi;n; �) = qi;n(Zi;n; �)=ci;n jointly imply that the

gi;n(Zi;n; �) is ACLpUEC; p � 1.

Given " > 0, it follows from Assumption 6 that we can choose some

k = k(") <1 such that

lim sup
n!1

1

jDnj
X
i2Dn

E(dpi;n1(di;n > k) <
"

3 � 2p . (C.1)

Let

Yi;n(�) = sup
�02�

sup
�2B(�0;�)

jgi;n(Zi;n; �)� gi;n(Zi;n; �
0)jp ;

and observe that Yi;n(�) � 2pdpi;n, then

E [Yi;n(�)] = E [Yi;n(�))1(Yi;n(�) � "=3)] + E [Yi;n(�)1(Yi;n(�) > "=3)]

� "=3 + EYi;n(�)1(Yi;n(�) > "=3; di;n > k) (C.2)

+ EYi;n(�)1(Yi;n(�) > "=3; di;n � k)

� "=3 + 2pEdpi;n1(di;n > k) + 2pkpP (Yi;n(�) > "=3)

From the assumption that the gi;n(Zi;n; �) is ACL0UEC, it follows that we

can �nd some � = �(") such that

lim sup
n!1

1

jDnj
X
i2Dn

P (Yi;n(�) > ") (C.3)

= lim sup
n!1

1

jDnj
X
i2Dn

P

 
sup
�02�

sup
�2B(�0;�)

jgi;n(Zi;n; �)� gi;n(Zi;n; �
0)j > "

1
p

!
� "

3 (2k)p
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It now follows from (C.1), (C.2) and (C.3) that for � = �("),

lim sup
1

jDnj
X
i2Dn

EYi;n(�)

� "=3 + 2plim sup
n!1

1

jDnj
X
i2Dn

Edpi;n1(di;n > k)

+ 2pkplim sup
n!1

1

jDnj
X
i2Dn

P (Yi;n(�) > "=3) � ";

which implies that gi;n(Zi;n; �) is ACLpUEC; p � 1.

We next show that this in turn implies that Qn(�) is ALpUEC, p � 1, as

de�ned in Pötscher and Prucha (1994a), i.e., we show that

lim sup
n!1

E

(
sup
�02�

sup
�2B(�0;�)

jQn(�)�Qn(�
0)jp
)
! 0 as � ! 0.

To see this, observe that

E sup
�02�

sup
�2B(�0;�)

jQn(�)�Qn(�
0)jp

= E sup
�02�

sup
�2B(�0;�)

����� 1

Mn jDnj
X
i2Dn

[qi;n(Zi;n; �)� qi;n(Zi;n; �
0)]

�����
p

� E sup
�02�

sup
�2B(�0;�)

1

Mp
n jDnj

X
i2Dn

jqi;n(Zi;n; �)� qi;n(Zi;n; �
0)jp

� 1

jDnj
X
i2Dn

E sup
�02�

sup
�2B(�0;�)

jqi;n(Zi;n; �)� qi;n(Zi;n; �
0)jp =cpi;n

=
1

jDnj
X
i2Dn

EYi;n(�)

where we have used inequality (1.4.3) in Bierens (1994). The claim now fol-

lows since the lim sup of the last term goes to zero as � ! 0, as demonstrated

above. Moreover, by Theorem 2.1 in Pötscher and Prucha (1994a), Qn(�) is
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also AL0UEC, i.e., for every " > 0

lim sup
n!1

P

(
sup
�02�

sup
�2B(�0;�)

jQn(�)�Qn(�
0)j > "

)
! 0 as � ! 0:

Given the assumed weak pointwise LLN for Qn(�) the i.p. portion of part

(a) of the theorem now follows directly from Theorem 3.1(a) of Pötscher and

Prucha (1994a).

For the a.s. portion of the theorem, note that by the triangle inequality

lim sup
n!1

sup
�02�

sup
�2B(�0;�)

jQn(�)�Qn(�
0)j

= lim sup
n!1

sup
�02�

sup
�2B(�0;�)

1

Mn jDnj

�����X
i2Dn

qi;n(Zi;n; �)� qi;n(Zi;n; �
0)

�����
� lim sup

n!1

1

jDnj
X
i2Dn

sup
�02�

sup
�2B(�0;�)

jgi;n(Zi;n; �)� gi;n(Zi;n; �
0)j :

The r.h.s. of the last inequality goes to zero as � ! 0, since gi;n is a:s:ACUEC

by assumption. Therefore,

lim sup
n!1

sup
�02�

sup
�2B(�0;�)

jQn(�)�Qn(�
0)j ! 0 as � ! 0 a.s.

i.e., Qn is a:s:AUEC; as de�ned in Pötscher and Prucha (1994a). Given the

assumed strong pointwise LLN for Qn(�) the a.s. portion of part (a) of the

theorem now follows from Theorem 3.1(a) of Pötscher and Prucha (1994a).

Next observe that since a:s:ACUEC =) ACL0UEC we have that Qn(�)

is ALpUEC, p � 1, both under the i.p. and a.s. assumptions of the theorem.

This in turn implies that Qn(�) = EQn(�) is AUEC, by Theorem 3.3 in

Pötscher and Prucha (1994a), which proves part (b) of the theorem.

Proof of Theorem 3: De�ne Xi;n = Zi;n=Mn, and observe that

[jDnjMn]
�1 X

i2Dn

(Zi;n � EZi;n) = jDnj�1
X
i2Dn

(Xi;n � EXi;n) :
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Hence it su¢ ces to prove the LLN for Xi;n.

We �rst establish mixing and moment conditions for Xi;n from those for

Zi;n. Clearly, if Zi;n is �-mixing [�-mixing], then Xi;n is also �-mixing [�-

mixing] with the same coe¢ cients. Thus, Xi;n satis�es Assumption 3b with

k = l = 1 [Assumption 4b with k = l = 1]. Furthermore, observe that by the

de�nition of Mn we have 1(jXi;nj > k) = 1(jZi;n=Mnj > k) � 1(jZi;n=ci;nj >

k), and hence

lim
k!1

sup
n
sup
i2Dn

E[jXi;nj1(jXi;nj < k)] (C.4)

� lim
k!1

sup
n
sup
i2Dn

E[jZi;n=ci;nj1(jZi;n=ci;nj > k)] = 0;

i.e., Xi;n is also uniformly L1 integrable.

In proving the LLNwe consider truncated versions ofXi;n. For 0 < k <1

let

Xk
i;n = Xi;n1(jXi;nj � k); eXk

i;n = Xi;n�Xk
i;n = Xi;n1(jXi;nj > k):

In light of (C.4)

lim
k!1

sup
n
sup
i2Dn

E
��� eXk

i;n

��� = 0: (C.5)

Clearly, Xk
i;n is a measurable function of Xi;n, and thus Xk

i;n is also �-mixing

[�-mixing] with mixing coe¢ cients not exceeding those of Xi;n:

By Minkowski�s inequality

E

�����X
i2Dn

(Xi;n � EXi;n)

����� (C.6)

� E

�����X
i2Dn

�
Xi;n �Xk

i;n

������+ E

�����X
i2Dn

�
Xk
i;n � EXk

i;n

������+ E

�����X
i2Dn

�
EXk

i;n � EXi;n

������
� 2E

�����X
i2Dn

eXk
i;n

�����+ E

�����X
i2Dn

�
Xk
i;n � EXk

i;n

������
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and thus

lim
n!1






jDnj�1
X
i2Dn

(Xi;n � EXi;n)







1

(C.7)

� 2 lim
k!1

sup
n
sup
i2Dn

E
��� eXk

i;n

���+ lim
k!1

lim
n!1






jDnj�1
X
i2Dn

�
Xk
i;n � EXk

i;n

�





1

where k:k1 denotes the L1-norm. The �rst term on the r.h.s. of (C.7) goes to

zero in light of (C.5). To complete the proof we now demonstrate that also

the second term converges to zero. To that e¤ect it su¢ ces to show that Xk
i;n

satis�es an L1-norm LLN for �xed k.

Let �2n;k = V ar
�P

i2Dn X
k
i;n

�
, then by Lyapunov�s inequality




jDnj�1

X
i2Dn

�
Xk
i;n � EXk

i;n

�





1

� jDnj�1 �n;k: (C.8)

Using Lemma A.1(iii) and Lemma 1(iii), we have in the �-mixing case:

�2n;k �
X
i2Dn

V ar(Xk
i;n) +

X
i2Dn;j2Dn

j 6=i

��Cov(Xk
i;n;X

k
j;n)
��

� 2k2jDnj+ 4k2
X

i2Dn;j2Dn
j 6=i

�X (1; 1; �(i; j))

� 2k2jDnj+ 4k2
X
i2Dn

1X
m=1

X
j2Dn:�(i;j)2[m;m+1)

�X (1; 1; �(i; j))

� 2k2jDnj+ 4k2
X
i2Dn

1X
m=1

Ni(1; 1;m)�X (1; 1;m)

� 2k2jDnj+ 4k2C
X
i2Dn

1X
m=1

md�1�X (1; 1;m)

� jDnj
�
k2 + 4CKk2

�
:

with C < 1, and K =
P1

m=1m
d�1�X (1; 1;m) < 1 by Assumption 3b.

Consequently, the r.h.s. of (C.8) is seen to go to zero as n ! 1, which
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establishes that the Xk
i;n satis�es an L1-norm LLN for �xed k. The proof for

the �-mixing case is analogous. This completes the proof.

Proof of Proposition 1. De�ne the modulus of continuity of fi;n(Zi;n; �)

as

w(fi;n; Zi;n; �) = sup
�02�

sup
�2B(�0;�)

jfi;n(Zi;n; �)� fi;n(Zi;n; �
0)j :

Further observe that

f! : w(fi;n; Zi;n; �) > "g � f! : Bi;nh(�) > "g :

By Markov�s inequality and the i.p. part of Condition 7, we have

lim sup
n!1

1

jDnj
X
i2Dn

P [w(fi;n; Zi;n; �) > "]

� lim sup
n!1

1

jDnj
X
i2Dn

P

�
Bi;n >

"

h(�)

�
�

�
h(�)

"

�p
lim sup

n!1

1

jDnj
X
i2Dn

EBp
i;n � C1

�
h(�)

"

�p
! 0 as � ! 0

for some C1 < 1, which establishes the i.p. part of the theorem. For the

a.s. part, observe that by the a.s. part of Condition 7 we have a.s.

lim sup
n!1

1

jDnj
X
i2Dn

w(fi;n; Zi;n; �)

� h(�) lim sup
n!1

1

jDnj
X
i2Dn

Bi;n � C2h(�)! 0 as � ! 0

for some C2 <1, which establishes the a.s. part of the theorem.

Proof of Proposition 2. The proof is analogous to the �rst part of the

proof of Theorem 4.5 in Pötscher and Prucha (1994a). We give an explicit
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proof for the convenience of the reader. Let

w(fi;n; z; �) = sup
�02�

sup
�2B(�0;�)

jfi;n(z; �)� fi;n(z; �
0)j

denote the modulus of continuity of fi;n(z; �); and let w(ski;n; z; �) be de�ned

analogously. First note that for any " > 0, we have

P (w(fin; Zi;n; �) > ") � P

 
KX
k�1

jrki;n(Zi;n)jw(ski;n; Zi;n; �) > "

!

�
KX
k=1

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �) >

"

K

�
�

KX
k=1

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �)1Km(Zi;n) >

"

2K

�
+

KX
k=1

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �)1Z�Km(Zi;n) >

"

2K

�
:

For any m, 1 � k � K, and � > 0 it follows form equicontinuity Condition

8(b), that there exists �(m; �) > 0 such that

sup
n
sup
i2Dn

sup
z2Km

w(ski;n; z; �) < �:

By. Markov�s inequality we now have for each 1 � k � K:

lim sup
n!1

1

jDnj
X
i2Dn

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �)1Km(Zi;n) >

"

2K

�
� lim sup

n!1

1

jDnj
X
i2Dn

P
�
jrki;n(Zi;n)j � >

"

2K

�
� 2K�

"
lim sup

n!1

1

jDnj
X
i2Dn

E jrki;n(Zi;n)j �
2KB�

"

where B = lim supn!1 jDnj�1
P

i2Dn E jrki;n(Zi;n)j, which is �nite by Condi-

tion 8(a). Since � was arbitrary it follows that

lim
�!0

lim sup
n!1

1

jDnj
X
i2Dn

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �)1Km(Zi;n) >

"

2K

�
= 0.
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Also, for each 1 � k � K it follows from by Condition 8(b) that

lim
m!1

lim
�!0

lim sup
n!1

1

jDnj
X
i2Dn

P
�
jrki;n(Zi;n)jw(ski;n; Zi;n; �)1Z�Km(Zi;n) >

"

2K

�
� lim

m!1
lim sup

n!1

1

jDnj
X
i2Dn

P (1Z�Km(Zi;n)) = 0.

Hence

lim
�!0

lim sup
n!1

1

jDnj
X
i2Dn

P (w(fin; Zi;n; �) > ")

= lim
m!1

lim
�!0

lim sup
n!1

1

jDnj
X
i2Dn

P (w(fin; Zi;n; �) > ") = 0,

which completes the proof.
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D Appendix: Proofs for Section 4.2

D.1 Proof of Lemma 3

Let Fi(s) = �(Xj; j 2 Zd: �(i; j) � s). First note that

kYi � E[YijFi(s)]kp =








X

j2Zd;�(i;j)>s

gi;j fXj � E [XjjFi(s)]g








p

:

By Minkowski�s inequality for in�nite sums and (9)-(10), we have

kYi � E[YijFi(s)]kp �
X

j2Zd;�(i;j)>s

jgi;jj kXj � E [XjjFi(s)]kp

� 2 sup
j2Zd

kXj;nkp sup
i2Zd

X
j2Zd;�(i;j)>s

jgi;jj

= c (s)! 0 as s!1

where c = 2 supj2Zd kXj;nkpand

 (s) = sup
i2Zd

X
j2Zd;�(i;j)>s

jgi;jj ;

by condition (10).

D.2 Proof of Lemma 4
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Let Fi;n(s) = �(Xj;n; 1 � j � n: �(i; j) � s). By Minkowski�s inequality, we

have:

kYi;n � E[Yi;njFi;n(s)]kp
� �

X
1�j�n;�(i;j)>s

jaij;nj kZj;n � E[Zi;njFi;n(s)]kp

+
X

1�j�n;�(i;j)>s

jbij;nj k"j;n � E["j;njFi;n(s)]kp

� 2� sup
n
sup
1�i�n

kZi;nkp sup
n
sup
1�i�n

X
1�j�n;�(i;j)>s

jaij;nj

+2 sup
n
sup
1�i�n

k"i;nkp sup
n
sup
1�i�n

X
1�j�n;�(i;j)>s

jbij;nj � c (s)

where

 (s) = sup
n
sup
1�i�n

X
1�j�n;�(i;j)>s

(jaij;nj+ jbij;nj)! 0 as s!1

by condition (12), and

c = 2max

�
� sup

n
sup
1�j�n

kZj;nkp ; sup
n
sup
1�j�n

k"j;nkp
�
<1

by condition (13).

D.3 Proof of Lemma 5

Let Fi(s) = �(Xi+j; j 2 D : jjj � s). De�ne a Fi(s)=B-measurable approx-

imating function for Yi = H(Xi+j; j 2 D) by replacing the arguments with

spatial lags j outside the s-neighborhood of i by zeroes:

hs(Xi+j; j 2 D : �(i; j) � s) = H(Xi+j1jjj�s, j 2 D)
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where 1A is the indicator function of set A.

By the minimum mean-squared error property of the conditional expec-

tation, we have:

kYi � E[YijFi(s)]k2 � kYi � hs(Xi+j; j 2 D : jjj � s)k2
=



H(Xi+j; j 2 D)�H(Xi+j1jjj�s, j 2 D)



2

�








X

j2D:jjj>s

wi+j jXi+jj








2

�
X

j2D:jjj>s

wi+j kXi+jk2

� sup
i2D

kXik2
X

j2D:jjj>s

wi+j � c (s):

with c = supi2D kXik2 and  (s) = supi2D
P

j2D:jjj>swi+j. In deriving these

inequalities, we used Lipschitz condition (16), Minkowski�s inequality and

moment condition (18). Finallly, by condition (17),  (s)! 0 as s!1.
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E Appendix: Proof of CLT for NEDProcesses

The proof of the CLT follows the approach of Ibragimov and Linnik (1971),

pp. 352-355 and makes use of the Bernstein�s Lemma (B.2) given in Appendix

B. We prove the theorem for the �-mixing case. The proof for the �-mixing

case is analogous.

1. Transition from Zi;n to Scaled variables Yi;n = Zi;n=Mn

Throughout the proof, Fi;n(s) = �(Xj;n; j 2 Tn : �(i; j) � s); s 2 N

denotes the �-algebra generated by Xj;n located in the s-neighborhood of

point i 2 D.

Let Mn = maxi2Dn ci;n and Yi;n = Zi;n=Mn: Also, let �2Z;n = V ar [
P
Zi;n ]

and �2Y;n = V ar [
P
Yi;n ] =M�2

n �2Z;n: Since

��1Y;n
X
i2Dn

Yi;n = ��1Z;n
X
i2Dn

Zi;n;

to prove the theorem, it su¢ ces to show that ��1Y;n
P

i2Dn Yi;n =) N(0; 1).

Therefore, it proves convenient to switch notation from the text and to de�ne

Sn =
X
i2Dn

Yi;n; �2n = V ar(Sn):

That is, in the following, Sn denotes
P

i2Dn Yi;n rather than
P

i2Dn Zi;n, and

�2n denotes the variance of
P

i2Dn Yi;n rather than of
P

i2Dn Zi;n. We now

establish moment and mixing conditions for Yi;n from the assumptions of the

theorem. Observe that by de�nition of Mn

1(jYi;nj > k) = 1(jZi;n=Mnj > k) � 1(jZi;n=ci;nj > k);

and hence

E[jYi;nj2+� 1(jYi;nj > k)] � E[jZi;n=ci;nj2+� 1(jZi;n=ci;nj > k)]
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so that Assumption 11 implies that

lim
k!1

sup
n
sup
i2Dn

E[jYi;nj2+� 1(jYi;nj > k)] = 0: (E.1)

Since Yi;n is uniformly L2+� integrable, it is also uniformly L2+� bounded.

Let kY k2+� = supi;n kYi;nk2+� : Further, note that

kYi;n � E(Yi;njFi;n(s))k2 = M�1
n kZi;n � E(Zi;njFi;n(s))k2 (E.2)

� c�1i;ndi;n (s) � C (s)

since supn supi2D c
�1
i;ndi;n � C <1, by assumption. Thus, Yi;n is L2-NED on

X with the NED coe¢ cients  (s) and magnitude index C: Finally, observe

that by Assumption 12:

lim inf
n!1

jDnj�1�2n > 0: (E.3)

Hence, there exists an N� and 0 < B1 <1 such that for all n � N�, we have

B1jDnj � �2n (E.4)

In the following, without loss of generality we assume N� = 1.

2. Decomposition of Yi;n

The proof of the theorem will make use of the following two auxiliary

random variables:

�si;n = E(Yi;njFi;n(s)), �si;n = Yi;n � �si;n (E.5)

for some s > 0. Note that E�si;n = 0 and E�
s
i;n = 0: Let

Sn;s =
X
i2Dn

�si;n; eSn;s = X
i2Dn

�si;n

�2n;s = V ar [Sn;s] ; e�2n;s = V ar
heSn;si
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Repeated use of Minkowski�s inequality yields:

j�n � �n;sj � e�n;s (E.6)

Similarly, one can show that

j�n � e�n;sj � �n;s (E.7)

Furthermore, Jensen�s conditional expectation and Lyapunov�s inequali-

ties give for all s > 0 and any 1 � q � 2 + � :

E
���si;n��q = EfjE(Yi;njFi;n(s))jqg (E.8)

� EfE(jYi;njq jFi;n(s))g

= E jYi;njq � sup
n;i2Dn

E jYi;njq = kY kq2+�

By Minkowski�s and Lyapunov�s inequalities, we have for all s > 0 and any

1 � q � 2 + �:



�sn;i

q = 

Yi;n � �sn;i


 � 2 kYi;nkq � 2 kYi;nk2+�

Furthermore, note that for any q � 2:



�si;n

q � 

�si;n

2 � c (s) : (E.9)

Thus, both �sn;i and �
s
n;i are uniformly L2+� bounded:

Now, let �(�si;n) be �-�eld generated by �
s
i;n: Since �(�

s
i;n) � Fi;n(s), we

have the following bounds for mixing coe¢ cients of �si;n any s 2 N:

��(1; 1; h) �

8<: 1; h � 2s

�X((2s+ 2)
d; (2s+ 2)d; h� 2s); h > 2s
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since, as shown in the proof of Lemma A.1(ii), the s-neighborhood of any

point on the lattice D contains at most (2s+ 2)d points of D for any s 2 N.

To simplify notation, hereafter, we suppress the dependence of �X(1; 1; h)

on X, i.e. write

�(1; 1; h) = �X(1; 1; h)

Furthermore, we have

E [E(Yi;njFi;n(s))jFi;n(m))]

=

8<: E(Yi;njFi;n(s)); m � s;

E(Yi;njFi;n(m)); m < s:

De�ne the L2-approximation error of any �eld Ui;n by the base �eld X as

follows:

'U(m) � kUi;n � E(Ui;njFi;n(m))k2

Then, we have

'2�(m) �


�si;n � E(�si;njFi;n(m))



2
2

= EfYi;n � E[Yi;njFi;n(s)]� E[Yi;njFi;n(m)]

+E[(Yi;njFi;n(s))jFi;n(m)]g2

=

8<: '2Y (m); m � s;

'2Y (s); m < s:
= '2Y (max(m; s))

In other words, if m � s we have

�si;n � E(�si;njFi;n(m))



2
= kYi;n � E(Yi;njFi;n(m))k2 � c (m) (E.10)

If m < s, then

�si;n � E(�si;njFi;n(m))



2
= kYi;n � E(Yi;njFi;n(s))k2 � c (s) � c (m)

105



since  (m) is non-increasing sequence. Hence, �si;n is L2-NED on X and we

can, with no loss of generality, assume that the NED coe¢ cients of �si;n for

any �xed s are equal to those of Yi;n, i.e., for all m 2 N

 �(m) �  Y (m) =  (m): (E.11)

Furthermore, �si;n is L2+� bounded. Thus, for all s > 0, �si;n has the same

structure as Yi;n: This observations will be exploited further in the proof of

the theorem.

3. Bound for Variance of
P
�si;n

Let e�2n;s = V ar
�P

Dn
�sn;i
�
: To simplify notation, in the following, we

suppress dependence of �si;n on s and set

Ui;n := �si;n

Since Ui;n has the same structure as Yi;n; i.e., L2-NED on X, we can similarly

decompose Ui;n as follows:

Ui;n =
�e�mi:n + e�mi;n�e�mi:n = E(Ui;njFi;n(m))

e�mi;n = Ui;n � e�mi:n
Then, for any i; j such that �(i; j) = h � 3, we have

E(�si;n; �
s
j;n) = E

�e�[h=3]i;n + e�[h=3]i;n

��e�[h=3]j;n + e�[h=3]j;n

�
�

���E �e�[h=3]i;n
e�[h=3]j;n

����+ ���E �e�[h=3]i;n e�[h=3]j;n

����
+
���E �e�[h=3]j;n e�[h=3]i;n

����+ ���E �e�[h=3]i;n e�[h=3]j;n

����
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By (E.8) and the de�nition of �si;n :

sup
n;i2Dn




e�[h=3]j;n





2
� sup

n;i2Dn



�si;n

2 (E.12)

= sup
n
sup
i2Dn

kYi;n � E(Yi;njFi;n(s))k2 � c (s):

Furthermore, by (E.8),

sup
n;i2Dn




e�[h=3]i;n





2+�

� sup
n;i2Dn



�si;n

2+� � 2 kY k2+� (E.13)

and by assumption

� (k; l; r) � (k + l)�b�(r):
Using (E.12), (E.13) and the covariance inequalities of Lemma 1 with p = 2;

q = 2 + �; and r = 2(2 + �)=� yields the following upper bound on the �rst

term:���E �e�[h=3]i;n
e�[h=3]j;n

���� � 8



e�[h=3]i;n





2+�




e�[h=3]j;n





2
�

�
2(2+�)

� (1; 1; [h=3])

� 8



e�[h=3]i;n





2+�




e�[h=3]j;n





2
�

��
�

2(2+�)

�
(2 [h=3] + 2)d ; (2 [h=3] + 2)d ; h� 2 [h=3]

�
� 2

��
2(2+�)16 kY k2+� (2 [h=3] + 2)

��d
2(2+�) b� �

2(2+�) ([h=3]) sup
n;i2Dn



�sn;i

2
� 2

��
2(2+�)

(1+d)16 kY k2+� ([h=3] + 1)
��d

2(2+�) b� �
2(2+�) ([h=3]) c (s)

� c1 ([h=3] + 1)
d�� b� �

2(2+�) ([h=3]) (s);

where � � = ��
2(2+�)

; c1 = 24+(1+d)��c kY k2+� :

Using Cauchy-Schwartz inequality, (E.10) and (E.11) gives the following

bound on the second and third terms:���E �e�[h=3]i;n e�[h=3]j;n

���� �



e�[h=3]i;n





2




e�[h=3]j;n





2

� sup
n;i2Dn



�sn;i

2 c ([h=3])
� c2 (s) ([h=3]) :
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Similarly, using Cauchy-Schwartz inequality, we have for the fourth term:���E �e�[h=3]i;n e�[h=3]j;n

���� �



e�[h=3]i;n





2




e�[h=3]j;n





2

� 2c sup
n;i2Dn



�sn;i

2  ([h=3])
� 2c2 (s) ([h=3])

Collecting terms, we have:

��E(�si;n; �sj;n)�� �  (s)
n
c1 ([h=3] + 1)

d�� b� �
2(2+�) ([h=3]) + c2 ([h=3])

o
where c2 = 4c2 and c1 is as de�ned above.

Using the last inequality as well as Lemma A.1(iii) of Appendix A, we

can now establish an upper bound for e�2n;s:
e�2n;s �

X
i2Dn

E
���si;n��2 + X

i2Dn;j2Dn
i6=j;�(i;j)<3

k�si;nk2k�sj;nk2 +
X

i2Dn;j2Dn
i6=j;�(i;j)�3

��E(�si;n�sj;n)��

� jDnj sup
n
sup
i2Dn

k�sn;ik22 +
X
i2Dn

2X
m=1

X
j2Dn:�(i;j)2[m;m+1)

k�si;nk2k�sj;nk2

+c1

24X
i2Dn

1X
m=3

X
j2Dn:�(i;j)2[m;m+1)

([�(i; j)=3] + 1)d�� b� �
2(2+�) ([�(i; j)=3])

35 (s)
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+c2

24X
i2Dn

1X
m=3

X
j2Dn:�(i;j)2[m;m+1)

 ([�(i; j)=3])

35 (s)
� jDnj

�
1 +M(1 + 2d�1)

�
sup
n
sup
i2Dn

k�sn;ik22 +

+c1

"X
i2Dn

1X
m=3

Ni(1; 1;m) ([(m+ 1)=3] + 1)
d�� b� �

2(2+�) ([m=3])

#
 (s)

+c2

"X
i2Dn

1X
m=3

Ni(1; 1;m) ([m=3])

#
 (s)

� jDnj
�
1 +M(1 + 2d�1)

�
c2 2(s) +

+c1M4
d��

"X
i2Dn

1X
m=3

md�1 [m=3]d�� b� �
2(2+�) ([m=3])

#
 (s)

+c2M

"X
i2Dn

1X
m=3

md�1 ([m=3])

#
 (s)

� B2jDnj 2(s) +B3jDnj (s);

where

B2 = c2
�
1 +M(1 + 2d�1)

�
B3 = 3d4d��c1MK1 + 3

dc2MK2

with

K1 =

1X
m=1

md(��+1)�1b� �
2(2+�) (m) �

1X
m=1

md(�+1)�1b� �
2(2+�) (m) <1

since � � < �; and

K2 =
1X
m=1

md�1 (m) <1:

These two series are convergent by Assumptions 9 and 13, respectively. We

also used the following elementary inequality

([(m+ 1)=3] + 1)d�� � ([m=3] + 2)d�� � 4d�� [m=3]d��
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Thus,

0 � e�2n;s � (B2 +B3) jDnj (s) (E.14)

since  2(s) � 1 and hence  2(s) �  (s): In light of (E.4), we have:

e�2n;s
�2n

� B2 +B3
B1

 (s)

and hence

lim
s!1

lim sup
n!1

e�2n;s
�2n

� B2 +B3
B1

lim
s!1

 (s) = 0 (E.15)

Furthermore, by (E.6) we have

lim
s!1

lim sup
n!1

����1� �n;s
�n

���� � lim
s!1

lim sup
n!1

e�n;s
�n

= 0 (E.16)

and hence for all s � 1 and n � 1

�n;s
�n

� eB <1: (E.17)

4. CLT for ��1n;s
P

i2Dn �
s
i;n

We now show that for �xed s > 0, �si;n satis�es the CLT for �-mixing

�elds, Theorem 1. First, note that since �si;n is a measurable function of Xi;n;

��(k; l;m) � �(k (2s+ 2)d ; l (2s+ 2)d ;m� 2s)

for k + l � 4 and m > 2s: Therefore, by Assumption 9 we have for �xed

s > 0
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1X
m=1

md�1�
�=(2+�)
� (1; 1;m)

�
2sX
m=1

md�1 +
1X

m=2s+1

md�1��=(2+�)((2s+ 2)d ; (2s+ 2)d ;m� 2s)

�
2sX
m=1

md�1 + (2s+ 2)d�1 2�1
1X

m=2s+1

md�1b� �
(2+�) (m� 2s)

�
2sX
m=1

md�1 + (2s+ 2)d�1 2�1
1X
m=1

(m+ 2s)d�1b� �
(2+�) (m) <1

where � 1 = ��=(2 + �), since b� �
(2+�) (m) � b� �

2(2+�) (m) :

Similarly,

1X
m=1

md�1��(k; l;m)

�
2sX
m=1

md�1 +
1X

m=2s+1

md�1�(k (2s+ 2)d ; l (2s+ 2)d ;m� 2s)

�
2sX
m=1

md�1 + (2s+ 2)d� (k + l)�
1X
m=1

(m+ 2s)d�1b� (m) <1;

since b� (m) � b� �
2(2+�) (m) : By Assumption 9 for each given s 2 N; we have

��(1;1;m) � �((2s+ 2)d ;1;m� 2s)

� C 0(m� 2s)�d�" � C�m
�d�"

for some C 0 < 1, C� < 1 and " > 0. Hence, ��(1;1;m) = O(m�d�").

Furthermore, since
���si;n��2+� � jYi;nj2+� for all i 2 Dn; n � 1 :

E[
���sn;i��2+� 1(���sn;i�� > k)] � E[jYn;ij2+� 1(jYn;ij > k)];
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and hence by (E.1)

lim
k!1

sup
n
sup
i2Dn

E[
���sn;i��2+� 1(���sn;i�� > k)] = 0:

Thus, the moment Assumption 2 of that theorem is also ful�lled. Finally, we

demonstrate that for su¢ ciently large s;

0 < lim inf
n!1

jDnj�1�2n;s:

First note that by (E.3),

0 < B = lim inf
n!1

jDnj�1=2�n:

Furthermore, it follows from (E.14) that

jDnj�1=2e�n;s � (B2 +B3)
1=2  1=2(s):

Since lims!1  
1=2(s) = 0; there exists s� such that for all s � s�

jDnj�1=2e�n;s � B

2

Next observe that by (E.7)

jDnj�1=2(�n � e�n;s) � jDnj�1=2�n;s

and hence for all s � s�

lim inf
n!1

jDnj�1=2�n;s � lim inf
n!1

jDnj�1=2�n + lim inf
n!1

[�jDnj�1=2e�n;s]
= lim inf

n!1
jDnj�1=2�n � lim sup

n!1
[jDnj�1=2e�n;s]

� B � B

2
=
B

2
> 0

Thus, for all s � s�,

��1n;s
X
i2Dn

�si;n =) N(0; 1):
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5. CLT for ��1n
P

i2Dn Yi;n

Finally, we show that

��1n
X
i2Dn

Yi;n =) N(0; 1):

De�ne

Wn = ��1n
X
Dn

Yi;n; Vns = ��1n
X
i2Dn

�si;n

Wn � Vns = ��1n
X
i2Dn

�si;n ; V � N(0; 1)

so that we can exploit Lemma B.2 to prove the above claim. In Step 4, we

showed that for s � s�

��1n;s
X
i2Dn

�si;n =) N(0; 1)

W.L.O.G., we can assume that s� = 1: We �rst verify condition (iii) of

Lemma B.2. By Markov�s inequality and (E.15) , for every " > 0 we have

lim
s!1

lim sup
n!1

P (jWn � Vnsj > ") = lim
s!1

lim sup
n!1

P (

�������1n X
i2Dn

�si;n

����� > ")

� lim
s!1

lim sup
n!1

e�2n;s
"2�2n

= 0:

Next observe that

Vns =
�n;s
�n

"
��1n;s

X
i2Dn

�si;n

#
:

Let M be the set of all probability measures on (R;B). Observe that we

can metrizeM by, e.g., the Prokhorov distance d(:; :). Let �n and � be the

probability measures corresponding toWn and V , respectively, then �n =) �
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i¤ d(�n; �) ! 0 as n ! 1. Now suppose that Wn does not converge to

V . Then for some " > 0 there exists a subsequence fn(m)g such that

d(�n(m); �) > " for all n(m). By (E.17) we have 0 � �n;s=�n � eB < 1

for all s � 1 and n � 1. Hence, 0 � �n(m);s=�n(m) � eB < 1 for all

n(m). Consequently, for s = 1 there exists a subsubsequence fn(m(l1))g

such that �n(m(l1));1=�n(m(l1)) ! r(1) as l1 ! 1. For s = 2, there exists a

subsubsubsequence fn(m(l1(l2)))g such that �n(m(l1(l2)));2=�n(m(l1(l2))) ! r(2)

as l2 ! 1. The argument can be repeated for s = 3; 4::::. Now construct a

subsequence fnlg such that n1 corresponds to the �rst element of fn(m(l1))g,

n2 corresponds to the second element of fn(m(l1(l2)))g, and so on, then

lim
l!1

�nl;s
�nl

= r(s) (E.18)

for s = 1; 2; : : : Given (E.18), it follows that as l!1

Vnls =) Vs � N(0; r(s)2):

Then, it follows from (E.16) that

lim
s!1

jr(s)� 1j � lim
s!1

lim
l!1

����r(s)� �nl;s
�nl

����+ lim
s!1

sup
n�1

�����n;s�n
� 1
���� = 0:

Now, by Lemma B.2 Wnl =) V � N(0; 1) as l !1. Since fnlg � fn(m)g

this contradicts the assumption that d(�n(m); �) > " for all n(m). This

completes the proof of the CLT.

114



F Appendix: Proof of LLN for NEDProcesses

De�ne Yi;n = Zi;n=Mn; and observe that

a�1n
X
i2Dn

(Zi;n � EZi;n) = jDnj�1
X
i2Dn

M�1
n (Zi;n � EZi;n)

= jDnj�1
X
i2Dn

(Yi;n � EYi;n)

since, by de�nition, an = jDnjMn: So, to prove the theorem, it su¢ ces to

show that

jDnj�1
X
i2Dn

(Yi;n � EYi;n)
L1! 0:

We �rst establish mixing and moment conditions for Yi;n from those for Zi;n.

Observe that by de�nition of Mn

sup
n
sup
i2Dn

E jYi;njr = sup
n
sup
i2Dn

E jZi;n=Mnjr

� sup
n
sup
i2Dn

E jZi;n=ci;njr <1:

Thus, Yi;n is uniformly Lp-bounded for some p > 1. Let Fi;n(s) = �(Xj;n;

j 2 Tn : �(i; j) � s); s 2 N denote the �-algebra generated by Xj;n located

in the s-neighborhood of point i 2 D. If Zi;n is L1-NED on X = fXi;n; i 2

Tn; n � 1g; so is Yi;n:

sup
n
kYi;n � E(Yi;njFi;n(s))k1 = sup

n
M�1
n kZi;n � E(Zi;njFi;n(s))k1(F.1)

� sup
n
M�1
n di;n (s) �  (s);

since Mn = maxi2Dn max(ci;n; di;n):

We �rst show that for each given s > 0, the conditional mean V s
i;n =

E(Yi;njFi;n(s)) satis�es the L1-norm LLN of Section 3.4.2, Theorem 3. Note
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that EV s
i;n = EE(Yi;njFi;n(s)) = EYi;n < 1. Using Jensen�s conditional

expectation and Lyapunov�s inequalities gives for each s > 0:

E
��V s
i;n

��p = EfjE(Yi;njFi;n(s))jpg

� EfE(jYi;njp jFi;n(s))g

= E jYi;njp � sup
n
sup
i2Dn

E jYi;njp <1:

So, V s
i;n is uniformly Lp-bounded for p > 1 and hence uniformly integrable.

For each �xed s 2 N, V s
i;n is a measurable function ofXi;n, and for c = f�; �g :

cV (1; 1; h) �

8<: 1; h � 2s

cX((2s+ 2)
d; (2s+ 2)d; h� 2s); h > 2s

since, as shown in the proof of Lemma A.1(ii), the s-neighborhood of any

point on the lattice D contains at most (2s+ 2)d points of D for any s 2 N.

Then, we have

1X
m=1

md�1cV (1; 1;m)

=
2sX
m=1

md�1cV (1; 1;m) +
1X

m=2s+1

md�1cV (1; 1;m)

�
2sX
m=1

md�1 + f((2s+ 2)d; (2s+ 2)d)
1X
m=1

(m+ 2s)d�1bcX(m) <1;

where bc = fb�; b�g: Thus, for each �xed s, V s
i;n is uniformly integrable and

�-mixing [�-mixing] satisfying the mixing assumptions of Theorem 3. There-

fore, for each s;we have




jDnj�1
X
i2Dn

(E(Yi;njFi;n(s))� EYi;n)







1

! 0 as n!1: (F.2)
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By (F.1), we have for all i 2 Dn and n � 1:

kYi;n � E(Yi;njFi;n(s))k1 �  (s);

and hence by Minkowski�s inequality:

lim sup
n!1






jDnj�1
X
i2Dn

(Yi;n � E(Yi;njFi;n(s)))






1

� (F.3)

� lim sup
n!1

jDnj�1
X
i2Dn

kYi;n � E(Yi;njFi;n(s)k1 �  (s):

Hence, it follows from (F.2) and (F.3) that

lim
n!1






jDnj�1
X
i2Dn

(Yi;n � EYi;n)







1

� lim
s!1

lim sup
n!1






jDnj�1
X
i2Dn

(Yi;n � E(Yi;njFi;n(s)))






1

+ lim
s!1

lim
n!1






jDnj�1
X
i2Dn

(E(Yi;njFi;n(s))� EYi;n)







1

= 0:

The proof of the LLN is complete.
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