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Abstract

An important reality when studying relational databases is the fact that entries in relational
tables may often be “missing” or only partially specified. The study of such missing information
has led to a rich body of work on “null values.” It was recognized early on that there are many
different types of null values, each of which reflects different intuitions about why a particular piece
of information is missing. Different relations (or even the same relation) could contain different
types of null values; yet, very little work has been done on providing a unifying model that reasons
with different types of nulls. In this paper, we use constraints to provide a unifying framework for
the most common types of nulls. We show how viewing tuples containing null values of these types
can be viewed as constraints, and how this leads to an algebra for null values. In particular, this
algebra contains a unique operator (called the “compaction” operator) used to remove redundancies
from null valued relations. We have studied various properties of this algebra. We have built a
prototype implementation based on the null valued operators described here and conducted various
experiments using this testbed.

1 Introduction

The relational model of data mandates that all information be stored as relational tables where the
rows are called tuples and the columns represent attributes. Often entries are missing, or are only
partially specified in the tables for a variety of reasons. Such missing values are called null values, and
over the last twenty years, a vast body of literature has been devoted to the study of different types
of null values. Let us quickly consider a simple example in order to determine some of the different
types of null values.

Example 1.1 Consider a simple relational database that contains three relations — a phone relation
that has the schema (Name,Phone), a spouse relation that has the schema (Husband,Wife) and an
emp relation that has the schema (Person, Employer). Appendix A shows an instance of this database
and we use this example throughout the paper to illustrate the main ideas of the paper. Data may be
missing from the tuples in this database for a number of reasons:
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1. Existential Null: The person creating the database may know that Elaine has a phone, but
s/he may not have the actual number. Hence, a special symbol, denoted ex_mar is inserted to
denote that a value exists for the Phone field of this tuple, but the value is not currently known.
The explicit representation is shown as tuple 5 in Appendix A.

2. Maybe Null: In the case of some other individual, Ed, the database creator does not know
whether or not Ed has a phone. In this case, s/he places a different symbol, denoted ma_mar
to indicate that a phone number may or may not exist for Ed. This is indicated by tuple 3 in
Appendix A.

3. Place holder Null: Let us consider the relation spouse. In this relation, the individual, Tony,
is a bachelor, and hence, the wife field is inapplicable to him. Hence, a special symbol, pl_mar ,
called a placeholder, is placed in the wife field of the tuple associated with Tony. This is shown
explicitly as tuple 13 of Appendix A.

4. Partial Nulls: If we examine the relation emp, it may be the case that the database creator
does not remember whether Ed works for IBM or for NCR. S/he knows that Ed works for one
of the two, but does not precisely recall which one. In this case, a special kind of value, called
a partial value, is inserted into the table. This situation is represented by tuple 23 in Appendix
A. A partial null may be thought of as an existential null, except that it is somewhat more
informative.

5. Partial Maybe Null: In the case of Oscar, the database creator may not remember whether
Oscar works for NCR or not. For instance, Oscar may be very close to retirement, and the
database administrator is not sure whether Oscar has retired (in which case, the field employer
is inapplicable to Oscar), or Oscar is still an employee, in which case, the value of the field should
be NCR. This is an example of a partial maybe null where we are not sure whether the field
is applicable or not, but if it is applicable, then its value must fall within a specified set. This
situation is shown as tuple 26 of Appendix A where the specified set is a singleton.

In this paper, we show how constraints may be used to provide a uniform way of treating the above
types of null values. The uniform treatment of different types of null values raises several important
problems. In particular, in distributed environments where data gathering is done independently, such
problems are very common. For instance, inconsistencies may occur because of the null values — John’s
spouse field may be listed as Sherry in one site, but as a placeholder null in another site. In this
case, is John married to Sherry? Or is he a bachelor? The presence of different types of nulls also
leads to different ways of coalescing information together. For instance, it may be the case that in one
relation, Ed’s spouse is listed as an existential null, while in another relation, Ed’s spouse is listed as
Alice. In this case, with an optimistic approach Ed’s spouse’s name can be assumed to be Alice, or it
may still be assumed to be unknown from a more skeptical point of view. Thus, querying databases
with different kinds of null values in them allows us to combine the null values in various ways.

We show how databases containing the above types of null values can be uniformly viewed as databases
where each tuple ¢ has an associated constraint (. Intuitively, a tuple ¢ may be thought of as being
“in” the relation iff C; is true. Though the idea of using constraints to handle null values in databases
is not new (cf. Imielinski-Lipski [13, 14]), the use of constraints to present a unified way of handling
different types of nulls is, to the best of our knowledge, new and novel. Section 2 shows how databases
with constraints can be used to express the semantics of the above types of null values. In Section 3,



we develop ways of removing redundant information from null-valued relations and define a “compact”
form for such databases. Subsequently, in Section 4, we develop an extension of the relational algebra
that handles the above types of nulls. In Section 5, we study properties of this algebra. This consists
of establishing various algebraic equalities and inclusions that may be useful for query optimization.
In Section 6, we report on the results of experiments that we have conducted on the utility of these
algebraic equalities for query optimization.

2 Null-Valued Databases

2.1 Preliminaries

A relation consists of a relational schema (i.e. a list of attributes), and a list of tuples; each tuple is
given a tuple-id that is unique for the database under consideration. Thus, a relation may be viewed
as a table, whose rows are tuples and whose columns represent attribute values. A given row/tuple ¢
and a given column/attribute A jointly identify a slot in the relation table that may be filled in with
a marker. In the standard relational model of data, each slot must be filled in with a value from the
domain of the attribute A being considered. In the case of databases containing null values, however,
such as those shown in Appendix A, the slots in relations may be filled in with markers of any one of
the following types:

1. (Classical Case) a value marker which is any element from the domain of the attribute A,
2. the existential null marker ex_mar ,

3. the maybe null marker, ma_mar |

4. the placeholder null marker, pl_mar ,

5. a partial null marker of the form pa_mar = Vs where V; is a nonempty subset of the domain of
the attribute A,

6. a partial maybe marker of the form pm_mar = V; where V; is a nonempty subset of the domain
of the attribute A.

Let va be a function which takes a marker and returns a set of possible values the marker may have.
The following table shows the relationship between the markers and va.

L X vaX) |
va_mar (V) {v}
ex_mar D
ma_mar DU{L}
plemar {L}
pa_mar (Vy) Vs
pm_mar (Vs) || VsU{L}

Intuitively, va(ex_mar) = D says that the actual value of an existential marker can be any member of
the domain D. Likewise, va(ma_mar) = D|J{L} says that the actual value of a maybe marker can be
either any member of D, or the symbol L, denoting a non-existent value. Similarly, va(pa_mar (Vy)) =
Vs says that the actual value of a partial null marker of the form pa_mar (V) lies in the set V.



Tuples that are composed of such markers are called m-tuples. Unless specified otherwise, all tuples
considered in this paper are m-tuples .

2.2 Using Constraints to Handle Null-Valued Databases

In the preceding section, we introduced null valued relations as tables whose slots may be filled in with
any of the different types of markers described above. Given any m-tuple t, it is possible to associate
with ¢, a constraint 'y which describes the conditions under which ¢ is “in” the given relation. For
instance, if A is an attribute in tuple ¢ with a null marker, M, then tuple ¢t has the associated implicit
constraint: t.A € va(M). This is however not what is reflected in the constraint column as explicit
constraints. A typical explicit constraint occurs when a selection is performed on a null-valued tuple
like tuple 3 of Appendix A; the associated constraint after a selection can be seen in tuple 2* of
appendix B.

The syntax of a constraint is similar to that of a first order formula. Let D be a database, R be a
relation in D, ¢ be a tuple in R and A be an attribute in the relational schema of R. Then,

o (D.R.t.A=value),
o (D.R.t.A# value) and
o (D.RtA€ Set)

are constraints. Similarly, any boolean combination of these is also a constraint. Note that it is
possible to omit database/relation/tupleids if we are not referring to attributes that are in different
databases/relations/tuples.

M-tuples that are annotated with constraints of the above type are called mc-tuples .

2.3 Null-Valued Relations and Databases

A Null-Valued Relation R consists of two parts:
1. Relational Schema: A set of attributes (R.s).

2. Tuples: A set of me-tuples. If an me-tuple t is in the relation R, then we write R |= t.

In addition to these, we may need to have a subset (R.k) of R.s to behave as a base for the relation.
This set will be responsible for determining duplicate information in the relations, i.e. it will behave
like a set of key attributes. In this paper we call this set “quasi key attributes”. Since their behavior
is similar to key attributes, null values may not occur in quasi-key-attributes.

A database containing Null-Valued Relations is called a “Null-Valued Database”.

Before defining algebraic operators on Null-Valued Relations, we will first present a formal descrip-
tion of Null-Valued Databases. This provides a formal basis for (later) defining operations on such
databases.



2.4 Candidate Tuples

In this subsection, we define the semantics of Null-Valued Databases. We start by describing the
meaning of me-tuples .

For the rest of this subsection, let us assume that ¢; is an mec-tuple in a Null-Valued Relation R, and
that t;.A denotes the marker contained in the attribute A of the me-tuple.

Definition 2.1 (Conforming Tuple) Lett be a tuple obeying the relational schema R.s, and let the
domain of each attribute of t be augmented by the new symbol “L 7. t is said to be a conforming tuple
with respect to t; (i.e. t € conf(t;)) iff :

o ift;.A is a va_mar with va(t;.A) = {v}, then (t.A = v)

o ift;. A is an ex_mar ,then (t.A € Dom(A))
where Dom(A) denotes the domain of attribute A.

o ift;.A is a pa_mar with va(t;.A) =V, then (t.A€ V)

o ift;.A is a ma_mar , then (t.A € Dom(A))V (t.A= 1)
where Dom(A) denotes the domain of attribute A

o ift;.Ais a plomar , then (t.A = 1)

o ift;. A is a pm_mar with va(t;.A) = V{J{L}, then (t.Ae V)V (tL.A=1)

Intuitively, a tuple ¢ “conforms” to tuple ¢; just in case its attribute values are consistent with the
markers in #;. The set conf(%;) is the set of all tuples that obey the attribute restrictions of ¢;.

Definition 2.2 (Bad Tuple) Lett be a tuple conforming to the relational schema R.s, and suppose
the domain of each attribute of t is augmented with a new symbol “L”.
t is said to be a bad tuple with respect to t; (i.e. t € bad(t;)) iff the following holds:

e 1 is a conforming tuple with respect to t; and,

e 1 does not satisfy the associated constraint

Bad tuples are not equivalent to non-conforming tuples for two reasons. First, in some cases (especially
when intermediate tuples are formed as a result of executing some algebraic operations), the constraints
associated with tuples may contain references to other tuples. This will become apparent later on in
this paper. Second, a non-conforming tuple may not be consistent with the markers in the tuple ¢;.

Definition 2.3 (Candidate Tuple) Lett be a tuple obeying the relational schema R.s, and suppose
the domain of each attribute of t is augmented with a new symbol “L”.
t is said to be a candidate tuple of t; (i.e. t € can(t;)) iff:
1. e 1 is a conforming tuple and,
o 1 satisfies the associated constraint

or,



2. There exists a tuple t' € bad(1;), and t is tyun (tou s a special tuple which denotes a non existent
tuple, the use of t,,u will become clearer when we define Candidate Relations).

Candidate tuples are those tuples that satisfy both the attributes and the associated constraints of
me-tuples ; in addition, the null tuple is also a candidate tuple in case condition (2) above holds.

Observe that each me-tuple t; in a Null-Valued Relation can be described by an expression of the form

V() = p(ti) A ®(1;)

where p(t;) describes the part which consists of attribute slots, and ®(#;) is the part which describes
the associated constraint.

Example 2.1 Let t; be the following mc-tuple:

tid | A B C D Constraint
t; | exmar | 3 | pa-mar {3,5} | ma_mar | ©

then p(t;) = ((t.A € Dom(A))A (t.B=3)AN((t.C =3)V (t.C =5))A((t.D € Dom(D)V (t.D = 1))
whereas ®(1;) = O.
It is clear from the above definition and example that:

t satisfres (p(t;) A =®(t;)) — t € bad(t;)

and
(t satisfies (p(t;) A ®(1;))) V (3t € bad(t;)) A (t = tpun)) — t € can(t;)

Two me-tuples t1 and ty are considered to be equivalent (=;) iff
(can(ty) = can(ty)) A (bad(ty) = bad(ty))

Example 2.2 Consider mc-tuple 14 in the spouse relation listed in Appendiz A.

tid | Husband | Wife Constraint
14 | vic pa_mar = {lisa, joan} | true

The above tuple is not equivalent to the tuple below:
tid | Husband | Wife Constraint
vic ex-mar | (Wife = joan Vv Wife = lisa)

The original tuple states that “Vic” has a wife and it is also known that his wife is either “Joan” or
“Lisa”. However the second tuple has a slightly different meaning: “Vic” is known to have a wife, the
name of his wife is not known (it could be “Susan” for instance); however, the tuple is in the relation
only if the name is either “Joan” or “Lisa”. This difference is actually due to the difference in the
conforming tuples of these two me-tuples .

Unfortunately, in some cases it may be possible that ®(¢;) depends on other tuples, and in such cases
it may be impossible to check the truth of ®(¢;) by considering only ¢;. When we consider those
dependent tuples together, we must ensure that ®(¢;) holds for all such tuples simultaneously:



Definition 2.4 (Candidate Relation) Let R be a null valued relation. Then can(R) is constructed
by picking a single t from can(t;) for each me-tuple t; in R such that N\, W(t;) is not falsified. As
usual, the null tuple is not shown in can(R).

Example 2.3 Let R consist of two mc-tuples .

tid | Name | Phone-Fxtension Constraint
R: ty | john | pa_mar = {321,322} | true
ty | john | pa_mar = {322,323} | true

The following is a candidate relation for R:

‘ Name ‘ Phone-Extension ‘

john | 321
john | 322

In this example, the first tuple was obtained from t1, while the second was obtained from t.

Definition 2.5 (Representation of a Relation) Let R be a null valued relation. Then the set
Rep(R) = {Ri|R; is a candidate relation of R}

s called the representation of R.

Two relations Ry and Ry are considered to be equivalent (=, ) iff

Rep(Ry) = Rep(Rz)

Again, in some cases, it may be possible that me-tuplesin relation Ry depend on me-tuplesin Rs.
When two such relations are considered together, then the truth of Ap A, VU(t;) must be guaranteed.

Example 2.4 If we consider the relation in the previous example, Rep(R) is {R1,R2,R3, R4} where:

‘ Name ‘ Phone-Extension ‘

' ‘ Name ‘ Phone-Extension ‘

Ry | john | 321 27 =
john | 322 [jokn_| 322 |
‘ Name ‘ Phone-Extension ‘ ‘ Name ‘ Phone-Extension ‘
R3: | john | 321 Ry:| john | 322
john | 323 john | 323

3 Redundancy Removal in Null-Valued Databases

A relation may contain redundancy due to the existence of tuples that duplicate information. When
nulls are not allowed in tuples the concept of “duplication” of information is clear — two tuples are
duplicates of one another iff they are identical. Hence, eliminating such duplicates is done more or less
automatically in the standard relational model of data. However, when nulls are present, we have to



be more careful in defining the conditions that cause duplication of information. Suppose t; and ¢y are
two me-tuples (with associated constraints Cy, Cy respectively). Clearly, t; and ?; should have some
commonality if they have the same values for the quasi-key attributes. In this case, we look at each
marker occurring in ¢y =< ay,...,a,,Cy > and/or in t; =< by,...,b,,Cy > and attempt to combine
each a; with the corresponding b; to yield a “composite” me-tuple t3 =< dy,...,d,,(C1 A C3) > which
is jointly entailed by both #; and ¢; under the constraint (C7; A C3).

Similarly, a relation containing null values and constraints may also include various inconsistencies
due to incomplete information. To see this consider the following example:

Example 3.1 Assume that there are two sensors measuring the speed of a particle in a laboratory
experiment. The first sensor reads a velocity of 2.102 — 2.105 x 108m/sec whereas the second sensor
reads a velocity of 2.103 — 2.107 x 10%m/sec. What is the speed of the particle ?

To reason about databases containing such redundancies and inconsistencies, we must have some tools
to remove information overlap, redundancies and inconsistencies. There are various methods that may
be used in building such tools. In this section we investigate some of these methods.

3.1 Overlap Removal

Two me-tuples in a relation R are said to overlap if they have the same quasi-keys. This basically
means that there is redundancy in the relation if the intersection of their candidate tuple sets is
different from both @ and {¢,,;}; and/or there is an inconsistency in the relation if the difference of
their candidate tuple sets is different from both () and {¢,,;;}. Both of these problems can be removed
using one of the strategies listed below:

Let t; and t; be two mec-tuples such that
(Yquasi—key attributes K )((L- 1 =va_mar ) A (t;. K =va_mar ) A (va(t; K) = va(t; . K)))
and let ®(t;) = @(¢;).

1. (Strategy 1) Remove ¢; and ¢; from the relation and add the me-tuple t; such that ®(¢;) = ®(¢;)
and

conf(t;) = conf(t;) N conf(t;)

2. (Strategy 2) Remove ¢; and ¢; from the relation and add the me-tuple t; such that ®(¢;) = ®(;)
and

((conf(t;) Nconf(t;) #0) — (conf(t;) = (conf(t;) N conf(t;))) A
((conf(t;) Nconf(t;) = 0) — (conf(t;) = (conf(t;) U conf(t;)))

3. (Strategy 3) Remove ¢; and ¢; from the relation and add the me-tuple t; such that ®(¢;) = ®(t;)
and

—
—

conf(t;) = conf(t;) U conf(t;)

We will now show how the above strategies can be used to build tools for removing redundan-
cies/inconsistencies (merging) in Null-Valued relations. Before doing so, we need to describe a method
to compose various kinds of null markers and specify:



1. a precise definition of what it means to compose markers and
2. precise conditions under which two tuples may be “merged”.

the next subsection answers to (1) above. Section 3.1.1 deals with the first point above, while Sec-
tion 3.1.2 deals with the second.

3.1.1 Marker-Composition

Marker-Composition is a binary operation on markers that assesses the information contained in its
operands, and attempts to compose them together. In order to keep the intuitiveness of the operation,
the marker composition operator, ,,., should satisfy the idempotent, associative and commutative
properties:

1. X Ope X =X

There are various ways to define the marker composition operator. We discuss some alternative marker
composition methods below.

Suppose me-tuples ty,1y, with identical values for the quasi-key attributes, are in the same relation,
and suppose that for attribute A, they have markers nq,ny respectively in that attribute slot. Ac-
cording to me-tuple t1, the value of the attribute A is in va(ny) while according to ¢z, the value of the
attribute A is in va(nz).

1. First Marker Composition Strategy: As me-tuples jointly indicate that the value of the
attribute A is in the intersection of va(n1) and va(nz), we may take the set of possible values
as va(ny ) va(ng) If this intersection results in a nonempty set then there is a marker n whose
domain corresponds precisely to the intersection of the domains of ny and my, and this marker
n is the result of the marker composition of ny,ns. If not, we remove the corresponding me-
tuples from the relation, because they represent an inconsistency. This marker composition
strategy is depicted in Table 1.

| 1st operand | 2nd operand || Result |
[ va_mar [ va_mar Il va_mar {or - } |
ex_mar ex_mar ex_mar
ex_mar ma_mar ex_mar
ex_mar pa_mar pa_mar
ex._mar pl_mar
ex_mar pm_mar pa_mar
ex_mar va_mar va_mar
ma_mar ma_mar ma_mar
ma_mar pa_mar pa_mar
ma._mar pl_mar pl_mar
ma_mar pm_mar pm_mar
ma_mar va_mar va_mar
pl_mar pl_mar pl_mar
pl_mar pa_mar -
pl_mar pm._mar pl_mar
pl_mar va_mar
[ pa_mar | pa_mar Il pa_mar {or - } |
[ pa_mar [ va_mar il va_mar {or - } |
pm_mar va_mar va_mar {or - }
pm_mar pa_mar pm_mar {or - }
pm_mar pm_mar pm_mar {or pl_mar }

TABLE 1: First Marker Composition Strategy



2. Second Marker Composition Strategy: In the preceding strategy the resulting domain
may be empty. At this stage, one may wish to take the union of va(ny) and va(ng). The
second marker composition strategy therefore is va(ny)(va(ng) — however, if that intersection
is empty, then the composition is va(ni)Jva(nz). The computation of the union reflects the
fact that the actual value is in the domain of either ny or ns, but as there is an inconsistency
involved, the system simply returns all the possibilities. We would like this marker composition
method to conform to the strategies described at the beginning of section 3.1. If this marker
composition strategy is applied to me-tuplest; and tz, then even if va(ny) (va(nz) = @ for just a
single attribute in the relational schema, the composition of ¢; and 5 is performed by taking the
unions of domains of “each and every attribute”. This marker composition strategy is depicted

| 1st operand | 2nd operand || Result |
[ va_mar [ va_mar [[ vamar {or pa_mar } |
ex_mar ex_mar ex_mar
ex_mar ma_mar ex_mar
ex_mar pa_mar pa_mar
ex_mar pl_mar ma_mar
ex_mar pm_mar pa_mar
ex_mar va_mar va_mar
ma_mar ma_mar ma_mar
ma_mar pa_mar pa_mar
ma._mar pl_mar pl_mar
ma_mar pm_mar pm_mar
ma_mar va_mar va_mar
pl_mar pl_mar pl_mar
pl_mar pa_mar pm_mar
pl_mar pm_mar pm_mar
pl_mar va_mar pm_mar
[ pa_mar | pa_mar T pa_mar |
l pa_mar [ va_mar [ va_mar {or pa_mar } |
pm_mar va_mar va_mar {or pm_mar }
pm_mar pa_mar pa_mar {or pm._mar }
pm._mar pm._mar plomar {or pm_mar }

TABLE 2: Second Marker Composition Strategy

3. Third Marker Composition Strategy: The third marker composition strategy takes the
composition to be va(ny)Jva(ng). This marker composition strategy is depicted in Table 3.

| 1st operand | 2nd operand || Result |
[ va_mar [ va_mar [[ va-mar {or pa_mar } |
ex_mar ex_mar ex_mar
ex_mar ma._mar ma._mar
ex_mar pa_mar ex_mar
ex_mar pl_mar ma._mar
ex_mar prm._mar ma._mar
ex_mar va_mar ex_mar
ma._mar ma._mar ma._mar
ma._mar pa_mar ma._mar
ma._mar pl_mar ma._mar
ma._mar pm._nar ma._mar
ma._mar va_mar ma._mar
pl_mar pl_mar pl_mar
pl_mar pa_mar pm._mar
pl_mar pm._nar pm._mar
pl_mar va_mar prm._mar
[ pa_mar | pa_mar Il pa_mar |
[ pa_mar [ va_mar il pa_mar |
prm._mar va_mar prm._mar
pm._mar pa_mar pm._mar
pm._mar pm._nar pm._mar

TABLE 3: Third Marker Composition Strategy

As an example of how these tables are constructed, let us consider Table 2 above. Consider the first
row in this table. If the same value occurs in both attribute slots, then there is no inconsistency — we
take that value itself — however, if the values are different, then the result is a pa_mar marker denoting
that there is an inconsistency — in this case, the two values involved in the inconsistency are returned
as output. In general, all the conflicts in this table are resolved similarly.

10



Properties Reconsidered: In order to evaluate the three natural strategies articulated above, we
need to check if they satisfy the idempotent, associative and commutative properties. In the case
of the first and the third strategies, it is easy to see that these properties hold by the properties
of set intersection and union respectively, but the second strategy does not satisfy the associativity
requirement. To see this, observe that

(ex_mar Omeer_mar )@mcpl_mar = ex_mar Opplomar = ma_mar .
However,

ex_mar @mc(eac_mar Omepl_mar ) = ex_mar O, .ma_mar = exr_mar .

The user should choose which marker composition strategy s/he wishes to adopt, keeping in mind the
different semantics of these approaches.

3.1.2 When to Merge

Even if an initial set of relations does not contain overlaps, when executing a query involving various
relational operators, the interim tables that are constructed could contain various kinds of overlaps.
For instance, union may cause redundant me-tuples from different relations to come together. Hence,
we need an operator to minimize the redundancy in these relations (including intermediate relations)
to keep our database free of overlaps.

In this section, we explain how to use marker composition methods to merge me-tuplesthat contain
redundant information. Two me-tuplest; and ty (with associated constraints Cq, C respectively) may
be merged if either of the two situations below occurs:

1. Quasi-Key Overlaps: #; and t; are said to be quasi-key overlapping if for each quasi-key
attribute slot, the values of t; and ¢, are identical, and (7 is not logically equivalent to =C.

2. Value Overlaps: {1 and {3 are said to be value overlapping if for every attribute-slot, ¢; and
ty have identical markers.

If we look at the table below, where the quasi-key attribute is husband, then mec-tuplests,t$,13,13 are
all quasi-key overlapping, while me-tuples t§ and ¢ are value overlapping.

tid | Husband | Wife Employer | Constraint

tt | john ex_mar | ncr (Wife = lisa)

t$ | john ex_mar | ibm (Wife = lisa)

% | john ex_mar | ibm (Wife = joan)

t5 | john audrey | ez_mar (Employer = ner).

TABLE 4: Overlap Examples

When overlaps of the above kind occur, we would like to minimize the overlap. Such a minimization
serves many purposes. First, me-tuples with the same quasi-keys, but with different non-quasi-key
attribute markers are merged into a single me-tuple so that the information in the non-key attributes
may be “amalgamated.” Second, many mec-tuples with identical attribute markers, but different
constraints get grouped together into a single, unified me-tuple. Third, after the minimization, different
me-tuplesassociated with the same quasi-key attributes have mutually conflicting constraints. We now
show how to remove the above types of overlaps:

Removing Quasi-Key Overlaps: Suppose t; is the me-tuple < ay...a1,,C7 > and ty is the
me-tuple < as;...az,,Cy >, and suppose these me-tuples are quasi-key overlapping but not value
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overlapping. Then we introduce a new quasi-key-merged mc-tuple:

11O xt2 = té =< a3,1---03 p, (Cl A Cz) >
where a3; = a1 ;Opea2;. “©Og k" is the quasi-key-overlap removal operator; here ‘k’ denotes the set of
quasi-keys, while (©),denotes the quasi-key removal operator.

In addition to the above operation, we also replace ¢ and t3 by the new mc-tuples :
tll =< ay,1.--01 n, (Cl A —|Cz) >
and
t/2 =< ag.7.--02 n, (CQ A —|Cl) >
unless (' is logically equivalent to C'5, in which case, we omit these two me-tuplesbecause the constraint
is equivalent to false.

This operation can be visualized as follows : Let #; be composed of three parts: a, b and c;
similarly let 5 be composed of ¢, d and e where

e a satisfies = p(t1) A (®(t1) A =P (t2))

e e satisfies = p(t3) A (®(t2) A ~P(#1))

e b satisfies = (p(t1) A =p(t2)) A (®(t1) A D(t2))
o d satisfies = (p(t3) A =p(t1)) A (®(t1) A (t2))
o c satisfies = p(t1) A p(t2) A (P(t1) A D(t2))

Note that these two mec-tuples overlap in c:

4

After the removal of the overlap we have the following:
o ) is a,
o t)is e,

e i3 is either c or b |J ¢ |J d depending on the chosen semantics.

For example, consider me-tuples t} and t§ in table 4. The quasi-key-merge of these two mec-tuplesis
(assuming a union based marker composition strategy):

tid | Husband | Wife Employer Constraint
t | john ex-mar | pa-mar = {ibm,ner} | (Wife = lisa)

12



Removing Value Overlaps: Suppose t; =< eq,...,e,,C1 > and t5 =< ey,...,e,, (s > are value-
overlapping me-tuples . The value-merge of these two me-tuples is:
1Oyl =13 =< e1,....€,, (Cl V Cz) >.

This operation can be visualized as follows : Let #; be composed of two parts: a and c; similarly
let 5 be composed of b, and ¢ where:

e a satisfies = p(t1) A (®(t1) A =P (t2))
o b satisfies = p(t1) A (®(t2) A ~P(#1))
o c satisfies = p(t1) A ®(11) A D(t2)

Note that p(t1) = p(t2).

t
1
L

The result of the operation will be an me-tuple t3 whose candidate set isa |J b | c.

For example, consider me-tuples ty and t§ in table 4. The value-merge of these two me-tuples is:

tid | Husband | Wife Employer | Constraint
t | john ex_mar | ibm (Wife =lisa) Vv (Wife = joan))

3.1.3 Canonical Forms

Having defined different types of overlaps, as well as different strategies to remove overlaps, we may
now define a canonical form for tuples/relations/databases. Intuitively, we would like relations in this
canonical form to have no overlaps and to be as simple as possible.

We now define the notion of “canonical forms” of relations. Such “canonical forms” minimize redun-
dancy in tuples.

Definition 3.1 CFR-Canonical Form for Relations: A relation is said to be in CFR if it does
not contain two me-tuples that are either value-overlapping or quasi-key overlapping. Relations in
CFR are called Canonical Relations.

A direct extension of this definition for databases is:

Definition 3.2 CFD-Canonical Form for Databases: A database is said to be in CFD if all
relations in it are in CFR. Databases in CFD are going to be called, for short, Canonical Databases.

In the next subsection, we define a special operator, denoted as C, that takes a given relation R and a
set K of quasi-key attributes as input, and returns as output, a canonical version of that relation by
getting rid of the redundant and overlapping information.
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3.2 Compaction Operator
We define the Compaction Operator (C) as follows:

Let I and O be two sets of me-tuples such that I contains the same me-tuples as the input relation
and O is empty.

1. Choose two me-tuplesty and to from I and set I to I — {t{,15}.
2. If t; and t3 are not overlapping then put them in O.

3. Else if #; and t5 are value-overlapping then apply the value-overlap removal procedure to #;
and ¢y and put the resulting me-tuple in O,

4. Else if t; and t5 are quasi-key-overlapping then apply the quasi-key-overlap removal procedure
to t1 and ?3 and put the resulting me-tuplesin O (note that the resulting me-tupleshave disjoint
candidate tuple sets).

5. While there are me-tuplesin I do

(a) Choose an me-tuple t from [ and set [ to I — {t}.
(b) Compare t with each me-tuple in O
(c) If t has a quasi-key-overlap with an mec-tuple t' in O then
i. Remove ¢’ from O
ii. Apply the quasi-key-overlap removal procedure to ¢ and ¢
iii. Put the quasi-key-merged me-tuple in O and put the rest of them in [
(d) Else if ¢ has a value-overlap with an me-tuple t' in O then
i. Remove ¢’ from O
ii. Apply the value-overlap overlap removal procedure to ¢ and '
iii. Put the resulting me-tuple in O.

(e) Else put ¢in O.

6. At this stage I is empty, and the me-tuplesin O contains no overlap.

Note that at each stage we guarantee that the me-tuples in O have pairwise disjoint candidate tuple
sets.

3.2.1 Correctness

The above algorithm obeys the definition of redundancy removal semantics described at the beginning
of this section. Note however that Rep(C(R)) may be different from C(Rep(R)) — in the latter, the
compaction operator is applied to each relation in Rep(R). However, if the first strategy is used, then
these two computations yield the same solution.

The following example shows that Rep(C(R)) may be different from C(Rep(R)) if the union based
marker composition strategy is used.

Example 3.2 Suppose relation R consists of two mc-tuples .
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tid | Name | Phone-Fxtension Constraint
R: ty | john | pa_mar = {321,322} | true
ty | john | pa_mar = {322,323} | true
Then if the union based compaction is applied:
C(R): tid | Name | Phone-Fxtension Constraint
" te | john | pa_mar = {321,322,323} | true

Rep(R) is {R1,R3,R3,R4} where:

‘ Name ‘ Phone-Extension ‘

' ‘ Name ‘ Phone-Extension ‘

Ry | john | 321 27 =
john | 322 Ljohn_] 522 |
‘ Name ‘ Phone-Extension ‘ ‘ Name ‘ Phone-Extension ‘
R3: | john | 321 Ry: | john | 322
john | 323 john | 323
C(Ry): tid | Name | Phone-FExtension Constraint
VT john | pacmar = {321,322} | true
C(Ry): tid | Name | Phone-FExtension | Constraint
2 john | 322 true
C(Rs): tid | Name | Phone-FExtension Constraint
3 john | pacmar = {321,323} | true
C(Ry): tid | Name | Phone-FExtension Constraint
VT john | pacmar = {322,323 | true
However, Rep(C(R))is:
‘ Name ‘ Phone-Extension ‘
R,

Y [John ] 321

‘ Name ‘ Phone-Extension ‘ , ‘ Name ‘ Phone-Extension ‘
| % [ john ]323

/.
‘RQ'\john [ 322

4 Null-Valued Algebraic Operations

We are now at a stage where we can define various algebraic operators to be used with null-valued
databases. In this section, we define an algebra that extends the standard relational algebra to handle

databases that contain the different kinds of null values discussed so far.

The algebraic operators can be defined using the formalism introduced earlier. This approach provides
a better understanding of the way the algebraic operators should behave under the existence of null

values. The following items provide definitions of the algebraic operators :
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¢ Selection:
lj € oo(R) — (3t; € R)((p(t;) = p(t:)) A (D(1;) = (1) A O))
¢ Projection:

tj € Ma(R) — (3t € R)((p(t;) = p'(1)) A (®(15) = ®(1i))

Note that p/(t;) = p(t;) except that the parts which include any of the attributes not in A are
omitted.

e Union:

t; € (R1UR2) — (Hti € Rl)(ti = t]‘) \Y (Hti € Rz)(ti = t]‘)
¢ Intersection:

tj € (RiRe) — (3t € Ry)(Itg € Ro)((p(t;) = p(ti) Ap(te)) N(D(1;) = @(t:) A (tk)))
e Difference:

tj € (RiDifRy) — (3 € R)(3ty € R2)(((p(15) = p(ti) A —p(r)) A (D(25) = @(1)))V
((p(1j) = p(t:)) A (D(25) = ®(1:) A ~®(11))))

¢ Join:

t; € (R4 ™M Ry) ——(3t; € R1)(3t; € Ry)
((Yjoining attrivutes 4)((t.A s a va_mar ) N (tr.A is a va_mar )A
(ti.A = tk.A))/\
((p(t;) = p(ti) A p(tr)) A (D(1;) = @(ti) A B(tk))))

The above definitions extend the algebraic operators on Conditional Tables given by Imielinski and
Lipski [13, 14] because the operators in [14] apply only to databases containing existential nulls — our
operators apply to all the types of nulls described at the beginning of this paper. Though all the
types of nulls described in this paper are discussed in [3], they do not provide a unified framework of
handling these nulls jointly, which we do here.

After giving the formal definitions of the algebraic operators, in the following subsections, we show
how to build such operators.

4.1 Selection

Definition 4.1 (Selection Condition) A selection condition is any boolean expression constructed
using the attributes in the relational schema.

For instance in the case of the spouse relation, the condition (Wife = joan) is a selection condition.

When null values/constraints are present in the database, the evaluation of selection conditions is
non-trivial. There are two main cases that a selection operator must take into account when operating
in an environment containing null values. These cases are:

1. A value marker appears for an attribute in the selection condition —in this case, as in the classical
relational database scenario, we simply substitute the value encapsulated in the marker into the
formula by instantiating the appropriate variable to this value.
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2. A null marker appears for an attribute in the selection condition. This case is complicated
because there may be a number of options on how to instantiate the variables in the selection
criterion.

In the next subsections, we describe how to handle the null markers in the attributes.

4.1.1 Value Markers in the Selection Condition

When the selection operator finds a value marker for one of the attributes specified in the selection
condition, it must instantiate the value encapsulated in the marker to the corresponding variable.
Obviously if the selection condition consists only of value markers, then at the end, the selection
condition will reduce to a form in which no variables (attributes) appear. At this time, it is possible
to check the condition for satisfiability. If it is satisfied, then the corresponding me-tuple is placed in
the result, otherwise it is omitted. Traditional databases, where there are no nulls, correspond to this
case where all me-tuples only contain value markers.

4.1.2 Null Markers in the Selection Condition

If we are attempting to determine whether a given me-tuple t satisfies the selection condition, and if
me-tuple t contains null values in it, then we need to determine ways of evaluating these nulls.

1. Single Null Marker in the Selection Condition

Let us first assume that the me-tuple ¢ has only one null value in it and that this null value
occurs in attribute X. Let ® be the selection condition that contains X. Our procedure will
consider mc-tuple ¢t and either return nothing, or return a mec-tuple ¢’ as the output of the
selection condition. ¢’ may be constructed from ¢ in a precise way, as shown in the table below.

Input Tuple (¢) Output Tuple(t)
Marker in X | Selection Condition || Marker in X ‘ Constraint
ex_mar o ex_mar d(X)
ma_mar o ma_mar d(X)
pl_mar i) — —
pa_mar (S) ¢ pa_mar (S) ¢(X)
pm_mar (S) ¢ pm_mar (S) ¢(X)

The third row of the above table indicates that when the selection condition contains a pl_mar
then we do not get an me-tuple in the result. Remembering that pl_mar means there is no value
for the corresponding attribute, it is easy to see why this is so. When the constraint depends on
a plmar the constraint can not be satisfied. So, the me-tuple is not in the resulting relation.
Similarly if none of the members of a pa_mar or pm_mar satisfy the selection condition, then the
corresponding tuple is omitted from the result.

As an example, consider the following query on the relation emp defined in Appendix A:

SELECT NAME,EMPLOYER
FROM emp
WHERE EMPLOYER = ncr.
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In this case:

(a) Mec-tuple 22 is clearly in the answer.

(b) On the other hand, consider me-tuple 23. This says Ed works for either IBM or NCR, but
we don’t know which. According to the above table, we return the tuple:

tid | Person | Employer Constraint
23° | ed pa_mar = {tbm,ner} | (Employer = ner)

This me-tuple says that the me-tuple 23°* is in the relation only if the employer field is equal
to NCR (which it is not known to be right now).

(c) Consider me-tuple 25 which has a maybe marker in it. In this case, the tuple should be
in the result of this select query just in case Vic’s employer does exist and is NCR. As a
consequence, we modify me-tuple 25 to me-tuple 25° by including this condition, and place
the result in the relation.

tid | Person | Employer | Constraint
25°* | vic ma_mar | (Employer = ner)

2. Multiple Null Markers in the Selection Condition

The next question is: what do we do if the selection condition requires that we consider an
me-tuple t that has multiple null values in it? In this case, we must apply the methods described
in the preceding section to every null marker in ¢, and then merge the constraints resulting from
this process. For instance, let us consider a complex selection condition that involves arithmetic
operations such as: (® : X =2xY X Z). where X, Y and Z are attributes. Let R be a relation
with the schema R < X,Y,Z > | and let ¢ be the following me-tuple:
<va-mar (365.00), ma_mar , ex_mar ,true >

in R. When the selection condition is applied to ¢, the resulting me-tuple is:

<va-mar (365.00), ma_mar , ex_mar , ®(365.00,Y,7) > .
If instead, ¢t were of the form:

<va_mar (365.00), ma_mar , ex_mar ,C >

where (' is a constraint over me-tuple t, then the resulting tuple is:

<va-mar (365.00), ma_mar , ex_mar ,C' A ®(365.00,Y,7) > .

Note that the constraint part of this me-tuple has been modified by appending a new conjunct
to the original constraint.
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4.1.3 Selection Predicate

A Selection Predicate is a ternary predicate of the form:

This atom is true iff 2 = 0e(#1), i.e. iff at least one of the following two conditions hold:

1. When the process described in subsections 4.1.1 and 4.1.2 is applied to ¢; and the selection
condition © we get:

A(O, 1y, 12).

e The resulting modified selection condition is ©’,

o All the variables in © are instantiated with values,

o O evaluates to “true”,

e 1y is equal to #y.

2. When the process described in subsections 4.1.1 and 4.1.2 is applied to ¢t; and the selection
condition @, we get:

e The resulting modified selection condition is @',

e O includes uninstantiated variables,

e 1y is equal to #; with the modified constraint.

4.1.4 Selection

This operator (denoted by o) selects the me-tuples satisfying the selection condition © and returns

them in the output relation.

aeo (R,0)— inselect(a,R,0)

where in_select is defined as follows:

in_select(z,7,0) — (r = y)A A(O,y, )

Example 4.1 For example, consider the emp relation in Appendiz A, and consider the query

SELECT *

FROM emp

WHERE Employer = ner.

In this case, the following mc-tuples are returned:

tid | Person | Employer Constraint

22% | sherry | ner true

23°% | ed pa_mar = {tbm,ner} | (Employer = ner)
25°* | wvic ex_mar (Employer = ner)
26% | oscar | pa_mar = {ncr} (Employer = ner)

19




4.1.5 Correctness

The selection operator is correct in the sense that o(Rep(R)) = Rep(c(R)). To see this note that:
o(Rep(R)) = {o(R')|R' = can(R)} and,
Replo(R)) = {RR = can(o(R))}.

Let R’ be a candidate relation of R. If tuple ¢’ is in R’ and if it also satisfies the selection condition,
then it will be in o(R').

There is an mc-tuple t in R such that ' satisfies

U(t) = p(t) A ().
Since t" also satisfies @, we can conclude that ¢’ satisfies

T()A O = p(t) A B(t) A O.

However, if we look at the definition of the selection operator, we can see that if an mc-tuple ¢ is in
o(R) then
\Il(t”) _ p(t”) A (I)(t//) _ p(t/”) A (I)(t///) A O

where t" is a mc-tuple in relation R.

Hence for each tuple ¢’ in o(R’), there exists an me-tuple t” in o(R), and for each me-tuple t in o(R),
there is a tuple ¢’ in R’. This basically means that o(R’) is a candidate relation of o(R) which proves
the above claim.

Example 4.2 Suppose we have the following relation (R):

tid | X Constraint
1 ex_mar | true
5 true

Let us also assume that a selection operation is performed on this relation with the selection condition

OX)=((X=5)V(X=7).
By the above definition oo (R) is :

tid | X Constraint
1 | exemar | (X =5)V(X =7))
205 (X=5)v(X=T1))

B
Rep(oe(R)) is {R1,R2} such that, Ry = and Ry =1 7|
5

,Ry=|[ 21.... Hence, og(Rep(R))
5

On the other hand, Rep(R) is {R|,RY,. ..} such that, R} =
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!

Thus co(Rep(R)) = Rep(oe(R)).

is {RY,RY} such that, R} =

Correctness of the other relational operators follow similarly.

4.2 Projection

The projection operator is easy to define, because its behavior is very similar to the behavior of the
standard projection operator. The main difference is that the constraints associated with some of the
me-tuples may undergo a change when this operation is executed.

For example, consider the query

PROJECT Person
FROM ( SELECT * FROM emp WHERE Employer = ncr)

The table returned by the inner select is shown in Example 4.1. If we were to do a standard project
on this (and naively carry the constraints along, as before, by replacing old tuple-ids by the new
tuple-ids), we would obtain the table:

tid | Person | Constraint

22° | sherry | true

23° | ed (Employer = ner)
25° | vic (Employer = ner)
26° | oscar | (Employer = ner)

However, these expressions refer to the non-existent field, employer, which makes the future evalu-
ation of these constraints impossible. Nevertheless, the Person, Ed, is in the projected name field
iff the constraint associated with the original mec-tuple was satisfied. Hence, we need to allow the
constraints in a projection to refer to the fields of other mc-tuples. In this example, this would be
done as follows:

tid | Person | Constraint

22° | sherry | true

23° | ed (23°. Employer = ner)
25° | vic (24*. Employer = ner)
26° | oscar | (25°.Employer = ner)

Addition of tuple pointers necessitates the storage of the intermediate tables. If an intermediate table
is deleted, those mec-tuples which point to it need to be reconsidered. The associated constraints of
those me-tuples could be assumed to be true (with an optimistic approach) or could be assumed to
be false (with a skeptical approach) — this leads to the null tuple. However, when such nonmonotonic
inferences are made, the correctness of answers generated cannot be guaranteed.

4.2.1 Projection

The Projection operator (II) is defined as follows:
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a:{C} eIl (R,a,) — in_project(a:{C}, R, a,)
where a : {C'} denotes an me-tuple of the form < aq, .., a,, C' > and in_project is defined as follows:

in_project(t : {ci},raz) — rlEx:{c.} A
(t = zlax]) A (project_constr(c, ¢y, ar))

Here project_constr is a predicate which is used to reflect the projection operation onto the constraint
part of the mec-tuplesin the relation.

4.3 Join

The behavior of the join operator in the presence of null values is slightly different from the behavior of
the standard join operator. To see this, consider the phone relation with the schema (Name, Phone)
in Appendix A, and consider another relation, Ry having the schema (O f fice, Phone) meaning that
Phone is in the O f fice. Let us now see what happens when we attempt to join the following two
me-tuples from phone and R2, respectively.

t; is in phone relation and 5 is in Ry where:
t1 = < va_mar(elaine), ex_mar, true >
ty = < va_mar(1221), ma_mar,true >

It is not obvious how to do a join operation on the Phone attribute because the semantics of the null
markers residing in the Phone-slot are different. We now define an operation, called the marker join
operator, that will facilitate the combination, via a join operation, of such me-tuples. To see how this
is implemented, we observe, in the above case, that the joined triple

< va-mar(elaine),?, 1221, true >

should exist in the resulting join relation iff the office room 1221 does indeed contain a phone in it, and
that phone is the same phone that Elaine uses. (How to fill in the “?” above will become apparent as
we proceed ).

4.3.1 Marker Join Operator

If the joining attributes are t1.X and ¢3.Y where t; is an me-tuple in relation Ry and t5 is an me-tuple
in relation R, then the marker join operator (®,,;) can be defined as follows (on the join attributes):
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X Y H J ‘ Constraint
va_mar | va_mar | va_mar —
va_mar | ex_mar va_mar (t2.Y =a)?
va_mar | ma-mar || va-mar (t2.Y =a)?
va_mar | pa_mar || va-mar (t3.Y = a)?
va_mar | pm_mar || va_mar (t3.Y = a)?
va_mar | plmar — —
ex_-mar | exr_mar exzmar | (11.X =1.Y = J)
ex_mar | ma_mar | ex-mar | (41.X =$.Y =J)
ex_mar | pamar | pa_mar | (41.X =Y =J)
ex_mar | pm_mar | pa_mar | (41.X =Y =J)
ex_mar | pl_mar — —
ma_mar | ma_mar | ex-mar | (41.X =t.Y =J)
ma_mar | pa_mar | pa_mar | (1.X = .Y =J)
ma_mar | pm_mar | pa_mar | (41.X = 6. =J)
ma_mar | pl_mar — —
pa_mar | pa_mar pa-mar | (t1.X =t.Y = J)
pa_mar | pm_mar || pa_mar | (t1.X =t.Y =J)
pa_mar | pl_mar — —
plmar | pl_mar — —
pl_mar | pm_mar — —

| (L. X =tY =) |

‘ pm_mar ‘ pm_mar H pa_mar

1. If va(X) = va(Y) then the mec-tuple obtained by performing the join is in the result, else it is not in the result.
2. If va(X) C va(Y) then the me-tuple obtained by performing the join is in the result, else it is not in the result.

3. ais the value stored in the attribute-slot X, ie. va(X) = {a}.

The following example shows how the marker join operator is used in joining two tables:

Example 4.3 Let Ry and Ry be two null valued relations:

tid | Person | Employer Constraint
R 21 | sherry | ncr true
92 | ed pa_mar = {ibm necr} | true
23 | vic ma_mar true
tid | Person-2 | Employer Constraint
R 71 | kate ibm true
272 | john pa_mar = {ibm ncr} | true
73 | kristina | ma_mar true

Then the join of this two relations is:
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tid | Person | Employer Person-2 | Constraint
91 | sherry | ncr john (72.Employer = ner)
92 | sherry | ncr kristina | (73.Employer = ner)
93 | ed ibm kate (71.Employer = ibm)

Ry X Ry: 94 | ed pa_mar = {ibm,ner} | john (22.Employer = 72. Employer = Employer)
95 | ed pa_mar = {ibm,ner} | kristina | (22. Employer = 73. Employer = Employer)
96 | vic ibm kate (23.Employer = ibm)
97 | vic pa_mar = {ibm,ner} | john (23.Employer = 72. Employer = Employer)
98 | vic er_mar kristina | (23.Employer = 73. Employer = Employer)

It is important to note that in some cases, the constraint part of the resulting me-tuple t3 contains
references to one or both of the original me-tuples participating in the join.

4.3.2 Joined Predicate

This is a ternary predicate of the form: joined(t1,t2,t3) where t1, t; and t3 are me-tuples . The
above atom is true iff {5 is the result of applying the marker join operation on the joining attributes of
me-tuplesty; and 15, and taking the conjunction of the constraints of ¢; and ¢ and otherwise applying
the regular join operation to the tuples.

4.3.3 Join

This operator takes two me-tuples and applies the Marker Join Operator to all the joining attributes
involved in them. The conjunction of the resulting “joining” constraints, as well as the original
constraints in the two parent mec-tuples forms a new, composite constraint.

a € X (Ry, Ry) «— in_join(a, Rq, R3)

where in_join is defined as follows:

in_join(x,r1,7r2) — 1 |FE YA
T E 2 A joined(y, z, )

4.4 Union, Intersection and Difference
4.4.1 Union

The definition of the union operator is exactly as it was in the standard case.

a e (R1, Ry) «— in_union(a, Ry, Ry)

where in_union is defined as follows:

in_union(x,r1,r2) — (11 E 2) V (rg F @)
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4.4.2 Intersection

The definition of the intersection operation is somewhat different from the standard case. To see this,
consider the case when <wa_mar (20),¢; > is in Ry and <wa_mar (20),cg > is in Ry. In this case we
would expect the me-tuple <va_mar (20),¢1 A ¢ > to be in the intersection. However, the standard
definition of the intersection operation does not yield this result because it is not equipped to handle
constraints. Hence, the definition of the intersection operator needs to be modified. We define it as
follows:

a € (Ry, Ry, K) — in_intersect(a, Ry, Ra, K)
where in_intersect is defined as follows:

inzntersect(x : {cy}, 1,70, k) — (M Ey{e})A(re = 2 {c. A
(z = y©iz))A

(cz =cy Ney)

The operator “¢;” is defined in such a way that for each attribute A,
va(z.A) = va(y.A) ﬂva(Z.A).

If this intersection results in an empty set for at least one of the attributes, then the mec-tuple is the
null tuple.
Thus, in the example given above, the new definition yields <va_mar (20), ¢ Acy > in the intersection.

4.4.3 Difference

The Difference operator is also slightly different from its standard counterpart. It is defined as follows:
aeDif (R, Ry, K) — in_dif(a, Ry, Ry, K)
where in_di f is defined as follows:

indif(z:{cp},r,r0,k) — (rmEy:{c)A(re E 2z {c:})A
(((z = yOa,a2) A (ex = ¢y))V
((z = yOa,B2) A (cz = &)V

(1= 1) A (ca = e Ame2))

For a specified attribute A, “©4 4" is defined so as to satisfy the equality

va(z.A) = va(y.A) ﬂ((Dom(A) U{J_}) —va(z.A)).

If this intersection results in an empty set for the domain of the attribute A, then the associated
me-tuple is the null tuple.

Note that for every attribute in the schema, we have a conjunct in the difference operator.
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An example will help the reader see how this operator works. Let <wva_mar (20),¢; > be in Ry and
let <va_mar (20),cz > be in Ry. In this case, the me-tuple <va_mar (20),c¢; A —¢q > will be in the
difference.

Having described the basic, primitive operations in the null value algebra, we are now in a position to
study the algebraic relationships that are true within this algebra. These algebraic relationships can
be used for effective query optimization.

5 Properties of the Null-Valued Algebra

In the preceding sections, we have defined an algebra for databases containing null values. In this
section, we establish various properties of this algebra. In the case of each such property, we discuss
the impact of the property involved.

In the rest of this section, whenever op; and opy; are two algebraic operators, opsop; denotes the
application of op; followed by the subsequent application of ops.
Property 1 Rep(ci03) = Rep(o201).

This property says that the order in which the selection operators are applied does not matter.

Proof : Basically, an mc-tuple t is in o104 if the following holds:
((RE yN A(Oz,y,2)) ANA(O1,z,1))

where R is the input relation.
Changing the order of the application of ®, and ®; will change the syntax of the resulting con-
straints, but the satisfiability of the two constraints will stay unchanged. Hence we have,

(R y)A AOg,y,2)) AA(O2,2,1)) — (R | y)A MO, y,2)) A MOy, 2,1))

and the above equality holds.
O

Property 2 Rep(llo) = Rep(cll) (If the selection condition applies to the relation produced by the
projection).

Proof : Follows directly from the properties of the selection operator and the commutativity of the
conjunction of constraints.
O

The above result says that the order in which projections and selections are done is not relevant (as
long as the selection condition still applies to the result of the projection). An implication of this
result is that whenever selections and projections are to be done one after the other, it may be better
to do the projection operation first as we may then be able to eliminate various constraints that do
not apply to the fields that we are projecting.

The next result is more interesting. It says, in effect, that converting relations (including interim
relations) to canonical form commutes with projection.
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Property 3 Rep(CIl) = Rep(1IC) (if the union based semantics is used).

Proof : Note that we assume that the compaction operators use the same quasi-keys.

When applied to a relation, the projection operator does not make any semantical changes to the
constraints of mec-tuples , but only removes columns from the table. Hence, the behaviour of the
compaction operator (which, in this case, only takes the union of the domains of the markers) is not
affected by the projection operation. Hence, it is possible to perform the compaction operation before
or after the projection without changing the result.

O

In the intersection based compaction semantics some tuples are omitted from the tuples after the
compaction, due to their empty attribute domains. This fact makes it impossible to guarantee the
above property.

In the standard relational model of data, it is well known that o(a M b) = o(a) M o(b). Similarly in
our extended model the following holds:

Property 4 Rep(o(a ™ b)) = Rep(co(a) X a(b)).

However, as shown by the following example, it may be hard to see this equality unless a database
history is kept to keep track of the temporary relations, and the way they were created.

Example 5.1 Let Ry and Ry be two relations with the following schemas:
Ry < Name, Weight >
Ry < Name, Weight >

Let these relations contain the following me-tuples :
Ry ¢ty =<wa_mar (John),ex_mar ,true >
Ry : ty =<wa_mar (John),ex_mar ,true >

Consider the selection condition (Weight < 175). Then:

Ry X Ry = < wamar (John),ex_mar ,(t;.Weight = t3.Weight = Weight) > .
o(Rqy M Ry) = < wva_mar (John),ex_mar ,(t1.Weight = t.Weight = Weight) A (Weight < 175) > .
When computing o(R1) X o(R3), we notice that:

o(Ry) = < wva-mar (John),ex_mar ,(t1.Weight < 175
o(Rz) = < wvamar (John),ex_mar ,(t3.Weight < 175

(th >

(t2 >
o(R1)Xao(Ry) = < wvamar (John),ex_mar ,(t1.Weight < 175) A

(12

(

to. Weight < 175) A
tr1.Weight = t.o.Weight = Weight) > .
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Here t,q4 and t,5 are mec-tuplesin intermediary relations. It is easy to see that one of the results,
viz. o(R1) X o(R3) contains a reference to an intermediate tuple, while the other computation,
o(R1 M Ry)does not contain such a reference.

Unfortunately, “join” need not be syntactically associative in the presence of multiple types of null
values, though semantically it is:

Property 5 Rep(a ™ (b X ¢)) = Rep((a X b)Xc).

To see when a syntactic difference may occur, consider the following example where Ry,Ry and R3 are
relations with the following schemas:

Ry < Name, Height >

Ry < SSN, Hetght >

Rs < PIN, Height >.

Example 5.2 Let these relations contain the following mce-tuples :
Ry ¢ty =<wa_mar (John),ex_mar ,true >
Ry @ty =<wa_mar (211567842),ma_mar , true >
Rs @ t3 =<wa_mar (2578),va_mar (6.0), true >.

Ry M Ry = < wa_mar (2578), va_mar (211567842), va_mar (6.0), (to.Height = 6.0) >
Ry M (Ry X R3) = < wa_mar (John),va_mar (2578), va_mar (211567842), va_mar (6.0),
(ty.Height = 6.0) A (t1.Height = 6.0) > .
Ry M Ry = < wva_mar (John),va_mar (211567842), ex_mar ,((t;.Height = ty.Height = Height) >
(Ri M Ry) XM Rs = < wa_mar (John), va_mar (2578), va_mar (211567842), va_mar (6.0),

(t1.Height = t3.Height = Height) A (t,.Height = 6.0) > .

Here ¢, is an me-tuple in the intermediate relation. It is easy to see that the resulting me-tuples are
different.

The positive result here is that if a value attribute is involved in a join operation, and if this value
marker is in the middle position (i.e. the join is of the form X MX(wva_mar M Y'), then no temporary
relation is needed.

Similarly the following equations hold.
Property 6 Rep(o(alJb)) = Rep(o(a)Ja(b)).
Property 7 Rep(o(a(\b)) = Rep(co(a)(a(b)).

Property 8 Rep(o(a Dif b)) = Rep(o(a) Dif o(b)).

Proof : The proofs of these properties are omitted.
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6 Experimental Results on Query Optimization

We have developed an experimental implementation of a database containing null values of the types
described in this paper. The implementation consists of a total of approximately 4000 lines of C-code
and runs on a Sparc/Unix workstation. The implementation is not an implementation of a full-fledged
DBMS: rather, it consists of a body of algorithms implementing the various selection, projection, join,
and canonical form computation operations. Most of the code relates to managing the constraints
that arise when null values are present. Below, we report on the result of four experiments we have
conducted based on this prototype implementation.

All the experiments (except joins) use six relations Ry, .., R having identical schemas
< Ay, Ag, As >

where each of these attributes is of type integer. Relations (R1) and (R4) contain 250 tuples, relations
(R2) and (Rs5) contain 1000 tuples and relations(Rs3) and (Rg) contain 2000 tuples. The first attribute
of each relation (A;) contains only va_mar markers. This attribute is the quasi-key attribute. The
other two attributes (A; and Asz) contain all possible markers (va_mar , ex_mar , pm_mar , ma_mar
,pa_mar ) with equal probability (20% each) for Ry, Ry, R3 and contain 50% va_mar , 50% (ex_mar ,
pm_mar , ma_mar ,pa_mar ) for for Ry, R5, Rs.

The experiments for joins are carried out on similar sets of relations. But this time there are two sets
of relations with schemas < Ay, A3, Az > and < Ay, A3, Ay > (so that, the join occurs on attributes
Ay and Ajy) and the va_mar ratio is taken to be 33.3% and 50% in different experiments.

All times in this section are given in miliseconds.

6.1 Experiment 1

Purpose: The main aim of this experiment was to study the equality o109 = o904. In particular, we
wished to determine whether it is better to first perform selections on relations with relatively few
null values, or to perform them on relations with a larger number of null values.

Method: We used two sets of timings. In the first, we let o1 be (41 = A3), and o2 be (A3 = As). Thus,
both the cascaded selections, o105 and o207 have the same selection condition, viz. (41 = Ay = As).
The result of these experiments is shown in Figure 1.

In the second set of timings, the only change we made was that o5 selected all tuples where A7 = As.
The net result of the cascaded selects, o104 and o907 is still the set of all tuples satisfying the condition
(A1 = Ay = As). The result of these timings is shown in Figure 2.

Interpretation of Results: In the first set of timings (cf. Figure 1), the cascaded selection oyo; first
performs selection on the condition A9 = Asz. This selection condition operates on attibute columns
containing a relatively large number of null values (and hence constraints). Consequently, it is relatively
hard to eliminate tuples. In contrast, the cascaded selection o904 first applies the selection condition
o1 which checks if Ay = Ay. The attribute field Ay contains only va_mar markers, i.e. it contains no
null values. Thus, a relatively large number of tuples can be eliminated by this selection condition
prior to performing a selection (viz. o3) that operates on attribute fields containing relatively large
numbers of null values. Thus, the times recorded for the cascaded selection o901 are better than for
the cascaded selection oi09.
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Figure 1: 0907 is shown by dotted lines (- - -), 0103 is shown by solid lines (—)
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Figure 2: 0907 is shown by dotted lines (- - -), 0103 is shown by solid lines (—)
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In contrast, consider Figure 2, reflecting the second set of timing data. Here, both o1 and oy make
comparisons against the attribute A; which contains only value markers. Thus, both the selection
conditions Ay = Ay and A; = Az eliminate relatively even numbers of tuples, and hence, the cascaded
selections. o109 and o904 yield almost identical results.

The observant reader will notice that all times in Figure 2 are lower than in Figure 1. This is not an
accident — rewriting cascaded selects so as to make all comparisons apply to at least one field that has
only (or mostly) value markers leads to a significant savings in time.

Impact on Query Optimization: Whenever a selection of the form Ay = A, = A3 = ... = A, is being
performed, if one of the attributes, say A;, consists entirely (or almost entirely) of value markers, then
this set of equalities should be computed as the cascaded select

*

b b b
0'1 ...O'Z'_IO',H_I...O'

n

where o7 uses the selection condition (A; = A;).

6.2 Experiment 2

Purpose: The main aim of this experiment was to determine how the overall performance changed
when the attributes A, and As had half of their slots containing value markers, with the other half
being evenly distributed among the other types of markers.

Method: The same two sets of timings as in Experiment 1 were taken.

Interpretation of Results: Figures 3 and 4 show the results using the same two sets of timings as in
Experiment 1. As the reader will observe, the observations of Experiment 1 continue to hold here.
Furthermore, when the number of value markers is increased (from 20% in Experiment 1 to 50% in
Experiment 2), the overall processing time for the cascaded selections drops. This is because the
presence of value markers causes a large number of tuples to be eliminated, thus eliminating the need
to manage various associated constraints.

Time

11730

9890

5850
5000

1470
1240

1 1
250 1000 2000

# of Tuples

Figure 3: o907 is shown by dotted lines (- - -), o103 is shown by solid lines (—)
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Figure 4: 0907 is shown by dotted lines (- - -), 0103 is shown by solid lines (—)

Impact on Query Optimization: The performance of the system increases as the number of value mark-
ers involved in the selection criterion increase. Thus, it is better to do selections first on attributes

that have a large proportion of value markers.

6.3 Experiment 3

Purpose: The purpose of the third experiment was to study the equality Il = ¢ll, and to determine
which order was better when computing these expressions in databases that contain null values.
Method: In this case, we took two sets of timing data. First, we took ¢ to be A1 = A and 1II to
project on the attributes Ay and As. Hence, the result of the projection does not affect the selection
condition.

Second, we increased (as in Experiment 2) the proportion of value markers in Ay and Az to 50%, with
the other null values being evenly distributed over the remaining slots.

Interpretation of Results: Figure 5 contains the results of this experiment. It is clear from this figure
that performing the projection operation first decreases the overall average execution time.

The second set of timing data is shown in Figure 6. Note that the total times taken are smaller than
in the case of the first timing data.

Impact on Query Optimization: When we consider an expression of the form Ilo, then we are better
off rewriting this expression as oIl when possible. As the number of value markers increase, the impact
of this rewriting is likely to become more and more significant.

6.4 Experiment 4

Purpose: The aim of this experiment was to study the equality o(a X b) = o(a) M o(b). Recall that
these two operations are equal when the attribute b contains value markers only (otherwise these two
expressions are not equal).
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Figure 6: o(a M b) is shown by dotted lines (- - -), o(a) X o(b) is shown by solid lines (—)
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Figure 7: o(a M b) is shown by dotted lines (- - -), o(a) M o(b) is shown by solid lines (—)
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Figure 8: ¢(a M b) is shown by dotted lines (- - -), o(a) M o(b) is shown by solid lines (—)
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Method: The experiments have been performed over two sets of randomly generated relations as
described in the beginning of Section 6.
Interpretation of Results: The results are contained in Figure 7 and 8. They show that when the

relations contain a relatively high proportion of value markers, then performing the selections before
performing the join is advantageous. The reason for this is that the selections may eliminate many
tuples, thus performing the join operate on two relatively small relations. Furthermore, as the num-
ber of value markers involved in the attribute on which the selections are performed increases, the
advantage of performing selections first, before doing the join becomes more and more pronounced.
Impact on Query Optimization: The results imply that we are almost always better off doing selections
before doing joins.

7 Related Work

In this section we provide a survey of work on null values related to this paper. We exclude papers
that deal primarily with complexity issues or other topics such as the universal relation concept. Table
1 shows the types of null values considered by other authors and serves as a starting point for our
survey. We also include entries for other types of nulls and for papers that deal with constraints and
correctness. We are not aware of prior research on null values that involved experimentation for query
processing with different types of nulls.

Author-Year Ex. | Maybe | Plc.-H. | Partial | Part. M’be | Add. Constr. | Corr. | Expts

ANSI/X3/SPARC 75 v v Operational infor-
mation(available,
derived)

Codd 75,79 Vi

Grant 77 v v

Grant 79,80 v v

Lipski 79,81 Vi Vi

Imielinski-Lipski 81,84 v v v

Lien 79 v

Vassiliou 79 Vi Vi

Zaniolo 84 v v v

Wong 82 Probability
distribution

Biskup 83,84 v Universal null, v
Maybe tuples

Reiter 84,86 v v

Yuang-Chiang 87 Vi Disjunctive Vi
information

Grant-Minker 86 Vi Disjunctive
information

Minker-Perlis 85 Protected data Vi

Liu-Sunderraman 97,90,91 Disjunctive v
information, Pro-
tected data

Atzeni-DeAntonellis 93 Vi Vi Vi Vi Vi Probability Vi
distribution

Abiteboul-hull-Vianu 95 Vi Vi Vi

| Candan-Grant-Subrahmanian | Vi | Vi | Vi | Vi | Vi | | Vi | Vi Vi
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Research in null values began with the ANSI/X3/SPARC report [2] that distinguished among 14 types
of nulls. However most of these types are special cases of our existential and place holder nulls, the
others are operational definitions such as “available, but of suspect validity(unreliable)”. The first
paper that deals with the handling of null values in query processing is Codd[7]. A 3-valued logic is
introduced for the handling of existential nulls. Grant [9] points out a flaw in this method and suggests
a method to solve this problem as well as to deal with placeholder nulls. Additional early work on
partial nulls appears in Grant[10, 11], Lipski [16, 17].

Conditions (constraints) were introduced into tables in Imielinski-Lipski[13, 14] in connection with
representation systems. Variables represent null values in these tables; constraints involving equalities
and inequalities of variables and constraints may be associated with individual rows and the whole
table. The constraints are used to limit the allowed interpretations for existential nulls. A table T" with
null values is assumed to stand for all tables that would be obtained from the table by substituting
constant values for the variables in accordance with the constraints. The set of tables (without nulls)
that T represents is written as rep(T'). For a query ¢ that may involve a certain set of operations of
the relational algebra, the set of answers to ¢ on T may be represented by ¢(rep(T)). A table ¢'(T)
correctly represents the query if rep(¢'(T)) = q(rep(T)). It is shown that queries in the relational
algebra can be represented correctly by the set of conditional tables.

Building on the work of Lien[15] and Vassiliou [24], Zaniolo [27] introduces the maybe null, as the “no
information” null. The operations of the relational algebra are generalized to this framework. Another
approach to the null value problem is formulated in Wong[25] who assumes a probability distribution
for an unknown value in a domain. Biskup [6] introduces the universal “don’t care” null in analogy
to the existential null. in both Biskup[5] and [6], the correctness of the operations are proved and
“maybe tuples” from previous operations are allowed and used in a systematic way.

Reiter[22] proposed a formal theory of databases in first-order logic including existential nulls. Exis-
tential nulls are treated as Skolem constants without unique name axioms. Within this framework a
correct, but incomplete query evaluation algorithm is given for the relational calculus by Reiter[23].
Yuan-Chiang[26] extend the work of Reiter; their algorithm is complete and allows indefinite informa-
tion in the form of a disjunction. Grant-Minker[12] also provide an algorithm for finding the answers
to a query in a disjunctive database with negation interpreted through the Generalized Closed World
Assumption. In some cases, the Closed World Assumption and its variants allow too much negative
information to be deduced, hence the notion of protection for atoms was introduced, that is, protection

from assuming the negation of the atom. A query evaluation algorithm is given for such situations by
Minker and Perlis[21].

Among recent papers the ones by Liu-Sunderraman [18, 19, 20] deal with indefinite information in the
sense of disjunctive tuples as well as protection in the sense of maybe tuples. The relational algebra
is generalized to what are called I-tables, and correctness is proved. There are also several recent
books on relational database theory that contain information on null values. Atzeni-DeAntonellis
[3, Chapter 6] deals with all five types of nulls. The representation uses first-order formulas with a
regular existential quantifier; in some cases additional predicates are needed omitting the attribute
on which the null values, like the placeholder null, occurs. Implication formulas must also be set up
among the predicates. Probability distribution on the domain and constraints are also introduced for
existential nulls. Abiteboul-Hull-Vianu [1, Chapter 19] deal mostly with the Imielinski-Lipski work
and also include material and references on complexity issues.
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8 Conclusions

A frequent occurrence in relational databases is that certain attribute slots in tuples cannot be filled
in for any of a number of reasons. These reasons could include the fact that a value exists but is not
known (existential null), a value may or may not exist (maybe null), it is known that a value does
not exists and this field is inapplicable to the tuple being considered (placeholder null), a value exists
and is known to be within a specified set (partial null), and it is not known whether a value exists or
not, but if it does, it must fall within a specified set (partial placeholder null). Despite the fact that
the existence of these different null values has been noted for a long time (at least twenty years), no
unified treatment of these different null values has emerged.

An important start in this direction was made by Imielinski and Lipski who developed a notion of
condition tables where tuples had associated conditions. The tuples were “in” the given relation
only if the affiliated condition was true. Imielinski and Lipski used these intuitions to develop an
elegant treatment of one kind of null value, viz. the existential null. In this paper, we have shown
how constraints may be used to provide a unified treatment of all the types of nulls considered above.
Though most of these null values have been treated individually (e.g. [3]), these treatments have
considered the respective null values in isolation, and have not provided a single unifying framework.

Based on our unified constraint-based model, we have developed an algebra for databases containing
these varied types of null values. We have studied various mathematical aspects of this algebra, and
have, in particular, established various equivalences. We have developed a prototype implementation
of these different types of null values, and used this implementation as an experimental testbed to
evaluate alternative query evaluation strategies when null values are present.
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Appendix A: A Sample Database

Relation phone:

tid | Name | Phone Constraint
1 | john | 927 5872 true
2 | tony | 996 1873 true
3 |ed ma_mar true
4 | lisa 926 2890 true
5 | elaine | ex_mar true
6 | irene | 789 1892 true
7 | david | pa-mar = {926 2890, 593 1340} | true

Relation spouse:

tid | Husband | Wife Constraint

11 | john sherry true

12 | ed ex_mar (Wife = alicev Wife = susan)

13 | tony pl_mar true

14 | vic pa_mar = {lisa, joan} | true

15 | david ma_mar true

16 | oscar elaine true
Relation emp:

tid | Person | Employer Constraint

21 | john ibm true

22 | sherry | ncr true

23 | ed pa_mar = {ibm,ncr} | true

24 | irene ibm true

25 | vic ma_mar true

26 | oscar | pm_mar = {ncr} true
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Appendix B: Sample Database after some algebraic operations

Relation phoney after selection with condition Phone = 927 5872:

tid | Name | Phone Constraint

1* | john | 927 5872 | true

2° | ed ma_mar | (Phone = 927 5872)
3% | elaine | ex_mar | (Phone = 927 5872)

Relation spouse; (relation spouse after projection on attribute “Husband”).

tid | Husband | Constraint

11° | john true

12* | ed (spouse.12.Wife = alice V spouse.12.Wi fe = susan)
13* | tony true

14° | vic true

15 | david true

16° | oscar true

Relation emps after selection with condition Employer = ner:

tid | Person | Employer Constraint

22% | sherry | ncr true

23°% | ed pa_mar = {ibm,ncr} | (Employer = ner)
25°* | vic ma_mar (Employer = ner)
26* | oscar | pm_mar = {ncr} (Employer = ner)
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