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This dissertation presents efficient and optimal numerical algorithms for the

solution of parameterized partial differential equations (PDEs) in the context of

stochastic Galerkin discretization. The stochastic Galerkin method often leads to

a large coupled system of algebraic equations, whose solution is computationally

expensive to compute using traditional solvers. For efficient computation of such

solutions, we present low-rank iterative solvers, which compute low-rank approxi-

mations to the solutions of those systems while not losing much accuracy. We first

introduce a low-rank iterative solver for linear systems obtained from the stochastic

Galerkin discretization of linear elliptic parameterized PDEs. Then we present a

low-rank nonlinear iterative solver for efficiently computing approximate solutions

of nonlinear parameterized PDEs, the incompressible Navier–Stokes equations.

Along with the computational issue, the stochastic Galerkin method suffers



from an optimality issue. The method, in general, does not minimize the solu-

tion error in any measure. To address this issue, we present an optimal projection

method, a least-squares Petrov–Galerkin (LSPG) method. The proposed method

is optimal in the sense that it produces the solution that minimizes a weighted ℓ2-

norm of the solution error over all solutions in a given finite-dimensional subspace.

The method can be adapted to minimize the solution error in different weighted

ℓ2-norms by simply choosing a specific weighting function within the least-squares

formulation.
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Chapter 1: Introduction

Forward uncertainty propagation for parameterized algebraic systems is im-

portant in a range of applications to characterize the effects of input uncertainties

on the output of computational models. Such parameterized algebraic systems arise

in many important problems in science and engineering, for which models using

stochastic partial differential equations (PDEs) are formulated and where uncer-

tain input parameters are treated as a set of random variables. Examples of such

problems include diffusion/ground water flow simulations with uncertain diffusiv-

ity/permeability [53,115], solid mechanics with uncertain material properties [43,44],

incompressible fluid flow problems with uncertain viscosity [63,113], thermofluid flow

problems [58,62], and reacting flow problems with chemical kinetics [29,88] with un-

certain inputs. Parameterized algebraic systems also arise in other computational

models such as models for reconstructing a high-resolution image from a set of low

resolution images [22], and the PageRank algorithm [15, 26].

There is a number of sources that cause input uncertainties, for example, an

inherent stochastic nature of physical phenomena, and errors in measuring physical

properties of objects of interest [46]. If the source of uncertainty comes from a

lack of knowledge about physical properties, one feasible approach to handle this
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is to collect a finite number of observations, characterize the statistical quantities

of the properties, and model the properties as random fields governed by a set of

random variables. That is, the physical property can be modeled as a random

function such that the value of the random field varies over the spatial domain and

the “stochastic domain” (i.e., the image space of the random variables). Suppose,

for example, that we are interested in diffusion of chemicals in a medium with an

unknown diffusivity. Then the diffusivity can be modeled as a random field based on

the statistical quantities (e.g., sample mean and covariance) obtained from a finite

number of observations.

There are several ways to model a random field. If the mean and the covari-

ance function of a random field over the spatial domain are known, the random field

can be represented as a Karhunen-Loève expansion [67], which is a linear expan-

sion of orthogonal functions that depend on the spatial parameters and for which

the coefficients of those functions are pairwise uncorrelated random variables. The

orthogonal functions can be obtained by solving an eigenvalue problem associated

with the covariance function. In a discrete sense, the KL-expansion is equivalent to

principal component analysis [79]. To simulate a random field in terms of a finite

number of random variables, the random field can be approximated by truncating

the KL-expansion with a finite number of terms so that only the terms with larger

variances are retained. There are also alternatives to using the KL-expansion; a ran-

dom field can be modeled as a linear expansion of certain orthogonal polynomials,

which will be introduced in Section 2.1, and as a linear expansion of trigonometric

polynomials for weakly stationary random fields [49].
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When the uncertain input is modeled as a random field, the model output

(i.e., the solution of the algebraic system) also can be modeled as a random field,

that is, a random function depending on the spatial location and the same random

variables associated with the input random field. This can be seen from the fact that

a specific realization of the input parameters gives rise to a deterministic problem

and, consequently, leads to a specific realization of the solution function, the function

evaluated at those specific values of the input parameters. Thus, the effects of the

uncertain input on the model output (i.e., the solution) can be characterized by

the statistical properties of the solution such as the mean, the variance, and higher

moments of the solution.

The most straightforward approach to obtain statistical moments of the solu-

tion is to use the Monte Carlo method [72], which estimates the statistical moments

of the solution from a finite number of sample solutions. That is, the Monte Carlo

method requires a set of realizations of an input random field and collects solutions of

deterministic problems associated with given input random field realizations. Then

the statistical moments of the solution can be approximated by the sample mo-

ments. The Monte Carlo method is very simple and powerful; the method exhibits

1√
N

convergence, where N is the number of samples, regardless of the dimension of

the sample space. At the same time, however, if high accuracy is required in the ap-

proximation, N may need to be very large. Moreover, the Monte Carlo method can

be very expensive if solving each deterministic problem associated with a sample is

expensive. For faster convergence, there have been many improvements made such

as Quasi-Monte Carlo methods [74] using pseudo-random sequences and sampling
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methods based on Markov-Chain Monte Carlo methods [71]. Developing an optimal

sampling strategy in the uncertainty quantification framework is an active area of

research.

Recently, many advanced algorithms have been developed to achieve such sta-

tistical characterization of the solution with efficiency. One of the widely used

approaches is spectral methods [46,110], where the solution is expressed as a linear

expansion of a finite number of certain orthogonal basis polynomials depending on

the input random variables. Once the solution expansion is computed using numer-

ical algorithms, the statistical quantities of the solution can be computed directly

and inexpensively by sampling the solution expansion. This approach was inspired

by the work [108], which studied the decomposition of a Gaussian random process

(or, Gaussian random field), where the Gaussian random process is represented as

a linear expansion of Hermite polynomials, which are orthogonal with respect to

an inner product induced by the Gaussian probability density function. The series

expansion displays a mean-square convergence; the expected value of a squared error

goes to zero as the number of terms in the expansion goes to infinity.

In the early work on spectral methods [42, 44, 102] in uncertainty quantifi-

cation, the Hermite polynomials are used to represent the solution function and

numerical algorithms were developed to compute the coefficients of the solution ex-

pansion. This approach has been shown to be very successful when the random

variables parameterizing the problems follow the Gaussian distribution; the Her-

mite polynomial expansion exhibits exponential convergence rate for the Gaussian

random field [68]. For non-Gaussian random fields, however, the use of the Hermite
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polynomials may result in significantly slower convergence [112]. With the recent

development of the generalized polynomial chaos (gPC) expansion [112], the type of

the orthogonal basis polynomials can be chosen based on the underlying measure of

the input random variables, which results in better convergence. The effectiveness

of the gPC expansion in characterizing the solution statistics of the stochastic PDEs

has been demonstrated in [112–114].

After choosing the type of the orthogonal polynomials, spectral methods re-

quire a numerical algorithm to compute coefficients of the solution expansion. The

first class of numerical algorithms developed for spectral methods is known as

stochastic Galerkin methods [1, 3, 28, 46, 69], which extends a classical Galerkin ap-

proach for deterministic equations and, thus, is based on a Galerkin projection

technique. As in the finite element method (FEM) for solving PDEs, the stochas-

tic Galerkin method enforces a Galerkin orthogonality condition on the residual of

stochastic PDEs with respect to the span of the gPC polynomial basis using an inner

product associated with an underlying probability measure of the random variables.

This procedure results in a system of (non-)linear equations where the number of

equations is the same as the number of unknown coefficients and, thus, the coeffi-

cients can be obtained by solving the system of equations. The stochastic Galerkin

method is popular for its simplicity (i.e., the trial and test bases are the same) and

its optimality in terms of minimizing an energy norm of solution errors when the

underlying PDE operator is elliptic and self-adjoint.

Another class of numerical algorithms can be thought of as specialized sampling-

based methods. These methods generate a set of independent realizations of random
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inputs based on their probability distribution and solve the corresponding determin-

istic realizations of the problems, and then use the resulting solutions to construct

spectral approximations that can be used for simulation. There are several types

of numerical algorithms of this type. One of the popular methods is the stochastic

collocation method [2,111], which solves deterministic problems on a set of predeter-

mined nodes in the space defined by the random variables. The stochastic collocation

method computes the spectral approximation by constructing a Lagrange interpolat-

ing polynomial. A variant of the stochastic collocation is to compute the coefficients

of the solution expansion using quadrature rules. In this approach, the solution is

directly projected onto each polynomial basis function exploiting the orthogonal-

ity of the polynomial basis functions. This approach is known as a pseudo-spectral

approach [109, 110]. Another sampling-based approach for the spectral methods

is a polynomial-regression-type approach with gPC expansion (e.g., least-squares

regression [54, 96, 97], least angle regression [12], compressive sampling [32, 50]).

Compared with sampling-based methods, the stochastic Galerkin method can

lead to smaller errors for a fixed basis dimension [37,110,111]. In general, however,

the stochastic Galerkin method suffers from two main problems. First, the method

typically leads to a large set of coupled deterministic equations, for which compu-

tations will be expensive for large-scale applications. The solution function lies on

a tensor product space of a spatial domain (a physical space) and a “stochastic

domain” (a parameter space), and, after discretization, the number of coupled de-

terministic equations to be solved is the product of the numbers of basis polynomials

in the spatial domain and the stochastic domain (i.e., degrees of freedom in each
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domain). When the solution is sought in a high-dimensional space (i.e., dimension

of the discrete physical space or the number of basis polynomials on the parameter

space is large), the computation of the solution can be very expensive. Secondly,

the method may not produce numerical solutions that minimize any measure of the

solution error if the underlying PDE operator is not symmetric positive-definite. For

many practical problems such as flow problems, PDE operators are not self-adjoint.

In an effort to alleviate the first difficulty, sparse structures of system matri-

ces that can be obtained from the stochastic Galerkin method have been studied.

To compute solutions of those systems, efficient iterative algorithms such as Krylov

subspace methods [33, 34, 40, 56, 80, 81] and multigrid methods [27, 35, 64, 94] are

applied. Matrix-vector products are essential matrix operations in those iterative

solvers and those products can be performed very efficiently by exploiting the spar-

sity structures of system matrices. In combination with specially designed precondi-

tioners [81, 84, 101, 105], those iterative solvers have been adjusted and successfully

applied to many stochastic PDEs. As the size of the problems become larger, how-

ever, the computational costs of the iterative solvers increase rapidly, which makes

use of those iterative solvers for high-dimensional problem less attractive.

The second issue of the stochastic Galerkin method has not been explored

much. In many applications, however, quantities such as solution error or solution

residual can be considered as more important metrics for measuring performance

of solution methods. Numerical experiments in [73] demonstrated that, for certain

classes of stochastic PDEs, the stochastic Galerkin method fails to generate a solu-

tion that minimizes a certain norm of solution error. Weighted projection methods
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(i.e., Petrov–Galerkin projection techniques) have been proposed to resolve the issue.

The weighted projection method successfully minimizes the solution error although

the proposed methods require problem-specific projection bases.

In this thesis, we have developed efficient and optimal numerical methods to

address and overcome the issues raised above. To address the first problem (high

costs), we have developed efficient iterative solvers that decouple matrix operations

associated with the spatial domain and the stochastic domain, which makes the

computational complexity depend on the sum of the numbers of degrees of freedom

in the spatial domain and the stochastic domain rather than their product. In par-

ticular, we consider a tensor variant of the Krylov subspace methods that operates

in such a decoupled manner so that the computational costs and memory require-

ments can be significantly reduced. In addition, the variant of the Krylov subspace

method will be used to compute a low-rank approximate solution, which further

reduces the computational costs. The second problem is addressed using an opti-

mal projection method, the stochastic least-squares Petrov–Galerkin method, which

produces solution coefficients that minimize a certain measure of the solution error.

We study the behavior of the stochastic Galerkin solution in several error measures

and propose an optimization framework that provides an optimal projection basis

to minimize a certain measure of the solution error.

8



1.1 Outline of Thesis

An outline of the thesis is as follows. We begin in Chapter 2 by introducing

the stochastic Galerkin method and deriving the stochastic Galerkin system that

arises from stochastic diffusion equations. Then we briefly review existing iterative

solution methods for a large coupled deterministic system arising from the stochastic

Galerkin method.

In Chapter 3, we discuss the use of a low-rank tensor variant of the Krylov

subspace method in the stochastic Galerkin setting. For the efficient computation,

we propose a two-level rank reduction scheme, which identifies an important sub-

space in the stochastic domain and compresses tensors of high rank on-the-fly during

the iterations. The proposed reduction scheme is a coarse-grid method in that the

important subspace can be identified inexpensively in a coarse spatial grid setting.

The efficiency of the proposed method is illustrated by numerical experiments on

benchmark elliptic linear stochastic PDE problems.

In Chapter 4, we develop a low-rank tensor variant of Newton–Krylov subspace

methods for stochastic Navier–Stokes problems in the stochastic Galerkin setting.

We base our development on a deterministic variant of a “linearization” scheme and

solve a linear system at each nonlinear iteration step using the low-rank Krylov

subspace method. We test our method under various settings of the Navier–Stokes

equations and compare results with the conventional full-rank method.

In Chapter 5, we propose a new projection framework, stochastic Least-Squares

Petrov–Galerkin (LSPG) method, which provides an optimal projection method.
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The proposed method is optimal in the sense that it produces the solution that

minimizes a weighted ℓ2-norm of the residual over all solutions in a given finite-

dimensional subspace. With extensive numerical experiments, we show that the

weighted LSPG methods outperforms other spectral methods in minimizing corre-

sponding target weighted norms.

In Chapter 6, we draw some conclusions.
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Chapter 2: Background: The stochastic Galerkin method

In this chapter, we begin with a brief introduction of the stochastic Galerkin

method with stochastic diffusion equations as a model problem. The stochastic

Galerkin discretization procedure is discussed only with the stochastic diffusion

problem, an extension of the stochastic Galerkin formulation to other linear elliptic

PDEs with uncertain input is straightforward.

2.1 Overview of the stochastic Galerkin method

Consider the steady-state stochastic diffusion equation with homogeneous Dirich-

let boundary conditions,



















−∇ · (a(x, ω)∇u(x, ω)) = f(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,

(2.1)

where the diffusion coefficient a(x, ω) is a random field and ω is an elementary event

in a probability space (Ω,F , P ). Here, Ω is a sample space, F and P are a σ-algebra

on Ω and a probability measure on Ω, respectively. The gradient operator ∇ only

acts on the physical domain D. We begin by introducing a weak formulation of a

deterministic problem of (2.1), which arises from sampling an elementary event ω(k)
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from the probability space Ω: Find u(x, ω(k)) ∈ H1
0 (D) such that

∫

D

a(x, ω(k))∇u(x, ω(k)) · ∇v(x)dx =

∫

D

fv(x), ∀v(x) ∈ H1
0 (D). (2.2)

The stochastic Galerkin method seeks a solution satisfying an “extended” weak

formulation of (2.1): Find u(x, ξ) in V = H1
0 (D)⊗ L2(Ω) such that

〈
∫

D

a(x, ω)∇u(x, ω) · ∇v(x, ω)dx
〉

=

〈
∫

D

fv(x, ω)

〉

, ∀v(x, ω) ∈ V (2.3)

where 〈·〉 refers to expected value with respect to the probability measure on L2(Ω)

and V is equipped with the gradient norm

‖v‖2V =

∫

Ω

∫

D

a(x, ω)|∇v(x, ω)|2 dx dP (ω). (2.4)

If a(x, ω) is bounded and uniformly positive,

0 < amin ≤ a(x, ω) ≤ amax < +∞, a.e. in D × Ω, (2.5)

then the Lax-Milgram lemma can be applied to establish existence and uniqueness

of a solution u(x, ω) ∈ V of the variational problem (2.3). The gradient norm is also

called an energy norm [3]. It has been shown that the solution error in the energy

norm is minimized by the stochastic Galerkin solution [3,73] as in this example, the

underlying PDE operator is self-adjoint and coercive.

For the uncertain diffusivity a(x, ω), we consider a spectral representation of
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the random field using gPC expansion,

a(x, ξ(ω)) =

∞
∑

i=0

ai(x)ψi(ξ(ω)), (2.6)

where ξ(ω) = {ξ1(ω), . . . , ξM(ω)} is an M-dimensional random variable with joint

probability density function ρ(ξ). We assume that the random variables are indepen-

dent and identically distributed and the stochastic domain is denoted by Γ =
∏M

i=1 Γi

(i.e., the joint image of ξ) where ξi : Ω → Γi. Here, {ψi(ξ)} is an orthogonal gPC

basis, for which the details will be introduced in Section 2.2. In the sequel, we

denote the random diffusivity by a(x, ξ) as the random diffusivity is parameterized

with a set of random variables ξ.

For simplifying a derivation of the stochastic Galerkin system, we consider

a special case of the random field expansion (2.6) where the expansion consists

of polynomials with degree ≤ 1. Such random field can be simulated by using

Karhunen-Loéve expansion [67] or considering a piecewise constant random field.

Note that the derivation of the stochastic Galerkin system with a general random

field expansion (2.6) is a straightforward extension of the derivation described in

the following. For the discussion in this chapter, we consider a truncated Karhunen-

Loève expansion [67],

a(x, ω) = a0 + σ

M
∑

i=1

√

λiai(x)ξi(ω), (2.7)

where a0 and σ2 are the mean and variance of the random field, respectively, and
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(λi, ai) is an eigenpair of the covariance kernel of the random field, C(x, y). That

is, eigenpairs consist of the solutions of the eigenproblem of the integral operator C:

L2(D) → L2(D),

(Cu)(x) =

∫

D

c(x, y)u(y)dy, (Cam)(x) = λmam(x),

If the random field a(x, ξ) is parameterized by a finite number of random variables,

then the solution u(x, ω) can be described by this same set of random variables by

Doob-Dynkin’s Lemma [86] (i.e., u(x, ω) ≈ u(x, ξ1, . . . , ξM)).

2.2 Discretization

The discrete stochastic Galerkin method employs a standard approximation in

the spatial domain and a polynomial approximation in the probability domain [1,3,

46]. The stochastic Galerkin method seeks a finite-dimensional solution uhp(x, ξ) ∈

W h = Xh ⊗ SM such that

〈
∫

D

a(x, ξ)∇uhp(x, ξ) · ∇v(x, ξ)dx
〉

ρ

=

〈
∫

D

fv(x, ξ)

〉

ρ

v(x, ξ) ∈ W h (2.8)

where Xh and SM are finite-dimensional subspaces of H1
0 (D) and L2

ρ(Γ),

Xh = span{φr(x)}nxr=1 ⊂ H1
0 (D), (2.9)

SM = span{ψs(ξ)}nξs=1 ⊂ L2
ρ(Γ), (2.10)
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and

uhp(x, ξ) =

nξ
∑

s=1

nx
∑

r=1

ur, sφr(x)ψs(ξ). (2.11)

Here, {φr} is a set of standard finite element basis functions and {ψs} is a set of

basis functions for the generalized polynomial chaos (gPC) expansion [112] con-

sisting of products of orthonormal univariate polynomials: ψs(ξ) = ψα(s)(ξ) =

∏M
i=1 παi(s)(ξi) where {παi(s)(ξi)}Mi=1 is a set of univariate polynomials and α(s) =

(α1(s), . . . αM(s)) ∈ N
M
0 is a multi-index, where αi represents the degree of a polyno-

mial in ξi. The univariate polynomials {παi(s)(ξi)}Mi=1 are orthonormal with respect

to underlying probability density functions {ρi(ξi)}Mi=1,

∫

Γi

πk(ξi)πl(ξi)ρ(ξi) dξi = κiδkl, k, l ∈ N0, i = 1, . . . , M

where δkl = 1 if k = l and 0 otherwise. Due to the orthonormality of the univariate

polynomials {παi(s)(ξi)}Mi=1 and the independence among the random variables, the

stochastic basis functions {ψs} are orthonormal with respect to the joint probability

density function ρ(ξ) =
∏M

i=1 ρi(ξi),

∫

Γ

ψk(ξ)ψl(ξ)ρ(ξ) dξ =
M
∏

i=1

∫

Γi

παi(k)(ξi)παi(l)(ξi)ρ(ξi) dξi =
M
∏

i=1

δαi(k)αi(l).

If ρ is the density function corresponding to M-variate uniform distribution, ψs is

a product of M univariate Legendre polynomials. Table 2.1 lists different types of

probability measures (and probability density functions) and the types of gPC basis

polynomials associated with those probability measures.
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Table 2.1: Probability distribution and the type of gPC basis.

Probability distribution pdf gPC basis polynomial Support

Normal 1√
2π

exp(− ξ2

2 ) Hermite [−∞,∞]

Uniform 1
2 Legendre [0, 1]

Exponential exp(−ξ) Laguerre [0,∞]

Gamma(α) ξα exp(−ξ)

Γ̄(α+1)
Generalized Laguerre [0,∞]

Beta(α, β) (1−ξ)α(1−ξ)β

2α+β+1B(α+1,β) Jacobi [0,∞]

Once the type of the gPC basis polynomials is chosen, the finite-dimensional

polynomial space, SM = span{ψs(ξ)}nξs=1, can be constructed. The most naive ap-

proach in constructing SM is called “Tensor Product (TP) space,” for which the

multi-index set can be defined as

ΛTP
M,p = {α(s) ∈ N

M
0 : max{α1(s), . . . , αM(s)} ≤ p}. (2.12)

Although the TP space is easy to construct, the cardinality of the set ΛTP
M,p is Mp,

which increases exponentially as the maximum polynomial degree p increases. In-

stead, in this study, we set ΛM to be the Total Degree (TD) space ΛTD
M,p, given

by

ΛTD
M,p = {α(s) ∈ N

M
0 : ‖α(s)‖1 ≤ p} (2.13)

where N
M
0 is the set of non-negative integers, ‖α(s)‖1 =

∑M
k=1 αk(s), and p de-

fines the maximal degree of {ψi}nξi=1. Then, the number of gPC basis functions is

nξ = dim(ΛM,p) = (M+p)!
M !p!

. The TD space has been known to be very effective in

approximating the solutions of many stochastic PDEs. In particular, if the stochas-

tic diffusion equations with the random field of the form (2.7) is considered, the TD
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space is known to provide the best N-term approximation for the solutions [23, 24].

In [7,8], the decay of Legendre coefficients for the solutions of the elliptic stochastic

PDEs is studied and the TD space has been shown to be quasi-optimal. Thus, in

this thesis, we use the TD space as the finite-dimensional approximation space in

the stochastic domain. An example of the TD space with M = 2 and p = 3 is

ΛTD
2, 3 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)},

which is lexicographically ordered, and the cardinality of the space is nξ =
(2+3)!
2!3!

=

10.

If the coefficients of (2.11) are ordered by grouping spatial indices together as

u11, u21, . . . , unx1, u12, u22, . . . , unx2, u13, . . . , unxnξ , (2.14)

then, it follows from (2.8) and (2.11) that the Galerkin system

Au = f (2.15)

can be represented using Kronecker-product notation [81],

(

G0 ⊗K0 +

M
∑

l=1

Gl ⊗Kl

)

u = g0 ⊗ f0, (2.16)

where the Kronecker product between two matrices G ∈ R
nξ×nξ and K ∈ R

nx×nx is
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defined as follows:

G⊗K =

















[G]11K . . . [G]1nξK

...
...

[G]nξ1K . . . [G]nξnξK

















,

Ki refers to the ith weighted stiffness matrix defined via

[K0]ij =

∫

D

a0∇φi(x)∇φj(x)dx,

[Kl]ij = σ
√

λl

∫

D

al(x)∇φi(x)∇φj(x)dx, l = 1, . . . , M,

(2.17)

Gi refers to the ith “stochastic” matrices defined via

[G0]ij = 〈ψi(ξ)ψj(ξ)〉ρ ,

[Gl]ij = 〈ξl ψi(ξ)ψj(ξ)〉ρ l = 1, . . . , M,

(2.18)

and the vectors f0 and g0 are defined via

[f0]i =

∫

D

fφi(x)dx,

[g0]i = 〈ψi(ξ)〉ρ .
(2.19)

Note that {Gl}Ml=1 of (2.18) are highly sparse because of the orthogonality properties

of the stochastic basis functions [41].

The global Galerkin system shown in (2.16) is of order nxnξ, which becomes

very large if the solution is sought on a fine spatial grid (i.e., large nx) and a high-

dimensional stochastic space (i.e., large M or p and, consequently, large nξ). The
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Kronecker-product structure, however, leads to a block-sparse matrix, where the

block nonzero structure of the matrix follows the nonzero structure of the stochastic

matrices {Gi}Mi=0. Figure 2.1 depicts the block nonzero structure of the Galerkin

matrix of order nxnξ where nξ = 56 by setting M = 5 and p = 3 (i.e., 56 = (5+3)!
5!3!

),

and each square in the figure represent a weighted stiffness matrix of order nx.

With this block sparse structure, it is natural to consider development of sparse

linear solvers for use with the stochastic Galerkin methods, which will be discussed

in the next section.

Figure 2.1: Block nonzero structure of the Galerkin matrix.

2.3 Iterative solvers for stochastic Galerkin systems

As for deterministic PDE problems, use of Krylov subspace methods has been

very successful for stochastic PDE problems. Here, we review briefly review Krylov

subspace methods and some notable results concerning Krylov subspace methods
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in the context of the stochastic Galerkin method. A Krylov subspace method seeks

an approximate solution of a linear system Ax = b on an affine subspace x0 + Km,

where Km is the m-dimensional Krylov subspace

Km(A, r0) = span{r0, Ar0, . . . , Am−1r0}.

Here, x0 denotes a possibly arbitrary initial iterate for an approximate solution and

r0 = b−Ax0 denotes the initial residual. An approximate solution xm can be found

by employing an orthogonal projection of the residual rm = b − Axm onto another

m-dimensional subspace Lm (rm ⊥ Lm). There are two well-known projection tech-

niques: the Galerkin projection technique with Lm = Km and the Petrov–Galerkin

projection technique Lm = AKm. Such projection techniques give rise to effec-

tive Krylov subspace methods. The Galerkin projection technique characterizes the

Conjugate Gradient (CG) method [51] for a symmetric positive definite A. The

Petrov–Galerkin projection technique characterizes the minimum residual method

(MINRES) [78] for a nonsingular symmetric indefinite A and the generalized mini-

mum residual method (GMRES) [92] for a general nonsingular A.

An initial attempt to solve the global Galerkin system (2.16) using Krylov

subspace solution methods can be found in [80], followed by more advanced studies

on iterative methods for the Galerkin system [33,34,56]. In those studies, an efficient

structure-aware matrix-vector product exploiting the block sparse structure has been

studied. For faster convergence of the iterative methods, a preconditioned system
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is considered,

M−1A =M−1f (2.20)

where M is the preconditioner. Or, alternatively,

AM−1ũ = f, u =M−1ũ. (2.21)

A Krylov subspace method constructs anm-dimensional preconditioned Krylov sub-

space span{r0,M−1Ar0, . . . ,M
−1Am−1r0} for a left preconditioned system (2.20)

and span{r0, AM−1r0, . . . , A
m−1M−1r0} for a right preconditioned system (2.21).

The use of this preconditioner M in Krylov subspace methods requires an applica-

tion of the action of its inverse M−1, or approximating it.

In those early studies, a preconditioned conjugate gradient method [51] with a

simple block-diagonal preconditioning strategy, which incorporates the mean com-

ponent of the random field is widely used, i.e.,

M = G0 ⊗K0. (2.22)

For the efficient application of the preconditioner, an incomplete Cholesky factor as

a preconditioner has been considered [45, 80].

In more recent work [81], a preconditioned CG method with a black-box Alge-

braic Multigrid (AMG) [90] preconditioner was considered, where the action of K−1
0

is replaced by the V-cycle of the black-box AMG. In [81], it has been shown that an

eigenvalue bound of the preconditioned Galerkin system associated with the normal
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and the uniform random variables is independent of the spatial discretization pa-

rameter and p for bounded random variables such as ones with uniform distribution,

but it depends on the variance of the random field σ2 in (2.7). Also, it has been

shown that the black-box AMG preconditioner is robust with respect to the spatial

discretization parameter and requires less memory than the factorization method

for fine spatial meshes.

So far, the preconditioning strategy only takes into account the matrix associ-

ated with the mean coefficient of the random field (i.e., G0 ⊗K0). The mean-based

preconditioner may not be effective if the variance of the random field becomes large

compared to the mean. To resolve this issue, a preconditioner proposed in [105] in-

corporates the entire information in the global Galerkin matrix (2.16). Inspired by

the work of [66], the new preconditioner is constructed by solving a minimization

problem

min ‖A−G⊗K0‖F (2.23)

where ‖ · ‖F is a Frobenius norm, A is the global Galerkin matrix, K0 is the mean

stiffness matrix, and G ∈ R
nξ×nξ to be solved. The minimization can be solved as

G =
M
∑

i=0

trace(KT
i K0)

trace(KT
0 K0)

Gi, (2.24)

where

trace(A) =

nxnξ
∑

i=1

[A]ii

is the trace operator, which sums of diagonal entries of A ∈ R
nxnξ×nxnξ . Combined
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with this preconditioner, the conjugate gradient method performs efficiently even

for the large variance stochastic diffusion coefficients.

There are other effective preconditioning strategies [36, 89, 100, 101] including

a preconditioner based on matrix splitting technique (e.g., Jacobi, Gauss-Seidel)

applied to the stochastic matrices [89], and a hierarchical Gauss-Seidel precondi-

tioner and a Schur complement preconditioner and its efficient variant proposed

by [100, 101], which exploit recursive hierarchical structure of the global Galerkin

matrix. We also note that there are several attempts to solve the stochastic Galerkin

system using the multigrid solver. Initiated by [64], the practical application and

the theoretical aspects of the multigrid method for the stochastic diffusion equations

have been studied in [35, 94], and further extended in [27, 89].

Another successful approach shown in [40] considers a stochastic variant of the

mixed variational formulation [16,87] to discretize the stochastic diffusion equations,

which results in a symmetric and indefinite system matrix. To solve the saddle point

problem, a preconditioned MINRES method [78] is considered. For a preconditioner,

a mean-based Schur complement of the indefinite system is computed, where action

of inverse required to apply the preconditioner is replaced with the application of

AMG V-cycle. Further studies on a preconditioner for the saddle point system in

the stochastic Galerkin mixed variational formulation have been conducted in [84].

When the lognormal diffusion coefficient a(x, ξ) = exp(g(x, ξ)), where g(x, ξ)

is a Gaussian random field, is considered, the coefficient a(x, ξ) is typically approxi-

mated as a finite-term gPC expansion. After discretization, the resulting systems are

block dense [69, 106], which makes matrix operations required by Krylov subspace
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methods expensive. To resolve this issue, in [106], a “log-transformed” reformula-

tion [115] of the problem as a convection-diffusion problem is considered. By mul-

tiplying exp(−g(x, ξ)) on both sides of −∇ · (a(x, ξ)∇u(x, ξ)) = f and algebraically

manipulating the equation, one can obtain a convection-diffusion equation

∆u(x, ξ)−∇g(x, ξ) · ∇u(x, ξ) = f(x) exp(−g(x, ξ)). (2.25)

The stochastic Galerkin discretization can be applied to the convection-diffusion

equations, which results in a nonsymmetric system of equations. To compute solu-

tions of the nonsymmetric system, the generalized minimum residual method [92]

is used. For preconditioning, two types of a mean-based preconditioner have been

used: one constructed from a diffusion term only, and one constructed from the

diffusion term and a convection term associated with the mean coefficients of the

random field. A mixed variational formulation of the log-transformed equations and

an associated iterative solution method are studied in [107].

Those solution methods have explored various formulations of the stochastic

diffusion equations and applied iterative solvers to the resulting Galerkin system,

which is preconditioned by various preconditioning strategies. With the numerical

experiments with benchmark problems, those methods have been shown to be effi-

cient and effective for moderate dimensional problems. However, the computational

complexity O(nxnξ) grows rapidly as the problem posed on a finer spatial grid or

the number of random variables parameterizing the problem increases.
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Chapter 3: Low-rank approximation method for linear PDEs

3.1 Introduction

In this chapter, we present a low-rank approximation method for the stochastic

linear elliptic boundary value problem: Find a random function, u(x, ξ) : D̄×Γ → R

that satisfies

L(a(x, ξ))(u(x, ξ)) = f(x) in D × Γ, (3.1)

where L is a linear elliptic operator and a(x, ξ) is a positive random field parame-

terized by a set of random variables ξ = {ξ1, . . . , ξM}. The problem is posed on a

bounded domain D ⊂ R
2 with appropriate boundary conditions.

After the stochastic Galerkin method [1,3,46], which, after discretization dis-

cribed in Section 2.2, leads to a large coupled deterministic system (2.16) for which

computations will be expensive for large-scale applications. When the coefficient

a(x, ξ) has an affine structure depending on a finite number of random variables,

the system matrix A can be represented by a sum of Kronecker products of smaller

matrices. Matrix operations such as matrix-vector products that take advantage

of the tensor format can be performed efficiently, which makes the use of itera-

tive solvers attractive. In this study, we develop a new efficient iterative solver for

25



systems represented in the Kronecker-product structure.

In recent years, many authors started to explore the Kronecker-product struc-

ture of such problems and developed iterative algorithms that exploit the structure

to reduce computational efforts [6, 59–61, 70, 83, 93]. In particular, thorough use of

tensor Krylov subspace methods, which operate in tensor format, have been studied.

Variants of this approach have been developed for the Richardson iteration [61,70],

the conjugate gradient method [61], the BiCGstab method [61], the minimum resid-

ual method [103], and the general minimum residual (GMRES) method [6]. In addi-

tion, it has been shown that the solution of (3.1) in the stochastic Galerkin setting

can be approximated by a tensor of low rank, which further reduces computational

effort [4, 5]. If Krylov subspace methods are used to compute such a solution, how-

ever, it may happen that approximate solutions or other auxiliary terms obtained

during the course of an iteration do not have low rank, and rank-reduction schemes

are required to keep costs under control.

In this study, we will explore a variant of the generalized minimum resid-

ual (GMRES) method combined with a rank-reduction strategy that exploits spe-

cific features of the stochastic Galerkin formulation. The strategy we propose is a

two-level scheme that first identifies a low-dimensional subspace, obtained from a

coarse-grid spatial discretization, on which a low-rank coarse-grid tensor solution

is computed. This solution can be used to estimate the rank of the tensor solu-

tion for the desired fine-grid solution. This information is used to define a strategy

for rank reduction to be used with iteration on the fine grid space. We show that

this strategy enhances the efficiency of preconditioned GMRES for computing the
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solution.

The proposed method can be viewed as a dimension-reduction method as it

identifies a dominant subspace and computes an approximate solution in that sub-

space. Other approaches developed for dimension reduction for the solutions of

stochastic PDEs include reduced basis methods [52, 85], which construct dominant

subspace associated with parameterized models using greedy search methods, and

active subspace methods [25], which detect a subspace of strong variability for a

scalar-valued multivariate functions using gradient computations. Another model

reduction approach developed in [31] identifies a dominant subspace based on the

covariance structure of the solution on the coarse grid and uses the subspace for

the fine-grid computation. The approach developed here uses inexpensive low-rank

approximation technique to construct the desired subspace on coarse-grid computa-

tions. Then the identified subspace is used to truncate tensors of high ranks in the

iteration process to construct a solution on a finer spatial discretization.

An outline of the chapter is as follows. In section 3.2, we review the stochas-

tic Galerkin method and present the Kronecker-product structure of Galerkin sys-

tems. In section 3.3, we present a preconditioned projection method for computing

approximate solutions in low-rank tensor format. In section 3.4, we review the

conventional approaches and propose a coarse-grid rank-reduction scheme, which is

the main contribution of this work. In section 3.5, we illustrate the effectiveness

of the low-rank projection method combined with the proposed truncation scheme

by numerical experiments on benchmark problems. In section 3.6, we discuss the

impact of truncation on solution statistics. Finally, in section 3.7, we draw some
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conclusions.

3.2 Stochastic Galerkin formulation in tensor notation

Recall the stochastic Galerkin discretization discussed in Chapter 2, where we

consider the steady-state stochastic diffusion equation with homogeneous Dirichlet

boundary conditions shown in (2.1) with the diffusion coefficient a(x, ξ) parame-

terized by using a truncated Karhunen-Loéve expansion (2.7). Here, ξ is an M-

dimensional random variable with joint probability density function ρ(ξ). We let

Γ =
∏M

i=1 Γi denote the joint image of ξ, which we refer to as the stochastic domain.

The expected value of a random variable v(ξ) on Γ is then 〈v(ξ)〉ρ =
∫

Γ
v(ξ)ρ(ξ)dξ.

The stochastic Galerkin method [1, 3, 46] seeks a finite-dimensional solution

uhp(x, ξ) =
∑nξ

s=1

∑nx
r=1 ursφr(x)ψs(ξ) as shown in (2.11). We consider set the Total

Degree (TD) space ΛTD
M,p: Λ

TD
M,p = {α(s) ∈ N

M
0 : ‖α(s)‖1 ≤ p} (2.13). Consequently,

the number of gPC basis functions is nξ = dim(ΛM,p) = (M+p)!
M !p!

. Ordering the

coefficients of (2.11) based on lexicographical order as shown in (2.14) gives the

linear system Au = f of (2.16) represented in tensor product notation [81],

(

G0 ⊗K0 +
M
∑

l=1

Gl ⊗Kl

)

u = g0 ⊗ f0 (3.2)

where {Kl}Ml=0, {Gl}Ml=0, f0, and g0 are defined in (2.17)–(2.19).

We will make use of an isomorphism between R
nxnξ and R

nx×nξ determined
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by the operators vec(·) and mat(·): u = vec(U), U = mat(u) where

u = [uT1 , . . . , u
T
nξ
]T ∈ R

nxnξ (3.3)

U= [u1, . . . , unξ ] ∈ R
nx×nξ (3.4)

with each ui of length nx. In particular, (3.2) is equivalent to its “matricized” form

M
∑

l=0

KlUG
T
l = f0g

T
0 , (3.5)

and u and U can be used interchangeably to represent a solution of the Galerkin

system. A solution u can be represented by a sum of vectors of Kronecker structure,

or equivalently U = mat(u) can be represented by a sum of rank-one matrices,

u =
κu
∑

k=1

zk ⊗ yk (3.6)

⇔ U =
κu
∑

k=1

ykz
T
k = YκuZ

T
κu (3.7)

where yi ∈ R
nx , zi ∈ R

nξ , and Yκu = [y1, . . . , yκu] ∈ R
nx×κu and Zκu = [z1, . . . , zκu ]

∈ R
nξ×κu . A tensor of the form (3.6) is often referred to as having a canonical

decomposition [21] (e.g., x =
∑κx

i=1⊗d
j=1x

j
i where x ∈ R

n1...nd , xji ∈ R
nj for i =

1, . . . , κx, j = 1, . . . , d, and d refers to the dimension of the tensor). The tensor rank

κu is defined as the smallest number of terms needed to represent u. In this study,

the dimension of the tensor u is two and the tensor rank κu of the tensor u coincides

with the rank of the matrix U . Thus, in the sequel, we also use κu to refer to the
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rank of u. With this notation, the stochastic Galerkin solution uhp(x, ξ) can be

represented as

uhp(x, ξ) = Φ(x)TYκuZ
T
κuΨ(ξ) =

(

Y T
κuΦ(x)

)T (
ZT
κuΨ(ξ)

)

(3.8)

where Φ : D → R
nx is given by Φ(x) = [φ1(x), . . . , φnx(x)]

T and Ψ : Γ → R
nξ is

given by Ψ(ξ) = [ψ1(ξ), . . . , ψnξ(ξ)]
T . As shown in [104], (3.8) corresponds to a

separated representation [11],

uhp(x, ξ) =
κu
∑

i=1

ŷi(x)ẑi(ξ), (3.9)

where ŷi(x) = (Φ(x))T yi and ẑi(ξ) = (Ψ(ξ))T zi. We will use this representation to

construct a new rank-reduction operator. In the discrete model (3.8), the rank of

the solution is typically κu = min(nx, nξ).

In [10, 48], it was shown that the solution to (3.2) can be approximated well

by a quantity ũ of rank κũ ≪ min(nx, nξ) if the system matrix and the right-hand

side has Kronecker-product structure. Thus, we seek a low-rank approximation to

the solution ũ to (3.2) for which

Aũ =

(

M
∑

l=0

Gl ⊗Kl

)(

κũ
∑

k=1

z̃i ⊗ ỹi

)

≈ g0 ⊗ f0. (3.10)
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3.2.1 Basic operations in tensor notation

We point out here a feature of the basic operations required by Krylov subspace

methods in the setting we are considering, where the operators and data of interest

have tensor format. The mth step of such methods results in the Krylov subspace,

Km(A, v1) = span{v1, Av1, . . . , Am−1v1}, which is generated using matrix-vector

products and addition/subtraction of vectors.

The matrix-vector product in (3.10) can be represented as a sum of rank-one

tensors by exploiting the properties of the Kronecker product,

Au =
M
∑

l=0

κu
∑

k=1

Glzk ⊗Klyk =

(M+1)κu
∑

i=1

ẑi ⊗ ŷi. (3.11)

The latter expression in (3.11) suggests that in tensor notation, the matrix-vector

product typically results in a vector with a higher rank. Similarly, the addition of

two vectors u and v of rank κu and κv in tensor notation gives

u+ v =

κu
∑

i=1

zi ⊗ yi +

κv
∑

j=1

ẑj ⊗ ŷj =

κu+κv
∑

i=1

zi ⊗ yi, (3.12)

where yi+κu = ŷi and zi+κu = ẑi, i = 1, . . . , κv, so that the resulting sum may have

rank as large as κu+κv. Thus, although the goal is to find an approximate solution

to (3.2) of low rank, two of the fundamental operations used in Krylov subspace

methods tend to increase the rank of the quantities produced. Following [6], we will

address this point in the next section.

31



3.3 A preconditioned projection method in tensor format

As is well known, the generalized minimum residual method (GMRES) [92]

constructs an approximate solution um ∈ u0+Km(A, v1) where u0 is an initial vector

with residual r0 = f−Au0, v1 = r0/‖r0‖2, and Km is the Krylov space. This is done

by generating Vm = [v1, . . . , vm], where {vj}mj=1 is an orthogonal basis for Km, and

then computing um whose residual rm is orthogonal to Wm = AVm. The method is

shown in Algorithm 1. In this section, we discuss a variant of this method based

on low-rank projection, where advantage is taken of the Kronecker format of the

matrix A and the fact that we seek an approximation of u with low-rank structure.

Algorithm 1 GMRES method without restarting [91]

1: set the initial solution u0
2: r0 := f − Au0
3: ṽ1 := r0
4: v1 := ṽ1/‖ṽ1‖
5: for j = 1, . . . , m do

6: wj := Avj
7: solve (V T

j Vj)α = V T
j wj

8: ṽj+1 := wj −
∑j

i=1 αivi
9: vj+1 := ṽj+1/‖ṽj+1‖
10: end for

11: solve (W T
mAVm)y =W T

mr0
12: um := u0 + Vmy

3.3.1 Low-rank projection method with restarting

As we observed in Section 3.2, matrix-vector products and vector sums in

tensor structure tend to increase the rank of the resulting objects. Thus, although we

seek a solution of low rank, straightforward use of the GMRES method may lead to
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approximate solutions of higher rank than the desired solutions. This complication

can be addressed using truncation operators [6,60,61,70,93], whereby vectors of high

rank are replaced by ones of low rank. The truncation is inserted into the GMRES

algorithm and is interleaved with the basic operations such as matrix-vector product

and addition so that the ranks of the vectors used in the algorithm are kept low.

Algorithm 2 Restarted low-rank projection method in tensor format

1: set the initial solution ũ0
2: for k = 0, 1, . . . do
3: rk := f − Aũk
4: if ‖rk‖/‖f‖ < ǫ then
5: return ũk
6: end if

7: ṽ1 := Tκ(rk)
8: v1 := ṽ1/‖ṽ1‖
9: for j = 1, . . . , m do

10: wj := Avj
11: solve (V T

j Vj)α = V T
j wj

12: ṽj+1 := Tκ
(

wj −
∑j

i=1 αivi

)

13: vj+1 := ṽj+1/‖ṽj+1‖
14: end for

15: solve (W T
mAVm)β =W T

mrk
16: ũk+1 := Tκ(ũk + Vmβ)
17: end for

Algorithm 2 summarizes the restarted low-rank projection method in tensor

format [6]. As in the standard Arnoldi iteration used by GMRES, a new vector

is constructed by applying the linear operator A to the previous basis vector vj

and orthogonalizing the new basis vector wj with respect to the previous basis

vectors {vi}ji=1. The resulting vector is truncated to a vector ṽj+1 of low rank and

normalized to vj+1, which is then added to the set of basis vectors. The truncation

operator Tκ truncates a tensor of higher rank to one of rank κ. Thus, all the
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basis vectors {vi}mi=1 are of the same rank, κ. The basis vectors determine the

subspace Km = span{v1, . . . , vm}, but because of truncation the basis vectors are

not orthogonal and Km is not a Krylov subspace. However, it is still possible to

project the residual onto the subspace Wm = span{w1, . . . , wm} to find out whether

the residual can be decreased by forming a new iterate ũk + Vmβ. Note that all the

vectors used in the entire iteration process are stored as the product of two matrices

in the form like that shown in (3.7). The ranks of these vectors will be discussed

below.

3.3.2 Preconditioned low-rank projection method

To speed the convergence of the projection method, we consider a right-

preconditioned system:

AM−1û = f, û =Mu. (3.13)

For the stochastic diffusion problem, we consider M = G0 ⊗ K̃0 ≈ G0 ⊗K0 as the

preconditioner, a mean-based preconditioner [81]. For the practical application of

the preconditioner, we employ algebraic multigrid methods [90], where the action of

K−1
0 is replaced by K̃−1

0 , an application of a single V-cycle of an algebraic multigrid

method. The multigrid algorithm used point damped Jacobi smoothing with damp-

ing parameter .5 and two presmoothing and two postsmoothing steps, together with

bilinear interpolation for grid transfer (as implemented in [98]). The preconditioned

34



matrix-vector product is then

AM−1û =

M
∑

l=0

κû
∑

k=1

Glẑk ⊗KlK̃
−1
0 ŷk, û =Mu =

κû
∑

i=1

ẑi ⊗ ŷi.

Note that G−1
0 is the identity matrix because of the orthonormality of the stochastic

basis functions. With right preconditioning and this preconditioner, the strategy

for handling tensor rank is largely unaffected by preconditioning.

3.4 Truncation methods

As discussed in Section 3.3.1, in the low-rank projection method, truncation

of tensors is essential for the efficient computation of approximate solutions. In this

section, we discuss the conventional approach for truncation and we introduce a new

coarse-grid truncation method based on a coarse-grid solution.

3.4.1 Truncation based on singular values

Given a matricized vector U = Yκ′Z
T
κ′ of rank κ′, a standard approach for

truncation [6, 70] is to compute the singular value decomposition (SVD) of U and

compress U into an approximation of desired rank κ ≪ κ′. This can be done

efficiently by computing QR factorizations of Yκ′ and Zκ′:

Yκ′ = QYRY ∈ R
nx×κ′, Zκ′ = QZRZ ∈ R

nξ×κ′.
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Then, one can compute the SVD of RYR
T
Z :

RYR
T
Z = Ûκ′Σ̂κ′V̂

T
κ′ =

κ′
∑

k=1

σ̂kûkv̂
T
k

and truncate the sum with κ terms to produce

Ỹκ = QY ÛκΣ̂κ ∈ R
nx×κ, Z̃κ = QZ V̂κ ∈ R

nξ×κ.

The truncated approximation of U is then Ũ = ỸκZ̃
T
κ . The computational com-

plexity of the truncation is O((nx + nξ + κ)(κ′)2) [47], which grows quadradically

with respect to κ′. In the next section, we introduce a new truncation method that

avoids this computation.

3.4.2 Truncation based on coarse-grid rank-reduction

We now propose a coarse-grid rank-reduction strategy. We obtain insight into

the rank structure of the solution using a coarse spatial grid computation. Then, we

define a truncation operator based on the information obtained from this coarse-grid

computation.

Let uc(x, ξ) represent a solution obtained on a coarse spatial grid (i.e., nx is

small). As in (3.8), uc(x, ξ) can be represented as

uc(x, ξ) = (Φc(x))T U cΨ(ξ) =
(

(Y c)TΦc(x)
)T (

(Zc)TΨ(ξ)
)

. (3.14)

36



Here, we propose to use Zc to define a truncation operator for use in the projection

method to compute a solution for the problem on a finer grid. That is, the truncation

operator is defined such that, given a matricized vector U = Yκ′Z
T
κ′ of rank κ

′,

Tκ(U) ≡
(

Yκ′Z
T
κ′Z

c
κ

)

(Zc
κ)
T = Ũ (3.15)

where the resulting quantity Ũ = ỸκZ̃
T
κ is of rank κ,

Ỹκ = Yκ′Z
T
κ′Z

c
κ ∈ R

nx×κ, Z̃κ = Zc
κ ∈ R

nξ×κ.

The desired rank κ is determined such that the relative residual ‖f c−Acuc, κ‖2/‖f c‖2

is smaller than a certain tolerance ǫc where uc, κ is a κ-term approximation of uc. This

truncation operation requires two matrix-matrix products, and the computational

complexity of truncating a vector from κ′ to κ is O(κ′κ(nx + nξ)). Note that with

the proposed truncation strategy, the fine-grid computation is equivalent to applying

GMRES to
∑M

i=0KiUGiZ
c
κ(Z

c
κ)
T = f0g

T
0 .

For efficient coarse-grid computation, we use the Proper Generalized Decom-

position (PGD) method developed in [76, 104], which computes a separated repre-

sentation of a coarse-grid solution:

uc, κ(x, ξ) =

κ
∑

i=1

ỹi(x)z̃i(ξ). (3.16)

37



With the stochastic Galerkin discretization, each function can be represented as

ỹi(x) =

nx
∑

k=1

ỹ
(i)
k φ

c
k(x), z̃i(ξ) =

nξ
∑

l=1

z̃
(i)
l ψl(ξ).

As a result, as in (3.8),

uc, κ(x, ξ) =
(

(Ỹ c
κ )

TΦc(x)
)T (

(Z̃c
κ)
TΨ(ξ)

)

where Ỹ c
κ = [ỹ(1), · · · , ỹ(κ)] ∈ R

nx×κ and Z̃c
κ = [z̃(1), · · · , z̃(κ)] ∈ R

nξ×κ are coefficient

matrices such that the ith elements of ỹ(j) and z̃(j) are ỹ
(j)
i and z̃

(j)
i , respectively.

Now, the discrete solution U c in (3.14) is approximated by U c, κ = Ỹ c
κ (Z̃

c
κ)
T , and we

can obtain Zc
κ by computing the SVD of U c, κ= ÛΣ̂V̂ T , and, as a result, Zc

κ = V̂ .

We briefly explain how the PGD method computes a κ-term approximation in the

next section.

3.4.3 Proper Generalized Decomposition method

The PGD method is a successive rank-1 approximation method. That is, the

method incrementally identifies the function pairs (ỹi(x), z̃i(ξ)) of (3.16) one at a

time. Once i such pairs have been computed, the next pair (ỹi+1, z̃i+1) is sought in

Xh×SM by imposing Galerkin orthogonality with respect to the tangent manifold of

the set of rank-one elements at ỹi+1z̃i+1, which is {ỹi+1ζ + υz̃i+1; υ ∈ Xh, ζ ∈ SM}:
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find ỹi+1z̃i+1 such that ∀(υ, ζ) ∈ Xh × SM

〈
∫

D

a(x, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ζ + υz̃i+1)

〉

=

〈
∫

D

f(ỹi+1ζ + υz̃i+1)

〉

.

(3.17)

It follows from (3.17) that each component of a pair (ỹi+1, z̃i+1) can be computed

by solving two coupled problems: a deterministic problem (3.18) and a stochastic

problem (3.19). The deterministic problem is as follows: given z̃i+1, find ỹi+1 ∈ Xh

such that

〈
∫

D

a(x, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(φcj z̃i+1)

〉

=

〈
∫

D

fφcj z̃i+1

〉

, j = 1, . . . , ncx.

(3.18)

The first basis function z̃1 can be chosen arbitrarily at the beginning of the PGD

method. The finite element discretization of ui+1 yields a linear system of order ncx.

Analogously, the stochastic problem starts with ỹi+1 and finds z̃i+1 ∈ SM such that

〈
∫

D

a(x, ξ)∇(uc, i + ỹi+1z̃i+1) · ∇(ỹi+1ψj)

〉

=

〈
∫

D

f ỹi+1ψj

〉

, j = 1, . . . , nξ.

(3.19)

Since z̃i+1 is approximated by the gPC, nξ unknowns have to be determined by

solving a linear system of order nξ.

Solutions of these sets of κ systems of order ncx and κ systems of order nξ

produce the κ-term approximation to the solution. The PGD method seeks solution
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pairs until the relative residual of the computed solution satisfies a given tolerance,

‖f c − Acuc, κ‖2/‖f c‖2 < ǫc. (3.20)

The accuracy of the κ-term approximation can also be improved by solving a set of

κ coupled equations: given {ỹi}κi=1, find {z̃i}κi=1 such that

〈
∫

D

a(x, ξ)∇(u(κ)) · ∇(ỹiψj)

〉

=

〈
∫

D

f ỹiψj

〉

, i = 1, . . . , κ, j = 1, . . . , nξ.

(3.21)

This update requires the solution of a linear system of order κnξ. For the stochastic

diffusion problems, the update problem is solved once at the end of the PGDmethod.

Note that the update problem could also be formulated for finding the deterministic

parts {ui}κi=1 if nx ≪ nξ, which requires a solution of a linear system of order κnx.

With the proposed truncation strategy, Algorithm 3 summarizes the entire

procedure to compute a solution on a finer grid.

Algorithm 3 Preconditioned low-rank projection method with the coarse-grid rank-
reduction

1: Compute uc, κ that satisfies ‖fc−Acuc, κ‖2
‖fc‖2 < ǫc using the PGD method

2: Compute Zc
κ such that U c, κ = Y c

κ (Z
c
κ)
T and define Tκ(U) ≡ (UZc

κ) (Z
c
κ)
T

3: Run Algorithm 2 with L = AM−1, f , and Tκ

3.5 Numerical experiments

In this section, we present the results of numerical experiments in which the

proposed iterative solver is applied to some benchmark problems. The implementa-
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tion of the spatial discretization is based on the Incompressible Flow and Iterative

Solver Software (IFISS) package [98]. Example problems are posed on a square

domain and ℓ is the spatial discretization parameter (i.e., nx = (2ℓ + 1)2).

For a(x, ξ) in (2.7), we consider independent random variables {ξi}Mi=1 that

are uniformly distributed over [−
√
3,

√
3], a0 = 1 and unless otherwise specified,

σ = 0.05. As the covariance kernel, we use

C(x, y) = σ2 exp

(

−|x1 − y1|
γ

− |x2 − y2|
γ

)

(3.22)

where γ is the correlation length. The number of termsM in the truncated expansion

(2.7) is determined such that 95% of the total variance is captured by M terms (i.e.,

(
∑M

i=1 λi)/ (
∑nx

i=1 λi) > 0.95). We use bilinear Q1 elements to generate the finite

element basis and Legendre polynomials as the stochastic basis functions because

the underlying random variables have a uniform distribution. The default setting

of the maximal polynomial degree p is 3.

3.5.1 Stochastic diffusion problem

We consider the steady-state stochastic diffusion equation in (2.8) on a domain

D = [0, 1]× [0, 1] with forcing term f(x) = 1 and homogeneous Dirichlet boundary

conditions, u(x, ω) = 0 on ∂D × Γ.

Coarse spatial grid computation. We compute κ-term approximations

using the PGD method on a coarser spatial grid. Here ℓc is the refinement level

for the coarse grid and ncx is the number of degrees of freedom in the corresponding
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spatial domain excluding boundary nodes. We discuss choices of coarse spatial grid

in Section 3.5.3. Table 3.1 shows the rank κ of solutions that satisfy the tolerance

ǫc for varying correlation lengths γ and M and the computation time tc. In PGD,

the linear systems arising from (3.18), (3.19), and (3.21) are solved using Matlab’s

backslash operator.

Table 3.1: Rank (κ) of coarse-grid solutions satisfying ǫc of (3.20), and CPU time
(tc) for coarse-grid computation using the PGD method, for varying γ and M .

ǫc = 10−5 ǫc = 10−6

γ 4 3 2.5 2 4 3 2.5 2
M , nξ 5, 56 7, 120 10, 286 15, 816 5, 56 7, 120 10, 286 15, 816

nc
x(ℓ

c) 225(4) 225(4) 961(5) 961(5) 225(4) 225(4) 961(5) 961(5)
Rank(κ) 25 40 65 115 35 65 100 210

CPU time(tc) 2.49 3.47 8.35 45.08 2.93 5.04 14.83 162.71

Fine spatial grid computation. With the truncation operator Tκ (3.15) ob-

tained from the coarse-grid solution (i.e., Zc
κ), we solve the same stochastic diffusion

problems on finer spatial grids ℓ = {7, 8, 9}. For the fine-grid low-rank solutions,

we use the rank κ obtained from the coarse-grid solutions. For example, the third

column of Table 3.2 shows the time required to find solutions of rank 25 satisfying

the relative residual tolerance 10−5 when the number of terms in (2.7) is M = 5. In

Algorithm 2, we set m = 8 (like restarted GMRES(8)). In examining performance,

we identify the number of cycles, k, performed for the outer for-loop in Algorithm

2; this means that the number of matrix-vector products (i.e., the number of times

line 10 is executed) is mk. Tables 3.2 and 3.3 show the number of cycles, k, and

the computation time in seconds needed to compute approximate solutions with

42



ǫ = 10−5 and 10−6, respectively, (see line 4 of Algorithm 2). Here, t is the total time

and tf excludes the time to compute the coarse-grid solution, tc. The fine-grid com-

putation time, tf , consists of algorithm execution time and preconditioner set-up

time, tsetup.

Table 3.2: CPU times to compute low-rank solutions of the diffusion equation for
ǫc = ǫ = 10−5 using the preconditioned low-rank projection method. Numbers of
GMRES cycles are shown in parentheses.

nx(ℓ) M=5 M=7 M=10 M=15 tsetup

1292

(7)
tf 4.12 (1) 7.22 (1) 18.79 (1) 86.29 (1) 1.76
t 8.35 12.43 28.88 132.15

2572

(8)
tf 12.55 (1) 24.70 (1) 74.71 (1) 330.45 (1) 10.16
t 25.17 38.37 93.20 385.59

5132

(9)
tf 92.83 (1) 102.42 (1) 353.07 (1) 2717.03 (1) 92.41
t 147.17 197.87 453.71 2854.62

Table 3.3: CPU times to compute low-rank solutions of the diffusion equation for
ǫc = ǫ = 10−6 using the preconditioned low-rank projection method. Numbers of
GMRES cycles are shown in parentheses.

nx(ℓ) M=5 M=7 M=10 M=15 tsetup

1292

(7)
tf 5.40 (1) 12.50 (1) 35.09 (1) 233.54 (1) 1.79
t 10.14 19.32 51.69 398.06

2572

(8)
tf 17.23 (1) 46.07 (1) 137.19 (1) 1004.40 (1) 10.53
t 30.55 61.41 162.90 1177.68

5132

(9)
tf 70.37 (1) 217.12 (1) 1225.77 (1) OoM 92.81
t 166.24 315.18 1333.63 OoM

The execution times show “textbook” behavior, i.e., they grow linearly with

the size of the spatial grid.1 Note that the computational cost for the coarse-grid

computation becomes negligible as the size of the problem becomes higher. If the

1An exception to this statement is when both M and nx are large. For these cases, the problem
does not fit into physical memory and memory swap-in/out time dominates the execution time.
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required memory for running Algorithm 2 exceeds the resources of our computing

environment, solutions could not be computed and we denote these cases by OoM

for “Out-of-Memory”. Table 3.4 shows the number of degrees of freedom of the fine

spatial-grid problems for varying stochastic dimensions, M .

In these experiments and in all those described below, we used ǫc = ǫ (the

stopping tolerance specified in line 4 of Algorithm 2), and for this choice, the solver

always satisfied the stopping criterion. We also tested both larger ǫc and smaller ǫc.

For ǫc > ǫ, the solver sometimes failed to satisfy the stopping criterion. For ǫc < ǫ,

the solver was robust but consistently more expensive.

Table 3.4: Number of degrees of freedom of the fine-grid discretizations with p = 3,
for varying spatial-grid refinement level, ℓ, and number of random variables, M .

ℓ M=5 M=7 M=10 M=15

7 931,896 1,996,920 4,759,326 13,579,056

8 3,698,744 7,925,880 18,890,014 53,895,984

9 14,737,464 31,580,280 75,266,334 214,745,904

Example problems with varying σ and p. We examine the rank structure

of the numerical solutions of the stochastic diffusion problems and assess the per-

formance of the proposed solution algorithm for different values of maximal degree

of stochastic polynomial, p in (2.13), and variance σ2 of the random field a(x, ξ).

As in the previous numerical experiments, we first identify the rank structure and

define the truncation operator from coarse-grid computation. Then, we solve the

same problems on a finer grid by using the proposed low-rank projection method

with the coarse-grid rank-reduction scheme.
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Table 3.5 shows the computation time needed to compute approximate solu-

tions of the stochastic diffusion problems with M = 7 for varying maximal polyno-

mial degree p. The required ranks of the approximate solutions are not affected by

the number of terms in the polynomial expansion. However, the computation time

is increased for the polynomial expansion with higher maximal polynomial degree

because the size of {Gi}Mi=0 and the size of the stochastic part of the solution gets

larger as the number of terms in the gPC is increased.

Table 3.5: CPU times t to compute low-rank solutions of the diffusion equation for
ǫc = ǫ = 10−5 and 10−6 using the preconditioned low-rank projection method for
varying maximal polynomial degree p (stochastic dofs, nξ, in the parenthesis).

ǫc= ǫ = 10−5 (κ = 40) ǫc= ǫ = 10−6 (κ = 65)

nx(ℓ) p = 3 (120) p = 4 (330) p = 5 (792) p = 3 (120) p = 4 (330) p = 5 (792)

1292(7) 12.43 15.55 21.56 19.32 23.42 38.49
2572(8) 38.37 44.27 56.79 61.41 69.17 91.10
5132(9) 197.87 217.38 252.39 315.18 322.86 383.89

Table 3.6 shows the computation time t needed to compute approximate so-

lutions of the stochastic diffusion problems that satisfy the tolerance 10−5 and 10−6

for varying variance, σ2. In general, the example problem with a larger variance

requires a higher rank to satisfy the stopping tolerance, which, therefore, requires

more computational effort.

Comparison to a truncation operator based on singular values. We

compare the performance of the proposed solver to the preconditioned low-rank

projection method combined with the conventional truncation operator from [61].

Table 3.7 shows the computation time required to compute approximate solutions
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Table 3.6: CPU times t and rank κ to compute low-rank solutions of the diffusion
equation for ǫc = ǫ = 10−5 and 10−6 using the preconditioned low-rank projection
method for varying σ.

ǫ = 10−5 ǫ = 10−6

σ nx M=5 M=7 M=10 M=15 M=5 M=7 M=10 M=15

0.01

κ = 15 κ = 20 κ = 35 κ = 55 κ = 20 κ = 30 κ = 50 κ = 85

1292 7.28 8.65 15.01 45.69 7.87 10.81 20.76 83.07
2572 21.47 26.08 47.21 135.75 23.30 31.94 66.92 240.98
5132 130.93 150.85 236.34 922.87 137.98 173.03 333.70 1893.89

0.05

κ = 25 κ = 40 κ = 65 κ = 115 κ = 35 κ = 65 κ = 100 κ = 210

1292 8.35 12.43 28.88 132.15 10.14 19.32 51.69 398.06
2572 25.17 38.37 93.20 385.59 30.55 61.41 162.90 1177.68
5132 147.17 197.87 453.71 2854.62 166.24 315.18 1333.63 OoM

0.1

κ = 35 κ = 60 κ = 100 κ = 180 κ = 50 κ = 85 κ = 145 -

1292 9.78 17.24 50.70 297.35 8.79 28.37 113.53 OoM
2572 29.98 54.94 157.76 866.41 41.69 94.48 356.50 OoM
5132 164.48 273.33 1324.47 OoM 208.15 515.29 2902.95 OoM

using the conventional and new truncation strategies. The total computation time,

t, of the low-rank projection method with the coarse-grid rank reduction includes

both coarse-grid, tc, and fine-grid computations, tf . The low-rank projection method

with the SVD-based truncation operator, which is implemented based on [6], does

not require a coarse-grid computation and can start with any arbitrary initial guess

for rank, κ. For these computations, we used the values of rank identified in the

coarse-grid computations, which are illustrated in Table 3.1, for the initial rank.
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Table 3.7: CPU times to compute low-rank solutions of the diffusion equation for ǫc

= ǫ = 10−5 and 10−6 using the preconditioned low-rank projection (LRP) methods
with the coarse-grid rank-reduction and the singular value based truncation on the
level 8 spatial grid (i.e., nx = 2572).

Solver M=5 M=7 M=10 M=15 M = 20

ǫ = 10−5 LRP-SVD tSVD 55.04 108.11 284.27 1280.65 5691.19

LRP-Coarse t 25.17 38.37 93.20 385.59 1943.49

ǫ = 10−6 LRP-SVD tSVD 76.03 198.20 564.12 5131.32 OoM

LRP-Coarse t 30.55 61.41 162.90 1177.68 OoM

Table 3.8: CPU times to compute low-rank solutions of the diffusion equation for
ǫc = ǫ = 10−5 and 10−6 using the PGD method and the preconditioned low-rank
projection methods on the level 8 spatial grid (i.e., nx = 2572).

Solver M = 5 M = 7 M = 10 M = 15 M = 20

ǫ = 10−5
PGD

κ 25 45 65 125 195
t 43.78 109.72 228.73 940.69 3066.87

LRP-Coarse
κ 25 40 65 115 180
t 25.17 38.37 93.20 385.59 1943.49

ǫ = 10−6
PGD

κ 40 70 110 225 OoM
t 74.43 214.82 533.10 2713.70 OoM

LRP-Coarse
κ 35 65 100 210 OoM
t 30.55 61.41 162.90 1177.68 OoM

PGD as a solver on a finer spatial grid. The PGD method could be

applied directly to the fine-grid problems. We assess the performance of the PGD

method for computing fine-grid solutions in Table 3.8, which shows the rank and

computation time for computing approximate solutions that satisfy the tolerance

10−5 and 10−6 using PGD on a finer spatial grid. For the low-rank projection

method, we record total computation time, t, which includes coarse-grid compu-

tation, tc, AMG preconditioner set-up, tsetup, and fine-grid computation time, tf .
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We compare the rank and the computation time for computing solutions using the

PGD method and the proposed projection method. The proposed low-rank pro-

jection method runs faster and requires somewhat smaller ranks than the PGD

method.

Remark. We also tested the techniques compared in Tables 3.7 and 3.8 for

different values of σ, σ = 0.01 and 0.1, with similar results. Indeed, the performance

of LRP-Coarse is more favorable for the larger value σ = 0.1.

3.5.2 Stochastic convection-diffusion problem

For a second benchmark problem, we consider the steady-state convection-

diffusion equation defined on D = [−1, 1]× [−1, 1] with non-homogeneous Dirichlet

boundary conditions, constant vertical wind ~w = (0, 1), and f = 0,



















ν∇ · (a(x, ξ)∇u(x, ξ)) + ~w · ∇u(x, ξ) = f(x, ξ) in D × Γ,

u(x, ξ) = gD(x) on ∂D × Γ,

(3.23)

where gD(x) is determined by

gD(x) =















gD(x, −1) = x, gD(x, 1) = 0,

gD(−1, y) = −1, gD(1, y) = 1,

(3.24)

where the latter two approximations hold except near y = 1, and ν is the viscosity

parameter. We consider the convection-dominated case (i.e., ν < 1) and employ

the streamline-diffusion method for stabilization [17]. Here, we define the element
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Peclet number

Pk =
‖~wk‖2hk

2ν
(3.25)

where ‖~wk‖2 is the ℓ2 norm of the wind at the element centroid and hk is a measure

of the element length in the direction of the wind. Note that the solution has an

exponential boundary layer near y = 1 where the value of the solution dramatically

changes essentially from −1 to 0 on the left and +1 to 0 on the right [39]. Figure

3.1 illustrates the mean of solutions 〈u(x, ξ)〉ρ computed on the level 6 spatial grid

and corresponding contour plots for varying viscosity parameter, ν.
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Figure 3.1: Mean solutions and contour plots on the level 6 spatial grid for varying
ν.

Given a(x, ξ) in (2.7), we again discretize (3.23) using the finite element

method and the gPC expansion. The result is a linear system in tensor product
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notation

(

G0 ⊗ νK0 +

M
∑

l=1

Gl ⊗ νKl +G0 ⊗N +G0 ⊗ S

)

u = g0 ⊗ f0 (3.26)

where the convection term N and the streamline-diffusion term S are given by

[N ]ij =

∫

D

~w · ∇φi(x)φj(x)dx,

[S]ij =

ne
∑

k=1

δk

∫

D

(~w · ∇φi)(~w · ∇φj)d, x

ne is the number of elements in the finite element discretization, and

δk =















hk
2‖~w‖2

(

1− 1
Pk

)

if Pk > 1

0 if Pk ≤ 1

. (3.27)

As the preconditioner, we choose M ≈ G0 ⊗ (K0 + N + S) where the action of

(K0+N+S)−1 is replaced by application of a single V-cycle of an AMG method. In

the PGD method, the non-homogeneous Dirichlet boundary condition is handled by

introducing an extended affine space [76]: uc ≈ ubc+uc, κ where ubc is the boundary

nodal functions such as ubc =
∑

k∈∂D u
(bc)
k φk(x). For the stochastic convection-

diffusion problems, the update problems (3.21) need to be solved more often to

compute an approximate solution of a desired accuracy with fewer terms.

Numerical results. To cope with the existence of the exponential boundary

layer in the solution, we use vertically stretched spatial grids. We examine the

performance of the low-rank projection method for varying viscosity parameter ν,
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and we set m = 10 for Algorithm 2. Table 3.9 and 3.10 show κ computed by the

PGD method, coarse-grid computation time tc, and fine grid computation time tf

to compute approximate solutions on fine spatial grids ℓ = {7, 8, 9} satisfying 10−5

and 10−6, respectively. Underlined numbers in the spatial grid level indicates cases

where streamline diffusion is not needed.

Table 3.9: CPU times to compute low-rank solutions of the convection-diffusion
equation for ǫc = ǫ = 10−5 using the preconditioned low-rank projection methods
for varying ν. Numbers of GMRES cycles are shown in parentheses.

ν ℓ M = 5 M = 7 M = 10 M = 15 tsetup

1
20

4
κ 25 35 55 65∗

tc 2.56 4.83 26.34 58.92∗

7 tf 5.73 (1) 9.47 (1) 24.86 (1) 72.29 (1) 6.14
8 tf 20.52 (1) 36.66 (1) 98.72 (1) 248.31 (1) 30.57
9 tf 84.55 (1) 152.69 (1) 592.63 (1) 1953.52 (2) 338.28

1
100

4
κ 20 25 45 55∗

tc 2.94 3.12 16.28 47.24∗

7 tf 5.06 (1) 7.28 (1) 18.90 (1) 60.66 (1) 6.34
8 tf 16.87 (1) 26.36 (1) 74.26 (1) 202.29 (1) 35.52
9 tf 121.98 (2) 201.62 (2) 745.92 (2) 3079.24 (2) 341.41

1
200

5
κ 20 25 45 50
tc 2.91 4.79 16.54 46.85

7 tf 5.16 (1) 7.21 (1) 16.57 (1) 53.97 (1) 6.35
8 tf 17.57 (1) 25.05 (1) 63.56 (1) 175.30 (1) 35.89
9 tf 123.73 (2) 200.10 (2) 605.50 (2) 2568.41 (2) 344.87

1
400

5
κ 20 20 35 45†

tc 2.94 3.79 12.49 82.06†

7 tf 8.61 (2) 9.84 (2) 26.97 (2) 85.01 (2) 6.09
8 tf 31.55 (2) 37.74 (2) 111.31 (2) 298.49 (2) 34.93
9 tf 133.45 (2) 158.01 (2) 512.88 (2) 2080.60 (2) 342.12

1
600

6
κ 20 20 35 45
tc 9.79 13.20 34.47 94.79

7 tf 8.27 (2) 10.07 (2) 26.91 (2) 82.30 (2) 6.14
8 tf 31.94 (2) 39.84 (2) 109.25 (2) 295.25 (2) 33.25
9 tf 343.80 (2) 163.90 (2) 506.42 (2) 1977.83 (2) 342.98

When the viscosity parameter is small (i.e., ν = 1/600), the coarse-grid com-
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putation requires the κ-term approximation on a relatively fine spatial grid (i.e.,

ℓ = 6). The exponential boundary layer gets narrower as the viscosity parameter

gets smaller, which requires the use of a finer spatial grid for the coarse-grid compu-

tation. If the coarse-grid computation is performed on coarser spatial grids, it fails

to identify the rank structure of solutions and to yield a proper truncation operator.

Analogously, when the number of terms, M , in the KL expansion (2.7) is large,

the coarse-grid computation has to be done on a relatively fine spatial grid because

the KL expansion contains more spatially oscillatory terms. In the last columns of

Table 3.9 and 3.10, ∗ and † indicate that the coarse-grid solutions are computed on

the level 5 and the level 6 spatial grid, respectively.
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Table 3.10: CPU times to compute approximate solutions of the convection-diffusion
equation for ǫc = ǫ = 10−6 using the preconditioned low-rank projection methods
for varying ν. Numbers of GMRES cycles are shown in parentheses.

ν ℓ M = 5 M = 7 M = 10 M = 15 tsetup

1
20

4
κ 35 50 75 105∗

tc 3.31 9.17 60.51 194.33∗

7 tf 13.92 (2) 27.47 (2) 80.78 (2) 275.96 (2) 6.14
8 tf 52.45 (2) 106.11 (2) 311.59 (2) 1042.40 (2) 30.57
9 tf 220.67 (2) 534.61 (2) 2694.26 (2) 8101.20 (2) 338.28

1
100

4
κ 30 40 65 95∗

tc 2.83 6.25 38.39 155.83∗

7 tf 12.34 (2) 21.28 (2) 65.02 (2) 239.91 (2) 6.34
8 tf 46.67 (2) 85.66 (2) 255.79 (2) 895.81 (2) 35.52
9 tf 273.45 (3) 549.82 (3) 3069.96 (3) 10963.03 (3) 341.41

1
200

5
κ 25 40 60 85
tc 3.46 8.57 38.35 122.49

7 tf 10.52 (2) 21.43 (2) 56.36 (2) 204.09 (2) 6.35
8 tf 39.39 (2) 84.14 (2) 219.36 (2) 732.88 (2) 35.89
9 tf 226.83 (3) 547.62 (3) 2627.98 (3) 9284.60 (3) 344.87

1
400

5
κ 25 35 55 75†

tc 3.49 6.63 30.50 151.46†

7 tf 10.44 (2) 17.96 (2) 50.96 (2) 161.58 (2) 6.09
8 tf 40.02 (2) 70.82 (2) 204.71 (2) 610.23 (2) 34.93
9 tf 239.04 (3) 441.73 (3) 2106.30 (3) 7817.82 (3) 342.12

1
600

6
κ 30 35 45 65
tc 17.99 22.03 47.44 140.01

7 tf 17.74 (3) 26.56 (3) 56.25 (3) 281.27 (3) 6.14
8 tf 48.39 (2) 74.40 (2) 153.35 (2) 506.84 (2) 33.25
9 tf 281.27 (3) 462.52 (3) 1184.74 (3) 6261.34 (3) 342.98

Comparison to a truncation operator based on singular values. We

again compare the performance of the proposed solver to the preconditioned low-

rank projection method combined with the conventional truncation operator, the

SVD-based truncation operator. Table 3.11 shows the computation time required

to compute approximate solutions using the conventional and the new truncation

strategy. When the low-rank projection method with SVD-based truncation oper-
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ator is used, initial values for rank κ in Algorithm 2 are obtained from coarse-grid

computations of the proposed rank reduction strategy.

Table 3.11: CPU times to compute low-rank solutions of the convection-diffusion
equation for ǫc = ǫ = 10−5 and 10−6 using the preconditioned low-rank projection
(LRP) methods with the coarse-grid rank-reduction and the singular value based
truncation on the level 8 spatial grid (i.e., nx = 2572).

Viscosity (ν) Solver M = 5 M = 7 M = 10 M = 15

ǫ = 10−5

1/20
LRP-SVD tSVD 68.45 100.83 201.34 438.25

LRP-Coarse t 54.06 72.08 154.79 338.21

1/100
LRP-SVD tSVD 93.91 121.89 295.27 655.71

LRP-Coarse t 55.28 64.36 125.88 285.94

1/200
LRP-SVD tSVD 90.70 122.56 251.60 574.68

LRP-Coarse t 55.42 66.08 115.68 258.97

1/400
LRP-SVD tSVD 91.11 107.47 221.32 475.60

LRP-Coarse t 69.01 76.63 158.07 416.36

1/600
LRP-SVD tSVD 90.33 103.44 218.35 484.08

LRP-Coarse t 75.26 86.48 176.93 422.85

ǫ = 10−6

1/20
LRP-SVD tSVD 132.08 234.15 570.56 1748.43

LRP-Coarse t 86.74 145.86 401.83 1267.71

1/100
LRP-SVD tSVD 121.88 196.66 471.11 1479.80

LRP-Coarse t 84.97 126.77 329.52 1088.05

1/200
LRP-SVD tSVD 106.79 188.76 416.52 1203.78

LRP-Coarse t 77.79 128.96 293.30 892.18

1/400
LRP-SVD tSVD 107.12 168.01 380.01 1015.88

LRP-Coarse t 78.04 112.55 269.48 797.50

1/600
LRP-SVD tSVD 122.44 231.07 421.76 1208.88

LRP-Coarse t 97.00 129.87 234.00 670.90

3.5.3 Choices of coarse spatial grid

Finally, we discuss criteria for choosing the coarse grid used to generate trun-

cation operators. The basic idea is that the coarse grid needs to be fine enough
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so that important features of the problem are represented. This quality is prob-

lem dependent, and we outline what is needed for the two types of problems we

examined.

First consider the diffusion equation of Section 5.1. The issue is the oscilla-

tory nature of components of the random field a(x, ξ). In the KL expansion (2.7),

the eigenpairs, {(λi, ai(x))}Mi=1, can be obtained by solving the following integral

equation,
∫

D

C(x, y)ai(y)dy = λiai(x), i = 1, . . . , M (3.28)

where C(x, y) is the covariance kernel (3.22). Since the kernel is separable, the eigen-

functions of the integral problem (3.28) can be represented as ai(x) = a1k(x1)a
2
j(x2),

where {a1k}∞k=1 and {a2j}∞j=1 are the eigenfunctions of the one-dimensional integral

problem (i.e.,
∫

D
exp(−|xl − yl|/γ)alk(yl)dyl = λlka

l
k(xl), l = 1, 2). The eigenvalues,

{λi}Mi=1, are in decreasing order and λi is the ith largest value of products λ1kλ
2
j for

k, j = 1, 2, · · · . Analytic expressions for the 1D eigenfunctions are given in [46] as,

for l = 1, 2,

alk(x) = cos(θkx)

/

√

1

2
+

sin θk
2θk

for even k,

al∗k (x) = sin(θ∗kx)

/

√

1

2
− sin θk

2θk
for odd k,

(3.29)

where θk and θ∗k are the solutions of

1

c
− θ tan

(

θ

2

)

= 0 and θ∗ +
1

c
tan

(

θ∗

2

)

= 0,
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Table 3.12: Largest values of θk or θ∗k of eigenfunctions (3.29) in the KL expansion,
required grid refinement level ℓc, half wavelength π/θ, and element size hc = 2−ℓ

c

for different values of M .

M 3 5 7 10 15 20

max(θk, θ
∗
k) 3.25 6.36 9.49 12.63 18.90 25.19

wavelength/2 .97 .49 .33 .25 .17 .12

ℓc (hc) 3
(

1
8

)

4
(

1
16

)

4
(

1
16

)

5
(

1
32

)

5
(

1
32

)

6
(

1
64

)

respectively, when the 1D integral problem is posed on [−1
2
, 1

2
]. As i in the KL

expansion (2.7) increases, the eigenfunctions ai(x) become more oscillatory over

the spatial domain (i.e., θk or θ∗k become larger), so that finer coarse spatial grids

are required to capture the oscillatory features of the KL expansion. Table 3.12

shows the largest value of {θk, θ∗k} of the eigenfunctions in the KL expansion, the

half-wavelength of the functions from (3.29) and our choice of coarse spatial grid

refinement levels, ℓc, for different values of M . With these coarse grids, there are

approximately eight grid points per half wave, enough to capture the qualitative

character of the wave.

We turn now to the convection-diffusion equation of Section 5.2. This problem

has the same diffusion coefficient (2.7) as the diffusion problem, but in addition its

solution has an exponential boundary layer. In particular, for small ν, the width of

the layer is smaller than the finest interval needed to represent the eigenfunctions in

(2.7), and in this case the coarse grid must be finer than that needed for the diffusion

problem (whose solution is smooth). In Figure 3.2, the top plot illustrates the mean

solutions 〈u(x, ξ)〉ρ of the weak formulation of (3.23) at x = 1, which are computed

on two coarse spatial grids ℓ = {4, 5} using PGD and a fine spatial grid ℓ = 8
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Figure 3.2: Mean solutions 〈u(x, ξ)〉ρ at x = 1 and y = [0.9, 1] illustrating the
exponential boundary layer for varying spatial grid refinement level, ℓ = {4, 5, 8},
(top) and lengths in y-direction of first few elements from y = 1 (bottom).

using the proposed method, with the viscosity parameter, ν = 1
200

, and M = 10

random variables. The bottom plot shows the lengths of the first few elements in

the y-direction near y = 1 for these refinement levels. If the level-4 spatial grid is

used for the coarse grid computation (i.e., ℓ = 4, red line in Figure 3.2), the width of

exponential boundary layer is much narrower than the length of the smallest element

and the coarse-grid solution gives a poor representation of the boundary layer. When

this coarse grid is used to construct the truncation operator, the proposed scheme

fails to compute an accurate approximate solution on a fine spatial grid (i.e., ℓ = 8,

black line in Figure 3.2). On the other hand, the level-5 spatial grid (i.e., ℓ = 5,

blue line in Figure 3.2) is fine enough for the coarse-grid solution to represent the

character of the exponential layer, and with this coarse-grid, the resulting proposed

scheme efficiently computes an accurate fine-grid solution.
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Although this discussion shows that some a priori knowledge of the problem is

needed to identify the coarse grid operator, in general this information is not difficult

to come by. In particular, we are assuming that the expansion (2.5) is known, and it

is straightforward to identify the resolution needed to represent its components, for

example by examining one-dimensional cross-sections of them. If as for the second

problem some knowledge of the solution is needed, this can be obtained cheaply

from the solution of a deterministic problem derived from the mean of the diffusion

coefficient; indeed, for the convection-diffusion problem, the boundary layer for the

deterministic solution has essentially the same character as that of the stochastic

solution whose mean is shown in Figure 3.2.

3.6 Statistical Computations

In this section, we explore the impact of truncation on statistical quantities

associated with the solutions. In particular, we examine the mean and the variance

of the solution uhp(x, ξ), which are defined as

µ = E[uhp], σ2
u = E[(uhp − µ)2], (3.30)

where E[·] =
∫

Γ
·ρ(ξ)dξ refers to the expectation. Let u

(full)
hp refer to the discrete

solution (of form (2.11)) obtained from a full-rank solution of (3.2) (i.e., with no

truncation), and let u
(low)
hp refer to that obtained using Algorithm 3. We will examine

the accuracy of u
(low)
hp by comparing its mean and variance to those of a reference
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solution u
(ref)
hp as follows:

ηµ ≡ ‖µref − µlow‖2 ≤ ‖µref − µfull‖2 + ‖µfull − µlow‖2, (3.31)

ησ ≡ ‖σ2
u,ref − σ2

u,low‖2 ≤ ‖σ2
u,ref − σ2

u,full‖2 + ‖σ2
u,full − σ2

u,low‖2, (3.32)

where the norm in (3.31)–(3.32) is the ℓ2-norm (e.g., ‖µ‖2 = (
∫

D
µ(x)2dx)

1
2 ). For

these tests, u
(full)
hp and u

(low)
hp were computed using a fixed discretization on a spatial

grid (ℓ = 7) and polynomial degree p = 3 for the stochastic discretization, and u
(ref)
hp

was computed using the larger polynomial degree p = 5.2 Thus, for the means in

(3.31), µref−µfull represents an approximate to the discretization error and µfull−µlow

is the error caused by the low-rank approximation, which we refer to as the bias.

Note that the mean and the variance of the stochastic Galerkin solution (2.11) can

be computed easily by exploiting the orthonormality of the basis functions (i.e., for

u(ξ) =
∑n

i=1 uiψi(ξ), µ = u1E[ψ1] = u1 and σ2
u =

∑n
i=2 u

2
iE[ψ

2
i ] =

∑n
i=2 u

2
i ).

Figure 3.3 shows the results for various tolerances ǫc and two examples of the

diffusion problem (2.1) (with M = 5 and M = 7 in (2.7)) and one example of the

convection-diffusion problem (3.23) with M = 5. In all cases, it can be seen that

the error for the low-rank solution is somewhat larger than the discretization error

for large ǫc (and this is caused by the bias), but the bias is significantly smaller than

the tolerance ǫc. The bias is negligible for ǫc = 10−7.

2We also computed a more accurate reference solution with p = 7 for the moderate-dimensional
problem (i.e., the diffusion problem (2.1) with M = 5) and found the results to be virtually
identical.
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(e) Convection-Diffusion with M = 5
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(f) Convection-Diffusion with M = 5

Figure 3.3: Errors in the mean and the variance of the low-rank approximate solu-
tions shown in (3.31) and (3.32) for the stochastic diffusion problem (a)-(d) and the
stochastic convection-diffusion problem (e)-(f).

3.7 Conclusion

We have studied iterative solvers for low-rank solutions of sto-chastic Galerkin

systems of stochastic partial differential equations. In particular, we have explored
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low-rank projection methods in tensor format for linear systems of Kronecker-

product structure. For the computational efficiency of the projection methods, basis

vectors and iterates in the projection methods are forced to have low rank, which

is achieved by a coarse-grid rank-reduction strategy. We have examined the perfor-

mance of this strategy with two benchmark problems: stochastic diffusion problems

and stochastic convection-diffusion problems. For both problem classes, the rank

structure of the solution can be identified by an inexpensive coarse-grid computation,

and with the resulting coarse-grid rank-reduction strategy, the low-rank projection

method is more efficient than methods for which the truncation operator is based

on singular values.
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Chapter 4: Low-rank approximationmethod for parameterized Navier–

Stokes equations

4.1 Introduction

In this chapter, we present a low-rank approximation method for the steady-

state Navier–Stokes equations with uncertain viscosity. Such uncertainty may arise

from measurement error or uncertain ratios of multiple phases in porous media. The

uncertain viscosity can be modeled as a positive random field parameterized by a

set of random variables [82,99,104] and, consequently, the solution of the stochastic

Navier–Stokes equations also can be modeled as a random vector field depending

on the parameters associated with the viscosity (i.e., a function of the same set

of random variables). As a solution method, we consider the stochastic Galerkin

method combined with the generalized polynomial chaos (gPC) expansion, which

provides a spectral approximation of the solution function. The stochastic Galerkin

method results in a coupled algebraic system of equations, for which computational

costs may be high when the global system becomes large.

One way to address this issue is thorough use of tensor Krylov subspace meth-

ods, which operate in tensor format and reduce the costs of matrix operations by
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exploiting a Kronecker-product structure of system matrices. Variants of this ap-

proach have been developed for the Richardson iteration [61,70], the conjugate gra-

dient method [61], the BiCGstab method [61], the minimum residual method [103],

and the general minimum residual (GMRES) method [6]. Efficiencies are also ob-

tained from the fact that solutions can often be well approximated by low-rank

objects. These ideas have been shown to reduce costs for solving steady [65,70] and

unsteady stochastic diffusion equations [10].

In this study, we adapt the low-rank approximation scheme to a solver for the

systems of nonlinear equations obtained from the stochastic Galerkin discretization

of the stochastic Navier–Stokes equations. In particular, we consider a low-rank

variant of linearization schemes based on Picard and Newton iteration, where the

solution of the nonlinear system is computed by solving a sequence of linearized sys-

tems using a low-rank variant of the GMRES method (lrGMRES) [6] in combination

with inexact nonlinear iteration [30].

We base our development of the stochastic Galerkin formulation of the stochas-

tic Navier–Stokes equations on ideas from [82,99]. In particular, we consider a ran-

dom viscosity affinely dependent on a set of random variables as suggested in [82]

(and in [99], which considers a gPC approximation of the lognormally distributed vis-

cosity). The stochastic Galerkin formulation of the stochastic Navier–Stokes equa-

tions is also considered in [9], which studies an optimal control problem constrained

by the stochastic Navier–Stokes problem and computes an approximate solution us-

ing a low-rank tensor-train decomposition [77]. Related work [104] extends a Proper

Generalized Decomposition method [75] for the stochastic Navier–Stokes equations,
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where a low-rank approximate solution is built from successively computing rank-one

approximations. See the book [63] for an overview and other spectral approximation

approaches for models of computational fluid dynamics.

An outline of the chapter is as follows. In section 4.2, we review the stochastic

Navier–Stokes equations and their discrete Galerkin formulations. In section 4.3, we

present an iterative low-rank approximation method for solutions of the discretized

stochastic Navier–Stokes problems. In section 4.4, we introduce an efficient variant

of the inexact Newton method, which solves linear systems arising in nonlinear

iteration using low-rank format. We follow a hybrid approach, which employs several

steps of Picard iteration followed by Newton iteration. In section 4.5, we examine

the performance of the proposed method on a set of benchmark problems that model

the flow over an obstacle. Finally, in section 4.6, we draw some conclusions.

4.2 Stochastic Navier–Stokes equations

Consider the stochastic Navier–Stokes equations: Find velocity ~u(x, ξ) and

pressure p(x, ξ) such that

−ν(x, ξ)∇2~u(x, ξ) + (~u(x, ξ) · ∇)~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0,

(4.1)
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in D × Γ, with a boundary conditions

~u(x, ξ) = ~g(x, ξ), on ∂DDir,

ν(x, ξ)∇~u(x, ξ) · ~n− p(x, ξ)~n(x, ξ) = ~0, on ∂DNeu,

where ∂D = ∂DDir ∪ ∂DNeu. The stochasticity of the equation (4.1) stems from the

random viscosity ν(x, ξ), which is modeled as a positive random field parameterized

by a set of independent, identically distributed random variables ξ = {ξ1, . . . , ξnν}.

The random variables comprising ξ are defined on a probability space (Ω,F , P )

such that ξ : Ω → Γ ⊂ R
nν , where Ω is a sample space, F is a σ-algebra on Ω,

and P is a probability measure on Ω. The joint probability density function of ξ

is denoted by ρ(ξ) and the expected value of a random function v(ξ) on Γ is then

〈v〉ρ = E[v] ≡
∫

Γ
v(ξ)ρ(ξ)dξ.

For the random viscosity, we consider a random field that has affine dependence

on the random variables ξ,

ν(x, ξ) ≡ ν0 + σν

nν
∑

k=1

νk(x)ξk, (4.2)

where {ν0, σ2
ν} are the mean and the variance of the random field ν(x, ξ). We will

also refer to the coefficient of variation (CoV ), the relative size of the standard

deviation with respect to the mean,

CoV ≡ σν
ν0
. (4.3)
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The random viscosity leads to the random Reynolds number

Re(ξ) ≡ UL

ν(ξ)
, (4.4)

where U is the characteristic velocity and L is the characteristic length. We denote

the Reynolds number associated with the mean viscostiy by Re0 = UL
ν0
. In this

study, we ensure that the viscosity (4.2) has positive values by controlling CoV and

only consider small enough Re0 so that the flow problem has a unique solution.

4.2.1 Stochastic Galerkin method

In the stochastic Galerkin method, a mixed variational formulation of (4.1) can

be obtained by employing Galerkin orthogonality: Find (~u, p) ∈ (VE , QD) ⊗ L2(Γ)

such that

〈
∫

D

ν∇~u : ∇~v + (~u · ∇~u)~v − p(∇ · ~v)
〉

ρ

=

〈
∫

D

~f · ~v
〉

ρ

, ∀~v ∈ VD ⊗ L2(Γ), (4.5)

〈
∫

D

q(∇ · ~u)
〉

ρ

= 0, ∀q ∈ QD ⊗ L2(Γ). (4.6)

The velocity solution and test spaces are VE = {~u ∈ H1(D)2|~u = ~g on ∂DDir} and

VD = {~v ∈ H1(D)2|~v = ~0 on ∂DDir}, where H1(D) refers to the Sobolev space of

functions with derivatives in L2(D), for the pressure solution, QD = L2(D), and

L2(Γ) is a Hilbert space equipped with an inner product

〈u, v〉ρ ≡
∫

Γ

u(ξ)v(ξ)ρ(ξ)dξ.
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The solution of the variational formulation (4.5)–(4.6) satisfies

R(~u, p;~v, q) = 0, ∀~v ∈ VD ⊗ L2(Γ), ∀q ∈ QD ⊗ L2(Γ), (4.7)

where R(~u, p;~v, q) is a nonlinear residual

R(~u, p;~v, q) ≡









〈
∫

D
~f · ~v − ν∇~u : ∇~v + (~u · ∇~u)~v −

∫

D
p(∇ · ~v)〉ρ

〈−
∫

D
q(∇ · ~u)〉ρ









. (4.8)

To compute the solution of the nonlinear equation (4.7), we employ linearization

techniques based on either Picard iteration or Newton iteration [39]. Replacing (~u, p)

of (4.5)–(4.6) with (~u + δ~u, p + δp) and neglecting the quadratic term c(δ~u; δ~u,~v),

where c(~z; ~u,~v) ≡
∫

D
(~z · ∇~u) · ~v, gives









〈
∫

D
ν∇δ~u : ∇~v + c(δ~u; ~u,~v) + c(~u; δ~u,~v)−

∫

D
δp(∇ · ~v)〉ρ

〈
∫

D
q(∇ · δ~u)〉ρ









= R(~u, p;~v, q). (4.9)

In Newton iteration, the (n+1)st iterate (~un+1, pn+1) is computed by taking ~u = ~un,

p = pn in (4.9), solving (4.9) for (δ~un, δpn), and updating

~un+1 := ~un + δ~un, pn+1 := pn + δpn.

In Picard iteration, the term c(δ~u; ~u,~v) is omitted from the linearized form (4.9).
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4.2.2 Discrete stochastic Galerkin system

To obtain a discrete system, the velocity ~u(x, ξ) and the pressure p(x, ξ) are

approximated by a generalized polynomial chaos expansion [112]:

~u(x, ξ) ≡
nξ
∑

i=1

~ui(x)ψi(ξ), p(x, ξ) ≡
nξ
∑

i=1

pi(x)ψi(ξ), (4.10)

where {ψi(ξ)}nξi=1 is a set of nν-variate orthogonal polynomials (i.e., 〈ψiψj〉ρ = 0

if i 6= j). This set of orthogonal polynomials gives rise to a finite-dimensional

approximation space S = span({ψi(ξ)}nξi=1) ⊂ L2(Γ). For spatial discretization, a

div-stable mixed finite element method [39] is considered, the Taylor-Hood element

consisting of biquadratic velocities and bilinear pressure. Basis sets for the velocity

space V h
E and the pressure space Qh

D are denoted by























φi(x)

0









,









0

φi(x)























nu

i=1

and

{ϕi(x)}npi=1, respectively. Then the fully discrete version of (4.10) can be written as

~u(x, ξ) =









~ux(x, ξ)

~uy(x, ξ)









≡









∑nξ
i=1

∑nu
j=1 u

x
ijφj(x)ψi(ξ)

∑nξ
i=1

∑nu
j=1 u

y
ijφj(x)ψi(ξ)









, p(x, ξ) ≡
nξ
∑

i=1

np
∑

j=1

pijϕj(x)ψi(ξ).

(4.11)

Let us introduce a vector notation for the coefficients, ūxi ≡ [uxi1, . . . , u
x
inu]

T ∈ R
nu ,

ūyi ≡ [uyi1, . . . , u
y
inu

]T ∈ R
nu, and p̄i ≡ [pi1, . . . , pinp]

T ∈ R
np for i = 1, . . . , nξ, which,

for each gPC index i, groups the horizontal velocity coefficients together followed

by the vertical velocity coefficients, and then by the pressure coefficients, giving a
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vector

ūi = [(ūxi )
T , (ūyi )

T , pTi ]
T . (4.12)

Taking ν(x, ξ) from (4.2) and replacing ~u(x, ξ), p(x, ξ) in (4.9) with their discrete

approximations (4.11) yields a system of linear equations of order (2nu+np)nξ. The

coefficient matrix has a Kronecker-product structure,

J ≡ G1 ⊗ F1 +

nξ
∑

l=2

Gl ⊗ Fl, (4.13)

where Gl refers to the lth “stochastic matrix”

[Gl]ij = 〈ψlψiψj〉ρ, l = 1, . . . , nξ

with ψ1(ξ) = 1, ψi(ξ) = ξi−1 for i = 2, . . . , nν + 1 and

F1 ≡









F1 BT

B 0









, Fl ≡









Fl 0

0 0









, l = 2, . . . , nξ

with Fl ≡ Al + Nl +Wl for the Newton iteration and Fl ≡ Al + Nl for the Picard

iteration. We refer to the matrix of (4.13) derived from the Newton iteration as the

Jacobian matrix, and that derived from the Picard iteration as the Oseen matrix,

denoted by JN and JP , respectively. Here, Al is the lth symmetric matrix defined
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as

[Al]ij ≡
∫

D

νl−1(x)(∇φi : ∇φj), l = 1, . . . , nν + 1, (4.14)

Nl = N(~ul(x)) and Wl = W (~ul(x)) are, respectively, the lth vector-convection

matrix and the lth Newton derivative matrix with ~unl (x) from the lth term of (4.10),

[Nl]ij = [N(~ul(x))]ij ≡
∫

D

(~ul(x) · ∇φj(x)) · φi(x), l = 1, . . . , nξ,

[Wl]ij = [W (~ul(x))]ij ≡
∫

D

(φj(x) · ∇~ul(x)) · φi(x), l = 1, . . . , nξ,

and B is the divergence matrix,

[B]ij ≡
∫

D

ϕj(∇ · φi). (4.15)

If the number of gPC polynomial terms in (4.11) is larger than the number of terms

in (4.2) (i.e., nξ > nν + 1), we simply set {Al}nξl=nν+2 as matrices containing only

zeros so that Fl = Nl +Wl for l = nν + 2, . . . , nξ.

A discrete version of (4.8) can be derived in a similar way,

r̄ := ȳ −
(

G1 ⊗ P1 +

nξ
∑

l=2

Gl ⊗ Pl
)

ū (4.16)

where ū := [ūT1 . . . ū
T
nξ
]T ∈ R

(2nu+np)nξ with ūi as in (4.12), ȳ is the right-hand side
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determined from the forcing function and Dirichlet boundary data, and

P1 ≡









A1 +N1 BT

B 0









, Pl ≡









Al +Nl 0

0 0









l = 2, . . . , nξ.

The system of linear equations arising at the nth nonlinear iteration is

Jnδūn = −r̄n, (4.17)

where the matrix Jn from (4.13) and the residual r̄n from (4.16) each evaluated at

the nth iterate ūn, and the update δūn is computed by solving (4.17). The order

of the system (2nu + np)nξ grows fast as the number of random variables used

to parameterize the random viscosity increases. Even for a moderate-dimensional

stochastic Navier–Stokes problem, solving a sequence of linear systems of order

(2nu + np)nξ can be computationally prohibitive. To address this issue, we present

an efficient variant of Newton–Krylov methods in the following sections.

4.3 Low-rank Newton–Krylov method

In this section, we outline the formalism in which the solutions to (4.16) and

(4.17) can be efficiently approximated by low-rank objects while not losing much

accuracy and we show how solvers are adjusted within this formalism.

Before presenting these ideas, we describe the nonlinear iteration. We consider

a hybrid strategy. An initial approximation for the nonlinear solution is computed
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by solving the parameterized Stokes equations,

−ν(x, ξ)∇2~u(x, ξ) +∇p(x, ξ) = ~f(x, ξ),

∇ · ~u(x, ξ) = 0.

The discrete Stokes operator, which is obtained from the stochastic Galerkin dis-

cretization as shown in Section 4.2.2, is

(

G1 ⊗ S1 +

nν+1
∑

l=2

Gl ⊗ Sl
)

ūst = bst, (4.18)

where

S1 =









A1 BT

B 0









, Sl =









Al 0

0 0









, l = 2, . . . , nν + 1,

with {Al}nν+1
l=1 defined in (4.14) and B defined in (4.15). After this initial computa-

tion, updates to the solution are computed by first solving mp Picard systems with

coefficient matrix JP and then using Newton’s method with coefficient matrix JN

to compute the solution.

Algorithm 4 Solution methods

1: compute an approximate solution of Astūst = bst in (4.18)
2: set an initial guess for the Navier–Stokes problem ū0 := ūst
3: for k = 0, . . . , mp − 1 do

4: solve JkP δū
k = −r̄k

5: update ūk+1 := ūk + δūk

6: end for

7: while k < mn and ‖r̄k‖2 > ǫnl‖r̄0‖2 do

8: solve JkN δū
k = −r̄k

9: update ūk+1 := ūk + δūk

10: end while
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4.3.1 Approximation in low rank

We now develop a low-rank variant of Algorithm 4. Let us begin by introducing

some concepts to define the rank of computed quantities. Let X = [x̄1, · · · , x̄n2
] ∈

R
n1×n2 and x̄ = [x̄T1 , · · · , x̄Tn2

]T ∈ R
n1n2 , where x̄i ∈ R

n1 for i = 1, . . . , n2. That is,

x̄ can be constructed by rearranging the elements of X , and vice versa. Suppose

X has rank αx. Then two mathematically equivalent expressions for X and x̄ are

given by

X = Y ZT =
αx̄
∑

i=1

ȳiz̄
T
i ⇔ x̄ =

αx̄
∑

i=1

z̄i ⊗ ȳi, (4.19)

where Y ≡ [ȳ1, · · · , ȳαx̄ ] ∈ R
n1×αx̄ , Z ≡ [z̄1, · · · , z̄αx̄ ] ∈ R

n2×αx̄ with ȳi ∈ R
n1 ,

z̄i ∈ R
n2 for i = 1, . . . , αx̄. The representation of X and its rank is standard matrix

notation; we also use αx to refer to the rank of the corresponding vector x̄.

With this definition of rank, our goal is to inexpensively find a low-rank ap-

proximate solution ūk satisfying ‖r̄k‖2 ≤ ǫnl‖r̄0‖2 for small enough ǫnl. To achieve

this goal, we approximate updates {δūk} in low-rank using a low-rank variant of

GMRES method, which exploits the Kronecker product structure in the system ma-

trix as in (4.13) and (4.18). In the following section, we present the solutions ū (and

δū) in the formats of (4.19) together with matrix and vector operations that are

essential for developing the low-rank GMRES method.
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4.3.2 Solution coefficients in Kronecker-product form

We seek separate low-rank approximations of the horizontal and vertical ve-

locity solutions and the pressure solution. With the representation shown in (4.19),

the solution coefficient vector ū ∈ R
(2nu+np)nξ , which consists of the coefficients of

the velocity solution and the pressure solution (4.11), has an equivalent represen-

tation U ∈ R
(2nu+np)×nξ . The matricized solution coefficients U = [UxT , UyT , P T ]T

where Ux = [ūx1 , . . . , ū
x
nξ
], Uy = [ūy1, . . . , ū

y
nξ
] ∈ R

nu×nξ and the pressure solution

P = [p̄1, . . . , p̄nξ ] ∈ R
np×nξ . The components admit the following representations:

Ux =

αūx
∑

i=1

v̄xi (w̄
x
i )
T = V x(W x)T ⇔ ūx =

αūx
∑

i=1

w̄xi ⊗ v̄xi , (4.20)

Uy =

αūy
∑

i=1

v̄yi (w̄
y
i )
T = V y(W y)T ⇔ ūy =

αūy
∑

i=1

w̄yi ⊗ v̄yi , (4.21)

P =

αp̄
∑

i=1

v̄pi (w̄
p
i )
T = V p(W p)T ⇔ p̄ =

αp̄
∑

i=1

w̄pi ⊗ v̄pi , (4.22)

where V x = [v̄x1 . . . v̄
x
αūx

], W x = [w̄x1 . . . w̄
x
αūx

], αūx is the rank of ūx and Ux, and the

same interpretation can be applied to ūy and p̄.

4.3.2.1 Matrix operations

In this section, we introduce essential matrix operations used by the low-

rank GMRES methods, using the representations shown in (4.20)–(4.22). First,

consider the matrix-vector product with the Jacobian system matrix (4.13) and
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vectors (4.20)–(4.22),

Jnūn =

(

nξ
∑

l=1

Gl ⊗Fn
l

)

ūn, (4.23)

where

Fn
l =

















Axxl +Nn
l +W xx,n

l W xy,n
l BxT

W yx,n
l Ayyl +Nn

l +W yy,n
l ByT

Bx By 0

















=

















Fxx,n
l Fxy,n

l BxT

Fyx,n
l Fyy,n

l ByT

Bx By 0

















with Fxx,n
l ,Fxy,n

l ,Fyx,n
l ,Fyy,n

l ∈ R
nu×nu and Bx, By ∈ R

np×nu . The expression (4.23)

has the equivalent matricized form
∑nξ

l=1Fn
l U

nGT
l where the lth-term is evaluated

as

Fn
l U

nGT
l =

















Fxx,n
l V x,n(GlW

x,n)T+F xy,n
l V y,n(GlW

y,n)T+BxTV p,n(GlW
p,n)T

Fyx,n
l V x,n(GlW

x,n)T+F yy,n
l V y,n(GlW

y,n)T+ByTV p,n(GlW
p,n)T

BxV x,n(GlW
x,n)T +ByV y,n(GlW

y,n)T

















.

(4.24)
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Equivalently, in the Kronecker-product structure, the matrix-vector product (4.24)

updates each set of solution coefficients as follows:

nξ
∑

l=1

(Gl ⊗ Fxx,n
l )ūx,n + (Gl ⊗ Fxy,n

l )ūy,n + (Gl ⊗ BxT )p̄n, (x-velocity), (4.25)

nξ
∑

l=1

(Gl ⊗ Fyx,n
l )ūx,n + (Gl ⊗Fyy,n

l )ūy,n + (Gl ⊗ ByT )p̄n, (y-velocity) (4.26)

nξ
∑

l=1

(Gl ⊗ Bx)ūx,n + (Gl ⊗By)ūy,n, (pressure) (4.27)

where each matrix-vector product can be performed by exploiting the Kronecker-

product structure, for example,

nξ
∑

l=1

(Gl ⊗ Fxx,n
l )ūx,n =

nξ
∑

l=1

Gl ⊗Fxx,n
l

αūx
∑

i=1

wxi ⊗ vxi =

nξ
∑

l=1

αūx
∑

i=1

Glw
x
i ⊗ Fxx,n

l vxi .

(4.28)

The matrix-vector product shown in (4.25)–(4.27) requires O(2nu + np + nξ) flops,

whereas (4.23) requires O((2nu+np)nξ) flops. Thus, as the problem size grows, the

additive form of the latter count grows much less rapidly than the multiplicative

form for (4.23).

The addition of two vectors ūx and ūy can also be efficiently performed in the

Kronecker-product structure,

ūx + ūy =

αūx
∑

i=1

wxi ⊗ vxi +

αūy
∑

i=1

wyi ⊗ vyi =

αūx+αūy
∑

i=1

v̂i + ŵi, (4.29)

where v̂i = vxi , ŵi = wxi for i = 1, . . . , αūx , and v̂i = vyi , ŵi = wyi for i = αūx +
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1, . . . , αūx + αūy .

Inner products can be performed with similar efficiencies. Consider two vectors

x̄1 and x̄2, whose matricized representations are

X1 =

















Y11Z
T
11

Y12Z
T
12

Y13Z
T
13

















, X2 =

















Y21Z
T
21

Y22Z
T
22

Y23Z
T
23

















. (4.30)

Then the Euclidean inner product between x1 and x2 can be evaluated as

x̄T1 x̄2 = trace((Y11Z
T
11)

TY21Z
T
21) + trace((Y12Z

T
12)

TY22Z
T
22) + trace((Y13Z

T
13)

TY23Z
T
23),

where trace(X) is defined as a sum of the diagonal entries of the matrix X .

Although the matrix-vector product and the sum, as described in (4.28) and

(4.29), can be performed efficiently, the results of (4.28) and (4.29) are represented

by nξαūx terms and αūx + αūy terms, respectively, which typically causes the ranks

of the computed quantities to be higher than the inputs for the computations and

potentially undermines the efficiency of the solution method. To resolve this issue,

a truncation operator will be used to modify the result of matrix-vector products

and sums and force the ranks of quantities used to be small.

4.3.2.2 Truncation of Ux,n, U y,n and P n

We now explain the details of the truncation. Consider the velocity and the

pressure represented in a matrix form as in (4.20)–(4.22). The best α-rank ap-
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proximation of a matrix can be found by using the singular value decomposition

(SVD) [61,70]. Here, we define a truncation operator for a given matrix U = VW T

whose rank is αU ,

Tǫtrunc : U → Ũ ,

where the rank of U is larger than the rank of Ũ (i.e., αU ≫ αŨ). The truncation

operator Tǫtrunc compresses U to Ũ such that ‖Ũ − U‖F ≤ ǫtrunc‖U‖F where ‖ · ‖F

is the Frobenius norm. To achieve this goal, the singular value decomposition of

U can be computed (i.e., U = V̂ DW̃ T where D = diag(d1, . . . , dn) is the diagonal

matrix of singular values). Letting {v̂i} and {w̃i} denote the singular vectors, the

approximation is Ũ =
∑α

Ũ

i=1 ṽiw̃
T
i with ṽi = div̂i and the truncation rank αŨ is

determined by the condition

√

d2α
Ũ
+1 + · · ·+ d2n ≤ ǫtrunc

√

d21 + · · ·+ d2n. (4.31)

4.3.3 Low-rank GMRES method

We describe the low-rank GMRES method (lrGMRES) with a generic linear

system Ax = b. The method follows the standard Arnoldi iteration used by GM-

RES [92]: construct a set of basis vectors {vi}mgm

i=1 by applying the linear operator A

to basis vectors, i.e., wj = Avj for j = 1, . . . , mgm, and orthogonalizing the resulting

vector wj with respect to previously generated basis vectors {vi}j−1
i=1 . In the low-rank

GMRES method, iterates, basis vectors {vi} and intermediate quantities {wi} are
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represented in terms of the factors of their matricized representations (so that X

in (4.19) would be represented using Y and Z without explicit construction of X),

and matrix operations such as matrix-vector products are performed as described in

Section 4.3.2.1. As pointed out in Section 4.3.2.1, these matrix operations typically

tend to increase the rank of the resulting quantity, and this is resolved by interleav-

ing the truncation operator T with the matrix operations. The low-rank GMRES

method computes a new iterate by solving

min
β∈Rmgm

‖b− A(x0 + Vmgm
β̄)‖2, (4.32)

and constructing a new iterate x1 = x0 + Vmgm
β̄ where x0 is an initial guess. Due

to truncation, the basis vectors {vi} are not orthogonal and span(Vmgm
), where

Vmgm
= [v1 . . . vmgm

], is not a Krylov subspace, so that (4.32) must be solved explic-

itly rather than exploiting Hessenberg structure as in standard GMRES. Algorithm

5 summarizes the lrGMRES. We will use this method to solve the linear system of

(4.17).

4.3.4 Preconditioning

We also use preconditioning to speed convergence of the low-rank GMRES

method. For this, we consider a right-preconditioned system

Jn(Mn)−1ũn = r̄n,
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Algorithm 5 Restarted low-rank GMRES method in tensor format

1: set the initial solution ū0gm
2: for k = 0, 1, . . . do
3: rkgm := f − Aūkgm
4: if ‖rkgm‖2/‖f‖2 < ǫgmres or ‖rkgm‖2 ≥ ‖rk−1

gm ‖2 then

5: return ūkgm
6: end if

7: v̄1 := Tǫtrunc(rkgm)
8: v1 := v̄1/‖v̄1‖2
9: for j = 1, . . . , mgm do

10: wj := Avj
11: solve (V T

j Vj)ᾱ = V T
j wj where Vj = [v1, . . . , vj]

12: v̄j+1 := Tǫtrunc
(

wj −
∑j

i=1 αivi

)

13: vj+1 := v̄j+1/‖v̄j+1‖2
14: end for

15: solve (W T
mgm

AVmgm
)β̄ =W T

mgm
rkgm where Wj = [w1, . . . , wj]

16: ūk+1
gm := Tǫtrunc(ūkgm + Vmgm

β̄)
17: end for

where Mn is the preconditioner and Mnūn = ũn such that Jnūn = r̄n. We consider

an approximate mean-based preconditioner [81], which is derived from the matrix

G1 ⊗F1 associated with the mean ν0 of the random viscosity (4.2),

Mn = G1 ⊗









Mn
A BT

0 −Mn
s









, (4.33)

where

Mn
A =









Axx1 +Nn
1 0

0 Ayy1 +Nn
1









, (Picard iteration),

Mn
A =









Axx1 +Nn
1 +W xx,n

1 0

0 Ayy1 +Nn
1 +W yy,n

1









, (Newton iteration).
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For approximating the action of the inverse, (Mn
s )

−1, we choose the boundary-

adjusted least-squares commutator (LSC) preconditioning scheme [39],

Mn
s = BF−1

1 BT ≈ (BH−1BT )(BM−1
∗ F1H

−1BT )−1(BM−1
∗ BT ),

whereM∗ is the diagonal of the velocity mass matrix andH = D−1/2M∗D
−1/2, where

D is a diagonal scaling matrix deemphasizing contributions near the boundary.

During the low-rank GMRES iteration, the action of the inverse of the preconditioner

(4.33) can be applied to a vector in a manner analogous to (4.25)–(4.27).

4.4 Inexact nonlinear iteration

As outlined in Algorithm 4, we use the hybrid approach, employing a few steps

of Picard iteration followed by Newton iteration, and the linear systems are solved

using lrGMRES (Algorithm 5). We extend the hybrid approach to an inexact variant

based on an inexact Newton algorithm, in which the accuracy of the approximate

linear system solution is tied to the accuracy of the nonlinear iterate (see e.g., [57]

and references therein). That is, when the nonlinear iterate is far from the solution,

the linear systems may not have to be solved accurately. Thus, a sequence of iterates

ūn+1 := ūn + δūn is computed where δūn satisfies

‖JnNδūn + r̄n‖2 ≤ ǫngmres‖r̄n‖2, (JP for Picard iteration),
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where the lrGMRES stopping tolerance (ǫngmres of Algorithm 5) is given by

ǫngmres := ρgmres‖r̄n‖2, (4.34)

where 0 < ρgmres ≤ 1. With this strategy, the Jacobian system is solved with in-

creased accuracy as the error becomes smaller, leading to savings in the average cost

per step and, as we will show, with no degradation in the asymptotic convergence

rate of the nonlinear iteration.

In addition, in Algorithms 4 and 5, the truncation operator Tǫtrunc is used for the

low-rank approximation of the nonlinear iterate (i.e., truncating ūx, ūy, and p̄ at lines

5 and 9 in Algorithm 4) and updates (i.e., truncating δūx, δūy, and δp̄ in Algorithm

5). As the lrGMRES stopping tolerance is adaptively determined by the criterion

(4.34), we also choose the value of the truncation tolerances ǫtrunc,sol and ǫ
n
trunc,corr,

adaptively. For truncating the nonlinear iterate, the truncation tolerance for the

iterate {ǫntrunc,sol} is chosen based on the nonlinear iteration stopping tolerance,

ǫtrunc,sol := ρnlǫnl,

where 0 < ρnl ≤ 1. For truncating the updates (or corrections), the truncation

tolerance for the correction {ǫntrunc,corr} is adaptively chosen based on the stopping
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tolerance of the linear solver,

ǫntrunc,corr := ρtrunc,Pǫ
n
gmres, (for the nth Picard step),

ǫntrunc,corr := ρtrunc,Nǫ
n
gmres, (for the nth Newton step),

where 0 < ρtrunc,P, ρtrunc,N ≤ 1. Thus, for computing nth update δūn, we set ǫtrunc =

ǫntrunc,corr in Algorithm 5.

Algorithm 6 Inexact nonlinear iteration with adaptive tolerances
1: set ǫtrunc,sol := ρnlǫnl
2: compute an approximate solution of Astūst = bst using Algorithm 5
3: set an initial guess for the Navier–Stokes problem ū0 := ūst
4: for k = 0, . . . , mp − 1 do

5: set ǫkgmres = ρgmres‖r̄k‖2, and ǫktrunc,corr = ρtrunc,P‖r̄k‖2
6: solve JkP δū

k = −r̄k using Algorithm 5
7: update ūk+1 := Tǫtrunc,sol(ūk + δūk)
8: end for

9: while ‖r̄k‖2 > ǫnl‖r̄0‖2 do

10: set ǫkgmres = ρgmres‖r̄k‖2, and ǫktrunc,corr = ρtrunc,N‖r̄k‖2
11: solve JkN δū

k = −r̄k using Algorithm 5
12: update ūk+1 := Tǫtrunc,sol(ūk + δūk)
13: end while

4.5 Numerical results

In this section, we present the results of numerical experiments on a model

problem, flow around a square obstacle in a channel, for which the details are de-

picted in Figure 4.1. The domain has length 12 and height 2, and it contains a

square obstacle centered at (2,0) with sides of length .25.

For the numerical experiments, we define the random viscosity (4.2) using the

83



0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Figure 4.1: Spatial domain and finite element discretization.

Karhunen-Loève (KL) expansion [67],

ν(x, ξ) = ν0 + σν

nν
∑

i=1

√

λiνi(x)ξi, (4.35)

where ν0 and σ2
ν are the mean and the variance of the viscosity of ν(x, ξ), and

{(λi, νi(x))}nνi=1 are eigenpairs of the eigenvalue problem associated with the covari-

ance kernel C(x, y) of the random field. We consider two types of covariance kernel:

absolute difference exponential (AE) and squared difference exponential (SE), which

are defined via

CAE(x, y) = exp

(

−
2
∑

i=1

|xi − yi|
li

)

, CSE(x, y) = exp

(

−
2
∑

i=1

(xi − yi)
2

l2i

)

,

(4.36)

where x = (x1, x2) and y = (y1, y2) are points in the spatial domain, and l1, l2

are correlation lengths. We assume that the random variables {ξi}nνi=1 are inde-

pendent and identically distributed and that ξi (for i = 1, . . . , nν) follows a uni-

form distribution over [−1, 1]. For the mean of the viscosity, we consider several

choices, ν0 = { 1
50
, 1
100
, 1
150

}, which corresponds to Re0 = {100, 200, 300}. In all ex-

periments, we use a finite-term KL-expansion with nν = 5. For constructing the
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finite-dimensional approximation space S = span({ψi(ξ)}nξi=1) in the parameter do-

main, we use orthogonal polynomials {ψi(ξ)}nξi=1 of total degree 3, which results in

nξ = 56. The orthogonal polynomials associated with uniform random variables

are Legendre polynomials, ψi(ξ) =
∏nν

j=1 ℓdj(i)(ξj) where d(i) = (d1(i), . . . , dnν(i))

is a multi-index consisting of non-negative integers and ℓdj(i) is the dj(i)th order

Legendre polynomial of ξj. For the spatial discretization, Taylor–Hood elements are

used on a stretched grid, which results in {6320, 6320, 1640} degrees of freedom

in {~ux, ~uy, p}, respectively (i.e., nu = 6320 and np = 1640.) The implementation

is based on the Incompressible Flow and Iterative Solver Software (IFISS) pack-

age [38, 98].

4.5.1 Low-rank inexact nonlinear iteration

In this section, we compare the results obtained from the low-rank inexact

nonlinear iteration with those obtained from other methods, the exact and the

inexact nonlinear iteration with full rank solutions, and the Monte Carlo method.

Default parameter settings are listed in Table 4.1, where the truncation tolerances

only apply to the low-rank method. Unless otherwise specified, the linear system is

solved using a restarted version of low-rank GMRES, lrGMRES(20).

We first examine the convergence behavior of the inexact nonlinear iteration for

a model problem characterized by Re0 = 100, CoV = 1%, and SE covariance kernel

in (4.36) with l1 = l2 = 32. We compute a full-rank solution using the exact nonlin-

ear iteration (ǫngmres = 10−12 and no truncation) until the nonlinear iterate reaches
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Table 4.1: Tolerances and adaptive parameters.

Nonlinear iteration stopping tolerance ǫnl = 10−5

GMRES tolerance (Stokes) ǫgmres = 10−4

GMRES tolerances (Picard and Newton) ǫngmres = ρgmres‖r̄n‖2 (ρgmres = 10−.5)

Truncation tolerance for solutions ǫtrunc,sol = ρnlǫnl (ρnl = 10−1)

Truncation tolerance for corrections ǫntrunc,corr = ρtruncǫ
n
gmres (ρtrunc = 10−1)

the nonlinear stopping tolerance, ǫnl = 10−8. Then we compute another full-rank so-

lution using the inexact nonlinear iteration (i.e., adaptive choice of ǫngmres as shown in

Table 4.1 and no truncation). Lastly, we compute a low-rank approximate solution

using the low-rank inexact nonlinear iteration (i.e., adaptive choices of ǫngmres and

ǫntrunc,corr as shown in Table 4.1 and for varying ǫtrunc,sol = {10−5, 10−6, 10−7, 10−8}).

Figure 4.2 shows the convergence behavior of the three methods. In Figure 4.2(a),

the hybrid approach is used, in which the first step corresponds to the Stokes prob-

lem (line 2 of Algorithm 6), the 2nd–5th steps correspond to the Picard iteration

(line 4–8 of Algorithm 6, and mp = 4), and the 6th–7th steps correspond to the

Newton iteration (line 9–13 of Algorithm 6). Figure 4.2(a) confirms that the inex-

act nonlinear iteration is as effective as the exact nonlinear iteration. The low-rank

inexact nonlinear iteration behaves similarly up to the 6th nonlinear step but when

the truncation tolerances are large ǫtrunc,sol = {10−5, 10−6}, it fails to produce a non-

linear solution satisfying ǫnl = 10−8. Similar results can be seen in Figure 4.2(b),

where only the Picard iteration is used. As expected, in that case, the relative

residual decreases linearly for all solution methods, but the low-rank inexact non-

linear iteration with the mild truncation tolerances also fails to reach the nonlinear
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iteration stopping tolerance.

(a) Convergence of the hybrid approach (b) Convergence of the Picard iteration

Figure 4.2: Convergence of both exact and inexact nonlinear iterations (full-rank)
and the low-rank inexact nonlinear iteration.

Figure 4.3 shows means and variances of the components of the full-rank so-

lution, given by

µux = E[~ux], µuy = E[~uy], µp = E[p], (4.37)

σ2
ux = E[(~ux − µux)

2], σ2
uy = E[(~uy − µuy)

2], σ2
p = E[(p− µp)

2]. (4.38)

These quantities are easily computed by exploiting the orthogonality of basis func-

tions in the gPC expansion. Figure 4.4 shows the differences in the means and

variances of the solutions computed using the full-rank and the low-rank inexact

nonlinear iteration. Let us denote the full-rank and low-rank horizontal velocity

solutions by ux,full and ux,lr, with analogous notation for the vertical velocity and
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Figure 4.3: Mean and variances of full-rank velocity solutions ~ux(x, ξ), ~uy(x, ξ), and
pressure solution p(x, ξ) for Re0 = 100, CoV = 1, and l1 = l2 = 32.

the pressure. Thus, the differences in the means and the variances are

ηxµ = µux,full − µux,lr, ηyµ = µuy,full − µuy,lr, ηpµ = µpfull − µplr,

ηxσ = σ2
ux,full − σ2

ux,lr, ηyσ = σ2
uy,full − σ2

uy,lr, ηpσ = σ2
pfull − σ2

plr.

Figure 4.4 shows these differences, normalized by graph norms ‖∇~µufull‖+‖µpfull‖ for

the means and ‖∇~σ2
ufull‖+‖σ2

pfull‖ for the variances, where ‖∇~u‖ = (
∫

D
∇~u : ∇~u dx) 1

2

and ‖p‖ = (
∫

D
p2dx)

1
2 . Figure 4.4 shows that the normalized differences in the mean

and the variance are of order 10−9 ∼ 10−10 and 10−10 ∼ 10−12, respectively, i.e., the

errors in low-rank solutions are considerably smaller than the magnitude of the

truncation tolerances ǫtrunc,sol, ǫtrunc,corr (see Table 4.1).

4.5.2 Characteristics of the Galerkin solution

In this section, we examine various properties of the Galerkin solutions, with

emphasis on comparison of the low-rank and full-rank versions of these solutions and
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Figure 4.4: Difference in the means and variances of the full-rank and the low-rank
solutions for Re0 = 100, CoV = 1, and l1 = l2 = 32.

development of an enhanced understanding of the relation between the Galerkin

solution and the polynomial chaos basis. We use the same experimental setting

studied above (SE covariance kernel, l1 = l2 = 32, Re0 = 100 and CoV = 1%).

We begin by comparing the Galerkin solution with one obtained using Monte

Carlo methods. In particular, we estimate a probability density function (pdf)

of the velocity solutions (~ux(x, ξ), ~uy(x, ξ)) and the pressure solution (p(x, ξ)) at a

specific point on the spatial domain D. In the Monte Carlo method, we solve nMC =

25000 deterministic systems, R(~u, p, ~v, q; ξ(k)) = 0 associated with nMC realizations

{ξ(k)}nMC

k=1 in the parameter space. Using the Matlab function ksdensity, the pdfs

of (~ux(x, ξ), ~uy(x, ξ), p(x, ξ)) are estimated at the spatial point with coordinates

(3.6436, 0), where the variance of ~ux(x, ξ) is large (see Figure 4.3). The results are

shown in Figure 4.5. They indicate that the pdf of the Galerkin solution is virtually

identical to that of the Monte Carlo solution, and there is essentially no difference

between the low-rank and full-rank results.

Next, we explore some characteristics of the Galerkin solution, focusing on the
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(a) ~ux (b) ~uy (c) p

Figure 4.5: Estimated pdfs of the velocities ~ux, ~uy, and the pressure p at the point
(3.6436, 0).

Figure 4.6: Norms of the gPC coefficients ‖ūi‖2 for Re0 = 100, CoV = 1, and
l1 = l2 = 32.

horizontal velocity solution; the observations made here also hold for the other com-

ponents of the solution. Given the coefficients of the velocity solution in matricized

form, Ux, the discrete velocity solution is then given by

~ux(x, ξ) = ΦT (x)UxΨ(ξ),

where Φ(x) = [φ1(x), . . . , φnu(x)]
T and Ψ(ξ) = [ψ1(ξ), . . . , ψnξ(ξ)]

T . Consider in

particular the component of this expression corresponding to the jth column of Ux,

(

nu
∑

i=1

uxijφi(x)

)

ψj(ξ)
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so that this (jth) column ūxj = [Ux]j corresponds to the coefficient of the jth poly-

nomial basis function ψj . Figure 4.6 plots the values of the coefficients ‖ūxi ‖2. (This

data is computed with Re0 = 100, CoV = 1%, and SE covariance kernel with

l1 = l2 = 32). Note that the gPC indices {j} are in one-to-one correspondence

with multi-indices d(j) = (d1(j), . . . , dnu(j)), where the element of the multi-index

indicates the degree of univariate Legendre polynomial. The multi-indices {d(i)}nξi=1

are ordered in the lexicographical order, for example, the first eight multi-indices

are as d(1) = (0, 0, 0, 0, 0), d(2) = (1, 0, 0, 0, 0), d(3) = (0, 1, 0, 0, 0), . . . , d(6) =

(0, 0, 0, 0, 1), d(7) = (2, 0, 0, 0, 0), and d(8) = (1, 1, 0, 0, 0). In Figure 4.6, the blue

square is associated with the zeroth-order gPC component (d(1)), the red circles

are associated with the first-order gPC components ({d(i)}6i=2), and so on. Let us

focus on three gPC components associated only with ξ1, {ψ2(ξ) = ℓ1(ξ1), ψ7(ξ) =

ℓ2(ξ1), ψ22(ξ) = ℓ3(ξ1)}, where, for i = 2, 7, 22, the multi-indices are d(2) = (1, 0, 0, 0, 0),

d(7) = (2, 0, 0, 0, 0), and d(22) = (3, 0, 0, 0, 0). The figure shows that the coefficients

of gPC components {ψ2(ξ), ψ7(ξ), ψ22(ξ)} decay more slowly than those of gPC

components associated with other random variables {ξi}nνi=2.

We continue the examination of this data in Figure 4.7(a), which shows two-

dimensional mesh plots of the 2nd through 7th columns of Ux. These images show

that these coefficients are either symmetric with respect to the horizontal axis, or

reflectionally symmetric (equal in magnitude but of opposite sign), and (as also

revealed in Figure 4.6), they tend to have smaller values as the index j is increased.

We now look more closely at features of the factors of the low-rank approx-

imate solution and compare these with those of the (unfactored) full-rank solu-
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(a) Plots of coefficients of gPC components 2–7 of ~ux(x, ξ)

(b) Plots of coefficients vi of θ
x
i (ξ) for i = 2, . . . , 7

Figure 4.7: Plots of coefficients of gPC components 2–7 of ~ux(x, ξ) and coefficients
vi of θi(ξ) for i = 2, . . . , 7 for Re0 = 100, CoV = 1, and l1 = l2 = 32.

tion. In the low-rank format, the solution is represented using factors ~ux(x, ξ) =

(ΦT(x)V x)(ΨT(ξ)W x)T . Let us introduce a concise notation of

~ux(x, ξ) = Zx
αūx

(x)TΘx
αūx

(ξ) =

αūx
∑

i=1

ζxi (x)θ
x
i (ξ)

where Zx
αūx

(x) = [ζx1 (x), . . . , ζ
x
αūx

(x)] and Θx
αūx

(ξ) = [θx1 (ξ), . . . , θ
x
αūx

(ξ)] with ζxi (x) =

[ΦT (x)V x]i and θ
x
i (ξ) = [(ΨT (ξ)W x)]i for i = 1, . . . , αūx . Figure 4.7(b) shows the co-

efficients of the ith random variable θi(ξ). As opposed to the gPC coefficients of the
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Figure 4.8: A heat map of (W x)T .

full-rank solution, the norms of the coefficients of {θi(ξ)} decrease monotonically as

the index i increases. This is a consequence of the fact that the ordering for {θi(ξ)}

comes from the singular values of Ux. Figure 4.7(b) shows the 2nd-7th columns of

V x. Figures 4.7(a) and 4.7(b) show that the coefficients {vi} of {θi(ξ)} are compara-

ble to the coefficients {uxi } of the gPC components. Each pair of components in the

following parentheses is similar to each other: (u2, v2), (u3, v3), (u7,−v4), (u4,−v7),

(u5, v5), and (u6,−v6).

While the columns of V x show the resemblance to the subset of the columns

of Ux, W x tends to act as a permutation matrix. Figure 4.8 shows a “heat map” of

(W x)T , where values of the elements in W x are represented as colors and the map

shows that a very few elements of W x
i are dominant and a sum of those elements is

close to 1. Recall that θxi (ξ) = (W x
i )

TΨ(ξ). Many dominant elements are located in

the diagonal of W x, which results in θxi (ξ) ≈ ±ψi(ξ) (e.g., i = 1, 2, 3, 5, . . .). In the

case of W x
4 , the most dominant element is the 7th element and has a value close to

-1, which results in θx4 (ξ) ≈ −ψ7(ξ). As observed in Figure 4.6, ψ7(ξ) has a larger

contribution than other gPC components and, in the new solution representation,

θx4 (ξ), which consists mainly of ψ7(ξ), appears earlier in the representation.
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4.5.3 Computational costs

In this section, we assess the costs of the low-rank inexact nonlinear iteration

under various experimental settings: two types of covariance kernels (4.36), varying

CoV (4.3), and varying Re0. In addition, for various values of these quantities, we

investigate the decay of the eigenvalues {λi} used to define the random viscosity

(4.35) and their influence on the rank of solutions. All numerical experiments are

performed on an Intel 3.1 GHz i7 CPU, 16 GB RAM using Matlab R2016b and

costs are measured in terms of CPU wall time (in seconds). For larger CoV and

Re0, we found the solver to be more effective using the slightly smaller truncation

tolerance ρtrunc = 10−1.5 and used this choice for all experiments described below.

(Other adaptive tolerances are those shown as in Table 4.1.) This change had little

impact on results for small CoV and Re0.

Figure 4.9 shows the 50 largest eigenvalues {λi} of the eigenvalue problems

associated with the SE covariance kernel and the AE covariance kernel (4.36) with

l1 = l2 = 8, CoV = 1%, and Re0 = 100. The eigenvalues of the SE covariance kernel

decay much more rapidly than those of the AE covariance kernel. Because we choose

a fixed number of terms nν = 5, the random viscosity with the SE covariance kernel

retains a smaller variance.

Figure 4.10(a) shows the computational costs (in seconds) needed for comput-

ing the full-rank solutions and the low-rank approximate solutions using the inexact

nonlinear iteration for the two covariance kernels and a set of correlation lengths,

l1 = l2 = {1, 2, 4, 8, 16, 32}. Figure 4.10(b) shows the ranks of the low-rank approx-
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Figure 4.9: Eigenvalue decay of the AE and the SE covariance kernels.

imate solutions that satisfy the nonlinear stopping tolerance ǫǫnl = 10−5. Again,

Re0 = 100 and CoV = 1%. For this benchmark problem, 4 Picard iterations and 1

Newton iteration are enough to generate a nonlinear iterate satisfying the stopping

tolerance ǫnl. It can be seen from Figure 4.10(a) that in all cases the use of low rank

methods reduces computational cost. Moreover, as the correlation length becomes

larger, the ranks of the corrections and the nonlinear iterates become smaller. As a

result, the low-rank method achieves greater computational savings for the problems

with larger correlation length.

(a) Computational cost of full-rank com-
putation and low-rank approximation

(b) Ranks of the low-rank approximate
solutions

Figure 4.10: Computational costs and ranks for varying correlation lengths with SE
and AE covariance kernel.
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Next, we examine the performances of the low-rank approximation method

for varying CoV , which is defined in (4.3). In this experiment, we fix the value of

Re0 = 100 and the variance of the random σν is controlled. We consider the SE

covariance kernel.

(a) Computational cost of full-rank com-
putation and low-rank approximation

(b) Ranks of the low-rank approximate
solutions ux

(c) Ranks of the low-rank approximate
solutions uy

(d) Ranks of the low-rank approximate
solutions p

Figure 4.11: Computational costs and ranks for varying correlation lengths and
varying CoV with Re0 = 100.

Figure 4.11 shows the performances of the full-rank and the low-rank meth-

ods for varying CoV = {1%, 5%, 10%}. We use Algorithm 6 with 4 Picard steps,
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followed by several Newton steps until convergence. For CoV = {1%, 5%}, one

Newton step is required for the convergence and, for CoV = 10%, two Newton steps

are required. Figure 4.11(a) shows the computational costs. For CoV = {1%, 5%},

the computational benefits of using the low-rank approximation methods are pro-

nounced whereas, for CoV = 10%, the performances of the two approaches are

essentially the same for shorter correlation lengths. Indeed, for higher CoV , the

ranks of solutions ū (see Figures 4.11(b)–4.11(d)) as well as updates δūk at Newton

steps become close to the full rank (nξ = 56).

Lastly, we study the benchmark problems with varying mean viscosity with SE

covariance kernel and CoV = 1%. As the mean viscosity decreases, Re0 grows, and

the nonlinear problem tends to become harder to solve, and for the larger Reynolds

numbers Re0 = 200 or 300, we use more Picard steps (5 or 6, respectively) before

switching to Newton’s method.

Figure 4.12 shows the performances of the low-rank methods for varying

Reynolds number, Re0 = {100, 200, 300}. For Re0 = 200, after 5 Picard steps,

one Newton step leads to convergence (and 6 Picard steps and one Newton step for

Re0 = 300). As the figures 4.12(b)–4.12(d) show, the ranks of the solutions increase

slightly as the Reynolds number becomes larger and, thus, for all Re0 tested here, the

low-rank method demonstrates notable computational savings (with CoV = 1%).

Note that overall computational costs in Figure 4.12(a) increase as the Reynolds

number becomes larger because (1) the number of nonlinear steps required to con-

verge increases as the Reynolds number increases and (2) to solve each linearized

systems, typically more lrGMRES cycles are required for the problems with higher
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(a) Computational cost of full-rank com-
putation and low-rank approximation

(b) Ranks of the low-rank approximate
solutions ux

(c) Ranks of the low-rank approximate
solutions uy

(d) Ranks of the low-rank approximate
solutions p

Figure 4.12: Computational costs and ranks for varying correlation lengths and
varying Re0.

Reynolds number.

4.6 Conclusion

In this study, we have developed the inexact low-rank nonlinear iteration for

the solutions of the Navier–Stoke equations with uncertain viscosity in the stochastic

Galerkin context. At each step of the nonlinear iteration, the solution of the linear
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system is inexpensively approximated in low rank using the tensor variant of the

GMRES method. We examined the effect of the truncation to an accuracy of the low-

rank approximate solutions by comparing those solutions to the ones computed using

exact, inexact nonlinear iterations in full rank and the Monte Carlo method. Then

we explored the efficiency of the proposed method with a set of benchmark problems

for various settings of uncertain viscosity. The numerical experiments demonstrated

that the low-rank nonlinear iteration achieved significant computational savings for

the problems with smaller CoV and larger correlation lengths. The experiments

also showed that the mean Reynolds number does not significantly affect the rank

of the solution and the low-rank nonlinear iteration achieves computational savings

for varying Reynolds number for small CoV and large correlation lengths.
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Chapter 5: Stochastic Least-Square Petrov Galerkin method

5.1 Introduction

In this chapter, we consider the issues of optimality associated with the stochas-

tic Galerkin method. The stochastic Galerkin method combined with generalized

polynomial chaos (gPC) expansions [112] seeks a polynomial approximation of the

numerical solution in the stochastic domain by enforcing a Galerkin orthogonality

condition, i.e., the residual of the parameterized linear system is forced to be orthog-

onal to the span of the stochastic polynomial basis with respect to an inner product

associated with an underlying probability measure. The Galerkin projection scheme

is popular for its simplicity (i.e., the trial and test bases are the same) and its opti-

mality in terms of minimizing an energy norm of solution errors when the underlying

PDE operator is symmetric positive definite. In many applications, however, the

stochastic Galerkin method does not exhibit any optimality property [73]. That is,

it does not produce solutions that minimize any measure of the solution error. In

such cases, the stochastic Galerkin method can lead to poor approximations and

non-convergent behavior.

To address this issue, we propose a novel optimal projection technique, which

we refer to as the stochastic least-squares Petrov–Galerkin (LSPG) method. Inspired
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by the successes of LSPG methods in nonlinear model reduction [18–20], finite el-

ement methods [13, 14, 55], and iterative linear solvers (e.g., GMRES, GCR) [91],

we propose, as an alternative to enforcing the Galerkin orthogonality condition, to

directly minimize the residual of a parameterized linear system over the stochastic

domain in a (weighted) ℓ2-norm. The stochastic LSPG method produces an op-

timal solution for a given stochastic subspace and guarantees that the ℓ2-norm of

the residual monotonically decreases as the stochastic basis is enriched. In addition

to producing monotonically convergent approximations as measured in the chosen

weighted ℓ2-norm, the method can also be adapted to target output quantities of

interest (QoI); this can be accomplished by employing a weighted ℓ2-norm used for

least-squares minimization that coincides with the ℓ2-(semi)norm of the error in the

chosen QoI.

In addition to proposing the stochastic LSPG method, this study shows that

specific choices of weighting functions lead to equivalences between the stochastic

LSPG method and both the stochastic Galerkin method and the pseudo-spectral

method [109, 110]. We demonstrate the effectiveness of the LSPG method with

extensive numerical experiments on various SPDEs. The results show that the

proposed LSPG technique significantly outperforms the stochastic Galerkin when

the solution error is measured in different weighted ℓ2-norms. We also show that

the proposed method can effectively minimize the error in target QoIs.

An outline of the chapter is as follows. Section 5.2 formulates parameterized

linear algebraic systems and reviews conventional spectral approaches for comput-

ing numerical solutions. Section 5.3 develops a residual minimization formulation
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based on least-squares methods and its adaptation to the stochastic LSPG method.

We also provide proofs of optimality and monotonic convergence behavior of the

proposed method. Section 5.4 provides error analysis for stochastic LSPG methods.

Section 5.5 demonstrates the efficiency and the effectiveness of the proposed meth-

ods by testing them on various benchmark problems. Finally, Section 5.6 outlines

some conclusions.

5.2 Spectral methods for parameterized linear systems

We begin by introducing a mathematical formulation of parameterized linear

systems and briefly reviewing the stochastic Galerkin and the pseudo-spectral meth-

ods, which are spectral methods for approximating the numerical solutions of such

systems.

5.2.1 Problem formulation

Consider a parameterized linear system

A(ξ)u(ξ) = b(ξ), (5.1)

where A : Γ → R
nx×nx, and u, b : Γ → R

nx . The system is parameterized by

a set of stochastic input parameters ξ(ω) ≡ {ξ1(ω), . . . , ξnξ(ω)}. Here, ω ∈ Ω is

an elementary event in a probability space (Ω,F , P ) and the stochastic domain is

denoted by Γ ≡∏nξ
i=1 Γi where ξi : Ω → Γi. We are interested in computing solutions

in finite-dimensional subspaces of L2(Γ) (defined below) using weak formulations of

102



(5.1) corresponding to Galerkin and Petrov–Galerkin projections.

Let ρ ≡ ρ(ξ) be a density function defining an underlying measure of the

stochastic space Γ and

〈g, h〉ρ ≡
∫

Γ

g(ξ)h(ξ)ρ(ξ)dξ, (5.2)

E[g] ≡
∫

Γ

g(ξ)ρ(ξ)dξ, (5.3)

define an inner product between scalar-valued functions g(ξ) and h(ξ) with respect

to ρ(ξ) and the expectation of g(ξ), respectively. The inner product (5.2) also

determines the Hilbert space L2(Γ). In addition, the ℓ2-norm of a vector-valued

function v(ξ) ∈ R
nx is defined as

‖v‖22 ≡
nx
∑

i=1

∫

Γ

v2i (ξ)ρ(ξ)dξ = E[vTv]. (5.4)

We are interested in computing approximate solutions to (5.1) using spectral meth-

ods, that is, finding solutions in an nψ-dimensional subspace Snψ spanned by a finite

set of polynomials {ψi(ξ)}nψi=1 such that Snψ ≡ span{ψi}nψi=1 ⊆ L2(Γ). Then

u(ξ) ≈ ũ(ξ) =

nψ
∑

i=1

ūiψi(ξ) = (ψT (ξ)⊗ Inx)ū, (5.5)

where {ūi}nψi=1 with ūi ∈ R
nx are unknown coefficient vectors, ū ≡ [ūT1 · · · ūTnψ ]T ∈

R
nxnψ is the vertical concatenation of these coefficient vectors, ψ ≡ [ψ1 · · · ψnψ ]T ∈

R
nψ is a concatenation of the polynomial basis, ⊗ denotes the Kronecker prod-
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uct, and Inx denotes the identity matrix of dimension nx. Note that ũ ∈ (Snψ)
nx .

Typically, the “stochastic” basis {ψi} consists of products of univariate polyno-

mials: ψi ≡ ψα(i) ≡ ∏nξ
k=1 παk(i)(ξk) where {παk(i)}

nξ
k=1 are univariate polynomials,

α(i) = (α1(i), · · · , αnξ(i)) ∈ N
nξ
0 is a multi-index and αk represents the degree of

a polynomial in ξk. The dimension of the stochastic subspace nψ depends on the

number of random variables nξ, the maximum polynomial degree p, and a construc-

tion of the polynomial space (e.g., a total-degree space that contains polynomials

with total degree up to p,
∑nξ

k=1 αk(i) ≤ p). By substituting u(ξ) with ũ(ξ) in (5.1),

the residual can be defined as

r(ū; ξ) := b(ξ)− A(ξ)

nψ
∑

i=1

ūiψi(ξ) = b(ξ)− (ψT (ξ)⊗ A(ξ))ū, (5.6)

where ψT (·)⊗A(·) : Γ → R
nx×nψnx .

It follows from (5.5) and (5.6) that our goal now is to compute the unknown

coefficients {ūi}nψi=1 of the solution expansion. We briefly review two conventional

approaches for doing so: the stochastic Galerkin method and the pseudo-spectral

method. Typically, the polynomial basis is constructed to be orthogonal in the

〈·, ·〉ρ inner product, i.e., 〈ψi, ψj〉ρ =
∏nξ

k=1〈παk(i), παk(j)〉ρk = δij , where δij denotes

the Kronecker delta.

5.2.2 Stochastic Galerkin method

The stochastic Galerkin method computes the unknown coefficients {ūi}nψi=1

of ũ(ξ) in (5.5) by imposing orthogonality of the residual (5.6) with respect to the
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inner product 〈·, ·〉ρ in the subspace Snψ . This Galerkin orthogonality condition can

be expressed as follows: Find ūSG ∈ R
nxnψ such that

〈ri(ūSG), ψj〉ρ = E[ri(ū
SG)ψj ] = 0, i = 1, . . . , nx, j = 1, . . . , nψ, (5.7)

where r ≡ [r1 · · · rnx ]T . The condition (5.7) can be represented in matrix notation

as

E[ψ ⊗ r(ūSG)] = 0. (5.8)

From the definition of the residual (5.6), this gives a system of linear equations

E[ψψT ⊗A]ūSG = E[ψ ⊗ b], (5.9)

of dimension nxnψ. This yields an algebraic expression for the stochastic-Galerkin

approximation

ũSG(ξ) = (ψ(ξ)T ⊗ Inx)E[ψψ
T ⊗ A]−1E[ψ ⊗ Au]. (5.10)

If A(ξ) is symmetric positive definite, the solution of linear system (5.9) minimizes

the solution error e(x) ≡ u− x in the A(ξ)-induced energy norm ‖v‖2A ≡ E[vTAv],

i.e.,

ũSG(ξ) = argmin
x∈(Snψ )nx

‖e(x)‖2A. (5.11)

In general, however, the stochastic-Galerkin approximation does not minimize any

measure of the solution error.
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5.2.3 Pseudo-spectral method

The pseudo-spectral method directly approximates the unknown coefficients

{ūi}nψi=1 of ũ(ξ) in (5.5) by exploiting orthogonality of the polynomial basis {ψi(ξ)}nψi=1.

That is, the coefficients ūi can be obtained by projecting the numerical solution u(ξ)

onto the orthogonal polynomial basis as

ūPSi = E[uψi], i = 1, . . . , nψ, (5.12)

which can be expressed as

ūPS = E[ψ ⊗A−1b], (5.13)

or equivalently

ũPS(ξ) = (ψ(ξ)T ⊗ Inx)E[ψ ⊗ u]. (5.14)

The associated optimality property of the approximation, which can be derived from

optimality of orthogonal projection, is

ũPS(ξ) = argmin
x∈(Snψ )nx

‖e(x)‖22. (5.15)

In practice, the coefficients {ūPSi }nψi=1 are approximated via numerical quadrature as

ūPSi = E[uψi] =

nq
∑

k=1

u(ξ(k))ψi(ξ
(k))wk =

nq
∑

k=1

(

A−1(ξ(k))b(ξ(k))
)

ψi(ξ
(k))wk, (5.16)

where {(ξ(k), wk)}nqk=1 are the quadrature points and weights.
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While stochastic Galerkin leads to an optimal approximation (5.11) under

certain conditions and pseudo-spectral projection minimizes the ℓ2-norm of the so-

lution error (5.15), neither approach provides the flexibility to tailor the optimality

properties of the approximation. This may be important in applications where, for

example, minimizing the error in a quantity of interest is desired. To address this, we

propose a general optimization-based framework for spectral methods that enables

the choice of a targeted weighted ℓ2-norm in which the solution error is minimized.

5.3 Stochastic least-squares Petrov–Galerkin method

As a starting point, we propose a residual-minimizing formulation that com-

putes the coefficients ū by directly minimizing the ℓ2-norm of the residual, i.e.,

ũLSPG(ξ) = argmin
x∈(Snψ )nx

‖b− Ax‖22 = argmin
x∈(Snψ )nx

‖e(x)‖2ATA, (5.17)

where ‖v‖2ATA ≡ E[vTATAv]. Thus, the ℓ2-norm of the residual is equivalent to a

weighted ℓ2-norm of the solution error. Using (5.5) and (5.6), we have

ūLSPG = argmin
x̄∈Rnxnψ

‖r(x̄)‖22. (5.18)
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The definition of the residual (5.6) allows the objective function in (5.18) to be

written in quadratic form as

‖r(x̄)‖22 = ‖b− (ψT ⊗A)x̄‖22 = x̄TE[ψψT ⊗ ATA]x̄− 2E[ψ ⊗ AT b]T x̄+ E[bT b].

(5.19)

Noting that the mapping x̄ 7→ ‖r(x̄)‖22 is convex, the (unique) solution ūLSPG to

(5.18) is a stationary point of ‖r(x̄)‖22 and thus satisfies

E[ψψT ⊗ATA]ūLSPG = E[ψ ⊗ AT b], (5.20)

which can be interpreted as the normal-equations form of the linear least-squares

problem (5.18).

Consider a generalization of this idea that minimizes the solution error in a

targeted weighted ℓ2-norm by choosing a specific weighting function. Let us define a

weighting functionM(ξ) ≡Mξ(ξ)⊗Mx(ξ), whereMξ : Γ → R andMx : Γ → R
nx×nx .

Then, the stochastic LSPG method can be written as

ũLSPG(M)(ξ) = argmin
x∈(Snψ )nx

‖M(b− Ax)‖22 = argmin
x∈(Snψ )nx

‖e(x)‖2ATMTMA, (5.21)

with ‖v‖2ATMTMA ≡ E[vTATMTMAv] = E[(MT
ξ Mξ⊗(MxAv)

TMxAv]. Algebraically,
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this is equivalent to

ūLSPG(M) = argmin
x̄∈Rnxnψ

‖Mr(x̄)‖22 = argmin
x̄∈Rnxnψ

‖(Mξ ⊗Mx)(1⊗ b−
(

ψT ⊗ A
)

x̄)‖22

= argmin
x̄∈Rnxnψ

‖Mξ ⊗ (Mxb)−
(

(Mξψ
T )⊗ (MxA)

)

x̄‖22.
(5.22)

We will restrict our attention to the case Mξ(ξ) = 1 and denote Mx(ξ) by M(ξ) for

simplicity. Now, the algebraic stochastic LSPG problem (5.22) simplifies to

ūLSPG(M) = argmin
x̄∈Rnxnψ

‖Mr(x̄)‖22 = argmin
x̄∈Rnxnψ

‖Mb− (ψT ⊗MA)x̄‖22. (5.23)

The objective function in (5.23) can be written in quadratic form as

‖Mr(x̄)‖22 =x̄TE[(ψψT ⊗ ATMTMA)]x̄− 2(E[ψ ⊗ ATMTMf ])T x̄+ E[bTMTMb].

(5.24)

As before, because the mapping x̄ 7→ ‖Mr(x̄)‖22 is convex, the unique solution

ūLSPG(M) of (5.23) corresponds to a stationary point of ‖Mr(x̄)‖22 and thus satisfies

E[ψψT ⊗ ATMTMA]ūLSPG(M) = E[ψ ⊗ATMTMf ], (5.25)

which is the normal-equations form of the linear least-squares problem (5.23). This

yields the following algebraic expression for the stochastic-LSPG approximation:

ũLSPG(M)(ξ) = (ψ(ξ)T ⊗ Inx)E[ψψ
T ⊗ ATMTMA]−1E[ψ ⊗ATMTMAu]. (5.26)
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Petrov–Galerkin projection. Another way of interpreting the normal equa-

tions (5.25) is that the (weighted) residual M(ξ)r(ūLSPG(M); ξ) is enforced to be or-

thogonal to the subspace spanned by the optimal test basis {φi}nψi=1 with φi(ξ) :=

ψi(ξ)⊗M(ξ)A(ξ) and span{φi}nψi=1 ⊆ L2(Γ). That is, this projection is precisely the

(least-squares) Petrov–Galerkin projection,

E[φT (b− (ψT ⊗MA)ūLSPG(M))] = 0, (5.27)

where φ(ξ) ≡ [φ1(ξ) · · · φnψ(ξ)].

Monotonic Convergence. The stochastic least-squares Petrov-Galerkin

is monotonically convergent. That is, as the trial subspace Snψ is enriched (by

adding polynomials to the basis), the optimal value of the convex objective func-

tion ‖Mr(ūLSPG(M))‖22 monotonically decreases. This is apparent from the LSPG

optimization problem (5.21): Defining

ũLSPG
′(M)(ξ) = argmin

x∈(Snψ+1)nx
‖M(b− Ax)‖22, (5.28)

we have ‖M(b−AũLSPG′(M))‖22 ≤ ‖M(b−AũLSPG(M))‖22 (and ‖u−uLSPG′(M)‖ATMTMA

≤ ‖u− uLSPG(M)‖ATMTMA) if Snψ ⊆ Snψ+1.

Weighting strategies. Different choices of weighting function M(ξ) allow

LSPG to minimize different measures of the error. We focus on four particular

choices:

1. M(ξ) = C−1(ξ), where C(ξ) is a Cholesky factor ofA(ξ), i.e., A(ξ) = C(ξ)CT (ξ).
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This decomposition exists if and only if A is symmetric positive semidef-

inite. In this case, LSPG minimizes the energy norm of the solution er-

ror ‖e(x)‖2A ≡ ‖C−1r(x̄)‖22 (= ‖e((ΨT ⊗ Inx)x̄)‖2A) and is mathematically

equivalent to the stochastic Galerkin method described in Section 5.2.2, i.e.,

ũLSPG(C−1) = ũSG. This can be seen by comparing (5.11) and (5.21) with

M = C−1, as ATMTMA = A in this case.

2. M(ξ) = Inx , where Inx is the identity matrix of dimension nx. In this case,

LSPG minimizes the ℓ2-norm of the residual ‖e(x)‖ATA ≡ ‖r(x̄)‖22.

3. M(ξ) = A−1(ξ). In this case, LSPG minimizes the ℓ2-norm of solution er-

ror ‖e(x)‖22 ≡ ‖A−1r(x̄)‖22. This is mathematically equivalent to the pseudo-

spectral method described in Section 5.2.3, i.e., ũLSPG(A−1) = ũPS, which can

be seen by comparing (5.15) and (5.21) with M = A−1.

4. M(ξ) = F (ξ)A−1(ξ) where F : Γ → R
no×nx is a linear functional of the

solution associated with a vector of no output quantities of interest. In this

case, LSPG minimizes the ℓ2-norm of the error in the output quantities of

interest ‖Fe(x)‖22 ≡ ‖FA−1r(x̄)‖22.

We again emphasize that two particular choices of the weighting functionM(ξ) lead

to equivalence between LSPG and existing spectral-projection methods (stochastic

Galerkin and pseudo-spectral projection), i.e.,

ũLSPG(C−1) = ũSG, ũLSPG(A−1) = ũPS, (5.29)
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where the first equality is valid (i.e., the Cholesky decomposition A(ξ) = C(ξ)CT (ξ)

can be computed) if and only if A is symmetric positive semidefinite. Table 5.1

summarizes the target quantities to minimize (i.e., ‖e(x)‖2Θ ≡ E[e(x)TΘe(x)]), the

corresponding LSPG weighting functions, and the method names LSPG(Θ).

Table 5.1: Different choices for the LSPG weighting function.
Quantity minimized by LSPG

Weighting function Method name

Quantity Expression

Energy norm of error ‖e(x)‖2A M(ξ) = C−1(ξ) LSPG(A)/SG

ℓ2-norm of residual ‖e(x)‖2
ATA

M(ξ) = Inx
LSPG(ATA)

ℓ2-norm of solution error ‖e(x)‖22 M(ξ) = A−1(ξ) LSPG(2)/PS

ℓ2-norm of error in quantities of interest ‖Fe(x)‖22 M(ξ) = F (ξ)A−1(ξ) LSPG(FTF )

5.4 Error analysis

If an approximation satisfies an optimal-projection condition

ũ = argmin
x∈(Snψ )nx

‖e(x)‖2Θ, (5.30)

then

‖e(ũ)‖2Θ = min
x∈(Snψ )nx

‖e(x)‖2Θ. (5.31)

Using norm equivalence

‖x‖2Θ′ ≤ C‖x‖2Θ, (5.32)
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we can characterize the solution error e(ũ) in any alternative norm Θ′ as

‖e(ũ)‖2Θ′ ≤ C min
x∈(Snψ )nx

‖e(x)‖2Θ. (5.33)

Thus, the error in an alternative norm Θ′ is controlled by the optimal objective-

function value minx∈(Snψ )nx ‖e(x)‖
2
Θ (which can be made small if the trial space

admits accurate solutions) and the stability constant C.

Table 5.2 reports norm-equivalence constants for the norms considered in this

work. Here, we have defined

σmin(M) ≡ inf
x∈(L2(Γ))nx

‖Mx‖2/‖x‖2, σmax(M) ≡ sup
x∈(L2(Γ))nx

‖Mx‖2/‖x‖2. (5.34)

Table 5.2: Stability constant C in (5.32).

Θ′ = A Θ′ = ATA Θ′ = 2 Θ′ = FTF

Θ = A 1 σmax(A)
1

σmin(A)
σmax(F )2

σmin(A)

Θ = ATA 1
σmin(A) 1 1

σmin(A)2
σmax(F )2

σmin(A)2

Θ = 2 σmax(A) σmax(A)
2 1 σmax(F )2

Θ = FTF σmax(A)
σmin(F )2

σmax(A)2

σmin(F )2
1

σmin(F )2 1

This exposes several interesting conclusions. First, if the number of output quan-

tities of interest no is less than nx, then the null space of F is nontrivial and so

σmin(F ) = 0. This implies that LSPG(F TF ), for which Θ = F TF , will have an

undefined value of C when the solution error is measured in other norms, i.e., for

Θ′ = A, Θ′ = ATA, and Θ′ = 2. It will have controlled errors only for Θ′ = F TF , in
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which case C = 1. Second, note that for problems with small σmin(A), the ℓ
2 norm

in the quantities of interest may be large for the LSPG(A)/SG, or LSPG(ATA),

while it will remain well behaved for LSPG(2)/PS and LSPG(F TF ).

5.5 Numerical experiments

This section explores the performance of the LSPG methods for solving el-

liptic SPDEs parameterized by one random variable (i.e., nξ = 1). The maximum

polynomial degree used in the stochastic space Snψ is p; thus, the dimension of Snψ

is nψ = p + 1. In physical space, the SPDE is defined over a two-dimensional rect-

angular bounded domain D, and it is discretized using the finite element method

with bilinear (Q1) elements as implemented in the Incompressible Flow and Itera-

tive Solver Software (IFISS) package [98]. Sixteen elements are employed in each

dimension, leading to nx = 225 = 152 degrees of freedom excluding boundary nodes.

All numerical experiments are performed on an Intel 3.1 GHz i7 CPU, 16 GB RAM

using Matlab R2015a.

Measuring weighted ℓ2-norms. For all LSPG methods, the weighted ℓ2-

norms can be measured by evaluating the expectations in the quadratic form of the

objective function shown in (5.24). This requires evaluation of three expectations

‖Mr(x̄)‖22 := x̄TT1x̄− 2T T2 x̄+ T3, (5.35)
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with

T1 :=E[(ψψ
T ⊗ ATMTMTA)] ∈ R

nxnψ×nxnψ , (5.36)

T2 :=E[ψ ⊗ ATMTMb] ∈ R
nxnψ , (5.37)

T3 :=E[b
TMTMb] ∈ R. (5.38)

Note that T3 does not depend on the stochastic-space dimension nψ. These quan-

tities can be evaluated by numerical quadrature or analytically if closed-form ex-

pressions for those expectations exist. Unless otherwise specified, we compute these

quantities using the integral function in Matlab, which performs adaptive nu-

merical quadrature based on the 15-point Gauss–Kronrod quadrature formula [95].

Error measures. In the experiments, we assess the error in approximate

solutions computed using various spectral-projection techniques using four relative

error measures (see Table 5.1):

ηr(x) :=
‖e(x)‖2ATA

‖b‖22
, ηe(x) :=

‖e(x)‖22
‖u‖22

, ηA(x) :=
‖e(x)‖2A
‖u‖2A

, ηQ(x) :=
‖Fe(x)‖22
‖Fu‖22

.

(5.39)
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5.5.1 Stochastic diffusion problems

Consider the steady-state stochastic diffusion equation with homogeneous bound-

ary conditions,















−∇ · (a(x, ξ)∇u(x, ξ)) = f(x, ξ) in D × Γ

u(x, ξ) = 0 on ∂D × Γ,

(5.40)

where the diffusivity a(x, ξ) is a random field and D = [0, 1] × [0, 1]. The random

field a(x, ξ) is specified as an exponential of a truncated Karhunen-Loève (KL)

expansion [67] with covariance kernel, C(x, y) ≡ σ2 exp
(

− |x1−y1|
c

− |x2−y2|
c

)

, where

c is the correlation length, i.e.,

a(x, ξ) ≡ exp(µ+ σa1(x)ξ), (5.41)

where {µ, σ2} are the mean and variance of the KL expansion and a1(x) is the first

eigenfunction in the KL expansion. After applying the spatial (finite-element) dis-

cretization, the problem can be reformulated as a parameterized linear system of the

form (5.1), where A(ξ) is a parameterized stiffness matrix obtained from the weak

form of the problem whose (i, j)-element is [A(ξ)]ij =
∫

D
∇a(x, ξ)ϕi(x) · ϕj(x)dx

(with {ϕi} standard finite element basis functions) and b(ξ) is a parameterized

right-hand side whose ith element is [b(ξ)]i =
∫

D
f(x, ξ)ϕi(x)dx. Note that A(ξ) is

symmetric positive definite for this problem; thus LSPG(A)/SG is a valid projec-

tion scheme (the Cholesky factorization A(ξ) = C(ξ)C(ξ)T exists) and is equal to
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stochastic Galerkin projection.

Output quantities of interest. We consider no output quantities of interest

(F (ξ)u(ξ) ∈ R
no) that are random linear functionals of the solution and F (ξ) is of

dimension no × nx having the form:

(1) F1(ξ) := g(ξ) × G with G ∈ [0, 1]no×nx a constant matrix: The elements of

G are drawn from a uniform distribution (note that this is independent of

the distribution ρ(ξ)) and g(ξ) is a scalar-valued function of ξ. The resulting

output QoI, F1(ξ)u(ξ), is a vector-valued function of dimension no.

(2) F2(ξ) := b(ξ)TM̄ : M̄ is a mass matrix defined via [M̄ ]ij ≡
∫

D
ϕi(x)ϕj(x)dx.

The output QoI is a scalar-valued function F2(ξ)u(ξ) = b(ξ)TM̄u(ξ), which

approximates a spatial average 1
|D|
∫

D
f(x, ξ)u(x, ξ)dx.

5.5.1.1 Diffusion problem 1: Lognormal random coefficient and de-

terministic forcing

In this example, we take ξ in (5.41) to follow a standard normal distribution

(i.e., ρ(ξ) = 1√
2π

exp
(

− ξ2

2

)

and ξ ∈ (−∞,∞)) and f(x, ξ) = 1 is deterministic.

Because ξ is normally distributed, normalized Hermite polynomials (orthogonal with

respect to 〈·, ·〉ρ) are used as polynomial basis {ψi(ξ)}nψi=1.

Figure 5.1 reports the relative errors (5.39) associated with solutions com-

puted using four LSPG methods (LSPG(A)/SG, LSPG(ATA), LSPG(2)/PS, and

LSPG(F TF )) for varying polynomial degree p. Here, we consider the random out-

put QoI, i.e., F = F1, no = 100, and g(ξ) = ξ. This result shows that three methods
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(d) Relative ℓ2-norm of output QoI error ηQ
with F = F1, no = 100, and g(ξ) = ξ

Figure 5.1: Relative error measures versus polynomial degree for diffusion problem
1: lognormal random coefficient and deterministic forcing. Note that each LSPG
method performs best in the error measure it minimizes.

(LSPG(A)/SG, LSPG(ATA), and LSPG(2)/PS) monotonically converge in all four

error measures, whereas LSPG(F TF ) does not. This is an artifact of rank deficiency

in F1, which leads to σmin(F1) = 0; as a result, all stability constants C for which

Θ = F TF in Table 5.2 are unbounded, implying lack of error control. Figure 5.1

also shows that each LSPG method minimizes its targeted error measure for a given

stochastic-subspace dimension (e.g., LSPG minimizes the ℓ2-norm of the residual);

118



-0.4 -0.2 0 0.2 0.4 0.6 0.8
-8

-6

-4

-2

0

2

4

(a) Relative energy norm of solution error ηA

-0.5 0 0.5 1 1.5 2

-10

-8

-6

-4

-2

0

2

4

6

8

(b) Relative ℓ2-norm of residual ηr

-1 0 1 2
-10

-8

-6

-4

-2

0

2

(c) Relative ℓ2-norm of solution error ηe

-0.4 -0.2 0 0.2 0.4 0.6
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

(d) Relative ℓ2-norm of output QoI error ηQ
with F = F1, no = 100, and g(ξ) = ξ

Figure 5.2: Pareto front of relative error measures versus wall time for varying
polynomial degree p (p varies from 1 to 10 in increments of 1 going from left to right)
for diffusion problem 1: lognormal random coefficient and deterministic forcing.

this is also evident from Table 5.2, as the stability constant realizes its minimum

value (C = 1) for Θ = Θ′. Table 5.3 shows actual values of the stability constant of

this problem and well explains the behaviors of all LSPG methods. For example, the

first column of Table 5.3 shows that the stability constant is increasing in the order

(LSPG(A)/SG, LSPG(ATA), LSPG(2)/PS, and LSPG(F TF )), which is represented

in Figure 5.1(a).
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Table 5.3: Stability constant C of Diffusion problem 1.

Θ′ = A Θ′ = ATA Θ′ = 2 Θ′ = FTF

Θ = A 1 26.43 2.06 11644.22

Θ = ATA 2.06 1 4.25 24013.48

Θ = 1 26.43 698.53 1 5646.32

Θ = FTF ∞ ∞ ∞ 1

The results in Figure 5.1 do not account for computational costs. This point

is addressed in Figure 5.2, which shows the relative errors as a function of CPU

time. As we would like to devise a method that minimizes both the error and

computational time, we examine a Pareto front (blacked dotted line), that is, a curve

identifying the methods that minimize the two competing objectives considered in

the figure. This typically corresponds to LSPG(2)/PS. This is because this method

does not require solution of a coupled system of linear equations of dimension nxnψ,

which is required by the other three LSPG methods (LSPG(A)/SG, LSPG(ATA),

and LSPG(F TF )). As a result, pseudo-spectral projection (LSPG(2)/PS) generally

yields the best overall performance in practice, even when it produces larger errors

than other methods for a fixed value of p. Also, for a fixed value of p, LSPG(A)/SG

is faster than LSPG(ATA) because the weighted stiffness matrix A(ξ) obtained from

the finite element discretization is sparser than AT (ξ)A(ξ). That is, the number of

nonzero entries to be evaluated for LSPG(A)/SG in numerical quadrature is smaller

than the ones for LSPG(ATA), and exploiting this sparsity structure in the numerical

quadrature causes LSPG(A)/SG to be faster than LSPG(ATA). Also, note that

there are cases (Figure 5.2(b)) where the Pareto front does not correspond to a

single method; this outcome will occur with other benchmark problems considered
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below.

5.5.1.2 Diffusion problem 2: Lognormal random coefficient and ran-

dom forcing

This example uses the same random field a(x, ξ) (5.41), but instead employs

a random forcing term1 f(x, ξ) = exp(ξ)|ξ− 1|. Again, ξ follows a standard normal

distribution and normalized Hermite polynomials are used as polynomial basis. We

consider the second output QoI, F = F2. As shown in Figure 5.3, the stochas-

tic Galerkin method fails to converge monotonically in three error measures as the

stochastic polynomial basis is enriched. In fact, it exhibits monotonic convergence

only in the error measure it minimizes (for which monotonic convergence is guaran-

teed).

1 3 5 7 9 11 13 15 17 19 20
-3

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

Figure 5.3: Relative errors versus polynomial degree for stochastic Galerkin (i.e.,
LSPG(A)/SG) for diffusion problem 2: lognormal random coefficient and random
forcing. Note that monotonic convergence is observed only in the minimized error
measure ηA.

1In [73], it was shown that stochastic Galerkin solutions of an analytic problem a(ξ)u(ξ) = f(ξ)
with this type of forcing are divergent in the ℓ2-norm of solution errors as p increases.
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(d) Relative ℓ2-norm of output QoI error ηQ
with F = F2

Figure 5.4: Pareto front of relative error measures versus wall time for varying
polynomial degree p (p varies from 1 to 20 in increments of 1 going from left to
right) for diffusion problem 2: lognormal random coefficient and random forcing

Figure 5.4 shows that this trend applies to other methods as well when ef-

fectiveness is viewed with respect to CPU time; each technique exhibits mono-

tonic convergence in its tailored error measure only. Moreover, the Pareto fronts

(black dotted lines) in each subgraph of Figure 5.4 shows that the LSPG method

tailored for a particular error measure is Pareto optimal in terms of minimizing

the error and computational wall time. In the next experiments, we examine
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goal-oriented LSPG(F TF ) for varying number of output quantities of interest no

and its effect on the stability constant C. Figure 5.5 reports three error mea-

sures computed using all four LSPG methods. For LSPG(F TF ), the first linear

function F = F1 is applied with g(ξ) = sin(ξ) and a varying number of outputs

no = {100, 150, 200, 225}. When no = 225, LSPG(F TF ) and LSPG(2)/PS behave

similarly in all three weighted ℓ2-norms. This is because when n0 = 225 = nx, then

σmin(F ) > 0, so the stability constants C for Θ = F TF in Table 5.2 are bounded.

Figure 5.6 reports relative errors in the quantity of interest ηQ associated with linear

functionals F = F1 for two different functions g(ξ), g1(ξ) = sin(ξ) and g2(ξ) = ξ.

Note that LSPG(A)/SG and LSPG(ATA) fail to converge, whereas LSPG(2)/PS

and LSPG(F TF ) converge, which can be explained by the stability constant C in

Table 5.2 where σmax(A) = 26.43 and σmin(A) = 0.48 for the linear operator A(ξ)

of this problem. LSPG(F TF ) converges monotonically and produces the smallest

error (for a fixed polynomial degree p) of all the methods as expected.

5.5.1.3 Diffusion problem 3: Gamma random coefficient and random

forcing

This section considers a stochastic diffusion problem parameterized by a ran-

dom variable that has a Gamma distribution, where a(x, ξ) ≡ exp(1 + 0.25a1(x)ξ +

0.01 sin(ξ)) with density ρ(ξ) ≡ ξα exp(−ξ)
Γ̄(α+1)

, Γ̄ is the Gamma function, ξ ∈ [0,∞),

and α = 0.5. Normalized Laguerre polynomials (which are orthogonal with re-

spect to 〈·, ·〉ρ) are used as polynomial basis. We consider a random forcing term
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Figure 5.5: Relative error measures versus polynomial degree for a varying dimension
no of the output matrix F = F1 for diffusion problem 2: lognormal random coefficient
and random forcing. Note that LSPG(F TF ) has controlled errors only when no =
nx, in which case σmin(F ) > 0.

f(x, ξ) = log10(ξ)|ξ − 1| and the second QoI F (ξ) = F2(ξ) = b(ξ)TM̄ . Note that

numerical quadrature is the only option for computing expectations arise in this

problem.

Figure 5.7 shows the results of solving the problem with the four different

LSPG methods. Again, each version of LSPG monotonically decreases its corre-

sponding target weighted ℓ2-norm as the stochastic basis is enriched. Further, each
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(a) Relative ℓ2-norm of output QoI error ηQ
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Figure 5.6: Plots of the error norm of output QoI for diffusion problem 2: lognormal
random coefficient and random forcing when a linear functional is (a) F (ξ) ≡ sin(ξ)×
[0, 1]100×nx and (b) F (ξ) = ξ × [0, 1]100×nx for varying p and varying no.

LSPG method is Pareto optimal in terms of minimizing its targeted error measure

and the computational wall time.

5.5.2 Stochastic convection-diffusion problem: Lognormal random

coefficient and deterministic forcing

We now consider a non-self-adjoint example, the steady-state convection-diffusion

equation



















−ǫ∇ · (a(x, ξ)∇u(x, ξ)) + ~w · ∇u(x, ξ) = f(x, ξ) in D × Γ,

u(x, ξ) = gD(x) on ∂D × Γ

(5.42)
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Figure 5.7: Pareto front of relative error measures versus wall time for varying
polynomial degree p (p varies from 1 to 20 in increments of 1 going from left to right)
for diffusion problem 3: Gamma random coefficient and random forcing. Note that
each method is Pareto optimal in terms of minimizing its targeted error measure
and computational wall time.

where D = [−1, 1]× [−1, 1], ǫ is the viscosity parameter, and u satisfies inhomoge-

neous Dirichlet boundary conditions

gD(x) =















gD(x, 1) = 0 for [−1, y] ∪ [x, 1] ∪ [−1 ≤ x ≤ 0,−1],

gD(1, y) = 1 for [1, y] ∪ [0 ≤ x ≤ 1,−1].

(5.43)
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Figure 5.8: Pareto front of relative error measures versus wall time for varying
polynomial degree p (p varies from 1 to 10 in increments of 1 going from left to
right) for stochastic convection-diffusion problem: lognormal random coefficient and
deterministic forcing term.

The inflow boundary consists of the bottom and the right portions of ∂D, [x,−1] ∪

[1, y] [39]. We consider a zero forcing term f(x, ξ) = 0 and a constant convection

velocity ~w ≡ (− sin π
6
, cos π

6
). We consider the convection-dominated case (i.e., ǫ =

1
200

).

For the spatial discretization, we essentially use the same finite element as
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above (bilinear Q1 elements) applied to the weak formulation of (5.42). In addi-

tion, we use the streamline-diffusion method [17] to stabilize the discretization in

elements with large mesh Peclet number. (See [39], Ch. 8 for details.) Such spatial

discretization leads to a parameterized linear system of the form (5.1) with

A(ξ) = ǫD(a(ξ); ξ) + C(ξ) + S(ξ), (5.44)

where D(a(ξ); ξ), C(ξ) and S(ξ) are the diffusion term, the convection term, and

the streamline-diffusion term, respectively, and [b(ξ)]i =
∫

D
f(x, ξ)ϕi(x)dx. For

this numerical experiment, the number of degrees of freedom in spatial domain is

nx = 225 (15 nodes in each spatial dimension) excluding boundary nodes. For

LSPG(F TF ), the first linear function F = F1 is applied with no = 100 outputs and

g(ξ) = exp(ξ)|ξ − 1|.

Figure 5.8 shows the numerical results computed using the stochastic Galerkin

method and three LSPG methods (LSPG(ATA), LSPG(2)/PS, LSPG(F TF )). Note

that the operator A(ξ) is not symmetric positive-definite in this case; thus LSPG(A)

is not a valid projection scheme (the Cholesky factorization A(ξ) = C(ξ)C(ξ)T does

not exist and the energy norm of the solution error ‖e(x)‖2A cannot be defined)

and stochastic Galerkin does not minimize an any measure of the solution error.

These results show that pseudo-spectral projection is Pareto optimal for achieving

relatively larger error measures; this is because of its relatively low cost since, in

contrast to the other methods, it does not require the solution of a coupled linear

system of dimension nxnψ. In addition, the stochastic Galerkin projection is not
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Pareto optimal for any of the examples; this is caused by the lack of optimality

of stochastic Galekin in this case and highlights the significant benefit of optimal

spectral projection, which is offered by the stochastic LSPG method. In addition,

the residual ηr and solution error ηe incurred by LSPG(F TF ) are uncontrolled,

because no < nx and thus σmin(F ) = 0. Finally, note that each LSPG method is

Pareto optimal for small errors in its targeted error measure.

5.5.3 Numerical experiment with analytic computations

For the results presented above, expected values were computed using numer-

ical quadrature (using the Matlab function integral). This is a practical and

general approach for numerically computing the required integrals of (5.36)–(5.38),

and is the only option when analytic computations are not available (as in Section

5.5.1.3). In this section, we briefly discuss how the costs change if analytic methods

based on closed-form integration exist and are used for these integrals. Note that in

general, however, analytic computation are unavailable, for example, if the random

variables have a finite support (e.g., truncated Gaussian random variables as shown

in [106]).

Computing T1. Analytic computation of T1 is possible if either E[A
TMMAψl]

or E[MAψl] can be evaluated analytically. For LSPG(A)/SG and LSPG(ATA), if

E[Aψl] can be evaluated so that the following gPC expansion can be obtained ana-

lytically

A(ξ) =

∞
∑

l=1

Alψl(ξ), Al ≡ E[Aψl], (5.45)

129



-2 -1 0 1 2
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

(a) Relative energy norm of solution error ηA

-1.5 -1 -0.5 0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

(b) Relative ℓ2-norm of residual ηr

-2 -1 0 1 2
-4

-3

-2

-1

0

1

(c) Relative ℓ2-norm of solution error ηe

-2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

(d) Relative ℓ2-norm of output QoI error ηQ
with F = F2

Figure 5.9: Pareto front of relative error measures versus wall time for varying
polynomial degree p (p varies from 1 to 20 in increments of 1 going from left to
right) for diffusion problem 2: Lognormal random coefficient and random forcing.
Analytic computations are used as much as possible to evaluate expectations.

where Al ∈ R
nx×nx , then T1 can be computed analytically. Replacing A(ξ) with the

series of (5.45) for LSPG(A)/SG (M(ξ) = C−1(ξ)) and LSPG(ATA) (M(ξ) = Inx)

yields

T
LSPG(A)
1 =

na
∑

l=1

E
[

ψψT ⊗ (Alψl)
]

=
na
∑

l=1

E[ψψTψl ⊗ Al], (5.46)
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and

T
LSPG(ATA)
1 = E[ψψT ⊗

na
∑

k=1

na
∑

l=1

(Akψk)
T (Alψl)] =

na
∑

k=1

na
∑

l=1

E[ψψTψkψl ⊗ ATkAl],

(5.47)

where the expectations of triple or quadruple products of the polynomial basis (i.e.,

E[ψiψjψk] and E[ψiψjψkψl]) can be computed analytically. For LSPG(2)/PS, an

analytic computation of T1 is straightfoward because M(ξ)A(ξ) = Inx and, thus,

T
LSPG(2)
1 = E[ψψT ⊗ Inx ] = Inxnψ . (5.48)

Similarly, analytic computation of T1 is possible for LSPG(F TF )if there exists a

closed formulation for E[Fψl] or E[F
TFψl], which is again in general not available.

Computing T2. Analytic computation of T2 can be performed in a similar

way. If the random function b(ξ) can be represented using a gPC expansion,

b(ξ) =

nb
∑

l=1

blψl(ξ), bl ≡ E[bψl], (5.49)

then, for LSPG(A)/SG and LSPG(ATA), T2 can be evaluated analytically by com-

puting expectations of bi or triple products of the polynomial bases (i.e., E[ψiψj ]

and E[ψiψjψk]). For LSPG(2)/PS and LSPG(F TF ), however, an analytic computa-

tion of T2 is typically unavailable because a closed-form expression for A−1(ξ) does

not exist.

We examine the impact of these observations on the cost of solution of the
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problem studied in Section 5.5.1.2, a the steady-state stochastic diffusion equation

(5.40) with lognormal random field a(x, ξ) as in (5.41), and random forcing f(x, ξ) =

exp(ξ)|ξ − 1|.

Figure 5.9 reports results for this problem for analytic computation of expecta-

tions. For LSPG(A)/SG, analytic computation of the expectations {Ti}3i=1 requires

fewer terms than for LSPG(ATA). In fact, comparing (5.46) and (5.47) shows that

computing T
LSPG(ATA)
1 requires computing and assembling n2

a terms, whereas com-

puting T
LSPG(A)
1 involves only na terms. Additionally the quantities {ATkAl}nak,l=1

appearing in the terms of T
LSPG(ATA)
1 in (5.47) are typically denser than the coun-

terparts {Ak}nak=1 appearing in (5.46), as the sparsity pattern of {Ak}nak=1 is identical

to that of the finite element stiffness matrices. As a result, LSPG(A)/SG is Pareto

optimal for small computational wall times when any error metric is considered.

When the polyomial degree p is small, LSPG(A)/SG is computationally faster than

LSPG(2)/PS, as LSPG(2)/PS requires the solution of A(ξ(k))u(ξ(k)) = f(ξ(k)) at

each quadrature point and cannot exploit analytic computation. As the stochastic

basis is enriched, however, each tailored LSPG method outperforms other LSPG

methods in minimizing its corresponding target error measure.

5.6 Conclusion

In this work, we have proposed a general framework for optimal spectral pro-

jection wherein the solution error can be minimized in weighted ℓ2-norms of interest.

In particular, we propose two new methods that minimize the ℓ2-norm of the resid-
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ual (LSPG(ATA)) and the ℓ2-norm of the error in an output quantity of interest

(LSPG(F TF )). Further, we showed that when the linear operator is symmetric pos-

itive definite, stochastic Galerkin is a particular instance of the proposed methodol-

ogy for a specific choice of weighted ℓ2-norm. Similarly, pseudo-spectral projection

is a particular case of the method for a specific choice of weighted ℓ2-norm.

Key results from the numerical experiments include:

• For a fixed stochastic subspace, each LSPG method minimizes its targeted

error measure (Figure 5.1).

• For a fixed computational cost, each LSPG method often minimizes its tar-

geted error measure (Figures 5.4, 5.7). However, this does not always hold,

especially for smaller computational costs (and smaller stochastic-subspace

dimensions) when larger errors are acceptable. In particular pseudo-spectral

projection (LSPG(2)/PS) is often significantly less expensive than other meth-

ods for a fixed stochastic subspace, as it does not require solving a coupled

linear system of dimension nxnψ (Figures 5.2, 5.8). Alternatively, when ana-

lytic computations are possible, stochastic Galerkin (LSPG(A)/SG)) may be

significantly less expensive than other methods for a fixed stochastic subspace

(Figure 5.9).

• Goal-oriented LSPG(F TF ) can have uncontrolled errors in error measures that

deviate from the output-oriented error measure ηQ when the linear operator F

has more columns nx than rows no (Figure 5.5). This is because the minimum

singular value is zero in this case (i.e., σmin(F ) = 0)), which leads to unbounded
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stability constants in other error measures (Table 5.2).

• Stochastic Galerkin often leads to divergence in different error measures (Fig-

ure 5.3). In this case, applying LSPG with the appropriate targeted error

measure can significantly improve accuracy (Figure 5.4).

Future work includes developing efficient sparse solvers for the stochastic LSPG

methods and extending the methods to parameterized nonlinear systems.
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Chapter 6: Conclusion

In this thesis, we proposed solution algorithms for addressing two difficulties

in using the stochastic Galerkin method for solving high-dimensional parameter-

ized PDEs: (1) the solution of the Galerkin systems are computationally expensive

and (2) the stochastic Galerkin method does not always guarantee optimality in

the solution error. For efficient computations, we proposed the two-level low-rank

iterative solver for linear elliptic parameterized PDEs and the low-rank variant of

the Newton–Krylov method for nonlinear parameterized PDEs. For optimality, we

proposed the stochastic least-squares Petrov–Galerkin method. We examined the

efficiency and the optimality of the proposed methods on several benchmark prob-

lems.

In Chapter 3, we presented the two-level low-rank iterative solver for linear el-

liptic parameterized PDEs, which identifies an important low-dimensional subspace

with a coarse-grid computation and uses the identified subspace for truncating all

intermediate quantities generated during the low-rank GMRES iteration on the fine-

grid space. In the low-rank GMRES method, computational efficiency was achieved

by using the matrix operations, which exploits the Kronecker-product structure.

Numerical experiments on two benchmark problems, a stochastic diffusion prob-
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lem and a stochastic convection-diffusion problem, demonstrated that the two-level

algorithm achieved significant savings in computational costs.

In Chapter 4, we presented a low-rank variant of the Newton–Krylov method

for solving the Navier–Stokes equations with uncertain viscosity. We adapted the

hybrid linearization scheme, which employs a few steps of Picard iterations followed

by the Newton iterations, to the low-rank variant of the nonlinear iteration. To fur-

ther achieve computational savings, we consider the inexact version of the nonlinear

iteration, which approximately solves the linear system at each nonlinear step. We

demonstrated the performance of the proposed method with the set of benchmark

problems with various configurations characterizing the statistical features of the

uncertain viscosity. The numerical experiments showed that the proposed method

achieved significant computational savings for the problems with smaller CoV and

larger correlation lengths.

In Chapter 5, we presented the stochastic least-squares Petrov–Galerkin method,

which produces an optimal solution in a given finite-dimensional subspace minimiz-

ing the solution error in a target norm. We showed that specific choices of the

weighting function lead to certain minimization formulations that are mathemati-

cally equivalent to the stochastic Galerkin method and the pseudo-spectral method.

The method is monotonic convergent in the sense that the method produces mono-

tonically decreasing solution error in a target norm. Using extensive numerical

experiments on benchmark problems, we demonstrated that each LSPG method is

optimal in minimizing its targeted error measure and is optimal also in terms of

computational costs when an accurate solution in a target error measure is sought.
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[3] I. Babuška, R. Tempone, and G. E. Zouraris. Galerkin finite element approx-
imations of stochastic elliptic partial differential equations. SIAM Journal on
Numerical Analysis, 42(2):800–825, 2004.

[4] M. Bachmayr and A. Cohen. Kolmogorov widths and low-rank approximations
of parametric elliptic PDEs. Mathematics of Computation, 86(304):701–724,
2017.

[5] M. Bachmayr, A. Cohen, and W. Dahmen. Parametric PDEs: Sparse or
low-rank approximations? arXiv preprint arXiv:1607.04444, 2016.

[6] J. Ballani and L. Grasedyck. A projection method to solve linear systems in
tensor format. Numerical Linear Algebra with Applications, 20(1):27–43, 2013.

[7] J. Beck, F. Nobile, L. Tamellini, and R. Tempone. Convergence of quasi-
optimal stochastic Galerkin methods for a class of PDEs with random coeffi-
cients. Computers and Mathematics with Applications, 67(4):732–751, 2014.

[8] J. Beck, R. Tempone, F. Nobile, and L. Tamellini. On the optimal poly-
nomial approximation of stochastic PDEs by Galerkin and collocation meth-
ods. Mathematical Models and Methods in Applied Sciences, 22(09):1250023.1–
1250023.33, 2012.

[9] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll. Solving optimal control
problems governed by random Navier-Stokes equations using low-rank meth-
ods. arXiv preprint arXiv:1703.06097, 2017.

137



[10] P. Benner, A. Onwunta, and M. Stoll. Low-rank solution of unsteady diffusion
equations with stochastic coefficients. SIAM/ASA Journal on Uncertainty
Quantification, 3(1):622–649, 2015.

[11] G. Beylkin and M. J. Mohlenkamp. Algorithms for numerical analysis in high
dimensions. SIAM Journal on Scientific Computing, 26(6):2133–2159, 2005.

[12] G. Blatman and B. Sudret. An adaptive algorithm to build up sparse poly-
nomial chaos expansions for stochastic finite element analysis. Probabilistic
Engineering Mechanics, 25(2):183–197, 2010.

[13] P. B. Bochev and M. D. Gunzburger. Finite element methods of least-squares
type. SIAM review, 40(4):789–837, 1998.

[14] P. B. Bochev and M. D. Gunzburger. Least-Squares Finite Element Methods,
volume 166. Springer, New York, 2009.

[15] C. Brezinski and M. Redivo-Zaglia. The PageRank vector: properties, com-
putation, approximation, and acceleration. SIAM Journal on Matrix Analysis
and Applications, 28(2):551–575, 2006.

[16] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer,
New York, 2012.

[17] A. N. Brooks and T. J. Hughes. Streamline upwind/Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incom-
pressible Navier-Stokes equations. Computer Methods in Applied Mechanics
and Engineering, 32(1):199–259, 1982.

[18] K. Carlberg, M. Barone, and H. Antil. Galerkin v. least-squares Petrov–
Galerkin projection in nonlinear model reduction. Journal of Computational
Physics, 330:693–734, 2017.

[19] K. Carlberg, C. Farhat, and C. Bou-Mosleh. Efficient nonlinear model re-
duction via a least-squares Petrov-Galerkin projection and compressive tensor
approximations. International Journal for Numerical Methods in Engineering,
86(2):155–181, October 2011.

[20] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method
for nonlinear model reduction: effective implementation and application to
computational fluid dynamics and turbulent flows. Journal of Computational
Physics, 242:623–647, 2013.

[21] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimen-
sional scaling via an N-way generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[22] J. Chung and J. G. Nagy. Nonlinear least squares and super resolution. Journal
of Physics: Conference Series, 124(1):012019:1–012019:10, 2008.

138



[23] A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best N-term
Galerkin approximations for a class of elliptic sPDEs. Foundations of Com-
putational Mathematics, 10(6):615–646, 2010.

[24] A. Cohen, R. Devore, and C. Schwab. Analytic regularity and polynomial
approximation of parametric and stochastic elliptic PDE’s. Analysis and Ap-
plications, 9(01):11–47, 2011.

[25] P. G. Constantine, E. Dow, and Q. Wang. Active subspace methods in theory
and practice: applications to kriging surfaces. SIAM Journal on Scientific
Computing, 36(4):A1500–A1524, 2014.

[26] P. G. Constantine and D. F. Gleich. Using polynomial chaos to compute
the influence of multiple random surfers in the PageRank model. In Interna-
tional Workshop on Algorithms and Models for the Web-Graph, pages 82–95.
Springer, 2007.

[27] S. Corveleyn, E. Rosseel, and S. Vandewalle. Iterative solvers for a spectral
Galerkin approach to elliptic partial differential equations with fuzzy coeffi-
cients. SIAM Journal on Scientific Computing, 35(5):S420–S444, 2013.
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