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Machine vision technologies have received a lot of attention for automated food
quality inspection. This dissertation describes three techniques developed to improve

the quality inspection of apple and poultry products.

First, a Gabor feature-based kernel principal component analysis (PCA) method was
introduced by combining Gabor wavelet representation of apple images and the
kernel PCA method for apple quality inspection using near-infrared (NIR) imaging.
Gabor wavelet decomposition was employed to extract appropriate Gabor features of
whole apple NIR images. Then, the kernel PCA method with polynomial kernels was
applied in the Gabor feature space to handle nonlinear separable features. The

experimental results showed the effectiveness of the Gabor-based kernel PCA



method. Using the proposed Gabor kernel PCA eliminated the need for local feature
segmentation and also resolved the nonlinear separable problem in the Gabor feature

space. An overall 90.5% detection rate was achieved.

Second, a novel 3D-based apple near-infrared (NIR) data analysis strategy was
utilized so that the apple stem-end/calyx could be identified, and hence differentiated
from defects and normal tissue according to their different 3D shapes. Two automated
3D data processing approaches were developed in this research: 1) A 3D quadratic
facet model fitting, which employed a small concave 3D patch to fit the 3D apple
surface and the best fit could be found around stem-end/calyx area; and 2) A 3D
shape enhanced transform (SET), which enhanced the apple stem-end/calyx area and
made it easily detectable because of the 3D surface gradient difference between the

stem-end/calyx and the apple surface. An overall 92.6% accuracy was achieved.

Third, high resolution on-line laser 3D imaging was investigated for improving the
3D profile recovery for thickness compensation purposes. Parallel processing and
memory management were also considered to improve the processing speed of the
detection system. Multiple-lane coverage was fulfilled such that a wider conveyor
could be used and overall throughput would be increased. To further improve the
detection performance of the dual X-ray and laser imaging system, a dynamic
thresholding approach was introduced to suppress the errors and noise involved by
the imaging system. Unlike the traditional single threshold method, dynamic

thresholding monitored the responses of the region of interest under a set of



thresholds to determine the true physical contaminants, making it more tolerant to the
noise than the single threshold method. An overall 98.6% detection rate was

achieved.
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CHAPTER 1 INTRODUCTION

1.1 Background and Rationale

Trillion dollars worth of food products (Plunkett Research Ltd., 2007), including 9.9
billion pounds of apples and 55.2 billion pounds of poultry (USDA, 2007a & b), were
consumed last year in the United States. Figure 1 shows the annual consumption of
the major fresh fruits in the U.S., among which apples are ranked third. Similarly, the
annual consumption of meat products is shown in Figure 2 with poultry meat ranked
first. It is important for the food industry to ensure that all food products are
effectively and efficiently inspected and processed to meet the stringent federal
standards so that safe foods are sold to consumers. For years, machine vision
technology has played an important role in the food industry by transforming the

traditional labor-intensive manual inspection to automated on-line processing.

Apples
(17%)

Oranges Grapes
(43%) (20%)

Figure 1. Annual consumption of fresh fruits in the U.S.



Beef
(29%)

Broiler
(41%)

Pork
(24%)

Figure 2. Annual consumption of meat products in the U.S.

Automated inspection of apple quality involves computer recognition of blemished
apples based on geometric or statistical features derived from images of the fruit.
Although pattern recognition techniques are widely used to detect apple defects, most
current approaches are based on local information and need local feature
segmentation. However, local feature extraction itself remains a very challenging
problem in image processing. To overcome this problem, a global feature-based
approach seems promising because it eliminates the need for local feature
segmentation, and hence improves the effectiveness of the on-line apple sorting

machine.

In machine vision-based automated apple grading and sorting systems, it is important
to identify apple stem-ends and calyxes in apple images because they often exhibit
similar patterns and intensity values to the defects and result in false positives during
defect sorting. In addition, stem-end/calyx identification is necessary for estimating
the apple firmness, because the location of the stem-end and calyx must be known if
an efficient firmness measurement device is to be perfected (Throop, et al., 2001).

Currently, 2D near-infrared (NIR) imaging technology is often used to detect apple



defects based on the difference in image intensity of defects from the normal apple
tissues. However, the difficulty in accurately differentiating apple stem-ends/calyxes
from the true defects due to their similar 2D NIR image patterns presents a major
technical challenge to the successful application of this machine vision technology.
Although 2D-based information seems insufficient, apple stem-ends and calyxes have
special 3D characteristics including bowl-shaped concaves, making the 3D-based

analysis a feasible approach for automated apple stem-end/calyx identification.

In the poultry industry, physical contaminants including bone fragments in fillets,
metal chips and some other foreign materials are of major concern for the processors
because serious health problems can be caused by accidentally swallowing them.
Traditional X-ray imaging techniques are often employed to identify foreign
contaminants in chicken fillets. However, the uneven thickness of the chicken meat
presents a major challenge to accurately identify the physical contaminants by X-ray
imaging alone. A combined X-ray and laser range imaging system has proved to be
effective because the uneven thickness problem can be eliminated by the laser
imaging modality. On the other hand, the throughput as well as the accuracy still
needs to be further improved in order to build a viable machine for the real on-line

applications.

1.2 Objectives

The general objective of this study is to develop new pattern recognition and machine
vision-based technologies for automated food quality inspection, especially for apples

and poultry. The proposed approaches should be able to overcome the obstacles



mentioned above and/or to improve the performance of current system/technology.

The specific objectives of this research are:

1) To develop a global feature-based apple automated inspection system that can
eliminate the conventional local feature extraction during the apple defect detection,
and hence improve both the efficiency and effectiveness of the system. The non-
linear classification approach will be also explored in order to tackle the complexity

of the problems.

2) To develop an apple NIR imaging system through 3D surface reconstruction and
analysis for automated apple stem-end/calyx identification. Sample testing will be

followed to evaluate the performance of the proposed approach.

3) To develop an improved dual X-ray and laser imaging system including an
expandable on-line laser 3D ranging imaging subsystem, and the dynamic
thresholding strategy for suppressing the errors and noise produced by the imaging

system.

1.3 Organization

This dissertation is laid out in the following order. The literature review on related
research areas will be given in Chapter 2. In Chapter 3, the automated machine vision
systems for both apple and poultry quality inspection will be introduced. The research

with detailed analyses according to the three objectives given above will be discussed



in Chapters 4, 5 and 6, respectively. The conclusion as well as the future work will be

presented in Chapter 7.



CHAPTER 2 LITERATURE REVIEW

2.1 Machine vision technologies in the food safety and quality inspection

applications

2.1.1 The impact of food safety and quality research to human society

According to the U.S. Department of Agriculture (USDA, 2002), the average
American consumes about 46 more pounds of poultry per year than they did in the
1970s, while fruit consumption has risen by 20% since the 1970s. As a result, food
safety and quality inspection remains one of the major public health challenges in
today’s world. Although the food supply in the United States is one of the safest in
the world, the U. S. Centers for Disease Control and Prevention (CDC, 2008) still
estimates that ““76 million people get sick, more than 300,000 are hospitalized, and
5,000 Americans die each year from foodborne illness.” In addition to public health,
food safety and quality also have large impacts on the economy. Researchers (Hayes
et al., 1995; Baker, 1999) found that consumers would be willing to pay more for
food with lower risks of disease and lower pesticide residues. Food quality and safety
research is required to ensure such high quality food. In addition, to meet the
aforementioned demand from the consumers, food industries must pay more and
more attention to food safety and quality inspection in order to achieve better
customer satisfaction and hence better profits for their business. Today’s trend in the

food industry for large-scale, global-based food production, preparation, processing



and distribution requires a more strict food safety and quality inspection system to

ensure a safer global food supply (WHO, 2008).

2.1.2 The machine vision technologies in the food safety area

As one of the most widely used imaging technologies, automated machine vision has
recently received more attention in automated food quality and safety inspection
applications. Machine vision technologies have many unique characteristics, making
them capable of obtaining otherwise unavailable, yet valuable, information from the
product, and hence ideal tools for food safety and quality research. The advantages of
machine vision technologies include:

High accuracy --- Due to the rapid development of optical and mechanical
engineering, it is possible for food engineers to build a machine vision system with
robustness, high noise resistance, and good signal sensitivity, properties which ensure
high accuracy of the system.

High resolution --- A state-of-the-art machine vision system is capable of measuring
products on the micro-, and even nano-scales. With such high resolution, many
invisible clues become apparent.

High reliability --- Unlike manual operation systems, which usually suffer from
operational variability due to the physical situation and psychological factors, modern
machine vision systems have advantages of consistency and less variability. In
addition, such systems typically have non-contact detection components, generating
minimal wear and tear to those delicate parts, and hence further improving the

system’s reliability.



High flexibility --- A well-designed machine vision system can work smoothly under
many harsh environmental conditions such as high humidity, low/high temperatures,
and frequent high pressure water jet wash down.

Cost effectiveness --- According to Moore's Law, “the number of transistors that can
be inexpensively placed on an integrated circuit is increasing exponentially, doubling
approximately every two years.” (Moore, 1965) As the price of electronic and optical
components dropping rapidly, the machine vision system will eventually become
more and more cost effective. The cost of employing a machine vision system usually
includes one time equipment purchase expense and limited operation and
maintenance fees. Compared to the cost of hiring human inspectors consisting of
salary, insurance and pension, etc., the advantage of using automated machine vision

system is obvious.

The components included in a machine vision system depend on the application, the
environment, the budget and sometimes, the availability. The diagram of a typical
machine vision system is shown in Figure 3. The following common
modules/elements can usually be found in a vision system:

Image acquisition module --- The image acquisition module is often composed of one
or more analog/digital camera(s) as well as associated optics, such as lighting, filters,
etc. Images of subjects to be inspected are generated by this module. Tremendous
research efforts have been focused on the development of this module to improve the

acquisition speed, suppress noise, extend the spectrum response range, etc.



Image processing and analysis module --- Images obtained during the image
acquisition stage are further processed by the image processing module to extract the
useful information from the input images for detection purposes. Enormous image
processing and pattern recognition strategies are explored by researchers and
engineers within this module to identify fine clues of potential safety threats. As an
intensively studied area, image processing and analysis, which is like the brain of a
human inspector, play key roles in the entire machine vision system.

Rejection and/or visualization module --- Once safety threats are found during image
processing and analysis, a rejection module is required to physically identify
defective samples from good ones. In addition, visualization of defective samples as
well as associated statistics, such as detection rate, threat conditions, etc., are
necessary to better assist human inspectors. A machine vision system can be
considered fully automatic only if an auto-rejection module is included in the system.
Control and synchronization module --- Because multiple modules need to work
together, a control system becomes necessary to synchronize all the working
components within a machine vision system. A well-designed control and
synchronization subsystem usually has the advantage of high processing efficiency,

low component cost, operator friendliness, and improved detection performance.



Image acquisition module

/\ Lighting

—

Auto-rejection module §

T

bjects to be inspected
Running belt

Figure 3. A typical machine vision system

2.1.3 Near-Infrared technology and its applications

The discovery of near-infrared energy is ascribed to Sir Frederick William Herschel
(1738-1822) in the 19th century, who found the light radiation beyond what people
know as the visible spectrum when he was trying to find a way to filter heat from a
telescope (Herschel, 1800). However, the instruments and technologies using NIR
spectroscopy were not well developed until the 1960s with the work of Karl Norris
(1964) of the Agricultural Research Service (ARS) at the U.S. Department of
Agriculture (USDA). From then on, NIR spectroscopy became well accepted and
expanded into many research areas other than agriculture, such as remote sensing,

industrial detection, chemical engineering, process control, etc. (Barton, 2002).

10



NIR spectroscopy is composed of molecular overtone and combination vibrations.
Hooke’s law is typically used to model the fundamental vibrations for diatomic
molecules as the simple two-body harmonic oscillator. The key equation of Hooke’s

law is given as:

@.1)

where v is the vibration frequency, c is the speed of light, & is the force constant, and
m;/m; represents the mass of each molecule. In reality, NIR is mainly due to the
combination and overtone bands that are caused by anharmonistic variations within
molecules. Such anharmonicity usually increases as the vibration becomes stronger.
An example of principle fundamental vibrations within water molecules is shown in
Figure 4 (Barton, 2004). Other molecules may have more complicated fundamental

vibrations such as rocking, wagging, twisting, etc.

ORI

o

o o

Symmetrical Stretch Asymmetrical Stretch Scissoring

Figure 4. Principle fundamental vibrations within water molecules
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Because of the band combination effects found in the NIR, Hooke’s law is
insufficient to describe the NIR phenomenon. To better understand NIR spectroscopy,
a semiclassical interpretation based on the original contributions of James Franck
(1926) was established. The Franck-Condon principle states that during an electronic
transition, a change from one vibrational energy level to another will be more likely
to happen if the two vibrational wave functions overlap more significantly, in other

words at their minimal nuclear kinetic energies (Wikipedia, 2008a).

In the electromagnetic spectrum, the wavelength of the infrared spectrum is longer
than the visible light, ranging from 700 nm to 1 mm. Among the entire infrared
spectrum, NIR has unique characteristics and has been widely adopted in many
research areas. In astronomy, NIR spectroscopy is used to study the atmospheres of
cool stars to analyze the star’s spectral type, to investigate molecules in molecular
clouds, and to understand the star formation, etc. For industrial applications, NIR is
capable of detecting defects, analyzing components, and so on. In the medical area,
NIR is employed to determine oxygen and sugar levels in the blood, to assess brain
function, to detect skin cancer, etc. In remote sensing, NIR is utilized to investigate

soil, plants and environmental factors (Wikipedia, 2008b).

Because most NIR spectra can be explained by assigning bands to combinations
and/or overtones of molecular fundamental vibrations involving hydrogenic
stretching modes and the hydrogen-based bonds, such as C-H, O-H, etc., are the most

important components found in organic molecules, NIR spectroscopy becomes the
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ideal tool for the food quality and safety applications. In the quality evaluation of
meat and poultry products, Park, et al. (2001) used the NIR reflectance spectra
ranging from 1,100 to 2,498 nm with principle component regression to predict beef
tenderness and Park, et al. (2008) employed NIR spectroscopy to evaluate the
freshness of pork loin. In their study, the NIR absorbance of 0.95-1.65 nm was
assessed. The statistic models, such as partial least square regression and principal
component regression, were also used to analyze the spectra data. Prieto, et al. (2008)
applied NIR reflectance spectroscopy (1,100-2,500 nm) to discriminate between adult
steer and young cattle ground meat. Chao, et al. (2003) combined NIR and the visible
spectra to analyze the difference among wholesome, septicemia, and cadaver chicken
samples. Their in-depth study of NIR/visible spectra showed that chicken samples can
be differentiated more finely compared to the traditional methods. With the help of
principal components and a linear discriminant function, high quality performance
can be achieved. The fusion of NIR and visible spectra was also utilized by
Windham, et al. (2003) to evaluate chicken carcasses. The spectrum ranging from 400
nm to 950 nm was considered to detect possible fecal contaminants on chicken skin.
In the quality assessment of fresh fruit products, Wen and Tao (2000) developed a
novel dual NIR/mid-infrared (MIR) system. NIR imaging was used to detect defects
on the apple surface or subsurface, while MIR was employed at the same time to
extract apple stem-end/calyx information. By combining MIR imaging, the false
positive rate of the detection system was significantly reduced. Aleixos, et al. (2002)
developed a multispectral imaging system capable of obtaining both the visible and

the NIR spectrum at the same time. With the help of multispectral imaging and
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parallel processing, the aforementioned system could inspect the size, color and
surface defects of citrus more efficiently than traditional devices. Lu (2001) studied
NIR reflectance spectroscopy ranging from 800 nm to 1700 nm for the purpose of
estimating the firmness and sugar content of sweet cherries. The partial least square-
based statistical models were also introduced to do the prediction. Nagata, et al.
(2006) detected compression bruises in Akihime strawberries using NIR
hyperspectral imaging. NIR spectra ranging from 650 nm to 1000 nm at 5 nm
wavelength intervals were evaluated, and the optimal wavelengths of 825 nm and 980
nm were identified using stepwise linear discriminant analysis. Three classification
approaches (linear discriminant analysis, normalized difference and artificial neural
network) were further studied for the purpose of automated bruise detection. Other
than quality inspection research in the meat and fruit areas, NIR technologies are also
extensively used for seafood (Lin, et al., 2003), vegetables (Pedroa, et al., 2007),

grains (Sivakumar, et al., 2007), and milk products (Kawasaki, et al., 2008).

2.1.4 X-ray technology and its applications

In 1895, when Wilhelm Conrad Réntgen was investigating the external effects from
the various types of vacuum tube equipment, he became the first person to detect
electromagnetic radiation in a wavelength range from 10 nm to 0.01 nm, known today
as X-rays or Rontgen rays. This great discovery earned Dr. Rontgen the first Nobel

Prize in Physics in 1901 (Wikipedia, 2008c¢).

A typical X-ray generator is made with a vacuum tube. An example of a water cooled

X-ray tube is illustrated in Figure 5 (Wikipedia, 2008d) where K is the cathode, A is
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the anode, C is the water cooling system with continuous water flow Wi, and Wy, Uy

is cathode heater voltage, and U, is anode voltage.

Lo

Figure 5. A classic water cooled X-ray tube

An X-ray is generated by the following steps:

1) The heated filament or cathode K in the vacuum tube emits electrons by thermionic
emission;

2) The emitted electrons are then accelerated by the high anode voltage U,. As a
result, the continuous electron flow is established from cathode K to the anode A;

3) When the high energy, high speed electrons collide with a metal target A, X-ray
radiation is produced.

Because excessive heat will be generated at the anode side, a cooling unit is necessary

to keep the X-ray tube from overheating.

X-rays have shorter wavelengths (10 nm to 0.01 nm) and higher energy compared to

the visible light spectrum. Because of its high energy, an X-ray can penetrate many
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objects in its path, making it a unique imaging technology to investigate the internal
structure of substances. When X-rays pass through an object, their behavior can be

described by the following equations:
_ —pd
=1 0€ 2.2)

where Iy is the incident X-ray photon intensity, / is the transmitted X-ray photon
intensity, u is the attenuation coefficient, and d is the thickness of the object. The
attenuation coefficient can be further expressed as:

H=&Ep (2.3)
where ¢ is the mass attenuation coefficient and p is the density of the object. In
general, & can be considered as a constant for different materials, and is dependent on
incident X-ray energy level. If an object has multiple » components, equation (2.2)

can be further illustrated as:

n
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From equation (2.4), it can be seen that X-ray attenuation is mainly dependent on two

major factors: density and thickness of the object.
As one of the most important discoveries in the human history, X-ray technology has

been widely used in many areas. The typical applications of X-ray imaging

technologies are given in Table 1 (Wikipedia, 2008e).
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Table 1. Typical applications of X-ray technologies

Imaging method Application
X-ray diffraction X-ray crystallography
X-ray emission X-ray astronomy
X-ray penetration at low energy level X-ray microscopic analysis
X-ray emission X-ray fluorescence
X-ray penetration at normal or high energy level Industrial radiography
X-ray penetration at normal energy level Homeland security

In X-ray crystallography, X-ray scattering is utilized to reveal the internal 3D
structure, atom positions and chemical bonds of a crystal. This technology is widely
used in chemistry and material science. It is known today that many celestial objects
having extreme high temperature generate X-ray radiation. In order to study such
celestial objects, X-ray imaging becomes one of the necessary tools in astronomy. X-
ray microscopic analysis is similar to traditional X-ray imaging, and the only
differences are that X-ray microscopic analysis use low energy X-ray penetration to
investigate small objects. X-ray fluorescence utilizes the emission of characteristic X-
rays to study the physical or chemical components of materials. Since different
elements give different characteristic X-ray emission, X-ray fluorescence becomes an
ideal tool for the elemental analysis, and hence has been widely used in geochemistry,

archaeology, etc. Industrial detection and homeland security are the two well-known
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X-ray applications. Both of them use X-ray transmission imaging to examine the
internal structure of objects and reveal possible defects, contaminants, hazard

materials, etc. (Wikipedia, 2008¢).

Because of its capability of uncovering internal information of the objects, X-rays are
also one of the most studied technologies in the food quality and safety inspection
area. In the quality evaluation of meat and poultry products, Miiller, et al. (2005)
developed an X-ray device to analyze the fat content of ground meat. The comparison
between their proposed method and the ground truth showed effectiveness of X-ray
imaging based meat fat content analysis. Kroger, et al. (2006) confirmed the
correlation between preprocessed dual X-ray images and meat tenderness. Their
studies showed that dual X-ray imaging was suitable for meat tenderness estimation.
However, more detailed analysis on meat properties as well as X-ray imaging
technologies was suggested. McFarlane, et al. (2003) utilized X-ray backscatter to
detect near-surface bone fragments in chicken meat. Three measurement strategies
were employed according to the different energy windows of backscattered X-rays.
Backscattered and transmitted X-ray images were compared to show the effectiveness
of the proposed method. In the quality assessment of fresh fruit products, Jiang, et al.
(2008) used an X-ray imaging system to identify insect infestation for imported fruit
inspection. Two image processing algorithms were developed — adaptive image
segmentation and unsupervised thresholding — to accurately locate the insect
infestation. Selected fresh fruits, such as citrus, peach, guava, etc., were tested under

their proposed approaches. Alonso, et al. (2007) investigated the potential quarantine
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treatment of clementine oranges against Mediterranean fruit flies by means of
exposure to X-ray radiation. Compared to the traditional cold temperature treatment
of fruit, their method showed no significant negative effect on fruit quality such as
firmness, juice yield, maturity index, internal volatiles, deterioration index, etc. and
hence demonstrated effectiveness for the proposed study. Lammertyn, et al. (2003)
employed both X-ray computational tomography (CT) and magnetic resonance
imaging (MRI) to evaluate the core breakdown in the Conference variety of pears.
The relationship between time and core breakdown rate was studied, and a relatively
consistent breakdown rate was found among different pears. In the quality evaluation
of grain products, Kumar and Bal (2007) investigated the X-ray imaging for crack
detection of unhulled rice grain. A Hough transform was employed to process the X-
ray images and determine the cracks in the rice grain. Their research has the potential
to improve the efficiency of crack detection in the grain industry. Haff and Slaughter
(2004) established a high-resolution, low energy, real-time X-ray imaging system to
inspect wheat infestation by the granary weevil. A fairly good recognition rate was
achieved by their methods. Neethirajan, et al. (2007) evaluated the potential
application of a soft X-ray system for sprouted wheat kernel detection. Fifty-five
different X-ray image features were extracted and further classified by statistical and
neural network algorithms. Other than raw food quality inspection, X-ray imaging
technologies have also been used for processed food inspection. Chen, et al. (2008)
utilized an X-ray imaging device to detect the contaminants embedded in food
packages. Edge detection and edge-constrained region growing was applied to

identify small contaminants such as bone fragments and metal silvers. Pournaras, et

19



al. (2008) applied X-ray microanalysis and electrochemical impedance spectroscopy
to inspect metal can discoloration, lacquer adhesion failure and side seam steel

corrosion in tin plated cans containing cooked octopus in brine.

2.1.5 3D imaging technology and its applications

3D imaging, also known as stereoscopic vision can be traced back to 1838, when
Charles Wheatstone (1838) first stated “...the mind perceives an object of three-
dimensions by means of the two dissimilar pictures projected by it on the two
retina....” It is known that the ultimate goal of 3D imaging is to obtain depth
information from objects. Tremendous research efforts have been applied to 3D
imaging in order to achieve this goal. The general procedure of 3D imaging is

demonstrated in Figure 6.

System ' Image Feature
Setup Acquisition Extraction

Feature
Validation

Realization Recovery

Figure 6. General procedure of 3D imaging

For a 3D imaging system setup, in order to get the best 3D imaging output, multiple

factors are considered, such as lighting, camera position and scene background if the
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environment is controllable. In the uncontrollable environment, only the camera may
be adjusted, adding more complexity to the 3D imaging task. Once the system is set
up, images can be obtained through data acquisition devices such as cameras. Two or
more 2D images will be obtained through this step. In addition, the input images can
be either still images or several image sequences that capture the motion of target
objects. After image acquisition, feature points or regions of interest need to be
extracted for further processing. Although there are tremendous feature extraction
algorithms available for this task, extracted features often need to be verified in the
feature verification step due to the noises or some other hard-to-control errors created
during the image acquisition step. Once the features are validated, 3D information
recovery can be achieved accordingly. 3D recovery is the key step during the whole
procedure of 3D imaging. The quality of 3D imaging relies on the accuracy of 3D
recovery. Given the recovered 3D information, 3D realization can be used for

measurement, quality control, display, and other applications.

A simplified relationship between a real 3D scene and its 2D projection through the

camera can be described by the following equation:

Xl
X, |=T
1

—_ N

From equation (2.5), it is clear that the translation from 3D coordinates (Y;, 1>, ¥3) to
2D ones (X;, X;) will cause loss of information. In other words, the transformation 7

is not reversible. Therefore, 3D recovery is generally not a straightforward task, and
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often needs reasonable approximation or additional information. Different 3D

reconstruction approaches as well as their applications are listed in Table 2.

Table 2. 3D reconstruction techniques and their applications

3D Imaging method Application
Shape from single view Computer vision, Object recognition
Shape from multiple view Computer vision, Object recognition
Structure from motion Robotics, Stereo vision
Transform-based 3D reconstruction Medical imaging, such as CT
Iterative 3D reconstruction Medical imaging, such as PET
3D range imaging Industrial inspection, Quality control

Shape from single view is a fast, but approximated 3D imaging approach. In such
applications, one 2D image is sufficient to recover the 3D information of the object
through reasonable assumptions and simplifications. This technology is widely used
in computationally time demanding, but accuracy undemanding, applications such as
industrial machine vision and object recognition and classification. To improve the
shape from single view, more images can be employed to provide more 3D related
information, also known as shape from multiple views. With the help of multiple
images, the accuracy of 3D recovery data can be improved, but the computation time

is increased as well. Other than recovering 3D information through still images,
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structure from motion obtains the 3D structure of an object by analyzing its motion
over time (Wikipedia, 2008f). The key issue of structure from motion is to accurately
extract and track 2D features of the object, such as corner points, contours, edges, etc.
In the medical imaging research areas, transform-based 3D reconstruction is widely
used. Taking CT imaging as an example, multiple X-ray fan bean projections are first
obtained around the human body. An algorithm called filtered back projection (FBP)
is then employed to rebuild the cross-section images according to the aforementioned
X-ray projections. When multiple reconstructed cross-section images are stacked
together, the 3D volumetric data of the human body can be obtained. Iterative
reconstruction is another 3D reconstruction approach through 2D projection data. It is
also used in many medical imaging applications with less popularity than the FBP
method. Compared to FBP, iterative reconstruction requires much more computation
time and has less sensitivity to the noise. Range imaging can usually achieve the
highest accuracy of recovered 3D data through carefully designed imaging devices,
such as lasers. According to the different techniques, range imaging can be obtained
through structured light, stereo triangulation, etc. Because of the accuracy of 3D
range imaging, it is widely used in many industrial applications, such as defect

detection, material inspection, surface evaluation, etc.

3D imaging technologies have been widely applied in many areas. The most well
known 3D imagers are the human eyes, which recover 3D depth information from the
environment through 2D images obtained by each eye. Wu and Ben-Arie (2007)

presented a novel shape-from-shading method for human head 3D reconstruction.
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They improved the initial surface estimation by hybrid principal component analysis
(HPCA). The multiple-level optimization approach was then followed to recover the
head 3D structure from 2D image. Cadavid and Abdel-Mottaleb (2007) developed
two 3D ear recognition systems using both shape-from-shading and structure from
motion techniques based on video sequence inputs. For the shape-from-shading
approach, 3D ear structure was rebuilt by reflectance and illumination properties of
the scene. For the structure-from-motion method, salient points were extracted and
tracked as feature points. 3D ear data was then reconstructed using a factorization
method. Woock, et al. (2007) utilized odometry data of a commercially available
passenger car to perform the structure-from-motion task, and evaluated the accuracy
of odometry data to see whether it was sufficient for the structure-from-motion
application using only one camera. Zamyatin, et al. (2006) proposed a hybrid
convolution algorithm for helical cone-beam CT reconstruction. They integrated
many available algorithms, including ramp and Hilbert filters to improve the image
quality of reconstructed CT images. A comparison between their method and the
traditional one was also conducted, and showed the effectiveness of the proposed
approach. In the food safety and quality research area, Lim and Barigou (2004)
employed X-ray micro-computed tomography technology to analyze the 3D cellular
microstructure of a number of food products, such as aerated chocolate, mousse,
muffins, etc. They combined image analysis with stereological techniques to obtain
multiple parameters related to cellular microstructure, such as cell size distribution,
connectivity, voidage, etc. Daley, et al. (2005) introduced a stereo imaging system to

accurately locate the cut points of interest on poultry breast meat. They obtained key
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cut points from external reference points based on the anatomy of the bird. By
improving the accuracy of meat cuts, the yield of the whole cutting system can be
increased. Avila, et al. (2007) performed 3D reconstruction on MRI to analyze the
marbling and fat level of dry-cured Iberian pig products. Compared to the traditional
marbling analysis, their method made a 3D visualization of fat distribution, and hence
provided more information to the experts in food science to analyze marbling.
Jiménez, et al. (2000) introduced a laser-based computer vision system for automated
spherical fruit detection. Both range and reflectance images were acquired through an
infrared laser range finder sensor. 3D position, radius and surface reflectivity of each
spherical object could then be obtained using integrated image processing algorithms,

and hence applied to an orange harvesting robot.

2.2 Automated Apple defects detection

The rapid development in apple defects detection area can be seen in both hardware
and software advances. On the hardware side, researchers have investigated almost all
of the light spectra, from short to long wavelengths, and embedded them into
different imaging devices for automated apple sorting and grading. Some of the
systems such as Merlin® (Good Fruit Growers, 1993) have been successfully used in
the industry. Shahin, et al. (2002) used an X-ray line scanner to distinguish different
types of bruises on apple surfaces. Yang and Marchant (1996) employed a charge-
coupled device (CCD) monochromatic video camera to identify apple defects such as
bruises, insect bites and scabs. Leemans, et al. (1999) chose a three CCD color
camera to segment apple defects based on a Bayesian classification process. Brown,

et al. (1974) showed that in the NIR range between 700 and 2000 nm, there was less
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reflectance in bruised areas than unbruised ones on apples. A wide range of
approaches based on NIR apple images can be found in the literature (Tao and Wen,
1999; Wen and Tao, 1999; Li, et al., 2002). Furthermore, non-optical hardware-based
approaches, such as MRI imaging (Zion, et al., 1995), as well as multi-modality
imaging (Wen and Tao, 1998; Wen and Tao, 2000; Ariana, et al., 2006; Throop, et
al., 1999) and hyperspectral imaging (Lu, 2003) techniques have also been explored
by investigators to seek better automated apple processing. On the software side,
tremendous computer-based pattern recognition approaches have been employed or

developed for automated apple sorting applications.

On the imaging algorithm side, Leemans, et al. (1999) who applied a Bayesian
classifier to segment defects of Jonagold apples based on the color images of bi-color
apples. The Bayesian classifier worked well for most Jonagold apple defects;
however, misclassification happened between russet and the transition area from
ground to blush color. Leemans, et al. (2002) also proposed a six-step process for
grading Golden Delicious and Jonagold apples. The proposed method achieved the
classification rates of 78% and 72%, for Golden Delicious and Jonagold apples,
respectively. However, identifying the apple stem-end and calyx from defects was
still a problem because the stem-end/calyx often exhibited similar patterns as the
apple defects, such as image intensity and 2D size. Yang and Marchant (1996)
employed a flooding algorithm to coarsely segment out apple defects, followed by an
active contour model to refine the segmentation so that the localization and size

accuracy of the detected blemishes could be improved. However, the parameters used
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in the active contour model varied with different kinds of apples as well as the
defects, making it difficult to choose a general set of parameters for the active contour
model. In addition, stem-ends and calyx could be misclassified as defects when the
stem-ends and/or calyx were in view of acquisition cameras. Zion, et al. (1995)
developed a fast computerized method to detect bruises from Magnetic resonance
imaging (MRI) images of apples. A simple thresholding technique was used and
combined with apple geometry information to distinguish between the apple vascular
system and bruises. Although the internal 3D structure of an apple could be obtained
with MRI imaging technology, the cost of both computation time and the system
itself was very high. Nakano (1997) employed two neural networks to color grade
Sun Fuji apples. A three-layered neural network with seven input nodes and six
output nodes was used to evaluate whether the color of the apple surface was normal
red or abnormal red with an overall accuracy about 95%. Another three-layered
neural network with eleven input nodes and five output nodes was applied to grade
the color of apples into five quality categories with an overall 70% recognition rate.
However, the recognition rate for some quality classes was very low (<40%). Wen
and Tao (1999) built a rule-based machine vision system to detect apple defects. A
binary decision-tree-structured rule base was established by blob feature analysis.
Although a relatively high recognition rate for good and defective apples could be
achieved by choosing appropriate parameters, the misclassification between stem-
end/calyx and defects still existed. Unay and Gosselin (2003) used principal
component analysis (PCA) for quality grading of Jonagold apples. The performance

of both direct PCA and separate PCA was compared and discussed, and the separate
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PCA showed a higher recognition rate. Unay and Gosselin (2005) later applied an
artificial neural network (ANN) to segment apple defects by pixel-wise processing.
They also tested and compared five supervised classifiers, and the results showed that
the adaboost and support vector machine (SVM) were the best two classifiers with
above 90% recognition rates. Cheng, et al. (2004) proposed an integrated PCA-FLD
(Fisher linear discriminant) method to maximize the representation and classification
effects on the extracted feature bands of high-resolution hyperspectral images. An
overall recognition rate of 93% was achieved. However, the testing features need to
be segmented manually, which makes this approach currently unavailable for the

automated industry application.

Although pattern recognition techniques are widely used in automated apple quality
inspections, most approaches are based on local information and need local feature
segmentation. However, local feature extraction itself remains a very challenging
problem in image processing. Global feature based techniques, however, can be found
in many other pattern analysis and computer vision fields (e.g., whole facial image

based human face recognition (Turk and Pentland, 1991)).

2.3 Automated Apple stem-end/calyx identification

As one of the most research-intensive areas in the food quality and safety, more and
more attention has been paid to the apple quality inspection. However, differentiating
the stem-end/calyx from true defects is still an open problem because the stem-ends
and calyxes exhibit similar patterns and intensity values to the defects in apple

images, which often causes an increase in false positives. In addition, stem-end/calyx
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identification is necessary not only for on-line sorting and grading, but also for
estimating the apple firmness, because the location of the stem-end and calyx must be
known if an efficient firmness measurement device is to be perfected (Throop et al.,

2001).

Approaches to detect the stem-ends/calyxes and defects have generally fallen into
four categories. The first category is to develop a mechanical device in the conveyor
system so that the stem-ends/calyxes can be prevented from showing in the camera
view. Sarker and Wolfe (1985) designed an orientation device that makes the tomato
rest on its stem or blossom end. Throop et al. (2001) tested two conveyors for
automatic apple orientation. Both of the conveyors rotated apples into some stable
position such that the locations of the stem-ends and calyxes could be determined
mechanically. Recently, Bennedsen, et al. (2005) set up an experimental machine
vision system to locate apple surface defects while eliminating other non-defect dark
areas (such as stem-ends and calyxes) by rotating the apple in front of the camera and
tracking the change of dark area among the images. The major drawback of
mechanics based approach is the difficulties to design a device having both high

detection accuracy and time efficiency.

The second detection category is focused on multi-modality/hyperspectral imaging
techniques to differentiate the stem-ends/calyxes from defects. Wen and Tao (1998)
proposed a fuzzy method to evaluate the performance of a dual-wavelength vision

system for apple sorting. They (Wen and Tao, 2000) also built a dual-camera imaging
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system, which incorporates a NIR and a MIR camera, to identify apple stem-ends and
calyxes. Ariana, et al. (2006) introduced an integrated approach that employed multi-
spectral imaging in reflectance and fluorescence modes to detect various defects on
apples. Lu (2003) developed a NIR hyperspectral imaging system to detect both new
and old bruises on apples. Although the techniques in this category provide more
spectra information to the stem-end/calyx discrimination, and hence the detection
accuracy can be improved, the high cost of the imaging device and/or the low image

acquisition speed often prevent such approaches from being accepted by the industry.

The third approach can be categorized as 2D information based image processing and
pattern recognition techniques. Leemans, et al. (1999) applied a Bayesian classifier to
segment defects based on the color images. Unay and Gosselin (2004) developed a
two-cascaded-classifier approach to localize stem-ends and calyxes of Jonagold
apples. Penman (2001) utilized the blue linear light sources and a standard color
video camera to identify the location of stem-end and calyx regions. Yang and
Marchant (1996) employed a flooding algorithm followed by an active contour model

to segment apple blemishes.

The fourth approach is based on semi-3D pattern recognition and analysis. Yang
(1996) used structured lighting to detect stem-ends and calyxes. The limitation of
such an approach is that when the stem-end or calyx is oriented to the direction of the

stripe light source, the deformation of stripes are not obtainable. Tao (1996)
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developed a spherical transform algorithm which converted a 3D problem to a 2D one

by compensating for the intensity gradient on curved objects, such as apples.

Because of the similarity in appearance between apple stem-ends/calyxes and defects,
it is generally difficult to distinguish them based on their 2D information such as
shading and color. However, apple stem-ends and calyxes have special 3D
characteristics including bowl-shaped concaves compared to apple defects and
normal tissue, making the 3D based analysis a promising approach for the automated

apple stem-end/calyx identification.

2.4 Automated bone fragments detection in deboned poultry fillets

Imaging of transmitted X-rays, which is based on projecting ionizing radiation
through a sample onto an image detector, has been widely used for physical
contaminants detection in the food quality inspection. Ogawa, et al. (1998) applied a
medical X-ray CT scanner as a non-destructive inspection method to detect the non-
metallic materials embedded in various fluids and food materials. Lin, et al. (2005)
employed X-ray imaging in quarantine inspection to prevent propagation of alien
insect pests in imported fruits, such as apple, peach, and guava. Kotwaliwale, et al.
(2007) developed and calibrated a soft X-ray imaging device for the purpose of

biological materials quality determination.

For poultry quality inspection, one persistent problem is how to automatically detect
bone fragments and some other foreign materials embedded in the poultry meat. X-

ray imaging has been considered a good candidate for this problem due to its
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capability of revealing the internal information of the target. However, the major
challenge to the X-ray imaging, --- uneven thickness of the poultry meat --- still
remains resolved. When the X-ray penetrates an uneven thickness, it is absorbed
differently wherever the thickness varies or contaminants exist. As a result, the true
contaminants become un-differentiable compared to those thick spots on the poultry
meat, and hence, the false alarm rate turns out to be quite high. To overcome this
difficulty, the simplest way is to merge the poultry meat in the water. Because it is
believed that poultry meat has very similar density as water due to the significant
water content in the meat, “water merging” approach can compensate the uneven
thickness problem, and hence make the defects detectable under X-ray imaging.
However, the simplest method doesn’t mean the feasible one for real industrial
application. One of the major disadvantages preventing acceptance of this method by
the poultry industry is the sanitation problem. In other words, merging large amount
of poultry meat in the water will inevitably cause microbial cross-contamination
through water flow (Chen, 2003). Another thickness compensation strategy is to
physically change the shape of poultry meat into the uniform one, such as press or
compress the meat mechanically. A successful industrial application of this approach
is ground meat defect detection (Hartman, 2001). However, for poultry products
which natural shape needs to be preserved, this method seems inappropriate (Chen,
2003). Other than aforementioned non-imaging based techniques, Tao, et al. (2001)
proposed an X-ray imaging based local-thresholding image segmentation approach to
do the internal inspection of deboned poultry fillet. The uneven thickness issue was

addressed by using the local threshold, which was adapted to uneven thickness
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distribution, to segment the true bone fragments from the X-ray images. McFarlane,
et al. (2003) utilized the backscattered X-ray radiation to detect the bone fragments of
chicken meat. Their method was effective for the near-surface bone detection,
however, deep embedded bone fragments will be a big challenge for such X-ray
backscattering based approaches. Tao and his colleagues (Chen, et al., 2003; Tao and
Ibarra, 2000; Jing, et al., 2003) developed a prototype system of dual X-ray and Laser
imaging modalities. The laser range imaging was incorporated into the X-ray imaging
to recover the accurate 3D thickness information of the chicken fillet. The thickness
variation presented in the X-ray image was then compensated by aforementioned
laser 3D information. Gleason, et al. (2002) designed a dual X-ray energy system to
detect the bone fragments in the poultry meat. Other than X-ray imaging, Koch and
Fowler (1998) invented a fluorescent imaging based bone fragments detection in
deboned poultry meat. Two conveyors were employed in their system, one was used
to carry poultry samples to be inspected, and another one was designed to press and
flatten the meat to make the fluorescent lights underneath the poultry samples
transformable. A video camera was also used to acquire the transmitted fluorescent
image and hence detect bone fragments. Yoon, et al. (2006) introduced transmittance
optical imaging at the visible and near-infrared (VIS/NIR) wavelength range to
identify the bone fragments embedded in the chicken fillets. The sample thickness
was mechanically controlled to 1 cm for the feasibility test. Multiple imaging

modalities were used to ensure the best image quality could be obtained.
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CHAPTER 3 SYSTEM OVERVIEW

Two machine vision systems are introduced in this chapter: apple defect inspection
system and automated poultry bone fragments and foreign materials detection system.
The apple imaging system is a NIR imaging based equipment, and was used for
automated apple defects detection and stem-end/calyx identification research in this
dissertation. The poultry bone fragments detection system is a novel fused X-ray and

Laser range imaging system, which was developed for the poultry safety in this study.

3.1 Automated apple quality inspection system

The machine vision system (Figure 7) for apple quality inspection was previously
developed in Bio-imaging and Machine Vision Lab. It consists of a computer-
controlled image grabbing module, a NIR sensing system, a lighting chamber, and a
conveyer system with variable speed controller. The NIR sensing system includes a
monochromatic CCD camera with a C-mount lens of 16 mm focal length and a 700
nm long-pass interference filter. The NIR images are captured and analyzed by a host
computer equipped with an image grabber. The lighting chamber is designed to
provide uniform illumination for the infrared sensor (Cheng, et al., 2003). The
chamber is made of lattice-patterned sheet metal, and the v-shaped interior surface of
the chamber is painted flat white to provide diffuse light reflection and eliminate
shadows (Tao, et al., 1995). In order to provide lighting, ten warm-white fluorescent
lamps are mounted uniformly around a v-shaped surface right above the conveyor.
The NIR imaging sensor is installed inside on the top center of the chamber. A roller

conveyor belt is built to hold and move apples in up to six lanes. All apple samples
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can be manually placed on the conveyer belt with a random orientation. The apples
can be rotating and moving when they pass through the field of view of the NIR
camera. The majority of the surface for each apple can be covered by the NIR camera
during the apple rotation. A drive controller and speed controller are connected with
an optical encoder that provides precise timing signals for both on-line mechanical
and electrical synchronization (Cheng, 2004). The schematic of the whole imaging

system is shown in Figure 8.

Figure 7. A snapshot of NIR machine vision system for apple quality inspection and stem-

end/calyx identification
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Figure 8. A schematic representation of NIR machine vision system for apple quality inspection

and stem-end/calyx identification

3.2 Dual X-ray/Laser imaging detection system

An overview of the X-ray and Laser synergetic imaging detection system is shown in
Figure 9. The system is composed of one main cabinet and a controlled conveyer belt.
The entire enclosure is made of wash-down food grade type-2 polish stainless steel
with NEMA-4X (National Electrical Manufacturers Association, 2008) / [IP66X
(Wikipedia, 2008g) standard sealing, and capable of sustaining water jet up to 1.1 x
10* kPa. The stainless drum motor controlled conveyer belt has a variable speed
setting ranging from 0 — 1.3 km/hr. A stainless steel framed 15” touch screen is
located in the middle of front panel of the cabinet. The rejection sub-system is
attached at one end of the conveyer belt. This sub-system is synchronized with the
whole system to provide accurate rejection signals to a two-way air cylinder to

perform the defected sample rejection.
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Figure 9. A snapshot of the x-ray and laser synergetic imaging detection system

The internal structure of the imaging system is illustrated in Figure 10. Two laser
sources are used to provide overlapped lines for the 3D range imaging. The fan beam
X-ray is shot from the top. Two pairs of cameras are installed on the top of the
cabinet. Each pair (same color) covers one lane (half width of the conveyor belt) and
sees different side of testing sample. In this system, chicken fillets coming from a
processing line are loaded on to the conveyer and scanned by the system for the X-ray
intensity and 3D image. The system is extendable and for a multi-lane system, 2n
optical cameras will be used, where n can be one or two currently. The position of the
optical devices are carefully arranged to minimize the effect of occlusion, and view

areas of the neighboring cameras are overlapped for data integrity.
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Figure 10. A schematic representation of the x-ray and laser synergetic imaging detection system

The general procedure of imaging system is schematically described in Figure 10.
The imaging system is composed of six major modules: Machine User Interface
(MUI), Central Control and Synchronization (CCS), Defects Rejection (DR), X-ray
Imaging (XI), Laser imaging (LI), and Data Fusion and Processing (DFP). The
machine operation is originated at the MUI where a human operator can issue the
command, adjust settings, and monitor machine behavior. The role of CCS is to
control and organize the overall data flow as well as the control signals among all the
modules within the whole imaging system. In the XI and LI modules, both X-ray and

Laser images are acquired through a high-speed imaging processor once the control
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(acquisition) signals are dispatched by CCS. The acquired image data is then sent to
CCS through high-speed data flow for the further processing. The DFP processes the
image data sent by the CCS. Once the data processing work is done, the results will
be sent back to the CCS. The CCS then sends the results and the control signal to the
MUI and DR. The role of MUI is to display the results and related statistics on the
touch screen, while the DR conducts the rejection mechanism which reject the
defective samples according to the control signal sent by CCS. The conveyor
direction of motion and running speed of the conveyor belt are also controlled by
CCS. All the modules are perfectly controlled and synchronized by the CCS such that
high resolution images can be acquired and processed without sacrificing the

throughput (running speed) of the imaging system.
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CHAPTER 4 GABOR WAVELET-BASED APPLE
QUALITY INSPECTION USING KERNEL PRINCIPAL
COMPONENT ANALYSIS

4.1 Introduction

Automated apple defects detection is an important issue to the apple industry. Solving
this persistent problem will increase customer satisfaction and increase profits to the
apple growers. The objective of this research was to introduce a global feature-based
approach that would eliminate the need for image segmentation, and hence became a
feasible method for automated high-speed industrial applications. A Gabor-based
kernel Principle Component Analysis (PCA) method (Liu, 2004; Shen and Bai,
2004), which combined Gabor wavelet representation of the apple features and the
kernel PCA, was used for apple quality inspection based on NIR images. In this
Chapter, Gabor wavelet decomposition is introduced in section 4.2.2. In section 4.2.3,
kernel PCA and Gabor-based kernel PCA are demonstrated in detail. For comparison
purposes, Support vector machine (SVM) is introduced in section 4.2.4. The
experimental results and comparisons between five different classification schemes
are given in section 4.3 to show the effectiveness of the Gabor-based kernel PCA

approach for apple quality inspection.
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4.2 Materials and Methods

4.2.1 Image acquisition

The dataset grabbed by the imaging system contained a total of 166 NIR Golden
Delicious apple images, including ones with and without defects. The testing data was
independently evaluated once the optimal parameters were obtained through training
data. Apples were refrigerated and stored at 4 °C before they were tested. The detailed
composition of test data is listed in Table 3. Typical NIR apple images are shown in
Figure 11. Numbers surrounding each NIR apple image reflect the actual image

pixels.

Table 3. The composition of Apple NIR dataset

Good Apples Blemished Apples Total

Training Dataset 20 20 40
Testing Dataset 58 68 126
Total 78 88 166
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Figure 11. Example of NIR golden delicious apple image dataset (The values around each apple

refer to the number of pixels)

4.2.2 Gabor-wavelet decomposition

Gabor wavelets have successfully modeled the response of brain cells in the visual

cortex (Jones and Palmer, 1987) since they optimally represent the textural structure
with different locations and orientations. Gabor-based wavelets (Lades, et al., 1993)
come from a self-similar family generated from the mother wavelet under groups of

translation, rotation and scaling transformations. It has the following general form:

N
- k 5252 ) e )
—k z /2 k -2/2
v.(z) ::‘—7;6?( P~ 2] “4.1)
k o
z . . ikz ~0?/2
where z =(x,y) are the spatial coordinates. The two terms e'*° and e are the

oscillation and DC part of Gabor wavelets, respectively. Generally, o is equal to 27,
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and if the parameter o becomes large enough, the DC term can be ignored (Lades, et

al., 1993; Liu and Wechsler, 2002). The parameter ; controls the wavelength and

orientation of the wavelets and is given by:

k=k,,=ke” 42)

p.q q
VA
where &, =Ky /26, =718, Ky ==, f = V2 ,and pel0,...7} and ¢ €10,....4}

identify eight orientation directions and five space frequencies, respectively. Figure
12 shows the real part and magnitude of Gabor wavelet kernel under five scalings and

eight orientations. (Gabor wavelet, 2008)
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magnitude part of Gabor kernel at five scales and eight orientations
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Figure 12. Gabor wavelet kernels (a) A 3D view of Gabor wavelet. (b) Real part of Gabor
wavelet kernel at 5 scales and 8 orientations. (¢) Magnitude part of Gabor wavelet kernel at 5

scales and 8 orientations.
The convolution of an image /(x,y)and Gabor-wavelet i, (x,y) can be expressed
k
as:

F;(x,y) = I(X,Y)*W;(X,Y) (4.3)
In the case of eight orientations and five space frequencies, the Gabor feature vector,
Y, is given by (Liu and Wechsler, 2002):
VY= (Fy, Iy, Fy ) (4.4)
where F), ; 1s the column vector form of FZ , t 1s the transpose operator, and ¥ is

used as the discriminating features in the apple quality classification.

4.2.3 Gabor-based Kernel PCA

PCA (Pearson, 1901) has been widely used in many pattern recognition applications,
such as face recognition (Turk and Pentland, 1991; Belhumeur, et al., 1997), and
remote sensing (Corner, et al., 1999). In this research, PCA was used to define the

best subspace such that a set of apple patterns could be sufficiently represented by
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that subspace. In other words, the goal was to linearly project the input data onto a

subspace that maximized the significant variation among the inputs.

Unlike the traditional PCA approach, where only linear projection is performed to
seek a best mapping of the original dataset, the kernel PCA (Schélkopf, et al., 1998)
relaxes the linear constraint, and allows arbitrary high-order projections among the
input data from low-dimensional to high-dimensional mappings. Kernel PCA linearly
represents the nonlinear problem by means of mapping the low-dimensional input
space, which is usually nonlinear separable, into a linear separable high-dimensional
feature space. More specifically, the underlying principle of kernel PCA is addressed
by Cover’s theorem (Haykin, 1999). The low- to high- dimensional mapping is
defined implicitly by a so-called kernel function, which efficiently computes the inner
product as a direct function of the input space. Without explicitly computing the
mapping function, the kernel PCA becomes more computationally feasible (Shawe-

Taylor and Cristianini, 2004).

Assume the sample set of input space is {u[}, i=1,...,N, u, eR", and the mean of

the sample set is zero. By a nonlinear mapping, @, the input space can be mapped

into another inner product space I" by:
O:R">T', u—>U. (4.5)
The dataset in mapped feature space is {@(ul),@(uz),d)(%),....d)(u]v)} and the kernel

function is defined as the inner product of the data in feature space:
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K(u;,u;) =<®(u,),0(u,)> (4.6)
The kernel matrix, K € RV is:

Kii =< CD(ul.),CD(uj) > @.7)
where i, j €{l,...,N} . Scholkopf, et al. (1998) proved that the PCA in the inner
product feature space could be fulfilled by the equation:

Nia =Ko 4.8)
where K is positive semi-definite kernel matrix, N is the number of samples, 4 is the
eigenvalue and « is the corresponding eigenvector. Scholkopf, et al. (1998) also
showed the projection of a test point, ®(u.), onto the eigenvectors V' in feature space
I' could be expressed as:

N
<V @(u)>=) a; <O(u;),D(u.) > 4.9)
i=1
From equations (4.7) and (4.9), the mapped pattern between input space and feature

space only needs to be implicitly computed by the inner product.

In general, three kernel functions (Cortes and Vapnik, 1995), which allow computing
of the value of the inner product in I" without carrying out the mapping ® , are
frequently used in kernel classifiers. They are shown in Table 4. The basic idea of

kernel PCA is illustrated in Figure 13 (Scholkopf, et al., 1998).
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Table 4. Frequently used kernel functions

Kernel Name

Kernel Equations

Polynomial Kernel k(x,y)=<x,y>", deR.
oI
Gaussian Kernel k(x,y) = exp(—%) , 0>0
20
Sigmoid Kernel k(x, ) =tanh(x <x, y>+8) . o0 950
2
A R r=R*
l/ /./ . LT ‘ - q) \\\ N R R

P . S —— N N

Figure 13. Illustration of kernel PCA showing nonlinear mapping of the input space (R ") into

the I' space (R”) with @, and then implementing the linear PCA in space I".

Gabor-based kernel PCA (Liu, 2004) is the combination of Gabor wavelet

decomposition for the sample dataset and kernel PCA for pattern recognition. First,

Gabor wavelet decomposition is applied to the sample dataset to obtain the Gabor

features of the input data. Then the Gabor feature vector ¥ is fed into the kernel

PCA algorithm. In other words, the Gabor feature space is regarded as the input space

of the kernel PCA. Through the kernel PCA, Gabor feature space is mapped to a

high-dimensional feature space I'", making the high dimensional features linearly
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separable by PCA in that space. Finally, the nearest neighbor classifier is used in the
high-dimensional space I', to differentiate quality of apples according to the

Fuclidean distance metric.

4.2.4 Support Vector Machine

SVM (Duda, et al., 2001) is another popular statistical learning algorithm in data
mining. It has been widely applied in a large number of applications, such as object
recognition (Guo, et al., 2000) and face detection (Osuna, et al., 1997). The key point
of this approach is to find the optimal linear hyperplane that can not only properly
divide the largest portion of data points, but also maximize the distance of each class
from that hyperplane at the same time. Just like the kernel PCA, the input space in
SVM can also be mapped into the high-dimensional feature space by kernel function
such that the data in the high-dimensional feature space becomes linear separable.
However, the classification criterion used in kernel PCA and SVM are different,
which makes these two approaches distinctive. For comparison purposes, SVM is
also tested in this research. The detection results among different classifiers are given

in the next section.

4.3 Results and Discussions

A total of 166 NIR Golden Delicious apple images were tested in the experiment.
Typical Gabor features (5 scalings by 8 orientations) of a NIR apple image are
illustrated in Figure 14. Seen from the figure, Gabor-wavelet decomposition captures
different image information by means of combining different scaling and orientation

factors. Given extracted Gabor features, it is important to find an optimal mapping
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(kernel function) through Gabor feature space to a high dimensional space such that
the classification performance in aforementioned high dimensional space can be
maximized. For the proposed Gabor-KPCA approach, three typical kernel functions,
e.g. Polynomial kernel, Gaussian kernel and Sigmoid kernel, were evaluated in the
experiment. The relationship between recognition rate and different kernel functions

is plotted in Figure 15.
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Figure 14. Gabor wavelet decomposition for a NIR apple image (a) Original apple NIR image.

(b) Real part of Gabor wavelet decomposition. (¢) Magnitude of Gabor wavelet decomposition.

As seen in Figure 15, the polynomial kernels have the best classification performance
among all three kernel types. The recognition rate increases as the degree of freedom
increases, and achieves its optimal by 90.5% when the degree of freedom equals 7.
The experimental results demonstrate that the high order polynomial mapping from
Gabor feature space makes the mapped data more linearly separable in the high
dimensional space. In other words, the Gabor-KPCA method can linearly solve the
nonlinear problem through a high order polynomial mapping. As a result, the
polynomial kernel with 7™ order was chosen for proposed Gabor-KPCA approach.

Table 5 shows the confusion matrix of Gabor-KPCA method.
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Table 5. Confusion matrix of proposed Gabor-KPCA method

Estimated Labels
True Labels Total
Good Apple Blemished Apple
Good Apple 50 8 58
Blemished Apple 4 64 68
Total 54 72 126
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Figure 15. The relationship between recognition rate and the typical kernel functions with

different parameters

To further evaluate the proposed Gabor-KPCA approach, the performances of five
methods were assessed in the experiment: PCA, Gabor wavelet-based PCA, kernel

PCA with polynomial kernels, Gabor based kernel PCA with polynomial kernels, and
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SVM with polynomial kernels. A total of 40 NIR apple images were used as training
samples, and 126 apple images were tested in this research. The dataset was divided
into two categories: good or blemished. The recognition rates of each method are
given in Table 6. The proposed Gabor-KPCA method had the highest recognition rate
compared to other approaches. Note that the recognition rates of Gabor PCA and
kernel PCA were lower than PCA, while the combination of them was higher. This
shows that more information can be reserved (meaning better classification
performance) through linear representation in original NIR image space rather than in
the Gabor feature space. PCA had a higher recognition rate than kernel PCA,
illustrating that the nonlinear mapping through the polynomial kernel function from
the original input space (apple NIR image space), not the Gabor feature space, didn’t
make the mapped data more linear separable than the original inputs. This fact can
also be found in SVM, since SVM has the same kernel function as kernel PCA.
However, when Gabor feature space and the nonlinear mapping through the
polynomial kernel function are combined together, the recognition performance can
be significantly improved. In other words, although Gabor feature space reserves less
information under linear representation than the original input space, when it is
mapped to a high-dimensional space through the polynomial kernel function, the

mapped space becomes linear separable.
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Table 6. Data sets and recognition rates

Approach Recognition rate
Gabor-Kernel PCA 90.5%
PCA * 84.9%
SVM 83.3%
Gabor PCA 81.8%
Kernel PCA 81.0%

* Note: Although both the recognition rate of individual Gabor PCA and kernel PCA are lower
than PCA, the combination of them is higher.

Both type I and type II errors (Lyman, 2001) were considered in the study to evaluate
the performance of the proposed approach. Type I error was calculated as the number
of misclassified samples (i.e. defected apple images) divided by the total number of
samples, while type Il error was computed as the number of false classified samples
over the total number of samples. The error rates for good and blemished apples are
given in Figure 16 and 17, respectively. For good apples, Gabor kernel PCA has the
lowest type II error, and second lowest type I error. Although the type I error of the
Gabor kernel PCA is slightly higher than PCA, the overall error rate of this approach
is still the lowest. Note that PCA has the second highest type II error rate of 20.7%.
The same phenomenon can be observed in the blemished apple category. The Gabor
kernel PCA has the lowest type I error and second lowest type II error, but it has the
best performance in terms of overall error rate. The average computational time is 19
ms/apple image under a moderate PC configuration, which includes a Intel Core Duo
2.0GHz CPU and 2.0 GB of RAM. According to the experimental results, the Gabor
kernel PCA shows its feasibility to do the apple quality inspection without local

feature segmentation.
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Figure 16. Error rate for good apples based on five classification approaches

~ 100
X
~ 90
S
—'& 80
< 70
2 60
=
< 50
2
= 40
E 30
)
4 20
S 10
i
=

Classification Methods vs. Errors of Unhealthy Apples

1 17.6%

= | T

15.1%

23.5%

19.1% 19.1%
1

279, 183%
o 11.8%

14.7% 16:2% 16.7%

5.0% 11.8% g 59,
9%

PCA

Gabor-PCA Kernel-PCA

SVM

Classification Methods

Gabor-Kernel-
PCA

@ Type | Error
B Type Il Error
0O Total Error

Figure 17. Error rate for blemished apples based on five classification approaches

As a summary, the basic procedure of proposed approach can be illustrated as the

following three steps:
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1) Gabor feature extraction using whole apple NIR image;

2) Data mapping from Gabor feature space to a high-dimensional space through the
polynomial kernel function;

3) Linear representation using PCA and classification using nearest neighborhood

approach.

4.4 Conclusions

This Chapter introduced a Gabor feature-based kernel PCA approach to inspect the
quality of apples. This approach showed many advantages. First, it eliminated the
need of local feature segmentation by means of Gabor feature decomposition for the
whole apple NIR images. It also sought a better high-dimensional space through the
polynomial kernel function, which mapped Gabor feature space to high-dimensional
space, and made the nonlinear separable problem in the Gabor feature space linear
separable in that high-dimensional space. The comparison among five different
classifiers was also conducted to evaluate the performance of those classifiers, and
the experimental results showed that the proposed Gabor kernel PCA had the highest
recognition rate among the five classifiers. Based on 166 NIR golden delicious apple

images, an overall 90.5% detection rate was achieved with this method.
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CHAPTER 5 3D RECONSTRUCTION AND ANALYSIS
FOR AUTOMATED APPLE STEM-END/CALYX
IDENTIFICATION

5.1 Introduction

As one of the most widely used imaging technologies, automated machine vision
plays an important role in the apple industry by transforming the traditional apple-by-
apple visual inspection to automated on-line sorting and grading. Currently most
machine vision techniques used in apple automated processing are 2-D or 2%:-D
based approaches, which usually have difficulties to accurately identify apple stem-
end/calyx on the surface. On the other hand, as one of the persistent problems, apple
stem-end/calyx identification must be solved not only for the accurate defect

inspection, but for efficient firmness measurement purposes.

To solve the aforementioned problem, a novel 3D based apple near-infrared (NIR)
data analysis strategy was developed so that the apple stem-end/calyx could be
identified, and hence differentiated from defect and normal tissue according to their
different 3D shapes. Two automated 3D data processing approaches were presented
in this research:

1). 3D quadratic facet model fitting, which employed a small concaved 3D patch to fit

3D apple surface, and the best fit could be found around stem-end/calyx area; and
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2). 3D shape enhanced transform (SET), which enhanced the apple stem-end/calyx
area, and made it easily detectable, according to the 3D surface gradient difference

between the stem-end/calyx and the apple surface.

Apple 3D surface was reconstructed from 2-D NIR images according to Shape-From-
Shading (SFS) method. Unlike 2%4-D approach, the SFS took advantage of the whole
image information, which meant a more detailed apple 3D description could be
obtained. The proposed 3D approaches did not depend on the location of the stem-
end/calyx on the apple surface, making it more suitable for apples orientated
randomly. There was also no additional light source required in the imaging system:
normal visible white light plus a NIR filter was enough. In addition, the proposed 3D
approaches were found to be robust to the noise and incomplete image data. In this
Chapter, 3D apple surface reconstruction is introduced in section 5.2.1. In section
5.2.5, two automated 3D data processing approaches are described in detail. The
experimental results as well as the discussion are given in section 5.3 followed by

conclusions in section 5.4.

5.2 Materials and Methods

The dataset grabbed by the imaging system contained a total of 203 NIR Golden
Delicious apple images, which included ones with and without stem-end/calyx.
Blemished apples were also included in the data set. The detailed composition of the

dataset is shown in Table 7.
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Table 7. Detailed composition of test samples

Sample Labels Number of Samples
Apple NIR images with Stem-end/Calyx 140
Apple NIR images without Stem-end/Calyx 63
Total 203

5.2.1 3D apple surface reconstruction

5.2.1.1 Preprocessing

The original NIR apple image is shown in Figure 18 (a). The intensity of the
background varies and is relatively darker than the apples. In order to perform the 3D
reconstruction approach, the non-uniform background must be removed. In addition,
each different apple is a region of interest (ROI) and needs to be extracted
individually. Based on the experimental data, a single threshold 7; was used to
coarsely segment apples from the background. Because some dark areas within apples
might also be removed during the thresholding, a 2-step morphological operation was
then employed to refine the segmentation:

1). Hole-fill operation, which fills the “holes” in the image. A hole is an area of
background pixels surrounded by foreground pixels. In our case, it refers to those
removed dark areas within apples, such as defects, stem-ends and calyxes, which

need to be preserved in later processing.
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2). Area open operation based on pixel counts, which removes the small foreground

“objects” with 7> pixels or less. 7> is a pre-determined threshold. In other words, this
operation discards those brighter pixels that do not belong to apples but background.
The discarded pixels come from the false segmentation due to the intensity variation

of background.

(@) (b) ©

Figure 18. Typical NIR images (a) Original NIR image. (b) Refined segmentation. (c) Extracted

individual apple image.

Each apple in a single image also needed to be extracted individually. To achieve this
goal, the boundary of each apple was first obtained according to the refined
segmentation. Then, coordinates of the circumscribed rectangle of each apple could
be easily determined using the boundary information. The segmented images as well

as individual apple images are given in Figure 18 (b) and (c), respectively.
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5.2.1.2 Lambertian reflectance model

In the real world, object surfaces vary according to physical characteristics. In
general, surface can be categorized as pure Lambertian, pure specular, hybrid, or
more sophisticated models (Zhang, et al., 1999). An apple NIR image was essentially
formed under multiple optical effects, i.e. part of the light source were directly
reflected by the apple surface, while others entered the sub-surface, scattered and then
reflected back to the camera. Specifically, apple surfaces might not be an ideal
Lambertian surface; however, based on the experimental results, the net result of an
apple surface reflectance under NIR spectroscopy demonstrated a good

approximation to the Lambertian model.

A Lambertian surface is a perfectly diffusing/matte surface, which means it adheres
to Lambert’s cosine law. In this model, the amount of reflected energy is constant in
any one direction, i.e., the reflected intensity is not dependent on the viewing angle,
but on the light source’s orientation relative to the surface. Therefore, the Lambertian
surface can be modeled as the product of the light source intensity /j, the surface

albedo p , and the cosine of the angle cos @, between source direction S =(s_,s 1552)
and surface normal N = (n,,n ,n_), shown in Figure 19:
I=1,pcos@ 5.1)

where [ is the reflected intensity. Equation (5.1) can be written in vector format when

the surface normal and light source directions are both unit vectors:

I=1,pN-S (5.2)
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Figure 19. Illustration of Lambertian model

5.2.1.3 Estimation of pseudo illuminant direction

In this research, although multiple warm-white fluorescent lamps were used to
provide uniform lighting, one equivalent (pseudo) light source needed to be
determined in order to perform the 3D surface reconstruction. The direction of such
pseudo light source was estimated according to the shading information, i.e. 2D
image intensity (Pentland, 1982). Given any particular 8-neighborhood direction in

the image plane, the following relationship can be obtained:

dl_l dx, dy,
dl, | |dx, dy, (Xj

(5.3)
where d 1, is the average image intensity change along the ith direction (dx,,dv,) , (X,Y)

is the estimation of x and y components of the tilt angle r (the angle the image plane

component of the light source vector makes with the x-axis), and N is the total
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number of directions considered. NV was set to 8 in this study by considering the
balance between performance and computational time. Define D as the direction

matrix in Equation (5.3), it is easy to get:

dl_] dx, dy,
@(j:(DTD)-IDT AL po|te @
da dx, dyy

(5.4)

Then, the tilt angle  can be determined by:

)
7 = arctan| —
X (5.5)

and the slant angle o (the angle the illuminant vector makes with the z-axis) is

calculated as:

6_{arccos(\/1—(X2 +Y2)/K?) if X2+y2<K? o

0 otherwise

where

K = JE{dI*} - (E{dI})’ 57)

The relationship among tiltz , slant o, surface normal N and light source direction S
1s schematically illustrated in Figure 19. Notice that the light settings of the apple
automatic imaging system are always fixed, and don’t change during the on-line
inspection. Therefore, the illuminant direction needs to be calculated only once,
which can be done offline before the system is running. In this study, ten uniformly
arranged warm white fluorescent lamps were used to provide a uniform lighting

condition, which meant even the hardware configuration was known, the calculation
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of light source was still necessary in order to determine the pseudo light source
direction, and hence provided the tilt and slant angle for the SFS approach. Given the
Lambertian model as well as the light source information, the Shape-from-shading

method could be used to retrieve the apple 3D shape based on its 2D data.

5.2.1.4 Shape-from-Shading model

Shape-From-Shading techniques can be traced back to the early 1970s (Horn, 1970),
and are still widely studied by researchers (Prados, et al., 2002; Kimmel and Sethian,
2001; Prados and Faugeras, 2003; Crouzil, et al., 2003; Tankus, et al., 2004). The
basic idea of this approach is to derive a 3D scene description from 2D information,
such as a 2D image intensity map. In this research, the Pentland’s SFS method

(Pentland, 1989) was chosen for the apple 3D surface recovery.

In order to introduce the SFS algorithm, it is useful to rewrite light source and surface

normal vectors in the following forms:
S=(s,,s,,s.)=(costsino,sinzsino,coso) (5.8)

and:

P,0,
N=(n,n,,n.)= et (59)

VPP +0% +1

_ 0z(x,y) _0z(x,y)
P= o 0= &y (5.10)

Based on the Lambertian model in Equation (5.2), and Taylor series expansion up to

the first order, the following relationship can be obtained:
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I(x,y)=coso+ Pcostsino + QOsinrsino (5.11)

By taking the Fourier Transform of both sides of Equation (5.11), taking off the DC
component, and rearranging the equation, it is easy to get:

_ 1 F,
27 f,costsino + f,sintsino

F(fs 1)

(5.12)

where F_(f,, f,) 1s the 2D Fourier Transform of the apple depth map Z(x, y), and

hence,

Z(x,y)=IFT{F.( /., 1)} (5.13)

Since both 2D fast Fourier and inverse Fourier Transforms are available, the solution

can be calculated very quickly.
5.2.2 3D analysis for apple stem-end/calyx identification

5.2.2.1 3D Shape-Enhanced-Transform (SET)

Given a recovered apple 3D surface, stem-ends/calyxes can be identified from defects
according to their different 3D shapes. An example is given in Figure 20. Generally,
apple stem-ends/calyxes have a deep concave shape (Figure 20(a)), while apple
defects exhibit small indentations (Figure 20(b)), which are much shallower and

flatter in their 3D shape than the stem-ends and calyxes.
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Figure 20. Recovered apple 3D surface (a) Apple with calyx. (b) Apple with defect.

It is obvious that the deep concave shape, i.e. apple stem-end/calyx area, has a higher
surface gradient in most directions than any other apple surface areas including
defects. Given the apple surface gradient G = <P, 0>, P can be rewritten as Equation
(5.14) according to Equation (5.10) and (5.13):

p_02(xy) _OIFTIF (i, /5);

Ox ox
o[ [E.(finf)e™ = df, ) 614
B Ox
where,
—iF,(f,,
F.(f, /)= : U, fz). : (5.15)
27(f,coszsino + f,sinzsino)
and
F(fis ) = [ [ 1Ge, p)e 2 ddy (5.16)
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Noticing F,(f,, f,) is not the function of x and y, Equation (5.14) can be further

written as:
+00+00 aeﬂﬂ(flx+f2y) '+°°+°° o o f
P= [ [F(f )= ——dhdf, =27 [ [ F.(f,, £)e™ " df df, (517)

Substituting Equation (5.15) into (5.17):

e F ’ 27 ( fixt
pP= J'J‘ NE () o/ 27 fzy)df]dfz

i : : 5.18
J 2 (ficostsino + f,sinzsino) (5.18)
Similarly, Q can be expressed as:
+00+00 f F (f f ) -
0= I J' ELAVILY D 2T gt gf. (5.19
J 2 (f,costsino + f, sinzsino)
Defining Direction Vector as:
2m . 2m\ .
D, = <cos—,sm—>, i=12,...n (5.20)
n n

The average absolute value of the directional derivative of any point on the apple 3D

surface, Ir(x,y) is expressed as the following equation:
0, if P=0=0

I.(x,7)=<1¢
£(x:7) —Z‘G-Dl. ,  otherwise (5:21)
noio

Since the 3D shape of apple stem-ends/calyxes always has a higher surface gradient
in most directions than any other surface area, it has a higher average absolute value
of the directional derivative as well. In other words, the apple surface within the stem-
end/calyx area has a higher Iz value compared to those low gradient areas. In

addition, the I value doesn’t depend on the position of apple stem-end/calyx, but
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only relates to the gradient of the stem-end and calyx, which make the SET suitable
for various apple orientations. By subtracting the apple original image from the

computed /r image, a shape enhanced image is obtained by:

El(xay):[E(xay)_](xay) (5.22)
Based on SET, the concave surface area, i.e. apple stem-end/calyx, is enhanced
greatly compared to the normal apple NIR image, in other words, the “contrast”
between apple stem-end/calyx and other surface areas including defects is enlarged,
which makes it feasible to use a single threshold to extract the stem-end and calyx. In
order to choose the optimal threshold, multiple tests were performed according to the
different thresholds. The relationship between error rate and threshold is plotted in

Figure 21.
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Figure 21. The choice of optimal threshold
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As shown in Figure 21, the type I error (the line with round marks) increases as the
threshold increases, which is expected because higher threshold means stricter on
picking the enhanced area. Those areas which are not enhanced “enough” will be
dropped by a higher threshold. Similarly, the type II error (the line with square marks)
goes down as the threshold increases. This is because under a higher threshold, the
algorithm becomes more and more “picky” on choosing the enhanced area, and the
chance of falsely identifying a stem-end/calyx becomes smaller and smaller, and even
goes to zero sometimes (under threshold 185). Although a very low type I error rate
can be achieved under a low threshold, and a very low type II error rate can be gotten
under a high threshold, when both error rates are taken into account, the overall error
rate (the line with triangle marks) reaches its minimum under threshold 170, which
was selected as the optimal threshold during the experiment. Because the SET
approach differentiates apple stem-ends/calyxes from defects based on their different
3D shapes, it gives a better performance than the classification methods which solely

use 2D information such as image intensity and shape.

5.2.2.2 The quadratic facet model for stem-end/calyx convex 3D shape fitting

The principle underlying the facet model is to view the spatial domain of an image as
the combination of connected surface pieces, so called facets, each of which satisfies
certain shape constraints. In Haralick and Watson’s (1981) paper, a sloped/degree-one
facet model was employed to fit the test images through least-square estimation. The
fitting results were good except some details on the images were lost, which was
expected because only a first order polynomial function was used in this paper. Other

3D shape fitting approaches including high order facet models were also applied by
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many researchers in the area of image processing, such as edge detection (Haralick,
1983; Haralick, 1984; Ji and Haralick, 2002), image segmentation (Besl and Jain,
1988; Lukacs, et al., 1998), object recognition (Hebert, et al., 1995; Blane, et al.,
2000), image registration (Scott, et al., 1995; Jiang, et al., 1992; Wyngaerd and Gool,
2002), etc. In this research, the idea of a facet model is extended to do the 3D depth
data fitting instead of traditional image intensity fitting to improve apple stem-

end/calyx identification.

Because of the apple convex shape (concave in stem-end/calyx) and its smooth
surface, it is reasonable to assume that the 3D depth value of a small neighborhood on
the apple surface can be approximated by a bivariate quadratic function g, and the

canonical form of g can be given by:
Z(x,y) = g(x,y) =k +k,x +ky +k,x* +kxy+ky’ (5.23)
The above equation can be rewritten based on a set of discrete orthogonal polynomial

basis:

6
g(x,y) =Y Kh(x,y) (5.24)
i=1

where hi(x,y) = {1 ,x, y, x*-2, xy, y*-2}, is a set of orthogonal polynomials, and x = {-
W,.,101, . ,Why={W.,6 10, I, . , W}within the small neighborhood. Here
2W+1 refers to the windows size of the neighborhood. By comparing Equation (5.23)
with (5.24), it is obvious that

k=K, -2K,-2K,
k=K, i=23,..6 (5.25)
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The fitting coefficients K; can be obtained by projecting apple 3D surface map onto

the orthogonal polynomial basis:
2 I (x,)Z(x.)
il =ZQw,

K ==
l Zhiz (x,¥) l
X,y

where,
th‘ (x,))
_ )
mT Zhiz(x,y)
X,y

The fitting coefficient K; is computed by convolving 3D surface map with the

(5.26)

(5.27)

corresponding weight kernel w;, which makes the computations much easier than

calculating the £;’s from the Equation (5.23) directly (Ji and Haralick, 2002). Among

computed fitting coefficients, only K, and K are needed to describe the shape of a

quadratic surface of a given type, while others are used to control the orientation and

translation of the surface (Besl and Jain, 1985). Some typical quadric shapes affected

by coefficient K, and K are illustrated in Figure 22.
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In this study, because the orientation of small piece of facet was negligible compared
to the shape itself, plus the translation of the facet had already been considered during
the aforementioned convolving, identification of concave shape on the convex apple
surface was achieved by simply checking coefficients K, and K according to a pre-

determined threshold.

5.3 Results and Discussions

Typical examples of apple 3D surfaces recovered from 2D NIR images (shown on the
top-left corner of each image) are presented in Figure 23. Given insufficient image
data, such as (a) and (g), the 3D map can still be restored without any visible
distortion. Different 3D shape properties among apple normal surface, stem-
ends/calyxes and defects can be observed from (c) to (h). Generally, a normal apple
surface has the convex 3D shape, while the defects exhibit small indentations, which
are much shallower and flatter in their 3D depth than the concave shape of the stem-
ends and calyxes. The deep concave shape of stem-ends/calyxes makes it possible for
further 3D depth based analysis to detect their correct positions on the apple surface.
Corrupted image data are also tested to show the robustness of the algorithm.

Relatively good results can be achieved as shown in (1) and (j).
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Figure 23. Reconstructed 3D surface maps of five groups of golden delicious apples (two

images/group) based on different apple/image conditions.

Some typical detection results are given in Figure 24, including (a) apples without
defects and stem-ends/calyxes, (b) apples with stem-ends/calyxes only, (c) apples
with defects only, and (d) apples with both stem-ends/calyxes and defects. All the
apple stem-ends/calyxes were successfully recognized. The apple boundaries were

added intentionally to show the accuracy of automated segmentation. All the results
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including the added boundaries were obtained automatically by the processing
computer using the proposed approaches. As shown in Figure 24, four categories,
which are grouped based on different sample quality conditions, are presented from
(a) to (d). Figure 24 (a) includes the good apple samples without any stem-
ends/calyxes and defects facing to the camera. Figure 24 (b) illustrates the samples
only with stem-ends/calyxes showing on the images. All stem-ends/calyxes in Figure
24 (b) were successfully identified regardless of their relative location to the apple
surface. Although the defects in Figure 24 (c) varied in size, intensity, quantity and
position relative to the apple surface, none of them were detected by the proposed
approach. Even though there were not only stem-ends/calyxes but also defects present
in the apples in Figure 24 (d), our method correctly differentiated the stem-
ends/calyxes from various defects. Given incomplete image data (the last apple in
each row), the proposed method still correctly identified the stem-ends/calyxes. In
addition, noisy image data, which was caused by alternate scanning of the camera,

(sixth image in each row) were also tested to show the robustness of the algorithm.

74



(b)

- ', =
. -~ —.
_

(c)

= - I ——— e ot — —

%, -, -, -~ =

(d)

Figure 24. Typical detection results based on proposed approach under different sample

conditions
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The statistics for the detection results based on 203 sample images are shown in
Figure 25. Given three different test criteria, consistent detection rates were obtained
by both 3D SET and Facet Model Fitting approach. For 3D SET method, an overall
93% detection rate was achieved. For Facet Model Fitting approach, the detection rate

was slightly lower than the 3D SET method, but all the results were greater than or

equal to 90%.

100% 90.5% 92.1% 90.0% 92.9% 90.1% 92.6%

80%

60%

40%

Detection Rate

20%
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Samples without Stem- Samples with Stem- Total Samples
end/Calyx end/Calyx

Test Criterions

03D Facet Mbdel Fitting B 3D Shape Enhanced Transform

Figure 25. Detection rate based on three different criterions

The type L, I and overall error are also plotted in Figure 26. Similarly, both proposed
3D analysis approaches had a low overall error rate, and the performance of 3D SET
approach was slightly better than the Facet Model Fitting approach. The average
computational time is 50 ms/apple image under a moderate PC configuration, which

includes a Intel Core Duo 2.0 GHz CPU and 2.0 GB of RAM.
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Figure 26. Detection error rate

To further evaluate the effectiveness of 3D apple surface reconstruction, the
recovered 3D apple surface data was substituted by 2D image intensity value for the
comparison purposes. The test results of proposed 3D vs. traditional 2D approaches
are shown in Figure 27. The first row of Figure 27 gives the original NIR images, the
second row shows the stem-end/calyx identification results using 2D intensity data as
the inputs, and the third row represents the identification results using recovered 3D
depth as the inputs. Figure 27 (a) is a good apple sample, but one false alarm is
generated by 2D method. One calyx in Figure 27 (b) is misidentified by the
traditional method, and a false alarm can be found at the same time. In addition, many

apple defects are misclassified as stem-end/calyx by the traditional 2D method, which
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can be seen from Figure 27 (c) to Figure 27 (d). For all the five examples in Figure

27, the method present in our study gives the correct identification results.

(@ (b) (© (@ (e)
Figure 27. Comparison on fitting results between using 3D depth (third row) and original image

intensity (second row)

Corresponding statistical analysis between aforementioned two approaches is also
demonstrated in Figure 28. Although the type I error of the proposed 3D method is
slightly lower than the traditional 2D approach, a much lower type II error can be
obtained by the former method than the latter one. As a result, the overall error rate is
reduced significantly (from 41.38% to 9.85%) by using proposed 3D based analysis,

which shows the effectiveness of 3D apple surface reconstruction.
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Figure 28. Comparison between proposed 3D approach and traditional 2D method

5.4 Conclusions

A novel automated 3D enhancement/analysis approach was developed to identify
stem-ends/calyxes on an apple sorting and grading system. The 3D surface of the
apple was first recovered based on an SFS algorithm. Unlike structured light range
imaging, which only uses partial information of the apple surface, the SFS approach
took advantage of the full image information. Every pixel value contributed to the
reconstructed 3D map, which meant a more detailed 3D description was obtained.
There was no additional light source required in the system: normal visible white
light plus a NIR filter was enough. Given successfully recovered 3D depth data, two

3D processing approaches were presented to identify the apple stem-end/calyx based
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on their unique 3D properties. Both algorithms were stem-end/calyx position
independent, which made them suitable for different apple orientations. They were
also robust to noisy data caused by alternate scanning of the camera, and even
incomplete data. A total of 203 golden delicious apple images were tested in this

research and an overall detection rate above 90% were achieved by both methods.
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CHAPTER 6 IMPROVED 3D RANGE IMAGING AND
DYNAMIC THRESHOLDING FOR POULTRY QUALITY
INSPECTION

6.1 Introduction

Although X-ray imaging detection has been intensively applied in the poultry
industry, this traditional imaging technology has significant difficulties in detecting
some contaminations, such as bone fragments, with high accuracy because of
thickness variations in poultry fillets. This problem is mainly due to fundamental
limitations of X-ray, which always confuses object density and thickness signals in

the output X-ray images. A simplified example is given in Figure 29.

Incident X-ray Incident X-ray
contaminant
Attenuated X-ray Attenuated X-ray

Figure 29. Thickness and density confusion in X-ray imaging
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Given the same incident X-ray energy level, the X-ray attenuation can be the same
between a uniform object and the same object with thinner thickness but a denser
contaminant. To solve this problem, a combined X-ray and laser 3D imaging system
was developed by employing a laser 3D range imaging sub-system to obtain the
thickness variation of poultry fillet, and compensate uneven thickness problem of X-
ray imaging. By doing so, X-ray differentiation power for density variation in objects
has been significantly improved. The objective of this study was to develop an
improved laser 3D-ranging imaging sub-system as well as a novel dynamic

thresholding algorithm for the automated bone fragments detection in chicken fillet.

6.2 Materials and Methods

Typical chicken breast samples as well as the bone fragments are shown in Figure 30.
Most chicken breasts sold on the market are deboned with fat and skin trimmed out as
shown in the first two images in Figure 30. Although they are called “boneless”, bone
fragments are frequently found in the meat due to human error. Typical bone
fragments include small pieces of pulley bones, rib bones, and sometimes fan bones,
shown in the third image of Figure 30. Other foreign materials, such as metal chip,

are also occasionally found in the chicken meat.
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Figure 30. Chicken breast samples and bone fragments

In this study, a total 220 pieces of fresh cut chicken boneless breast were tested. All
the samples were obtained from a national leading poultry processor, and were
assessed at their most fresh condition in order to mimic the real industrial
environment of the processing lines. Bone fragments were extracted from the same
chicken body with the same freshness. The detailed composition of testing samples is

shown in Table 8.

Table 8. Detailed composition of test chicken samples

Sample Labels Number of Samples
Chicken breast fillet with embedded bone fragment 110
Chicken breast fillet without embedded bone fragment 110
Total 220
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Three typical bone sizes were tested including large, medium, and small or less

calcified bones. The detailed composition of bone fragments are given in Table 9.

Table 9. Detailed composition of bone fragments

Bone type

Bone size

Number of Samples

Large bones

Medium bones

Small bones

Total

Between 6 and 12 mm

Between 3 and 6 mm

Less than 3 mm or Less calcified
fan bone

32

40

38

110

6.2.1 Laser 3D range imaging

6.2.1.1 3D reconstruction

The 3D profile of chicken breast sample was obtained through a structured light beam

generated by a laser pattern generator. Given acquired profile points on the camera

and the known laser baseline (the line generated with sample on it), the corresponding

real world thickness of each point on a laser line could be computed by triangular

geometry. Once the thickness of a laser profile was obtained, the 3D profile of a

chicken sample was recovered by continuously projecting the laser line onto the

moving object, and calculating each associated laser line. A simplified triangular

geometry of 3D laser range imaging is illustrated in Figure 31.
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Imaging plane

Camera lens center

M L

Figure 31. The schematic of Laser 3D ranging imaging setup

In Figure 31, both ZOAB and ZPNM are right angles and OA equals the focal length
of the camera. In addition, AB, OM, ZOML and ZAOB can be determined

according to the system setup. Therefore, the following relationship can be

established:
YN OM - AB o
JAB? + 04 |
And
cos ZPMN = cos(|£OML — ZAOB|) = MN 62)
PM '

Consequently, the thickness PM of the object can be obtained by combining Equation

(6.1) and (6.2):
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B OM - AB
VAB? +0A4% -coslZOML — Z40B

PM

(6.3)

In order to obtain sub-pixel accuracy laser profile extraction, a penalized centroid

approach was presented. The traditional centroid method can be expressed as:

D K(x,y)x M(x,y)

Cx, y) = C0ek
te) > M(x,y) (64

(x,y)eR

Where K(x,y) represents the coordinates of image pixels, M(x,y) refers to the image
intensity, C(x,y) is the central point, and R is the area where Equation (6.4) is applied.
In the ideal situation where only reflectance is present after the incident light hit the
object surface, Equation (6.4) can be used to calculate the central point, which is
equivalent to the peak point, of the projected laser profile. However, biological
materials, such as a chicken meat surface has a much more complicated light
reflectance pattern such that the traditional centroid method is usually insufficient to
determine the real projected central points. An example is demonstrated in Figure 32
(Jing, et al., 2005; Jing, 2003). In Figure 32, when the incident light ray hits the
surface of medium 2, absorption and scattering occurs within that medium, some
scattered light will travel back to the medium 1, and eventually reflects back to the
image plane through more than one position. Assuming medium 2 is isotropic, which
is reasonable for chicken meat, the scatter A and B are at positions symmetrical to the
incident light. However, because the distances from scatter A and B to their

corresponding image I, and /, are different, the reflected image on the image plane
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will not have a symmetric shape. To deal with this asymmetric problem, a penalty

term was added to the Equation (6.4). Considering 1D case, we have:

Image plane \ /,

Incident light ray

Medium 1

Medium 2 Scatterer A RN Q; \'4/ 7 Scatterer B
o o O‘g- NS o

Figure 32. An example of biological materials surface reflectance pattern

Cp(x)=C(x)+0(x,0,) 6.5)

And

D 8(x,60,)-> 8(x,6,)

o 9 ’x — k x<P x>P
(8,.3) D 8(x,60,)+ > 8(x,6,) (6.6)
x<P x>P

Where S is the reflected light radiance, 6. is the angle between incident and reflected

light, which is shown in Figure 32, P is the real peak point of the profile, and K is a

constant. It is obvious that if when a symmetric profile is reflected to the image plane,
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the penalty term in Equation (6.6) becomes zero, and hence Equation (6.5) turns into

the traditional centroid equation (6.4).

6.2.1.2 System design

Originally, the fused X-ray and Laser detection system was designed with single-lane
coverage. Single-lane coverage referred to the maximum area covered by one pair of
cameras used for Laser 3D range imaging. Two cameras were used in order to
remove the occlusion (Jing, 2003) caused by irregular shape of samples. It was
obvious that increasing the coverage area could increase the throughput if the
processing time remained the same. Therefore, another pair of cameras was added
into the imaging system for extended coverage. However, system extension brought
more data flow and complexity of control and synchronization into the system. In
addition, because the coverage of the X-ray imaging system in the original design was
twice that of the single-lane Laser 3D range imaging, the extra burden incurred by
system extension mainly came from the extension of the Laser sub-system. As a
result, how to carefully design the Laser multi-lane imaging sub-system became an

important factor in improving the overall system performance.

Multi-threaded programming: The traditional and straightforward task processing
approach is single-threaded sequential processing, which is the only available
approach in some of the early operating systems, such as DOS, and is still widely
used in many applications today. Although it has many advantages including easy
design and implementation, less complexity, modest resource consumption, etc., one

major drawback of sequential processing is low time efficiency because the processor
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can only process one specific task at any given time in a single-threaded system. If an
application generates a large number of tasks within a short time period, the waiting
time to finish such application will be extremely long. One way to overcome this
problem is multi-threaded programming, which fully utilizes the system resources

and keeps the time delay between tasks to a minimum.

Memory management: In the aforementioned multi-threaded system, some data
buffers were accessed by every thread. In order to prevent data from being lost or
corrupted, memory access had to be carefully managed and synchronized. In the case
where frequent read and write operations would be executed on the same memory
block, a ring buffer was employed to improve the efficiency of data fetching. In the
ring buffer design, two pointers are used for data reading and writing, and they are
not pointed to the same memory block. By doing so, both writing and reading
operations can be performed simultaneously as long as the data reading speed is equal
to or faster than the writing speed. A ring buffer usually has » memory blocks, and
once the block Br is filled with data, BI will be the next block to be written. This can
also be called launch-and-forget mode where the control of the program will be
returned to the main thread once the data writing command is issued, and no waiting
is necessary for the actual writing operation. The ring buffer mode is more time
efficient than the traditional lock-and-release memory access mode where waiting is

needed for writing operation.
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6.2.2 Thickness compensated X-ray imaging

6.2.2.1 Combined X-ray and Laser image

Once the 3D profile of chicken samples was obtained, the thickness variation of the
X-ray image could be compensated using the Laser 3D image. The basic idea of such
compensation is shown in Figure 33 (Tao and Ibarra, 2000):

Chicken

Bone fraglﬁ breagst fillet Bone fragments
a) Profile of a /\_5,_,‘//‘\’ b

meat fillet:

Intensity B3
b) Profile of X-ray B2
intensity image: MB 4
¢) Profile of thickness
Intensity pseudo X- \w

ray image:
B3 B4
d) Profile of thickness 4 El fP 2 A A Threshold
compensated
image:
e) Extraction of A A A

fragments:

Figure 33. Thickness compensation using Laser 3D profile

Given a chicken breast sample with embedded bone fragments in Figure 33 (a), the
corresponding X-ray intensity map will look like Figure 33 (b). Due to the uneven
thickness, it is impossible to identify all the bone fragments from B/ to B4 using a
single threshold. More specifically, the intensity of bone fragment B/ is less than the

one of chicken meat around B3 area, and hence confused with thickness variation of
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the fillet. However, if the Laser 3D profile is obtained as in Figure 33 (c), and used to
compensate the original X-ray image 33 (b), The thickness compensated image can
be obtained in Figure 33 (d). It is obvious that once the thickness variation is removed
by the Laser 3D image, all the bone fragments can be easily extracted through a

single threshold shown in Figure 33 (d) and (e).

6.2.2.2 Dynamic Thresholding Algorithm

According to Figure 33, once the 3D profile of a chicken fillet is obtained, such 3D
information is mapped to a pseudo X-ray image, which will then be combined with
the original X-ray image. By doing so, ideally, the uneven thickness of the sample
can be eliminated, making the foreign materials embedded in the chicken sample
easily detectable through a single threshold. However, in the real world situation,
noise will be inevitably present during the entire procedure of contaminants detection.
The sources of noise include thermal noise from the imaging devices such as cameras
and the X-ray detector, electronic noise caused by electronic components, etc.
Furthermore, computation errors also exist during 3D reconstruction, X-ray/Laser
calibration, etc. Because it is quite challenging, sometimes even impossible to give an
accurate description for such noise and error models, the thickness information in the
X-ray image can not always be perfectly compensated by the Laser 3D depth.
Therefore, using a single threshold can cause potential problems in some cases. This

can be illustrated in Figure 34.
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Bone fragments
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Intensity
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Thickness Compensated Sample A Thickness Compensated Sample B

Figure 34. The disadvantage of single threshold method

When thickness compensated images are obtained, the bone fragments in sample A
can be identified by threshold 1. Similarly, the bones in sample B are extractable
through threshold 3. However, it is impossible to identify all the bone fragments
without any false alarm by only using a single threshold. Any single threshold choice,
such as threshold 2, will cost at least one false alarm — the region filled with vertical
lines, and/or one missing bone fragment — the region filled with horizontal lines. To
address this problem, the dynamic threshold approach was developed to segment the
true bone fragments while keeping the false alarm rate to a minimum. Given a set of

consecutive thresholds:
Tz{to,tl,...tN} (6.7)

where ¢, <t, <...<t, and N is the number of thresholds in the set. Let:

1, when I,(x,y)2>t

F([o(xay):ti):{ 6.8
0, whenl,(x,y)<t, ©8)
where F is the thresholding function and /) (x,y) is the image. Further define:

a, = ZF(x,y,tl.), j=0,..R 69

(x:y)EAS(xay)
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where R refers to the total number of regions of interest under threshold ¢ and

Ag(x,¥) is the region of connected pixels with 8-adjacency. According to equation (

6.9), a feature matrix can be obtained as the following:

Ao -
A= L =a a, .. an]
L2, R (6.10)
| Ano A NR
where a is the column vector of matrix 4. Let:
d ai+1,j 1
dA=[da,da, ....da,] do , 1=0,.,N—
1, 2,°% R1, J
4
(6.11)
Defining the classification criterion:
C,=DIST|da, -de;| j.k=0...,R,j*k 6.12)

where DIST i1s a Euclidean distance between any pair of feature vectors (Hence, C; is
a scalar), the foreign materials and normal tissue classification can be fulfilled

through the following equation:

C, <e, class 1

]
4 otherwise, class 2 (6.13)
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6.3 Results and Discussions

6.3.1 3D Laser range imaging

A laser 3D imaging subsystem was developed and can be either used as an
independent utility software for the testing and/or diagnosing purposes, or integrated
with the X-ray imaging system to build the dual X-ray/Laser imaging detector. Some

reconstructed 3D images of chicken fillets are shown in Figure 35:

Figure 35. Examples of reconstructed 3D data from chicken fillets

The overall 3D range imaging system structure was designed according to the
requirement for a high-speed, high-resolution imaging system as seen in Figure 36.
The image frame data acquired by each high-speed camera is first sent to an onboard
memory by the frame grabber. A total of four ring buffers are used with respect to
each camera. Once the minimum process-able memory block is ready, a working

thread (7h) is notified for data processing. A total of four threads are utilized, and
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they are working alternatively in order to avoid the possible data corruption. Each
thread applies the proposed 3D reconstruction algorithm to build the 3D profile of the
chicken sample, and put such 3D data into a shared memory for further processing.
The Message-passing based communication strategy were also designed and
integrated into the 3D range imaging system. The text box with light green
background shows the messages communicated between Task Manager and working

thread.

Control and

Synchronization
Sub-system

Frame Grabber

Ready
Yy ) KA 2NN TYY Yy T e '~.| | Task Manager
1 b= e ‘
| |7 z z Z | - 1
: 0% 0% 0% 0% : Finish
: w w os) =B Ready
i E’? E’? E’? E’? | Ready | | Finish
' - - - — ! SR A B,
"""""""""""""""""""""""" B .
| | Th3 i
Shared Memory i
with X-ray Imaging |« |
h 3D Recove 3D Recove
Sub-system Y Y

Figure 36. System structure design and Message communication

A more detailed 3D profile reconstruction flow chart is given in Figure 37. In this

design, both temporal information, such as profile history and the spatial information
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like neighboring data are considered to narrow down the search range of the current

laser profile. By doing so, the computational time can be significantly reduced.

Figure 37. Flow chart of 3D profile reconstruction

A quantitative evaluation of the improvement of the two-lane system over the single-

lane system is shown in Table 10:

Table 10. The performance data of current Laser 3D range imaging system

Single-Lane system Two-Lane system Improvement
3D dataresolution 0.8 mmx 04 mmx 04 mm 0.4 mm x 0.4 mm x 0.4 mm 50%
Computation time 5.25 ms/image 1.31 ms/image 75%
Cover range 03m 0.6 m 100%
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6.3.2 Fused X-ray and Laser imaging system

Given reconstructed Laser 3D depth information, the thickness variation in the X-ray
image can be removed, and hence the bone fragments embedded in the chicken meat

can be easily extracted as shown in Figure 33. Some examples are illustrated below:

In Figure 38 (b), a very detailed 3D profile, including some bumpy area indicated by
the dotted circle, is recovered. With the help of laser 3D imaging, the uneven
thickness problem can almost be eliminated, and leave the foreign material “stand

up”, as seen in Figure 38 (c).

1/16>” bone fragment

(@) (b) (©) (d)
Figure 38. Bone fragment detection using fused X-ray/Laser imaging (a) X-ray image, (b) Laser

3D image, (¢) Combined image, (d) Detection result.
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(@ (b) (©) (d)

Figure 39. Thickness compensation by Laser 3D information (a) X-ray image, (b) Laser 3D

image, (¢) Combined image, (d) Detection result.

In Figure 39 (a), a highly suspicious area, which shows a higher intensity value than
the surrounding region, can be observed. If only the X-ray image is used, this
suspicious area will be considered as a high density foreign material even under eyes
of a trained X-ray imaging scientist. However, if Laser 3D image is provided in
Figure 39 (b), it is quite clear that the suspicious area also has very high depth value.
When the Laser image is combined with X-ray image, the thickness variation is
totally cancelled out. As a result, there are no high density foreign materials found in
the sample as seen in Figure 39 (d). Previous two examples show the effectiveness of

Laser 3D image in the thickness compensation of X-ray image.

In order to quantitatively evaluate the performance of fused X-ray and Laser imaging

system, a total of 220 chicken breast fillets were tested, and the overall detection rate
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was computed. The overall detection rate was defined as the total number of false
detected samples divided by entire sample size, which is 220. A 95% overall
detection rate is achieved by dual X-ray/Laser imaging detection. Type I and type Il
errors are 2.27% and 2.73%, respectively. These results show the effectiveness of
aforementioned thickness compensation approaches. However, as discussed in section
6.2.2.2, a single threshold method has disadvantages when noise is included in the
combined images due to the inaccuracy of reconstruction, calibration, etc. Such a

disadvantage can be illustrated in the following example:

(@) (b) (©) @)

Figure 40. Thickness compensation by Laser 3D information (a) X-ray image, (b) Laser 3D

image, (¢) Combined image, (d) Detection result.

Figure 40 (a) gives an X-ray image with a true, but tiny bone fragment indicated by
the dotted circle. After compensating for thickness by Laser 3D image, Figure 40 (c)
shows a very weak signal corresponding to the bone fragment. In addition, a

suspicious region on the top of the image also shows similar intensity as the bone
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fragment. On the final result in Figure 40 (d), both weak signals in (c) are excluded.
Considering the ground truth, the tiny bone fragment is missed by the single threshold
method. To solve this problem, instead of using only one specific threshold, suppose
a set of consecutive thresholds are applied to the combined image (Figure 40 (c)), the
respective results are given in Figure 41. It is obvious that any single threshold from
(a) to (d) can not get the correct result indicated in Figure 41 (e). Furthermore, when

the threshold value greater than the one used in Figure (d) is applied, all the

suspicious areas will be removed, and hence no foreign materials will be detected,

which is the case in Figure 40.

,
) (b) (

(a

/
) ()

Figure 41. Detection results under a set of consecutive thresholds (a) Th=5, (b) Th =6, (¢) Th =

(V

(e)

7, (d) Th =8, (e) True result.

However, if size change of each suspicious region along with change of threshold is
considered, an interesting phenomenon can be found, and demonstrated in Figure 42.
It is clear that, both false alarms have a higher rate of change in region size in
comparison to that of the real bone fragment. This can be anticipated since noise is

usually very sensitive to the change of threshold, while the real bone fragments only
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change slowly under the change of thresholds. This is because most pixels of real
bone fragment have the same or similar intensities; therefore, any threshold value

below such intensity won’t cause dramatic change in detected bone size.

Detection area under multiple threashold
350
300
—&— Bone fragment
—m— False alarm 1
__ 250 False alarm 2
[%]
°
X
a
‘e 200
*® \.\
©
o
©
c 150
L
ki
Q
®
2 100
50 o
0 \*\‘\%
5 6 7 8
Threshold

Figure 42. Detection area change of suspicious objects with change of threshold

To further illustrate the idea of dynamic thresholding, the area ratio change under
multiple thresholds for typical bone fragments and false alarm regions are plotted in
Figure 43 and 44, respectively. Shown in Figure 43, most bone fragments have a very
slow size change when the threshold increases. More specifically, an approximately
10% reduction in detection size of bone fragments can be observed along the
increment of threshold. This shows the insensitivity of real bone size change to the
change of threshold. On the other hand, in Figure 44, a dramatic change of size can be

seen when the threshold increases. A high inconsistency between change of size and
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threshold is present. The above findings agree with our previous statement that bone

fragment size change under multiple thresholds is slower and more consistent than

false alarm regions.

Area ratio change under multiple threshold for real bone regions
©
<
<
k]
2
®
x
5 6  Threshold 7 8
Figure 43. Area ratio change with the change of threshold for real bone fragments (Each line
represents one bone fragment)
Area ratio change under multiple thresholds for false alarm regions

o
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<
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.0

®

14
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Figure 44. Area ratio change with the change of threshold for false alarms (Each line represents

one false alarm)
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According to above facts, the dynamic thresholding, which evaluates the response of
combined image under a set of consecutive threshold values, was developed during
this study, and showed great improvement in the performance compared to the
original single threshold method. The related statistics are shown in Figure 45 and 46

to show the value of dynamic thresholding method.

Performance comparison
98.64%

95.00% O Single threshold
100% B Dynamic threshold

80%-

60%-|

40%

20%

0%-

Detection rate Type | error rate Type Il error rate

Figure 45. Overall performance comparison between original single threshold and dynamic

thresholding approaches
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Performance comparison
O Single threshold
100% @ Dynamic threshold

80%11
60%|
40%-
20%1 4.55% 41899 545%  0.91%

0%

Type | error rate on defected samples Type Il error on good samples

Figure 46. Performance comparison based on two test criterions between original single

threshold and dynamic thresholding approaches

The overall comparison is illustrated in Figure 45. The proposed dynamic
thresholding method has higher overall detection rate (98.64%) than the single
threshold approach (95.00%). In addition, both type I and type II error of the
proposed method are much lower than the original one. To further evaluate the
dynamic thresholding method, Type I error on only defected 110 samples as well as
Type II error on only good 110 samples are also analyzed and shown in Figure 46.
The proposed method appears to be better than the original single threshold approach

in both test criterions.
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Detection rate comparison on different types of bone fragments

100.0%100.0°

7

100%

80%

60%

40%

Detection rate

20%

0%

Big bones Medium bones Small or less

@ Dynamic threshold calcified bones

B Single threshold Type of bone fragments

Figure 47. Detection rate comparison based on different bone fragments categories

A detailed statistical analysis based on three bone fragment categories was also
conducted. The results are shown in Figure 47. Both proposed and original methods
have perfect detection rate on large size bone fragments. However, the performance
of the single threshold method drops significantly when the bone size becomes
smaller and smaller. This is expected because small size bone fragments make the
single threshold approach more vulnerable to the noise, and hence cause either miss-
classification or false alarm. On the contrary, the dynamic thresholding approach
considers responses in the region of interest under a set of thresholds, and has better
noise resistance compared to the single threshold method. All the statistics above
show the improvement of dynamic thresholding method in the chicken bone

fragments detection compared to the original single threshold method. The dynamic
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thresholding approach was fully integrated into the combined X-ray and Laser

imaging system. The overall processing time of the system is 30 cm/sec.

6.4 Conclusions

An improved Laser 3D range imaging sub-system was developed to recover the 3D
depth information for the X-ray image compensation. Several important issues were
addressed such as laser profile extraction, data flow design, memory management,
parallel-programming. The original experimental Laser 3D imaging system was also
extended to a two-lane, four-camera system, which doubled the system processing
capacity. The overall improvement could be seen in both image resolution and
computation time. On the X-ray imaging part, a novel dynamic thresholding approach
was introduced to overcome the disadvantages of original single threshold method.
Because of noise and error encountered during data calibration, 3D reconstruction and
system integration, using a single threshold might not be sufficient to identify bones
while suppressing the noise at the same time. The dynamic thresholding method
utilizes more information under a set of consecutive thresholds. By checking the size
change of suspicious regions under each threshold value, a better overall detection
rate was achieved (98.64%) compared to the single threshold approach (95.00%).

This showed the effectiveness of the proposed dynamic thresholding algorithm.
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CHAPTER 7 CONCLUSIONS AND FUTURE STUDY

In this dissertation, statistical pattern recognition approaches as well as 3D machine
vision technologies for food quality and safety inspection have been explored. This
research mainly focused on apple and poultry products since both of them are popular

foods in the US.

In the automated apple defects detection, Gabor-wavelet based kernel principal
component analysis approach was introduced. This approach freed the need of local
feature segmentation by using Gabor feature decomposition for the whole apple NIR
images. Given extracted global Gabor features, a high-dimensional space was
obtained through the polynomial kernel function. Once apple Gabor features were
mapped into this hyper-space, the PCA method could be used to linearly separate
defective and good apple samples. An overall 90.6% detection rate was achieved

using the proposed method.

For the automated apple stem-end/calyx identification, a novel 3D data
enhancement/analysis approach was developed. Unlike traditional approaches, the
proposed 3D based method took advantage of the full image information. Every pixel
value contributed to the reconstructed 3D map, which meant a more detailed 3D
description was obtained. For proposed methods, there was no additional light source
required in the system: normal visible white light plus a NIR filter was enough. Given

successfully recovered 3D depth data, two 3D processing approaches were presented
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to identify the apple stem-end/calyx based on their unique 3D properties. Both
algorithms were stem-end/calyx position independent, which made them suitable for
different apple orientations. They were also robust to noisy data caused by alternate
scanning of the camera, and even incomplete data. An overall detection rates above

90% were achieved by both methods.

For the automated chicken bone fragments detection, an improved Laser 3D range
imaging sub-system was developed. Overall system throughput, accuracy and
processing speed have been improved with the contribution of the Laser 3D imaging
sub-system. To further improve detection performance while suppressing the noise, a
novel dynamic thresholding approach was introduced. This method utilized more
information from a set of consecutive thresholds by checking the size change of
suspicious regions under each threshold value. A better overall detection rate was

achieved (98.64%) compared to the single threshold approach (95.00%).

Future research can be conducted in the following areas:

1). Global features other than decomposed Gabor-wavelet can be explored for the
apple defects classification;

2). More complex surface models can be studied in order to further improve the apple
3D surface reconstruction;

3). Apple defects and stem-end/calyx analysis can be extended to other similar fruits

such as tomatoes, pears, etc.;
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4). Real laser reflectance and scattering pattern on the bio-material surface can be
studied to further improve the accuracy of 3D range imaging;

5). Real X-ray penetration pattern on the bio-materials can be explored to further
improve the accuracy of 3D range imaging;

6). The noise model of entire fused X-ray/Laser imaging system can be studied in

order to further improve the signal to noise ratio.
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