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Culex pipiens is the primary vector of WNV. It exists as two bioforms which can 

hybridize in nature. I characterized the behavioral and genetic variation across eight 

populations collected from above- and below-ground habitats. Three of the five 

above-ground populations had hybrid ancestry in our single locus assay, whereas the 

below-ground populations did not. In choice tests, four above-ground populations 

were avian-seeking, while the fifth showed no clear preference. All three below-

ground populations predominately sought the human host. Genetic ancestry was not 

correlated with host preference. Chemosensation drives host-seeking behaviors in 

female mosquitoes, which led me to quantify the expression of two chemosensory 

genes: odorant binding proteins (OBPs) 2 and 12. Both OBPs were more highly 

expressed in the heads of human-preferring females. While the patterns of OBP2 



  

expression indicate that it may contribute to human host detection, OBP12 expression 

patterns are more consistent with odor-guided oviposition.  
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Chapter 1: A Review of the Physiological Mechanisms 

Underlying Mosquito Host-Seeking and Preference and their 

Implications for Vector-Borne Disease Transmission 

Introduction 

Female mosquitoes feed on the blood of vertebrates in order to obtain 

nutrients necessary for egg production (Mullen et al. 2009; Takken et al. 2013). In 

doing so, they have the potential to transmit diseases between their hosts. A 

mosquito’s ability to find and feed upon vertebrate animals has significant 

implications for the epidemiology of vector-borne disease, including transmission to 

humans. In this review, I will discuss physiological adaptations for blood-feeding, 

host detection and selection, and mosquito host preference. In addition, I will 

examine how these factors influence vector-borne disease transmission, and how 

Culex mosquitoes contribute to West Nile virus (WNV) transmission in North 

America.  Finally, I will conclude with exciting possibilities for future research 

avenues.  

 

Morphological and Physiological Adaptations for Blood-feeding  

Vertebrate blood is nutrient and protein-rich, and some necessary nutrients, 

such as iron, can only be obtained through blood-feeding (Harbach et al. 1988; 

Telang et al. 2004; Resh et al. 2009). Therefore, mosquitoes possess many 

adaptations that make them successful blood-feeders. Piercing and sucking 
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mouthparts allow female mosquitoes to access blood vessels and capillaries in host 

tissue (Hudson et al. 1970; Kong et al. 2010). Flexible intersegmental membranes in 

the abdomen allow mosquitoes to imbibe volumes of blood many times their body 

weight during a single feeding event (Owen et al. 1980; Mullen et al. 2009). Special 

proteins in mosquito saliva are secreted during blood feeding (i.e. anticoagulants, 

vasodilators, anti-inflammatory proteins, and analgesics) that suppress vertebrate host 

immunological and pain responses, thereby reducing the possibility of host detection 

and interruption of blood-feeding (Ribeiro et al. 2003; Arcà et al. 2005; Lehane et al. 

2005; King et al. 2011). 

Vertebrate blood is metabolically costly to digest (Lyimo et al. 2009).  

However, mosquitoes have evolved physiological mechanisms to counteract the 

cytotoxic effects of heme, including: heme aggregation and digestion in the midgut, 

neutralization through heme-binding proteins in the hemocoel, and heme excretion 

(Coluzzi et al. 1982; Pascoa et al. 2002; Zhou et al. 2007). These morphological and 

physiological adaptations give mosquitoes the stereotypical characteristics of blood-

feeding parasites (Lehane et al. 2005). Yet unlike other blood-feeding arthropods, 

mosquitoes do not live on their vertebrate hosts. Mosquitoes must find their hosts in 

the landscape for these brief but reproductively important encounters (Marshall et al. 

1981).  

 

Host Detection and Selection 

Behavioral and electrophysiological work has demonstrated that mosquitoes 

detect and respond to a number of host cues that allow them to identify their hosts in 
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the landscape. Such cues include: carbon dioxide (CO2) emissions, visual appearance, 

local increases in temperature and humidity, and odorants released from skin and 

breath (Friend et al. 1977; Takken et al. 1991; Bowen et al. 1991; Bruce et al. 2005; 

van Breugel et al. 2015; Carde et al. 2015).  Mosquitoes must integrate multiple 

sensory modalities as they transition from long-range to short-range detection of cues 

during host-seeking (Carde et al. 2010; Cummins et al. 2012; Carde et al. 2015; van 

Breugel et al. 2015).  At long range, CO2 receptors on the maxillary palps and 

photoreceptors expressed in the compound eye are engaged as the mosquito actively 

searches for and navigates toward a host (Kennedy et al. 1940, Reeves et al. 1953; 

Gillies et al. 1980; Smallegange et al. 2010; McMeniman et al 2014).  CO2 activates 

host-seeking behaviors, allowing mosquitoes to orient and locate a host from a great 

distance, and heightens responses to host-associated visual stimuli (Gillies et al. 1980; 

Hawkes et al. 2016). At short range, CO2 lowers the threshold potential of the 

olfactory system to skin odorants, and increases the sensitivity of the peripheral 

chemosensory system (Dekker et al. 2011). Detection of host body heat and humidity 

guide landing (Takken et al. 1997), and skin odors are thought to ultimately 

determine host acceptance (DeGennaro et al. 2013; Cardé et al. 2015). Odor detection 

relies upon receptors along dendrites of olfactory receptor neurons (ORNs), which are 

housed in porous sensory hairs covering the antennae, palps, and labellum (Suh et al. 

2014). 
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Insect Chemosensation 

Chemoreceptors expressed on the dendrites of ORNs include Odorant 

Receptors (ORs), co-expressed with an essential co-receptor known as orco, and 

Ionotropic Receptors (IRs), both of which detect volatiles in the air (DeGennaro et al. 

2013; Leal et al. 2013).  Taste and contact sensation are mediated by Gustatory 

Receptors (GRs), which are also expressed on ORNs and other non-ORN neurons 

(Silbering et al. 2011; Suh et al. 2014).  The patterning and expression of these 

chemoreceptors is driven by transcription factors in adult insects (Clyne et al. 1999; 

Tichy et al. 2008; Guo et al. 2018). Upon entering pores in the sensory hairs, some 

host volatiles become bound to odor-binding proteins (OBPs), which either chaperone 

the semiochemicals to their respective receptors or to odor degradation enzymes 

(Zwiebel et al. 2004; Pelletier et al. 2009).  Expression of chemosensory genes is 

regulated by the circadian clock (Rund et al. 2011, 2013a, 2013b), and such rhythmic 

expression may regulate diel foraging and host receptivity rhythms described across 

mosquito taxa (Eilerts et al. 2018). Chemosensation is thought to be the main driver 

of host localization, but may also play a significant role in certain species’ abilities to 

discriminate between preferred and undesirable hosts (DeGennaro et al. 2013; Raji et 

al. 2019).   

 

Methods to Assess Mosquito Host Preference 

Each mosquito species has its own unique complement of preferred vertebrate 

hosts which varies in space and time, and is likely driven by variation in sequence and 

expression of chemosensory genes. Research to elucidate patterns of host use across 
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mosquito species can inform and improve understanding of species’ life-history traits, 

as host preference can directly influence the survival, reproduction, and disease 

transmission of a mosquito population (Mullen et al. 2009; Takken et al. 2013). 

Additionally, epidemiological surveillance and the successful implementation of new 

and targeted vector control tools requires detailed understanding of mosquito feeding 

behaviors. Targeted control of species with known capacities to transmit disease can 

greatly reduce the resources and labor required for effective vector control and 

minimize widespread application of broad-spectrum pesticides in the environment 

(WHO et al. 1999; Bhatt et al. 2015).  

Broadly speaking, vector biologists use two types of approaches to quantify 

the host preference of a vector population: blood meal analysis and behavioral 

observation (Washino et al. 1983; Silver et al. 2008; Takken et al. 2013; Brugman et 

al. 2017). Blood meal analysis represents the most widely used method to assess host 

preference in mosquitoes (Day et al. 2005). It is used to identify the vertebrate hosts 

of wild-caught females, and is often used as a direct measure of the feeding capacity 

of a vector population in the field (i.e. types/range of vertebrate hosts a population 

will actively feed upon in nature) (Silver et al. 2008; Takken et al. 2013). Approaches 

to identify the origins of mosquito blood meals include serological techniques, such 

as precipitin tests and Enzyme Linked Immunosorbent Assays (ELISA), and/or 

molecular methods including multiplex PCR and DNA sequencing of blood meal 

contents (Gomes et al. 2001; Molaei et al. 2007; Hamer et al. 2008; Molaei et al. 

2008; Pitzer et al. 2014). Depending on which sampling methodologies are used to 

collect blood-fed mosquitoes, results from blood meal analyses can be biased. Often, 
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these assays indicate that wild caught females favor the most abundant host species in 

the landscape, which may not accurately reflect the populations’ most preferred host 

(Washino et al. 1983; Thiemann et al. 2012).  

Behavioral observation, or direct observation of mosquito host use, can be 

performed under natural conditions in the field, or in laboratory settings (Chaisson et 

al. 2012; Takken et al. 2013). In the field, traps can be baited with host-specific 

odorants or odor bouquets to attract mosquitoes (Nelson et al. 1976; Jawara et al. 

2011; Sukumaran et al. 2016). Additionally, vertebrate or human landing catches 

(HLC) can be used to collect mosquitoes attempting to directly feed on study subjects 

or animals placed in the environment (Reddy et al 2011; Gimnig et al. 2013). Under 

laboratory conditions, behavioral observations are made using dual-choice 

olfactometers, wind tunnels, and choice chambers (Constantini et al. 1998; Zwiebel et 

al. 2004; Smallegange et al. 2010). These devices generally expose mosquitoes to two 

or more odors simultaneously to uncover specific cues that may drive host preference 

(Syed et al. 2007; Takken et al. 2013). Host choice tests with live hosts may be a 

more natural approach for assessing the true host preference of a species, 

incorporating more of the complexity of host cues (other than olfactory cues) that 

influence selection of a host (Takken et al. 2013; Fritz et al. 2015). Integration of data 

from both methods can help vector biologists understand how regionally-divergent 

populations’ feeding behaviors can affect a species’ ability to transmit vector-borne 

diseases.  
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Host Preference across Culicidae  

When searching for a host, some mosquitoes display preferential attraction to 

a specific vertebrate class or species (Mullen et al. 2009). Specialized feeding 

behavior can result in efficient transmission of disease between individuals of the 

preferred host (Costantini et al. 1999; Cohuet et al. 2010; Scott et al. 2012). For 

example, in sub-Saharan Africa, human malaria (Plasmodium falciparum) is most 

efficiently vectored by the specialized, highly anthropophilic species, Anopheles 

gambiae sensu stricto. (Lindsey et al. 1993; Knols et al. 1995; Costantini et al. 1998; 

Qui et al. 2006; Mullen et al. 2009). However, even for highly specialized species like 

An. gambiae s.s., variation in feeding behavior has been observed; where some 

studies report that over half of all wild-caught females imbibed blood meals from 

hosts other than humans (White et al. 1973; Bøgh et al. 1998; Lefèvre et al. 2009).  

The species Aedes aegypti, the vector of Yellow Fever Virus, Dengue, and Zika, is 

also classically defined as a highly anthropophilic species (Heisch et al. 1959; 

Tempelis et al. 1975; Scott et al. 2000; Ponlawat et al. 2006; Liu-Helmersson et al. 

2014).  However, Ae. aegypti populations sampled in Hawaii, Texas, and Thailand 

were found to feed indiscriminately on human and non-human hosts (Tempelis et al. 

1970; Scott et al. 1993; Takken et al. 2013; Olson et al. 2020).  These results indicate 

that even in species traditionally considered as highly specialized, certain regional 

populations are capable of feeding on a variety of vertebrate hosts. Thus, the variation 

observed in blood feeding behavior is likely a function of host availability, 

environmental factors, and/or underlying genetic differences among regional 

populations (Takken et al. 2013).  
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The majority of mosquito species are more opportunistic, feeding 

indiscriminately on available hosts in the environment (Day et al. 2005; Takken et al. 

2013). Mosquitoes displaying generalist feeding behaviors have the potential to 

transmit zoonotic diseases to humans, obtained from previous non-human blood hosts 

(Hamer et al. 2008; Farajollahi et al. 2011).  For example, the Culiseta melanura 

mosquito can circulate Eastern Equine Encephalitis (EEE) amongst passerine birds 

(the amplifying host of the virus) within swamp habitats. However, when humans and 

large mammals move in close proximity to these environments, Cs. melanura 

mosquitoes readily feed on these newly available hosts, a behavior that can facilitate 

the epizootic transmission of EEE (Soghigian et al. 2018). Blood meal analysis of 

wild caught females demonstrated Cx. quinquefasciatus displays indiscriminate host 

feeding behaviors in nature, feeding on a variety of vertebrate hosts, including a wide 

range of avian and mammalian species, and even humans (Heisch et al. 1959; Reisen 

et al. 1979; Kumar et al. 2002; Zinser et al. 2004; Muturi et al. 2008, Janssen et al. 

2015). However, depending on the regional populations analyzed, the species does 

appear to more readily feed upon avian hosts (Tempelis et al. 1975; Kay et al. 1985; 

Irby et al. 1988; Molaei et al. 2007; Muturi et al. 2008; Farajollahi et al. 2011). 

Because of this species’ propensity to feed opportunistically, it is not surprising Cx. 

quinquefasciatus is a major vector of many zoonotic diseases, such as WNV and St. 

Louis Encephalitis virus in North America, and Rift Valley fever virus in Africa (Day 

et al. 2000; Mullen et al. 2009). In opportunistic species, it appears successful host 

location and selection may depend on the relative abundance of individual hosts (Day 

et al. 2005). Abundant hosts will be encountered and fed on more frequently than rare 
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hosts, possibly accounting for the significant variation in feeding observed in a single 

species in different geographic regions (Hess et al. 1968). 

 

Vector-Mediated Biological Pathogen Transmission and Vectorial Capacity  

Disease-causing organisms (viruses, bacteria, protozoa, helminths, and other 

arthropods) transmitted by mosquitoes are acquired with a blood meal (Mullen et al. 

2009). A single female mosquito can take several blood-meals in her lifetime.  The 

number of blood meals taken is greatly influenced by the physiological characteristics 

of the individual mosquito species, such as average lifespan and gonadotropic cycle 

length, host availability, and ambient temperature (which can affect follicular 

development rate) (Hardy et al. 1983; Lehane et al. 2005; Mullen et al. 2009).  

Research on Anopheles mosquitoes found a small number of females capable of 

completing as many as eight separate gonotrophic cycles, each of which follow the 

successful acquisition of a blood-meal (Lines et al. 1991).  When mosquitoes feed on 

humans, they have the potential to transmit diseases from the blood of previous hosts. 

Successful biological transmission of pathogens by an arthropod vector is dependent 

on: 1) the pathogens’ ability to amplify in the tissues of the invertebrate vector and a 

vertebrate host, 2) the arthropod vector’s contact with infectious vertebrate hosts (or 

amplifying hosts, which have high enough titers of the pathogen in their blood to be 

infectious), 3) the infected arthropod vectors’ ability to find and successfully transmit 

the pathogen to a new, uninfected vertebrate host (Weaver et al. 2004; Mullen et al. 

2009; Weaver et al. 2010).  
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Vectorial capacity is a metric used to calculate the disease transmission 

efficiency of a particular mosquito population (Hardy et al. 1983; Mullen et al. 2009). 

Vectorial Capacity (C) = ma2VPn / logeP 

Many factors can influence the Vectorial Capacity (C) of a mosquito population 

including: mosquito density (m), vector competence (V) (i.e. ability of the mosquito 

to acquire, maintain, and transmit the pathogen), the lifespan of the mosquito (P), the 

extrinsic incubation period (EIP) of the parasite (n) (i.e. the time between the initial 

ingestion of the pathogen by the mosquito, the pathogens’ proliferation and 

dissemination through the body, and finally occupation of the salivary glands making 

the vector now infectious during future feedings), and finally, mosquito host 

preference (a) (MacDonald et al. 1961; MacDonald et al. 1968; Hardy et al. 1983; 

Mullen et al. 2009; Kramer et al. 2015).  

 Mosquitoes that feed on both non-human and human hosts are referred to as 

bridge vectors for zoonotic diseases because they act as a “bridge” between an 

infected reservoir (non-human host) and incidental hosts (often humans, in the case of 

zoonoses) (Kilpatrick et al. 2005; Medlock et al. 2005). Specialized mosquitoes play 

an important role in maintaining and amplifying transmission among reservoir hosts 

but typically do not play a role in epizootic transmission of zoonoses humans. Thus, 

to better understand the spread of vector-borne disease to humans, it is vital to 

characterize the feeding behaviors of vector species and elucidate which molecular 

and physiological mechanisms contribute to a vector’s detection and eventual 

selection of a host. 
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Culex pipiens as a Model to study Host Preference and its Epidemiological 

Consequences   

Cx. pipiens is a member of the broader taxonomic group known as the Pipiens 

Assemblage, which includes four distinct species: Cx. pipiens, Cx. quinquefasciatus, 

Cx. australicus, and Cx. pallens (Smith et al. 2004; Harbach et al. 2012). More 

recently within the United States, members of this complex have emerged as 

important vectors of St. Louis-, North American- and Eastern Equine- Encephalitis, 

and WNV (Smith et al. 2004; Thiemann et al. 2012). While Cx. australicus and Cx. 

pallens are found in Southern Australia, and North-Eastern Asia, respectively, Cx. 

pipiens and Cx. quinquefasciatus are invasive, globally-distributed species, owing 

their ubiquitous distributions to global human transportation and commerce networks 

(Farajollahi et al. 2011; Ciota et al. 2013).  

Although Cx. pipiens is generally a more northerly distributed species and Cx. 

quinquefasciatus a more southerly distributed species, it is well documented that the 

two will readily hybridize in mid-latitude regions where their geographical 

distributions overlap (Urbanelli et al 1997; Humeres et al. 1998; Smith et al. 2004; 

Kilpatrick et al. 2005; Silberbush et al. 2014; Cardo et al. 2016).  Both species are 

synanthropic, benefiting from an association with human beings and the artificial 

habitats and ovipositional resources they create (Reisen et al. 2012). The success of 

these synanthropic species can be attributed to their close evolution with human 

urbanization and ability to extract nutrients from standing water generated by humans 

and livestock (Byrne et al. 1999; Farajollahi et al. 2011). Unlike many other mosquito 

species, members of Pipiens Assemblage thrive in minimal amounts of water, such as 
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aquatic habitats created by transient puddles or containers containing 200 - 300 mL of 

water, with high organic content (Vinogradova et al. 2000; Mullen et al. 2009).  

The single species Cx. pipiens exists as two unique bioforms: Cx. pipiens form 

pipiens and Cx. pipiens form molestus (Spielman et al. 1957; Harbach et al. 2012; 

Savage et al. 2012).  Although they are morphologically indistinguishable, the two 

bioforms are physiologically, genetically, and behaviorally divergent (Huang et al. 

2009; Harbach et al. 2012; Fritz et al. 2014; 2015). While Cx. pipiens form pipiens 

are diapausing, anautogenous (requiring a blood meal for egg development - Figure 

1), and eurygamous (mating in above ground swarms); Cx. pipiens form molestus 

cannot diapause, are autogenous (laying their first egg raft without a blood meal - 

Figure 1), and stenogomous (preferring to breed in confined, subterranean spaces) 

(Byrne et al. 1999; Vinogradova et al. 2000; Harbach et al. 2012; Reisen et al. 2012; 

Kothera et al. 2013) 

Cx. pipiens are reportedly avian-seeking, while Cx. molestus are considered to 

be mammalian and human-seeking (Kent et al. 2007; Simpson et al. 2009; Harbach et 

al. 2012; Fritz et al. 2015). The two forms readily hybridize in nature (Spielman et al. 

1957; Bahnck et al. 2006; Huang et al. 2008; Kothera et al. 2010; Farajollahi et al. 

2011). Progeny of matings between the above- and below-ground forms 

indiscriminately feed on mammalian and avian hosts, a behavior thought to contribute 

to the epizootic transmission of WNV to humans in North America (Fonseca et al. 

2004; Kilpatrick et al. 2007; Huang et al. 2009; Fritz et al. 2015).   
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West Nile virus and Epizootic Transmission by Cx. pipiens 

Since its initial isolation in Uganda in 1937 by Smithburn et al., WNV (family 

Flaviviridae) has become an important cause of human and animal disease 

worldwide. Historically the virus was isolated to the Eastern Hemisphere, where it 

was well documented as causing sporadic episodes or outbreaks of illness (Zeller et 

al. 2004; Sambri et al. 2013). The emergence of WNV in North America is a 

relatively recent development; the first cases of the virus were reported in 1999 in the 

metropolitan area of New York City, New York (Laniciotti et al. 1999). Within three 

years of its emergence, WNV had spread to most of the contiguous United States, as 

well as Canada and Mexico (Roehrig et al. 2013). Various environmental and human-

mediated conditions have facilitated the recurring, endemic, and seasonal 

intensification of WNV activity within the United States (Andreadis et al. 2012).  

 

Epidemiology and the WNV Transmission Cycle in North America 

Emergence of WNV occurs when and where the natural reservoir hosts, 

populations of the arthropod vector, and humans are all in close proximity. In North 

America this occurs most frequently in suburban environments (Rochlin et al. 2011). 

Suburban landscapes (defined as geographic regions containing a large number of 

single-family homes that often have a yard in close proximity to wooded or natural 

areas) are a preferred environment for many passerine bird species, which act as 

natural reservoirs of WNV (McLean et al. 2001; Reisen et al. 2005; Simpson et al. 

2011; Petersen et al. 2013). One such species, the American robin (Turdus 

migratorius), is considered to be one of the most important amplifying hosts of WNV 
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(Hamer et al. 2009). The American robin acts as a super-spreader of the virus, 

disproportionately infecting more secondary contacts/mosquito-vectors than other 

avian hosts (Komar et al. 2003; Kilpatrick et al. 2006; Petersen et al. 2013). 

Additionally, unlike other passerine species, American robins do not display 

defensive behaviors against mosquito feeding (Darbro et al. 2007). Multiple studies 

analyzing the blood meal contents of wild caught North American female Culex 

mosquitoes revealed the preferred avian host of the species to be American Robins 

(Molaei et al. 2006; Hamer et al. 2009; Simpson et al. 2009).   

WNV is naturally maintained in an enzootic cycle between birds and 

ornithophilic mosquitoes (those that have specialized host preference for avian 

species), such as Cx. pipiens form pipiens mosquitoes (Turell et al. 2001; Hamer et al. 

2009). However, epizootic disease transmission (i.e. WNV spillover into human 

populations from non-human hosts) is thought to be facilitated by the hybrid progeny 

of the two Cx. pipiens forms (Kothera et al. 2013). Hybrids of the two Cx. pipiens 

bioforms are thought to lose their specialized preferences and are then capable and 

willing to bite avian and human hosts (Kilpatrick et al. 2006). Considering the 

endemic transmission of WNV, it is crucial to have a better understanding of the 

behaviors and population dynamics of vectors like Cx. pipiens in North-Eastern 

America.  

 

Future Prospects for Vector-Borne Disease Management 

Research on arthropod vectors is crucial for development of control measures 

that target transmission by vector species (Klempner et al. 2007; Leitner et al. 2015). 
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Additionally, as the rate of insecticidal resistance increases in vector species 

(Brogdon et al. 1998), new intervention strategies must be developed. Potentially 

fruitful areas of research within this system include the development of novel tools 

for genetic manipulation of arthropod vectors and other biological control 

mechanisms that could reduce vector-borne pathogen transmission (James et al. 2005; 

Hoffman et al. 2011; Kyrou et al. 2018). As a preventative measure, empirically-

based models capable of accurately predicting future outbreaks in human populations 

should be developed and refined. 

As chemosensation is the primary means by which female mosquitoes locate 

human hosts and transmit disease, identification of natural or synthetic odorants that 

could modulate mosquito chemosensory function could provide a novel approach to 

preventing vector borne disease transmission (Chen et al. 2012; Jones et al. 2012). 

This can be accomplished by identifying compounds capable of activating olfactory 

pathways associated with repellency and/ or inhibiting those responsible for 

attraction. Ultimately, this work could be used to develop new repellents or better 

odor baits for traps used to reduce mosquito populations in the wild. To develop these 

tools, elucidating the physiological mechanisms and molecular basis underlying 

mosquito host preference chemosensation is essential. 
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Figures: Chapter 1 

 

 

 

Figure 1: Ovarian development one to four days post adult emergence in 

anautogenous and autogenous Cx. pipiens females. Panels A-D depict ovarian 

development in anautogenous females (form pipiens) in which follicles remain in 

resting stage (Christopher’s Stages - IIb, Mullen et al. 2019) until a blood meal is 

taken. Panels E-H depict autogenous ovarian development (form molestus). 

Autogenous females utilize metabolic reserves obtained during larval development to 

provision an initial egg raft in the absence of a blood meal. Panels I-L demonstrate 

ovarian development in autogenous females is occurs in the absence of mating where 

eggs produced would be non-viable. 
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Chapter 2: Genetic Ancestry and Host Preference in 

Behaviorally-Divergent, North American Culex pipiens 

Populations      

Abstract 

 Culex pipiens (Diptera: Culicidae) is a mosquito species with two 

morphologically identical, but behaviorally divergent forms. Progeny of these forms 

can hybridize in nature, and the host-seeking behaviors of parents and hybrid progeny 

have the potential to impact WNV transmission. Genetic approaches to distinguish 

between identical parents and progeny are often used to predict host preference. 

Therefore, I characterized behavioral and genetic variation across eight Cx. pipiens 

populations collected from either above-ground (AG) or below-ground (BG) breeding 

sites throughout the USA. For each population, I examined the molestus, pipiens, and 

heterozygous genotype frequencies at the CQ11 locus. Host choice landing assays 

were used to examine variation in host preference (towards human and avian hosts) 

for these same eight populations. Three of the five AG populations had hybrid 

ancestry, whereas BG populations did not. Host choice landing assays confirmed that 

four AG Cx. pipiens populations were predominantly avian-seeking, while the fifth 

showed no clear preference for either host. All three BG populations tested were 

biased toward mammal feeding, but the strength of the bias varied by population. 

Because of the extensive use of these rapid molecular assays to characterize Cx. 

populations as a means of inferring populations feeding behaviors in the field, I tested 

whether results of these assays could predict the host preference. Genetic ancestry as 



 

 

18 

 

determined by the CQ11 locus was not predictive of a populations host preference, as 

determined by our behavioral assay. 

 

Introduction 

Morphologically identical vector species pose significant challenges for 

management when members are of differing epidemiologic importance (Besansky et 

al. 1999).  The ability to distinguish between morphologically identical species allows 

for elucidation of the unique behavior and ecology of each vector species, as well as 

complex interactions among species.  Furthermore, accurate measurement of vectorial 

capacity and development of targeted control measures rely upon the ability to 

discriminate one vector species from another.  The Anopheles gambiae complex, with 

eight morphologically indistinguishable members all capable of transmitting human 

malaria, highlight the importance of species discrimination (White et al. 2011; 

Coetzee et al. 2013). Only An. gambiae (s.s) and An. arabiensis are considered the 

primary vectors of malaria; in contrast to other members of this complex, both species 

are anthropophilic and capable of foraging (and resting) in indoor environments 

(Coluzzi et al. 1979; Coetzee et al. 2004). Consequently, historic malaria intervention 

focused vector control efforts inside homes (through use of pyrethroid-coated bed 

nets and indoor pesticide sprays), specifically targeting the endophagic behavior of 

these primary vector species (WHO et al. 1999; Bhatt et al. 2015).  Over the past 

three and a half decades, molecular approaches have been developed to identify 

cryptic species and forms present in a number of morphologically identical vector 
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species complexes (Hillis et al. 1987; Collins et al. 1987, 1988; Walton et al. 1999; 

Talbalaghi et al. 2006, Müller et al. 2013). 

The Pipiens Assemblage is composed of several globally important vector 

species capable of transmitting pathogens, including helminths that cause lymphatic 

filariasis and dirofilaria, as well as St. Louis-, North American- and Eastern Equine- 

Encephalitis, and West Nile Virus (WNV) (Smith et al. 2004; Farajollahi et al. 2011; 

Vezzani et al. 2011; Thiemann et al. 2012). Members of the Pipiens Assemblage are 

morphologically identical, but each possesses distinct physiological traits, ecologies, 

(such as the ability to diapause, autogeny, habitat selection, seasonality, and host 

preference) and vectorial capacities (Vinogradova et al. 2003; Ciota et al. 2013). 

Within the United States, the Pipiens Assemblage is composed of the two species: Cx. 

pipiens (with two bioforms, form pipiens and form molestus) and Cx. 

quinquefasciatus. Specifically, these two species are implicated in the ‘newly’ 

endemic transmission of WNV in the continental United States (Laniciotti et al. 1999; 

Kilpatrick et al. 2006; Farajollahi et al. 2011). WNV, in contrast to malaria, is 

enzootically transmitted among passerine birds, with humans serving as incidental 

hosts (McLean et al. 2001; Simpson et al. 2011; Petersen et al. 2013). Therefore, 

epizootic transmission of WNV to a human host requires mosquito vectors to be 

capable and willing to feed on multiple vertebrate hosts.   

Within the species Cx. pipiens, form pipiens are primarily avian-seeking, 

while form molestus are primarily mammalian and human-seeking (Spielman et al. 

1967; Kent et al. 2007; Simpson et al. 2009; Harbach et al. 2012; Ciota et al. 2015; 

Fritz et al. 2015). The two bioforms readily interbreed with many stable hybrid 
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populations documented around major human urban centers, such as Boston, MA, 

New York City, NY, and Chicago, IL (Spielman et al. 1957; Huang et al. 2008; 

Mutebi et al 2009; Kothera et al. 2010; Fritz et al. 2015). Progeny of matings between 

the pipiens and molestus bioforms indiscriminately feed on mammalian and avian 

hosts, a behavior thought to contribute to the epizootic transmission of WNV to 

humans in North America (Fonseca et al. 2004; Kilpatrick et al. 2007; Huang et al. 

2009; Kothera et al. 2010; Farajollahi et al. 2011; Fritz et al. 2015). Cx. pipiens will 

also hybridize with Cx. quinquefasciatus, a species with relatively indiscriminate 

blood feeding preferences, where their geographical distributions overlap (Smith et al. 

2004; Kilpatrick et al. 2005; Kothera et al. 2009; Harbach et al. 2012; Ciota et al. 

2013; Cardo et al. 2016). However, it is the ongoing hybridization between the two 

bioforms (rather than between Cx. pipiens and Cx. quinquefasciatus) that is thought to 

facilitate the endemic occurrence of WNV outbreaks unique to this continent 

(Kothera et al. 2010). Thus, it is imperative that Culex populations with pipiens-

molestus hybrid ancestry are accurately identified and targeted for control efforts, as 

they have the potential to increase the epizootic transmission of diseases like WNV to 

humans.   

Limited morphological divergence in the Pipiens Assemblage led to 

development of a pair of molecular assays capable of distinguishing between 

members (Smith et al. 2004, Bahnck et al. 2006). The first is a polymerase chain 

reaction (PCR) based assay that exploits Culex species-specific polymorphisms in the 

second nuclear intron of the acetylcholinesterase-2 (ACE-2) gene. Member species 

are identified by their unique amplicon size when viewed on an agarose gel (Aspen et 
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al. 2003; Smith et al. 2004; Savage et al. 2007; Farajollahi et al. 2011; Rudolf et al. 

2013). To improve the identification of the two Cx. pipiens bioforms, Bahnck et al. 

sequenced eight microsatellite loci of 18 populations of North American and 

European Cx. pipiens and found that the CQ11 locus was suitable for differentiation 

of the two forms (Bahnck et al. 2006). Thus, this second PCR-based assay, which 

exploits indels in the flanking region of a microsatellite locus, called CQ11, is used to 

discriminate between the two forms of Cx. pipiens (Bahnck et al. 2006; Kent et al. 

2007; Gomes et al. 2009; Reusken et al. 2010; Farajollahi et al. 2011; Rudolf et al. 

2013; Gomes et al. 2013; Osorio et al. 2013; Di Luca et al. 2016). These assays are 

often used to make assumptions about how mosquito populations will behave in the 

environment and what vertebrate hosts they are most likely to seek (Gomes et al. 

2013; Osorio et al. 2013; Di Luca et al. 2016). 

Here, I determined the genetic ancestry of eight North American populations 

of above- and below-ground collected Cx. pipiens using the two PCR-based assays 

targeting the ACE-2 gene and CQ11 locus. I hypothesized that our AG collected Cx. 

pipiens would, at the population level, display a higher frequency of form pipiens 

alleles, while those Cx. pipiens populations initiated from BG habitats would have a 

higher frequency of form molestus alleles. I then quantified the behavioral responses 

of individual females from each of the genotyped Cx. pipiens populations in response 

to human and avian hosts in multi-day host choice assays. Considering the 

epidemiological significance of non-specialized feeding behaviors and epizootic 

disease transmission, I also assessed the propensity for individual mosquitoes to 

switch between either human or avian hosts over multi-day testing. I hypothesized 
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that populations with higher frequency of pipiens alleles at the CQ11 locus would 

more readily seek avian hosts, while populations with higher frequency of molestus 

alleles would seek human/mammalian hosts. Lastly, I assessed whether genetic 

ancestry, as determined by the CQ11 assay, is predictive of these populations’ host 

preference, as determined by our behavioral assay.  

 

Materials and Methods  

Cx. pipiens - Test populations: Eight North American Cx. pipiens populations 

derived from either above-ground (AG) or below-ground (BG) breeding sites were 

used. Five populations were collected from AG habitats and were initiated from 

diapausing adults collected from AG hibernacula or as egg rafts collected from AG 

breeding sites. These AG populations were collected from three different North 

American metropolitan areas: Chicago, IL (n = 3), Laurel, MD (n = 1), and New York 

City, NY (n = 1).  

Three populations were collected from BG breeding sites. A single BG 

population from California was derived from wild-caught females that were then 

blood-fed to initiate a laboratory colony. The remaining two BG populations were 

derived from eggs, larvae, and adults captured in a single collection event at a BG 

breeding site in Calumet, IL (Mutebi et al. 2009).  Progeny from that single collection 

were either: 1) reared at Michigan State University and were historically offered a 

blood meal (see Fritz et al. 2015, hereafter CAL1), or 2) maintained at the Centers for 

Disease Control in Fort Collins, CO and reared without blood-feeding (hereafter 

CAL2).  All mosquito populations were reared identically apart from their blood-
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feeding regime; AG populations were anautogenous and required blood-feeding for 

egg production. Therefore, they were fed 9 parts Na-heparinated goose blood 

sweetened with 1 part 50% sucrose solution twice per generation to support egg 

production. BG populations were autogenous and did not require blood-feeding for 

egg production, CAL1 has not been offered a blood meal since 2016. BG colonies 

were maintained using autogenous egg rafts produced in the first gonotrophic cycle.   

Determination of Genetic Ancestry: Thirty 1-3 week old females from each 

population were randomly selected from colony cages for genotyping. Mosquitoes 

were euthanized in a -80
o
C freezer for five minutes. Dissection and removal of the 

abdomen took place under an Olympus stereoscopic microscope (model SZ61) on a 

small petri dish filled with dry ice to prevent DNA degradation. A Zymo ZR 

Genomic DNA Tissue Miniprep Kit (Zymo Research, Irvine, CA) was then used to 

isolate genomic DNA from the head and thorax only. The abdomens of all 

mosquitoes were removed to prevent genomic DNA from sperm, stored in mated 

females’ spermatheca, from being detected by these molecular assays (Tripet et al. 

2001). To determine pipiens/quinquefasciatus species ancestry, amplification of the 

second intron of the acetylcholinesterase-2 (ACE-2) gene was accomplished using 

B1246Rs, ACEpip, and ACEquin primers (Table 2) (Smith et al. 2004). 

Amplification of the microsatellite CQ11, to determine pipiens/molestus form 

ancestry, was carried out using CQ11F2, pipCQ11R, and molCQ11R primers (Table 

2) (Bahnck et al. 2006). Following PCR, the ACE-2 amplicons were electrophoresed 

on a 2% agarose gel for 45 to 55 minutes at 90V. For the CQ11 assay, amplicons 

were run on a 3.5% agarose gel for 65 minutes at 90V, where the higher agarose 
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concentration was selected for better resolution between the two CQ11 bioform 

amplicons of relatively similar size (18-26 bp difference).  

Both reactions followed the original protocols (Smith et al. 2004; Bahnck et 

al. 2006) with the following exceptions: GoTaq (ProMega Corp., Madison, WI, 

U.S.A.) was used for amplification and no bovine serum albumin (BSA) was added to 

the reaction. All samples were run alongside BenchTop 1kb DNA Ladder (Promega). 

Two controls were included with each run: 1) a negative control from the extraction 

process, in which DNA isolation was run in the absence of a mosquito carcass; and 2) 

a PCR control, in which no sample DNA was included.   

Genetic Ancestry Data Analysis:  I calculated the species- and form-specific 

allele frequencies at each locus for eight Cx. pipiens populations. Additionally, the 

mean allele frequency for all five AG populations was compared with the mean allele 

frequency of all three BG populations using a Fisher’s exact test (McDonald et al. 

2009; Ostrowski et al. 2016).  To quantify change in allele frequency over time, I 

analyzed the three AG populations our lab had initiated (N-IL, E-IL, MD), for which 

we had DNA isolated from individuals from G0 (Table 4). The number of individuals 

assessed from G0 was limited by the number of samples successfully recovered at the 

time of analysis. The total number of individuals for which DNA was available from 

the original G0 populations were as follows: N-IL (n=28), E-IL (n=20), and MD 

(n=7) (unpublished data - Josh Yeroshefsky, 2017). I used a Fisher’s Exact Test to 

compare observed allele frequencies during the time of assessment (G20 for N-IL, 

G19 for E-IL, and G8 for MD) with those found at the populations’ initiation (G0).  
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Determination of Host Preference: After determining the genetic ancestries 

of the eight AG and BG collected Cx. pipiens populations at the ACE-2 and CQ11 

loci, I assessed the behavioral responses of individual females to either an avian or 

human host. Females from AG populations were allowed to mate and age for 2 

weeks, while BG populations were aged for 3 weeks prior to testing. The BG 

populations were autogenous, and postponed blood-feeding until the completion of a 

first bout of autogenous egg laying at 4–7 days post-eclosion (Spielman et al. 1971, 

Klowden et al. 1979; Fritz et al. 2015). Thus, the timing of physiological readiness for 

blood-feeding was similar in the AG and BG populations despite their difference in 

age. Mosquitoes were offered a 10% sucrose solution and an ovipositional resource 

ad libitum, until they were collected, no more than 1 hour prior to testing. 

The use of animal subjects was approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Maryland (UMD) in June 2018 

(IACUC permit #1094335). In accordance with the UMD IACUC, as well as the 

UMD Animal Research Facility policies, mosquitoes were reared in the UMD 

Entomology Department and transported to the Animal Research Facility for 

behavioral testing. Additionally, to address institutional biosafety concerns, 

mosquitoes were not permitted to blood-feed upon human or avian hosts. 

Host Landing Assay: To quantify the extent of variation in host preference 

across multiple AG and BG populations of Cx. pipiens, I used a multi-day landing 

assay described by Fritz et al. (2015).  The behavioral arena contained two white 

cylindrical platforms placed on opposite sides (Figure 1).  An unrestrained 1-3 week 

old chicken (Gallus domesticus) rested on one platform, while the unwashed hand of 
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a 24-year-old white, female investigator rested on the other. Host were selected as 

they are representative of the two most commonly fed upon vertebrate host classes 

(avian and mammalian) for Cx. pipiens (Spielman et al. 1957; Harbach et al. 2012; 

Savage et al. 2012). White leghorn chicks were chosen because 1) as the breed is 

considered docile, 2) chicks (aged 1-3 weeks) are size-matched to the investigator’s 

hand, 3) rested quietly and even fell asleep during testing, such that they never 

required restrained or anesthesia, and 4) there is past precedent of their use in both 

behavioral studies using Culex sp. and epidemiological surveillance work (Darbro et 

al. 2007; Fritz et al. 2015).   

A 50g block of dry ice was placed under each platform, which had a small 

hole (d=1cm) at the top, and the investigator’s breath was piped away from the 

arena.  This allowed CO2 to be released into the arena at a mean hourly release rate of 

ca. 258 mL/min, which falls within the acceptable range for host attraction for both 

anthropophilic and ornithophilic mosquito species (Reeves et al. 1953; Fritz et al. 

2015).  Host positions in the cage were alternated between testing days, and the 

investigator also alternated the hand (i.e. right or left) offered each day.  Multiple 

chicks (n = 62) were used throughout the course of the experiment, but individual 

mosquitoes were always exposed to the same chick across testing days.   

At the time of assessment, five females of a single population were collected 

in 20 mL glass scintillation vials by a gloved hand, and held for no more than one 

hour. Upon release from their scintillation vials into the arena, females were 

monitored by at least two observers for 15 min or until all landed and tapped a host 

with the labellum. After landing but prior to blood-feeding, female mosquitoes were 
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removed from the arena by mouth aspirator. Responders were held individually in 

scintillation vials, where they were provided a 10% sucrose solution, and tested twice 

more over the course of the three-day period.     

Host Preference Data Analysis: Data from the multi-day host choice assay 

were analyzed in R (A language and environment for statistical Computing; R 

Foundation for Statistical Computing, Vienna, Austria) Version 3.3.2 (2016-10-31). 

To investigate variation in host preference across our eight AG and BG pipiens 

populations, a mixed logistic regression model with a binomial error structure was 

used. We assessed if three types of host response varied according to mosquito 

population: 1.) acceptance of either host during day 1, and 2.) selection/preference for 

a human host, and 3.) probability to alternate host across multi-day testing. 

The model was constructed using the R package lme4 (v. 1.1-14; Bates et al. 

2015) and was fit to our multi-day, host choice dataset. In order to find which 

response variables significantly impacted the construction of the model, minimal 

adequate models were fit by sequentially eliminating model terms using likelihood 

ratio tests conducted using the lmtest package (v. 0.9-35; Zeileis et al. 2002). Two 

fixed effects were initially considered: the ‘population’ from which the mosquito 

originated, and the ‘day’ corresponding to days 1-3 of multi-day testing. A single 

random effect of the ‘chick host’ was also included to account for interindividual 

variation in attractiveness across avian hosts used throughout the assay (i.e. some 

chickens more attractive than others) (Lindsay et al. 1993; Qui et al. 2006; Molaei et 

al. 2006; Simpson et al. 2009; Hamer et al. 2009). When the two fixed effects were 

independently considered, only ‘population,’ not the ‘day’ of assessment, 
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significantly impacted all three measured host response rates. Our full model 

examined the response by the i
th

 mosquito to the investigator’s hand and/or the j
th

 

chick: 

Full model to examine individual (i) host response: 

Pr[yi=1] = logit
−1

(β0ij + β1Populationij  + u0ij) 

For 1 < i < n and 1 < j < m 

where u0 ∼ N(0, "2j) represents the random effect of chick. 

 

This model was fit to three datasets, independently. 1) To assess the overall response 

rate of the populations to either host (i.e. human or avian) on the first day of our 

assessment, females that selected a host were assigned a value of 1, while ‘no 

response’ was given a value of 0. 2) To assess variation in human host preference, 

data for individuals that failed to respond on multiple days were removed from the 

dataset, and host choice (i.e. chick vs. human) was examined for individuals across 

test dates.  For this model, a host selection of the ‘human’ host was given a value of 

1, and selection of a ‘chick’ host a 0. Additionally, because host response was 

measured across the same individuals over the multi-day testing period, ‘day’ was 

also included as a second random effect in this model. 3) To investigate the 

probability that a mosquito would change its host selection across test dates (i.e. 

deviate from the initial host choice made on day 1), individuals that accepted both 

hosts during the 3-day test period were scored as 1, while mosquitoes that accepted 

the same host type across test dates were scored as 0. Additionally, for each 

population, the observed probability of each of the three measured responses was 

calculated, as well as the corresponding non-parametric bootstrapped 95% CIs (n = 

5000) (Fritz et al 2015). 
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 Assessing if genetic ancestry is predictive of host preference: To measure the 

strength of association between genetic ancestry (specifically, frequency of molestus 

alleles at the population level) and observed host preference (frequency of females 

seeking a human host) across all eight populations a Kendall’s Tau correlation test 

was used (Hipel et al. 1994). 

 

 

Results  

Determination of Genetic Ancestry: There was no evidence of Cx. 

quinquefasciatus ancestry in any of the eight populations tested. Every individual 

produced amplicons during gel electrophoresis and was homozygous for the pipiens 

allele at the ACE-2 locus, indicating all eight populations were Cx. pipiens, rather 

than pipiens - quinquefasciatus hybrids (data not shown).  

At the time of individual colony initiation, the three AG populations initiated 

by our lab, E-IL, N-IL and MD, were independently found to be fixed for the pipiens 

allele at the ACE-2 locus.  However, a single BG population, CAL2, which had been 

previously maintained at the CDC before our lab acquired the population, showed 

evidence of Cx. quinquefasciatus introgression in 2017 in the first generation reared 

by our lab (Table 3).  One individual was found to be homozygous for the 

quinquefasciatus allele, one individual was heterozygous, while the other five 

individuals were homozygous for the pipiens allele. A single individual did not 

produce an amplicon using ACE-2 primers.  However, when CAL2 individuals were 

genotyped for this work, after ~ 1.5 years later in colony, all 30 individuals tested 

were fixed for the species pipiens allele at the ACE2 locus.  



 

 

30 

 

 Next, I assessed genetic ancestry at the CQ11 locus. Genotype calls were 

made for individual females of each population and allele frequencies were calculated 

to determine the extent our populations (if any) were the product of hybridization 

between the pipiens and molestus forms (Table 3).  Interestingly, out of all 

populations tested, only a single individual from the AG population initiated from 

Northfield, IL was heterozygous at the CQ11 locus (Table 4). All other individuals 

were homozygous at the CQ11 locus, regardless of their determined genetic ancestry.  

Although DNA was isolated for 30 individuals from each population, not all 

individuals produced amplicons at the CQ11 locus. The n-values (Table 4) indicate 

the number of females out of the 30 tested that had successful DNA amplification 

using CQ11 primers.  Overall amplification at the CQ11 locus as a whole was 

observed to be lower across the five AG populations (119/150 = 79%), than in their 

BG counterparts (87/90 = 97%).  

Genetic Ancestry Data Analysis: Allele frequencies for the eight AG and BG 

populations is depicted in Figure 2. For all three BG populations, the form molestus 

allele was fixed at the CQ11 locus. In contrast, there was significant variation in 

genetic ancestry across the five AG populations (d.f. = 4; χ2 = 62.16; p = 1.02e-12). 

Only a single AG population from New York was fixed for the form pipiens allele. 

Three of the five AG collected populations (E-IL, N-IL, MD) showed evidence of 

hybrid ancestry, where the frequencies of the form molestus allele ranged from 0.61 - 

0.93 (Table 3). Additionally, a single AG population from Chicago, IL was fixed for 

the form molestus allele. This is a surprising result considering the population’s 

historical collection from an AG breeding-habitats and anautogeny observed in 
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colony; autogenous egg rafts have never been observed while this population has 

been cultured at the University of Maryland.  Genetic ancestry, characterized at the 

CQ11 locus, differed significantly between our AG and BG populations (p < 2.2e-

16).  

 Because of the unexpectedly high form molestus ancestry observed in the AG 

populations, I wanted to ensure no cross contamination had occurred between the AG 

and BG populations during their time in culture at the University of Maryland (Table 

5). No significant change in allele frequency over time was observed for the N-IL and 

E-IL populations (p = 0.6529 and p = 0.5152, respectively). In contrast, a significant 

change in allele frequency was observed in the MD population (p < 6.994e-05) where 

the frequency of molestus alleles increased over time (Table 5).  However, the small 

G0 sample size likely did not capture genetic variation at the population level at this 

time point, and thus may not accurately reflect their initial allele frequency.    

Host Preference Data Analysis: In total, 686 AG and 377 BG individuals 

were assessed on the initial day of testing. 348 AG (51%) and 221 BG (59%) 

individuals accepted a host on day 1 (either human or avian) and were maintained for 

multi-day testing. Mean overall response rate (2.5%, 97.5% CI; n=5000) to any host 

on day 1 varied according to population (d.f. = 8; χ2 = 33.57; p < 4.7e-5; Figure 3A). 

For seven of the eight populations, at least half of the individuals responded to 

a host on day 1 within the 15 minute trial period.  In the three BG populations, 50% 

(39%, 61%), 57% (48%, 65%), and 65% (58%, 72%) of females from CA, CAL2, 

and CAL1 selected a vertebrate host on day 1. In four of the AG populations, N-IL, 

E-IL, C-IL, and NY, individuals accepted a host 49% (40%, 58%), 58% (49%, 67%), 
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73% (67%, 81%), and 76% (67%, 84%) of the time, respectively. Individuals 

belonging to the AG population from Maryland displayed the lowest host acceptance 

in our assay, with only 28% (22%, 34%) of those tested selecting a host on day 1.  

Host preference varied significantly among our AG and BG populations (d.f. 

= 8; χ2 = 147.3; p < 2.2e-16) (Figure 3, Panel B). All three BG populations were 

biased toward mammal feeding, but the strength of the bias varied by population. BG 

populations accepted a human host 68% (55%, 81%), 69% (57%, 80%), and 84% 

(77%, 91%) of the time, for populations CA, CAL2, and CAL1.  Four of the five AG 

Cx. pipiens populations were predominantly avian-seeking with 85% or more of 

responding females selecting the chicken host.  Avian response rates were 86% (78%, 

93%), 86% (77%, 93%), 88% (80%, 95%), and 88% (81%, 96%) for AG populations 

E-IL, C-IL, MD, and N-IL, respectively. The strength of the bias did not significantly 

differ between these four populations (d.f. = 3; χ2 = 3.9274; p = 0.2694). Individuals 

belonging to the AG population from New York showed no clear host preference, 

however, selecting an avian host only 43% (32%, 54%) of the time.  

The probability of alternating hosts at least once during multi-day assessment 

differed significantly by population (d.f. = 8; χ2 = 28.6; p < 0.00038). In the three 

human-seeking BG populations, the probabilities (2.5%, 97.5% CIs) to switch hosts 

were 0.217 (0.117, 0.317), 0.3 (0.0, 0.6), 0.452 (0.258, 0.613) for CAL1, CA, and 

CAL2. In the four avian-preferring AG populations (MD, N-IL, E-IL, C-IL - see 

above) observed probabilities to switch hosts (in this case, to the human host) were 

significantly lower: 0.0 (0.0, 0.0), 0.056 (0.0, 0.167), 0.125 (0.031, 0.250) (Figure 

4).  The single AG population from NY with indiscriminate host-acceptance 
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behaviors had the highest observed probability of switching hosts across test days, 

0.514 (0.351, 0.676). 

Assessing if genetic ancestry is predictive of host preference: Despite the 

widespread use of the CQ11 locus to characterize populations of Cx. pipiens (Bahnck 

et al. 2006; Di Luca et al. 2016; Kent et al. 2007; Rudolf et al. 2013; Gomes et al. 

2009; Gomes et al. 2013; Osorio et al. 2013; Reusken et al. 2010; Farajollahi et al. 

2011), genetic ancestry as determined by this assay was not predictive of these 

populations’ host preference (tau = 0.4029115, p = 0.184) (Figure 5).  

 

 

Discussion  

In our molecular assays to determine genetic ancestry, we observed a varying 

degree of amplification among populations at the CQ11 locus. A single AG 

population from NY only had 14 individuals that produced amplicons at the CQ11 

locus, while DNA from the same 30 individuals with the ACE-2 primers produced 

amplicons for every individual. This indicates that high quality DNA was used for the 

CQ11 PCR and poor DNA quality was unlikely to cause the low observed 

amplification. Perhaps some individuals from the NY population have a mutation 

within the region of the microsatellite where the CQ11 primers bind. Mutations in the 

primer region would inhibit PCR amplification of this gene marker, making it appear 

as though an individual has lost diagnostic bands. It is also possible that backcrossing 

events resulted in recombination and independent assortment of this gene marker in 

hybrid individuals, which could also cause the loss of diagnostic bands at the CQ11 

locus. Because of these challenges, I would propose examining a larger number of 
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loci when characterizing Cx. pipiens populations in the future, especially when 

genotyping Cx. pipiens populations collected from regions with historically-

documented hybridization between the forms.  

According to their genotypes at the CQ11 locus, all three BG populations 

assessed were fixed for the form molestus allele. Therefore, it does not appear our BG 

populations experienced historical hybridization with local AG populations prior to 

colony establishment. In contrast, we observed a significant amount of genetic 

variation at the CQ11 locus across the five AG populations. Only a single AG 

population was fixed for the form pipiens allele, three populations showed evidence 

of hybrid ancestry, and one AG population was fixed for the form molestus allele. 

Thus, from the results of this single gene marker, it is likely that four out of five of 

the AG populations experienced historical hybridization with local below-ground 

populations before they were established in laboratory culture. Similar patterns of 

genetic admixture have been observed in above-ground, field-collected North 

American populations of Cx. pipiens (Kent et al. 2007; Huang et al. 2009; Gomes et 

al. 2009).  

 Natural mating barriers between the forms could influence the direction of 

gene flow between them (Spielman et al. 1967; Fonseca et al. 2004). The significant 

amount of molestus ancestry observed in the AG populations may be explained by the 

way AG and BG populations encounter one another under natural conditions. Form 

molestus mosquitoes are often found as populations occupying subway/metro systems 

or underground sumps (Bryne et al. 1999; Mutebi et al. 2009). The isolated 

occurrence of BG populations may inhibit AG individuals from locating them under 



 

 

35 

 

natural conditions. It is more likely that BG individuals will escape their subterranean 

habitats and mate with AG conspecifics. Even if form pipiens mosquitoes are able to 

locate underground populations of form molestus mosquitoes, form pipiens males 

prefer to mate in large above-ground swarms and would likely be unwilling to breed 

in the confined environments where form molestus females would be found (Mullen 

et al. 2009; Harbach et al. 2012). Thus, we may conclude that gene flow is relatively 

unidirectional between the two forms, a conclusion supported by others studying 

North American Cx. pipiens populations (Yurchenko et al. 2019). It is challenging to 

make any meaningful conclusions from a single gene marker, however.  

 Rearing practices may contribute to the increased frequency of molestus 

ancestry in the AG populations. Form molestus populations adapt quickly to 

laboratory conditions, given that they are naturally found in confined, underground 

habitats (Harbach et al. 2012). True form pipiens populations are more difficult to 

maintain as laboratory colonies, due to the eurogamous mating preference of males 

(Spielman et al. 1967). Thus, it is possible that by maintaining AG populations in 

confined laboratory cages we caused a genetic bottleneck in the population, 

unknowingly selecting for genes associated with living in confined spaces (like their 

form molestus counterparts). If these genes are closely associated with the CQ11 

locus, we may expect to see an increase in the frequency of form molestus alleles for 

these AG populations as they adapt to laboratory conditions.  

The mosquito populations were found to significantly differ from one another 

in their willingness to respond to a vertebrate host during behavioral testing. This 

result was expected as willingness to engage in host-seeking behaviors in an indoor 
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setting is considered a highly variable trait in mosquitoes (Takken et al. 2013).  The 

lowest initial response rates were found in the AG populations. In similar host choice 

assays, Fritz et al. also reported the lowest overall response rates were observed in 

AG collected Cx. pipiens populations (Fritz et al. 2015). The most recently 

established population from Maryland had the lowest response rate, where only 28% 

of females tested selected a host during preference assessment. It is possible that time 

in culture and adaptation to host-seeking in an indoor environment can influence 

willingness to participate in laboratory assays. 

BG females readily accepted the human host in the host choice test. Response 

rates for the three BG populations to the human host were three to six-fold greater 

than response rates to the chick (Figure 3). Although allele frequencies at the CQ11 

locus revealed mixed ancestry, the majority of the AG populations’ host preferences 

were consistent with those of the pipiens form described elsewhere (Harbach et al. 

1984; Savage et al. 2007).  AG females tended toward avian acceptance; four of the 

five AG populations were predominantly avian-seeking with 85% or more of 

responding females selecting the chicken host.  Similar avian feeding rates in field 

AG populations have been reported (Hamer et al., 2009). Only a single AG 

population from New York was found to indiscriminately feed on the two available 

hosts.  Populations that exhibit non-specialized feeding behaviors in combination 

with the propensity for these mosquitoes to feed on multiple hosts during their 

lifetime would provide the conditions necessary for epizootic transmission and WNV 

spillover into human populations in nature.  
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Figure 5 represents a composite figure where allele frequency data (from 

Figure 2) has been overlaid on the results of our host-preference assay (Figure 3B). If 

we expect genetic ancestry to be predictive of host preference we would expect the 

bars of the overlaid figures to face the same direction. This is the case with our three 

BG populations, all three of which are fixed for the form molestus allele and display 

strong preference for human hosts. However, genetic ancestry at the CQ11 locus was 

not predictive of host preference in the AG populations. Although four of the five AG 

populations demonstrated a strong preference for avian hosts, frequency of form 

pipiens alleles varied greatly across the populations collected from above-ground 

habitats. Additionally, the single AG population from New York that was fixed for 

form pipiens allele at the CQ11 locus was the only population to display 

indiscriminate feeding behaviors. Although this single gene marker is not predictive 

of a population’s host preference, the assay can still be used to assess whether a Cx. 

pipiens population has experienced historical hybridization.  

In conclusion, understanding the population dynamics of Cx. pipiens is 

essential for surveillance and control of WNV transmission. Because the two 

bioforms of Cx. pipiens and hybridized populations have different vectorial capacities 

and epidemiologic importance but are morphologically indistinguishable, it is 

essential to develop molecular approaches that can be used to identify them. Genetic 

ancestry as determined by the CQ11 locus was not found to be predictive of observed 

host preference. Thus, future work should be aimed at the identification of the genetic 

basis of host preference for the development of new molecular markers that target 

genes directly affecting phenotypic host preference.  
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Tables: Chapter 2 
Table 1: Collection information for eight study populations of above- and below-ground collected Cx. pipiens, including year of 
population initiation, location of collection, and the size of G0. CAL1 and CAL2 were originally collected by Mutebi et al. 2009. 
 
 Population ID 

Breeding site 
Collection 

Year 
Collection Site 

GPS Coordinates 
Size of G0 

CAL1 (below-ground) 2009 41.6502247, -87.600140 
Calumet Water Reclamation Plant; Chicago, IL 

7000 adults and larvae 

CAL2 (below-ground) 2009 41.6502247, -87.600140 
Calumet Water Reclamation Plant; Chicago, IL 

7000 adults and larvae 

CA (below-ground) 2013 37.904445, -122.653184 
Stinson Beach, California 

 20 females (wild caught 
then blood-fed in lab) 

C-IL (above-ground) 2010 GPS coordinates unknown 
Oak Lawn, IL 

200 diapausing adults 

E-IL (above-ground) 2016 42.029246, -87.70564 
Evanston, IL 

28 egg rafts 

N-IL (above-ground) 2016 42.094783, -87.770168 
Northfield, IL 

31 egg rafts 

MD (above-ground) 2017 39.111413, -76.903376 
Laurel, MD 

80 egg rafts 

NY (above-ground) 2008 40.65874, -73.9862; 40.7900, -73.7808 
New York City, NY 

300 diapausing adults 
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Table 2: CQ11/ACE-2 PCR Assays. Included are the forward and reverse primer 
sequences and expected amplicon length in base pairs. CQ11 is a microsatellite locus 
and contains a varying number of TG repeats across the two forms. During the 
development of the assay, Bahnck et al. reported form molestus mosquitoes had a 
single allele size at the CQ11 locus (fixed at 4 TG repeats). In contrast, form pipiens 
mosquitoes were found to have between 6 and 10 TG repeats in the CQ11 
microsatellite, resulting in the 258-256 bp range in expected amplicon size. However, 
CQ11 assay discriminates between the forms by exploiting differences in insertions 
and deletions around the microsatellite (not the TG repeats in the microsatellite 
itself). 
 
 

Primer Primer Sequence 5’ - 3’ PCR fragment 
length 

Reverse - B1246  TGGAGCCTCCTCTTCACGGC  - 

         Forward - ACEpip CTTTCTTGAATGGCTGTGGCA  274 bp 

         Forward - ACEquin GGAAACAACGACGTATGTACT  610 bp  

Forward - CQ11F2 GATCCTAGCAAGCGAGAAC  - 

          Reverse - pipCQ11R  CCCTCCAGTAAGGTATCAAC  258 - 266 bp  

          Reverse - molCQ11R  CATGTTGAGCTTCGGTGAA 284 bp 
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Table 3: Genetic ancestry at the ACE-2 and CQ11 loci for the BG, CAL2 population 
at the time of colony acquisition. DNA was isolated on 4/27/2017. 
 
 

Sample ID Alleles at CQ11 Alleles at ACE-2 
CAL2_1 mol/mol pip/pip 
CAL2_2 mol/mol pip/pip 
CAL2_3 mol/mol quinq/pip 
CAL2_4 mol/mol pip/pip 
CAL2_5 mol/mol quinq/quinq 
CAL2_6 mol/mol pip/pip 
CAL2_7 mol/mol BLANK 
CAL2_8 mol/mol pip/pip 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

41 
 

 

Table 4: Genetic Ancestry at the CQ11 locus for eight study populations collected from AG and BG habitats. For those populations 
initiated by our lab (not acquired from collaborators) generation number at the time of genotyping was recorded (N-IL, E-IL, MD). 
Generation number was not recorded for the other five populations (C-IL, NY, CA, CAL1, CAL2) as these populations had long been 
in colony before they were acquired from collaborators. (n) indicates the number of individuals of the 30 originally included where 
successful amplification was observed. Genotype calls were made for each individual, as either homozygous for the pipiens allele, 
heterozygous, or homozygous for the molestus allele. Genotype calls were used to calculate allele frequency at the population level. 
 
 

Population Information  Genotype calls  
for Individuals 

  Allele Frequencies at the 
CQ11 locus 

Population Gen. n  pip/pip pip/mol mol/mol   freq. pipiens freq. molestus 

N-IL (AG)  (G20)  24  8 1 15   0.35 0.65 

C-IL (AG) NA 23  0 0 23   0.00 1.00 

E-IL (AG) (G19)  28  11 0 17   0.39 0.61 

MD (AG) (G8) 30  2 0 28   0.07 0.93 

NY (AG) NA 14  14 0 0   1.00 0.00 

CA (BG) NA 28  0 0 28   0.00 1.00 

CAL2 (BG) NA 29  0 0 29   0.00 1.00 

CAL1 (BG) NA 30  0 0 30   0.00 1.00 
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Table 5: Genetic ancestry of three AG populations of Cx. pipiens at the CQ11 locus, assessed at the time of colony initiation and after 
1.5 years in culture. Generation number at the time of genotyping was recorded. (n) is the number of individuals for which we 
observed successful amplification at this locus. Genotype calls were made for each individual, as either homozygous for the form 
pipiens allele, heterozygous, or homozygous for the form molestus allele.  Genotype calls were again used to calculate allele frequency 
at the population level. 
 
 

Population Information   Genotype calls  
for Individuals 

  Allele Frequencies at 
the CQ11 locus 

Population Gen. n  pip/pip pip/mol mol/mol   freq. 
pipiens 

freq. 
molestus 

N-IL (AG) (G0) 20  4 4 12   0.30 0.70 

N-IL (AG) (G20)  24  8 1 15   0.35 0.65 

E-IL (AG) (G0)  19  4 4 11   0.32 0.68 

E-IL (AG) (G19)  28  11 0 17   0.39 0.61 

MD (AG) (G0) 7  4 0 3   0.57 0.43 

MD (AG) (G8) 30  2 0 28  0.07 0.93 
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Figures: Chapter 2 

 

 
 
Figure 1: The behavioral arena used to assess host preferences Cx. pipiens females. 
The arena was constructed as a large, enclosed mesh structure with two platforms on 
opposing sides, one with a 1-3-week old, acclimatized chick and the other supporting 
the arm of the investigator. Two circular ports (12 cm in diameter) were cut into the 
sides of the arena to allow the insertion of hosts. Ports were covered in mesh sleeves 
to prevent mosquito escape. To control for the potentially confounding effects of 
CO2, a 50g block of dry ice was placed under each platform. Platforms had a small 
hole (d=1cm) at the top to allow for a steady stream of CO2 throughout the trials. 
During testing, the investigator’s breath was piped away from the arena, and dry ice 
was replaced hourly.  
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Figure 2: Allele Frequency at the CQ11 locus for AG and BG populations of Cx. pipiens. The n-values indicate the number of alleles 
(2 per individual) that were successfully amplified and used to make genotype calls.   
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Figure 3: Observed host response rates with 95% confidence intervals (CIs). Panel A depicts the frequency of non-responders on day 
1, where n = total number of mosquitoes assessed. Panel B depicts the frequency of responders selecting either the human or avian 
host over the multiday testing period, n = number of mosquitoes that selected a host on day 1. 
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Figure 4: Probability of alternating hosts with 95% confidence intervals (CIs); n = number of mosquitoes that selected either host at 
least two times during multiday testing. Grey bars facing the left indicate individuals selecting the same host across multi-day testing, 
while red bars facing the right indicate individuals that selected both hosts across multi-day testing. 
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Figure 5: Genetic ancestry, as determined by the CQ11 locus, is not predictive of observed host preference across Cx. pipiens 
bioforms. Genotypic data is depicted by the lower, thinner and darker bands, while the host preference data are shown with the thicker 
lighter bands.
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Chapter 3: Expression Patterns of Odorant-Binding 

Proteins 2 and 12 in Behaviorally-Divergent Culex pipiens 

 

Abstract 

The spacial and temporal patterning of chemosensory genes has the potential 

to influence odor-mediated behaviors in mosquitoes. I characterized differential gene 

expression patterns for two behaviorally divergent above-ground (AG) and below-

ground (BG) Cx. pipiens populations, which sought avian and human hosts in 

previous laboratory studies.  Based on preliminary RNA-sequencing data, odorant 

binding proteins (OBPs), OBP2 and OBP12, expression patterns were characterized 

to investigate their contributions to the observed differences in host preference 

between populations. Expression was quantified at three time points: 24 hours, 96 

hours, and 168 hours (7 days) post adult eclosion. OBP2 had higher levels of 

expression in the heads of BG females relative to AG females at both 96 and 168 

hours post adult eclosion. OBP12 was more highly expressed in the heads of BG 

females at all three time-points and was upregulated to a greater degree at the 24hr 

and 168hr timepoints. Considering the unique expression patterns of these OBPs over 

time, it is likely OBP2 contributes to the detection of host volatiles in the human-

preferring, BG population, while OBP12 may instead contribute to odor-mediated 

ovipositional behaviors. 
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Introduction 

Female mosquitoes perceive the environment through semiochemicals, which 

they utilize to detect nectar resources, oviposition sites, and vertebrate hosts for a 

blood meal (DeGennaro et al. 2013; Suh et al. 2014; Raji et al. 2019). To influence 

mosquito behavior, volatiles must come in contact with specialized olfactory 

receptors (ORs) located on the dendrites of olfactory receptor neurons present in the 

chemosensory appendages located on the head (Leal et al. 2013). The transport of 

these molecules is assisted by odorant-binding proteins (OBPs), which solubilize 

volatiles and transport them across sensillar lymph to either their designated ORs or 

odor degradation enzymes (Vogt et al. 1981; Xu et al. 2010). OBPs are thought to 

undergo pH dependent conformational change, releasing chaperoned odorants when 

in the presence of negatively charged membranes of ORNs (Wojtasek et al. 1999).  

The first insect OBP was discovered in 1981 as a small pheromone binding 

protein found at high abundance in the antennae of male silkmoths (Antheraea 

polyphemus) (Vogt et al. 1981). Since then, OBPs have been identified and 

characterized in a number of insect taxa, including members of Culicidae. Within 

many insect genomes, OBPs are thought to exist as large, multigenic families (Vieira 

et al. 2011; Leal et al. 2013); the genome of Drosophila melanogaster contains 57 

OBPs (Galindo et al. 2002), Aedes aegypti contains 66 OBPs (Zhou et al. 2008), 

Anopheles gambiae contains 69 OBPs (Vieira et al. 2011), and Culex 

quinquefasciatus contains 109 OBP genes (Pelletier et al. 2009). Although other 

subgroups of OBPs have been described (Hekmat-Scafe et al. 2002), Classical OBPs 

are defined as having 3 primary criteria: small molecular size (molecular weight ~14 
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kDa), an N-terminal peptide sequence, and a ‘classic’ motif of six highly conserved 

cysteine residues (Vogt et al. 1981; Pelletier et al. 2011, Leal et al. 2005).  

OBPs play an important role in host specialization for other insect species. A 

single member of the Drosophila melanogaster species complex (DMSC), D. 

sechellia, has evolved distinct physiological and behavioral adaptations to its 

preferred host plant, Morinda citrifolia (Matsuo et al. 2007). D. sechellia uses 

chemosensation to detect specific odorant volatiles (hexanoic and octanoic acid) 

generated by the plant’s ripe fruit. While D. sechellia is attracted to these compounds, 

other closely related species in the DMSC are repelled (Matsuo et al. 2007). In 2007, 

Matsuo et al. demonstrated that two genes encoding OBPs are directly involved in 

behavioral differences between species. Using P-element mediated targeted 

mutagenesis, Matsuo et al. (2007) generated OBP57d/e knockout D. melanogaster, 

which displayed altered behavioral responses to hexanoic and octanoic acids. In 

oviposition-site preference assays, D. melanogaster Obp57d/eKO flies showed a 

stronger preference for the acids than their wild-type D. melanogaster counterparts 

(Harada et al. 2008). These findings indicated that the normal function of these OBP 

genes is to suppress attraction/behavioral preference for the compounds (Harada et al. 

2008). Additionally, when Obp57d and Obp57e from D. sechellia were introduced 

into D. melanogaster Obp57d/eKO flies, the D. melanogaster Obp57d/eKO flies 

shifted their oviposition site preference to favor higher concentrations of octanoic 

acid as does D. sechellia, confirming the contribution of these genes to specialization 

on M. citrifolia (Matsuo et al. 2007). I postulate that OBPs also play an essential role 
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in the sensitivity of the mosquito chemosensory system and could contribute to 

specialized host-preference. 

The first mosquito OBP was isolated from the antennae of a female Culex 

quinquefasciatus and identified as CquiOBP1 (Ishida et al. 2002). CquiOBP1 was 

demonstrated to bind to mosquito oviposition pheromone (MOP), indole, and 3- 

methylindole, shown previously to influence behavior associated with oviposition 

(Ishida et al. 2002; Pelletier et al. 2010). In electroantennography studies, knockdown 

of CquiOBP1, using RNA interference, resulted in decreased antennal sensitivity to 

MOP but not other experimentally-tested volatiles, which suggests CquiOBP1 is vital 

for the reception of specific odorants (Pelletier et al. 2010). Additionally, when the 

OBP1 ortholog in Anopheles gambiae, AgamOBP1, was knocked down, antennal 

sensitivity to indole and 3-methylindole decreased significantly (Biessmann et al. 

2010).  Together, these findings demonstrate that OBPs are critical for selectivity and 

sensitivity of the mosquito olfactory system, and may be instrumental in detecting 

host-specific volatiles to influence host-seeking behavior.  

Preliminary RNAseq data from our lab revealed 3179 genes were 

differentially expressed in the heads of two behaviorally-divergent populations of Cx. 

pipiens: an avian-seeking, AG collected populations and human-seeking, BG 

collected population. These included genes with known chemosensory function, 

including odorant receptors, ionotropic receptors, gustatory receptors and OBPs. 

OBPs were most frequently detected as differentially expressed between the 

populations. Seventy-two of the 109 Culex OBPs were reliably detected in the heads 

of both populations, where 16 OBPs had increased expression in the BG population, 
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while 14 OBPs were more highly expressed in the AG population. Two of these 

differentially expressed OBP genes, OBP2 and OBP12, were selected for further 

examination (Table 1).    

Expression of many OBPs is regulated by the circadian clock (Rund et al. 

2011, 2013a, 2013b), and shifts in chemosensory gene expression appear to correlate 

with the timing of odor-mediated behaviors, like foraging and host receptivity (Eilerts 

et al. 2018).  Physiological state also plays an important role in fluctuation of 

chemosensory gene expression in female mosquitoes.  For example, transcriptome 

analyses in Ae. aegypti, An. gambiae, and Cx. quinquefasciatus reveal changes in 

overall chemosensory gene expression, including OBPs, pre- and post- a blood meal 

(Fox et al. 2001; Rinker et al. 2013; Matthews et al. 2016; Taparia et al. 2017; Hill et 

al. 2019). After successful acquisition of a blood meal and entry into the gonadotropic 

cycle, an overall reduction in chemosensory gene transcripts and odor sensitivity has 

been observed (Rinker et al. 2013; Matthews et al. 2016; Taparia et al. 2017).  During 

this period, females also undergo a remarkable change in behavior. High activity and 

foraging behaviors associated with host-seeking behaviors are repressed, and gravid 

females seek refugia, reducing activity to facilitate egg maturation (Speilman et al. 

1967; Klowden et al. 1981).  Therefore, odor-mediated behaviors that occur during 

specific times in the female life-cycle are likely to correspond to peaks in expression 

of their underlying chemosensory genes.   Here, I examine expression levels of two 

OBPs, and quantify their changes in expression-level throughout the first 7-9 days of 

adulthood in females.  
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Studies that examine the expression profiles of putative OBPs represent an 

important step toward determining their role in odor perception. Previous work 

demonstrated that OBPs with chemosensory function are exclusively expressed in 

olfactory tissues (Ishida et al. 2002; Pelletier et al. 2010; 2011). Although other OBPs 

and OBP-like proteins have been found expressed in other non-chemosensory tissues, 

their olfactory functions have never been explicitly demonstrated (Leal et al. 2005). 

Since in close sibling species Cx. quinquefasciatus, orthologues of OBP2 and OBP12, 

CquiOBP2 and CquiOBP12, were found to be specifically expressed in the antennae 

(Pelletier et al. 2009; 2011), I hypothesize OBP2 and OBP12 will also have 

chemosensory-tissue specific expression and olfactory function in Cx. pipiens. 

Additionally, since RNA-sequencing work demonstrated these OBPs are 

differentially expressed between our behaviorally divergent Cx. pipiens populations - 

I hypothesize they may contribute to the differences in host preference observed 

between our two mosquito populations. In particular, rather than seeing large 

expression differences between populations immediately after adult eclosion, we may 

expect to see differential expression of both OBPs increase significantly when these 

females would naturally engage in host-seeking and blood-feeding behaviors (around 

7-9 days post eclosion).  

 
 

Materials and Methods 

Mosquitoes: The two populations used for qPCR analysis were an 

anautogenous, avian-seeking, AG population from Evanston, IL and an autogenous, 

mammalian-seeking, BG population (CAL1) from Calumet, IL.  Both populations 
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were used in our preliminary RNA-sequencing study.  OBP expression was examined 

at three timepoints post adult eclosion: 0-24 hours, 72-96 hours, and 168-216h (7-9 

days). Three biological replicates were made for each timepoint assessed, per each 

population. Experimental samples were created by pooling 10x whole heads with 

females of the same age and population origin. All mosquitoes (regardless of age) 

were euthanized between 2 - 4 h after the onset of scotophase, when females are most 

actively engaged in blood-feeding behavior (Fritz et al. 2014). Seven to nine day 

old autogenous females will not bloodfeed until they have laid their first egg raft. 

Therefore, I only collected BG females once the number of egg rafts deposited in the 

provided ovipositional resource equaled the number of females in the cage. 

Additionally, at the time of tissue collection, 7-9 day old BG females were dissected 

to ensure ovaries were in the resting stage of ovarian development, as expected after 

the deposition of the first autogenous egg raft.  

RNA isolation and cDNA synthesis: Whole heads were dissected on a 100 

mm diameter, clear, polystyrene petri dish (Thermo Fisher Scientific, Waltham, MA) 

filled with dry ice to prevent RNA degradation and were stored in 300 ul Trizol at -80 

degree C until RNA isolation. Total RNA was extracted using TRIzol Reagent 

(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions with the 

following exception: the aqueous RNA–containing layer was back-extracted with 

chloroform twice (one more wash than what was required in the original protocol) to 

remove trace amounts of TRIzol components. Residual genomic DNA contamination 

was removed with a Turbo DNA-free kit (Invitrogen, Carlsbad, CA), and final RNA 

yield was assessed using a Nanodrop Lite spectrophotometer (Thermo Fisher 
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Scientific, Waltham, MA).  First-strand cDNAs were synthesized from an input of 

250 ng RNA using iScript cDNA Synthesis Kit (BioRad, Hercules, CA) and a blend 

of oligo(dT) and random hexamer primers. Thermocycler conditions for cDNA 

synthesis followed manufacturer's instructions: 5 min at 25 degrees C, 20 min at 46 

degrees C, 1 min at 95 degrees C. 

Designing Primers for qPCR analysis: In the absence of a published genome 

for Cx. pipiens, cDNA sequences used to design the two OBP primer sets were 

obtained from the published genome assembly of the close relative, Cx. 

quinquefasciatus, accession number: AAWU00000000 (Arensburger et al. 2010). For 

both OBP2 and OBP12, Culex quinquefasciatus cDNA sequences were aligned to a 

preliminary, unpublished assembly of the Culex pipiens genome (made available by 

Dr. Megan Fritz and collaborators). The resulting Cx. pipiens sequence was then used 

for primer design. To examine the OBP expression across time the reference gene 

Appl (Vectorbase: CpipJ2_supercont3.523_299265_309049) was selected, as it has 

been demonstrated to have uniform expression across the two behaviorally divergent 

Cx. pipiens populations (Ling et al. 2011; Alys Jarvela, unpublished).  

Primers for OBP2 and OBP12 were designed with the IDT PrimerQuest Tool, 

according to four criteria: 1.) primers spanned at least one exon-exon junction (to 

distinguish between genomic DNA and cDNA amplification), 2.) primers were 

designed using an annealing temperature between 57oC-59oC  in order to prevent non-

specific amplification, 3.) the last 5 bp of all the primer sequences contained less than 

three G and/or C bases, and 4.) all qPCR amplicons had a length 90-150 bp, 

consistent with qPCR primer standards (Buston et al. 2017). Amplicons for the three 
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primer sets were sequenced to confirm successful amplification and primer specificity 

(Table 2 and Table 3) (Altschul et al. 1990). 

qPCR: qPCR reactions were carried out in a Roche LightCycler 480 Real-

Time qPCR machine using the Luna Universal qPCR Master Mix (New England 

BioLabs) in a final volume of 20 ml.  All PCR reactions were carried out using 40 

cycles and technically replicated three times. Three qPCR controls were included in 

each run of the qRT-PCR experiment: 1) a no template control (NTC), which served 

as a control for nucleic acid cross-contamination of reagents and surfaces and as a 

control for primer-dimer formation when using sybr green dyes; 2) A negative 

reverse transcriptase control (NRT), which served as a control for contamination of 

genomic DNA within the samples, 3) a no amplification control (NAC), which 

omitted the DNA polymerase from the qPCR reaction and assessed background 

fluorescence not associated with PCR product. The NRT control was conducted 

during the cDNA synthesis step immediately prior to qPCR (as cDNAs and not RNAs 

were used in the final qPCR assay).  

Data Analysis: Raw Ct values were analyzed in R (A language and 

environment for statistical Computing; R Foundation for Statistical Computing, 

Vienna, Austria) Version 3.3.2 (2016-10-31). To investigate variation in OBP 

expression across our two behaviorally divergent pipiens populations over time, a 

generalized linear mixed model was used (Steibel et al. 2009). The model was 

constructed using the R package lme4 (v. 1.1-14; Bates et al. 2015) and was fit to the 

raw Ct values determined by Roche LightCycler 480 qPCR Software (which 

generates raw Ct values using the ‘fit points’ method). Three fixed effects were 
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considered: the ‘population’ from which the mosquito originated, and the ‘age’ 

corresponding to 24 hours (1 day), 96 hours (4 days) and 168 hours (7 days) post 

adult eclosion, and the ‘gene’ being assessed. To control for variation between 

replicates of the experiment, a single random effect of the ‘biological replicate’ was 

included.  In order to find which response variables significantly impacted the 

construction of the model, minimal adequate models were fit by sequentially 

eliminating model terms using likelihood ratio tests conducted using the lmtest 

package (v. 0.9-35; Zeileis et al. 2002). Two 2-way interactions were found to be 

significant and were included in the model - the interaction between population*gene 

and the interaction between age*gene. The model was fit to two datasets, 

independently: 1) the raw Ct values for OBP2 and Appl for both populations and 2) 

the raw Ct values for OBP12 and Appl for both populations. For both generalized 

linear mixed models, model estimated Ct values for OBP2 and OBP12 were 

calculated relative to the BG population at 24h for the control gene, Appl (Table 4 - 

7). 

Change in fold expression between populations was analyzed using the ΔΔCt 

method (Livak et al. 2001). Model-estimated Ct values were used for this analysis, 

and expression was normalized using Appl reference gene. To investigate OBP 

expression between populations, at each timepoint, fold changes in expression for the 

BG Cx. pipiens (test sample) were calculated relative to the AG Cx. pipiens 

(calibrator sample) at that time point. Data were transformed using the log base 10 of 

the fold expression change, because the fold changes ranged from (0.24) to 

(1751.29).  
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To compare OBP expression over time within a single population, fold 

changes in expression at each timepoint were calculated relative to the populations’ 

expression at 24 hours. This was conducted for the expression of both OBP2 and 

OBP12 in both the AG and BG populations.  

 

Results 
 
 OBP2 fold expression difference was 0.90 (0.18, 4.69) when calculated for the 

BG population relative to the AG population at 24 hrs post adult eclosion (Table 8; 

Figure 1A).  This indicated no statistically significant differences in expression-level 

between the two forms at this time point. In contrast, OBP2 had significantly higher 

levels of expression in the heads of BG females at both 96 and 168 hrs post adult 

eclosion, at 7.56 (1.30, 43.81) and 437.42 (75.89, 2521.01) fold higher, respectively 

(Table 8; Figure 1A). OBP12 was more highly expressed in the heads of BG females 

relative to the AG females at all three time-points assessed. Interestingly, OBP12 was 

upregulated to a greater degree in the BG females relative to AG females at the 24hr 

and 168hr timepoints (Table 9, Figure 1B). 

Next, expression was examined over time for each OBP within a single 

population, where fold changes in expression at each timepoint were calculated 

relative to that populations’ expression at 24 hours post adult eclosion. For OBP2, no 

change in fold expression over time (either 96 hrs or 168 hrs post eclosion) was 

observed for the AG, avian-seeking Cx. pipiens population (Table 10, Figure 2A). 

However, change in OBP2 fold expression was found to significantly increase 

between the 96hr and 168hr time points in the BG, human-seeking Cx. pipiens 
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population, where fold change in expression was 8.36 (1.44, 48.42) and 483.48 

(83.88, 2786.40) higher, respectively (Table 10, Figure 2A). For OBP12, no change 

was observed among time points for the AG population (Table 11, Figure 2B). In the 

BG population, OBP12 was downregulated at the 96 hr time point, 0.24 (0.05, 1.18), 

relative to its level 24hr post adult eclosion. Additionally, OBP12 was significantly 

upregulated 168hr in the BG population, where it was expressed 103.06 (21.30, 

497.99) fold higher than at 24hr post eclosion (Table 11, Figure 2B).  

 

Discussion 
 

I used qPCR to investigate the expression of OBP2 and OBP12 over time 

between two populations of behaviorally-divergent Cx. pipiens mosquitoes. Although 

we do not know which ligand(s) bind these OBPs in vivo, we investigated the 

expression of these genes to better understand their role in localization and selection 

of a vertebrate host for a blood meal.  

BG females had higher OBP2 expression relative to AG females at the 96hr 

and 168hr time points, with no difference between the two populations at the 24hr 

time point. In the AG, avian-preferring population, OBP2 was reliably detected in the 

heads of these females at each time point assessed, but no change in expression was 

observed over time. Within the BG human-preferring population, OBP2 was most 

highly expressed at 168hrs (or 7 days) post adult eclosion, when these females would 

be actively seeking a host for a blood meal. These results support the role of OBP2 in 

the detection and perception of host volatiles in the human-preferring BG population.  
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In the BG population, OBP2 was more highly expressed 96hrs post eclosion 

relative to its expression at 24 hrs. At this time, most BG autogenous females are 

gravid, have not yet laid their initial egg clutch, and thus would not be engaging in 

host-seeking behaviors. Most studies citing the repression of chemosensory gene 

expression during egg maturation only investigate time points immediately (24hrs - 

72hrs) post the acquisition of a blood meal (Rinker et al. 2013; Matthews et al. 2016; 

Taparia et al. 2017). However, autogenous Cx. pipiens females begin maturation of 

ovarian follicles for egg-laying immediately post adult eclosion (Chapter 1: Figure 1) 

(Spielman et al. 1967). At 96hrs (or 4 days) post eclosion, when ovarian development 

is likely to be or almost complete (Chapter 1: Figure 1; unpublished data), the overall 

repression of chemosensory gene expression is likely to be lifted. This makes sense 

considering these gravid BG females will also be actively seeking out an 

ovipositional resource, necessitating the detection of semiochemicals like MOP, 

indole, and 3-methylindole (Ishida et al. 2002; Pelletier et al. 2010). The increased 

expression of important chemosensory genes associated with the perception of host 

volatiles is likely initiated prior to the execution of host-seeking, so that females will 

be capable of host-seeking immediately following deposition of her autogenous egg 

raft. Additionally, considering the significant and dramatic increase in the relative 

expression of OBP2 (observed only in the BG population) at the 168-hour time point, 

it is likely this antennal-specific OBP contributes to the detection of host volatiles in 

this human-preferring population.  

With the exception of a few OBPs, most insect OBPs are thought to bind to 

multiple odorants with similar molecular structures and functional groups (Vogt et al. 
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1981; Pelletier et al. 2010; Rollman et al. 2010; Swarup et al. 2011). Perhaps 

considering the increased expression of OBP2 at 96hrs, in addition to contributing to 

host detection, OBP2 is also capable of binding odorants that contribute to other 

mosquito behaviors that would necessitate its upregulation at this earlier time point.  

BG females had higher OBP12 expression relative to AG females at all three 

timepoints assessed. In the AG population, OBP12, like OBP2, had relatively low 

expression that remained unchanged over time. OBP12 is also most highly expressed 

in the BG population at the 168hr timepoint when these females are most likely to be 

engaging in host-seeking behaviors. Unlike OBP2, which was seen to increase in 

expression over time in the BG population, OBP12 was downregulated at the 96hrs 

relative to 24hrs post eclosion. In contrast to the anautogenous AG population, a 

major physiological change occurs in autogenous females from the BG population at 

the 96hr time point. These females would be gravid and seeking an aquatic 

environment suitable for egg-laying, which requires the detection of volatiles. At the 

168hr, however, autogenous females would have already laid their first egg raft and 

would likely be host-seeking.  

OBP12 could also be associated with host-seeking as it is most highly 

expressed at the 168hr timepoint, just like OBP2, when BG females are actively host-

seeking. If downregulation of OBP12 reduces BG females’ chemosensory sensitivity 

to a host, it’s downregulation at 96 hours may be explained by the fact that these 

females are gravid at 96hrs and would need to deposit their egg raft before engaging 

in host-seeking behaviors. If the volatile(s) OBP12 binds contribute only to the 
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detection of a host, it may be highly expressed when BG females are host-seeking and 

otherwise suppressed when host detection is not behaviorally relevant. 

As an intriguing alternative hypothesis, perhaps OBP12 instead contributes to 

odor-mediated ovipositional behaviors. Rather than chaperoning volatiles directly to 

their designated ORs for odorant detection and perception, perhaps OBP12 is 

responsible for transporting ovipositional volatiles to odor degradation enzymes for 

removal from the sensillar lymph (Zwiebel et al. 2004; Pelletier et al. 2009).  Under 

these circumstances, OBP12 would be down-regulated when gravid females are 

actively seeking an ovipositional resource. Indeed, this trend is observed in our BG 

autogenous females, which are gravid at 96 hrs. Following egg deposition, OBP12 

would be upregulated to prevent ovipositional volatiles from reaching ORs, as the 

detection of these semiochemicals would not be behaviorally relevant until they had 

acquired a successful blood meal and undergone ovarian development and egg 

maturation. This is what we found in the BG population at 168hrs, where OBP12 was 

significantly upregulated in comparison to its expression at any other time point.  

 In conclusion, both OBPs were more highly expressed in the heads of the BG, 

human-seeking population confirming the results of our preliminary RNA-seq study. 

The two OBPs differed in their temporal expression patterns in the BG population 

over the first 7-9 days of adulthood. As both OBPs were most highly expressed at 

168hrs when these females would be actively engaging in host-seeking, it may be 

possible both OBPs are contributing to the BG population’s detection of a human 

host.  However, based on the timing of their expression, OBP2 and OBP12 may be 

binding different host volatiles and thus play slightly different roles in overall odor 
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perception. Alternatively, the absence of OBP12 expression at 96hrs could indicate it 

instead is contributing to the suppression of odor-mediated ovipositional behaviors. 

Because the roles I am assigning to these OBPs are speculative, future work 

should address what semiochemical or semiochemicals these OBPs are binding in 

vivo and demonstrate they influence mosquito behavior through functional analyses. 

Specifically, are the ligands of these OBPs a volatile unique to or highly represented 

in the odorant bouquets produced by the skin and breath of mammalian vertebrate 

hosts (in contrast to avian hosts)?  To prove the essential role of OBP2 and OBP12 in 

human host-seeking behaviors, these OBPs could be individually knocked down in 

the BG population and behavioral testing would reveal whether these females are 

selecting a human host less frequently than the wild-type females. However, it is 

likely even if the OBPs contribute to host-seeking behaviors, BG Cx. pipiens may still 

be able to detect and seek out human hosts, as females use a multitude of host 

volatiles and non-chemosensory cues to locate a vertebrate host.  

         The ligand or ligands of OBP12 should also be investigated. Future work 

should address whether this volatile is used by gravid Culex females to locate suitable 

oviposition resources. Perhaps the volatile(s) OBP12 binds are more readily found in 

the ovipositional resources of underground breeding sites. Expression of OBP12 

could be examined in the BG population after blood-feeding when these females 

would again be gravid. Perhaps, if OBP12 contributes to decreasing the overall 

sensitivity to ovipositional odorants we might expect to see expression again 

downregulated at this new time-point. Alternatively, we could artificially upregulate 
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OBP12 expression in gravid females and see whether this delays or prevents 

oviposition. 

If the ligands of these OBPs and the mechanisms of action can be elucidated, 

in the distant future, we could develop baits that target human-seeking, BG 

populations of Cx. pipiens, novel repellents that prevent females from detecting hosts 

in the field, and ovipositional baits that specifically attract BG gravid females for 

control or vector population monitoring purposes.  
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Tables: Chapter 3 
 
Table 1: OBP expression differences from preliminary RNA sequencing work. 
Differential expression and corrected p-values are included from preliminary RNA-
seq analysis and represent the difference between 7-9 day old parous below-ground 
Cx. pipiens females and above-ground collected females. Both OBPs 2 and 12 were 
more highly expressed in parous BG females (Differential expression value - 
log2FoldChange) 
 

 

Name Fold 
Change 

Differential 
Expression Value  Corrected p-value 

CquiOBP2/CPIJ007617 1.85 0.89 0.013 

CquiOBP12/CPIJ016949 3.61 1.85 2.07E-11 
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Table 2: qPCR was performed using the following gene specific primers. Amplicon length in base pairs indicates the length of the full 
cDNA fragment determined during primer development. The sequenced amplicons were a composite of the amplified product of the 
forward and reverse primer. 
 

Name Seq. Source 

Forward 
Primer 

Sequence 
5’-3’ 

Reverse 
Primer 

Sequence 
5’-3’ 

Amplicon 
Size 

Recovered 
Amplicon 

Size 
Sequenced Amplicon 

OBP2 
(CPIJ007617) 

Unpublished 
- Cx. 

molestus 
genome 

assembly 

ACCGAGGC
GAGATGCT
GAATACC 

GAAGATG
CCATCAAG
CGCTTCAG
C 

115 bp 115 bp 

ACCGAGGCGAGATGCTGAA
TACCCTCCACCGGAGTTTTT
GGTGAAGATGAAGCCCATG
CATGATGAATGTGTTGCAGA
AACAGGTGCCTCCGAAGAT
GCCATCAAGCGCTTCAGC 

OBP12 
(CPIJ016949) 

Unpublished 
- Cx. 

molestus 
genome 

assembly 

CCTGGAAG
AGGCAAA
GAAAG 

GCCTCGTT
TGGTAGCT
TG 

97 bp 94 bp 

TCCTGGAAGAGGCAAAGAA
AGGAGTGTTCCCAACGAAA
AGACTCAAATGCTATGTCAG
CTGTCTGCTCGACATGATGC
AAGCTACCAAACGAGG 

Appl 
(A. Jarvela, 

unpublished) 
VectorBase 

AGGAAGC
GGAACCG
AAGATG 

CGAAGGC
CAGCGTA
AAGTAC 

135 bp 135 bp 

GGAAGCGGAACCGAAGATG
CAGCTAGGGATGGCCCACG
ACATCGGACACGGCGAACC
GAGCTACTCGGTCCGGCGGG
AGATCTACGGCTCGAGCGGC
CACGAGGGCAAGAACGTGT
ACTTTACGCTGGCCTTCGA 
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Table 3: Sanger Sequencing results for forward and reverse primers. Recovered sequence length refers to the number of base pairs 
recovered with unambiguous base calls for the forward or reverse primer for each gene. The recovered sequences were identified 
through the National Center for Biotechnology Information "basic local alignment search tool” (BLAST) against the nucleotide 
database to demonstrate primer specificity and correct amplification of target genes (Altschul et al. 1990). 
 

 

OBP / 
Primer 

Amplicon 
Length  

Recovered 
Sequence 
Length 

BLAST RESULTS 

OBP2_v2_F 115 bp 61 bp 

1. Culex quinquefasciatus odorant-binding protein 2 (OBP2) 
XM_001848887.1 / FJ947084.1 - (98% IM) 
2.  Culex pipiens pallens odorant binding protein 2 (OBP2) 
KU847963.1 - (96.45% IM)  

OBP2_v2_R 115 bp 66 bp ONLY RESULT: Culex pipiens pallens odorant binding protein 2 (OBP2) 
KU847963.1 (100% IM) 

OBP12_v2_F 97 bp 54 bp ONLY RESULT: Culex pipiens pallens odorant binding protein 12 (OBP12) 
KU847971.1 - (96.36% IM) 

OBP12_v2_R 97 bp 52 bp ONLY RESULT: Culex pipiens pallens odorant binding protein 12 (OBP12) 
KU847971.1 - (94.55% IM) 

Appl_F 135 bp 87 bp ONLY RESULT: Culex quinquefasciatus conserved hypothetical protein, 
mRNA - XM_001864448.1; (98% IM) 

Appl_R 135 bp 85 bp ONLY RESULT: Culex quinquefasciatus conserved hypothetical protein, 
mRNA - XM_001864448.1; (100% IM) 
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Table 4: Results from generalized linear mixed model with exploring the effect of population, age and gene on Ct value for the 
expression of OBP2, where Ct ~ population*gene + age*gene + (1| biological replicate). The model intercept was set to the BG 
population at 24h for the control gene, Appl. Where BG = below-ground Cx. pipiens population and AG = above-ground Cx. pipiens 
population. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Term Estimate Std. Error t Value 2.5% CI 97.5% CI 

BG-24h Appl 
(Intercept) 22.0179 0.5908 37.27 20.5038 23.5321 

AG-24h Appl -0.7336 0.2986 -2.46 -1.3242 -0.1429 

BG-24h OBP2 2.1223 0.4186 5.07 1.2943 2.9503 

BG-96h Appl 1.4398 0.3675 3.92 0.7127 2.1668 

BG-168h Appl 1.345 0.3620 3.72 0.6288 2.0612 

AG-24h OBP2 1.2443 0.4202 2.96 0.4131 2.0755 

BG-96h OBP2 0.4991 0.5159 0.97 -0.5214 1.5197 

BG-168h OBP2 -5.45 0.5120 -10.64 -6.4628 -4.4372 
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Table 5: OBP2 - Mean Ct values and 2.5% and 97.5% confidence intervals calculated from model estimates 
 
 

 
 
 
 
 
 

Population Age - Gene Raw Mean Ct Mean Ct 
(from model) 2.5% CI 97.5% CI 

Above-ground 
24h - OBP2 24.57 23.26 20.92 25.61 
96h - OBP2 27.05 24.70 21.63 27.77 
168h - OBP2 20.17 24.61 21.55 27.67 

Below-ground 
24h - OBP2 24.22 24.14 21.80 26.48 
96h - OBP2 25.62 22.52 19.98 25.05 
168h - OBP2 20.41 16.57 14.04 19.09 

Above-ground 
24h - Appl 21.32 21.28 19.18 23.39 
96h - Appl 22.89 22.72 19.89 25.56 
168h - Appl 22.42 22.63 19.81 25.45 

Below-ground 
24h - Appl 21.98 22.02 20.50 23.53 
96h - Appl 23.26 23.46 21.22 25.70 
168h - Appl 23.57 23.36 21.13 25.59 
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Table 6: Results from generalized linear mixed model with exploring the effect of population, age and gene on Ct value for the 
expression of OBP12 where Ct ~ population*gene + age*gene + (1| biological replicate). The model intercept was set to the BG 
population at 24h for the control gene, Appl. Where BG = below-ground Cx. pipiens population and AG = above-ground Cx. pipiens 
population. 
 
 

Term Estimate Std. Error t Value 2.5% CI 97.5% CI 

BG-24h Appl 
(Intercept) 

22.0217 0.4554 48.36 21.0428 23.0024 

AG-24h Appl -0.7412 0.3813 -1.94 -1.4956 0.0135 

BG-24h OBP12 0.2929 0.5370 0.55 -0.7695 1.3559 

BG-96h Appl 1.4512 0.4693 3.09 0.5223 2.3798 

BG-168h Appl 1.345 0.4623 2.91 0.4301 2.2599 

AG-24h OBP12 3.6386 0.5464 6.66 2.5567 4.7194 

BG-96h OBP12 3.826 0.6773 5.65 2.4853 5.1658 

BG-168h OBP12 -5.0494 0.6538 -7.72 -6.3432 -3.7556 
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Table 7: OBP12 - Mean Ct values and 2.5% and 97.5% Confidence Intervals calculated from model estimates 
 

Population Age - Gene Raw Mean Ct Mean Ct 
(from model) 2.5% CI 97.5% CI 

Above-ground 
24h – OBP12 22.89 25.66 23.60 25.08 
96h – OBP12 31.90 27.11 24.12 27.24 
168h – OBP12 20.41 27.01 24.03 27.14 

Below-ground 
24h – OBP12 23.26 22.31 20.27 25.95 
96h – OBP12 19.71 25.85 23.53 24.52 
168h – OBP12 25.28 16.97 14.70 18.57 

Above-ground 
24h - Appl 21.32 21.28 19.55 22.86 
96h - Appl 26.56 22.73 20.07 25.03 
168h - Appl 23.57 22.63 19.98 24.92 

Below-ground 
24h - Appl 21.98 22.02 21.04 23.00 
96h - Appl 22.42 23.47 21.57 25.17 
168h - Appl 22.25 23.37 21.47 25.06 
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Table 8: ΔΔCt, fold change, and log fold expression of OBP2 in below-ground Culex pipiens populations relative to above-ground 
populations calculated at three timepoints. 
 

Age ΔΔCt Fold Change 
(2.5%, 97.5% CIs) 

Log (10) Fold Change 
(2.5%, 97.5% CIs) 

0-24h 0.1444 0.90 (0.18, 4.69) -0.04 (-0.75, 0.66) 

72-96h -2.9186 7.56 (1.30, 43.81) 0.88 (0.12, 1.64) 

168 - 216h (7-9d) -8.7729 437.42 (75.89, 2521.01) 2.64 (1.88, 3.40) 
 
 

 

Table 9: ΔΔCt, fold change, and log fold expression of OBP12 in below-ground Culex pipiens populations relative to above-ground 
populations calculated at three timepoints. 
 

Age ΔΔCt Fold Change 
(2.5%, 97.5% CIs) 

Log (10) Fold Change 
(2.5%, 97.5% CIs) 

0-24h -4.0869 16.99 (1.36, 69.94) 1.23 (0.14, 1.84) 

72-96h -2.005 4.01 (0.80, 20.04) 0.60 (-0.09, 1.30) 

168 - 216h (7-9d) -10.7742 1751.29 (361.99, 8462.67) 3.24 (2.56, 3.93) 
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Table 10: ΔΔCt, fold change, and log fold expression of OBP2 over time. For each population, log10 fold change expression of OBP2 
was determined by ΔΔCt method, normalizing first to housekeeping gene Appl, then to OBP2 expression at the 24-hour timepoint. 
 

Population Gene Age ΔΔCt Fold Change 
(2.5%, 97.5% CIs) 

Log (10) Fold Change 
(2.5%, 97.5% CIs) 

Above-ground OBP2 
0-24h 0.00 1.00 (0.20, 5.08) 0.00 (-0.71, 0.71) 
72-96h 0.00 1.00 (0.12, 8.41) 0.00 (-0.92, 0.92) 

168 - 216h (7-9d) 0.00 1.00 (0.12, 8.35) 0.00 (-0.92, 0.92) 

Below-ground OBP2 
0-24h 0.00 1.00 (0.20, 5.07) 0.00 (-0.71, 0.71) 
72-96h -3.06 8.36 (1.44, 48.42) 0.92 (0.16, 1.96) 

168 - 216h (7-9d) -8.92 483.48 (83.88, 2786.40) 2.68 (1.92, 3.45) 
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Table 11: ΔΔCt, fold change, and log fold expression of OBP12 each single population over time. For each population, log fold 
change expression of OBP12 was determined by ΔΔCt method, normalizing first to housekeeping gene Appl, then to OBP12 
expression at the 24-hour timepoint. 
 
 
 

Population Gene Age ΔΔCt Fold Change 
(2.5%, 97.5% CIs) 

Log (10) Fold Change 
(2.5%, 97.5% CIs) 

Above-ground OBP12 

0-24h 0.00 1.00 (0.23, 4.17) 0.00 (-0.62, 0.62) 

72-96h 0.00 1.00 (0.13, 7.94) 0.00 (-0.90, 0.90) 

168 - 216h (7-9d) 0.00 1.00 (0.13, 7.87) 0.00 (-0.90, 0.90) 

Below-ground OBP12 

0-24h 0.00 1.00 (0.24, 4.12) 0.00 (-0.62, 0.62) 

72-96h 2.08 0.24 (0.05, 1.18) -0.63 (-1.33, 0.07) 

168 - 216h (7-9d) -6.69 103.06 (21.30, 497.99) 2.01 (1.33, 2.70) 



 

 

75 
 

Figures: Chapter 3 

 

 
 
Figure 1: OBP log fold expression change over time in below-ground Culex pipiens populations relative to above-ground populations. 
Log fold change OBP2 (Panel A) and OBP12 (Panel B) expression at each timepoint determined by ΔΔCt method, normalizing first to 
housekeeping gene Appl, then to the AG-population sample. Error bars indicate 95% CIs 
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Figure 2: OBP log fold expression over time in above- and below-ground Culex pipiens populations. Log10 fold change expression of 
OBP2 (Panel A) and OBP12 (Panel B) determined by ΔΔCt method, normalizing first to housekeeping gene Appl, then to the 
expression at the 24-hour timepoint. Error bars indicate 95% CIs.   
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