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Mid-ocean ridges are underwater volcanic mountains extending more than 

55,000 km in ocean basins worldwide, accounting for nearly 80% of the Earth’s 

volcanism. They are the birthplace of new seafloor, resurfacing two thirds of the 

planet over about 100 million years. At mid-ocean ridges, tectonic plates move away 

from each other, a phenomenon known as seafloor spreading, at rates ranging from 

slow (~10 cm/yr) to fast (~100 cm/yr). Plate divergence induces the underlying 

mantle to rise and melt. Buoyant melts segregate from the mantle and collect toward 

axes of mid-ocean ridges, where they are extracted and solidify into new oceanic 

crust. The thickness of oceanic crust, the final product of ridge magmatism, contains 

integrated information about plate motion, mantle flow, mantle temperature, melt 

generation, melt extraction and crustal accretion. In this dissertation, I investigate 

three types of crustal thickness variations at mid-ocean ridges to provide insights into 

the Earth’s deep, less accessible interior. 



 

Mid-ocean ridges are broken into segments bounded by transform faults. At 

fast-spreading ridges, transform faults exhibit thicker crust than adjacent ridge 

segments, while the crust along transform faults at slow-spreading ridges is thinner. I 

show that these observations are compatible with melt being extracted along fast-

slipping transform faults, but not at the slow-slipping ones. 

The plates on either side of a ridge axis may move away from the ridge at 

different rates. I reveal a discrepancy between the expected and observed topography 

at such asymmetrically spreading ridges, and argue that the discrepancy is best 

explained by asymmetric crustal thickness, with thicker crust on the slower-moving 

plate and thinner crust on the faster-moving plate. 

Crustal thickness may differ between ridge segments separated by a transform 

fault, in a way that correlates with the relative motion between the ridge and the 

underlying mantle. I study the three-dimensional effects of background mantle flow, 

and demonstrate that the pattern of along-axis crustal thickness variations is 

controlled by the relative angle between ridge and background mantle flow. 

This dissertation systematically examines the origins of crustal thickness 

variations at mid-ocean ridges, and provides constraints on mantle and melt 

dynamics.   
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Chapter 1: Introduction 

 

1.1 Overview 

Mid-ocean ridges are prominent underwater mountains extending more than 

55,000 km in the global ocean basins (Figure 1.1), associated with high heat flow, 

seismic activity and magmatism [e.g, Heezen, 1960]. They have been recognized as a 

type of divergent plate boundaries [Hess, 1962], where tectonic plates move apart by 

the process of seafloor spreading, driven primarily by slab pull due to the weight of 

subducting slabs on the opposite edges of the rigid plate [e.g., Conrad and Lithgow-

Bertelloni, 2002]. The rate of seafloor spreading varies by locality, and can be used to 

classify mid-ocean ridges into four categories: fast-, intermediate-, slow-, and 

ultraslow-spreading ridges. Plate separation induces the underlying hot mantle to 

upwell and melt (Figure 1.2). Melt ascends to the surface, and solidifies to form the 

new oceanic crust, resurfacing two thirds of the planet over a timescale of about 100 

million years. 

Along the axes, mid-ocean ridges are segmented by oceanic transform faults 

[Wilson, 1965], which are usually orthogonal to the ridges and parallel to the 

spreading directions (Figure 1.1). Plates with contrasting ages from adjacent ridge 

segments are juxtaposed along transform faults, affecting mantle flow and thermal 

structures [e.g., Fox and Gallo, 1984], making segmented mid-ocean ridges 

fundamentally three-dimensional features.  
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As manifestations of mantle dynamics, mid-ocean ridges provide a window 

into the Earth’s deep, less-accessible structures and processes. Over the past decades,  

a wide range of geological, geophysical and geochemical studies has led to 

substantial progresses in understanding the linkage between mantle/melt dynamics 

and observed surface features such as seafloor bathymetry, crustal thickness, and 

basalt geochemistry [e.g., MacDonald, 1982; McKenzie, 1984; Klein and Langmuir, 

1987; White et al., 1992; Melt Seismic Team, 1998; Gregg et al., 2012; Gale et al., 

2014; Carbotte et al., 2015]. Among these features, crustal thickness—the final 

product of ridge magmatism, provides the strongest constraints on melt generation, 

melt extraction, and mantle flow [Forsyth, 1992].  

However, it is often overlooked that crustal thickness represents the integrated 

effects of mantle and melt dynamics, and it is not well understood how various 

mantle and magmatic processes contribute to crustal thickness variations. This 

dissertation seeks to systematically investigate the origins of crustal thickness 

variations along-axis (Chapter 5), cross-axis (Chapter 4), and between ridge and 

transform fault (Chapter 3) using numerical methods (Chapter 2), and establish a 

quantitative link between crustal thickness variations and mantle/melt dynamics. In 

this chapter, I review general characteristics of mid-ocean ridges that will be helpful 

to understand the work presented in this dissertation.  

 

1.2 Mantle Flow 

Mantle upwelling at mid-ocean ridges can be driven either by the viscous drag 

of overriding spreading plates [e.g., Spiegelman and McKenzie, 1987; Phipps 
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Morgan, 1987] or by the buoyancy force from density variations primarily associated 

with retained melt [e.g., Rabinowicz et al., 1984; Scott and Stevenson, 1989; Buck 

and Su, 1989; Su and Buck, 1993; Katz, 2010]. Although the buoyancy-driven flow 

can be used to explain some diapir-like upwelling centers [e.g., Parmentier and 

Phipps Morgan, 1990; Wang et al., 2009], it is not consistent with the broad partial 

melting regions and the lack of deep upwelling root from geophysical observations 

[e.g., MELT Seismic Team, 1998; Key et al., 2013], or geochemical signatures of mid-

ocean ridge basalts [e.g., Spiegelman and Reynolds, 1999; Zou et al., 2002]. Hence 

passive flow is a probably more appropriate approximation of the mantle upwelling.  

Mantle driven by plate divergence follows a corner flow pattern: it first 

ascends vertically underneath the ridge axis, then turns a corner and moves laterally 

away from the ridge axis [McKenzie, 1969] (Figure 1.2). This flow pattern is  

modified by tectonic complexities, such as asymmetric spreading, ridge migration and 

background mantle wind.  

 

1.3 Thermal Structure 

As plates move away from the ridge axis, they age and gradually cool by 

conductive heat loss to the surface, the rate of which is controlled by mantle 

temperature, thermal diffusivity, and spreading rate. As approximated by the half-

space cooling model [Turcotte and Schubert, 2002], the further a column of rock is 

from the ridge axis, the older and therefore the colder it is. The thickness of 

lithosphere, often approximated as depth corresponding to the 600 °C isotherm, is 

thus smallest at ridge axis and increases toward off-axis regions (Figure 1.2). Along   
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transform faults, the temperature difference between juxtaposing plates adds a 

horizontal heat conduction component and cools the adjacent ridge segments, 

resulting in lithosphere thickening toward transform faults.  

 

1.4 Melt Generation 

Mantle melting at mid-ocean ridges is caused by adiabatic decompression 

during mantle upwelling. Plate divergence and/or mantle density variations [e.g., 

McKenzie, 1969; Scott and Stevenson, 1989] drive the already hot mantle materials to 

ascend, which is associated with a decrease in pressure. The melting temperature of 

mantle rocks decreases faster (about 0.1 °C/MPa, or 3 °C/km) with pressure release 

than the adiabatic cooling of mantle (about 0.01 °C/MPa, or 0.3 °C/km). When the 

mantle temperature equals or exceeds the melting temperature, melt is produced.  

The degree and extent of mantle melting at mid-ocean ridges have been 

estimated from seismic tomography [e.g., Forsyth et al., 1998], seafloor 

magnetotelluric soundings [e.g., Evans et al., 1999; Key et al., 2013], crustal 

thickness measurements [e.g., White et al., 2001], laboratory experiments [e.g., Kinzler 

and Grove, 1992; Hirschmann, 2000; Till et al., 2012], mid-ocean ridge basalts 

geochemistry [e.g., Klein and Langmuir, 1987; Gale et al., 2014], and numerical 

models [e.g., Reid and Jackson, 1981; McKenzie and Bickle, 1988]. The melting 

regime is roughly triangular in cross-section and centered underneath the ridge axis, 

extending laterally for hundreds of kilometers (Figure 1.2). The degree of melting 

ranges from 0 % at onset depth of ~100 km to a maximum of more than 20 % at the 

shallowest melting depth. Mantle melting is a function of temperature, pressure, bulk 
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chemical composition, and volatile content. Higher mantle temperature, faster 

spreading of seafloor (faster mantle upwelling), more fertile mantle composition, and 

higher volatile content in rocks lead to a larger extent and higher degree of melting.  

 

1.5 Melt Migration and Extraction 

Despite the broad region (> 100 km) of partial melting underneath mid-ocean 

ridges, neo-volcanic activity at surface is confined within a narrow zone (< 2 km 

[Macdonald, 1982; Vera et al., 1990]) at the ridge axis. This contrast indicates that 

the melt must have been focused toward the ridge axis from the wide, deep region of 

its generation. 

The melt produced by partial melting is less dense and less viscous than the 

residual mantle, and tends to rise under buoyancy (Figure 1.2). The initial melt forms 

at boundaries between mineral grains of mantle rocks, producing either thin films 

covering the grain boundaries, or interconnected channels along grain junctions 

[Smith, 1948, 1964]. Scanning electron microscopy [e.g., Waff and Bulau, 1982; Waff 

and Faul, 1992] and synchrotron X-ray microtomography [e.g., Zhu et al., 2011] on 

partially molten mantle rocks (synthesized in laboratory) demonstrate a high 

connectivity in the grain boundary network of interstitial melt [e.g., Kohlstedt, 1992; 

Zhu and Hirth, 2003; Zhu et al., 2011], indicating that the melt is able to segregate 

and ascend through the porous residual solid rapidly, even at low melt fractions 

[Miller et al., 2014].  

However, how melt flow is focused toward the ridge axis is not well 

understood. Several mechanisms has been proposed, as described below. 
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1.5.1 Ridge Suction 

The porous flow of melt may be driven toward the ridge axis by large non-

hydrostatic pressures related to mantle flow [Spiegelman and McKenzie, 1987; Ribe, 

1988]. When plate-driven shear is larger than buoyancy-driven shear, flow of mantle 

near ridge axis is in a form similar to the corner flow [McKenzie, 1969], which 

induces a pressure gradient that focuses melt [Spiegelman and McKenzie, 1987]. 

However, the asthenospheric viscosity required for this model to focus melt over 

hundreds of kilometers is two orders of magnitude higher than the accepted values 

[e.g., Phipps Morgan, 1987]. Thus, this mechanism is unlikely to be significant. 

1.5.2 Buoyant Upwelling  

Melt focusing may be a result of buoyancy-driven mantle convection 

[Rabinowicz et al., 1984; Buck and Su, 1989; Scott and Stevenson, 1989]. When the 

buoyancy-driven shear is larger than the plate-driven shear, a convection unit is 

superposed on the mantle corner flow, and generates a fast upwelling zone and a 

narrow zone of melting beneath the ridge axis [Spiegelman, 1993]. However, as 

discussed in the previous section, buoyancy-driven mantle upwelling is not consistent 

with the geophysical [e.g., MELT Seismic Team, 1998; Key et al., 2013] and 

geochemical [e.g., Spiegelman and Reynolds, 1999; Zou et al., 2002] observations, 

and it relies on higher mantle porosity than current estimates, making it an unlikely 

mechanism for melt focusing. 
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1.5.3 Hydrofracturing 

Melt may be localized and extracted through conduits opened by 

hydrofracturing [Sleep, 1988; Nicolas, 1986, 1990]. The abundant dikes observed in 

mantle peridotites at ophiolites suggest that melt migration may be associated with 

crack propagation in the sub-lithospheric mantle. In porous mantle, when melt 

pressure exceeds the yield stresses of mantle rocks, hydraulic fracturing develops. 

The fractures will then draw melts from the surroundings. If buoyancy-driven flow 

dominates mantle upwelling, the maximum compressional stress is sub-horizontal at 

depth from 35 km to 15 km, and steepens to become subvertical at depth less than 15 

km. The resulting sills and dikes tap the melt and focus it toward the ridge axis 

[Nicolas, 1990]. However, it is dubious that magma is able to fracture mantle rocks 

within the partial melting region where plastic deformation dominates [Kelemen and 

Dick, 1995]. Also, in order for hydrofracturing to focus melt, buoyancy-driven mantle 

flow has to prevail. Therefore, this mechanism may only be important for vertical 

melt extraction at shallow depth. 

1.5.4 Shear-Induced Instability 

Development of a mechanical instability related to the feedback between melt 

distribution and deformation can lead to melt localization [Phipps Morgan, 1987; 

Stevenson, 1989; Spiegelman, 2003; Katz et al., 2006]. Shear-induced petro-fabrics 

and pressure gradients in partially molten mantle rocks maydraw melt into high-

porosity regions, where shear viscosity and fluid pressure are lower, and in turn raise 

the local porosity. This instability organizes melt into high-porosity melt bands that 

persist at low angles to the direction of maximum shear and point toward ridge axis 
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[Katz et al., 2006], providing a possible mechanism for melt focusing. However, this 

observation is largely based on laboratory experiments, in which the imposed strain 

rates are six to eight orders of magnitude higher than in the mantle [Kohlstedt and 

Holtzman, 2009]. Also, the melt bands did not occur in numerical models of mid-

ocean ridges, even when the necessary conditions for its development were satisfied 

[Katz, 2010]. Thus it is unclear how significant this mechanical instability is under 

mantle conditions. 

1.5.5 Reactive Infiltration Instability  

The undersaturation of orthopyroxene in mid-ocean ridge basalts and the large 

fractionations between light and heavy rare earth elements in residual peridotites 

[e.g., Johnson et al., 1990] indicate chemical disequilibrium during melt transport. It 

is likely that melt is extracted rapidly through chemically isolated conduits [e.g., 

Kelemen et al., 1997a]. Kelemen et al. [1995a, 1995b] identified mantle dunites, 

formed by dissolution of pyroxene along melt migration pathways, as the likely 

conduits for focused flow. The dissolution increases the local porosity, which 

enhances fluid flow in the partially molten mantle and in turn leads to increased 

dissolution. This positive feedback, known as reactive infiltration instability, 

facilitates the formation of high-porosity dissolution channels [Spiegelman et al., 

2001]. If the solubility of pyroxene in magma increases downstream, a fractal melt 

extraction tree may form and focus the fluid [Hart, 1993; Aharonov et al., 1995]. 

Based on statistical analysis of dunite channels observed in ophiolite, Braun and 

Kelemen [2002] demonstrated that a network of coalescing channels can explain the 

scale-invariant power-law size/frequency distribution of dunite channels, and 
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preserve the geochemical disequilibria between melts and residual mantle. Thus, 

dissolution channels is a plausible mechanism for melt migration beneath mid-ocean 

ridges. However, it is not clear how significant the channelized flow is, compared 

with diffuse porous flow, during melt transport. 

1.5.6 Permeability Barrier  

Rapid crystallization near the surface generates a freezing boundary that 

focuses the melt [Sparks and Parmentier, 1991; Spiegelman, 1993; Ghods and 

Arkani-Hamed, 2000; Hebert and Montési, 2010]. The flux of melt is perturbed by 

fast cooling at the base of the thermal boundary layer, where decompaction of the 

porous mantle matrix generates high-porosity channels [Sparks and Parmentier, 

1991; Spiegelman, 1993]. Hebert and Montési [2010] studied the geochemical 

evolution of melts near the thermal boundary layer and predicted the existence of a 

permeability barrier, which corresponds to the multiple saturation point of plagioclase 

and pyroxene [Kelemen and Aharonov, 1998]. Building on the permeability barrier 

concept [Sparks and Parmentier, 1991], Montési et al [2011] developed a three-step 

scheme for melt migration and extraction: (1) Melt moves vertically in the partial 

melting region through pore spaces and possibly through dissolution channels (Figure 

1.2); (2) Melt accumulates at the permeability barrier and moves along this barrier 

toward the ridge axis (Figure 1.2); (3) Melt enters an extraction zone corresponding to 

structural weakness (faults, dikes and shear zone) around plate boundaries, gets 

extracted, and forms new oceanic crust. The three-step scheme has successfully 

explained crustal thickness variations at ultraslow- [Montési et al., 2011] and fast-

spreading ridges [Hebert and Montési, 2011], and the spreading-rate-dependent 
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crustal thickness differences between transform faults and associated ridges [Bai and 

Montési, 2015]. These studies suggest that the low-permeability barrier may play a 

crucial role in focusing melt at mid-ocean ridges. 

In general, there is a variety of mechanisms proposed for melt migration and 

extraction at mid-ocean ridges. Among them, the three-step scheme of melt extraction 

developed by Montési et al. [2011] (Section 1.5.6) captures the essential dynamics of 

melt extraction, and, albeit in a simplified and idealized manner, is computationally 

economic. Thus I adopted the three-step melt migration scheme when processing 

three-dimensional models of segmented mid-ocean ridges.  

 

1.6 Crustal Thickness 

Close to the surface, melts may pool and create a magma chamber underneath 

the ridge axis [e.g., Cann, 1974]. In the magma chamber, crustal accretion occurs 

following either “gabbro glacier” [Nicolas et al., 1988; Henstock et al., 1993], or 

“sheeted sill” [Boudier et al., 1996; Kelemen et al., 1997b] models, producing the 

layered structure of oceanic crust [e.g., Talwani et al., 1965]: Right below the sea 

water, the first layer of oceanic crust, Layer 1, consists of mostly unconsolidated or 

semi-consolidated sediments, and is usually thin or not present near the ridge axis. 

The second layer is composed of Layer 2A, pillow basalts formed from fast cooling 

of erupted lava, and Layer 2B, sheeted dikes formed from magma intrusion in the 

fissures. The third layer is made of gabbro from slow cooling of residual magma.  

The thickness of crust at mid-ocean ridges has been estimated using seismic 

refraction [e.g., Canales et al., 2003; Dunn et al., 2005], reflection [e.g., Rohr et al., 



 

13 

 

1988; Barth and Mutter, 1996; Carbotte et al., 2008] and tomography [e.g., Toomey 

et al., 1994], gravity anomalies [e.g., Kuo and Forsyth, 1988; Lin et al., 1990; Wang 

et al., 1996; Tolstoy et al., 1993; Gregg et al., 2007; Wang et al., 2015], geochemical 

measurements [e.g., Klein and Langmuir, 1987; McKenzie and O’Nions, 1991], and 

ophiolite measurements [e.g., Nicholas et al., 1996]. Away from anomalous regions, 

the oceanic crust exhibits a uniform average thickness of about 7 ± 1 km, largely 

independent of spreading rates [e.g., White et al., 1992]. However, crustal thickness 

variations exist within each ridge segments (Figure 1.3b), between adjacent ridge 

segments (Figure 1.3c), between conjugate plates (Figure 1.3d), and between ridge 

segment and adjacent transform fault (Figure 1.3b). Although variations differ by 

localities, some common patterns are observed. Origins of these variation patterns are 

investigated in this dissertation. 

1.6.1 Along-Axis Crustal Thickness Variations 

Away from hot spots, along the axis of each individual ridge segment, crust is 

typically thickest at the segment center, and thins toward the transform faults (Figure 

1.3b). The range of variation depends on the spreading rates [Chen, 1992; Bown and 

White, 1994]. Slow-spreading ridges exhibit large crustal thickness variations from 

about 8 km at centers to less than 4 km near the ends [e.g., Whitmarsh and Calvert, 

1986; Kuo and Forsyth, 1988; Lin et al., 1990; Blackman and Forsyth, 1991; Detrick 

et al., 1993; Detrick et al., 1995; Canales et al., 2000a; Canales et al., 2000b; Hooft 

et al., 2000; Dunn et al., 2005], while crustal thickness along fast- spreading ridges  
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Figure 1.3 Schematic diagrams of crustal thickness variations at mid-ocean ridges. 

The simplified geometry of a ridge-transform-ridge system is shown in (a) in map 

view, where red lines represent the ridge segments and the blue line represents the 

transform fault. The crustal thickness difference between transform faults and 

adjacent ridges is shown in (b) in cross-sections representing fast- (orange) and slow- 

(green) spreading ridges. Within the ridge axis (the “Ridge 1” box), slow-spreading 

ridge has larger crustal thickness variation than the fast-spreading ridge. The 

difference in crustal thickness between ridge segments is shown in (c) with (teal) or 

without (gray) mantle wind. Profiles of crustal thickness across the axis are shown in 

(d) in cross-section view for symmetric (gray) and asymmetric (purple) spreading. 

The location of the cross-section is marked by the dash line in (a).   
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only differs by less than 2 km [e.g., Barth and Mutter, 1996; Canales et al., 2003; 

Aghaei et al., 2014] (Figure 1.3b). This spreading-rate-dependent variation has been 

attributed to different styles of mantle upwelling at fast- and slow-spreading ridges 

[Lin and Phipps Morgan, 1992], or variations in melt focusing [e.g., Hooft et al., 

2000]. In Chapter 3 and Chapter 5, I demonstrate that this phenomenon can also be a 

natural result of melt migration, controlled by the permeability barrier morphology.  

Along the axes, between adjacent ridge segments, the crustal thickness 

variations seem to correlate with the direction of ridge migration [Carbotte et al., 

2004]. At fast- and intermediate-spreading ridges, the leading segments (offset in the 

direction of ridge migration) are consistently associated with shallower axial depth 

and thicker crust than the trailing segments across the discontinuities [Carbotte et al., 

2004; Katz et al., 2004; Supak et al., 2007; Carbotte et al., 2008; Weatherley and 

Katz, 2010] (Figure 1.3c), though this correlation is weaker at slow-spreading ridges 

[Supak et al., 2007]. In Chapter 5, I reproduce this observation using three-

dimensional numerical models, and reveal that the pattern of crustal thickness 

variations is primarily controlled by the relative angle between mantle motion and 

ridge axes.  

1.6.2 Cross-Axis Crustal Thickness Variations 

Crustal accretion is usually assumed to be symmetric about the ridge axis. 

However, cross-axis crustal thickness differences have been reported, at slow- [e.g., 

Kuo and Forsyth, 1988; Ballu et al., 1998; Wang et al., 2015], intermediate- [Rohr et 

al., 1988] and fast-spreading [Toomey et al., 1994] ridges. While at slow-spreading 

ridges, the asymmetry has been attributed to the tectonic extension by long-lived 
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detachment faults [e.g., Tucholke and Lin, 1994; Cann et al., 1997; Escartin et al., 

2008], at fast- and intermediate-spreading ridges, the origin of asymmetric crustal 

thickness is not well understood. In Chapter 4, I compare global ridge topography 

data with numerical models of different types of ridge asymmetry, and conclude that 

asymmetric crustal thickness across-axis is an intrinsic feature of the asymmetric 

spreading of ridges, with thicker crust accreted on slower-moving plates (Figure 

1.3d).  

1.6.3 Crustal Thickness Variations between Ridge and Transform Fault 

The correlation between the gravity signatures at transform faults and the 

spreading rates of the associated ridges implies that the crustal thickness variations 

between ridges and transform faults are spreading-rate-dependent [Gregg et al., 

2007]. At fast-spreading ridges, the transform faults are characterized by more 

negative residual mantle Bouguer anomaly than the adjacent ridge segments, 

consistent with thicker crust along the transform faults, while at slow-spreading 

ridges, transform faults are associated with thinner crust (Figure 1.3b). In Chapter 3, I 

use numerical models to study the spatial relation between permeability barrier and 

melt extraction zone underneath transform faults, and argue that melt can erupt along 

the fast-slipping transform faults, but not at slow-slipping ones.  

In general, this dissertation seeks to investigate the origins of three types of 

crustal thickness variations at mid-ocean ridges, and establish a quantitative link 

between crustal thickness variations and mantle/melt dynamics. Detailed descriptions 

of the numerical approach employed and study of each type of crustal thickness 

variations are presented in the following chapters.  
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Chapter 2: MeltMigrator: A MATLAB-based software for 

modeling three-dimensional melt migration and crustal 

thickness variations at mid-ocean ridges following a rules-based 

approach 
 

Bai, H., L. G. J. Montési, and M. D. Behn (2017), MeltMigrator: A MATLAB-based 

software for modeling three-dimensional melt migration and crustal thickness 

variations at mid-ocean ridges following a rules-based approach, Geochem. Geophys. 

Geosyst., 18, 445–456, doi:10.1002/2016GC006686. 

 

Abstract 

MeltMigrator is a MATLAB®-based melt migration software developed to 

process three-dimensional mantle temperature and velocity data from user-supplied 

numerical models of mid-ocean ridges, calculate melt production and melt migration 

trajectories in the mantle, estimate melt flux along plate boundaries, and predict 

crustal thickness distribution on the seafloor. MeltMigrator is also capable of 

calculating compositional evolution depending on the choice of petrologic melting 

model. Programmed in modules, MeltMigrator is highly customizable and can be 

expanded to a wide range of applications. We have applied it to complex mid-ocean 

ridge model settings, including transform faults, oblique segments, ridge migration, 

asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this 

technical report, we include an example application to a segmented mid-ocean ridge. 

MeltMigrator is available as a supplement to this paper, and it is also available from 

GitHub and the University of Maryland Geodynamics Group website. 
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2.1 Introduction 

The majority of basaltic oceanic crust is formed along mid-ocean ridges, 

which, in the context of plate tectonics, represent a type of divergent plate boundaries 

[e.g., Hess, 1962]. As adjacent tectonic plates move apart, the underlying hot mantle 

rises and melts. These melts are then transported and collect beneath the ridge axis, 

where they are extracted, cool and accrete to form new oceanic crust.  

The oceanic crustal thickness has been inferred from seismic reflection [e.g., 

Carbotte et al., 2008] and refraction data [e.g., Le Pichon et al., 1965], gravity 

measurement [e.g., Kuo and Forsyth, 1988; Lin et al., 1990], ophiolite observations 

[e.g., Nicolas et al., 1996], basalt geochemistry [e.g., Klein and Langmuir, 1987] and 

numerical models [e.g., Reid and Jackson, 1981]. The oceanic crust has an average 

thickness of 6–7 km thick [White et al., 2001], but varies locally as a function of 

spreading rate [e.g., Lin and Phipps Morgan, 1992] and in more complex geological 

settings such as near transform faults and fracture zones [e.g., Gregg et al., 2007], 

overlapping spreading centers [e.g., Canales et al., 2003], oblique segments [e.g., 

Montési et al., 2011], ultraslow spreading centers [Dick et al., 2003], migrating ridges 

[e.g., Carbotte et al., 2004] and plume-ridge interaction zones [e.g., White, 1997]. 

MeltMigrator makes it possible to investigate the effects of melt migration on these 

crustal thickness variations. 

Melting takes place in a broad region (>100 km) in the mantle beneath mid-

ocean ridges [e.g., MELT Seismic Team, 1998; Evans et al., 1999; Key et al., 2013]; 

however, crustal accretion is confined to a narrow region, <2 km from the ridge axis 

[Macdonald, 1982]. This contrast indicates that melt must be focused from the wide 
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generation region toward the ridge axis. Several mechanisms have been proposed to 

explain melt focusing, including dynamic pressure gradients in the mantle 

[Spiegelman and McKenzie, 1987], stress-induced melt bands [Katz et al., 2006], 

hydrofracturing [Sleep, 1988], reactive infiltration instability [Kelemen et al., 1995], 

and permeability barriers associated with a crystallization front [Sparks and 

Parmentier, 1991].  

Here we describe a software that simulates the effect of focusing along a 

permeability barrier, as proposed by Sparks and Parmentier [1991]. The permeability 

barrier forms at the base of thermal boundary layer, where rapid crystallization of 

plagioclase and pyroxene clogs the pore space and prevents further upward migration 

of melts [Kelemen and Aharonov, 1998; Hebert and Montési, 2010]. A high-porosity 

decompaction channel is formed immediately beneath the barrier. It is then possible 

for melt to accumulate and travel within the decompaction channel, guided by the 

slope of the barrier, toward the ridge axis [Sparks and Parmentier, 1991]. 

 More specifically, we follow the three-step scheme for melt focusing and 

extraction at mid-ocean ridges described in detail by Montési et al. [2011] and Gregg 

et al. [2012]. The three steps are: (1) vertical melt percolation in the asthenosphere; 

(2) melt collection and migration in a decompaction channel that follows a low-

permeability barrier at the base of thermal boundary layer toward ridge axis; (3) melt 

extraction when melt enters a damage zone associated with predefined plate 

boundaries. MeltMigrator calculates melt migration pathways according to these three 

steps, estimates melt flux along mid-ocean ridges, and predicts regional crustal 

thickness variations. 
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This software is designed to study melt migration processes occurring in the 

mantle. Melt storage, transport and eruption at crustal level are ignored or idealized. 

We assume that a solution for the mantle flow field and temperature structure is 

available separately and simulate the melt production and migration in 

postprocessing. Thus, we do not attempt to rigorously include the effects of 

compaction pressure and the latent heat of fusion [Wilson et al., 2014]. This 

simplification is useful when dealing with mid-ocean ridges with three-dimensional 

features such as transform faults, oblique segment, ridge migration, asymmetrical 

spreading, background mantle flow and ridge-plume interaction where a more 

rigorous approach may be prohibitively expensive from a computational standpoint. 

 

2.2 Code Availability 

MeltMigrator is available from GitHub with the MIT License at 

https://github.com/montesi/MeltMigrator. Example COMSOL input models are 

available at our group website 

http://www.geology.umd.edu/~montesi/Geodynamics/software.html#MeltMigrator.  

 

2.3 Methods 

2.3.1 Prerequisite and Model Input 

MeltMigrator is programmed in MATLAB®. The main script, meltMain, 

calls a number of attendant functions, most of which are defined in stand-alone 

scripts, to conduct various steps of the calculation. Here we describe the calculation 

https://github.com/montesi/MeltMigrator
http://www.geology.umd.edu/~montesi/Geodynamics/software.html#MeltMigrator
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procedure step by step. Scripts contained in MeltMigrator package are listed in 

Appendix Table A.1 and a flowchart of the major calculation steps is included 

(Appendix Figure A.1). The parameters that govern code behavior, including the 

definition of the plate boundaries under consideration, are set up in the script 

setParameters, removing the need to modify any of the attendant scripts. Each 

script starts with a description of its function, definition of its internal and external 

variables, and a list of dependencies (attending scripts).  

The software starts by reading a pre-existing three-dimensional 

thermomechanical model of a mid-ocean ridge system. The model should be 

constructed in a Cartesian coordinate system, and extend to sufficient depth to include 

the bottom of the melting region. The temperature and velocity fields solved in the 

model should be exportable to MATLAB®. We typically use a model of mantle flow 

and thermal structure constructed using COMSOL Multiphysics® 4.3, which is 

transferred into MATLAB® using LiveLink™ for MATLAB®, with the mphinterp 

function. The software is also setup to use numerical model results saved as a text file 

with x, y, z, velocity in x-direction, velocity in y-direction, velocity in z-direction, 

and temperature data organized in columns. To use this capacity, users need to set the 

parameter Switch_UseCOMSOL in setParameters to 0. In either mode, the 

name of the file containing the model is stored as the ModelName variable in 

setParameters. 

Key parameters must be entered in the setParameters script 

independently from the external model input. They include the spreading rate and 

spreading direction (in relation to the x axis) of the ridge system, the limits of model 
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domain, and the coordinates of waypoints that define the plate boundary. The code 

automatically determines the length and obliquity (defined as the angle between the 

plate motion direction and the normal to the ridge axis) of each plate boundary 

segment and stores the necessary information in the structure Geometry. 

MeltMigrator has been applied to a variety of plate boundaries settings, 

including intratransform spreading centers [Hebert and Montési, 2011], transform 

faults [Bai and Montési, 2015], and oblique segments [Montési et al., 2011]. The 

ridge system in the demonstration model is spreading in x axis direction at a half-

spreading rate of 2 cm/yr. The plate boundary is defined by three ridge segments 

offset by one transform fault and one oblique segment (Figure 2.1). 

2.3.2 Melting Function and Calibration 

Partial melting beneath mid-ocean ridges results from adiabatic 

decompression of the mantle. The degree and extent of melting is a function of 

temperature, pressure, bulk chemical composition, and volatile content (e.g., H2O). 

To simulate mantle melting in the routine, we can use either thermodynamic models 

such as MELTS and pMELTS [Ghiorso, 1994; Ghiorso and Sack, 1995; Ghiorso et 

al., 2002; Asimow and Stolper, 1999] or a melting parameterizations [e.g., Reid and 

Jackson, 1981; McKenzie and Bickle, 1988; Hirschmann, 2000; Katz et al., 2003; 

Behn and Grove, 2015]. The latter approach is typically preferred when dealing with 

three-dimensional calculations due to its computational efficiency. In the 

MeltMigrator, the melting function is implemented as a user-defined function 

meltFunction (a function of depth z and temperature T), which can be an inline 

function or an external function script. 
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Figure 2.1 Permeability barrier and melt migration setup for a generic mid-ocean 

ridge model with three spreading segments offset by one transform fault and one 

oblique segment. a) The plate boundary is indicated by the thick black line. The 

colors reflect the depth of the barrier. Crest, divides, summits, and saddles are 

displayed as shown in the legend. A shoulder is highlighted as the shaded region. The 

dashed line indicates the cross section used for calibrating the melt function. The 

white dots serve as seeds for the melt trajectories shown in b). b) Melt trajectories and 

associated tessellation of the lid. A representative swath is highlighted in yellow. c) 

Three-dimensional rendition of the barrier (green surface with black depth contours), 

shoulder divides (blue), melt trajectories (white with cyan seed) and tiles. The orange 

box represents the melt extraction zone. The height of the red surface along the plate 

boundary is proportional to the accreted crustal thickness.  
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Multiple melting parameterizations have been developed through theoretical 

and experimental studies [e.g., Langmuir et al., 1992; Kinzler and Grove, 1992; 

Iwamori, 1994; Kinzler, 1997; Hirschmann, 2000; Katz et al., 2003; Till et al., 2012; 

Behn and Grove, 2015]. In the simplest case, the equilibrium melt fraction for small 

degrees of melting (5–25%) is approximated as a linear function of temperature in 

relation to the solidus and liquidus—i.e., the difference between temperature and 

solidus, scaled by the difference between solidus and liquidus [Bottinga et al., 1978; 

Reid and Jackson, 1981]. The linear melting formula by Reid and Jackson [1981], 

which is adopted in the demonstration example, is provided in the 

meltFunctionRJ1981 script. Alternatively, the script meltFunctionMELTS 

uses a look-up table of results from the alphaMELTS thermodynamics software 

[Smith and Asimow, 2005].   

It is possible to automatically adjust the melting function so that a reference 

crustal thickness, specified by the variable named 

CrustalThickness_Reference, is produced at a certain point along the mid-

ocean ridge axis. The calibration is conducted along a two-dimensional vertical cross 

section, perpendicular to a selected ridge segment, ideally away from transform 

faults, oblique segments, and/or borders of the computational domain. In the example 

model, the script places the cross section at the center of the longest ridge segment. 

The temperature and vertical velocity data from the external model are interpolated 

on a grid of sampling points on the cross section from the input model result. The 

crustal thickness obtained by collecting all the melt produced in the selected cross 

section, Ha, is given by: 
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 𝐻𝑎 = ∫ ∫
𝜕𝐹

𝜕𝑧

𝑣𝑧

2𝑉𝑝
𝑑𝑧 𝑑𝑥

0

𝑧𝑏

𝐿𝑚

0
 (2.1) 

where F is the melt fraction calculated using meltFunction, vz is the vertical 

velocity of the mantle, Vp is the half-spreading rate, Lm is the length of the cross 

section, and zb is the depth to the base of the melting column [e.g., Reid and Jackson, 

1981]. The calculated value of Ha is then divided by the user-defined reference crustal 

thickness to produce a scaling factor, with which meltFunction is updated, so that 

desired level of crustal thickness can be generated along the target portion of ridge 

segments. This scaling factor can be interpreted as a measure of the efficiency of melt 

extract, or a correction on the melting function parameters. The calibration operation 

is optional and can be switched on/off using the variable named 

Switch_MeltCalibration in setParameters. 

As noted above, it is also possible to use MeltMigrator with thermodynamic 

models in mantle melting calculation (e.g., alphaMELTS) [Smith and Asimow, 2005] 

by calling meltFunctionMELTS as meltFunction for melt fraction 

calculation, although this tends to be computationally expensive. alphaMELTS is a 

versatile program that utilizes the MELTS [Ghiorso and Sack, 1995] and pMELTS 

[Ghiorso et al., 2002] algorithms to calculate the equilibrium assemblages of 

multicomponent systems, such as the mantle, along a user-defined thermodynamic 

path. It may perform batch, fractional or continuous melting, and crystallization 

calculations in anhydrous, water-undersaturated, or water-saturated settings. It also 

features a batch mode, making the large-scale automatic processing possible.  

To use alphaMELTS in our calculations, we constructed a look-up table of 

melt fraction and temperature as a function of depth and mantle temperature. In the 
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example provided in the Appendix, we use the isentropic mode of alphaMELTS, 

which assumes continuous melting with a retained melt fraction of 1%. We start with 

the chemical composition of depleted MORB mantle (DMM) derived by Workman 

and Hart [2005]. For each mantle potential temperature, we increase depth until the 

mantle is solid and initiate isentropic decompression, recording the melt fraction and 

temperature at each depth. For each sampling point of the numerical model, we take 

the temperature and pressure into the look-up table to find the corresponding melt 

fraction. Besides melt fraction, alphaMELTS outputs a rich collection of results, 

including the major and trace element composition of the solid and the liquid, 

abundance and composition of mineral phases, and the physical properties of all 

phases present, which can also be stored in the look-up table and used to evaluate the 

chemical properties of the magma (the function of tracking chemical species is not 

included in the current version of MeltMigrator).  

2.3.3 Permeability Barrier Sampling and Characterization 

A critical aspect of the three-step melt migration procedure adopted here is the 

involvement of a permeability barrier at the base of thermal boundary layer [Sparks 

and Parmentier, 1991; Montési et al., 2011]. The barrier forms a lid to the upward 

melt migration zone and will be referred interchangeably as the permeability barrier 

or the lid. The permeability barrier appears where the melt crystallizes rapidly 

[Korenaga and Kelemen, 1997] and is often associated with the multiple saturation 

point of pyroxene and plagioclase [Kelemen and Aharonov, 1998; Hebert and 

Montési, 2010].  
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The permeability barrier forms a two-dimensional surface embedded in the 

three-dimensional temperature field. The determination of the barrier is done by a 

stand-alone function lidSample. First, a sampling grid is overlain on the 

computational domain (sampling resolution information is stored in structure Res). A 

depth-sampling vector is devised with a finer sampling spacing at shallower depth, 

where the permeability barrier is most likely located. For each grid point, the 

temperature in the sampling column is obtained by interpolating the temperature data 

imported from the numerical model (e.g., using mphinterp for COMSOL 

Multiphysics® models or MATLAB® function scatteredInterpolant for 

models constructed with other software). The temperature at which the lid is formed 

is defined as the solution to a user-defined function lidTemperature, which is set 

by default to 

 𝑇𝑙𝑖𝑑 = 1240 + 1.9𝑧 (2.2) 

where Tlid is expressed in °C and z in km, following Montési and Behn [2007] and 

Hebert and Montési [2010]. This equation represents approximately the locus of 

plagioclase/pyroxene multiple saturation during basalt crystallization [Kelemen and 

Aharonov, 1998], with the effects of pressure [Yang et al., 1996] incorporated. The 

depth of permeability barrier in each sampling column is then solved using 

lidDepth (by default, lidDepth uses the MATLAB® equation solver fzero).  

The x, y, and z coordinates, the temperature at the permeability barrier, barrier slope, 

and the horizontal gradients of the slope are calculated and stored in the MATLAB® 

structure Lid. The Lid structure is then saved in .mat format and called again later 

by several additional routines. 
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2.3.4 Melt Trajectory Tracking and Melt Swath Discretization 

Melt is assumed to travel upward along the slope of the lid until it either (1) 

enters a melt extraction zone or (2) the slope of the lid drops below a critical value. 

Details on the definition of the melt extraction zone and its relation to the critical 

slope are given by Montési et al. [2011] and Bai and Montési [2015]. 

To simulate melt transport along the lid, we discretize the permeability barrier 

into contiguous swaths separated by melt transport lines that follow the local direction 

of maximum slope [Magde and Sparks, 1997]. Melt cannot cross these lines and all 

the melt produced beneath a given swath collects within a restricted portion of the 

melt extraction zone. To define these swaths more easily, we first analyze the 

morphology of the lid and define coherent regions, or shoulders, where the melt 

would collect at a single point if there were no melt extraction zone.  

The permeability barrier is a curved surface (Figure 2.1), which by analogy to 

land topography can be described in terms of summits and depressions. Summits are 

connected by crests that roughly follow mid-ocean ridge segments and separate 

mantle domains corresponding to the two divergent plates at the mid-ocean ridge axis 

[Montési et al., 2011]. Each local elevation minimum along the crest defines a saddle. 

Starting at each saddle, divides are formed by tracking lines of maximum downhill 

slope along the lid. The boundary of each shoulder is set by the divides and the 

portion of the crest between two saddles (Figure 2.1a). All the melt generated 

underneath the shoulder would collect at the associated summit if left to propagate 

without limit along the lid.  
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The function saddlePreparation is used to locate saddles, crests, and 

divides. The user should specify the coordinate of target points near each saddle, 

preferentially at the center of the offset (transform fault or oblique segments). 

Alternatively, the user could select target points directly on the lid depth map using 

MATLAB® function ginput (use variable named 

Switch_SaddleSelectionByMouse to switch on). Because discontinuities 

along the mid-ocean ridge cause the isotherms to deepen, at least one saddle should 

be defined at each offset. In more complicated settings, more than one saddle may be 

needed. For example, Figure 2.1a shows that there are two saddles underneath the 

oblique segment of our demonstration model. 

Saddles are defined as flat areas (0 slope) found by integrating a system of 

partial differential equations that describe how lid slope Sl changes with the 

horizontal coordinates x, y 
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where L represents the traveled distance. We use MATLAB®’s ode45 to solve for 

this system of equations.  

Crests and divides are found by solving similar equations, only focused on 

depth zl instead of slope 
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To initiate the search, we first define a series of points along a circle centered 

at the saddle. The deepest point along that circle and the point on the circle directly 

opposite to it are selected as the starting point for the divides. Similarly, the highest 

point and the point on the opposite side of the circle are selected as the starting points 

for the crests. Equation 2.5 is then solved using MATLAB®’s ode23.  

The resolution of saddle lines is controlled by the integration interval set by 

the parameter Res.Saddle in setParameters. To achieve higher accuracy, 

some options may be added to set up the acceptable error, either relative or absolute. 

Information describing the saddle points, crests, and divides are stored in structure 

Saddle.  

Next, the meltTrajectorySeed function defines seeds from which melt 

trajectories are calculated. Although other strategies may be devised, we find it 

convenient to take equally spaced seeds along a contour of fixed temperature 

difference between the maximum temperature and the solidus temperature of the 

sampling columns (defined as T_MeltSeed in setParameters). Generally, two 

sets of seeds, one for each plate, are sufficient for generating melt trajectories (Figure 

2.1a, white dots). Seeds are found from starting points identified on the two sides of 

the model parallel to the spreading direction by integrating a trajectory perpendicular 

to the temperature gradient using the ode113 solver. Additional treatment may be 

needed if dealing with complex geometry. 
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Melt trajectories are generated using function meltTrajectory. First, the 

seeds are separated according to the shoulder that they span using a customized 

function lineSegmentIntersect [Erdem, 2010]. Then, trajectories are followed 

along directions of maximum slope upward and downward from each seed using 

Equation 2.5 and MATLAB®’s ode23 solver. To ensure that the full trajectory is 

covered, a long integration time span is selected, and a fixed number of time steps is 

used for all the integration. This may result in repeated points at the end of the 

segment where the gradient is zero. The line segments are truncated to where the 

coordinates begin to change, by deleting the repeated points. Truncated upslope 

portion and downslope portions are then combined to form a complete melt trajectory 

line segment. The resolution of the melt trajectories is controlled by the integration 

interval set by the user in setParameters. The density of melt trajectories is 

controlled by the spacing of melt seeds, although additional trajectories are 

automatically generated if none of the seeded trajectories passes close to the saddles 

that form the corner of the shoulder.  

Near the crests of the permeability barrier, where the slope approaches zero, 

numerical noise may result in unrealistic melt trajectories with abrupt turns over short 

distances. Some of the lines terminate before reaching the edge of the shoulder, while 

others extend along the crests for tens of kilometers. This pattern does not reflect the 

anticipated idealized behavior of the migrating melt (although mantle heterogeneities 

may perturb the smooth, idealized permeability barrier, and lead to irregular paths for 

melt migration [e.g., Katz and Weatherley, 2012]), but is controlled by the model 

discretization. This situation may be improved by adjusting the integration properties 
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and reducing the error tolerance at the cost of prolonging the calculation process. 

Ultimately discretization errors are limited by the input numerical model resolution.  

Melt trajectory information, including the coordinates of points on the line and 

the distance along the line, is stored in structure Shoulder.Trajectory. The 

depth, slope, and temperature along each melt trajectory are interpolated from the 

corresponding data of the permeability barrier (Lid structure), and saved along with 

the trajectory information. The melt trajectories for the example model are plotted in 

Figures 2.1b and 2.1c. 

The portion of the lid that is defined by two adjacent melt trajectories forms a 

swath. Melt generated underneath a swath travels upslope along the swath and 

collects along a segment of the plate boundary associated with the swath. The 

associated plate boundary segment is identified by connecting the termination of melt 

trajectories to the nearest points on plate boundaries. Because our interest is in melt 

migration, we only consider the portion of melt trajectories beneath which melt is 

generated. Additionally, any portion of melt trajectories deeper than a critical depth 

(LidDepthLimit, default 60 km) is discarded, because the permeability barrier 

may not develop if crystallization occurs at a great depth [Hebert and Montési, 2010]. 

The function meltSwath assembles melt swaths and divides each swath into 

a predefined number of quadrilaterals. At this point, each melt trajectories may 

contain a different number of points and is resampled into a fixed number of points so 

that the quadrilaterals spanning one melt trajectory to the next conform between 

adjacent swaths. The areas and the center coordinates of quadrilaterals are calculated. 

The depth and slope of permeability barrier at the center of the quadrilateral are 
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interpolated from the Lid structure. A melting column is defined from the center 

point at the surface of each quadrilateral down to the bottom of the model, and 

sampled according to a predefined depth sampling vector. At each sampling depth, 

the temperature and vertical velocity of the mantle are interpolated from the imported 

model data. Melt fraction is calculated using meltFunction and integrated over 

the entire column. We compute  

 𝑝 = {
0                           , 𝐹 < 𝐹𝑐

max (𝑣𝑧
𝜕𝐹

𝜕𝑧
, 0) , 𝐹 ≥ 𝐹𝑐

 (2.6) 

 𝑓 = ∫ 𝑝 𝑑𝑧
𝑧𝑡

𝑧𝑏
  (2.7) 

where p is the melt production rate, Fc is the critical melt fraction representing the 

retained melt fraction in the mantle, which is set by the parameter 

MeltFractionCutoff in setParameters, f is the melt flux, and zt is the 

minimum depth of the melting column [McKenzie, 1985]. This calculation assumes 

that melt generated in the melting columns rises vertically, as expected from the latest 

estimates of mantle permeability [Miller et al., 2014]. Migration along the 

permeability barrier is simulated by summing the melt flux in all quadrilaterals along 

each swath in the direction of melt migration toward the plate boundary. The swath 

and quadrilateral information are stored in structure Shoulder.Swath for later 

use. 

2.3.5 Melt Extraction and Crustal Thickness Calculation 

Crustal thickness calculation is conducted in the crustCalculation 

script. First, the thickness of crust accreted along the plate boundary (Figure 2.2a) is 

calculated by the meltExtraction function. As described in Montési et al. 
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[2011], we defined a Melt Extraction Zone (MEZ) along plate boundaries and assume 

that all melt that enters the MEZ is extracted to the nearest plate boundary. The MEZ 

may be associated with structural damages such as diking and fracturing in the brittle 

lithosphere and the ductile shear zones at greater depth [Nicolas, 1986, 1990; 

Kelemen et al., 1992; Kelemen and Dick, 1995; Macdonald et al., 1996; Perfit et al., 

1996; Hebert and Montési, 2011; Kaczmarek and Tommasi, 2011; Bai and Montési, 

2015]. We simplify the MEZ as a box extending from the plate boundaries to an 

extraction width of de and an extraction depth of ze (Figure 2.1c). Second, in the 

crustalHistory function, crustal thickness is advected following plate motion to 

generate a map of crustal thickness (Figure 2.2b) over the entire computational 

domain [Bai and Montési, 2015]. 

Melt extraction in the model is controlled by three parameters: se 

(ExtractionSlope), de (ExtractionWidth), and ze (ExtractionDepth). 

Starting with the deepest quadrilateral in a swath, the function 

extractionDetermination determines if the current quadrilateral is located in 

the MEZ. If it is, the melt contained in that quadrilateral is assigned to the nearest 

plate boundary segment. If not, the melt moves onto next quadrilateral in the swath, 

but only if slope of the lid is larger than se. Otherwise the melt in that quadrilateral is 

trapped and refertilizes the ambient mantle, forming what we term cryptic crust. 

Following Bai and Montési [2015], we recommend using 4 km, 20 km and 0.1 for 

ExtractionWidth, ExtractionDepth, and ExtractionSlope, 

respectively. The MEZ can be switched off by setting the value of  
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Figure 2.2 a) Crustal thickness profile along plate boundary segments (labeled) for 

the example model. Thin black line shows unfiltered crustal thickness. The red line 

shows smoothed crustal thickness with a smoothing width of 60 km. The blue line 

shows the average crustal thickness within each plate boundary segment. b) Map 

view of crustal thickness distribution over seafloor in the example model. Spreading 

directions and plate boundary segments are labeled.  



 

36 

 

ExtractionWidth to NaN, in which case melt can only get to the surface when it 

reaches a ridge segment. 

The quadrilaterals within the MEZ are projected onto the nearest plate 

boundary segment. That projection spans a length Ld of the plate boundary and serves 

as the destination of the melt collected in that quadrilateral. We predefine points 

along the plate boundary and track the thickness of melt accumulated at each point. If 

a point is within the receiving segment of a quadrilateral, its crustal thickness 

increases by 

 𝑑𝐻 =
𝑓𝑡𝐴

2𝑉𝑝𝐿𝑑
  (2.8) 

where A is the area of the quadrilateral and ft is the total melt flux at the quadrilateral, 

due to melting directly below the quadrilateral and transport from deeper 

quadrilaterals along the swath. We also track the average and maximum melt fraction, 

the average melting depth, and the thickness of cryptic crust along the swath. After 

iterating over all the quadrilaterals and all the swaths, we obtain a profile of melt 

delivery, expressed as a crustal thickness, along the plate boundary (Figure 2.2a).  

Model discretization often results in short-wavelength noise in the crustal 

thickness profile (Figure 2.2a). To reduce this numerical artifact, we smooth the 

profile using the function fastSmooth, [O’Haver, 2008]. It filters the data (e.g., 

crustal thickness, average melt fraction, etc.) in each plate boundary segment 

separately, with three passes of a sliding boxcar average over a smoothing width Lf 

(SmoothingWidth). The smoothing width decreases progressively close to the 

edges of the segment, but gets no smaller than Lf/2. The treatment removes short-

wavelength noise but preserves larger-scale anomalies associated with the changes in 
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plate boundary type and geometry (Figure 2.2a). The smoothing step can also be 

interpreted as representing redistribution of melt at crustal level and is therefore 

conducted segment by segment. The smoothing width Lf can be regarded as the 

distance of lateral dike propagation in the crust. A value of ~50 km is geologically 

plausible [Fialko and Rubin, 1998]. 

The distribution of crustal thickness throughout the computational domain can 

be inferred from the crustal accretion profile along plate boundaries, assuming the 

newly formed crust is advected in the direction of spreading. For convenience, we 

reorient the plate boundaries such that the spreading direction is parallel to the x axis. 

After reorientation, we set up a new model boundary around the plate boundaries, 

leaving sufficient space to cover the original model. The new model geometry is then 

gridded into rectangular tiles.  

Initially, the crustal thickness in each tile is set to 0. If a tile is within an 

accretion width da of a plate boundary, we add to its crustal thickness the thickness of 

crust accreted to the axis, scaled by the ratio between the tile width and the accretion 

width. The accretion width is typically different from the width of the MEZ, as the 

extracted (erupted) melt is mobile and may travel for some distance on the seafloor, 

in surface lava flows, lava tubes, or otherwise [Chadwick and Embley, 1994; Sinton et 

al., 2002; Smith and Cann, 1999]. The width of the accretion zone can be set to 

different values at spreading centers and transform faults using the 

AccretWidth_Ridge and AccretWidth_Transform parameters. Each tile 

may collect melt accreted at several plate boundary segments.  
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Finally, starting from the tiles at the plate boundaries, the crustal thickness in 

each tile is carried onto the next tile in the spreading direction. A map of seafloor 

crustal thickness is produced as the output (Figure 2.2b). The script further calculates 

and reports the average crustal thickness within the ridge domain, the transform fault 

domain, the oblique segment domain, and the whole domain as diagnostics. 

 

2.4 User Workflow 

The user interacts with the software principally by adjusting parameters in the 

setParameter script. In principle, it is possible to specify all the required 

parameters and let the code run. However, it is often useful to check outputs at 

intermediate steps and adjust the necessary parameters.  

In our experience, the following user workflow leads to the best results. First, 

edit setParameter. The user should specify the name of the pre-existing model, 

the geometry of the model bounding box and the plate boundary, then run 

meltMain through the cell labeled “Lid Sampling.” This step extracts the lid 

information and produces plots of lid topography. Based on the graphical output, the 

user should specify the starting points for the saddle (variable 

SaddleInitialPoint in setParameter). If desired, adjust the remaining 

parameters in setParameter, which control the choice of melting function, the 

type of calibration, and the resolution of the lid tessellation and crustal thickness 

calculation. The user can then run meltMain to completion. 
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2.5 Conclusions 

The MeltMigrator software processes three-dimensional mantle temperature 

and velocity data imported from external numerical models and returns melt 

migration trajectories, melt flux along plate boundaries, and crustal thickness 

distribution of the seafloor, with options of calculating mantle melting using 

thermodynamic models. It treats melt generation and migration as processes 

independent of mantle convection, and therefore is capable to handle three-

dimensional mid-ocean ridge models with complex settings such as oblique segment, 

asymmetrical spreading, background mantle flow, and ridge-plume interaction, 

although compaction is represented only approximately. The software provides 

results that can be compared with gravity, seismic, and topographical data sets 

collected at mid-ocean ridges and may help users to gain insight into the melt 

migration and crustal accretion processes in their target regions.  

The code is flexible and can be applied to mid-ocean ridge models constructed 

in various codes or software environments. Programmed in a modular manner, the 

routine can be easily tweaked or replaced based on users’ need. With proper 

modification, it may be extended to other divergent systems such as rift zone and 

back-arc spreading center, and subsurface fluid migration in nondivergent settings. 
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Chapter 3: Slip-rate dependent melt extraction at oceanic 

transform faults 
 

Bai, H., and L. G. J. Montési (2015), Slip-rate-dependent melt extraction at oceanic 

transform faults, Geochem. Geophys. Geosyst., 16, 401–419, 

doi:10.1002/2014GC005579. 

 

Abstract 

Crustal thickness differences between oceanic transform faults and associated 

mid-ocean ridges may be explained by melt migration and extraction processes. 

Slow-slipping transform faults exhibit more positive gravity anomalies than the 

adjacent spreading centers, indicating relative thin crust in the transform domain, 

whereas at intermediate-spreading and fast-spreading ridges transform faults are 

characterized by more negative gravity anomalies than the adjacent spreading centers, 

indicating thick crust in the transform domain. We present numerical models 

reproducing these observations and infer that melt can be extracted at fast-slipping 

transforms, but not at slow-slipping ones. Melt extraction is modeled as a three-step 

process. (1) Melt moves vertically through buoyancy-driven porous flow enhanced by 

subvertical dissolution channels. (2) Melt accumulates in and travels along a 

decompaction channel lining a low-permeability barrier at the base of the thermal 

boundary layer. (3) Melt is extracted to the surface when it enters a melt extraction 

zone. A melt extraction width of 2–4 km and a melt extraction depth of 15–20 km are 

needed to fit the tectonic damages associated with oceanic plate boundaries that reach 

into the upper mantle. Our conclusions are supported by the different degrees of 

magmatic activities exhibited at fast-slipping and slow-slipping transforms as 

reflected in geological features, geochemical signals and seismic behaviors. We also 

http://dx.doi.org/10.1002/2014GC005579
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constrain that the maximum lateral distance of crust-level dike propagation is about 

50–70 km. 

 

3.1 Introduction 

Oceanic transform faults commonly offset mid-ocean ridges, and influence the 

thermal structure of spreading centers and the associated melt generation [Parmentier 

and Forsyth, 1985; Langmuir and Bender, 1984; Phipps Morgan and Forsyth, 1988; 

Gregg et al., 2009; Roland et al., 2010; Hebert and Montési, 2011]. Transform faults 

are generally assumed to be magma-poor, as conductive cooling from the adjacent 

old, cold lithosphere across the transforms may efficiently reduce mantle temperature 

and melt production beneath the transforms [Fox and Gallo, 1984; Shen and Forsyth, 

1992]. However, evidence of volcanism has been discovered at several transform 

faults. Ophiolite complexes in Cyprus reveal diking activities in a transform fault 

setting [Murton and Gass, 1986]. Basaltic lavas were recovered from basins in the 

Blanco transform at the intermediate-spreading Juan de Fuca Ridge [Gaetani et al., 

1995], and the Garrett and Siqueiros transforms at the fast-spreading East Pacific Rise 

[Hékinian et al., 1992; Perfit et al., 1996]. We explore here the conditions under 

which melt may be extracted at oceanic transform faults and how this is related to the 

crustal thickness inferred from Residual Mantle Bouguer Anomalies (RMBA) 

A recent compilation of RMBA from 19 oceanic ridge-transform systems 

[Gregg et al., 2007] suggests that crustal accretion is taking place along transforms 

but only at fast-spreading and intermediate-spreading mid-ocean ridges. At slow-

spreading mid-ocean ridges, transform faults exhibit more positive gravity anomalies 
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than the associated spreading centers. By contrast, at intermediate-spreading and fast-

spreading ridges, transform faults are characterized by more negative gravity 

anomalies than the adjacent spreading centers [Gregg et al., 2007]. Gravity anomalies 

reflect density variations that may result from variations in rock porosity, alteration, 

crustal thickness, or mantle diapirism and melting. Since the most negative anomalies 

are not located in the transform troughs, where porosity and alteration are expected to 

be the highest, the RMBA differences between transforms and ridges are interpreted 

as consequences of crustal thickness variations: the crust at intermediate-slipping and 

fast-slipping transforms is thicker than at the adjacent ridge, implying active 

magmatism at these transforms. By contrast, no thickening is observed at slow-

slipping transforms, consistent with focused mantle upwelling at slow-spreading 

ridges [Lin et al., 1990; Gregg et al., 2007; Gregg et al., 2009].  

Several mechanisms have been proposed to explain volcanic activity at 

transform faults, including: (1) “leaky” transform faults [Menard and Atwater, 1969]; 

(2) intratransform spreading centers (ITSCs) [Fornari et al., 1989; Gregg et al., 

2009]; and (3) three-dimensional migration of melt toward the transform faults 

[Karson et al., 2002; Hebert and Montési, 2011]. “Leaky” magmatism is induced by 

transtensional forces from plate reorientation on a transform fault [Menard and 

Atwater, 1969]. It has been invoked to account for magma extrusion and intrusion in 

the transform troughs [e.g., Thompson and Melson, 1972; Murton and Gass, 1986; 

Hékinian et al., 1992], but it does not explain the excess crust at the Clipperton 

transform [Gregg et al., 2007], which is under transpression [Pockalny, 1997]. 

Several ITSCs have been sampled and contain young volcanic rocks [e.g., Fornari et 
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al., 1989]. Related crustal accretion is likely to contribute to thickened crust in the 

fast-slipping transform domains [Gregg et al., 2009], but basaltic lavas are also 

recovered from transform valleys away from ITSCs [Perfit et al., 1996; Tepley et al., 

2004], suggesting that ITSCs alone cannot explain all of the volcanism in transforms. 

Recent numerical models incorporating a temperature-dependent mantle viscosity 

with a viscous-plastic approximation for brittle failure generate enhanced mantle 

upwelling beneath areas with high strain rate, like transforms [Behn et al., 2007; 

Roland et al., 2010]. This enhanced upwelling induces elevated temperature and thin 

lithosphere, which may promote melt transport toward the transform faults. 

While the mechanisms mentioned above are not mutually exclusive, we focus 

here on the effects of three-dimensional melt migration beneath ridge-transform 

systems. At mid-ocean ridges, melt is generated by decompression of the mantle that 

rises in response to the divergence of plates. Subsequent extraction of melt can be 

modeled as a three-step process [Sparks and Parmentier, 1991; Montési et al., 2011; 

Gregg et al., 2012]: (1) Melt moves vertically through buoyancy-driven porous flow 

enhanced by subvertical dissolution channels [e.g., Kelemen et al., 1997]. (2) Melt 

accumulates in and travels along decompaction channels associated with a 

permeability barrier at the base of thermal boundary layer [Sparks and Parmentier, 

1991; Spiegelman, 1993; Hebert and Montési, 2010] generally sloping toward the 

ridge axes. (3) Melt is extracted to the surface when it enters a melt extraction zone 

[Ghods and Arkani-Hamed, 2000]. The melt extraction zone probably reflects 

structural damage related to the tectonic activities at the plate boundary [Montési et 

al., 2011]. It may be present at both ridge and transform segments of oceanic 
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spreading centers [Hebert and Montési, 2011]. However, the width and depth of melt 

extraction zone remain poorly constrained.  

To explain the thickened crust and active magmatism at fast-slipping 

transforms, and the absence of magmatism at slow-slipping transforms, we 

hypothesize that, at fast-spreading ridges, the melt extraction zone intersects the 

permeability barrier beneath the transform fault and magma erupts along the 

transform, resulting in thickened crust in the transform domain; at slow-spreading 

ridges, the permeability barrier is too deep to intersect the melt extraction zone 

beneath the transform domain, resulting in little magmatic activity and thin crust 

along the transform fault. This hypothesis is evaluated using numerical models of the 

three-dimensional mantle flow and thermal structure of segmented ridges and the 

associated pattern of melt migration, focusing, and crustal accretion.  

 

3.2 Model Setup 

The oceanic crustal thickness is regarded as a direct indicator of melt delivery 

along mid-ocean ridges and transform faults. We predict crustal thickness variations 

at ridge-transform-ridge systems using three-dimensional numerical models of melt 

migration, and provide new constrains on the melt extraction processes at segmented 

mid-ocean ridges.  

Mantle flow and the thermal structure beneath each ridge-transform system 

are solved using the commercial finite element software COMSOL Multiphysics® 

4.3, which has been benchmarked for nonlinear temperature-dependent flow in 

geological systems [van Keken et al., 2008]. For a transform with length L, the 
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computation domain is 3×L long, 2×L wide and 100 km deep, with orthogonal 

segments of length L representing the simplified geometry of the ridge-transform-

ridge system (Figure 3.1). Half-spreading rates are imposed on the two plates on top 

of the domain. Temperature on top is assumed to be 0°C, and a mantle temperature of 

1375°C is imposed on the bottom. The bottom and side boundaries are set to be 

stress-free and open to mantle upwelling and convective flux.  

A triangular mesh is defined on the top surface of the model. The element size 

is variable, with a maximum size of 10.5 km, and refined at the plate boundaries 

where the minimum element size is less than 6 km. The mesh is extruded vertically 

with layer spacing varying from 2.5 km near the surface to ~6 km at the bottom. This 

mesh resolution has been tested to be sufficiently fine as not to affect the model 

solutions, while keeping the computational cost at acceptable level. 

Using the configuration described above, we tested nine transform fault 

systems (Table 3.1), with transform length ranging from 70 to 160 km, and half-slip 

rate ranging from 1.1 to 7.45 cm/yr. The difference in RMBA data between the 

transform faults and adjacent ridge segment (RMBAT–R) are given by Gregg et al., 

[2007], and will be used to constrain the model input parameters. 

Conservation of mass, momentum and energy are expressed by: 

 ∇ ∙ 𝐕 = 0 (3.1) 

 ∇𝑃 = ∇ ∙ [𝜂(∇𝐕 + (∇𝐕)T)] (3.2) 

 𝜌𝑐𝑝(𝐕 ∙ ∇)𝑇 = ∇ ∙ (𝑘∇𝑇) (3.3) 

where 𝐕 is the mantle velocity field, 𝜌is the density of mantle, 𝜂 is the mantle 

viscosity, 𝑐𝑝 is the heat capacity, 𝑘 is the thermal conductivity, 𝑃 is the pressure, and  
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Figure 3.1 Model geometry of a generic ridge-transform-ridge system. The 

orthogonal segments on top represent ridge axes (red), and the transform fault (blue). 

The length of each segment is L. The computation domain is 3×L long, 2×L wide and 

100 km deep. Half-spreading rates are imposed on top of the two plates separated by 

the segments (dark red arrows). The red box denotes the melt extraction zone around 

the plate boundaries, with a width of de and a depth of ze.  
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Table 3.1 Characteristics of the transform faults modeled in this study. Expected 

crustal thickness differences H are calculated from the difference of residual mantle 

Bouguer anomaly between the transform and the ridge (ΔRMBAT-R) assuming an 

oceanic crust density of 2700 kg/m3 and a mantle density of 3300 kg/m3 [Wang et al., 

2011]. 

 

Transform 

Fault 

Ridge 

System1 

Approximate 

Latitude 

Half-Slip Rate 

[cm/yr] 

Length 

[km] 

ΔRMBAT-R 

[mGals] 2 
ΔH [km] 

Garrett EPR 12°S 7.45 130 -6.0 0.24 

Wilkes EPR 8°S 7.25 100 -7.7 0.31 

Siqueiros EPR 8°N 5.9 150 -13.6 0.54 

Clipperton EPR 10°N 5.75 90 -3.6 0.14 

SEIR 1 SEIR 48°S 3.77 135 -8.2 0.33 

SEIR 2 SEIR 50°S 3.72 80 -13.2 0.53 

Kane MAR 24°N 1.25 160 6.6 -0.26 

Atlantis MAR 30°N 1.2 70 35.4 -1.41 

Hayes MAR 34°N 1.1 90 13.7 -0.55 

1 EPR: East Pacific Rise; SEIR: South-East Indian Ridge; MAR: Mid Atlantic Ridge 
2 from Gregg et al. [2007]  
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𝑇 is the temperature. The variables and parameters used in this study are compiled 

with units and values in Table 3.2. This set of equations describes the mantle as an 

incompressible material, and neglects the thermal and mechanical effects of melting 

and related mantle porosity. Density is constant throughout the model. Therefore, we 

ignore the possibility of buoyancy-driven upwellings and focus on plate-driven flow. 

Although upwellings may play an important role at the slower ridges, we will see that 

this approach is sufficient to explain the global pattern of crustal thickness differences 

between spreading centers and transform faults. 

Mantle viscosity has a significant impact on mantle flow and the temperature 

field. We adopt the temperature-dependent viscosity with a viscoplastic 

approximation for brittle weakening following Behn et al. [2007] and Roland et al. 

[2010]: 

 𝜂 = min(𝜂𝑇 , 𝜂𝑌) (3.4) 

 𝜂𝑇 = 𝜂0 exp [
𝑄

𝑅
(
1

𝑇
−

1

𝑇𝑚
)] (3.5) 

 𝜂𝑌 =
𝐶0−𝜇𝜌𝑔𝑧

√2𝜀̇𝐼𝐼
 (3.6) 

where 𝜂𝑇  is the temperature-dependent viscosity, 𝜂𝑌 is the effective viscosity 

associated with brittle failure [Chen and Morgan, 1990], 𝜂0 is the reference viscosity, 

𝑄 is the activation energy, 𝑅 is the gas constant, 𝑇𝑚 is the mantle temperature, 𝐶0 is 

the cohesion, 𝜇 is the friction coefficient, 𝑔 is the gravity acceleration, 𝑧 is the depth, 

and𝜀𝐼̇𝐼is the second invariant of the strain rate tensor. Incorporating this viscoplastic 

rheology reduces the effective viscosity and induces mantle upwellings in areas with  

high strain rate such as the transform domain, leading to elevated temperature and   
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Table 3.2 Parameters and variables used in the study. 

Name Symbol Value Unit Equation 

Coordinates x, y, z  km  

Transform length L 50 – 350 km  

Mantle velocity  V  cm∙yr-1 (3.1) (3.2) (3.3) 

Pressure P  Pa (3.2) 

Temperature T  °C 
(3.3) (3.5) (3.7) 

(3.10) 
Gravity g 9.8 m∙s-2 (3.6) 

Mantle density  3300 kg∙m-3 (3.2) (3.3) (3.6) 

Effective viscosity   Pa∙s (3.2) (3.4) 

Viscosity (ductile process) T  Pa∙s (3.4) (3.5) 

Viscosity (brittle process) Y  Pa∙s (3.4) (3.6) 

Reference viscosity 0 1019 Pa∙s (3.5) 

Activation energy Q 250 kJ∙mol-1 (3.5) 

Gas constant R 8.314 J∙mol-1∙K-1 (3.5) 

Mantle potential temperature Tm 1375 °C (3.5) 

Cohesion C0 10 MPa (3.6) 

Friction coefficient  0.6 No dimension (3.6) 

Second invariant of the strain rate 

tensor 
  s-1 (3.6) 

Specific heat capacity cp 1250 J∙kg-1∙K-1 (3.3) 

Effective thermal conductivity k  W∙m-1∙K-1 (3.3) (3.7) 

Reference thermal conductivity k0 3 W∙m-1∙K-1 (3.7) 

Nusselt number Nu 8 No dimension (3.7) 

Smoothing factor A 0.75 No dimension (3.7) 

Maximum temperature of 

hydrothermal circulation 
Tcut 600 °C (3.7) 

Maximum depth of hydrothermal 

circulation 
zcut 6 km (3.7) 

Temperature of permeability barrier Tbarrier  °C (3.8) 

Width of melt extraction zone de 2 – 8 km  

Depth of melt extraction zone ze 10 – 40 km  

Crustal redistribution length Lf 10 – 70 km  

Crustal thickness H  km (3.9) 

Crustal thickness difference ΔH  km (3.12) (3.13) 

Half-spreading rate Vp 1.0 – 7.5 cm∙yr-1 (3.9) 

Distance along melt trajectories xm  km (3.9) 

Length of a melt trajectory xml  km (3.9) 

Melt flux f  km∙yr-1 (3.9) (3.10) 

Bottom of the melting column zb  km (3.10) 

Top of the melting column zt  km (3.10) 

Melt production rate p  yr-1 (3.10) (3.11) 

Melt fraction F  % (3.11) 

Critical melt fraction Fc 1 % (3.11) 

Relative standard deviation   km (3.12) 

Degree of constrains  15 No dimension (3.13) 

  

II
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increased melt supply beneath the transform domain [Behn et al, 2007].  

The thermal structure of mid-ocean ridges is influenced by the hydrothermal 

circulation of seawater in the cold brittle crust [Sinha and Evans, 2004]. As the 

properties and dynamics of the circulating seawater are poorly constrained [e.g., 

Fontaine and Wilcock, 2007], we adopted the simplified model, originally proposed 

by Phipps Morgan et al. [1987] and Phipps Morgan and Chen [1993], that captures 

the effect of hydrothermal circulation as an enhanced thermal conductivity. Here we 

used the parameterization of Phipps Morgan and Chen [1993] where hydrothermal 

circulation is limited to temperatures less than 𝑇cut = 600°C and depth less than 𝑧cut = 

6 km and where thermal conductivity decreases exponentially with increasing depth 

and temperature: 

𝑘 = 𝑘0 + 𝑘0(Nu − 1) exp [𝐴 (1 −
𝑇

𝑇cut
)] exp [𝐴 (1 −

𝑧

𝑧cut
)] exp(2𝐴)⁄  (3.7) 

where 𝑘0 is the reference thermal conductivity, Nu is the Nusselt number, and 𝐴 is a 

smoothing factor.  

After the mantle flow and thermal structure of the model are solved using 

COMSOL Multiphysics®, data are exported to MATLAB® to investigate melt 

trajectory. The extent of melting is a function of temperature, pressure, and the 

chemical composition of mantle [Grove et al., 1992; Langmuir et al., 1992]. Here we 

assume equilibrium batch melting and use the nonlinear anhydrous melting functions 

proposed by Katz et al. [2003], which includes the change of melting rate due to the 

exhaustion of pyroxene.  

After melt is generated, it segregates from the residual solids through porous 

flow and/or channelized flow [e.g., Kelemen et al., 1997]. The rate of melt migration 
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depends on the permeability of the upper mantle [e.g., Zhu and Hirth, 2003; Zhu et 

al., 2011]. A recent experimental quantification of mantle permeability using three-

dimensional X-ray microtomography leads to an estimation of melt transport velocity 

in the order of 1 m/yr [Miller et al., 2014]. Since the crustal thickness is not directly 

affected by the melt transport velocity, we ignored the variations in rate of melt 

migration, and assume melt moves vertically uniformly through mantle before getting 

to the base of thermal boundary layer, where rapid crystallization of melt facilitates 

the formation of a permeability barrier [Sparks and Parmentier, 1991]. The 

permeability barrier develops when the decompaction time scale of mantle exceeds 

the crystallization time scale of melt [Korenaga and Kelemen, 1997]. It is associated 

to the multiple saturation point of plagioclase and pyroxene [Kelemen and Aharonov, 

1998; Hebert and Montési, 2010]. The temperature of the permeability barrier is 

given approximately by Montési and Behn [2007]: 

 𝑇barrier = 1240℃ + 1.9𝑧 (3.8) 

where 𝑇barrier is the temperature of permeability barrier and 𝑧 is depth below seafloor 

in kilometers. Subcrustal reflectors possibly corresponding to the permeability barrier 

have been recently seismically detected along East Pacific Rise (EPR) at the predicted 

depth [Arnoux and Toomey, 2013]. 

As the pore space above the permeability barrier is closed, melt accumulates 

in a decompaction channel that develops at the base of the barrier [Sparks and 

Parmentier, 1991; Spiegelman, 1993]. Melt then moves along the barrier toward the 

ridge axis, where the barrier is shallowest. Fertile heterogeneities in the mantle may 

perturb the decompaction channel and lead to melt pooling at the base of the 
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lithosphere away from ridge axis [Katz and Weatherley, 2012]. We neglect this effect 

as the amplitude and spatial distribution of mantle heterogeneities is poorly 

constrained. Since we assume that melt is driven by its buoyancy, melt migration 

along the permeability barrier will follow the direction of maximum slope [Magde 

and Sparks, 1997], which, in our models focus melt to the ridge axes. Some melt 

travels laterally to a different ridge segments other than the one closest to where melt 

was generated. Along the way, it may travel underneath the transform fault, as 

illustrated in Figure 3.2 [Weatherley and Katz, 2010; Hebert and Montési, 2011]. 

A melt extraction zone (MEZ), where melt is able to penetrate the 

permeability barrier and get extracted to the surface [Montési et al., 2011] is defined 

around the plate boundaries near the surface. Physically, the MEZ may be associated 

with the structural damages in the cold, brittle lithosphere, but as we will see, it needs 

to extend to greater depths. Field observations indicate that diking and fracturing 

present at mid-ocean ridges and transform faults are possible mechanisms for the melt 

extraction [Nicolas, 1986, 1990; Kelemen and Dick, 1995; Macdonald et al., 1996; 

Perfit et al., 1996]. Transport along melt-impregnated ductile shear zones [Kelemen et 

al., 1992; Kaczmarek and Tommasi, 2011] may play a role at greater depth. We 

assume here that the MEZ extends from the plate boundaries to an extraction width of 

de, and an extraction depth of ze (Figure 3.1). Both parameters are poorly constrained 

and have been varied systematically in this study. Melt entering MEZ is directly 

extracted to the surface and accretes to the nearest plate boundary, contributing to the  

crustal thickness. We assume the MEZ is present along the entire plate boundary 

system, including transform faults.   
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Figure 3.2 Map of the depth of permeability barrier in the computation domain for 

the fast-slipping Siqueiros transform (half-slip rate: 5.9 cm/yr, transform length: 150 

km). White lines are the trajectories of melt along the barrier. If melt extraction is 

ignored, some of the melt travels laterally underneath the transform fault to a different 

ridge segment.  
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Crustal accretion along the plate boundaries is calculated using the following 

equations [Montési et al., 2011]: 

 𝐻 =
1

2𝑉half
∫ 𝑓 𝑑𝑥𝑚
𝑥𝑚𝑙
0

 (3.9) 

 𝑓 = ∫ 𝑝 𝑑𝑧
𝑧𝑡

𝑧𝑏
 (3.10) 

 𝑝 = {
0             , 𝐹 < 𝐹𝑐

max(𝑣𝑧
𝜕𝐹

𝜕𝑧
, 0) , 𝐹 ≥ 𝐹𝑐

 (3.11) 

where 𝐻 is the crust accretion, defined as the thickness of crust accreted at each 

instant along the ridge axis (Figure 3.3), 𝑉half is the half-spreading rate, 𝑓 is the melt 

flux, 𝑥𝑚 is the distance along melt trajectories, 𝑥𝑚𝑙 is the length of each melt 

trajectory, 𝑧𝑏 and 𝑧𝑡 are the depth of the bottom and the top of the melting column, 𝑝 

is the melt production rate, 𝐹𝑐 is the critical melt fraction representing the retained 

melt fraction in the mantle [Kelemen et al., 1997; The MELT Seismic Team, 1998], 

and 𝑣𝑧 is the velocity of mantle upwelling. Here, we assume 𝐹𝑐  = 1%, consistent with 

estimates of residual melt fractions in the mantle [McKenzie, 1985; The MELT 

Seismic Team, 1998]. Changing this parameter has only a minor effect on our 

calculations. 

We applied a smoothing function along the calculated crust accretion profile 

to represent horizontal redistribution of melt at crustal level along each segment of 

the plate boundary [Montési et al., 2011]. The smoothing is implemented using the 

script fastsmooth contributed to MatlabCentral. It processes the data with three 

passes of a sliding average (boxcar), with a smooth width Lf. We modified the script  

so that it handles the edges of the signal (the first Lf /2 points and the last Lf /2 points)   
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Figure 3.3 Crustal accretion profile for the fast-slipping Siqueiros transform (half-

slip rate: 5.9 cm/yr, transform length: 150 km), with an extraction width of 2 km and 

an extraction depth of 15 km. The three boxes indicate crust accretion along ridge, 

transform and ridge, respectively. Profiles in different colors correspond to different 

crustal redistribution length Lf. As Lf increases, the crust is more uniform along the 

ridge segment, and crustal accretion close to the transform increases. 
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with progressively smaller smooth width closer to the end, but no smaller than Lf /2. 

Each segment of the plate boundaries is smoothed separately.  

The width of smoothing Lf can be regarded as the distance of lateral dike 

propagation. We varied this melt redistribution length scale Lf from 10 to 70 km, 

consistent with geological constrains (see Discussion section 3.4.2 for detail). With 

increasing Lf, the crust is averaged along the segment, and the crust accretion close to 

the transform increases (Figure 3.3). As will be discussed to a greater extent later, the 

degree of magmatism within the transform segment is not sensitive to the variation of 

Lf. The parameter Lf controls the ridge contribution of crust at transforms. Crustal 

accretion along the plate boundaries is integrated over time, considering the 

predefined trajectory of plates away from the ridge axis, to generate maps of crustal 

thickness over the computation domain (Figure 3.4). 

 

3.3 Results 

We modeled nine transform fault systems (Table 3.1), and tested different 

extraction width de, extraction depth ze, and crustal redistribution length Lf with an 

idealized ridge-transform-ridge geometry. Each model outputs mantle flow, 

temperature field, extent of melting, and trajectories of melt along the permeability 

barrier, and generates maps of crustal thickness over the computation domain. We 

compiled the model results and studied the influences of spreading rate on the crustal 

thickness variations.   

 Two examples of crustal thickness maps are shown in Figure 3.4. The upper   
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Figure 3.4 Maps of crustal thickness for the slow-slipping Atlantis transform (half-

slip rate: 1.2 cm/yr, transform length: 70 km) and the fast-slipping Siqueiros 

transform (half-slip rate: 5.9 cm/yr, transform length: 150 km). A crustal 

redistribution length of 50 km, an extraction width of 2 km and an extraction depth of 

15 km are used. In both cases, the average crustal thickness for most area of the 

seafloor is about 6–7 km. Thickened crust develops along the fast-slipping transform 

with crustal thickness increases from the inner corner of ridge-transform intersection 

to the tips of the fracture zone, whereas no thickening occurs at the slow-slipping 

transform.   
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one is for the slow-slipping Atlantis transform (half-slip rate: 1.2 cm/yr, transform 

length: 70 km), and the lower one is for the fast-slipping Siqueiros transform (half-

slip rate: 5.9 cm/yr, transform length: 150 km). The results shown here are for an 

extraction width de of 2 km, an extraction depth ze of 15 km, and a crustal 

redistribution length Lf of 60 km. 

In both cases, the average crustal thickness for most of the seafloor is about 6–

7 km, in agreement with the global trend of oceanic crust [Chen, 1992; White et al., 

1992; Wang et al., 2011]. Along the ridge segments, crustal accretion decreases close 

to the transform fault (Figure 3.3) due to the cooling effect of the transform offset, 

sometimes called the “transform fault effect” [Phipps Morgan and Forsyth, 1988]. At 

the slow-slipping transform (Figure 3.4a), the “transform fault effect” results in a 

minimum of crustal thickness along the transform fault and associated fracture zones. 

Thickened crust is generated along the fast-slipping transform (Figure 3.4b). 

Although the “transform fault effect” results in a minimum in the crustal thickness 

along the ridge as it meets the transform fault, crustal thickness increases in the 

spreading direction from the inner corner of ridge-transform intersection to the tips of 

the fracture zone. The thickened crust is due to crustal accretion along the transform 

(Figure 3.3), which accumulates on the plate as it is rafted away from the spreading 

center. By contrast, no crust is accreted along the slow-slipping transform fault 

(Figure 3.4a). 

To quantitatively evaluate the model results, we define two ridge domains and 

one transform domain as 20 km wide swaths along plate boundaries centered at ridge 

axes and transform faults. The width of the swaths is set to account for the resolution 



 

59 

 

of RMBA inversions, which is about 20–25 km [Sandwell and Smith, 1997]. We 

average the crustal thickness in the transform and ridge domains of our model and 

define the crustal thickness difference ΔH as the difference between averaged crustal 

thickness in the transform domain, HT, and in the ridge domain, HR. A similar 

measure can be evaluated from the RMBA reported by Gregg et al., [2007]. 

A chi-square (𝜒2) analysis [Press et al., 2007] is used to estimate the 

goodness of fit between the model results and the observation for the nine transform 

fault systems investigated: 

 𝜒2 = ∑ (
Δ𝐻𝑖

model−Δ𝐻𝑖
observation

𝜎
)
2

9
𝑖=1 + ∑ (

𝐻𝑅𝑖
model−𝐻𝑅𝑖

observation

𝜎
)

2

9
𝑖=1  (3.12) 

Ideally, 𝜎 would be the standard error on the observations. However, this 

quantity is not reported by Gregg et al. [2007]. Therefore, we use instead a relative 

standard error, estimated from the best fit [Press et al., 2007]: 

𝜎2 =
1

𝜐
min [∑ (Δ𝐻𝑖

model − Δ𝐻𝑖
observation)

29
𝑖=1 + ∑ (𝐻𝑅𝑖

model −𝐻𝑅𝑖
observation)

29
𝑖=1 ] (3.13) 

where 𝜐is the degree of freedom. As we have two observations, HR and ΔH for each 

of nine study areas, and we vary three parameters (de, ze, and Lf), 𝜐  = 9 × 2 – 3 = 15. 

Two sets of constraints are used: the ∆RMBA-converted crustal thickness difference 

ΔHobservation (assuming an average oceanic crust density of 2700 kg/m3 and a mantle 

density of 3300 kg/m3 [Wang et al., 2011]) and the reference thickness of oceanic 

crust HR
observation (7.1 km [White et al., 1992]). 

A range of values for the extraction width de (2–8 km), extraction depth ze 

(10–40 km), and crustal redistribution length Lf (10–70 km) have been tested in the 



 

60 

 

models. The resulting 𝜒2 values are plotted over the parameter space, as shown in 

Figure 3.5. Models with the minimum 𝜒2 values fit the observation best. 

For models with small values of extraction depth and extraction width, 𝜒2 

decreases with increasing crustal redistribution length. However, for larger extraction 

depth and width, 𝜒2 increases for the longest crustal redistribution length.  

Several combinations of parameters produce acceptable models, using a 𝜒2 

significance level of 0.5% (corresponding to a 𝜒2 value of 30.578). Acceptable 

models can be categorized into two groups. The first group has smaller values for 

extraction width and depth (de: 2–4 km, ze: 15–20 km), and larger crustal 

redistribution length (Lf: 50–70 km). The second group has larger values for 

extraction width and depth (de > 4 km, ze > 35 km), but smaller crustal redistribution 

length (Lf: 15–45 km). Neither group can be favored from purely statistical 

arguments. However, the first group is most consistent with geological observations, 

as discussed in the next section.   

To better understand the physical difference between the two groups of 

parameter combinations, we examined the crustal accretion profiles for models in 

each group (Figure 3.6). For models with fast slip rate, both groups feature melt 

extraction along the transform faults (Figure 3.6b). However, for slow-slipping 

models with the first group of parameters, no melt is extracted along the transforms, 

whereas for models with the second group of parameters, melt extraction occurs 

along the slow-slipping transform (Figure 3.6a). Both groups of parameters satisfy 

equally well the observed slip-rate-dependent RMBA variations between ridge and  
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Figure 3.5 Misfit (𝜒2) for models with varying melt extraction width de, melt 

extraction depth ze and crustal redistribution length Lf. Different colors represent 

model result with different melt extraction width. Each box contains results for a 

different melt extraction depth. Crustal redistribution length increases in each box. 

The dashed grey line shows the 𝜒2 corresponding to a significance level of 0.5%.   
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Figure 3.6 Crustal accretion profiles for models with the first group of parameters (in 

red, de: 2–4 km, ze: 15–20 km, Lf: 50–70 km) and the second group of parameters (in 

blue, de: > 4 km, ze > 35 km, Lf: 15–45 km), for a) slow- (half-slip rate: 1.2 cm/yr) 

and b) fast-slipping transforms (half-slip rate: 5.9 cm/yr). Both groups have melt 

extraction along the fast-slipping transform faults. However, for the first group of 

parameters, no melt is extracted along the slow-slipping transforms, while for the 

second group of parameters, melt extraction occurs along the slow-slipping transform.  
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transform domains and produce realistic crustal thicknesses. The major difference lies 

in, whether melt extraction is possible along the slow-slipping transforms. 

 

3.4 Discussions 

3.4.1 Melt Extraction at Slow-Slipping Transform Faults? 

To find out if melt extraction at slow-slipping transform faults is possible, we 

looked into the geological, geochemical and seismic observations at oceanic 

transform faults. Little evidence can be found supporting magmatism at slow-slipping 

transforms. Therefore, the first group of acceptable models appears more geologically 

realistic than the second group. 

Magmatism at fast-slipping to intermediate-slipping transforms has been 

discussed in a number of geological studies. For example, at the fast-spreading East 

Pacific Rise, bathymetric surveys, dredging and submersible dives have discovered 

constructional volcanic mounds and fresh lavas in the troughs of the Clipperton 

transform [Kastens et al., 1986], the Siqueiros transform [Perfit et al., 1996], the 

Garrett transform [Hékinian et al., 1992], the Terevaka transform [Constantin et al., 

1996], and the Raitt transform [Castillo et al., 1998]. Fresh basalts have also been 

found along the intermediate-slipping Blanco transform [Gaetani et al., 1995]. By 

contrast, magmatic activity is sparsely reported at slow-slipping transforms, which are 

instead dominated by exposures of serpentinized peridotite [Thompson and Melson, 

1972] or thin and weathered basalt layer on top of transform valley flanks [Auzende et 

al., 1989; Bonatti et al., 2003], implying that melt extraction seldom occurs there. 
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Besides, lavas erupted along fast-slipping transform faults are generally more 

primitive and more porphyritic than lavas from the nearby ridge axes [Perfit et al., 

1996; Castillo et al., 1998; Wendt et al., 1999]. This suggests that magma in the 

transform is extracted directly and rapidly to the surface, and no crustal processes in 

magma chambers are involved [Fornari et al., 1989; Hékinian et al., 1995]. They 

underwent a different cooling history from lava erupted along the spreading center. 

By contrast, basalts collected at slow-slipping transform faults have MgO content at 

the same level as the samples recovered from the adjacent ridge axes [Lawson et al., 

1996; Bryan et al., 1981], implying the crust at slow-slipping transforms is created at 

the associated ridge segment, without evidence for a different crystallization history 

that would represent magmatism along the transforms.    

Melt extraction processes at oceanic transform faults can also be reflected in 

seismic activity. Teleseismic data indicate different kinds of earthquakes at fast-

slipping and slow-slipping transforms. Studies of earthquake scaling relations for 

oceanic transform faults demonstrate that the seismic coupling coefficient, defined as 

the ratio between the observed and expected seismic moment [Pacheco et al., 1993] 

is about 0.15, implying that nearly 85% of the fault slip is aseismic [Boettcher and 

Jordan, 2004]. Aseismic phenomenon can be accounted for by creep events [Wesson, 

1988], slow and silent earthquakes [Beroza and Jordan, 1990; Miller et al., 2002], all 

of which are typically attributed to fault weakening resulted from changes of fluid 

pressure [Obara, 2004; Kodaira et al., 2004; Becken et al., 2011]. Magma injection 

and eruption along transform faults may lead to elevated fluid pressures that weaken 

the faults [Vidale and Shearer, 2006; Becken et al., 2011]. If melt is extracted along 
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fast-slipping transforms, but not at slow-slipping transforms, we should expect fast-

slipping transforms to be more aseismic than the slow-slipping ones. Previous studies 

suggest that the seismic coupling coefficient decreases with increasing slip rate, with 

more aseismic slip at fast-slipping transforms than at slow-slipping transforms 

[Kawaski et al., 1985; Rundquist and Sobolev, 2002]. This trend is in agreement with 

our prediction.  

However, Boettcher and Jordan [2004] argue that seismic coupling 

coefficient does not decrease significantly with increasing slip rate. They do not 

identify a systematic relation between seismic coupling coefficient and slip rate. 

These conflicting conclusions may result from the large spatial variability of 

seismicity within the transforms, which is ignored in some studies [e.g., Rundquist 

and Sobolev, 2002], but kept in the recent one [Boettcher and Jordan, 2004]. Earlier 

studies may have underestimated the seismic coupling coefficient for two reasons: (1) 

they use data from the Harvard Centroid Moment Tensor (CMT) catalog and the 

International Seismological Center (ISC) online bulletin, which have short catalog 

duration (~36 years) that may not be sufficient to span the long earthquake cycles at 

slow-slipping transforms (> 60 years, assuming a stress drop > 10 MPa [Boettcher 

and McGuire, 2009]); (2) they use a half-space cooling model to calculate the 

temperature limit of seismicity. More realistic thermal models incorporating a 

viscoplastic rheology, non-Newtonian viscous flow and the effects of shear heating 

and hydrothermal cooling lead to a smaller seismogenic area [Liu et al., 2012]. These 

effects are more pronounced for the slow-slipping transforms. Taking these effects 

into account, it is possible that the seismic coupling coefficient is actually higher at 
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slow-slipping transform than at fast-slipping transforms, implying that slow-slipping 

transforms are at least less magmatic than the fast-slipping ones.  

The differences in seismic behavior between fast-slipping and slow-slipping 

transform faults are better illuminated through microearthquake experiments 

conducted at different mid-ocean ridge systems. At the fast-spreading East Pacific 

Rise, an array of autonomous underwater hydrophones in the vicinity of the 

Clipperton transform fault recorded a cluster of earthquakes associated with dike 

intrusion and propagation [Dziak et al., 2009]. At the Blanco transform, Juan de Fuca 

Ridge, low-frequency, periodic tremor-like signals, and earthquake swarms are also 

documented, and interpreted to be of volcanic origin, which has been confirmed by 

ocean-bottom photographs and water column data [Dziak et al., 1996]. By contrast, at 

the slow-spreading Mid-Atlantic Ridge, earthquakes along the Kane transform 

[Wilcock et al., 1990] and Oceanographer transform [Cessaro and Hussong, 1986] 

detected by ocean bottom seismometers show focal mechanisms of normal faulting, 

indicating differential lithospheric extension across the transform faults, caused by a 

deficit of magmatism [Cessaro and Hussong, 1986]. Besides, a recent 4 year 

hydroacoustic monitoring of seismicity at northern Mid-Atlantic Ridge between 

~15°N and ~35°N [Smith et al., 2002; Smith et al., 2003] did not record 

microearthquakes with the characteristics of magmatic activities along the transforms 

(Deborah K. Smith, personal communication, 2013). Although seismic behavior is 

complicated by the stress state and material property of each individual transform 

faults, generally speaking, most seismic events at slow-slipping transforms have a 

tectonic origin, while seismicity at fast-slipping transforms mainly reflects magmatic 
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processes [Rundquist and Sobolev, 2002]. The distinct patterns of earthquakes at 

transform faults with varying slip rate indicate that melt extraction occurs along the 

fast-slipping transforms, but not at slow-slipping ones. 

3.4.2 Preferred Parameters for Melt Extraction 

As melt extraction along slow-slipping transform is unlikely to take place, we 

consider that the first group of acceptable models, i.e., those with melt extraction 

width de between 2 and 4 km, melt extraction depth ze between 15 and 20 km, and 

crustal redistribution length Lf between 50 and 70 km, are the most realistic. The 

dimensions of MEZ and crustal redistribution implied by these models are supported 

by several observations. 

At mid-ocean ridges, neovolcanic activity is typically confined within about 2 

km of the ridge axis [Macdonald, 1982], in agreement with our preferred value for 

melt extraction width between 2 and 4 km. Broader melt extraction zones may be 

appropriate at ultraslow-spreading center [Standish and Sims, 2010], which, as they 

lack transform offsets [Dick et al., 2003], are not considered in this study. 

Our preferred extraction depth between 15 and 20 km implies that extraction 

of melts in the ridge and transform domains mainly occurs through fractures and 

shear zones in the lithosphere. The depth of fracturing can be assessed from the 

maximum depth of earthquakes at transform faults. Ocean bottom seismometer 

studies [e.g., Wilcock et al., 1990], teleseismic inversions [e.g., Abercrombie and 

Ekström, 2001] and laboratory extrapolation [e.g., Boettcher et al., 2007] suggest that 

the seismicity at transform faults is limited by the location of 600°C isotherm, and 
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extends to a depth of ~20 km [Bergman and Solomon, 1988; Abercrombie and 

Ekström, 2001; Schlindwein et al., 2013].  

Thus fractures provide a plausible way for melt to penetrate the lithosphere, 

and our preferred values for melt extraction depth are supported. On the one hand, 

since in the model we neglected the latent heat of crystallization of melt, which 

impacts the thermal structure [Katz, 2008] and thins the thermal boundary layer, the 

actual extraction zone could be shallower than inferred here; On the other hand, the 

buoyancy-driven mantle flow neglected in this study may have an effect for ridges 

spreading slower than 1 cm/yr, thin the lithosphere underneath the ridges, focus melt 

away from the transforms and deepen the melt extraction zone. If the melt extraction 

occurs through fractures, the extraction depth probably depends on the thickness of 

the brittle layer and varies with spreading rate and lateral locality. Slow-slipping 

transforms may have deeper MEZs, and the extraction depth for fast-slipping 

transforms may be relatively shallower (see Discussion section 3.4.3 for detail). Our 

models are not sensitive to these variations as long as the permeability barrier and the 

MEZ intersect and we use one uniform extraction depth for simplicity. Furthermore, 

mantle exposures at ophiolites show that melt is typically associated with shear zones 

[Kelemen et al., 1992; Kaczmarek and Müntener, 2008; Kaczmarek and Tomasi, 

2011]. Therefore, melt extraction enhanced by deformation processes can continue 

throughout the lithosphere. 

The crustal redistribution length can be constrained by the observations of 

lateral dike propagation, which has been documented in Iceland [Einarsson and 

Brandsdottir, 1978], in Hawaii [Klein et al., 1987], on the Juan de Fuca Ridge [Fox et 
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al., 1995; Dziak et al., 1995], and on the East Pacific Rise [Dziak et al., 2009]. The 

observed lateral dike propagation distances vary, but most of them exceeds 30 km. 

Along the CoAxial segment, Juan de Fuca Ridge, a swarm of earthquakes migrated 

more than 60 km along the axis [Dziak et al., 1995]. At the East Pacific Rise, 9°50’N, 

regional seismicity reflected a lateral dike intrusion event with a propagation distance 

of 25–40 km [Dziak et al., 2009]. The length scale of crustal redistribution is 

controlled by the width, thermal state, and pressure gradient of propagating dikes. 

Thermodynamic models of lateral dike propagation show that, with a width of 1.5 m, 

a constant pressure drop of 5 MPa and a temperature of 1200°C, magma can travel in 

cold host rocks (temperature: 0–500°C) for more than 50 km before freezing [Fialko 

and Rubin, 1998]. Thus, our preferred crustal redistribution length between 50 and 70 

km is geologically plausible. Besides, even with such large melt redistribution length 

scale, along-axis variations of crustal thickness are preserved in our models, as is 

observed at both fast-spreading and slow-spreading ridges [Lin et al., 1990; Canales 

et al., 2003]. 

3.4.3 Expectations for Global Systematics 

With the preferred values for melt extraction width and crustal redistribution 

length, we systematically vary slip rate, transform length, and melt extraction depth to 

understand the systematic variation in crustal thickness between transform domain 

and ridge domain that may be expected at locations other than the nine examples 

analyzed by Gregg et al. [2007]. 

The relationship between crustal thickness difference and spreading rate for 

models with a transform length of 150 km, a crustal redistribution length of 50 km, an 
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extraction width of 2 km and varying extraction depths is shown in Figure 3.7a. The 

crustal thickness difference varies with spreading rate, and changes from negative at  

slow-spreading ridges, to positive at fast-spreading ridges (except for ze = 10 km, with 

which the transform faults cannot accumulate thicker crust than the adjacent ridges, 

even the fast-slipping ones). In other words, intermediate-slipping and fast-slipping 

transforms accumulate thicker crust than the associated ridges, while no thickening is 

present at slow-slipping transforms. The extraction depth controls the spreading rate 

at which crustal thickness changes from negative to positive. The variations of crustal 

thickness difference at half-spreading rate between 1 and 4 cm/yr reflect the spatial 

relationship between permeability barrier and MEZ (Figure 3.7b). The transition from 

nonintersection to intersection between MEZ and permeability barrier beneath a 

transform fault occurs between half-slip rate of 1 and 4 cm/yr. At extraction depth 

less than 10 km, magma cannot be fully extracted, resulting in oceanic crust thinner 

than the general estimation. Depending on the transform length, at extraction depth 

between 15 and 20 km, the MEZ cuts the permeability barrier at fast-slipping 

transforms, but not at slow-slipping ones. And at extraction depth larger than 35 km, 

the MEZ penetrates the permeability barrier everywhere in the domain despite the 

slip-rate. To satisfy the RMBA observation, at slow-slipping transforms, the melt 

extraction depth can be as deep as 30 km, while at fast-slipping transforms, the 

extraction depth may vary from 15 to 20 km. Once the MEZ fully intersects the 

permeability barrier, crustal thickness differences become stable and are no longer 

affected by the spreading rate.  
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Figure 3.7c shows the relationship between crustal thickness difference and 

transform length for models with half-spreading rate of 3 cm/yr, a crustal 

redistribution length of 50 km, an extraction width of 2 km, and different extraction 

depths. For melt extraction depth smaller than 20 km, the crustal thickness difference 

decreases with increasing length of transform. For melt extraction depth larger than 

15 km, the crustal thickness difference increases with increasing length of transform 

at short transforms, and may decrease for the longest transforms. Increasing the 

extraction depth increases the transform length for which the maximum crustal 

difference is obtained. The small value of crustal thickness difference at short offset is 

a combination of the small temperature anomaly associated with the transform and a 

lack of time for crust to accumulate along the transform fault. The reduced crustal 

thickness difference at long offset is due to the decreased melt production and greater 

depth of the permeability barrier beneath the transform as conductive cooling 

becomes dominant. The width of the partial melting region in the upper mantle could 

be as wide as 200 km at fast-spreading ridges and as narrow as 50 km at slow-

spreading ridges [Chen, 2000]. Therefore, when the transform fault is long enough, 

the partial melting regions beneath two adjacent ridge segments may be isolated, and 

no cross-segment melt transport may occur, resulting in an absence of magmatic 

activities in the transform domain. 

3.4.4 Mechanisms for Magmatism at Fast-Slipping Transform Faults 

Magmatic activity at fast-slipping transform faults has been attributed to both 

“leaky” transforms [Menard and Atwater, 1969] and ITSCs [Fornari et al., 1989]. In 

most cases, magmatic transforms are transtensional due to the plate reorientation 
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[e.g., Thompson and Melson, 1972; Hékinian et al., 1992; Perfit et al., 1996; Dziak et 

al., 1996] and feature ITSCs [e.g., Fornari et al., 1989; Hékinian et al., 1992]. Young 

lava flows are found in the pull-apart basins and in the vicinity of the ITSCs. 

However, along some transforms such as Siqueiros and Garrett, fresh basaltic rocks 

are also present on the transform floor and intratransform wall away from ITSCs 

[Perfit et al., 1996; Tepley et al., 2004]. In addition, crustal thickening and volcanism 

at the transpressional Clipperton transform [Pockalny, 1996] cannot be easily 

explained by the “leaky” transform concept or ITSCs. Melt extraction at transforms is 

more universal than transtension or ITSCs. Our models assume melt extraction occurs 

regardless of tectonic environment, although it is likely that transtension makes melt 

extraction easier.  

While three-dimensional melt migration and extraction is the focus of our 

study, this mechanism is not incompatible with leaky transforms and ITSCs. Plate 

reorientation not only induces transtensional forces that create leaky transforms and 

ITSCs, it may also enhance structural damages at transforms [Menard and Atwater, 

1969], which may facilitate the formation of the melt extraction zone. This damage is 

expected at both transpressional and transtensional faults, although more so in the 

latter case. Additionally, migration of ridge may lead to asymmetric melt production 

beneath the leading and trailing plates, contributing to the crustal thickness variation 

at segmented mid-ocean ridges [Carbotte et al., 2004].  

In general, melt extraction at ridge-transform systems can be complicated by 

changes of plate motions, and magmatic activity at fast-slipping transform faults may 
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result from the combined effects of “leaky” transform, ITSCs, and three-dimensional 

melt migration and extraction processes. 

3.4.5 Geochemical Segmentation at Fast-Spreading Ridges 

Melt extraction at transform faults may provide a new explanation for 

geochemical segmentation (or, “transform discontinuities”). Geochemical 

segmentation refers to different ridge segments offset by transforms or nontransform 

discontinuities having distinct signatures in major elements, trace elements and 

isotopic chemistry [Schilling et al., 1982; Machado et al., 1982; Langmuir and 

Bender, 1984; Thompson et al., 1985; Langmuir et al., 1986]. This phenomenon is 

most prominent at fast-spreading ridges, where even non-transform discontinuities 

impart geochemical segmentation [Langmuir et al., 1986], whereas at slow-spreading 

ridges, geochemical segmentation is more ambiguous [e.g., Batiza et al., 1988; 

Langmuir et al., 1992; Reynolds and Langmuir, 1997].  

According to our models, fast-slipping transform faults act as an easy pathway 

for magma to erupt. Therefore, they prevent cross-segment transportation of melt. 

Only a limited amount of melt can travel beneath the inactive fracture zone outside 

the transform domain (Figure 3.2). On this basis, at fast-spreading ridges, low degree 

of mixing is expected for melts from different ridge segments with different source 

composition, and any original heterogeneity can be preserved and reflected at each 

segment. By contrast, at slow-spreading ridges, melt travels along the permeability 

barrier across the transform fault without being extracted in the transform domain, 

extensive mixing of melts between segments is possible. Melts with different 

compositions are homogenized, resulting in less obvious geochemical segmentation. 
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Figure 3.8 Spatial relationship between permeability barrier and melt extraction zone 

for a) a fast-spreading ridge (half-spreading rate: 3 cm/yr) and b) a slow-spreading 

ridge (half-spreading rate: 1 cm/yr) with a transform length of 150 km. The curved 

surface represents the permeability barrier with 5 km depth contours (black) and 

color-coded with depth (yellow to green from shallow to deep). White lines on the 

permeability barrier surface are melt trajectories. White boxes are the melt extraction 

zones. The red areas on top of melt extraction zones indicate melt flux at surface. At 

fast-slipping transform (a), the permeability barrier intersects with the melt extraction 

zone and melt can be extracted along the transform. At slow-slipping transform (b), 

the permeability barrier does not intersect with the melt extraction zone and no melt is 

extracted along the transform fault.  
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3.5 Conclusions 

In summary, whether melt is extracted along oceanic transform faults depends 

on the slip rate of the transforms. At fast-spreading and intermediate-spreading 

ridges, the MEZ intersects the permeability barrier underneath transform faults. Melt 

extraction occurs along the transforms, resulting in thickened crust in the transform 

domain. By contrast, beneath slow-slipping transforms, the MEZ does not intersect 

the permeability barrier, no melt is extracted in the transform domain, so the crust 

there is thin (Figure 3.8). The melt extraction zone is estimated to be about 2–4 km 

wide, 15–20 km deep. Crustal thickness is smoothed over a length scale of 50–70 km 

reflecting along-axis dike propagation at crustal level. 

Melt extraction occurs mainly through fracturing in the lithosphere near plate 

boundaries, with possible extensions in ductile shear zones, and may be complicated 

by changes in plate motions. Magmatism at fast-slipping transform faults may be a 

result of “leaky” transform, ITSCs, three-dimensional transport of melt toward 

transforms, or the combination of the three. Fast-slipping and slow-slipping transform 

faults exhibit different degree of magmatic activities, and the difference can be 

reflected in geological features, geochemical signals and seismic behavior at 

transform faults. Melt extraction along transforms may also provide a possible 

explanation for geochemical segmentation observed at fast-spreading ridges. 
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Chapter 4: Asymmetric spreading, asymmetric topography, and 

asymmetric crustal thickness at mid-ocean ridges 

 

Abstract 

Despite the classic view that mid-ocean ridges are symmetric systems, maps 

of seafloor age show that asymmetric seafloor spreading is ubiquitous. When 

spreading is asymmetric, the faster-moving plate is younger and hotter than the 

slower-moving plate at a given distance from the ridge axis, and therefore should 

have more elevated topography. We compile the age, spreading asymmetry and 

topography data of about 600 ridge segments, and calculate the topography 

differences between the faster-moving plates and conjugate slower-moving plates. 

We also solve for the thermal structure underneath an asymmetric spreading ridge and 

calculate the associated topography asymmetry. Comparison between the observed 

and predicted topography asymmetry shows that observed asymmetries are 

consistently lower, and they may even have opposite signs to the predicted 

asymmetry. These discrepancies indicate that the topographic effect of asymmetric 

spreading is counterbalanced by other processes or phenomenon. Candidates include 

background mantle flow, mantle thermal anomalies, ridge migration, flexure, off-axis 

volcanism, and asymmetric crustal thickness. We review each of these candidates and 

argue that the topography asymmetry is best explained by asymmetric crustal 

thickness associated with asymmetric spreading, wherein the crust is thinner on the 

faster-moving plate than that on the slower-moving side, while background mantle 



 

78 

 

flow and mantle thermal anomalies can produce regional perturbations. Asymmetric 

crustal thickness may originate from the longer time the slower-moving plate spends 

in the crustal accretion zone. 

 

4.1 Introduction 

At mid-ocean ridges, plate divergence affects mantle flow and its thermal 

structure, induces decompressional melting, forms new oceanic crust, and shapes the 

seafloor topography. In the classic view [e.g., Morgan, 1971], mid-ocean ridges are 

symmetric systems, where symmetric seafloor spreading drives symmetric mantle 

upwelling, induces symmetric mantle melting, and results in symmetric topography. 

More detailed studies, however, have revealed that asymmetry is common at mid-

ocean ridges, whether evident in seafloor bathymetry [e.g., Calcagno and Cazenave, 

1994; Scheirer et al., 1998; Fujiwara et al., 2003; Carbotte et al., 2004], marine 

magnetic anomaly [e.g., Weissel and Hayes, 1971; Allerton et al., 2000], seismic and 

electrical tomography [e.g., Toomey et al., 1998; Evans et al., 1999; Bodmer et al., 

2015], seamount and hydrothermal vent distribution [e.g., Davis and Karsten, 1986; 

Scheirer et al., 1998; McCaig et al., 2007], or basalt geochemistry [e.g., Escartín et 

al., 2008; Langmuir et al., 2013]. The observed asymmetries have been attributed to 

several processes, including asymmetric spreading [e.g., Müller et al., 1998], 

background mantle flow [e.g., Phipps Morgan and Smith, 1992], ridge migration 

[e.g., Shouten et al., 1987], and heterogeneous mantle temperature/composition [e.g., 

Cochran, 1986].  



 

79 

 

Among all the symmetry breakers at mid-ocean ridges, asymmetric spreading, 

also known as asymmetric accretion, is most commonly and directly observed. With 

asymmetric spreading, plate accretion occurs at different rates on conjugate ridge 

flanks, dynamically equivalent to one plate moving faster than the other relative to the 

ridge axis. It can be caused by asymmetric cooling [Hayes, 1976], ridge migration 

with respect to the mantle [Stein et al., 1977], ridge-plume interaction [Müller et al., 

1998], or, especially in the case of slow-spreading, sustained motion along a 

detachment fault [e.g., Smith et al., 2006; Escartín et al., 2008; Smith et al., 2014; 

Parnell-Turner et al., 2016]. 

Asymmetric spreading was first noted in the South Atlantic Ocean using 

magnetic surveys [Dickson et al., 1968]. Later, more asymmetric spreading regions 

were identified, such as East Pacific Rise [Rea, 1976; Cormier and MacDonald, 

1994], Southeast Indian Ridge [Weissel and Hayes, 1971], Juan de Fuca Ridge 

[Elvers et al., 1973], Galapagos Ridge [Hey et al., 1977], and Reykjanes Ridge 

[Talwani et al., 1971].  

Recently, based on a set of self-consistent digital isochrons of global ocean 

basins [Müller et al., 1997] constructed from a compilation of magnetic anomalies 

and plate motions [Royer et al., 1992], Müller et al. [2008] quantified the degree of 

spreading asymmetry at global mid-ocean ridges, and found that asymmetric 

spreading is ubiquitous in all ocean basins. The East Pacific Rise as a whole shows 

excess crustal accretion of 10.4% on the Nazca Plate. At the Southwest and the 

Western Southeast Indian Ridge, excess accretion of 3.1% and 1.7% occurs on the 

Antarctic Plate. At the Eastern Southeast Indian Ridge, more crust is accreted to the 
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Australian flank. In the South Atlantic Ocean, the South American Plate gets excess 

crustal accretion between 2.4% and 4.1%. In the North Atlantic Ocean, the degree of 

excess accretion is smaller, at about 0.6% [Müller et al., 1998]. Beyond these regional 

values, spreading asymmetry varies segment-to-segment and over time. 

In theory, asymmetric seafloor spreading should lead to prominent 

asymmetric topography. The seafloor topography, to first order, is controlled by plate 

age, as approximated by the half-space cooling model or plate cooling model 

[Turcotte and Oxburgh, 1967, Parsons and Sclater, 1977]: an older plate is colder 

and denser than a younger plate, and therefore should be less elevated. With 

asymmetric spreading, at equal distance from the ridge axis, the faster-moving plate is 

younger than the slower-moving plate. Therefore, we expect higher topography on 

the faster-moving side than on the slower-moving side. 

Although asymmetric topography has been observed at several mid-ocean 

ridges [e.g., Calcagno and Cazenave, 1994; Scheirer et al., 1998; Fujiwara et al., 

2003], no correlation between spreading asymmetry and topography asymmetry has 

been reported. To systematically investigate the missing link between asymmetric 

spreading and asymmetric topography, we compile the topography and spreading 

asymmetry data of mid-ocean ridge segments worldwide, and construct numerical 

models to predict the topography asymmetry associated with various degrees of 

spreading asymmetry. The comparison between the observed and predicted 

topography asymmetries provides new insights and constraints on some mantle and 

crustal processes at mid-ocean ridges, and in particular suggests that crustal thickness 

across ridge axis may be asymmetric. 
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4.2 Observed Spreading and Topography Asymmetries at Mid-Ocean Ridges 

If the theoretically predicted relationship between asymmetric spreading and 

asymmetric topography holds, we should expect to observe: (1) globally widespread 

asymmetric mid-ocean ridge topography, (2) higher topography on the faster-moving 

plate than that on the conjugate slower-moving plate, and (3) increasing amplitude of 

topography asymmetry with increasing degree of spreading asymmetry. To test if 

these conditions are true, we first compile the available observational data from 

global mid-ocean ridges. 

4.2.1 Data Compilation 

We include data from about 600 mid-ocean ridge segments selected from the 

global catalog of Gale et al. [2013] based on data availability (Figure 4.1). The 

selected segments span a total of about 47,000 km, with individual segment lengths 

ranging from 6.6 km to 375 km and full spreading rates (denoted here as 𝑉full) 

ranging from 0.7 cm/yr to 17 cm/yr. The segments cover 10 ridge systems and are 

grouped into 23 regions for ease of processing.  

Within each region, we compile the age [Müller et al., 2008], spreading rate 

[Müller et al., 2008], ETOPO1 topography [Amante and Eakins, 2009], sediment 

thickness [Whittaker et al., 2013], and degree of spreading asymmetry [Müller et al., 

2008] using MATLAB® with Mapping Toolbox™. The effect of sediment loading on 

topography is removed following a standard correction procedure described by 

Crough [1983]. An example of sediment-unloaded topography map, covering the East  
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Figure 4.1 Locations of the ridge segments included in the data compilation. Color 

represents the full-spreading rate. Black boxes outline the sub-regions we use in our 

analysis. Maps of each sub-regions are included in the Appendix, with figure numbers 

labeled in this figure.  
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Pacific Rise from the Equator to ~15°S is shown in Figure 4.2. Similar maps for all 

the studied regions are provided as Appendix Figures B.1 to B.23. 

The ridge segment coordinates and spreading directions from the global 

spreading center catalog [Gale et al., 2013] do not always agree with the topography 

and seafloor age data. For consistency, we correct the spreading direction by making 

it conform to the local seafloor spreading fabrics [Matthews et al., 2011; Wessel et al., 

2015]. The actual location of the ridge axis is determined by the age of the seafloor. 

Using the ridge segment coordinates from the global catalog as an initial guess, we 

create a search path parallel to the spreading direction every 5 km along the segment. 

The ridge axis is set at the point with the minimum seafloor age (no older than 0.5 

Ma) on the search path.  

To characterize the asymmetry in topography across the ridge axis, we define 

a sampling profile starting at each ridge axis point determined from the previous step, 

and extending 200 km on each plate following the spreading direction (Figure 4.2). 

Age, degree of spreading asymmetry, and sediment-unloaded topography on the 

sampling profiles are interpolated from the regional data, with a fixed sampling 

resolution of 1 km. For each sampling profile, we compare the data on two plates, and 

calculate the mean data difference between two sides. 

4.2.2 General Characteristics 

4.2.2.1 Topography Difference 

We define “topography difference” as the average difference in topography 

between plates on the right-hand-side and the left-hand-side (in orientations shown in 

Appendix Figures B.1 to B.23) of the ridge, denoted here as ∆ℎR−L.  
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Figure 4.2 Sediment-unloaded topography of the Southern East Pacific Rise. The 

black dots mark the ridge axis determined from the seafloor age. The thin black lines 

indicate the sampling profiles. Data are interpolated on the sampling profiles and 

compared between two sides.   
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The sign of ∆ℎR−L varies along the ridge axis (Figure 4.3). How often the sign 

of ∆ℎR−L switches appears to depend on the spreading rate of the ridge: ultraslow- 

and slow-spreading ridges like Southwest Indian Ridge, Northern Mid-Atlantic Ridge 

and Central Indian Ridge tend to have more frequent along-axis changes of ∆ℎR−L 

polarity, with a wavelength smaller than 100 km, while intermediate- and fast-

spreading ridges like Juan de Fuca Ridge and East Pacific Rise show along-axis 

alternation of ∆ℎR−L polarity over larger wavelengths of hundreds of kilometers. At 

slow-spreading Southern Mid-Atlantic Ridge, although the sign of ∆ℎR−L does not 

switch frequently, its values change abruptly over a length scale of about 100 km. 

The wavelength of ∆ℎR−L variation mimics the spreading-rate-dependence of 

ridge segmentation: the typical ridge segment length is smaller than 100 km for slow-

spreading ridges, and increases to 100–1000 km at intermediate- and fast-spreading 

ridges [Sandwell and Smith, 2009]. This similarity suggests that the processes 

responsible for the observed asymmetric topography occur at segment-scale.  

The amplitude of topography difference, |∆ℎ|, has a global average of about 

200 m, but varies from ridge to ridge (Figure 4.4a, Appendix Tables B.1, B.2). |∆ℎ| is 

smaller at Pacific-Antarctic Ridge, Galapagos Ridge and East Pacific Rise, with 

regionally averaged values of about 150 m. At Juan de Fuca Ridge and Southwest 

Indian Ridge, large topography differences are present, with segment-averaged |∆ℎ| 

values often in excess of 300 m.  

Ignoring the Juan de Fuca Ridge, the data averaged over each ridge system 

hints at a possible correlation between 𝑉full and |∆ℎ| (Figure 4.4a). Although the trend 

is subtle, it remains that the East Pacific Rise, by far the fastest-spreading ridge on the 
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Figure 4.3 Along-axis variations of ∆ℎR−L (blue profile) and 𝐴RHS, defined as the 

spreading asymmetry of the right-hand-side plate (red profile). The right-hand-side 

plate (refer to Appendix Figures B.1 to B.23) moves faster if 𝐴RHS is larger than 50%, 

and moves slower if 𝐴RHS is below 50%. Present here are profiles for East Pacific 

Rise, Pacific-Antarctic Ridge, Southeast Indian Ridge, Chile Rise, Juan de Fuca 

Ridge, Galapagos Ridge, Northern Mid-Atlantic Ridge, Southern Mid-Atlantic Ridge, 

American-Antarctic Ridge, Central Indian Ridge, and Southwest Indian Ridge.  
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Earth, has limited |∆ℎ|, and the two slowest ridges in the dataset, the Southwest 

Indian Ridge and the American-Antarctic Ridge, both display large |∆ℎ|. The Juan de 

Fuca Ridge constitutes an exception to the proposed trend, possibly because it is 

influenced by the small sizes of the Juan de Fuca Plate and Explorer Plate, and the 

proximity of the Cascadia subduction zone. 

 

4.2.2.2 Spreading Asymmetry 

We define “spreading asymmetry” as the percentage of the total spreading 

taken by the faster-moving plate, denoted here as 𝐴s. In principle, 𝐴s may vary from 

50% (symmetric spreading) to 100% (one plate moves at the full-spreading rate, the 

other is stationary, relative to the ridge axis). We also denote the percentage of the 

total spreading taken by the right-hand-side plate as 𝐴RHS. 

Asymmetric spreading is present at all mid-ocean ridge systems we surveyed 

(Figures 4.3, 4.4c). The global average 𝐴s is about 55%. Ridge segments with 𝐴s 

between 50% and 55% are the most abundant, and the number of ridge segments 

decreases progressively with increasing 𝐴s. Although most asymmetric segments are 

associated with slow-spreading ridges, there is no evidence of a systematic relation 

between 𝐴s and 𝑉full (Figure 4.4c). Intermediate-spreading ridges show both high and 

low 𝐴s: the Juan de Fuca Ridge, Galápagos Ridge, and Chile Rise are all relatively 

asymmetric, whereas the Southeast Indian Ridge has the lowest 𝐴s. 

Similar to the variations of ∆ℎR−L, the faster-moving side alternates along the 

ridge axis (Figure 4.3) at a wavelength that appears to depend on 𝑉full: smaller 

wavelength of polarity change at slow-spreading ridges, and larger wavelength at 

intermediate- and fast-spreading ridges. 𝐴s can change dramatically and the fast-
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moving side may switch between adjacent segments. Thus, asymmetric spreading is 

more likely controlled by lithospheric-scale processes, rather than the deeper mantle 

circulation [Gerya, 2010; Püthe et al., 2014]. 

 

4.2.2.3 Relation between Topography Difference and Spreading Asymmetry 

Although both 𝐴s and ∆ℎR−L vary at segment-scale, there is no direct 

correlation between the two. To study their relations, we define “topography 

asymmetry” as the average difference in topography between the faster- and slower-

moving plates, denoted here as 𝛥ℎF−S. Considerations of seafloor age-depth relation 

imply that topography should always be higher on the faster-moving plate and lower 

on the slower-moving plate, and 𝛥ℎF−S should always be positive, but this is not 

always the case (Figure 4.4d). Higher topography correlates with faster-moving plate 

at a few segments, most conspicuously at the Central Indian Ridge and portions of the 

Northern Mid-Atlantic ridge (Figure 4.3). However, negative 𝛥ℎF−S is observed at the 

Southern East Pacific Rise, Juan de Fuca Ridge, Northern Pacific-Antarctic Ridge 

and Eastern Southeast Indian Ridge. 

Interestingly, |∆ℎ| shows a slight correlation with 𝐴s, especially when ridge-

averaged values are considered (Figure 4.4b). The trend is dominated, however, by 

the contrast between, on the one hand, the Juan de Fuca Ridge and the American-

Antarctic ridge, which are highly asymmetric in both spreading rate and topography, 

and, on the other hand, the Southeast Indian Ridge, which is asymmetric in neither. 

Clear exceptions to this trend are the Chile Rise and the Galápagos Ridge, both of 

which have strong spreading asymmetry but little topography asymmetry. Although 



 

90 

 

the correlation may not be robust, it is intriguing that no ridge consistently shows 

large topography asymmetry without spreading asymmetry. 

 

4.3 Expected Topography Asymmetry from Asymmetric Spreading 

The lack of correlation between ∆ℎF−S and 𝐴s indicates that plate age is not 

the sole control on topography asymmetry. In order to investigate the other sources of 

topography asymmetry, we develop numerical models of mid-ocean ridges with 

various types of asymmetry. Specifically, we correct the data for the expected effects 

of asymmetric spreading, and discuss which other processes would be able to 

generate the residual signal. 

4.3.1 Numerical Setup 

The numerical models are built in a two-dimensional plane perpendicular to 

the ridge axis (Figure 4.5). Mantle flow field and thermal structure of mid-ocean 

ridges are solved using the commercial finite element software COMSOL 

Multiphysics® 4.3, assuming incompressible mantle with a constant density. The 

governing equations are provided in the Appendix. The computational domain is 

2000 km wide and 400 km deep, with the ridge axis located at the center of the top 

boundary, separating it into two plates. We use a triangular mesh for the models, with 

refinement toward the top boundary and ridge axis. The size of the smallest element 

at the ridge axis is about 5 km. The mantle temperature at the bottom is set at 1375 °C 

and the temperature on top is assumed to be 0 °C. The bottom and side boundaries are 

stress-free and open to mantle flow. A temperature-dependent viscosity with a   
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Figure 4.5 Geometry and boundary conditions of the asymmetric spreading model. 

The point at the center of the top boundary represents the ridge axis. 𝑉𝑥 is the 

spreading rate imposed on the top boundary, 𝑉full is the full-spreading rate of the 

ridge, and 𝐴s is the degree of spreading asymmetry. For symmetric models, 𝐴s is 

50%; for asymmetric spreading models, 𝐴s ranges from 55% to 85%. A range of Vfull 
from 2 cm/yr to 18 cm/yr is tested. 𝑇 is the temperature and 𝜕𝑇/𝜕𝑥 is the temperature 

gradient in x-direction. σn is the normal stress.   
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viscoplastic approximation for brittle weakening is adopted following Behn et al. 

[2007], and the effect of hydrothermal cooling is approximated as an enhanced 

thermal conductivity [Phipps Morgan and Chen, 1993; Roland et al., 2010] (a 

detailed description is available in Appendix). 

We apply a velocity of 𝐴s𝑉full to the right-hand-side plate, and a velocity of 

−(1 − 𝐴s)𝑉full to the left-hand-side plate. We vary 𝑉full from 2 to 18 cm/yr and 

𝐴s between 50% and 85% (𝐴s larger than 85% is not observed). Our strategy is to 

solve first for a symmetric mid-ocean ridge models (𝐴s = 50%) to serve as a reference 

and template for asymmetric models, and progressively increase the spreading 

asymmetry 𝐴s.  

After solving for the mantle flow field and thermal structure in COMSOL 

Multiphysics®, we export each model into MATLAB® and calculate the degree and 

extent of mantle melting and seafloor topography. Melt fraction is estimated using a 

linear melting parameterization, as a function of temperature [Reid and Jackson, 

1981]. We predict the seafloor topography based on mantle density, which varies as a 

function of mantle temperature, pressure, and degree of depletion. Assuming isostasy 

and a constant crustal thickness, the topography is calculated by: 

 ℎ =
∫ (𝜌−𝜌𝑚)𝑑𝑦
𝑦𝑐
0

𝜌𝑚−𝜌𝑤
 (4.1) 

 𝜌 = 𝜌𝑚[1 − 𝛼(𝑇 − 𝑇ref) − 𝛾𝐹][1 + 𝛽(𝑃 − 𝑃ref)] (4.2) 

where ℎ is the relative topography, 𝑦 is the depth, 𝑦𝑐 is the compensation depth, 𝜌 is 

the mantle density,  𝜌𝑚 is the reference mantle density, 𝜌𝑤 is the water density, 𝛼 is 

the thermal expansion, 𝛽 is the compressibility, 𝛾 is the depletion coefficient 

[Oxburgh and Parmentier, 1977; Su and Buck, 1993], 𝐹 is the melt fraction 
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approximating the degree of mantle depletion, 𝑇 is temperature, 𝑃 is pressure, 𝑇ref is 

the reference temperature, and 𝑃ref is the reference pressure. The parameters used in 

this study and their values are listed in Appendix Table B.3.  

To better illustrate the effects of the asymmetric spreading, we present the 

velocity, temperature, and melt fraction fields, and their perturbations from the 

symmetric case. We also compare the topography on the two plates and calculate the 

mean topography difference over 200 km distance from the ridge axis for a direct 

comparison with observations (𝛥ℎF−S). 

4.3.2 Numerical Results 

The results from an asymmetric spreading model are shown in Figure 4.6 and 

Appendix Figure B.24. The faster-moving plate drives the mantle beneath it to move 

faster, and draws the mantle from beneath the slower-moving plate, creating a skewed 

mantle upwelling tilting towards the faster-moving side (Figure 4.6a). The 

temperature field is asymmetric, with a larger vertical temperature gradient on the 

faster-moving side than that on the slower-moving side (Figure 4.6a, Appendix 

Figure B.24). 

The temperature reduction on the slower-moving side is always larger than the 

temperature increase on the faster-moving side, resulting in a cooler mantle overall. 

This effect is more pronounced for slow-spreading ridges. Part of the temperature 

anomaly is simply the result of plate ages being different on two sides of the ridge. 

However, the numerical model includes additional processes such as dynamic 

pressure and the nonlinear effects of mantle temperature and strain rates. These  
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Figure 4.6 Example asymmetric spreading model with a full-spreading rate of 6 

cm/yr and a spreading asymmetry of 70% (right-hand-side plate is faster). (a) Mantle 

temperature (color surface), velocity (white arrows) and melt fraction (gray contours). 

Mantle on the faster-moving side is hotter with larger extent of partial melting. (b) 

Seafloor topography profile predicted in the asymmetric (orange) and symmetric 

(blue) models. Topography is more elevated on the faster-moving side, as expected 

from considerations of seafloor age-depth relation.   
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effects weaken the higher-temperature/faster-moving side of the model, facilitating 

upwelling there (Appendix Figure B.24). Melt fraction is increased beneath the faster-

moving plate, and decreased beneath the slower-moving one. The perturbation in melt 

fraction can be as high as 5%, as a result of the shifting of the melting region towards 

the faster-moving side (Figure 4.6a, Appendix Figure B.24).  

With hotter, more depleted and more buoyant mantle, the faster-moving side 

shows higher topography than the slower-moving side (Figure 4.6b). The topography 

difference averaged over 200 km on either side of the ridge axis increases with 

increasing spreading asymmetry and decreasing spreading rate (Figure 4.7a). 

Topography asymmetry can reach more than 1000 m for highly asymmetric slow-

spreading ridge models. This is because the higher spreading asymmetry introduces a 

larger contrast in thermal structure between the two plates, but this effect is less 

significant with higher spreading rate, as the age contrast is inversely proportional to 

the spreading rate. 

 

4.4 Discussions 

Although the predicted and observed topography asymmetries have similar 

amplitude, it is clear that the model is in other ways a poor predictor to the 

observations (Figure 4.7a). The systematic increase of topography asymmetry with 

increasing spreading asymmetry and decreasing spreading rate is not nearly as 

prevalent in nature as in the models (Figure 4.4c, d). This implies that topography 

asymmetry is controlled by not only asymmetric spreading, but also other  
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Figure 4.7 (a) Topography asymmetry (𝛥ℎF−S, dots) and prediction from the 

asymmetric spreading model (colored background surface) as a function of spreading 

rate and spreading asymmetry. The color of each dot represents the observed 

topography asymmetry. Dot size is proportional to the length of the corresponding 

ridge segment. (b) Topography asymmetry corrected for the prediction from the 

asymmetric spreading model (𝛥ℎC). Zero deviation is marked by the dashed black 

line. Each dot is colored according to spreading rate and its size is proportional to the 

length of the corresponding ridge segment. The solid black line illustrates 𝛥ℎC =
−0.75𝐴s

2 + 63𝐴s − 1275, which represents the trend between corrected topography 

asymmetry and spreading asymmetry 𝐴s.  
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phenomena. Candidates include background mantle flow, mantle thermal anomalies, 

ridge migration, flexure, off-axis volcanism, and crustal thickness asymmetry. We  

examine each of these candidates and argue that asymmetric crustal thickness is the 

most likely origin of the observed signal. 

4.4.1 Topography Asymmetry Correction 

As asymmetric spreading is observed over most of the studied segments, we 

need to remove its contribution to the observed dataset. To do this, we calculate the 

corrected topography asymmetry 𝛥ℎC by subtracting the predicted topography 

asymmetry (Figure 4.7a) from the observed values. In more than 75% of the cases, 

𝛥ℎC  is negative, reflecting the observation that the faster-moving plate is not as 

elevated compared with the slower-moving plate as expected from the models. 

Interestingly, 𝛥ℎC decreases with increasing degree of spreading asymmetry (Figure 

4.7b). The trend can be roughly captured by a second-degree polynomial: 

 𝛥ℎC = −0.75𝐴s
2 + 63𝐴s − 1275  (4.3) 

where 𝛥ℎC is in meter and 𝐴s is in percent. Although there is considerable scatter 

around this trend, the processes proposed to influence topography asymmetry are 

likely correlated with spreading asymmetry and should be able to generate a trend 

similar to Equation 4.3.  

4.4.2 Background Mantle Flow 

Background mantle flow, or mantle wind, is driven by mantle density 

variations, relative plate motion and/or lithosphere rotation, and may introduce a 

deviation of mantle flow from the passive upwelling induced by plate divergence at 
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mid-ocean ridges. It has been used to explain the flattening of seafloor older than 70 

Ma [Cazenave and Lago, 1991; Phipps Morgan and Smith, 1992], anomalous 

seafloor topography occurring south of Australia [e.g., Hayes, 1976; Buck et al., 

2009], asymmetries at the Southern East Pacific Rise [e.g., Toomey et al., 2002; 

Conder et al., 2002], basin-wide slope asymmetry [e.g., Conrad and Husson, 2009; 

Watkins, 2016], and, in a different context, sub-slab seismic anisotropy [Paczkowski 

et al., 2014]. Mantle wind can be inferred from gravity data [e.g., Hager and 

Richards, 1989], seismic anisotropy [e.g., Long and Becker, 2010], and residual 

topography [e.g., Crosby and McKenzie, 2009].  

A global viscous mantle flow model [Conrad and Behn, 2010] reveals that 

mantle wind is present at most of the mid-ocean ridges. Using the stress field from 

that mantle flow model, we calculate the ridge-perpendicular horizontal mantle 

pressure gradient and averaged it over depth between 100 km and 400 km. Results 

show that at most ridges, the magnitude of ridge-perpendicular pressure gradient is 

less than 1 Pa/m. Exceptions are the Southern Central Indian Ridge, Galapagos Ridge 

and Equatorial Mid-Atlantic Ridge, where the ridge-perpendicular mantle pressure 

gradient exceeds 2 Pa/m.  

To investigate its topographic effects, we simulate the mantle wind by 

imposing a pressure field that varies linearly with horizontal distance on the side and 

the bottom boundaries. If there was no plate divergence, these boundaries would 

result in a mantle wind similar to Poiseuille flow [Richards et al., 2001; Höink and 

Lenardic, 2010; Conrad et al., 2011; Natarov and Conrad, 2012; Shiels and Butler, 

2015]. We ignore the possibility of vertical pressure gradients and small-scale mantle 
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flow anomalies. The plate moving in the mantle wind direction is identified as the 

trailing plate while the plate moving against the mantle wind is identified as the 

leading plate. To avoid the incoming mantle having unrealistic temperature, we 

impose on the side boundaries the temperature solution from half-space cooling 

model. We test the magnitude of pressure gradient from 0.5 Pa/m to 2.5 Pa/m with 𝐴s 

fixed at 50%. 

Model results (Figure 4.8, Appendix Figure B.25) show that the imposed 

pressure gradient drives a horizontal mantle flow in the asthenosphere, sufficient to 

overcome the original passive mantle upwelling pattern [Conder et al., 2002; Katz et 

al., 2004; Weatherley and Katz, 2010]. The asthenospheric flow rises underneath the 

leading plate toward the axis, and descends underneath the trailing plate away from 

the axis. The temperature of the leading plate is decreased compared with the 

symmetric models, while the trailing plate has a higher temperature than the 

corresponding part in the symmetric models (Appendix Figure B.25). Accordingly, 

the melt fraction decreases under the leading plate, and slightly increases under the 

trailing plate. The topography is higher on the hotter and more depleted trailing side 

than on the leading side (Figure 4.8).  

The topography asymmetry predicted by mantle wind model increases with 

increasing mantle pressure gradient and decreasing spreading rate, and can reach 

about 200 m (Figure 4.9a). Considering the mantle pressure gradient is less than 1 

Pa/m at most ridges, its effects are likely to be negligible. In addition, background 

mantle flow is unlikely to vary from segment to segment, as the topography 

asymmetry does. Therefore, we rule out background mantle flow as a major  
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Figure 4.8 Results from an example mantle wind model with a full-spreading rate of 

6 cm/yr and a mantle pressure gradient of 2 Pa/m. Upper figure shows the mantle 

temperature (color surface), velocity (white arrows) and melt fraction (gray contours). 

Lower figure shows the model-predicted seafloor topography (red profile), with 

topography from a symmetric model for reference (blue profile). 
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contributor to the topography asymmetry, although it may contribute to the scatter in 

𝛥ℎC (Figure 4.7). 

4.4.3 Mantle Thermal Anomalies 

If a mantle thermal anomaly or heterogeneity is present, the associated density 

variations will likely influence mantle dynamics and seafloor topography. Both an 

anomalously high temperature on one side of the ridge originating from a mantle 

plume [Tommey et al., 2002; Conder et al., 2002] and gradients in mantle potential 

temperature and/or composition [Cochran, 1986] have been proposed as origins of 

the asymmetric seismic velocity structure in the MELT region of the East Pacific Rise 

[MELT Seismic Team, 1998]. Global shear velocity models [e.g., Kustowski et al., 

2008; Moulik and Ekström, 2014] show that shear velocity anomalies are often not 

symmetric about ridge axes, indicating that, assuming temperature exerts a dominant 

control on shear wave velocity, mantle temperature is also asymmetric about the 

ridge. Regions with hotter and more buoyant mantle will likely have more elevated 

topography.  

To quantify the effects of mantle temperature anomalies using numerical 

models, we impose a linearly-varying temperature on the bottom boundary of the 

computational domain, following Katz [2010]. The base temperature beneath the 

ridge axis is fixed at 1375 °C, and linearly increases from the right-hand-side to the 

left-hand side of the model. A range of thermal gradient from 0.05 K/km to 0.25 

K/km are tested. 

The applied thermal gradient directly impacts the mantle thermal structure. 

The side where higher mantle temperature is imposed is hotter, the side with lower 
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imposed bottom temperature is colder, as expected (Figure 4.10, Appendix Figure 

B.26). The temperature perturbation is smaller near the surface due to the high 

thermal conductivity in the lithosphere and the imposed uniform surface temperature. 

The temperature perturbation leads to a noticeable perturbation in melt fraction, with 

the hotter side showing deeper and larger degree of melting, and less melting on the 

colder side. The imposed thermal gradient causes density variations in the 

asthenosphere, which elevate topography on the hotter side and lower the topography 

on the colder side (Figure 4.10). The compilation of model results in the parameter 

space shows that while not significantly influenced by the full-spreading rate, the 

topography difference increases linearly with increasing magnitude of thermal 

gradient and reaches a maximum of about 250 m at a temperature gradient of 0.25 

K/km (Figure 4.9b). Although we do not have models with thermal gradient larger 

than 0.25 K/km, we expect the topography difference to continue growing beyond the 

modeled parameter range.  

The mantle thermal gradient impacts the seafloor topography by changing the 

mantle density, but there are three reasons why it is probably not the main control on 

topography asymmetry. (1) To produce negative values of 𝛥ℎC, the mantle thermal 

gradient has to be consistently opposite to the spreading asymmetry, i.e., with hotter 

mantle underlying the slower-moving plate and vice versa. This feature is not 

reflected in the global shear velocity models [e.g., Kustowski et al., 2008; Moulik and 

Ekström, 2014]. (2) The variations of topography asymmetry and spreading 

asymmetry both occur at smaller length-scale than over which we expect the mantle 

temperature to vary [e.g., Dalton et al., 2014]. (3) The magnitude of mantle thermal  
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Figure 4.10 Results from an example mantle temperature anomaly model with a full-

spreading rate of 6 cm/yr and a temperature gradient of 0.2 K/km. Upper figure shows 

the mantle temperature (color surface), velocity (white arrows) and melt fraction 

(gray contours). Lower figure shows the model-predicted seafloor topography (red 

profile), with topography from a symmetric model for reference (blue profile).  
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gradient needed to offset the topography asymmetry from high degree of spreading 

asymmetry is unrealistically large. Therefore, like background mantle flow, mantle 

thermal anomalies are unlikely to be the origin of the topography asymmetry, 

although they can contribute to the scatters in the observations. 

4.4.4 Ridge Migration 

Ridge migration refers to the migration of plate boundaries as a result of the 

absolute motion of the bounding plates [Stein et al., 1977]. Dynamic [Katz et al., 

2004; Weatherley and Katz, 2010] and kinematic [Davis and Karsten, 1986; Schouten 

et al., 1987] models predict asymmetric mantle upwelling from ridge migration, 

leading to asymmetric melting. Ridge migration has been invoked to explain the axial 

depth difference across offsets at intermediate- and fast-spreading ridges [Carbotte et 

al., 2004; Katz et al., 2004], and the asymmetric distribution of seamounts at Juan de 

Fuca Ridge [Davis and Karsten, 1986]. Current plate kinematics show that all mid-

ocean ridges are migrating in a hotspot-fixed reference frame [Small and 

Danyushevsky, 2003].  

To investigate the topographic effect of ridge migration using numerical 

models, we extend the computational domain of our models to 700 km depth and 

impose a migration velocity on the bottom boundary. Thus, the model is set in a 

ridge-fixed reference frame with the deeper mantle migrating with respect to the 

ridge. The magnitude of ridge migration velocity is defined as a fraction of the full-

spreading rate, and we test ridge migration ratio ranging from 5% to 50%. When the 

ratio is 50%, one of the plate is immobile with respect to the deeper mantle. 
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Figure 4.11 Results from an example ridge migration model with a full-spreading 

rate of 6 cm/yr and a ridge migration rate of 2.4 cm/yr. Upper figure shows the mantle 

temperature (color surface), velocity (white arrows) and melt fraction (gray contours). 

Lower figure shows the model-predicted seafloor topography (red profile), with 

topography from a symmetric model for reference (blue profile).  
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The imposed ridge migration produces a Couette-like flow in the mantle, but 

its effects at shallow depth are very limited (Figure 4.11, Appendix Figure B.27). 

Near the surface, the mantle upwelling is slightly skewed towards the trailing plate, 

which becomes hotter than the leading plate. However, the temperature anomaly is 

only about 0.2 °C, barely causing any perturbation in melt fraction. As a result, the 

topography asymmetry from ridge migration is negligible (Figure 4.9c). The advected 

heat from the mantle flowing upward at the base of the leading plate and mantle 

flowing downward at the base of the trailing plate creates the strongest signal in the 

topography asymmetry, with a maximum amplitude of about 10 m.  

As the effect of ridge migration on topography is insignificant, ridge 

migration is not a plausible explanation for the topography asymmetry.  

4.4.5 Flexure 

Flexure of the oceanic lithosphere contributes to the topography of mid-ocean 

ridges [e.g., Cochran, 1979; Buck, 2001; Shah and Buck, 2003]. The elastic oceanic 

lithosphere deflects in response to negative loads (buoyancy force from mantle 

upwelling) at ridge axis, or positive loads off-axis (water column deepening, sediment 

thickening and plate cooling). The amount of deflection depends on the flexural 

rigidity, which is a function of the elastic thickness of the plate, and on the 

wavelength of the load. The more rigid a plate is, the less it will deflect. Elastic 

thickness is determined by the thermal structure of the plate, and can be approximated 

by the depth of the 600 °C isotherm [Watts, 2007].  

With asymmetric spreading, the faster-moving side is hotter, and therefore 

should have a small elastic thickness and is less likely to flexurally support the 
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negative load from mantle upwelling, resulting in even higher topography. Thus, 

flexure would further increase 𝛥ℎF−S, instead of suppressing it. 

Flexure might amplify the effects of mantle wind and mantle temperature 

anomalies. This effect would be small, though, as these processes do not significantly 

change the thermal structure of the shallow lithosphere, where elastic flexure takes 

place. The source of buoyancy in these models is also quite deep. Therefore, it is 

unlikely that plate flexure can counteract the asymmetric spreading and explain the 

observed topography asymmetry. 

4.4.6 Off-Axis Volcanism 

Off-axis volcanism punctuates the oceanic lithosphere and creates elevated 

topographical features like seamounts and volcanic mounds. If a large number of 

seamounts is present on the slower-moving plate, they may well reverse the pattern of 

asymmetric topography. However, we do not expect more robust off-axis volcanism 

on the slower-moving plate, as this side is associated with colder mantle and less 

melting (Figure 4.6a). Although our compilation does show that at a few locations 

along the Southern East Pacific Rise, Northeastern Pacific-Antarctic Ridge, Juan de 

Fuca Ridge and Southern Mid-Atlantic Ridge, seamount distribution is asymmetric 

and more seamounts are present on the slower-moving plate, these examples are rare 

and do not contribute much to the global topography asymmetry deviation. The 

anomalous topography asymmetry persists at segments without the presence of 

seamounts.  
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4.4.7 Crustal Thickness 

Crustal thickness is an important contributor to the seafloor topography, and it 

can vary by more than a factor of two at slow- and ultraslow-spreading ridges 

[Tolstoy et al., 1993; Hooft et al., 2000; Niu et al., 2015], and by more than 2 km at 

fast-spreading ridges [Barth and Mutter, 1996; Canales et al., 2003; Aghaei et al., 

2014].  Assuming isostasy and a constant crustal density, the crustal thickness 

variations may cause topography variations of: 

 ∆ℎ = (
𝜌𝑚−𝜌𝑐

𝜌𝑚−𝜌𝑤
)∆𝐻 ≈ 0.22𝛥𝐻 (4.4) 

where ∆𝐻 is the crustal thickness variation, 𝜌𝑐 is the density of crust. A few 

kilometers of crustal thickness difference can create topography variations of more 

than 1000 m. Crustal density variations likely have a smaller effect on topography but 

cannot be completely ruled out. For example, Toomey and Hooft [2008] proposed 

crustal density variations of 150 kg/m3
 due to magmatic differentiation, which, if 

uniformly distributed throughout a 6-km thick crust, would generate about 320 m of 

topography.  

When predicting the topography from our models (Equation 4.1), due to the 

lack of constraints, we assumed a constant crustal thickness and equal accretion of 

crust on both sides of the ridge. However, the unexplained topography asymmetry 

forces us to question the validity of this assumption.  

In fact, how crust is distributed at asymmetrically spreading ridge segments is 

not well understood. Few seismic studies have constrained crustal thickness 

variations significantly off the ridge axis. Crust is accreted in a region that extends 

only a few kilometers off the axis [Vera et al., 1990; Bai and Montési, 2015]. It is 
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conceivable that the slower-moving plate stays in this accretion zone longer than the 

faster-moving plate. If the crustal accretion rate is fixed, more crustal materials may 

accumulate on the slower-moving plate. In this case, the crustal thickness of the 

slower-moving plate will be larger than that on the faster-moving plate. The thicker 

crust will result in higher topography on the slower-moving side, and offset the 

topographic effects of asymmetric spreading.  

The amount of crustal thickness difference needed to compensate the 

topographic effects of asymmetric spreading can be calculated by combining 

Equation 4.4 with Equation 4.3 (Figure 4.12).  

 ∆ℎ = −3.45𝐴s
2 +  290𝐴s − 5865 (4.5) 

Based on the calculation, even with a high degree of spreading asymmetry of 

75%, a crustal thickness difference of 3 km is sufficient to neutralize the topography 

asymmetry. It would be interesting to test this hypothesis with crustal thickness 

determination at some of the segments where we predict the largest 𝛥ℎC. 

 

4.5 Conclusions 

Our compilation of seafloor topography data shows that topography 

asymmetry is ubiquitous along the ridges and varies segment-to-segment. By creating 

different rate of plate aging across ridge axis, asymmetric spreading can produce 

significant topography asymmetry at mid-ocean ridges. Surprisingly, the link between 

the topography asymmetry and the spreading asymmetry is missing. Whereas 

asymmetric spreading predicts that the faster-moving plate should be more elevated 

than the slower-moving plate, by up to 1500 m, and that the asymmetry increases  
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Figure 4.12 Crustal thickness difference between the faster-moving and slower-

moving plates needed to explain the trend of corrected topography asymmetry vs. 

spreading asymmetry: ∆𝐻 =
𝜌𝑚−𝜌𝑐

𝜌𝑚−𝜌𝑤
(−0.75𝐴s

2 + 63𝐴s − 1275).  
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with increasing degree of spreading asymmetry and decreasing spreading rate, neither 

trend is visible in the observations. The observed topography asymmetry is 

consistently smaller than the model predictions, and there are several instances where 

the faster-moving plate is even at lower elevation than the slower-moving plate. We 

argue that the topography asymmetry from asymmetric spreading is compensated by 

the effects of asymmetric crustal thickness. Asymmetric crustal thickness may be an 

intrinsic feature of asymmetric spreading, with thinner crust on the faster-moving 

plate, and thicker crust on the slower-moving side, as the slower-moving plate spends 

more time in the crustal accretion zone at the ridge axis. Background mantle flow and 

mantle thermal anomalies may contribute to topography asymmetry, but their effects 

are likely limited.  
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Chapter 5:  Mid-ocean ridges blowing in the mantle wind 

 

Abstract 

Mid-ocean ridges are underlain and influenced by mantle wind, the pressure-

driven horizontal flow in the low-viscosity asthenosphere. Near the ridge axis, mantle 

wind follows the lithosphere morphology. Variations in lithospheric thickness result 

in enhanced or suppressed mantle upwelling, which perturbs melt generation and 

migration, and leads to variations in crustal thickness and seafloor topography. We 

construct three-dimensional models of segmented mid-ocean ridge over which the 

mantle wind is blowing, and demonstrate that the direction of mantle wind relative to 

ridge axes determines the pattern of perturbations at ridges. Ridge-perpendicular, 

ridge-parallel, and oblique asthenospheric flows affect the mid-ocean ridges 

differently, resulting in distinct variations in crustal thickness and topography. Our 

model provides an explanation alternative to ridge migration for the observed changes 

in axial depth and geochemistry across ridge offsets. It may also be used to constrain 

the global mantle wind flow field. 

 

5.1 Introduction 

Mid-ocean ridges, where the divergence of tectonic plates occurs, are 

underlain by the mechanically weak asthenosphere in the upper mantle. Pressure 

gradients associated with mantle upwellings (plumes) and downwellings 

(subductions) [e.g., Phipps Morgan and Smith, 1992; Höink and Lenardic, 2010], 
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mantle density heterogeneities [e.g., Behn et al., 2004], continental keels [e.g., Harig 

et al., 2010], and/or asthenospheric thickness variations [e.g., Buck et al., 2009] may 

drive a horizontal asthenospheric flow faster than plate motion by an order of 

magnitude and with a different direction [e.g., Vogt, 1971; Phipps Morgan et al., 

1995; Yale and Phipps Morgan, 1998; Winterbourne et al., 2009; Conrad and Behn, 

2010; Parnell-Turner et al., 2014]. This horizontal asthenospheric flow, also known 

as mantle wind, has been proposed to deflect mantle plumes [Steinberger and 

O’Connell, 1998; Steinberger, 2000], induce intraplate volcanism [Conrad et al., 

2011; Ballmer et al., 2013], and cause subslab anisotropy at subduction zones 

[Paczkowski et al., 2014a, b]. Mantle wind also blows at mid-ocean ridges, where it 

sways the plate-driven mantle upwelling, perturbs mantle melting, and at the surface, 

impacts ridge segmentation, crustal thickness, seafloor topography, off-axis 

volcanism, and basalt geochemistry [e.g., Conder et al., 2002; Yamamoto et al., 

2007a; Buck et al., 2009; Ballmer et al., 2013; VanderBeek et al., 2016].  

Interactions between the mantle wind and mid-ocean ridges have typically 

been studied numerically in two-dimension, assuming a mantle wind direction 

perpendicular to the ridge axis [Conder et al., 2002; Toomey et al., 2002]. Previous 

models show that the pressure-driven asthenospheric flow follows the morphology of 

the overlying lithosphere. As the lithosphere thins towards the ridge axis, the mantle 

wind develops an upwelling component on the leading (upwind) side, and a 

downwelling component on the trailing (downwind) side, creating an asymmetric 

mantle flow pattern. Mantle melting is accordingly affected. The modeled mantle 

wind successfully explained the across-ridge differences in seismic velocity [Forsyth 
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et al., 1998; Toomey et al., 1998] and electrical conductivity [Evans et al., 1999] at 

the MELT region of the East Pacific Rise [MELT Seismic Team, 1998]. As it also 

produces horizontal shear at the base of the plate, ridge migration may cause similar 

effects on mid-ocean characteristics [Katz et al., 2004; Weatherley and Katz, 2010] 

but probably of a smaller magnitude than mantle wind (Chapter 4). 

Although the previous numerical models mentioned above reproduced the 

observed asymmetries in the target region well, they did not consider the 

fundamentally three-dimensional nature of the mantle wind. At subduction zones, the 

orientation of background mantle flow relative to the trench is an important factor for 

explaining the global variations in subslab seismic anisotropy [Paczkowski et al., 

2014a, b]. It may have similar significance at mid-ocean ridges. Global mantle flow 

models [e.g., Yamamoto et al., 2007b; Conrad and Behn, 2010] show that mantle 

wind flows obliquely to the axes of most ridges. If the ridge is long and straight, it 

may be valid to simply ignore the ridge-parallel component of the mantle wind, 

reducing the total effect to that of an effective mantle wind, akin to the effective 

spreading rate discussed previously [Montési and Behn, 2007]. However, the effect is 

likely more complex for segmented ridges, where ridge-parallel flow brings materials 

with contrasting properties across the ridge offset [e.g., Vogt and Johnson, 1975; Katz 

et al., 2004; Weatherley et al., 2010]. A better understanding of the interactions 

between mid-ocean ridges and mantle wind requires investigating the effects of 

mantle wind obliquity. 

In this paper, we present three-dimensional numerical models of segmented 

mid-ocean ridges with mantle wind blowing at different angles. We show that the 
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ridge-perpendicular and ridge-parallel flows affect segmented mid-ocean ridges 

differently. The mantle wind direction controls the location of enhancement and 

reduction in mantle upwelling and along-axis variations of crustal thickness and 

topography.  

 

5.2 Model Setup 

Three-dimensional numerical models are constructed to investigate the 

influence of mantle wind on segmented mid-ocean ridges. The mantle velocity and 

temperature field are solved using the commercial finite element software COMSOL 

Multiphysics®, assuming an incompressible mantle with a constant density. A ridge-

transform-ridge geometry is applied to divide the top surface of the model into two 

plates, where half-spreading rates are imposed (Figure 5.1). The mantle wind is 

simulated as a Poiseuille-like flow, driven by pressure gradients applied on the side 

and bottom boundaries of the computational domain. Specifically, we impose on the 

side and bottom boundaries a pressure function that varies as  

 𝑃(𝑥, 𝑦) =
𝜕𝑃

𝜕𝑥
𝑥 +

𝜕𝑃

𝜕𝑦
𝑦 (5.1) 

where 𝜕𝑃/𝜕𝑥 ≡ 𝐺𝑃 sin 𝜃 and 𝜕𝑃/𝜕𝑦 ≡ 𝐺𝑃 cos 𝜃, with 𝐺𝑃 and 𝜃 the magnitude and 

azimuth of the pressure gradient. The temperature on the top and bottom of the model 

are set to 0 °C and 1375 °C, respectively. To ensure a reasonable temperature for the 

incoming asthenospheric flow, we impose on the side boundaries the temperature 

solution from half-space cooling model [Turcotte and Schubert, 2002]. A 

temperature-dependent viscosity with a viscoplastic approximation for brittle 

weakening is adopted [Behn et al., 2007] and the effects of hydrothermal cooling are 
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approximated as an enhanced thermal conductivity [Phipps Morgan and Chen, 1993; 

Roland et al., 2010]. A triangular mesh is applied on the top boundary, with 

refinement towards the plate boundaries, where the minimum element size is no 

larger than 10 km. The mesh is extruded downward to cover the whole computational 

domain, with vertical spacing increasing from ~6.5 km near the top boundary to 20 

km close to the bottom. In our numerical study, we vary the full-spreading rate (from 

2 cm/yr to 12 cm/yr), the length of the transform fault (from 50 km to 200 km), and 

the magnitude and azimuth of the mantle pressure gradient (from 0 Pa/m to 2 Pa/m, 

and from 0° to 135°, respectively). Model geometry and key boundary conditions are 

illustrated in Figure 5.1. 

Melt production, migration, crustal thickness and topography are calculated 

during postprocessing in MATLAB® using the MeltMigrator software [Bai et al., 

2017], based on the mantle flow and temperature structure solved in COMSOL 

Multiphysics®. Melt fraction is estimated using a melting parameterization, a linear 

function of temperature [Reid and Jackson, 1981]. We assume the newly-formed melt 

rises vertically through the partial melting region under its buoyancy, and then moves 

towards the ridge axis following a low-permeability barrier at the base of thermal 

boundary layer [Sparks and Parmentier, 1991; Montési et al., 2011]. The location of 

permeability barrier is determined using the formula: 𝑇barrier = 1240 + 1.9𝑧, where 

𝑇barrier is the temperature of the barrier in °C, and 𝑧 is depth in km [Montesi and  
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Figure 5.1 Model geometry and key boundary conditions in map view. The 

computational domain is 500 km wide and 400 km deep (the model is three-

dimensional, and the depth dimension is not shown in this figure). The red segments 

represent ridges and the blue segment represents the transform fault. The length of 

transform fault is varied in the model. Two plates separated by the ridge-transform-

ridge boundaries move perpendicular to the ridges in opposite directions with half-

spreading rate of 𝑉half. A pressure function (Equation 5.1) is imposed on the side 

boundaries to drive the mantle wind. The magnitude and azimuth of the mantle wind 

is controlled by 𝜕𝑃 𝜕𝑥⁄  and 𝜕𝑃 𝜕𝑦⁄ , pressure gradients in x- and y-direction, 

respectively.   
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Behn, 2007; Hebert and Montesi, 2010]. The permeability barrier morphology 

controls melt migration pathways. At plate boundaries (ridge and transform 

segments), we define a melt extraction zone that represents the effects of structural 

damage, such as diking and fracturing, associated with melt extraction [Hebert and 

Montési, 2011]. The width and depth of the melt extraction zone are set to 4 km and 

20 km respectively, as constrained by Bai and Montési [2015]. If the melt enters the 

melt extraction zone, it will be extracted to the surface and contribute to the crustal 

thickness. By tracking the melt pathways and their destinations on the plate 

boundaries, we calculate the melt flux and associated crustal thickness along the plate 

boundaries according to: 

 𝐻 =
1

𝑉full
∫ 𝑓 𝑑𝑙 (5.2) 

 𝑓 = ∫𝑝 𝑑𝑧 (5.3) 

 𝑝 ≡ max (𝑣𝑧
𝜕𝐹

𝜕𝑧
, 0) (5.4) 

where 𝐻 is the crustal thickness along the axis, 𝑉full is the full-spreading rate, 𝑓 is the 

melt flux, 𝑙 is the distance along melt pathways, 𝑝 is the melt production, 𝑣𝑧 is the 

mantle upwelling velocity and 𝐹 is the melt fraction. After the crustal thickness 

profile is obtained, a smoothing algorithm is applied to each plate boundary segment 

to remove numerical noise. The smoothing can be interpreted as a representation of 

the crustal-level redistribution of melt. Finally, assuming isostasy and constant crustal 

density, topography is calculated from crustal thickness using a simple linear relation 

∆ℎ = 0.23∆𝐻 [Turcotte and Schubert, 2002]. A detailed description of our numerical 

method is documented by Bai et al. [2017]. 
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To better illustrate the influence of three-dimensional mantle wind on mid-

ocean ridges, we present our mantle wind model results as “perturbations”, or 

differences with models without mantle wind. Specifically, we calculate the 

perturbations in velocity, temperature, melt fraction, melt production and melt flux. 

We also focus on the along-axis variations of crustal thickness and topography, and 

calculate the topography difference between ridge segment ends across the transform 

fault.  

 

5.3 Model Results 

Our numerical experiments reveal how mantle wind impacts mantle flow, 

which modifies the thermal structure of the ridge, the degree, extent and rate of 

mantle melting, melt migration pathways, and the crustal thickness and topography at 

mid-ocean ridges. The influence of mantle wind depends on the angle between the 

mantle wind and the ridge, the magnitude of the mantle pressure gradient, the 

spreading rate of the ridge, and the length of the ridge offset.  

5.3.1 General Effects of Mantle Wind 

The most prominent effect of the mantle wind is that it creates a Poiseuille-

like flow in the asthenosphere, superposed on the passively driven mantle corner flow 

[Höink and Lenardic, 2010]. The horizontal velocity of the Poiseuille-like flow 

decreases with decreasing depth. Near the surface, the asthenospheric flow follows 

the morphology of lithosphere-asthenosphere interface. As the lithosphere is thinnest 

at the ridge axis, the mantle wind develops an upward vertical component when 
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approaching the ridge axis and a downward vertical component when moving away 

from the ridge axis, resulting in enhancement and reduction in mantle upwelling at 

the ridge axis (Figure 5.2). This behavior is in accordance with the previous studies 

[Conder et al., 2002; Toomey et al., 2002; Katz et al., 2004; Weatherley and Katz, 

2010].   

Mantle wind may also carry heat along its path, and perturb the temperature 

field at mid-ocean ridges. To first order, the thermal structure of an ordinary mid-

ocean ridge is controlled by vertical heat conduction, as represented by the half-space 

cooling model [Turcotte and Schubert, 2002]. The further away from its original 

ridge axis a column of mantle is, the older and colder it gets. With mantle wind, 

however, a cross-isochron horizontal mobility is enabled. Older, colder materials can 

be blown toward a younger, warmer region, and vice versa. The resulting temperature 

perturbation may reach up to 20 °C, and lead to up to 2% change in the degree of 

mantle melting (Figure 5.3). Importantly, it affects the permeability barrier 

morphology, which is roughly associated with the 1240 °C isotherm [Kelemen and 

Aharonov, 1998; Hebert and Montési, 2010]: the barrier gets steeper and shrinks 

upwind, and gets shallower with milder slope downwind (Figure 5.3). This changes 

melt migration pathways, the area of melt collection, the rate and distance of melt 

transport, and potentially the refertilization of depleted mantle.  

The melt production rate, calculated as the product of vertical mantle velocity 

and vertical melt fraction gradient (Equation 5.4), is dominated by the vertical 

velocity perturbation. As a result, melt flux (Equation 5.3) is enhanced at locations  
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with increased mantle upwelling and reduced where mantle upwelling is decreased 

(Figure 5.2). Melt flux is the dominant control on on-axis crustal thickness. Stronger 

melt flux leads to thicker crust, while weaker melt flux produces thinner crust. 

Variations in crustal thickness will further lead to changes in topography. Thus, 

through its influence on the mantle upwelling and melting, the deep-rooted mantle 

wind is able to express itself on the surface as along-axis variations in crustal 

thickness and topography. The ridge segment that stands downwind from the 

transform fault tends to have thinner crust and lower elevation than the upwind 

segment (Figure 5.2).  

5.3.2 Systematics  

5.3.2.1 Effects of the Wind Angle 

Our three-dimensional models reveal that the pattern of perturbation caused 

by mantle wind changes dramatically with wind angle—the angle between the mantle 

wind direction and the ridge orientation.  

When the mantle wind is perpendicular to the ridges (=90°), mantle 

upwelling is enhanced underneath the leading (upwind) plate, increasing melt 

production and melt flux on that side. This effect is mitigated somewhat by colder 

off-axis materials blown towards the ridge axis by the mantle wind (Figure 5.3). 

Underneath the trailing (downwind) plate, the asthenospheric flow moves downslope 

and away from the ridge axis, suppressing mantle upwelling and reducing melt 

production and flux (Figure 5.2). Most of the melts collected at the end of the leading 

ridge segment are from regions of increased melt flux, while the melts collected at the 

end of the trailing ridge are mostly from regions where the melt flux is reduced. Thus, 
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at the ridge-transform intersection, the leading ridge has a thicker crust and higher 

topography than the trailing ridge across the transform fault (Figure 5.2).  

When mantle wind is parallel to the ridge (=0°), the wind moves laterally in 

the along-axis direction without inducing significant perturbations in mantle 

upwelling outside of the transform fault region. Close to the oceanic fracture zone, 

though, the age contrast between the juxtaposed plates creates a step at the base of the 

lithosphere. As the mantle wind approaches the transform fault along the upstream 

ridge, it follows the thickening lithosphere and move downward, reducing mantle 

upwelling at the tip of the ridge. Along the downstream ridge, the mantle wind 

develops an upward motion at the tip of the ridge, boosting the local mantle 

upwelling (Figure 5.2). The effects of these upwelling perturbations on melting are 

partially offset by the anomalous temperature of the material transported across the 

fracture zone (hot where upwelling is reduced and cold where it is enhanced, Figure 

5.4). Dominated by the mantle upwelling perturbation, the melt production 

perturbation is localized at the end of each ridge segment. The upstream ridge is fed 

by a region of decreased melt-flux, while the downstream ridge is within the region of 

increased melt flux. This results in larger overall crustal thickness and higher 

topography on the downstream ridge than on the upstream ridge (Figure 5.2).  

At an oblique wind angle, the mantle wind will have both ridge-perpendicular 

and ridge-parallel components. Its effects on mid-ocean ridges can be approximated 

as the superposition of the perturbations from each component. The strengths of the 

two components depend on the wind directions, as well as the plate boundary 

geometry. In our model, we use a left-lateral ridge-transform-ridge geometry. At a  
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wind angle of 45°, the leading ridge relative to the ridge-perpendicular flow is also 

the downstream ridge relative to the ridge-parallel flow. Therefore the perturbations 

from both components reinforce each other, creating the strongest mantle wind 

impacts. On the contrary, with a wind angle of 135°, at the ends of the ridge 

segments, perturbations from the two components have opposite signs. The mantle 

wind influences are thus tuned down, or even canceled out, resulting in a complex, 

alternating pattern of upwelling enhancement and reduction, and nearly symmetric 

crustal thickness profiles across the transform fault and (Figure 5.2).  

Theoretically, the possible wind angle may range from 0° to 360°. We only 

test mantle angle from 0° to 135°, because our simple ridge-transform-ridge plate 

boundary geometry has a central symmetry. For example, the effect of a wind angle 

of 225° is identical to that of a wind angle of 45° after a 180° rotation, except that the 

sign of the perturbation and the topography differences between the two ridge 

segments is switched. This has been confirmed by our validation models. Thus, we 

can safely extrapolate our results to cover the full range of wind angle from 0° to 

360°. 

Compilation of model results reveals that the topography contrast between the 

ends of two ridge segments separated by the transform fault is a sinusoidal function of 

the wind angle (Figure 5.5). With our left-lateral plate boundary geometry, the 

topography contrast increases with wind angle increasing from 0° to 45°, reaching its 

peak at the 45°, then decreases with increasing wind angle, changing from positive to 

negative between 135° and 180°, hitting the minimum at 225°, and after the turning 

point, it starts to rise with the wind angle again. 
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5.3.2.2 Effects of the Wind Magnitude 

Increasing the magnitude of the mantle pressure gradient amplifies the 

perturbations but does not significantly change the perturbation patterns. The 

amplifying effect also depends on wind angle. At a wind angle of 0°, a mantle 

pressure gradient of 2 Pa/m may create a topography contrast of ~500 m at ridge 

system with a full-spreading rate of 6 cm/yr, which is more than 100 m larger than the 

topography contrast created by a pressure gradient of 1 Pa/m at the same angle. In 

contrast, increasing the mantle pressure gradient from 1 Pa/m to 2 Pa/m at an angle of 

90° only increases the topography contrast by less than 50 m (Figure 5.5b). This 

indicates that the ridge-parallel asthenospheric flow is more sensitive to the mantle 

wind magnitude increase than the ridge-perpendicular flow, probably due to a lack of 

interference with the passively driven mantle flow in this direction. 

5.3.2.3 Effects of the Spreading Rate 

Ridges with different spreading rates react to mantle wind differently due to 

the competition between the effects of modifying mantle upwelling and advecting 

temperature anomalies (Figure 5.5a). At the slowest full-spreading rate (e.g., 2 

cm/yr), the temperature reduction dominates the perturbation of melting. The overall 

melt supply to the ridge is reduced, especially at the ridge-transform intersection 

(Figure 5.6), leading to a small topography contrast between two ridge segments. 

With increasing spreading rate, the perturbations in mantle upwelling grow in 

importance while the temperature perturbation diminishes. The amplified melt flux 

perturbation creates the largest topography contrast at full-spreading rate between 4 

cm/yr and 6 cm/yr. At spreading rates higher than 6 cm/yr, however, the increase in   
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Figure 5.5 (a) Compilation of topography contrast from models with spreading rates 

ranging from 2 to 12 cm/yr, a transform fault length of 100 km, and a mantle pressure 

gradient magnitude of 1 Pa/m. (b) Compilation of topography contrast from models 

with a full spreading rate of 6 cm/yr, and varying transform fault lengths and pressure 

gradient magnitudes. Vfull is the full spreading rate, L is the length of transform fault, 

and Gp is the magnitude of pressure gradient.  
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the melt flux perturbation amplitude no longer scales with spreading rate. Crustal 

thickness is consequently decreased, causing the topography contrast to shrink. 

5.3.2.4 Effects of the Transform Fault Length 

The perturbations caused by mantle wind vary with transform fault lengths. 

Most of the models with transform fault lengths of 50 km and 200 km produce 

smaller topography contrast than models with a 100 km transform fault (Figure 5.5b). 

The origin of the dependence on transform length is two-fold.  

(1) With a ridge-perpendicular mantle wind, the topography contrast is 

controlled by source regions of melt supply (Figure 5.7). With a short transform fault, 

the leading ridge collects slightly more melts from the melt-flux-increased region 

than from the melt-flux-decreased region, while the trailing ridge collects slightly 

more melts from the melt-flux-decreased region. As transform fault length increases, 

a larger fraction of the melt collected at the leading ridge originates underneath the 

leading plate, where melt flux enhancement occurs, and the trailing ridge gets more 

and more melt from regions with reduced melt flux. This contrast in melt source 

region leads to large topography contrasts. However, increasing the transform fault 

length also leads to expansion of unperturbed areas. If a transform fault is too long, 

the end of the ridge segment will collect melts from unperturbed regions, and the 

topography contrast will decrease.  

(2) With a ridge-parallel mantle wind, the lithosphere morphology plays a 

more important role. The transform fault length primarily determines the age contrast 

between juxtaposing plates along the offset. The longer the transform fault, the larger 

the age contrast across the fracture zone is. A larger age contrast deepens the  
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lithosphere more towards the fracture zone, thus the along-axis asthenospheric flow 

will have larger perturbation in vertical velocity, resulting in larger melt production 

and melt flux perturbations, and eventually to a greater topography contrast. 

 

5.4 Discussions 

5.4.1 Comparisons with Observations 

Our three-dimensional numerical models show that the mantle wind perturbs 

melt generation and migration, and creates along-axis variations in crustal thickness 

and topography at segmented ridges. This study provides a viable explanation for the 

observed changes in axial depth across ridge discontinuities: as noted by Carbotte et 

al. [2004], at fast- and intermediate spreading centers, the leading segments (relative 

to the ridge migration direction) are typically shallower than trailing segments 

(relative to the ridge migration direction) across first- and second-order 

discontinuities. A comparison between the model results and observations show that 

the mantle wind has the potential to account for the majority of observed topography 

contrasts (Figure 5.8).  

To make the comparison, we compile along-axis topography data for major 

mid-ocean ridge systems, including Juan de Fuca Ridge, East Pacific Rise, Pacific-

Antarctic Ridge, Southeast Indian Ridge, Central Indian Ridge, and Mid-Atlantic 

Ridge, using the ridge segment coordinates from a global spreading center catalog 

[Gale et al., 2013] and the topography from the ETOPO1 dataset [Amante and 

Eakins, 2009]. We calculate the topography contrast as the difference between 

adjacent ridge segments within 10 km of distance toward the shared discontinuity. 
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Data for ridge segments shorter than 50 km are removed to avoid interferences from 

nearby ridge offsets.  

Topography contrast averages ~180 m, with a maximum value of ~810 m, and 

varies from ridge to ridge. It increases with full-spreading rate from 2 to 3 cm/yr, and 

decreases at spreading rate higher than 7 cm/yr. This is consistent with the trend 

predicted by our numerical model (Figure 5.8). With a mantle pressure gradient of 1 

Pa/m, the predicted topography contrast maxima (occuring at a wind angle between 

0° and 45°) encompasses 76.5% of the observed data, and reaches maximum for 

spreading rates between 4 and 6 cm/yr. The topography contrasts below that model 

prediction may correspond to mantle wind with a smaller pressure gradient or 

oriented in a less favorable direction. Data points outside the model prediction 

envelope can potentially be accounted for by a higher mantle pressure gradient. 

Besides the spreading rate, the length of discontinuity also affects the amplitude of 

the observed data. Maximum topography contrasts are associated with a critical 

transform fault length of ~100 km [Supak et al., 2007], which agrees with the model 

results as well (Figure 5.5). Thus, the mantle wind models are capable of capturing 

the amplitude variations of the observed data. 

5.4.2 Mantle Wind vs. Ridge Migration 

The observed changes in axial depth across ridge offsets were previously 

attributed to the migration of ridges in a fixed hot-spot reference frame [Carbotte et 

al., 2004; Katz et al., 2004]. Here we propose an alternative explanation with the 

three-dimensional mantle wind models. Although mantle wind is a pressure-driven  
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Figure 5.8 Comparison between observed (colored dots) and predicted (black curve) 

topography contrast. Dots with different colors and makers are data collected at 

different ridge systems. The mean value for each ridge system is represented as an 

enlarged symbol with 1-sigma error bars.   
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Poiseuille flow while ridge migration creates a shear-driven Couette flow, 

dynamically, mantle wind and ridge migration are similar in that they both induce a 

horizontal asthenospheric flow superposed on the passively driven corner flow at 

mid-ocean ridges. In either case, the induced asthenospheric flow follows the 

morphology of lithosphere and develops a vertical component, which enhances or 

suppresses the mantle upwelling at the ridge axis. Indeed, our model with a wind 

angle of 90° shows behaviors consistent with the previous models of both mantle 

wind [Conder et al., 2002; Toomey et al., 2002] and ridge migration [Katz et al., 

2004; Weatherley and Katz, 2010]. However, in the mantle wind model, flow is more 

localized to the base of the lithosphere than in ridge migration models (Chapter 4), 

making mantle wind a more potent source of perturbations than ridge migration. 

What distinguishes our model from the previous ones is that it emphasizes the 

three-dimensional nature of the asthenospheric flow. Numerical models of ridge 

migration [Katz et al., 2004; Weatherley and Katz, 2010] ignored the obliquity of the 

ridge migration direction relative to the spreading direction [Small and 

Danyushevsky, 2003]. With oblique ridge migration, the leading ridge in the ridge-

perpendicular direction, where upwelling is enhanced, may very well be an upstream 

ridge (associated with decreased mantle upwelling) in the ridge-parallel direction. 

This complicates the pattern of mantle flow in a manner similar to the case of an 

oblique mantle wind. At the obliquely migrating East Pacific Rise, for example, the 

ridge segment to the south of the Siqueiros Transform is a trailing ridge but also a 

downstream ridge. If ridge migration is the cause of changes in axial depth, the flow 

azimuth would be close to 135° and the mantle upwelling at the tip of the segment 
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would be enhanced rather than reduced as predicted by the previous models (Figure 

5.2). The resulting topography contrast would be inconsistent with the observation. 

Considering background mantle flow may provide a more viable explanation to the 

observed topography contrast.  

Additionally, while the importance of mantle wind on mid-ocean ridges has 

been widely recognized [e.g., Phipps Morgan and Smith, 1992; Conder et al., 2002; 

Buck et al., 2009; Ballmer et al., 2013; VanderBeek et al., 2016], the effects of ridge 

migration appears to depend largely on the rheology and numerical techniques of 

choice, and have not been consistently reported [Conder et al., 2002; Katz et al., 

2004; Katz, 2010; Cuffaro and Miglio, 2012]. Natarov and Conrad [2012] 

investigated the relative importance of Poiseuille and Couette flows in the 

asthenosphere using the depth-dependence of azimuthal seismic anisotropy, and 

found that Poiseuille flow dominates the asthenospheric flow at mid-ocean ridges. A 

recent high-resolution seismic anisotropy study on the oceanic lithosphere-

asthenosphere system in the middle of the Pacific plate also indicated that the shear 

associated with plate motion is weak compared to the pressure-driven asthenospheric 

flow [Lin et al., 2016], suggesting that the effects of ridge migration are less 

significant than those of the mantle wind.  

5.4.3 Inference on Direction and Strength of Mantle Pressure Gradient 

Despite its significant roles on global mid-ocean ridges, the direction and 

strength of the background mantle flow is not well constrained. Although some global 

mantle flow models are available [e.g., Yamamoto et al., 2007b; Conrad et al., 2007; 
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Conrad and Behn, 2010; Natarov and Conrad, 2012], they either do not properly 

represent the mantle wind, or exhibit discrepancy with each other. 

 Conrad et al. [2007] and Conrad and Behn [2010] calculated the global 

mantle flow driven by mantle density heterogeneities, plate motions and net 

lithosphere rotation, using the SKS splitting observations as constraints. Their models 

comprehensively represent mantle convection, a combination of both pressure-driven 

Poiseuille flow and shear-driven Couette flow [Höink and Lenardic, 2010; Crowley 

and O’Connell, 2012], and thus cannot be used to isolate the pressure-driven mantle 

wind in the thin layer of asthenosphere.  

Natarov and Conrad [2012] calculated the Poiseuille flow component from 

the global mantle flow model by Conrad and Behn [2010], but their study required 

the horizontal pressure gradient to be non-parallel to plate motions and is limited by 

the uncertainties in the asthenosphere rheological structure. The global asthenospheric 

flow model by Yamamoto et al. [2007b] is calculated with the assumption that the 

pressure-driven asthenospheric flow is fed by the plumes only, ignoring the pressure 

gradient from subducting slabs, which has been deemed significant by others [e.g., 

Höink and Lenardic, 2010]. Unsurprisingly, the pressure-driven flow fields by 

Natarov and Conrad [2012] and Yamamoto et al. [2007] show a great discrepancy. 

As our study has established a link between the topography contrast and the 

pressure-driven mantle wind, if we assume that the observed topography contrast is 

produced by mantle wind only, we could infer the direction of mantle wind by 

matching the amplitude and sign of each observed topography contrast to model 

predictions. For example, topography contrasts across transform faults at the Southern 
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East Pacific Rise are consistent with a mantle wind angled between 90° and 180° 

from the ridge azimuth, in rough agreement with the direction of the proposed 

asthenospheric flow in the region [Conder et al., 2002; Toomey et al., 2002]. As our 

method produces non-unique solutions, it can only be used as a reference for the 

established models. To make more rigorous prediction, detailed regional studies and 

associated models are necessary. 

5.4.4 Implications on Basalt Geochemistry and Mantle Refertilization 

The perturbations in melt generation and migration caused by the mantle wind 

likely affect the chemical characteristics of mid-ocean ridge basalts and mantle. 

Specifically, our model predicts three geochemical signatures for mantle wind. (1) 

The ridge segments on either side of a transform fault are supplied by different 

amounts of melts from source regions with different temperature, melt fraction and 

melt production rate. This effect may contribute to the observed geochemical 

segmentation [e.g., Schilling et al., 1982; Machado et al., 1982; Langmuir and 

Bender, 1984; Thompson et al., 1985; Langmuir et al., 1986]. (2) Mantle wind, if fed 

by a plume, may carry the chemical signature from its source and introduce more 

enriched basalt to the affected ridge segments [e.g., Niu et al., 1999]. (3) At slow-

spreading ridges, where the mantle wind perturbs the temperature most effectively, 

the permeability barrier underneath the leading plate shrinks in size leaving a large 

portion of melts available to refertilize the mantle on that side. 
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5.5 Conclusions 

Our three-dimensional numerical models of segmented mid-ocean ridges on 

which the mantle wind blows demonstrate the crucial role of the wind angle in 

perturbing mantle upwelling, temperature, permeability barrier depth, melt fraction, 

melt production, melt flux, crustal thickness and ridge axis depth. Ridge-

perpendicular flow enhances upwelling underneath the leading plate, and reduces it 

underneath the trailing plate. Ridge-parallel flow suppresses mantle upwelling at the 

tip of the upstream ridge near the ridge offset, and augments mantle upwelling at the 

tip of the downstream ridge. As oblique mantle wind has both ridge-perpendicular 

and ridge-parallel components, its effects can be approximated as the superposition of 

these components. With a left-stepping ridge, a wind angle of 45° creates the largest 

topography contrast between the ends of ridge segments across transform fault. The 

topography contrast increases with increasing magnitude of mantle pressure gradient. 

The topography contrast also varies with spreading rate and transform fault length, 

reaching maximum values at full-spreading rate of 6 cm/yr and transform fault length 

of 100 km, respectively. We favor mantle wind over ridge migration as the 

explanation for the observed changes in axial depth across discontinuities. Our model 

may be helpful in constraining the global mantle flow field. 
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Chapter 6:  Summary 

 

Crustal thickness at mid-ocean ridges may vary along the axis within 

individual ridge segment or between adjacent segments, exhibit asymmetry across the 

axis between conjugate plates, and differ between ridge segments and transform 

faults. Crustal thickness variations are influenced by plate motion, mantle flow, 

mantle temperature, melt generation, and melt extraction. Disentangling the 

contributions of each process has been challenging. This dissertation presents a 

systematic numerical study of the different origins of crustal thickness variations at 

segmented mid-ocean ridges, and provides some constraints on mantle and melt 

dynamics. Specifically, I attribute the spreading-rate dependent crustal thickness 

difference between ridge and transform faults to slip-rate-dependent melt extraction 

along the transform faults; I predict asymmetric crustal thickness across ridge axes 

based on the relation between spreading asymmetry and topography asymmetry; and I 

propose the presence of mantle wind as an explanation for the observed along-axis 

crustal thickness variation patterns. 

The three-dimensional numerical simulations of mid-ocean ridges with 

complexities such as transform faults, oblique spreading and mantle wind presented 

in this dissertation are made possible by the MeltMigrator software workflow: Mantle 

flow and thermal structures are first solved in finite element models, and then 

processed through the MeltMigrator software to calculate melt migration trajectories, 

melt flux along plate boundaries and crustal thickness distribution. The versatility of 

the MeltMigrator software is demonstrated in this dissertation.  
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This dissertation also highlights the crucial role of permeability barriers in 

melt migration. The three-dimensional morphology of permeability barriers directly 

controls the melt pathways and destinations, and potentially affects the rate of melt 

transport and the degree of mantle refertilization. Melt migration focused toward 

certain localities on the permeability barrier helps to create the observed along-axis 

crustal thickening toward the segment center and crustal thinning toward the segment 

ends. The spatial relation between the permeability barrier and the melt extraction 

zone determines whether melt eruption may occur along the transform faults.  

Modeling shows that mid-ocean ridge dynamics can be significantly perturbed 

by asymmetric spreading and mantle wind. The fact that these phenomena are 

ubiquitous in ocean basins worldwide implies that mid-ocean ridges are 

fundamentally asymmetric. The significance of these symmetry breakers should be 

considered in future studies of mid-ocean ridges. The unobserved asymmetric 

topography predicted by asymmetric spreading models poses an enigma that requires 

more detailed investigations, and may lead to better comprehensions of the crustal 

and mantle processes. Additionally, in simulations, I catch the mantle wind at mid-

ocean ridges, the understanding gained from models may help to constrain the mantle 

wind in reality.   
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Appendices 

 

Appendix A: Supporting Information for Chapter 2 

Here we provide the MATLAB-based melt migration software MeltMigrator 

to calculate melt migration trajectories, estimate melt flux and predict crustal 

thickness distribution from user-supplied numerical models of mid-ocean ridges. 

The MeltMigrator package contains a main script, meltMain, and a number 

of attendant functions, most of which are defined in stand-alone scripts. The scripts 

contained in the MeltMigrator package are cataloged in Table A.1, which includes an 

ID, a name and a brief description of each script, and the IDs of the upper-level 

scripts each script attends. A flowchart of major calculation steps is shown in Figure 

A.1. 
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Table A.1 A list of scripts in MeltMigrator package. 

Number Script Name Description Script Attended 

1 meltMaina MeltMigrator main script - 

2 setParametersa Set key parameters 1 

3 geometryTrim 
Trim the edges of computational domain to avoid 

boundary effects 
1 

4 meltFunctionRJ1981 
Calculate mantle melting using parameterization by 

Reid and Jackson [1981] 
2 

5 meltFunctionMELTS 
Calculate mantle melting using thermodynamic model 

alphaMELTS 
2 

6 lidSamplea Extract the permeability barrier information 1 

7 plotLidInfo Plot the permeability barrier information 1 

8 meltCalibrationa Normalize the crustal thickness to a reference value 1 

9 crustalThicknessCalculation2D Calculate crustal thickness along a vertical cross-section 8 

10 saddlePreparationa Extract key features of permeability barrier morphology 1 

11 alongSlopeSlopeGrad 
Describe the horizontal gradient of permeability barrier 

slope 
10 

12 inBounds Determine if a point is within the computational domain 11, 13, 14, 15 

13 alongSlopeGrad Describe the slope of permeability barrier 10, 16 

14 meltTrajectorySeeda Set up starting points for melt trajectory calculation 1 

15 crossToGrad Describe the contour of permeability barrier 14 

16 meltTrajectorya Calculate melt trajectories 1 

17 lineTruncate Remove overlapping points on a line 16 

18 lineSegmentIntersectb Calculate intersections of line segments 16 

19 lineStore Store current melt trajectory information 16 

20 meltSwatha 
Define the space between adjacent melt trajectories as 

melt swaths 
1 

21 lineSampleDepth Truncate and resample melt trajectories 20 

22 assignSegment 
Assign the nearest plate boundary segment to points on 

melt trajectories 
21, 26 

23 clockwiseAreaCalc Calculate the area of a quadrangle 20 

24 crustCalculationa Calculate melt flux and crustal thickness 1 

25 meltFluxCalculation Calculate melt flux in melt shoulders and swaths 24 

26 meltExtractiona 
Simulate melt extraction and calculate crustal thickness 

along plate boundaries 
24 

27 extractionDetermination Determine if a batch of melt is extracted 26 

28 minDistBetweenTwoPolygonsb Calculate the minimum distance between two polygons 26, 27, 33 

29 curveIntersectb Calculate intersections of curves 28 

30 plotCrustalAccretionProfile Plot crustal thickness profile 24 

31 crustalThicknessSmoothing 
Smooth crustal thickness profile along plate boundary 

segments 
24 

32 fastSmoothb Smooth a vector with a fixed smoothing width 31, 33 

33 crustalHistorya 
Advect crustal thickness along spreading direction and 

generate a map of crustal thickness 
24 

34 plotCrustalThicknessMapIn3D Plot crustal thickness map in 3D 33 

35 dataOutput Output selected model results 24 

aScript names in bold indicate major operations. 

bScripts from MATLAB Central. 
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Figure A.1 A flowchart of major MeltMigrator calculation steps. 
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Appendix B: Supporting Information for Chapter 4 

B.1 Numerical Model Setup 

Mantle flow and the thermal structure of mid-ocean ridge system are solved 

using the commercial finite element software COMSOL Multiphysics® 4.3. 

Conservation of mass, momentum and energy are expressed by: 

 ∇ ∙ 𝐕 = 0 (B.1) 

 ∇𝑃 = ∇ ∙ [𝜂(∇𝐕 + (∇𝐕)T)] (B.2) 

 𝜌𝑐𝑝(𝐕 ∙ ∇)𝑇 = ∇ ∙ (𝑘∇𝑇) (B.3) 

where V is the mantle velocity field, mis the reference mantle density,  is the 

mantle viscosity, cp is the heat capacity, k is the thermal conductivity, P is the 

pressure and T is the temperature. This set of equations describes the mantle as an 

incompressible material, and neglects the thermal and mechanical effects of mantle 

melting.  

We adopt the temperature-dependent viscosity with a viscoplastic 

approximation for brittle weakening following Behn et al. [2007] and Roland et al. 

[2010]: 

 𝜂 = 𝑚𝑖𝑛(𝜂𝑇 , 𝜂𝑌) (B.4) 

 𝜂𝑇 = 𝜂0 exp [
𝑄

𝑅
(
1

𝑇
−

1

𝑇𝑚
)] (B.5) 

 𝜂𝑌 =
𝐶0−𝜇𝜌𝑚𝑔𝑦

√2𝜀̇𝐼𝐼
 (B.6) 

where T is the temperature-dependent viscosity, Y is the effective viscosity 

associated with brittle failure [Chen and Morgan, 1990], 0 is the reference viscosity, 

Q is the activation energy, R is the gas constant, Tm is the mantle temperature, C0 is 
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the cohesion,  is the friction coefficient, g is the gravity acceleration, y is the depth, 

and is the second invariant of the strain rate tensor.  

The thermal structure of mid-ocean ridges is influenced by the hydrothermal 

circulation of seawater in the cold brittle crust [Sinha and Evans, 2004]. Here we use 

the parameterization of Phipps Morgan and Chen [1993] where hydrothermal 

circulation is approximated as enhanced thermal conductivity, and limited to 

temperatures less than Tcut = 600 °C and depth less than ycut = 6 km: 

𝑘 = 𝑘0 + 𝑘0(Nu − 1) exp [𝐴 (1 −
𝑇

𝑇cut
)] exp [𝐴 (1 −

𝑦

𝑦cut
)] exp(2𝐴)⁄  (B.7) 

where k0 is the reference thermal conductivity, Nu is the Nusselt number, A is a 

smoothing factor. 

  

II
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B.2 Compiled Topography Data 

 
 

Figure B.1 Sediment-unloaded topography of the Juan de Fuca Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.2 Sediment-unloaded topography of the East Pacific Rise. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.3 Sediment-unloaded topography of the East Pacific Rise. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.4 Sediment-unloaded topography of the East Pacific Rise. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.5 Sediment-unloaded topography of the Galapagos Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  



 

153 

 

 
 

Figure B.6 Sediment-unloaded topography of the Chile Rise. Black dots represent the 

locations of ridge axes determined from the seafloor age. Thin black lines are the 

sampling profiles.  
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Figure B.7 Sediment-unloaded topography of the Pacific-Antarctic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.8 Sediment-unloaded topography of the Pacific-Antarctic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.9 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.10 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.11 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.12 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.13 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.14 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.15 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.16 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.17 Sediment-unloaded topography of the Mid-Atlantic Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.18 Sediment-unloaded topography of the American-Antarctic Ridge. Black 

dots represent the locations of ridge axes determined from the seafloor age. Thin 

black lines are the sampling profiles.  
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Figure B.19 Sediment-unloaded topography of the Southwest Indian Ridge. Black 

dots represent the locations of ridge axes determined from the seafloor age. Thin 

black lines are the sampling profiles. 
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Figure B.20 Sediment-unloaded topography of the Southeast Indian Ridge. Black 

dots represent the locations of ridge axes determined from the seafloor age. Thin 

black lines are the sampling profiles.  
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Figure B.21 Sediment-unloaded topography of the Southeast Indian Ridge. Black 

dots represent the locations of ridge axes determined from the seafloor age. Thin 

black lines are the sampling profiles.  
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Figure B.22 Sediment-unloaded topography of the Central Indian Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles.  
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Figure B.23 Sediment-unloaded topography of the Central Indian Ridge. Black dots 

represent the locations of ridge axes determined from the seafloor age. Thin black 

lines are the sampling profiles. 
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Figure B.24 Perturbation in velocity (upper left), horizontal velocity (middle left), 

vertical velocity (lower left), temperature (upper right), melt fraction (middle right), 

and melt production (lower right) for an asymmetric spreading model with a full-

spreading rate of 6 cm/yr and a spreading asymmetry of 70%. 
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Figure B.25 Perturbation in velocity (upper left), horizontal velocity (middle left), 

vertical velocity (lower left), temperature (upper right), melt fraction (middle right), 

and melt production (lower right) for a mantle wind model with a full-spreading rate 

of 6 cm/yr and a mantle pressure gradient of 2 Pa/m. 
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Figure B.26 Perturbation in velocity (upper left), horizontal velocity (middle left), 

vertical velocity (lower left), temperature (upper right), melt fraction (middle right), 

and melt production (lower right) for a mantle thermal anomaly model with a full-

spreading rate of 6 cm/yr and a mantle temperature gradient of 0.2 K/km. 
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Figure B.27 Perturbation in velocity (upper left), horizontal velocity (middle left), 

vertical velocity (lower left), temperature (upper right), melt fraction (middle right), 

and melt production (lower right) for a ridge migration model with a full-spreading 

rate of 6 cm/yr and a ridge migration rate of 2.4 cm/yr. 
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Table B.1 Statistics of spreading rate, spreading asymmetry, and topography 

asymmetry averaged over each ridge. Segment-averaged data was weighted using 

segment length. Topography asymmetry is defined as the difference between the fast-

spreading and slow-spreading plate, 𝛥ℎF–S and its amplitude as |Δℎ|. Ridge 

abbreviations AARR: America-Antarctica ridge; CHIL: Chile Rise; CIRR: Central 

Indian Ridge; EPRR: East Pacific Rise; GALA: Galápagos Ridge; JUAN: Juan de 

Fuca Ridge; MARR: Mid-Atlantic Ridge; PARR: Pacific-Antarctic Ridge; SEIR: 

Southeast Indian Ridge; SWIR: Southwest Indian Ridge. 

 
Ridge Spreading 

rate 

[mm/yr] 

Spreading 

asymmetry 

[%] 

Topography 

asymmetry 

[m] 

Topography 

asymmetry 

amplitude [m] 

Length 

[km] 

Number 

of 

segments 

Number 

of 

profiles 

SWIR 17.6±4.1 61±7 81±219 182±147 4376 63 658 

AARR 19.9±3.0 59±4 17±372 279±246 514 10 69 

MARR 28.8±7.2 56±5 9±162 120±109 15525 235 2822 

CIRR 33.6±5.5 56±4 15±166 132±103 3860 61 719 

GALA 50.9±8.2 61±5 31±113 104±52 1863 14 366 

JUAN 62.1±2.6 62±6 -59±431 329±285 973 16 192 

SEIR 62.9±3.9 54±3 49±169 100±145 7268 79 1450 

PARR 69.0±12.6 57±4 -18±134 108±82 4838 38 950 

CHIL 75.2±3.5 60±5 46±145 92±121 1006 22 199 

EPRR 145.3±22.3 56±4 -9±101 85±55 5724 53 1115 

Global 54.8±35.1 56±5 18±197 186±156 45947 591 8540 
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Table B.2 Statistics of spreading rate, spreading asymmetry, and topography 

asymmetry averaged over each ridge segment. Ridge abbreviations: AARR: America-

Antarctica ridge; CHIL: Chile Rise; CIRR: Central Indian Ridge; EPRR: East Pacific 

Rise; GALA: Galápagos Ridge; JUAN: Juan de Fuca Ridge; MARR: Mid-Atlantic 

Ridge; PARR: Pacific-Antarctic Ridge; SEIR: Southeast Indian Ridge; SWIR: 

Southwest Indian Ridge.  

 
Ridge Segment Spreading 

rate 
[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 

AARR 1 19.7±0.2 56±2 164±130 164±130 59 9 
AARR 2 18.9±0.5 54±3 151±260 180±232 28 3 
AARR 3 20.3±1.6 63±11 333±293 369±243 76 15 
AARR 4 20.0±1.1 58±6 -839±450 839±450 72 3 
AARR 5 27.0±12.5 58±1 63±431 353±211 68 7 
AARR 6 17.8±0.6 66±6 327±380 375±324 64 7 
AARR 7 17.7±0.2 58±1 -195±330 328±167 35 7 
AARR 8 18.7±1.0 61±4 88±41 88±41 29 5 
AARR 9 16.8±0.5 60±4 148±7 148±7 31 2 
AARR 10 17.3±0.4 53±1 86±672 549±358 52 11 

CHIL 3 79.7±5.7 65±5 426±196 426±196 67 13 
CHIL 4 92.7±0.0 52±0 400±0 400±0 11 1 
CHIL 5 76.1±10.7 65±10 33±196 157±84 30 4 
CHIL 6 74.3±2.1 67±3 -34±210 170±121 90 19 
CHIL 7 74.0±1.0 67±0 331±193 331±193 25 6 
CHIL 8 75.6±5.0 58±8 -53±159 131±63 12 3 
CHIL 9 76.0±2.6 55±3 33±78 70±43 59 12 
CHIL 10 73.9±0.9 55±1 -35±55 54±35 97 20 
CHIL 11 74.2±0.4 57±0 -78±37 78±37 28 6 
CHIL 12 75.5±2.7 62±5 41±71 55±60 86 18 
CHIL 13 76.6±4.1 75±3 -19±115 79±73 17 4 
CHIL 14 70.2±3.1 70±10 -26±162 114±36 14 2 
CHIL 15 89.9±0.0 51±0 483±0 483±0 14 1 
CHIL 16 84.1±4.8 58±2 136±277 215±187 17 3 
CHIL 17 69.5±5.7 67±6 40±36 40±36 23 4 
CHIL 18 80.7±4.4 54±3 -243±99 243±99 13 3 
CHIL 19 74.9±0.8 57±0 -152±155 172±126 25 5 
CHIL 20 74.4±0.2 56±1 -114±114 130±90 32 7 
CHIL 21 74.6±0.6 54±1 44±175 114±139 113 23 
CHIL 22 73.9±1.0 59±1 49±112 104±61 99 20 
CHIL 23 73.7±0.3 60±0 -25±83 66±54 103 21 
CHIL 24 68.9±6.3 61±2 66±359 280±173 31 4 

CIRR 1 45.2±1.3 53±3 -293±471 454±278 30 6 
CIRR 2 45.0±0.5 52±1 11±208 165±116 54 11 
CIRR 3 43.9±0.4 53±2 -100±151 153±94 106 22 
CIRR 4 43.2±0.2 55±2 188±190 208±166 72 15 
CIRR 5 42.7±0.1 52±1 -208±165 213±158 25 5 
CIRR 6 42.2±0.5 52±2 176±309 280±211 64 13 
CIRR 7 42.1±0.2 52±0 -31±71 62±43 45 10 
CIRR 8 41.7±0.1 51±0 20±49 40±32 43 9 
CIRR 9 41.3±0.1 52±0 103±68 103±68 30 6 
CIRR 10 41.1±0.1 52±0 112±119 124±105 36 8 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
CIRR 11 41.4±0.7 56±3 123±96 130±86 69 14 
CIRR 12 40.8±0.2 55±1 -12±65 51±38 39 8 
CIRR 13 40.9±1.0 57±1 37±106 83±71 50 10 
CIRR 14 39.4±0.5 53±1 -27±75 69±38 124 25 
CIRR 15 38.6±0.1 52±0 -204±111 204±111 35 8 
CIRR 16 38.2±0.1 51±0 -208±169 208±169 30 7 
CIRR 17 37.2±1.6 51±3 -109±124 131±99 98 16 
CIRR 18 35.6±1.9 64±6 206±375 293±305 59 11 
CIRR 19 35.4±1.4 53±1 142±208 172±181 61 11 
CIRR 20 35.6±0.3 53±0 27±109 82±74 92 19 
CIRR 21 34.1±1.6 53±4 67±237 192±149 128 24 
CIRR 22 33.9±0.5 63±6 9±167 135±92 79 14 
CIRR 23 32.3±1.3 53±3 60±206 128±171 94 17 
CIRR 24 31.8±1.2 52±1 399±330 427±286 56 6 
CIRR 25 30.8±1.3 57±4 298±331 342±279 75 8 
CIRR 26 30.3±0.7 53±0 323±444 419±319 38 4 
CIRR 27 30.9±0.7 59±1 238±293 302±217 67 10 
CIRR 28 29.6±0.7 58±2 -208±175 209±174 55 7 
CIRR 29 35.9±0.8 53±3 138±188 180±143 80 11 
CIRR 30 37.1±1.3 58±0 100±180 161±106 27 4 
CIRR 31 36.5±0.5 57±0 -278±243 293±219 33 4 
CIRR 32 35.8±0.3 56±1 266±321 321±259 74 10 
CIRR 33 35.4±0.1 56±0 23±185 134±125 87 18 
CIRR 34 35.1±0.2 55±2 -106±182 173±99 32 5 
CIRR 35 34.8±0.1 55±1 -14±225 182±120 46 10 
CIRR 36 34.5±0.3 57±2 -161±212 194±181 86 17 
CIRR 37 33.9±0.1 57±1 157±122 160±118 49 10 
CIRR 38 33.9±0.3 56±1 -203±280 294±168 47 10 
CIRR 39 33.6±0.1 57±0 -199±182 213±162 21 5 
CIRR 40 33.5±0.5 55±2 147±204 196±139 22 4 
CIRR 41 33.1±0.1 56±1 -186±275 303±106 44 9 
CIRR 42 33.0±0.3 56±1 -476±218 476±218 47 9 
CIRR 43 32.9±0.5 57±3 98±654 600±196 52 10 
CIRR 44 31.9±0.4 61±1 261±365 287±344 155 28 
CIRR 45 30.8±0.0 61±0 388±139 388±139 24 2 
CIRR 46 30.8±0.4 58±1 7±269 192±185 145 29 
CIRR 47 30.4±0.3 55±2 23±183 154±88 53 10 
CIRR 48 29.9±0.1 51±1 -72±183 146±123 39 8 
CIRR 49 29.5±0.2 54±3 -14±165 144±71 68 14 
CIRR 50 29.0±0.2 56±1 -64±59 69±53 100 20 
CIRR 51 28.4±0.3 53±2 -86±202 180±121 83 17 
CIRR 52 27.8±0.2 58±1 197±177 203±170 97 20 
CIRR 53 27.2±0.1 57±0 -69±58 78±43 59 12 
CIRR 54 27.0±0.1 56±1 17±120 103±56 46 10 
CIRR 55 26.5±0.2 54±1 -84±173 170±81 86 17 
CIRR 56 25.8±0.2 52±1 -148±212 183±180 96 20 
CIRR 57 25.2±0.2 57±1 -182±157 191±145 97 20 
CIRR 58 24.8±0.4 64±4 25±304 265±94 30 6 
CIRR 59 24.9±0.4 71±3 90±95 111±66 53 10 
CIRR 60 24.5±0.2 74±1 -170±275 262±179 64 11 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
CIRR 61 23.6±0.1 55±2 -286±424 414±258 61 5 

EPRR 19 87.6±0.5 65±0 -15±38 35±18 43 9 
EPRR 20 90.6±2.1 66±1 81±93 89±84 62 13 
EPRR 21 93.6±0.6 65±3 207±81 207±81 27 6 
EPRR 22 95.4±2.5 55±1 72±43 80±21 90 18 
EPRR 23 98.9±1.2 55±1 151±22 151±22 82 17 
EPRR 24 100.2±1.0 52±1 188±48 188±48 88 18 
EPRR 25 102.4±0.4 51±0 182±56 182±56 28 6 
EPRR 26 104.8±1.0 52±1 96±30 96±30 103 21 
EPRR 27 106.8±0.9 54±0 70±35 70±35 78 16 
EPRR 28 109.1±0.8 53±1 4±70 47±51 94 19 
EPRR 29 113.0±1.5 53±2 60±156 95±137 119 24 
EPRR 30 118.4±5.1 54±5 -5±40 30±26 75 15 
EPRR 31 132.3±3.8 51±1 -184±135 184±135 8 2 
EPRR 32 130.4±1.5 52±2 206±123 206±123 7 2 
EPRR 33 120.5±3.6 52±1 35±38 42±30 47 10 
EPRR 34 120.4±0.7 51±0 79±19 79±19 71 15 
EPRR 35 124.5±2.0 51±0 61±31 63±26 218 44 
EPRR 36 128.9±0.8 51±0 79±39 81±36 80 16 
EPRR 37 132.5±1.7 51±0 84±33 84±33 177 36 
EPRR 38 132.4±9.8 52±0 87±92 102±74 148 30 
EPRR 41 143.6±0.7 53±1 91±56 101±37 220 44 
EPRR 42 145.1±0.7 53±2 48±42 52±37 140 28 
EPRR 43 146.2±1.1 53±1 43±142 130±65 104 21 
EPRR 44 157.4±10.7 60±4 220±119 220±119 42 9 
EPRR 45 151.2±6.0 60±5 143±68 143±68 66 14 
EPRR 46 151.2±1.2 57±1 10±82 66±46 86 18 
EPRR 47 151.8±0.9 56±1 -72±65 79±55 127 26 
EPRR 48 154.2±4.0 59±4 -23±97 71±68 84 17 
EPRR 49 153.2±0.2 59±1 -39±6 39±6 29 6 
EPRR 50 154.6±1.1 57±2 -60±74 74±59 212 43 
EPRR 51 164.9±4.6 53±2 122±243 187±184 20 5 
EPRR 52 156.1±0.6 51±0 -68±38 71±31 69 14 
EPRR 53 156.3±0.4 52±1 -20±83 71±46 135 27 
EPRR 54 156.3±0.5 54±0 -62±52 65±48 95 19 
EPRR 55 156.6±1.0 56±1 -49±44 53±38 97 20 
EPRR 56 156.9±0.8 55±2 -98±48 98±48 96 20 
EPRR 57 158.0±1.0 53±1 -122±131 161±61 26 6 
EPRR 58 169.8±5.4 53±1 -17±18 17±18 9 2 
EPRR 59 139.5±13.4 55±2 -166±128 176±114 191 35 
EPRR 60 124.3±10.7 54±1 -95±91 102±81 64 6 
EPRR 61 157.2±9.6 54±1 -107±49 107±49 47 5 
EPRR 62 162.8±0.8 54±1 -93±64 98±57 376 75 
EPRR 63 163.6±0.8 55±0 -42±23 42±23 155 32 
EPRR 64 163.9±1.0 58±1 -92±87 100±79 274 55 
EPRR 65 166.0±3.8 63±2 -216±61 216±61 154 30 
EPRR 66 168.6±3.3 71±3 -123±63 123±63 71 10 
EPRR 67 166.0±3.8 64±5 -198±136 227±74 254 32 
EPRR 71 163.6±1.7 64±1 -8±113 84±75 126 25 
EPRR 72 163.2±3.1 61±2 130±59 130±59 94 18 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
EPRR 73 163.0±2.8 52±4 17±102 71±74 128 26 
EPRR 74 162.8±0.2 52±1 33±123 88±91 187 38 
EPRR 75 162.3±1.2 56±1 -45±153 131±89 189 38 
EPRR 76 176.6±35.7 64±10 113±141 131±123 114 14 

GALA 4 35.9±7.2 70±2 123±64 123±64 147 30 
GALA 5 37.7±1.4 63±1 147±72 147±72 123 25 
GALA 6 62.7±14.8 67±7 58±141 122±88 146 18 
GALA 7 44.9±2.8 61±3 58±130 106±93 93 19 
GALA 8 43.7±0.2 63±1 125±48 125±48 30 6 
GALA 9 45.4±1.1 57±3 -17±91 67±63 240 48 
GALA 10 48.3±1.0 61±1 -122±41 122±41 120 24 
GALA 11 51.3±1.1 67±4 -123±123 144±97 150 30 
GALA 12 51.4±0.7 57±4 89±336 265±221 177 36 
GALA 13 53.6±1.0 66±3 -212±150 212±150 148 30 
GALA 14 56.0±0.3 66±2 61±95 101±47 81 17 
GALA 15 57.7±1.2 54±3 102±69 117±38 199 40 
GALA 16 60.3±0.8 60±8 177±172 212±123 62 13 
GALA 17 62.5±1.4 53±4 135±156 192±72 146 30 

JUAN 2 58.0±0.4 66±1 1280±183 1280±183 27 4 
JUAN 3 57.4±0.5 61±0 743±164 743±164 35 6 
JUAN 4 58.9±0.8 65±3 347±144 347±144 92 18 
JUAN 5 59.0±0.3 52±0 -138±81 138±81 49 10 
JUAN 6 59.3±0.2 52±0 -154±27 154±27 17 4 
JUAN 7 59.6±0.1 53±1 -131±50 131±50 55 11 
JUAN 8 60.7±0.4 55±3 -272±94 272±94 119 24 
JUAN 9 61.7±0.5 61±2 -323±119 323±119 60 12 
JUAN 10 61.8±0.4 65±1 -102±107 117±89 80 16 
JUAN 11 62.6±0.5 65±1 125±129 148±99 60 12 
JUAN 12 63.2±0.9 67±1 434±120 434±120 66 14 
JUAN 13 63.1±0.1 50±0 -8±111 94±23 16 4 
JUAN 14 64.2±2.7 61±5 -229±199 229±199 14 3 
JUAN 15 65.2±1.5 71±2 -856±102 856±102 69 14 
JUAN 16 65.4±0.8 66±2 -539±156 539±156 93 19 
JUAN 17 65.7±1.7 61±2 18±169 132±103 121 21 

MARR 7 14.3±0.1 54±1 164±74 164±74 175 9 
MARR 8 14.2±0.5 53±2 -219±307 330±152 39 7 
MARR 9 14.6±1.1 57±5 1±155 133±74 119 23 
MARR 10 15.8±0.9 74±6 259±87 259±87 73 12 
MARR 11 14.8±1.0 55±8 109±184 186±100 116 23 
MARR 12 15.1±0.1 51±1 -23±65 58±33 56 9 
MARR 13 15.6±0.3 51±1 50±83 69±68 144 20 
MARR 14 14.8±1.2 53±1 202±41 202±41 113 14 
MARR 15 14.9±0.6 54±1 301±54 301±54 63 7 
MARR 16 16.2±0.1 52±0 306±65 306±65 33 5 
MARR 17 16.3±0.1 52±0 217±43 217±43 40 4 
MARR 18 16.6±0.2 53±2 300±142 300±142 44 4 
MARR 19 17.3±0.5 60±3 625±188 625±188 67 9 
MARR 20 18.2±0.9 79±2 -476±495 641±228 128 21 
MARR 21 17.3±0.1 57±1 -107±131 117±122 86 17 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
MARR 22 17.7±0.2 59±2 151±50 151±50 131 23 
MARR 23 18.1±0.1 52±1 -46±118 91±86 116 23 
MARR 24 18.5±0.3 55±3 -98±84 100±83 96 20 
MARR 25 18.8±0.0 61±1 -184±21 184±21 22 5 
MARR 26 18.8±0.0 63±0 -125±7 125±7 35 7 
MARR 27 18.8±0.1 61±3 -118±10 118±10 110 3 
MARR 35 20.1±0.1 51±0 -6±45 38±24 76 13 
MARR 36 20.2±0.0 51±0 33±22 33±22 40 7 
MARR 37 20.3±0.0 50±0 50±28 50±28 43 8 
MARR 38 20.5±0.1 50±0 -54±60 70±39 93 17 
MARR 39 20.6±0.0 51±0 -100±35 100±35 45 9 
MARR 40 20.7±0.0 51±0 -42±49 50±39 46 9 
MARR 41 20.9±0.1 51±0 5±29 25±13 59 11 
MARR 42 21.0±0.1 52±1 17±50 44±27 80 14 
MARR 43 21.2±0.1 53±0 7±16 13±11 29 6 
MARR 44 21.2±0.1 54±0 87±20 87±20 27 5 
MARR 45 21.3±0.1 54±1 66±16 66±16 25 5 
MARR 46 21.4±0.1 53±0 31±65 60±38 109 19 
MARR 47 21.7±0.2 54±3 17±90 79±42 111 19 
MARR 48 22.3±0.7 59±1 78±123 123±71 106 9 
MARR 49 22.1±0.1 52±2 -16±92 81±43 80 16 
MARR 50 22.2±0.1 53±1 132±241 223±153 74 15 
MARR 51 22.5±0.1 56±1 15±151 133±64 94 19 
MARR 52 22.7±0.1 58±4 38±200 179±66 41 7 
MARR 53 23.2±1.7 65±3 -128±194 211±75 57 8 
MARR 54 26.1±2.3 73±5 281±541 490±302 44 5 
MARR 55 24.4±0.2 53±0 147±294 212±245 53 8 
MARR 56 24.4±0.1 53±0 117±137 145±101 35 7 
MARR 57 24.3±0.3 53±1 53±219 164±138 26 6 
MARR 58 24.8±0.1 52±1 113±311 279±155 48 10 
MARR 59 24.9±0.1 57±3 129±282 244±161 27 5 
MARR 60 23.2±1.0 58±4 205±153 205±153 31 5 
MARR 61 24.6±0.8 65±3 -53±198 172±96 44 9 
MARR 62 25.1±0.1 65±1 -310±90 310±90 27 2 
MARR 63 25.1±0.3 59±1 44±159 130±94 57 12 
MARR 64 25.1±0.1 60±0 -142±72 142±72 60 9 
MARR 65 25.1±0.1 56±2 -65±122 112±78 77 15 
MARR 66 25.2±0.1 58±0 -258±59 258±59 27 3 
MARR 67 25.2±0.1 58±1 127±192 188±124 45 10 
MARR 68 25.4±0.2 58±1 125±116 135±103 39 8 
MARR 69 25.4±0.1 56±1 155±64 155±64 72 15 
MARR 70 25.5±0.1 56±0 84±51 84±51 61 13 
MARR 71 25.6±0.1 57±0 202±49 202±49 38 8 
MARR 72 25.8±0.1 56±0 27±42 29±41 33 7 
MARR 73 25.8±0.1 54±1 8±57 45±33 81 17 
MARR 74 24.9±0.7 54±3 -13±72 64±32 99 20 
MARR 75 24.5±0.0 52±1 -82±54 85±49 50 10 
MARR 76 24.6±0.1 55±1 3±41 34±21 41 9 
MARR 77 24.6±0.1 57±1 42±34 46±28 53 11 
MARR 78 24.8±0.1 54±1 -83±54 83±54 31 7 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
MARR 79 24.8±0.0 51±1 -32±173 151±79 60 12 
MARR 80 24.9±0.1 51±1 -37±93 77±63 89 18 
MARR 81 25.0±0.1 51±1 -79±108 106±79 69 14 
MARR 82 25.1±0.0 51±1 -59±66 73±49 53 11 
MARR 83 21.6±1.4 56±2 -382±253 386±246 119 24 
MARR 84 21.0±0.2 53±2 -448±164 448±164 59 12 
MARR 85 21.3±0.2 53±1 -393±384 511±169 65 10 
MARR 86 21.1±1.1 53±1 101±394 309±203 58 4 
MARR 87 21.4±0.0 54±0 -140±0 140±0 21 1 
MARR 88 21.6±0.2 55±4 -1±69 54±37 44 7 
MARR 89 21.9±0.2 55±3 -29±117 102±56 48 10 
MARR 90 21.9±0.1 52±2 12±101 85±36 31 5 
MARR 91 22.2±0.2 57±1 -60±102 108±39 47 10 
MARR 92 22.5±1.2 51±2 19±177 139±101 69 9 
MARR 93 22.3±0.7 63±3 175±126 176±125 89 12 
MARR 94 22.8±0.3 57±2 63±121 117±62 51 11 
MARR 95 22.7±0.5 52±2 -109±280 261±124 47 9 
MARR 97 23.0±0.0 52±1 -447±157 447±157 65 7 
MARR 98 23.3±0.2 53±2 -68±358 315±147 61 9 
MARR 99 23.3±0.1 55±0 138±175 155±155 20 4 
MARR 100 23.3±0.1 55±0 152±128 154±125 38 8 
MARR 101 23.5±0.1 54±0 307±34 307±34 26 4 
MARR 102 23.6±0.2 53±0 62±102 82±85 42 9 
MARR 103 23.7±0.2 57±2 169±280 262±183 57 9 
MARR 104 23.8±0.2 58±0 108±131 149±66 41 5 
MARR 105 23.9±0.3 62±1 250±236 255±230 47 9 
MARR 106 23.8±0.3 58±3 50±280 218±157 30 6 
MARR 107 24.0±0.2 53±2 252±406 381±274 65 11 
MARR 108 24.1±0.3 53±3 73±347 296±180 87 15 
MARR 109 24.4±0.1 50±0 4±230 162±155 53 11 
MARR 110 24.3±0.3 52±2 -73±52 77±44 44 7 
MARR 111 24.7±0.1 53±1 -56±41 58±38 60 12 
MARR 112 24.8±0.1 51±0 99±76 108±61 49 10 
MARR 113 24.9±0.1 51±0 41±129 117±61 66 14 
MARR 114 25.1±0.1 52±0 1±106 94±39 59 12 
MARR 115 25.1±0.0 51±0 71±85 101±27 24 5 
MARR 116 25.3±0.1 52±1 -61±201 183±84 45 9 
MARR 117 25.4±0.2 55±1 116±330 298±159 54 10 
MARR 118 25.3±0.2 55±2 114±197 193±113 79 16 
MARR 119 25.8±0.3 53±2 166±115 166±115 58 9 
MARR 120 25.6±0.3 52±1 66±285 234±165 84 16 
MARR 121 25.7±0.2 59±3 101±126 115±112 58 10 
MARR 122 26.1±0.3 61±0 260±82 260±82 45 9 
MARR 123 26.2±0.2 59±1 43±104 75±82 68 14 
MARR 124 26.2±0.3 57±3 50±312 247±185 72 15 
MARR 125 26.6±0.2 63±2 316±132 316±132 45 10 
MARR 126 26.7±0.4 64±1 142±172 180±122 26 6 
MARR 127 27.0±0.5 55±4 -136±155 166±116 38 7 
MARR 128 26.6±0.1 53±0 77±192 181±91 65 14 
MARR 129 26.7±0.1 55±1 48±133 122±67 103 21 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
MARR 130 26.9±0.2 56±0 80±197 151±143 47 10 
MARR 131 27.0±0.1 54±1 3±206 172±103 70 15 
MARR 132 27.0±0.0 53±1 -322±95 322±95 45 5 
MARR 133 27.1±0.0 50±1 -97±208 190±121 74 15 
MARR 134 27.3±0.1 52±1 48±69 64±53 75 15 
MARR 135 27.4±0.3 54±1 90±148 147±86 93 16 
MARR 136 27.8±0.5 53±4 -1±83 64±46 58 6 
MARR 137 27.5±0.2 53±2 124±190 205±91 116 23 
MARR 138 28.0±0.2 53±2 46±131 105±87 99 19 
MARR 139 28.7±0.5 59±4 1±317 247±180 52 10 
MARR 140 28.3±0.4 53±3 264±176 282±139 43 5 
MARR 141 28.7±0.3 51±0 20±153 112±103 115 20 
MARR 142 29.0±0.2 52±1 151±257 222±192 71 10 
MARR 143 29.1±0.2 55±1 -79±132 100±109 27 3 
MARR 144 29.3±0.3 52±2 188±262 271±165 55 11 
MARR 145 29.2±0.7 58±3 -86±69 86±69 19 2 
MARR 146 30.0±0.6 57±2 -29±77 68±41 55 10 
MARR 147 29.7±0.6 70±2 -72±304 202±231 63 11 
MARR 148 30.7±0.6 55±7 -82±414 259±315 41 6 
MARR 149 29.8±0.5 51±1 -109±384 271±154 27 2 
MARR 152 33.2±4.5 70±17 205±259 250±212 68 13 
MARR 153 31.1±0.4 56±2 93±85 93±85 38 8 
MARR 154 31.2±0.2 56±6 -15±90 72±51 62 12 
MARR 155 31.4±0.1 54±2 -48±155 109±119 155 29 
MARR 156 32.8±1.6 68±5 -128±163 131±160 46 8 
MARR 157 32.1±0.8 69±2 -184±72 184±72 15 3 
MARR 158 32.2±0.5 68±1 -112±78 112±78 32 7 
MARR 159 32.4±0.3 65±2 21±162 118±107 60 12 
MARR 160 32.6±0.3 57±4 -123±266 224±135 52 3 
MARR 161 32.3±0.2 54±2 -42±162 106±128 111 23 
MARR 162 32.9±0.7 68±2 43±50 48±45 30 6 
MARR 163 33.5±1.1 59±3 -187±437 379±267 57 11 
MARR 165 32.7±0.1 59±0 96±74 96±74 25 3 
MARR 166 32.4±0.6 57±3 365±181 365±181 29 5 
MARR 167 33.4±0.4 53±1 -195±353 260±307 200 34 
MARR 168 33.6±0.2 52±1 8±84 61±48 78 4 
MARR 169 33.8±0.1 52±1 69±130 134±50 53 11 
MARR 170 34.1±0.4 53±1 -164±210 177±198 98 17 
MARR 171 34.4±0.1 53±0 18±184 156±86 77 11 
MARR 172 34.5±0.1 53±0 -75±347 303±159 52 11 
MARR 173 34.8±0.6 58±5 258±253 328±119 36 6 
MARR 174 34.9±0.3 61±1 348±175 355±159 80 16 
MARR 175 35.0±0.3 60±1 312±145 315±138 91 19 
MARR 176 35.3±0.7 59±1 54±58 54±58 24 3 
MARR 177 35.3±0.2 52±2 -59±273 249±102 57 11 
MARR 178 35.3±0.2 53±1 -260±147 288±70 60 12 
MARR 179 35.5±0.5 60±4 248±230 277±191 103 21 
MARR 180 36.0±0.6 59±3 159±152 192±104 92 19 
MARR 182 35.8±0.1 55±0 92±207 204±85 84 13 
MARR 183 36.1±0.2 59±2 196±177 214±152 123 25 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
MARR 184 36.2±0.3 59±2 -158±170 179±145 91 19 
MARR 185 36.4±0.3 56±0 -101±82 114±63 157 27 
MARR 186 36.0±0.6 53±0 -334±212 334±212 38 6 
MARR 187 36.8±0.3 57±3 -172±147 175±143 134 27 
MARR 188 36.9±0.5 54±1 -245±202 263±176 63 13 
MARR 189 36.9±0.6 54±2 0±190 148±117 234 44 
MARR 190 36.9±0.9 52±2 66±254 203±163 177 32 
MARR 191 37.3±0.4 53±1 208±171 252±87 123 21 
MARR 192 37.4±0.1 52±0 -112±110 127±89 59 12 
MARR 193 37.5±0.2 53±3 -220±175 253±118 97 20 
MARR 194 37.5±0.2 55±2 -125±204 207±116 125 25 
MARR 195 37.7±0.4 51±1 -44±289 242±153 97 18 
MARR 196 36.4±2.1 57±4 -181±42 181±42 35 2 
MARR 197 37.0±1.0 53±5 148±252 230±175 83 17 
MARR 198 37.6±0.1 52±0 -97±203 175±138 87 18 
MARR 199 38.0±0.6 53±0 77±361 302±167 35 6 
MARR 200 37.7±0.4 52±0 131±364 323±198 76 16 
MARR 201 37.5±0.3 53±1 -48±229 184±138 103 21 
MARR 202 37.5±0.0 51±1 52±138 122±79 86 18 
MARR 203 37.6±0.1 52±1 72±187 170±100 111 21 
MARR 204 37.6±0.2 51±0 25±135 110±76 71 13 
MARR 205 38.6±1.1 51±0 -3±186 131±4 24 2 
MARR 206 37.1±0.9 52±3 435±110 435±110 56 11 
MARR 207 37.5±0.0 51±1 -3±150 112±96 93 19 
MARR 208 37.5±0.1 52±0 20±169 146±78 69 14 
MARR 209 37.4±0.0 51±1 33±17 33±17 15 3 
MARR 210 37.5±0.4 50±0 -34±254 202±149 83 16 
MARR 211 36.3±0.0 58±0 93±0 93±0 16 1 
MARR 212 37.2±0.1 52±2 138±198 178±161 99 20 
MARR 213 37.0±1.0 58±3 -51±295 230±155 36 5 
MARR 214 37.3±0.3 61±1 246±268 286±219 51 9 
MARR 215 38.4±1.8 61±2 -255±116 255±116 24 4 
MARR 216 37.2±0.2 61±1 268±149 268±149 26 6 
MARR 217 37.7±0.5 59±1 174±140 177±134 47 8 
MARR 218 36.9±0.5 53±1 80±219 192±121 79 13 
MARR 219 36.9±0.1 51±0 37±185 155±103 110 22 
MARR 220 37.0±0.3 60±2 -259±164 261±160 72 15 
MARR 221 37.8±1.4 66±2 125±22 125±22 32 7 
MARR 222 36.6±0.6 60±3 311±38 311±38 27 5 
MARR 223 37.0±0.3 62±1 423±89 423±89 67 14 
MARR 224 37.1±0.4 61±2 126±95 126±95 29 4 
MARR 225 36.6±0.6 58±2 80±119 111±87 45 10 
MARR 226 36.6±0.6 53±2 -30±256 205±142 56 11 
MARR 227 36.4±0.1 54±1 -102±225 155±191 88 18 
MARR 228 36.4±0.0 53±1 -87±85 101±66 45 10 
MARR 229 36.7±0.5 59±3 -175±109 181±97 46 8 
MARR 230 36.3±0.2 63±1 -9±146 125±68 74 15 
MARR 231 36.3±0.4 60±3 -2±257 207±142 88 18 
MARR 232 36.0±0.1 58±1 -163±139 168±133 129 52 
MARR 233 36.1±0.2 63±3 -179±324 291±210 45 7 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
MARR 234 36.0±0.3 72±2 -278±194 296±164 73 15 
MARR 235 35.2±0.7 60±4 -192±291 305±158 72 15 
MARR 236 34.5±0.9 54±1 -122±478 415±200 27 6 
MARR 237 36.1±0.2 52±1 8±49 38±25 36 5 
MARR 238 35.5±0.3 56±1 98±63 98±63 55 12 
MARR 239 35.3±0.1 55±1 -36±70 51±56 23 4 
MARR 240 35.3±0.1 55±0 -65±182 166±85 54 11 
MARR 241 36.0±0.9 57±2 -668±389 668±389 26 3 
MARR 242 35.0±0.2 57±1 -136±412 273±333 151 27 
MARR 243 34.5±0.1 54±2 -82±139 129±82 31 5 
MARR 244 34.5±0.5 51±1 10±350 207±277 90 16 
MARR 245 34.8±0.4 66±1 -323±272 354±226 70 11 
MARR 246 34.6±0.3 64±1 -70±60 70±60 24 4 
MARR 247 34.8±0.2 66±1 160±195 190±163 63 11 
MARR 248 34.9±1.4 57±2 -24±183 160±73 42 9 
MARR 249 34.2±0.4 61±3 -80±181 166±102 98 20 
MARR 250 33.5±0.2 55±3 95±397 387±106 126 25 
MARR 251 33.4±0.3 58±2 57±88 88±55 171 33 
MARR 252 33.0±0.2 55±1 -133±146 153±123 101 20 
MARR 253 35.2±1.4 64±6 64±97 92±67 78 13 

PARR 1 88.3±4.7 57±1 -140±69 140±69 142 29 
PARR 2 86.0±0.6 58±1 -285±195 285±195 279 56 
PARR 3 84.9±0.4 59±0 -58±58 68±45 144 29 
PARR 4 84.2±0.5 59±1 -43±73 73±41 115 23 
PARR 5 83.9±0.9 57±0 -254±117 254±117 92 18 
PARR 6 82.6±1.0 61±1 -69±113 80±105 225 45 
PARR 7 81.1±0.5 61±0 -115±36 115±36 161 33 
PARR 8 79.6±0.6 59±1 -52±103 90±72 249 50 
PARR 9 78.5±0.2 59±0 1±39 32±21 86 18 
PARR 10 76.7±3.1 58±0 -48±105 94±64 148 29 
PARR 11 76.1±0.5 52±0 -15±87 73±48 186 36 
PARR 12 74.6±0.6 53±1 -86±56 94±43 230 46 
PARR 13 73.1±1.4 53±2 151±139 169±116 171 34 
PARR 15 71.8±0.4 61±1 149±86 157±70 47 9 
PARR 16 70.8±1.0 61±0 33±112 93±69 165 28 
PARR 17 69.4±13.3 66±7 251±755 617±465 58 10 
PARR 18 69.2±1.1 51±1 49±233 207±105 109 14 
PARR 19 68.8±0.8 62±2 22±82 63±54 48 10 
PARR 20 67.8±0.6 63±0 -47±150 130±85 150 30 
PARR 21 66.5±0.4 62±0 271±60 271±60 70 14 
PARR 22 66.0±0.4 62±0 -36±164 139±84 51 10 
PARR 23 62.0±4.1 56±5 -69±172 152±95 63 9 
PARR 24 65.0±0.9 52±1 141±107 141±107 69 11 
PARR 25 64.1±0.3 52±0 -17±51 42±32 83 17 
PARR 26 63.4±0.5 52±1 57±64 73±45 117 24 
PARR 27 61.9±0.9 55±1 52±85 79±58 111 23 
PARR 28 60.2±0.7 52±1 -169±141 182±125 165 33 
PARR 29 58.2±1.0 56±1 46±75 70±53 225 45 
PARR 30 56.4±0.5 54±0 136±138 163±103 131 27 
PARR 31 53.7±2.7 61±1 -158±113 173±88 168 32 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
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amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
PARR 32 51.9±3.6 60±5 -82±48 82±48 53 11 
PARR 33 56.8±1.8 58±3 -359±153 359±153 35 7 
PARR 34 53.1±0.9 60±2 228±174 261±117 113 23 
PARR 35 50.3±1.8 57±7 239±176 239±176 118 24 
PARR 36 49.6±0.4 52±1 97±121 121±94 98 20 
PARR 37 48.3±0.5 55±1 155±88 155±88 129 26 
PARR 38 46.4±0.7 52±2 37±72 58±56 123 25 
PARR 39 45.1±0.8 57±2 -58±77 77±57 111 22 

SEIR 1 52.1±0.2 52±3 88±186 187±74 77 16 
SEIR 2 52.7±0.1 52±0 -229±22 229±22 22 5 
SEIR 3 52.9±0.1 51±0 -98±232 218±106 46 9 
SEIR 4 53.5±0.3 52±1 -99±123 135±79 95 19 
SEIR 5 54.0±0.1 51±0 -94±174 161±109 68 14 
SEIR 6 54.3±0.0 51±0 109±13 109±13 21 5 
SEIR 7 54.5±0.2 52±1 12±186 158±89 67 14 
SEIR 8 55.1±0.3 53±0 -62±103 91±77 62 13 
SEIR 9 55.6±0.5 53±1 -4±179 146±99 121 25 
SEIR 10 56.1±0.2 52±0 -13±255 229±90 58 12 
SEIR 11 56.8±0.7 55±1 16±113 86±73 126 26 
SEIR 12 57.1±0.4 53±2 36±175 154±85 97 20 
SEIR 13 58.0±1.0 54±2 -44±138 106±98 221 44 
SEIR 14 58.8±2.1 58±3 57±214 168±142 130 26 
SEIR 15 59.4±0.2 56±1 133±91 133±91 65 13 
SEIR 16 59.7±1.2 57±0 99±237 168±139 8 2 
SEIR 17 59.6±1.0 54±2 403±155 408±141 116 24 
SEIR 18 57.6±1.2 57±5 485±90 485±90 30 5 
SEIR 19 60.8±3.6 61±10 790±1006 1174±464 101 19 
SEIR 20 61.4±2.4 58±5 1080±106 1080±106 44 9 
SEIR 21 61.3±1.8 53±3 265±536 466±364 99 20 
SEIR 22 61.3±0.1 52±0 67±37 67±37 75 15 
SEIR 23 61.8±0.4 53±0 -93±52 97±44 151 31 
SEIR 24 62.3±0.5 51±1 -158±120 158±120 33 6 
SEIR 25 62.3±0.1 52±0 -84±42 84±42 47 10 
SEIR 26 62.5±0.1 52±0 -99±54 99±54 40 8 
SEIR 27 62.6±0.1 53±0 -200±34 200±34 54 11 
SEIR 28 62.8±0.6 54±3 -77±140 138±76 113 23 
SEIR 29 63.9±1.0 54±1 9±108 70±82 234 45 
SEIR 30 64.4±0.7 51±0 -14±58 52±28 112 23 
SEIR 31 64.4±0.1 52±0 38±26 39±23 80 16 
SEIR 32 64.8±0.2 53±1 -21±42 38±25 135 27 
SEIR 33 65.1±0.2 53±1 37±66 63±41 224 45 
SEIR 34 65.5±0.1 54±1 -65±75 79±61 135 27 
SEIR 35 66.3±1.8 57±1 -23±115 78±84 66 13 
SEIR 36 66.5±2.8 57±5 -59±147 124±92 54 11 
SEIR 37 66.0±0.2 51±1 -35±105 78±76 96 20 
SEIR 38 66.1±0.1 52±0 22±23 27±16 47 10 
SEIR 39 66.4±0.7 55±1 74±97 96±75 174 35 
SEIR 40 66.6±0.4 51±0 -3±61 55±23 96 20 
SEIR 41 66.4±0.2 51±0 -1±47 38±27 97 20 
SEIR 42 66.7±0.4 51±1 85±72 102±42 115 23 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
SEIR 43 66.2±0.3 54±0 173±90 174±89 70 14 
SEIR 44 67.0±1.0 53±1 204±105 204±105 21 5 
SEIR 45 65.6±1.0 57±2 -12±166 129±100 82 17 
SEIR 46 67.2±1.1 52±0 -99±121 99±121 9 2 
SEIR 47 67.5±0.4 56±1 120±96 134±74 119 24 
SEIR 48 67.7±0.1 52±1 128±135 150±103 22 5 
SEIR 49 67.3±0.2 53±1 -123±111 153±62 177 36 
SEIR 50 67.0±0.4 53±0 -246±54 246±54 40 9 
SEIR 51 67.1±0.4 56±1 41±55 57±38 99 20 
SEIR 52 66.9±0.5 55±1 21±129 108±69 81 17 
SEIR 53 66.8±0.3 56±1 -135±114 155±82 87 18 
SEIR 54 66.6±0.4 54±1 190±53 190±53 18 4 
SEIR 55 67.2±0.3 52±1 230±252 279±176 19 4 
SEIR 56 67.3±0.5 53±1 -80±111 107±82 41 9 
SEIR 57 66.8±0.1 55±1 103±71 104±69 26 6 
SEIR 58 66.8±0.3 56±1 6±38 31±21 86 18 
SEIR 59 66.7±0.3 57±1 -4±120 90±78 100 21 
SEIR 60 66.4±1.5 56±2 152±216 154±213 23 3 
SEIR 61 67.1±1.0 51±1 398±336 409±322 45 10 
SEIR 62 66.4±0.3 55±1 -16±134 114±66 83 17 
SEIR 63 66.2±0.2 52±0 15±300 259±97 28 6 
SEIR 64 65.8±0.3 53±1 -271±153 271±153 21 5 
SEIR 65 66.0±0.1 51±1 17±259 223±123 87 18 
SEIR 66 65.9±0.6 55±2 -10±143 113±82 59 12 
SEIR 67 65.8±1.4 52±1 66±167 125±126 89 17 
SEIR 68 65.7±0.7 52±0 128±116 154±76 86 15 
SEIR 69 65.3±0.2 52±1 6±136 114±72 212 43 
SEIR 70 64.6±0.2 51±1 87±157 162±75 255 51 
SEIR 71 64.0±0.2 52±1 242±79 248±58 179 36 
SEIR 72 63.4±0.4 51±0 316±252 345±210 144 28 
SEIR 73 63.9±2.4 60±6 257±280 310±216 85 15 
SEIR 74 62.9±1.0 58±5 -21±118 93±74 202 39 
SEIR 75 62.3±0.7 53±2 -30±178 144±105 158 32 
SEIR 76 61.7±0.4 54±1 -247±89 247±89 44 7 
SEIR 77 62.0±2.1 57±4 78±192 160±120 64 7 
SEIR 78 62.1±1.3 68±1 70±150 144±78 161 30 
SEIR 79 59.8±2.0 52±1 28±160 123±104 295 51 

SWIR 1 16.5±0.1 59±3 474±565 602±415 123 15 
SWIR 2 16.4±0.4 63±6 413±464 461±412 64 11 
SWIR 3 16.8±0.2 63±5 11±364 295±197 97 14 
SWIR 5 19.3±1.3 83±4 -232±190 232±190 53 7 
SWIR 6 18.8±0.5 72±0 147±110 147±110 72 2 
SWIR 7 17.0±0.4 68±1 689±51 689±51 13 2 
SWIR 8 16.7±0.1 57±5 14±386 307±202 101 8 
SWIR 9 16.6±0.1 55±1 209±229 238±193 36 7 
SWIR 10 16.7±0.1 52±1 -51±25 51±25 49 3 
SWIR 11 16.7±0.1 70±2 -53±45 60±33 47 7 
SWIR 12 16.6±0.1 65±1 19±46 38±27 24 5 
SWIR 13 16.7±0.1 60±2 206±213 222±195 72 14 
SWIR 14 16.7±0.0 52±2 18±90 75±49 62 13 
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Ridge Segment Spreading 
rate 

[mm/yr] 

Spreading 
asymmetry 

[%] * 

Topography 
asymmetry 

[m] 

Topography 
asymmetry 

amplitude [m] 

Length 
[km] 

Number 
of 

profiles 
SWIR 15 16.8±0.0 53±1 -219±99 219±99 77 15 
SWIR 16 16.9±0.1 56±1 228±212 259±168 43 9 
SWIR 17 16.9±0.2 59±1 127±220 208±135 50 10 
SWIR 18 17.0±0.1 63±1 275±160 275±160 46 9 
SWIR 19 16.9±0.1 60±3 170±310 252±242 63 13 
SWIR 20 16.9±0.0 54±1 88±152 131±114 61 13 
SWIR 21 16.9±0.2 51±1 92±775 676±329 52 11 
SWIR 22 18.4±1.3 74±9 -264±844 658±577 121 23 
SWIR 25 16.8±0.1 51±0 122±893 770±402 79 11 
SWIR 26 16.8±0.1 53±2 335±639 372±617 125 19 
SWIR 27 16.9±0.1 52±2 305±241 305±241 70 11 
SWIR 28 17.0±0.2 56±5 200±472 437±229 70 9 
SWIR 29 16.8±0.1 56±1 -82±235 174±174 87 15 
SWIR 30 16.8±0.5 63±10 299±197 299±197 86 14 
SWIR 32 16.9±0.2 62±7 9±584 423±393 124 25 
SWIR 33 17.0±0.3 73±1 349±77 349±77 35 3 
SWIR 34 16.7±0.0 59±2 -277±108 277±108 26 2 
SWIR 35 16.6±0.1 56±1 136±481 400±272 82 10 
SWIR 36 16.8±0.2 61±4 132±384 285±284 120 21 
SWIR 37 16.4±0.2 59±3 40±216 175±103 81 5 
SWIR 38 16.7±0.1 62±1 335±126 335±126 52 9 
SWIR 39 16.7±0.2 57±5 -132±275 221±198 43 8 
SWIR 40 16.4±0.0 51±1 -133±546 513±64 30 6 
SWIR 41 16.4±0.1 51±1 211±231 230±212 89 17 
SWIR 42 16.5±0.1 59±1 527±155 527±155 66 13 
SWIR 43 16.8±0.8 63±8 -313±716 601±475 70 12 
SWIR 44 19.2±0.8 84±4 236±666 589±355 96 12 
SWIR 45 17.3±1.6 54±4 202±247 231±212 64 5 
SWIR 46 16.6±0.2 60±6 462±637 665±390 66 10 
SWIR 47 16.1±0.0 56±2 -2±796 694±302 57 9 
SWIR 48 16.1±0.1 55±3 -66±528 448±266 120 18 
SWIR 49 16.5±0.2 68±2 288±720 560±491 52 6 
SWIR 50 16.1±0.1 60±3 179±691 602±341 74 12 
SWIR 51 15.9±0.1 57±0 529±712 704±515 53 9 
SWIR 52 15.8±0.2 57±5 -42±199 156±117 70 8 
SWIR 53 16.0±0.3 62±5 -144±658 535±386 118 16 
SWIR 54 17.3±0.4 79±2 769±223 769±223 35 3 
SWIR 55 16.1±0.4 68±6 148±321 289±190 66 12 
SWIR 56 15.7±0.2 54±3 -176±173 188±157 35 7 
SWIR 57 15.6±0.1 56±4 70±191 169±102 96 10 
SWIR 58 15.6±0.0 58±1 25±125 96±73 57 6 
SWIR 59 15.5±0.0 63±1 -47±67 67±45 70 14 
SWIR 60 15.4±0.1 58±3 -258±189 268±174 97 19 
SWIR 61 15.5±0.2 66±5 -65±71 79±51 35 7 
SWIR 62 15.4±0.2 62±3 -79±133 94±122 74 13 
SWIR 63 15.6±0.2 63±5 -313±90 313±90 59 11 
SWIR 64 15.0±0.8 56±2 16±310 209±175 26 3 
SWIR 65 15.2±0.1 61±2 10±53 37±14 33 2 
SWIR 66 17.4±3.8 66±6 -47±52 53±45 57 8 
SWIR 67 35.7±10.1 66±15 -82±252 216±145 207 17 
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* A standard deviation of 0 means that it is less than 0.5 
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Table B.3 Parameters and variables used in this study 

 

Name Symbol Value Unit Equation 

Coordinates x, y  km  

Topography difference between right-hand-side 
plate and left-hand-side plate 

ΔhR-L  m  

Topography difference between faster-moving 
plate and slower-moving plate 

ΔhF-S  m  

Degree of spreading asymmetry AS 55 – 85 % (4.3) 

Full spreading rate Vfull 2 – 18 cm∙yr-1  

Relative topography h  m (4.1) 

Compensation depth yc 125 Km (4.1) 

Mantle density   kg∙m-3 (4.1)(4.2) 

Reference mantle density m 3300 kg∙m-3 (4.1)(4.2)(4.4)(B.3) (B.6) 

Crustal density c 2800 kg∙m-3 (4.4) 

Water density w 1000 kg∙m-3 (4.1)(4.4) 

Thermal expansion  3-5 K-1 (4.2) 

Compressibility  10-11 Pa-1 (4.2) 

Depletion coefficient  0.1 No dimension (4.2) 

Melt fraction F  % (4.2) 

Temperature T  °C (4.2)(B.3) (B.5) (B.7) 

Reference temperature Tref 20 °C (4.2) 

Pressure P  Pa (4.2)(B.2) 

Reference pressure Pref 105 Pa (4.2) 

Topography variation h  m (4.4) 

Crustal thickness variation H  km (4.4) 

Mantle velocity V  cm∙yr-1 (B.1) (B.2) (B.3) 

Gravity g 9.8 m∙s-2 (B.6) 

Effective viscosity   Pa∙s (B.2) (B.4) 

Viscosity (ductile process) T  Pa∙s (B.4) (B.5) 

Viscosity (brittle process) Y  Pa∙s (B.4) (B.6) 

Reference viscosity 0 1019 Pa∙s (B.5) 

Activation energy Q 250 kJ∙mol-1 (B.5) 

Gas constant R 8.314 J∙mol-1∙K-1 (B.5) 

Mantle potential temperature Tm 1375 °C (B.5) 

Cohesion C0 10 MPa (B.6) 

Friction coefficient  0.6 No dimension (B.6) 

Second invariant of the strain rate tensor 𝜀𝐼̇𝐼  s-1 (B.6) 

Specific heat capacity cp 1250 J∙kg-1∙K-1 (B.3) 

Effective thermal conductivity K  W∙m-1∙K-1 (B.3) (B.7) 

Reference thermal conductivity k0 3 W∙m-1∙K-1 (B.7) 

Nusselt number Nu 8 No dimension (B.7) 

Smoothing factor A 0.75 No dimension (B.7) 

Maximum temperature of hydrothermal 
circulation 

Tcut 600 °C (B.7) 

Maximum depth of hydrothermal circulation ycut 6 km (B.7) 
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