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1. Existential Null: The person creating the database may know that Elaine has a phone, buts/he may not have the actual number. Hence, a special symbol, denoted ex mar is inserted todenote that a value exists for the Phone �eld of this tuple, but the value is not currently known.The explicit representation is shown as tuple 5 in Appendix A.2. Maybe Null: In the case of some other individual, Ed, the database creator does not knowwhether or not Ed has a phone. In this case, s/he places a di�erent symbol, denoted ma marto indicate that a phone number may or may not exist for Ed. This is indicated by tuple 3 inAppendix A.3. Place holder Null: Let us consider the relation spouse. In this relation, the individual, Tony,is a bachelor, and hence, the wife �eld is inapplicable to him. Hence, a special symbol, pl mar ,called a placeholder, is placed in the wife �eld of the tuple associated with Tony. This is shownexplicitly as tuple 13 of Appendix A.4. Partial Nulls: If we examine the relation emp, it may be the case that the database creatordoes not remember whether Ed works for IBM or for NCR. S/he knows that Ed works for oneof the two, but does not precisely recall which one. In this case, a special kind of value, calleda partial value, is inserted into the table. This situation is represented by tuple 23 in AppendixA. A partial null may be thought of as an existential null, except that it is somewhat moreinformative.5. Partial Maybe Null: In the case of Oscar, the database creator may not remember whetherOscar works for NCR or not. For instance, Oscar may be very close to retirement, and thedatabase administrator is not sure whether Oscar has retired (in which case, the �eld employeris inapplicable to Oscar), or Oscar is still an employee, in which case, the value of the �eld shouldbe NCR. This is an example of a partial maybe null where we are not sure whether the �eldis applicable or not, but if it is applicable, then its value must fall within a speci�ed set. Thissituation is shown as tuple 26 of Appendix A where the speci�ed set is a singleton.In this paper, we show how constraints may be used to provide a uniform way of treating the abovetypes of null values. The uniform treatment of di�erent types of null values raises several importantproblems. In particular, in distributed environments where data gathering is done independently, suchproblems are very common. For instance, inconsistencies may occur because of the null values { John'sspouse �eld may be listed as Sherry in one site, but as a placeholder null in another site. In thiscase, is John married to Sherry? Or is he a bachelor? The presence of di�erent types of nulls alsoleads to di�erent ways of coalescing information together. For instance, it may be the case that in onerelation, Ed's spouse is listed as an existential null, while in another relation, Ed's spouse is listed asAlice. In this case, with an optimistic approach Ed's spouse's name can be assumed to be Alice, or itmay still be assumed to be unknown from a more skeptical point of view. Thus, querying databaseswith di�erent kinds of null values in them allows us to combine the null values in various ways.We show how databases containing the above types of null values can be uniformly viewed as databaseswhere each tuple t has an associated constraint Ct. Intuitively, a tuple t may be thought of as being\in" the relation i� Ct is true. Though the idea of using constraints to handle null values in databasesis not new (cf. Imielinski-Lipski [13, 14]), the use of constraints to present a uni�ed way of handlingdi�erent types of nulls is, to the best of our knowledge, new and novel. Section 2 shows how databaseswith constraints can be used to express the semantics of the above types of null values. In Section 3,2



we develop ways of removing redundant information from null-valued relations and de�ne a \compact"form for such databases. Subsequently, in Section 4, we develop an extension of the relational algebrathat handles the above types of nulls. In Section 5, we study properties of this algebra. This consistsof establishing various algebraic equalities and inclusions that may be useful for query optimization.In Section 6, we report on the results of experiments that we have conducted on the utility of thesealgebraic equalities for query optimization.2 Null-Valued Databases2.1 PreliminariesA relation consists of a relational schema (i.e. a list of attributes), and a list of tuples; each tuple isgiven a tuple-id that is unique for the database under consideration. Thus, a relation may be viewedas a table, whose rows are tuples and whose columns represent attribute values. A given row/tuple tand a given column/attribute A jointly identify a slot in the relation table that may be �lled in witha marker. In the standard relational model of data, each slot must be �lled in with a value from thedomain of the attribute A being considered. In the case of databases containing null values, however,such as those shown in Appendix A, the slots in relations may be �lled in with markers of any one ofthe following types:1. (Classical Case) a value marker which is any element from the domain of the attribute A,2. the existential null marker ex mar ,3. the maybe null marker, ma mar ,4. the placeholder null marker, pl mar ,5. a partial null marker of the form pa mar = Vs where Vs is a nonempty subset of the domain ofthe attribute A,6. a partial maybe marker of the form pm mar = Vs where Vs is a nonempty subset of the domainof the attribute A.Let va be a function which takes a marker and returns a set of possible values the marker may have.The following table shows the relationship between the markers and va.X va(X)va mar (v) fvgex mar Dma mar DSf?gpl mar f?gpa mar (Vs) Vspm mar (Vs) VsSf?gIntuitively, va(ex mar) = D says that the actual value of an existential marker can be any member ofthe domain D. Likewise, va(ma mar) = DSf?g says that the actual value of a maybe marker can beeither any member ofD, or the symbol ?, denoting a non-existent value. Similarly, va(pa mar (Vs)) =Vs says that the actual value of a partial null marker of the form pa mar (Vs) lies in the set Vs.3



Tuples that are composed of such markers are called m-tuples . Unless speci�ed otherwise, all tuplesconsidered in this paper are m-tuples .2.2 Using Constraints to Handle Null-Valued DatabasesIn the preceding section, we introduced null valued relations as tables whose slots may be �lled in withany of the di�erent types of markers described above. Given any m-tuple t, it is possible to associatewith t, a constraint Ct which describes the conditions under which t is \in" the given relation. Forinstance, if A is an attribute in tuple t with a null marker,M , then tuple t has the associated implicitconstraint: t:A 2 va(M). This is however not what is reected in the constraint column as explicitconstraints. A typical explicit constraint occurs when a selection is performed on a null-valued tuplelike tuple 3 of Appendix A; the associated constraint after a selection can be seen in tuple 2� ofappendix B.The syntax of a constraint is similar to that of a �rst order formula. Let D be a database, R be arelation in D, t be a tuple in R and A be an attribute in the relational schema of R. Then,� (D:R:t:A = value),� (D:R:t:A 6= value) and� (D:R:t:A 2 Set)are constraints. Similarly, any boolean combination of these is also a constraint. Note that it ispossible to omit database/relation/tupleids if we are not referring to attributes that are in di�erentdatabases/relations/tuples.M -tuples that are annotated with constraints of the above type are called mc-tuples .2.3 Null-Valued Relations and DatabasesA Null-Valued Relation R consists of two parts:1. Relational Schema: A set of attributes (R:s).2. Tuples: A set of mc-tuples . If an mc-tuple t is in the relation R, then we write R j= t.In addition to these, we may need to have a subset (R:k) of R:s to behave as a base for the relation.This set will be responsible for determining duplicate information in the relations, i.e. it will behavelike a set of key attributes. In this paper we call this set \quasi key attributes". Since their behavioris similar to key attributes, null values may not occur in quasi-key-attributes.A database containing Null-Valued Relations is called a \Null-Valued Database".Before de�ning algebraic operators on Null-Valued Relations, we will �rst present a formal descrip-tion of Null-Valued Databases. This provides a formal basis for (later) de�ning operations on suchdatabases. 4



2.4 Candidate TuplesIn this subsection, we de�ne the semantics of Null-Valued Databases. We start by describing themeaning of mc-tuples .For the rest of this subsection, let us assume that ti is an mc-tuple in a Null-Valued Relation R, andthat ti:A denotes the marker contained in the attribute A of the mc-tuple.De�nition 2.1 (Conforming Tuple) Let t be a tuple obeying the relational schema R:s, and let thedomain of each attribute of t be augmented by the new symbol \?". t is said to be a conforming tuplewith respect to ti (i.e. t 2 conf(ti)) i� :� if ti:A is a va mar with va(ti:A) = fvg, then (t:A = v)� if ti:A is an ex mar ,then (t:A 2 Dom(A))where Dom(A) denotes the domain of attribute A.� if ti:A is a pa mar with va(ti:A) = V , then (t:A 2 V )� if ti:A is a ma mar , then (t:A 2 Dom(A))_ (t:A = ?)where Dom(A) denotes the domain of attribute A� if ti:A is a pl mar , then (t:A = ?)� if ti:A is a pm mar with va(ti:A) = V Sf?g, then (t:A 2 V ) _ (t:A = ?)Intuitively, a tuple t \conforms" to tuple ti just in case its attribute values are consistent with themarkers in ti. The set conf(ti) is the set of all tuples that obey the attribute restrictions of ti.De�nition 2.2 (Bad Tuple) Let t be a tuple conforming to the relational schema R:s, and supposethe domain of each attribute of t is augmented with a new symbol \?".t is said to be a bad tuple with respect to ti (i.e. t 2 bad(ti)) i� the following holds:� t is a conforming tuple with respect to ti and,� t does not satisfy the associated constraintBad tuples are not equivalent to non-conforming tuples for two reasons. First, in some cases (especiallywhen intermediate tuples are formed as a result of executing some algebraic operations), the constraintsassociated with tuples may contain references to other tuples. This will become apparent later on inthis paper. Second, a non-conforming tuple may not be consistent with the markers in the tuple ti.De�nition 2.3 (Candidate Tuple) Let t be a tuple obeying the relational schema R:s, and supposethe domain of each attribute of t is augmented with a new symbol \?".t is said to be a candidate tuple of ti (i.e. t 2 can(ti)) i�:1. � t is a conforming tuple and,� t satis�es the associated constraintor, 5



2. There exists a tuple t0 2 bad(ti), and t is tnull (tnull is a special tuple which denotes a non existenttuple, the use of tnull will become clearer when we de�ne Candidate Relations).Candidate tuples are those tuples that satisfy both the attributes and the associated constraints ofmc-tuples ; in addition, the null tuple is also a candidate tuple in case condition (2) above holds.Observe that each mc-tuple ti in a Null-Valued Relation can be described by an expression of the form	(ti) = �(ti) ^ �(ti)where �(ti) describes the part which consists of attribute slots, and �(ti) is the part which describesthe associated constraint.Example 2.1 Let ti be the following mc-tuple:tid A B C D Constraintti ex mar 3 pa mar f3,5g ma mar �then �(ti) = ((t:A 2 Dom(A))^ (t:B = 3)^ ((t:C = 3) _ (t:C = 5))^ ((t:D 2 Dom(D) _ (t:D = ?))whereas �(ti) = �.It is clear from the above de�nition and example that:t satisfies (�(ti) ^ :�(ti)) ! t 2 bad(ti)and (t satisfies (�(ti) ^ �(ti)))_ ((9t0 2 bad(ti)) ^ (t = tnull)) ! t 2 can(ti)Two mc-tuples t1 and t2 are considered to be equivalent ( :=t) i�(can(t1) = can(t2)) ^ (bad(t1) = bad(t2))Example 2.2 Consider mc-tuple 14 in the spouse relation listed in Appendix A.tid Husband Wife Constraint14 vic pa mar = flisa; joang trueThe above tuple is not equivalent to the tuple below:tid Husband Wife Constraintvic ex mar (Wife = joan _ Wife = lisa)The original tuple states that \Vic" has a wife and it is also known that his wife is either \Joan" or\Lisa". However the second tuple has a slightly di�erent meaning: \Vic" is known to have a wife, thename of his wife is not known (it could be \Susan" for instance); however, the tuple is in the relationonly if the name is either \Joan" or \Lisa". This di�erence is actually due to the di�erence in theconforming tuples of these two mc-tuples .Unfortunately, in some cases it may be possible that �(ti) depends on other tuples, and in such casesit may be impossible to check the truth of �(ti) by considering only ti. When we consider thosedependent tuples together, we must ensure that �(ti) holds for all such tuples simultaneously:6



De�nition 2.4 (Candidate Relation) Let R be a null valued relation. Then can(R) is constructedby picking a single t from can(ti) for each mc-tuple ti in R such that Vti 	(ti) is not falsi�ed. Asusual, the null tuple is not shown in can(R).Example 2.3 Let R consist of two mc-tuples .R: tid Name Phone-Extension Constraintt1 john pa mar = f321; 322g truet2 john pa mar = f322; 323g trueThe following is a candidate relation for R:Name Phone-Extensionjohn 321john 322In this example, the �rst tuple was obtained from t1, while the second was obtained from t2.De�nition 2.5 (Representation of a Relation) Let R be a null valued relation. Then the setRep(R) = fRijRi is a candidate relation of Rgis called the representation of R.Two relations R1 and R2 are considered to be equivalent ( :=r) i�Rep(R1) = Rep(R2)Again, in some cases, it may be possible that mc-tuples in relation R1 depend on mc-tuples in R2.When two such relations are considered together, then the truth of VRj Vti 	(ti) must be guaranteed.Example 2.4 If we consider the relation in the previous example, Rep(R) is fR1,R2,R3,R4g where:R1: Name Phone-Extensionjohn 321john 322 R2: Name Phone-Extensionjohn 322R3: Name Phone-Extensionjohn 321john 323 R4: Name Phone-Extensionjohn 322john 3233 Redundancy Removal in Null-Valued DatabasesA relation may contain redundancy due to the existence of tuples that duplicate information. Whennulls are not allowed in tuples the concept of \duplication" of information is clear { two tuples areduplicates of one another i� they are identical. Hence, eliminating such duplicates is done more or lessautomatically in the standard relational model of data. However, when nulls are present, we have to7



be more careful in de�ning the conditions that cause duplication of information. Suppose t1 and t2 aretwo mc-tuples (with associated constraints C1; C2 respectively). Clearly, t1 and t2 should have somecommonality if they have the same values for the quasi-key attributes. In this case, we look at eachmarker occurring in t1 =< a1; : : : ; an; C1 > and/or in t2 =< b1; : : : ; bn; C2 > and attempt to combineeach ai with the corresponding bi to yield a \composite" mc-tuple t3 =< d1; : : : ; dn; (C1 ^ C2) > whichis jointly entailed by both t1 and t2 under the constraint (C1 ^ C2).Similarly, a relation containing null values and constraints may also include various inconsistenciesdue to incomplete information. To see this consider the following example:Example 3.1 Assume that there are two sensors measuring the speed of a particle in a laboratoryexperiment. The �rst sensor reads a velocity of 2:102� 2:105� 108m=sec whereas the second sensorreads a velocity of 2:103� 2:107� 108m=sec. What is the speed of the particle ?To reason about databases containing such redundancies and inconsistencies, we must have some toolsto remove information overlap, redundancies and inconsistencies. There are various methods that maybe used in building such tools. In this section we investigate some of these methods.3.1 Overlap RemovalTwo mc-tuples in a relation R are said to overlap if they have the same quasi-keys. This basicallymeans that there is redundancy in the relation if the intersection of their candidate tuple sets isdi�erent from both ; and ftnullg; and/or there is an inconsistency in the relation if the di�erence oftheir candidate tuple sets is di�erent from both ; and ftnullg. Both of these problems can be removedusing one of the strategies listed below:Let ti and tj be two mc-tuples such that(8quasi�key attributes K)((ti:K =va mar ) ^ (tj :K =va mar ) ^ (va(ti:K) = va(tj :K)))and let �(ti) = �(tj).1. (Strategy 1) Remove ti and tj from the relation and add themc-tuple tl such that �(tl) = �(ti)and conf(tl) = conf(ti) \ conf(tj)2. (Strategy 2) Remove ti and tj from the relation and add themc-tuple tl such that �(tl) = �(ti)and ((conf(ti) \ conf(tj) 6= ;)! (conf(tl) = (conf(ti) \ conf(tj))) ^((conf(ti) \ conf(tj) = ;)! (conf(tl) = (conf(ti) [ conf(tj)))3. (Strategy 3) Remove ti and tj from the relation and add themc-tuple tl such that �(tl) = �(ti)and conf(tl) = conf(ti) [ conf(tj)We will now show how the above strategies can be used to build tools for removing redundan-cies/inconsistencies (merging) in Null-Valued relations. Before doing so, we need to describe a methodto compose various kinds of null markers and specify:8



1. a precise de�nition of what it means to compose markers and2. precise conditions under which two tuples may be \merged".the next subsection answers to (1) above. Section 3.1.1 deals with the �rst point above, while Sec-tion 3.1.2 deals with the second.3.1.1 Marker-CompositionMarker-Composition is a binary operation on markers that assesses the information contained in itsoperands, and attempts to compose them together. In order to keep the intuitiveness of the operation,the marker composition operator, �mc, should satisfy the idempotent, associative and commutativeproperties:1. X �mc X = X2. X �mc ( Y �mc Z ) = ( X �mc Y ) �mc Z3. X �mc Y = Y �mc XThere are various ways to de�ne the marker composition operator. We discuss some alternative markercomposition methods below.Suppose mc-tuples t1; t2, with identical values for the quasi-key attributes, are in the same relation,and suppose that for attribute A, they have markers n1; n2 respectively in that attribute slot. Ac-cording to mc-tuple t1, the value of the attribute A is in va(n1) while according to t2, the value of theattribute A is in va(n2).1. First Marker Composition Strategy: As mc-tuples jointly indicate that the value of theattribute A is in the intersection of va(n1) and va(n2), we may take the set of possible valuesas va(n1)Tva(n2) If this intersection results in a nonempty set then there is a marker n whosedomain corresponds precisely to the intersection of the domains of n1 and n2, and this markern is the result of the marker composition of n1; n2. If not, we remove the corresponding mc-tuples from the relation, because they represent an inconsistency. This marker compositionstrategy is depicted in Table 1.1st operand 2nd operand Resultva mar va mar va mar for - gex mar ex mar ex marex mar ma mar ex marex mar pa mar pa marex mar pl mar -ex mar pm mar pa marex mar va mar va marma mar ma mar ma marma mar pa mar pa marma mar pl mar pl marma mar pm mar pm marma mar va mar va marpl mar pl mar pl marpl mar pa mar -pl mar pm mar pl marpl mar va mar -pa mar pa mar pa mar for - gpa mar va mar va mar for - gpm mar va mar va mar for - gpm mar pa mar pm mar for - gpm mar pm mar pm mar for pl mar gTABLE 1: First Marker Composition Strategy9



2. Second Marker Composition Strategy: In the preceding strategy the resulting domainmay be empty. At this stage, one may wish to take the union of va(n1) and va(n2). Thesecond marker composition strategy therefore is va(n1)Tva(n2) { however, if that intersectionis empty, then the composition is va(n1)Sva(n2). The computation of the union reects thefact that the actual value is in the domain of either n1 or n2, but as there is an inconsistencyinvolved, the system simply returns all the possibilities. We would like this marker compositionmethod to conform to the strategies described at the beginning of section 3.1. If this markercomposition strategy is applied to mc-tuplest1 and t2, then even if va(n1)Tva(n2) = ; for just asingle attribute in the relational schema, the composition of t1 and t2 is performed by taking theunions of domains of \each and every attribute". This marker composition strategy is depictedin Table 2. 1st operand 2nd operand Resultva mar va mar va mar for pa mar gex mar ex mar ex marex mar ma mar ex marex mar pa mar pa marex mar pl mar ma marex mar pm mar pa marex mar va mar va marma mar ma mar ma marma mar pa mar pa marma mar pl mar pl marma mar pm mar pm marma mar va mar va marpl mar pl mar pl marpl mar pa mar pm marpl mar pm mar pm marpl mar va mar pm marpa mar pa mar pa marpa mar va mar va mar for pa mar gpm mar va mar va mar for pm mar gpm mar pa mar pa mar for pm mar gpm mar pm mar pl mar for pm mar gTABLE 2: Second Marker Composition Strategy3. Third Marker Composition Strategy: The third marker composition strategy takes thecomposition to be va(n1)S va(n2). This marker composition strategy is depicted in Table 3.1st operand 2nd operand Resultva mar va mar va mar for pa mar gex mar ex mar ex marex mar ma mar ma marex mar pa mar ex marex mar pl mar ma marex mar pm mar ma marex mar va mar ex marma mar ma mar ma marma mar pa mar ma marma mar pl mar ma marma mar pm mar ma marma mar va mar ma marpl mar pl mar pl marpl mar pa mar pm marpl mar pm mar pm marpl mar va mar pm marpa mar pa mar pa marpa mar va mar pa marpm mar va mar pm marpm mar pa mar pm marpm mar pm mar pm marTABLE 3: Third Marker Composition StrategyAs an example of how these tables are constructed, let us consider Table 2 above. Consider the �rstrow in this table. If the same value occurs in both attribute slots, then there is no inconsistency { wetake that value itself { however, if the values are di�erent, then the result is a pa mar marker denotingthat there is an inconsistency { in this case, the two values involved in the inconsistency are returnedas output. In general, all the conicts in this table are resolved similarly.10



Properties Reconsidered: In order to evaluate the three natural strategies articulated above, weneed to check if they satisfy the idempotent, associative and commutative properties. In the caseof the �rst and the third strategies, it is easy to see that these properties hold by the propertiesof set intersection and union respectively, but the second strategy does not satisfy the associativityrequirement. To see this, observe that(ex mar �mcex mar )�mcpl mar = ex mar �mcpl mar = ma mar .However, ex mar �mc(ex mar �mcpl mar ) = ex mar �mcma mar = ex mar .The user should choose which marker composition strategy s/he wishes to adopt, keeping in mind thedi�erent semantics of these approaches.3.1.2 When to MergeEven if an initial set of relations does not contain overlaps, when executing a query involving variousrelational operators, the interim tables that are constructed could contain various kinds of overlaps.For instance, union may cause redundant mc-tuples from di�erent relations to come together. Hence,we need an operator to minimize the redundancy in these relations (including intermediate relations)to keep our database free of overlaps.In this section, we explain how to use marker composition methods to mergemc-tuplesthat containredundant information. Twomc-tuplest1 and t2 (with associated constraints C1; C2 respectively) maybe merged if either of the two situations below occurs:1. Quasi-Key Overlaps: t1 and t2 are said to be quasi-key overlapping if for each quasi-keyattribute slot, the values of t1 and t2 are identical, and C1 is not logically equivalent to :C2.2. Value Overlaps: t1 and t2 are said to be value overlapping if for every attribute-slot, t1 andt2 have identical markers.If we look at the table below, where the quasi-key attribute is husband, then mc-tuples t�1; t�2; t�3; t�4 areall quasi-key overlapping, while mc-tuples t�2 and t�3 are value overlapping.tid Husband Wife Employer Constraintt�1 john ex mar ncr (Wife = lisa)t�2 john ex mar ibm (Wife = lisa)t�3 john ex mar ibm (Wife = joan)t�4 john audrey ex mar (Employer = ncr).TABLE 4: Overlap ExamplesWhen overlaps of the above kind occur, we would like tominimize the overlap. Such a minimizationserves many purposes. First, mc-tuples with the same quasi-keys, but with di�erent non-quasi-keyattribute markers are merged into a single mc-tuple so that the information in the non-key attributesmay be \amalgamated." Second, many mc-tuples with identical attribute markers, but di�erentconstraints get grouped together into a single, uni�ed mc-tuple. Third, after the minimization, di�erentmc-tuplesassociated with the same quasi-key attributes have mutually conicting constraints. We nowshow how to remove the above types of overlaps:Removing Quasi-Key Overlaps: Suppose t1 is the mc-tuple < a1;1:::a1;n; C1 > and t2 is themc-tuple < a2;1:::a2;n; C2 >, and suppose these mc-tuples are quasi-key overlapping but not value11



overlapping. Then we introduce a new quasi-key-merged mc-tuple:t1�q ;kt2 = t03 =< a3;1:::a3;n; (C1 ^ C2) >where a3;i = a1;i�mca2;i. \�q;k" is the quasi-key-overlap removal operator; here `k' denotes the set ofquasi-keys, while �qdenotes the quasi-key removal operator.In addition to the above operation, we also replace t1 and t2 by the new mc-tuples :t01 =< a1;1:::a1;n; (C1 ^ :C2) >and t02 =< a2;1:::a2;n; (C2 ^ :C1) >unless C1 is logically equivalent to C2, in which case, we omit these twomc-tuplesbecause the constraintis equivalent to false.This operation can be visualized as follows : Let t1 be composed of three parts: a, b and c;similarly let t2 be composed of c, d and e where� a satis�es = �(t1) ^ (�(t1) ^ :�(t2))� e satis�es = �(t2) ^ (�(t2) ^ :�(t1))� b satis�es = (�(t1) ^ :�(t2))^ (�(t1) ^ �(t2))� d satis�es = (�(t2) ^ :�(t1))^ (�(t1) ^ �(t2))� c satis�es = �(t1) ^ �(t2) ^ (�(t1) ^ �(t2))Note that these two mc-tuples overlap in c:
a b c d e

t
t1
2After the removal of the overlap we have the following:� t01 is a,� t02 is e,� t3 is either c or b S c S d depending on the chosen semantics.For example, consider mc-tuples t�1 and t�2 in table 4. The quasi-key-merge of these two mc-tuples is(assuming a union based marker composition strategy):tid Husband Wife Employer Constraintt john ex mar pa mar = fibm; ncrg (Wife = lisa)12



Removing Value Overlaps: Suppose t1 =< e1; :::; en; C1 > and t2 =< e1; :::; en; C2 > are value-overlapping mc-tuples . The value-merge of these two mc-tuples is:t1�vt2 = t3 =< e1; :::; en; (C1_ C2) >.This operation can be visualized as follows : Let t1 be composed of two parts: a and c; similarlylet t2 be composed of b, and c where:� a satis�es = �(t1) ^ (�(t1) ^ :�(t2))� b satis�es = �(t1) ^ (�(t2) ^ :�(t1))� c satis�es = �(t1) ^ �(t1) ^ �(t2)Note that �(t1) = �(t2).
c

t
t1
2

a bThe result of the operation will be an mc-tuple t3 whose candidate set is a S b S c.For example, consider mc-tuples t�2 and t�3 in table 4. The value-merge of these two mc-tuples is:tid Husband Wife Employer Constraintt john ex mar ibm ((Wife = lisa) _ (Wife = joan))3.1.3 Canonical FormsHaving de�ned di�erent types of overlaps, as well as di�erent strategies to remove overlaps, we maynow de�ne a canonical form for tuples/relations/databases. Intuitively, we would like relations in thiscanonical form to have no overlaps and to be as simple as possible.We now de�ne the notion of \canonical forms" of relations. Such \canonical forms" minimize redun-dancy in tuples.De�nition 3.1 CFR-Canonical Form for Relations: A relation is said to be in CFR if it doesnot contain two mc-tuples that are either value-overlapping or quasi-key overlapping. Relations inCFR are called Canonical Relations.A direct extension of this de�nition for databases is:De�nition 3.2 CFD-Canonical Form for Databases: A database is said to be in CFD if allrelations in it are in CFR. Databases in CFD are going to be called, for short, Canonical Databases.In the next subsection, we de�ne a special operator, denoted as C, that takes a given relation R and aset K of quasi-key attributes as input, and returns as output, a canonical version of that relation bygetting rid of the redundant and overlapping information.13



3.2 Compaction OperatorWe de�ne the Compaction Operator (C) as follows:Let I and O be two sets of mc-tuples such that I contains the same mc-tuples as the input relationand O is empty.1. Choose two mc-tuples t1 and t2 from I and set I to I � ft1; t2g.2. If t1 and t2 are not overlapping then put them in O.3. Else if t1 and t2 are value-overlapping then apply the value-overlap removal procedure to t1and t2 and put the resulting mc-tuple in O,4. Else if t1 and t2 are quasi-key-overlapping then apply the quasi-key-overlap removal procedureto t1 and t2 and put the resulting mc-tuples in O (note that the resulting mc-tupleshave disjointcandidate tuple sets).5. While there are mc-tuples in I do(a) Choose an mc-tuple t from I and set I to I � ftg.(b) Compare t with each mc-tuple in O(c) If t has a quasi-key-overlap with an mc-tuple t0 in O theni. Remove t0 from Oii. Apply the quasi-key-overlap removal procedure to t and t0iii. Put the quasi-key-merged mc-tuple in O and put the rest of them in I(d) Else if t has a value-overlap with an mc-tuple t0 in O theni. Remove t0 from Oii. Apply the value-overlap overlap removal procedure to t and t0iii. Put the resulting mc-tuple in O.(e) Else put t in O.6. At this stage I is empty, and the mc-tuples in O contains no overlap.Note that at each stage we guarantee that the mc-tuples in O have pairwise disjoint candidate tuplesets.3.2.1 CorrectnessThe above algorithm obeys the de�nition of redundancy removal semantics described at the beginningof this section. Note however that Rep(C(R)) may be di�erent from C(Rep(R)) { in the latter, thecompaction operator is applied to each relation in Rep(R). However, if the �rst strategy is used, thenthese two computations yield the same solution.The following example shows that Rep(C(R)) may be di�erent from C(Rep(R)) if the union basedmarker composition strategy is used.Example 3.2 Suppose relation R consists of two mc-tuples .14



R: tid Name Phone-Extension Constraintt1 john pa mar = f321; 322g truet2 john pa mar = f322; 323g trueThen if the union based compaction is applied:C(R): tid Name Phone-Extension Constrainttc john pa mar = f321; 322; 323g trueRep(R) is fR1,R2,R3,R4g where:R1: Name Phone-Extensionjohn 321john 322 R2: Name Phone-Extensionjohn 322R3: Name Phone-Extensionjohn 321john 323 R4: Name Phone-Extensionjohn 322john 323C(R1): tid Name Phone-Extension Constraintt01 john pa mar = f321; 322g trueC(R2): tid Name Phone-Extension Constraintt01 john 322 trueC(R3): tid Name Phone-Extension Constraintt01 john pa mar = f321; 323g trueC(R4): tid Name Phone-Extension Constraintt01 john pa mar = f322; 323g trueHowever, Rep(C(R))is: R01: Name Phone-Extensionjohn 321R02: Name Phone-Extensionjohn 322 R03: Name Phone-Extensionjohn 3234 Null-Valued Algebraic OperationsWe are now at a stage where we can de�ne various algebraic operators to be used with null-valueddatabases. In this section, we de�ne an algebra that extends the standard relational algebra to handledatabases that contain the di�erent kinds of null values discussed so far.The algebraic operators can be de�ned using the formalism introduced earlier. This approach providesa better understanding of the way the algebraic operators should behave under the existence of nullvalues. The following items provide de�nitions of the algebraic operators :15



� Selection:tj 2 ��(R) ! (9ti 2 R)((�(tj) = �(ti))^ (�(tj) � �(ti) ^�))� Projection:tj 2 �A(R) ! (9ti 2 R)((�(tj) = �0(ti))^ (�(tj) = �(ti))Note that �0(ti) = �(ti) except that the parts which include any of the attributes not in A areomitted.� Union:tj 2 (R1SR2) ! (9ti 2 R1)(ti := tj) _ (9ti 2 R2)(ti := tj)� Intersection:tj 2 (R1TR2) ! (9ti 2 R1)(9tk 2 R2)((�(tj) = �(ti)^�(tk))^ (�(tj) = �(ti)^�(tk)))� Di�erence:tj 2 (R1DifR2) ! (9ti 2 R1)(9tk 2 R2)(((�(tj) = �(ti) ^ :�(tk)) ^ (�(tj) = �(ti)))_((�(tj) = �(ti))^ (�(tj) = �(ti) ^ :�(tk))))� Join: tj 2 (R1 1 R2) !(9ti 2 R1)(9tk 2 R2)((8joining attributes A)((ti:A is a va mar ) ^ (tk:A is a va mar )^(ti:A = tk :A))^((�(tj) = �(ti) ^ �(tk))^ (�(tj) = �(ti) ^ �(tk))))The above de�nitions extend the algebraic operators on Conditional Tables given by Imielinski andLipski [13, 14] because the operators in [14] apply only to databases containing existential nulls { ouroperators apply to all the types of nulls described at the beginning of this paper. Though all thetypes of nulls described in this paper are discussed in [3], they do not provide a uni�ed framework ofhandling these nulls jointly, which we do here.After giving the formal de�nitions of the algebraic operators, in the following subsections, we showhow to build such operators.4.1 SelectionDe�nition 4.1 (Selection Condition) A selection condition is any boolean expression constructedusing the attributes in the relational schema.For instance in the case of the spouse relation, the condition (Wife = joan) is a selection condition.When null values/constraints are present in the database, the evaluation of selection conditions isnon-trivial. There are two main cases that a selection operator must take into account when operatingin an environment containing null values. These cases are:1. A value marker appears for an attribute in the selection condition { in this case, as in the classicalrelational database scenario, we simply substitute the value encapsulated in the marker into theformula by instantiating the appropriate variable to this value.16



2. A null marker appears for an attribute in the selection condition. This case is complicatedbecause there may be a number of options on how to instantiate the variables in the selectioncriterion.In the next subsections, we describe how to handle the null markers in the attributes.4.1.1 Value Markers in the Selection ConditionWhen the selection operator �nds a value marker for one of the attributes speci�ed in the selectioncondition, it must instantiate the value encapsulated in the marker to the corresponding variable.Obviously if the selection condition consists only of value markers, then at the end, the selectioncondition will reduce to a form in which no variables (attributes) appear. At this time, it is possibleto check the condition for satis�ability. If it is satis�ed, then the corresponding mc-tuple is placed inthe result, otherwise it is omitted. Traditional databases, where there are no nulls, correspond to thiscase where all mc-tuples only contain value markers.4.1.2 Null Markers in the Selection ConditionIf we are attempting to determine whether a given mc-tuple t satis�es the selection condition, and ifmc-tuple t contains null values in it, then we need to determine ways of evaluating these nulls.1. Single Null Marker in the Selection ConditionLet us �rst assume that the mc-tuple t has only one null value in it and that this null valueoccurs in attribute X . Let � be the selection condition that contains X . Our procedure willconsider mc-tuple t and either return nothing, or return a mc-tuple t0 as the output of theselection condition. t0 may be constructed from t in a precise way, as shown in the table below.Input Tuple (t) Output Tuple(t0)Marker in X Selection Condition Marker in X Constraintex mar � ex mar �(X)ma mar � ma mar �(X)pl mar � | |pa mar (S) � pa mar (S) �(X)pm mar (S) � pm mar (S) �(X)The third row of the above table indicates that when the selection condition contains a pl marthen we do not get an mc-tuple in the result. Remembering that pl mar means there is no valuefor the corresponding attribute, it is easy to see why this is so. When the constraint depends ona pl mar the constraint can not be satis�ed. So, the mc-tuple is not in the resulting relation.Similarly if none of the members of a pa mar or pm mar satisfy the selection condition, then thecorresponding tuple is omitted from the result.As an example, consider the following query on the relation emp de�ned in Appendix A:SELECT NAME,EMPLOYERFROM empWHERE EMPLOYER = ncr. 17



In this case:(a) Mc-tuple 22 is clearly in the answer.(b) On the other hand, consider mc-tuple 23. This says Ed works for either IBM or NCR, butwe don't know which. According to the above table, we return the tuple:tid Person Employer Constraint23� ed pa mar = fibm; ncrg (Employer = ncr)This mc-tuple says that the mc-tuple 23� is in the relation only if the employer �eld is equalto NCR (which it is not known to be right now).(c) Consider mc-tuple 25 which has a maybe marker in it. In this case, the tuple should bein the result of this select query just in case Vic's employer does exist and is NCR. As aconsequence, we modify mc-tuple 25 to mc-tuple 25� by including this condition, and placethe result in the relation.tid Person Employer Constraint25� vic ma mar (Employer = ncr)2. Multiple Null Markers in the Selection ConditionThe next question is: what do we do if the selection condition requires that we consider anmc-tuple t that has multiple null values in it? In this case, we must apply the methods describedin the preceding section to every null marker in t, and then merge the constraints resulting fromthis process. For instance, let us consider a complex selection condition that involves arithmeticoperations such as: (� : X = 2�Y �Z). where X , Y and Z are attributes. Let R be a relationwith the schema R < X; Y; Z > , and let t be the following mc-tuple:<va mar (365:00), ma mar , ex mar ; true >in R. When the selection condition is applied to t, the resulting mc-tuple is:<va mar (365:00), ma mar , ex mar ;�(365:00; Y;Z)> :If instead, t were of the form:<va mar (365:00), ma mar , ex mar ; C >where C is a constraint over mc-tuple t, then the resulting tuple is:<va mar (365:00), ma mar , ex mar ; C ^ �(365:00; Y;Z)> :Note that the constraint part of this mc-tuple has been modi�ed by appending a new conjunctto the original constraint. 18



4.1.3 Selection PredicateA Selection Predicate is a ternary predicate of the form:�(�; t1; t2):This atom is true i� t2 = ��(t1), i.e. i� at least one of the following two conditions hold:1. When the process described in subsections 4.1.1 and 4.1.2 is applied to t1 and the selectioncondition � we get:� The resulting modi�ed selection condition is �0,� All the variables in �0 are instantiated with values,� �0 evaluates to \true",� t2 is equal to t1.2. When the process described in subsections 4.1.1 and 4.1.2 is applied to t1 and the selectioncondition �, we get:� The resulting modi�ed selection condition is �0,� �0 includes uninstantiated variables,� t2 is equal to t1 with the modi�ed constraint.4.1.4 SelectionThis operator (denoted by �) selects the mc-tuples satisfying the selection condition � and returnsthem in the output relation.a � � (R;�)  ! in select(a;R;�)where in select is de�ned as follows:in select(x; r;�) (r j= y)^ �(�; y; x)Example 4.1 For example, consider the emp relation in Appendix A, and consider the querySELECT *FROM empWHERE Employer = ncr.In this case, the following mc-tuples are returned:tid Person Employer Constraint22� sherry ncr true23� ed pa mar = fibm; ncrg (Employer = ncr)25� vic ex mar (Employer = ncr)26� oscar pa mar = fncrg (Employer = ncr)19



4.1.5 CorrectnessThe selection operator is correct in the sense that �(Rep(R)) = Rep(�(R)). To see this note that:�(Rep(R)) = f�(R0)jR0 = can(R)g and,Rep(�(R)) = fR0jR0 = can(�(R))g.Let R0 be a candidate relation of R. If tuple t0 is in R0 and if it also satis�es the selection condition,then it will be in �(R0).There is an mc-tuple t in R such that t0 satis�es	(t) = �(t) ^ �(t):Since t0 also satis�es �, we can conclude that t0 satis�es	(t) ^� = �(t) ^ �(t) ^�:However, if we look at the de�nition of the selection operator, we can see that if an mc-tuple t00 is in�(R) then 	(t00) = �(t00) ^ �(t00) = �(t000) ^ �(t000) ^ �where t000 is a mc-tuple in relation R.Hence for each tuple t0 in �(R0), there exists an mc-tuple t00 in �(R), and for each mc-tuple t00 in �(R),there is a tuple t0 in R0. This basically means that �(R0) is a candidate relation of �(R) which provesthe above claim.Example 4.2 Suppose we have the following relation (R):tid X Constraint1 ex mar true2 5 trueLet us also assume that a selection operation is performed on this relation with the selection condition�(X) = ((X = 5)_ (X = 7)).By the above de�nition ��(R) is :tid X Constraint10 ex mar ((X = 5) _ (X = 7))20 5 ((X = 5) _ (X = 7))Rep(��(R)) is fR1,R2g such that, R1 = X5 and R2 = X75 .On the other hand, Rep(R) is fR01,R02,: : :g such that, R01 = X15 , R02 = X25 : : : . Hence, ��(Rep(R))20



is fR001,R002g such that, R001 = X5 , R002 = X75 .Thus ��(Rep(R)) = Rep(��(R)).Correctness of the other relational operators follow similarly.4.2 ProjectionThe projection operator is easy to de�ne, because its behavior is very similar to the behavior of thestandard projection operator. The main di�erence is that the constraints associated with some of themc-tuplesmay undergo a change when this operation is executed.For example, consider the queryPROJECT PersonFROM ( SELECT * FROM emp WHERE Employer = ncr)The table returned by the inner select is shown in Example 4.1. If we were to do a standard projecton this (and naively carry the constraints along, as before, by replacing old tuple-ids by the newtuple-ids), we would obtain the table:tid Person Constraint22� sherry true23� ed (Employer = ncr)25� vic (Employer = ncr)26� oscar (Employer = ncr)However, these expressions refer to the non-existent �eld, employer, which makes the future evalu-ation of these constraints impossible. Nevertheless, the Person, Ed, is in the projected name �eldi� the constraint associated with the original mc-tuple was satis�ed. Hence, we need to allow theconstraints in a projection to refer to the �elds of other mc-tuples . In this example, this would bedone as follows:tid Person Constraint22� sherry true23� ed (23�:Employer = ncr)25� vic (24�:Employer = ncr)26� oscar (25�:Employer = ncr)Addition of tuple pointers necessitates the storage of the intermediate tables. If an intermediate tableis deleted, those mc-tuples which point to it need to be reconsidered. The associated constraints ofthose mc-tuples could be assumed to be true (with an optimistic approach) or could be assumed tobe false (with a skeptical approach) { this leads to the null tuple. However, when such nonmonotonicinferences are made, the correctness of answers generated cannot be guaranteed.4.2.1 ProjectionThe Projection operator (�) is de�ned as follows:21



a : fCg � � (R; a�)  ! in project(a : fCg; R; a�)where a : fCg denotes an mc-tuple of the form < a1; ::; an; C > and in project is de�ned as follows:in project(t : fctg; r; a�) r j= x : fcxg ^(t = x[a� ])^ (project constr(ct; cx; a�))Here project constr is a predicate which is used to reect the projection operation onto the constraintpart of the mc-tuples in the relation.4.3 JoinThe behavior of the join operator in the presence of null values is slightly di�erent from the behavior ofthe standard join operator. To see this, consider the phone relation with the schema (Name; Phone)in Appendix A, and consider another relation, R2 having the schema (Office; Phone) meaning thatPhone is in the Office. Let us now see what happens when we attempt to join the following twomc-tuples from phone and R2, respectively.t1 is in phone relation and t2 is in R2 where:t1 = < va mar(elaine); ex mar; true >t2 = < va mar(1221); ma mar; true >It is not obvious how to do a join operation on the Phone attribute because the semantics of the nullmarkers residing in the Phone-slot are di�erent. We now de�ne an operation, called the marker joinoperator, that will facilitate the combination, via a join operation, of such mc-tuples . To see how thisis implemented, we observe, in the above case, that the joined triple< va mar(elaine); ?; 1221; true >should exist in the resulting join relation i� the o�ce room 1221 does indeed contain a phone in it, andthat phone is the same phone that Elaine uses. (How to �ll in the \?" above will become apparent aswe proceed).4.3.1 Marker Join OperatorIf the joining attributes are t1:X and t2:Y where t1 is an mc-tuple in relation R1 and t2 is an mc-tuplein relation R2, then the marker join operator (�mj) can be de�ned as follows (on the join attributes):
22



X Y J Constraintva mar va mar va mar 1 |va mar ex mar va mar (t2:Y = a) 3va mar ma mar va mar (t2:Y = a) 3va mar pa mar va mar 2 (t2:Y = a) 3va mar pm mar va mar 2 (t2:Y = a) 3va mar pl mar | |ex mar ex mar ex mar (t1:X = t2:Y = J)ex mar ma mar ex mar (t1:X = t2:Y = J)ex mar pa mar pa mar (t1:X = t2:Y = J)ex mar pm mar pa mar (t1:X = t2:Y = J)ex mar pl mar | |ma mar ma mar ex mar (t1:X = t2:Y = J)ma mar pa mar pa mar (t1:X = t2:Y = J)ma mar pm mar pa mar (t1:X = t2:Y = J)ma mar pl mar | |pa mar pa mar pa mar (t1:X = t2:Y = J)pa mar pm mar pa mar (t1:X = t2:Y = J)pa mar pl mar | |pl mar pl mar | |pl mar pm mar | |pm mar pm mar pa mar (t1:X = t2:Y = J)1. If va(X) = va(Y ) then the mc-tuple obtained by performing the join is in the result, else it is not in the result.2. If va(X) � va(Y ) then the mc-tuple obtained by performing the join is in the result, else it is not in the result.3. a is the value stored in the attribute-slot X, i.e. va(X) = fag.The following example shows how the marker join operator is used in joining two tables:Example 4.3 Let R1 and R2 be two null valued relations:R1: tid Person Employer Constraint21 sherry ncr true22 ed pa mar = fibm; ncrg true23 vic ma mar trueR2: tid Person-2 Employer Constraint71 kate ibm true72 john pa mar = fibm; ncrg true73 kristina ma mar trueThen the join of this two relations is: 23



R1 1 R2: tid Person Employer Person-2 Constraint91 sherry ncr john (72:Employer = ncr)92 sherry ncr kristina (73:Employer = ncr)93 ed ibm kate (71:Employer = ibm)94 ed pa mar = fibm; ncrg john (22:Employer = 72:Employer = Employer)95 ed pa mar = fibm; ncrg kristina (22:Employer = 73:Employer = Employer)96 vic ibm kate (23:Employer = ibm)97 vic pa mar = fibm; ncrg john (23:Employer = 72:Employer = Employer)98 vic ex mar kristina (23:Employer = 73:Employer = Employer)It is important to note that in some cases, the constraint part of the resulting mc-tuple t3 containsreferences to one or both of the original mc-tuples participating in the join.4.3.2 Joined PredicateThis is a ternary predicate of the form: joined(t1; t2; t3) where t1, t2 and t3 are mc-tuples . Theabove atom is true i� t3 is the result of applying the marker join operation on the joining attributes ofmc-tuples t1 and t2, and taking the conjunction of the constraints of t1 and t2 and otherwise applyingthe regular join operation to the tuples.4.3.3 JoinThis operator takes two mc-tuples and applies the Marker Join Operator to all the joining attributesinvolved in them. The conjunction of the resulting \joining" constraints, as well as the originalconstraints in the two parent mc-tuples forms a new, composite constraint.a � 1 (R1; R2)  ! in join(a;R1; R2)where in join is de�ned as follows:in join(x; r1; r2)  r1 j= y^r2 j= z ^ joined(y; z; x)4.4 Union, Intersection and Di�erence4.4.1 UnionThe de�nition of the union operator is exactly as it was in the standard case.a � S (R1; R2)  ! in union(a;R1; R2)where in union is de�ned as follows:in union(x; r1; r2) (r1 j= x) _ (r2 j= x) 24



4.4.2 IntersectionThe de�nition of the intersection operation is somewhat di�erent from the standard case. To see this,consider the case when <va mar (20); c1 > is in R1 and <va mar (20); c2 > is in R2. In this case wewould expect the mc-tuple <va mar (20); c1 ^ c2 > to be in the intersection. However, the standardde�nition of the intersection operation does not yield this result because it is not equipped to handleconstraints. Hence, the de�nition of the intersection operator needs to be modi�ed. We de�ne it asfollows:a � T (R1; R2; K)  ! in intersect(a;R1; R2; K)where in intersect is de�ned as follows:in intersect(x : fcxg; r1; r2; k) (r1 j= y : fcyg) ^ (r2 j= z : fczg)^(x = y�iz))^(cx = cy ^ cz)The operator \�i" is de�ned in such a way that for each attribute A,va(x:A) = va(y:A)\va(z:A):If this intersection results in an empty set for at least one of the attributes, then the mc-tuple is thenull tuple.Thus, in the example given above, the new de�nition yields <va mar (20); c1^c2 > in the intersection.4.4.3 Di�erenceThe Di�erence operator is also slightly di�erent from its standard counterpart. It is de�ned as follows:a � Dif (R1; R2; K)  ! in dif(a;R1; R2; K)where in dif is de�ned as follows:in dif(x : fcxg; r1; r2; k) (r1 j= y : fcyg) ^ (r2 j= z : fczg)^(((x = y�d;Az) ^ (cx = cy))_((x = y�d;Bz) ^ (cx = cy))_: : :((x = y) ^ (cx = cy ^ :cz)))For a speci�ed attribute A, \�d;A" is de�ned so as to satisfy the equalityva(x:A) = va(y:A)\((Dom(A)[f?g)� va(z:A)):If this intersection results in an empty set for the domain of the attribute A, then the associatedmc-tuple is the null tuple.Note that for every attribute in the schema, we have a conjunct in the di�erence operator.25



An example will help the reader see how this operator works. Let <va mar (20); c1 > be in R1 andlet <va mar (20); c2 > be in R2. In this case, the mc-tuple <va mar (20); c1 ^ :c2 > will be in thedi�erence.Having described the basic, primitive operations in the null value algebra, we are now in a position tostudy the algebraic relationships that are true within this algebra. These algebraic relationships canbe used for e�ective query optimization.5 Properties of the Null-Valued AlgebraIn the preceding sections, we have de�ned an algebra for databases containing null values. In thissection, we establish various properties of this algebra. In the case of each such property, we discussthe impact of the property involved.In the rest of this section, whenever op1 and op2 are two algebraic operators, op2op1 denotes theapplication of op1 followed by the subsequent application of op2.Property 1 Rep(�1�2) = Rep(�2�1).This property says that the order in which the selection operators are applied does not matter.Proof : Basically, an mc-tuple t is in �1�2 if the following holds:((R j= y)^ �(�2; y; x))^ �(�1; x; t))where R is the input relation.Changing the order of the application of �2 and �1 will change the syntax of the resulting con-straints, but the satis�ability of the two constraints will stay unchanged. Hence we have,((R j= y)^ �(�2; y; x))^ �(�2; x; t)) ! ((R j= y)^ �(�1; y; x))^ �(�2; x; t))and the above equality holds. 2Property 2 Rep(��) = Rep(��) (If the selection condition applies to the relation produced by theprojection).Proof : Follows directly from the properties of the selection operator and the commutativity of theconjunction of constraints. 2The above result says that the order in which projections and selections are done is not relevant (aslong as the selection condition still applies to the result of the projection). An implication of thisresult is that whenever selections and projections are to be done one after the other, it may be betterto do the projection operation �rst as we may then be able to eliminate various constraints that donot apply to the �elds that we are projecting.The next result is more interesting. It says, in e�ect, that converting relations (including interimrelations) to canonical form commutes with projection.26



Property 3 Rep(C�) = Rep(�C) (if the union based semantics is used).Proof : Note that we assume that the compaction operators use the same quasi-keys.When applied to a relation, the projection operator does not make any semantical changes to theconstraints of mc-tuples , but only removes columns from the table. Hence, the behaviour of thecompaction operator (which, in this case, only takes the union of the domains of the markers) is nota�ected by the projection operation. Hence, it is possible to perform the compaction operation beforeor after the projection without changing the result. 2In the intersection based compaction semantics some tuples are omitted from the tuples after thecompaction, due to their empty attribute domains. This fact makes it impossible to guarantee theabove property.In the standard relational model of data, it is well known that �(a 1 b) = �(a) 1 �(b). Similarly inour extended model the following holds:Property 4 Rep(�(a 1 b)) = Rep(�(a) 1 �(b)).However, as shown by the following example, it may be hard to see this equality unless a databasehistory is kept to keep track of the temporary relations, and the way they were created.Example 5.1 Let R1 and R2 be two relations with the following schemas:R1 < Name;Weight >R2 < Name;Weight >Let these relations contain the following mc-tuples :R1 : t1 =<va mar (John);ex mar ; true >R2 : t2 =<va mar (John);ex mar ; true >Consider the selection condition (Weight < 175). Then:R1 1 R2 = < va mar (John); ex mar ; (t1:Weight = t2:Weight = Weight) > :�(R1 1 R2) = < va mar (John); ex mar ; (t1:Weight = t2:Weight = Weight) ^ (Weight < 175) > :When computing �(R1) 1 �(R2), we notice that:�(R1) = < va mar (John); ex mar ; (t1:Weight < 175) >�(R2) = < va mar (John); ex mar ; (t2:Weight < 175) >�(R1) 1 �(R2) = < va mar (John); ex mar ; (t1:Weight < 175)^(t2:Weight < 175)^(tr1:Weight = tr2:Weight = Weight) > : 227



Here tr1 and tr2 are mc-tuples in intermediary relations. It is easy to see that one of the results,viz. �(R1) 1 �(R2) contains a reference to an intermediate tuple, while the other computation,�(R1 1 R2)does not contain such a reference.Unfortunately, \join" need not be syntactically associative in the presence of multiple types of nullvalues, though semantically it is:Property 5 Rep(a 1 (b 1 c)) = Rep((a 1 b) 1 c).To see when a syntactic di�erence may occur, consider the following example where R1,R2 and R3 arerelations with the following schemas:R1 < Name;Height >R2 < SSN;Height >R3 < PIN;Height >.Example 5.2 Let these relations contain the following mc-tuples :R1 : t1 =<va mar (John);ex mar ; true >R2 : t2 =<va mar (211567842);ma mar ; true >R3 : t3 =<va mar (2578);va mar (6:0); true >.R2 1 R3 = < va mar (2578); va mar (211567842); va mar (6:0); (t2:Height = 6:0) >R1 1 (R2 1 R3) = < va mar (John); va mar (2578); va mar (211567842); va mar (6:0);(t2:Height = 6:0)^ (t1:Height = 6:0) > :R1 1 R2 = < va mar (John); va mar (211567842); ex mar ; ((t1:Height = t2:Height = Height) >(R1 1 R2) 1 R3 = < va mar (John); va mar (2578); va mar (211567842); va mar (6:0);(t1:Height = t2:Height = Height) ^ (tr:Height = 6:0) > :Here tr is an mc-tuple in the intermediate relation. It is easy to see that the resulting mc-tuples aredi�erent.The positive result here is that if a value attribute is involved in a join operation, and if this valuemarker is in the middle position (i.e. the join is of the form X 1(va mar 1 Y ), then no temporaryrelation is needed.Similarly the following equations hold.Property 6 Rep(�(aSb)) = Rep(�(a)S�(b)).Property 7 Rep(�(aTb)) = Rep(�(a)T�(b)).Property 8 Rep(�(aDif b)) = Rep(�(a)Dif �(b)).Proof : The proofs of these properties are omitted. 228



6 Experimental Results on Query OptimizationWe have developed an experimental implementation of a database containing null values of the typesdescribed in this paper. The implementation consists of a total of approximately 4000 lines of C-codeand runs on a Sparc/Unix workstation. The implementation is not an implementation of a full-edgedDBMS; rather, it consists of a body of algorithms implementing the various selection, projection, join,and canonical form computation operations. Most of the code relates to managing the constraintsthat arise when null values are present. Below, we report on the result of four experiments we haveconducted based on this prototype implementation.All the experiments (except joins) use six relations R1; ::; R6 having identical schemas< A1; A2; A3 >where each of these attributes is of type integer. Relations (R1) and (R4) contain 250 tuples, relations(R2) and (R5) contain 1000 tuples and relations(R3) and (R6) contain 2000 tuples. The �rst attributeof each relation (A1) contains only va mar markers. This attribute is the quasi-key attribute. Theother two attributes (A2 and A3) contain all possible markers (va mar , ex mar , pm mar , ma mar,pa mar ) with equal probability (20% each) for R1; R2; R3 and contain 50% va mar , 50% (ex mar ,pm mar , ma mar ,pa mar ) for for R4; R5; R6.The experiments for joins are carried out on similar sets of relations. But this time there are two setsof relations with schemas < A1; A2; A3 > and < A1; A2; A4 > (so that, the join occurs on attributesA1 and A2) and the va mar ratio is taken to be 33.3% and 50% in di�erent experiments.All times in this section are given in miliseconds.6.1 Experiment 1Purpose: The main aim of this experiment was to study the equality �1�2 = �2�1. In particular, wewished to determine whether it is better to �rst perform selections on relations with relatively fewnull values, or to perform them on relations with a larger number of null values.Method: We used two sets of timings. In the �rst, we let �1 be (A1 = A2), and �2 be (A2 = A3). Thus,both the cascaded selections, �1�2 and �2�1 have the same selection condition, viz. (A1 = A2 = A3).The result of these experiments is shown in Figure 1.In the second set of timings, the only change we made was that �2 selected all tuples where A1 = A3.The net result of the cascaded selects, �1�2 and �2�1 is still the set of all tuples satisfying the condition(A1 = A2 = A3). The result of these timings is shown in Figure 2.Interpretation of Results: In the �rst set of timings (cf. Figure 1), the cascaded selection �1�2 �rstperforms selection on the condition A2 = A3. This selection condition operates on attibute columnscontaining a relatively large number of null values (and hence constraints). Consequently, it is relativelyhard to eliminate tuples. In contrast, the cascaded selection �2�1 �rst applies the selection condition�1 which checks if A1 = A2. The attribute �eld A1 contains only va mar markers, i.e. it contains nonull values. Thus, a relatively large number of tuples can be eliminated by this selection conditionprior to performing a selection (viz. �2) that operates on attribute �elds containing relatively largenumbers of null values. Thus, the times recorded for the cascaded selection �2�1 are better than forthe cascaded selection �1�2. 29
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In contrast, consider Figure 2, reecting the second set of timing data. Here, both �1 and �2 makecomparisons against the attribute A1 which contains only value markers. Thus, both the selectionconditions A1 = A2 and A1 = A3 eliminate relatively even numbers of tuples, and hence, the cascadedselections. �1�2 and �2�1 yield almost identical results.The observant reader will notice that all times in Figure 2 are lower than in Figure 1. This is not anaccident { rewriting cascaded selects so as to make all comparisons apply to at least one �eld that hasonly (or mostly) value markers leads to a signi�cant savings in time.Impact on Query Optimization: Whenever a selection of the form A1 = A2 = A3 = : : : = An is beingperformed, if one of the attributes, say Ai, consists entirely (or almost entirely) of value markers, thenthis set of equalities should be computed as the cascaded select��1 : : : ��i�1��i+1 : : :��nwhere ��j uses the selection condition (Ai = Aj).6.2 Experiment 2Purpose: The main aim of this experiment was to determine how the overall performance changedwhen the attributes A2 and A3 had half of their slots containing value markers, with the other halfbeing evenly distributed among the other types of markers.Method: The same two sets of timings as in Experiment 1 were taken.Interpretation of Results: Figures 3 and 4 show the results using the same two sets of timings as inExperiment 1. As the reader will observe, the observations of Experiment 1 continue to hold here.Furthermore, when the number of value markers is increased (from 20% in Experiment 1 to 50% inExperiment 2), the overall processing time for the cascaded selections drops. This is because thepresence of value markers causes a large number of tuples to be eliminated, thus eliminating the needto manage various associated constraints.
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Method: The experiments have been performed over two sets of randomly generated relations asdescribed in the beginning of Section 6.Interpretation of Results: The results are contained in Figure 7 and 8. They show that when therelations contain a relatively high proportion of value markers, then performing the selections beforeperforming the join is advantageous. The reason for this is that the selections may eliminate manytuples, thus performing the join operate on two relatively small relations. Furthermore, as the num-ber of value markers involved in the attribute on which the selections are performed increases, theadvantage of performing selections �rst, before doing the join becomes more and more pronounced.Impact on Query Optimization: The results imply that we are almost always better o� doing selectionsbefore doing joins.7 Related WorkIn this section we provide a survey of work on null values related to this paper. We exclude papersthat deal primarily with complexity issues or other topics such as the universal relation concept. Table1 shows the types of null values considered by other authors and serves as a starting point for oursurvey. We also include entries for other types of nulls and for papers that deal with constraints andcorrectness. We are not aware of prior research on null values that involved experimentation for queryprocessing with di�erent types of nulls.Author-Year Ex. Maybe Plc.-H. Partial Part. M'be Add. Constr. Corr. ExptsANSI/X3/SPARC 75 p p Operational infor-mation(available,derived)Codd 75,79 pGrant 77 p pGrant 79,80 p pLipski 79,81 p pImielinski-Lipski 81,84 p p pLien 79 pVassiliou 79 p pZaniolo 84 p p pWong 82 ProbabilitydistributionBiskup 83,84 p Universal null,Maybe tuples pReiter 84,86 p pYuang-Chiang 87 p Disjunctiveinformation pGrant-Minker 86 p DisjunctiveinformationMinker-Perlis 85 Protected data pLiu-Sunderraman 97,90,91 Disjunctiveinformation, Pro-tected data pAtzeni-DeAntonellis 93 p p p p p Probabilitydistribution pAbiteboul-hull-Vianu 95 p p pCandan-Grant-Subrahmanian p p p p p p p p35



Research in null values began with the ANSI/X3/SPARC report [2] that distinguished among 14 typesof nulls. However most of these types are special cases of our existential and place holder nulls, theothers are operational de�nitions such as \available, but of suspect validity(unreliable)". The �rstpaper that deals with the handling of null values in query processing is Codd[7]. A 3-valued logic isintroduced for the handling of existential nulls. Grant [9] points out a aw in this method and suggestsa method to solve this problem as well as to deal with placeholder nulls. Additional early work onpartial nulls appears in Grant[10, 11], Lipski [16, 17].Conditions (constraints) were introduced into tables in Imielinski-Lipski[13, 14] in connection withrepresentation systems. Variables represent null values in these tables; constraints involving equalitiesand inequalities of variables and constraints may be associated with individual rows and the wholetable. The constraints are used to limit the allowed interpretations for existential nulls. A table T withnull values is assumed to stand for all tables that would be obtained from the table by substitutingconstant values for the variables in accordance with the constraints. The set of tables (without nulls)that T represents is written as rep(T ). For a query q that may involve a certain set of operations ofthe relational algebra, the set of answers to q on T may be represented by q(rep(T )). A table q0(T )correctly represents the query if rep(q0(T )) = q(rep(T )). It is shown that queries in the relationalalgebra can be represented correctly by the set of conditional tables.Building on the work of Lien[15] and Vassiliou [24], Zaniolo [27] introduces the maybe null, as the \noinformation" null. The operations of the relational algebra are generalized to this framework. Anotherapproach to the null value problem is formulated in Wong[25] who assumes a probability distributionfor an unknown value in a domain. Biskup [6] introduces the universal \don't care" null in analogyto the existential null. in both Biskup[5] and [6], the correctness of the operations are proved and\maybe tuples" from previous operations are allowed and used in a systematic way.Reiter[22] proposed a formal theory of databases in �rst-order logic including existential nulls. Exis-tential nulls are treated as Skolem constants without unique name axioms. Within this framework acorrect, but incomplete query evaluation algorithm is given for the relational calculus by Reiter[23].Yuan-Chiang[26] extend the work of Reiter; their algorithm is complete and allows inde�nite informa-tion in the form of a disjunction. Grant-Minker[12] also provide an algorithm for �nding the answersto a query in a disjunctive database with negation interpreted through the Generalized Closed WorldAssumption. In some cases, the Closed World Assumption and its variants allow too much negativeinformation to be deduced, hence the notion of protection for atoms was introduced, that is, protectionfrom assuming the negation of the atom. A query evaluation algorithm is given for such situations byMinker and Perlis[21].Among recent papers the ones by Liu-Sunderraman [18, 19, 20] deal with inde�nite information in thesense of disjunctive tuples as well as protection in the sense of maybe tuples. The relational algebrais generalized to what are called I-tables, and correctness is proved. There are also several recentbooks on relational database theory that contain information on null values. Atzeni-DeAntonellis[3, Chapter 6] deals with all �ve types of nulls. The representation uses �rst-order formulas with aregular existential quanti�er; in some cases additional predicates are needed omitting the attributeon which the null values, like the placeholder null, occurs. Implication formulas must also be set upamong the predicates. Probability distribution on the domain and constraints are also introduced forexistential nulls. Abiteboul-Hull-Vianu [1, Chapter 19] deal mostly with the Imielinski-Lipski workand also include material and references on complexity issues.36



8 ConclusionsA frequent occurrence in relational databases is that certain attribute slots in tuples cannot be �lledin for any of a number of reasons. These reasons could include the fact that a value exists but is notknown (existential null), a value may or may not exist (maybe null), it is known that a value doesnot exists and this �eld is inapplicable to the tuple being considered (placeholder null), a value existsand is known to be within a speci�ed set (partial null), and it is not known whether a value exists ornot, but if it does, it must fall within a speci�ed set (partial placeholder null). Despite the fact thatthe existence of these di�erent null values has been noted for a long time (at least twenty years), nouni�ed treatment of these di�erent null values has emerged.An important start in this direction was made by Imielinski and Lipski who developed a notion ofcondition tables where tuples had associated conditions. The tuples were \in" the given relationonly if the a�liated condition was true. Imielinski and Lipski used these intuitions to develop anelegant treatment of one kind of null value, viz. the existential null. In this paper, we have shownhow constraints may be used to provide a uni�ed treatment of all the types of nulls considered above.Though most of these null values have been treated individually (e.g. [3]), these treatments haveconsidered the respective null values in isolation, and have not provided a single unifying framework.Based on our uni�ed constraint-based model, we have developed an algebra for databases containingthese varied types of null values. We have studied various mathematical aspects of this algebra, andhave, in particular, established various equivalences. We have developed a prototype implementationof these di�erent types of null values, and used this implementation as an experimental testbed toevaluate alternative query evaluation strategies when null values are present.References[1] Abiteboul, S., Hull, R., Vianu, V., Foundations of Databases, Addison-Wesley Publishing Com-pany, 1995.[2] ANSI/X3/SPARC Study Group on Data Base Management Systems, Interim Report 75-02-08,FDT Bulletin of ACM-SIGMOD Vol. 7, No. 2, 1975.[3] Atzeni, P. and De Antonellis, V., Relational Database Theory, The Benjamin/Cummings Pub-lishing Company, Inc., 1993.[4] Biskup, J., A Formal Approach to Null Values in Database Relations, In: Advances in DatabaseTheory, Volume 1 (H. Gallaire, J. Minker, and J. M. Nicolas, Eds.) Plenum Press, 1981, pp299-341.[5] Biskup, J., A Foundation of Codd's Relational Maybe-Operations, ACM TODS 8 (1983) pp.608-636.[6] Biskup, J., Extending the Relational Algebra for Relations with Maybe Tuples and Existentialand Universal Null Values, Fundamenta Informaticae VII (1984) pp. 129-150.[7] Codd, E. F., Understanding Relations (Installment #7) FDT Bulletin of ACM-SIGMOD 7(1975) pp. 23-28. 37
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Appendix A: A Sample DatabaseRelation phone:tid Name Phone Constraint1 john 927 5872 true2 tony 996 1873 true3 ed ma mar true4 lisa 926 2890 true5 elaine ex mar true6 irene 789 1892 true7 david pa mar = f926 2890, 593 1340g trueRelation spouse:tid Husband Wife Constraint11 john sherry true12 ed ex mar (Wife = alice_Wife = susan)13 tony pl mar true14 vic pa mar = flisa; joang true15 david ma mar true16 oscar elaine trueRelation emp:tid Person Employer Constraint21 john ibm true22 sherry ncr true23 ed pa mar = fibm; ncrg true24 irene ibm true25 vic ma mar true26 oscar pm mar = fncrg true
40



Appendix B: Sample Database after some algebraic operationsRelation phone2 after selection with condition Phone = 927 5872:tid Name Phone Constraint1� john 927 5872 true2� ed ma mar (Phone = 927 5872)3� elaine ex mar (Phone = 927 5872)Relation spouse2 (relation spouse after projection on attribute \Husband").tid Husband Constraint11� john true12� ed (spouse:12:Wife = alice_ spouse:12:Wife = susan)13� tony true14� vic true15� david true16� oscar trueRelation emp2 after selection with condition Employer = ncr:tid Person Employer Constraint22� sherry ncr true23� ed pa mar = fibm; ncrg (Employer = ncr)25� vic ma mar (Employer = ncr)26� oscar pm mar = fncrg (Employer = ncr)
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