
ABSTRACT

Title of thesis: DISTRIBUTED FLOW OPTIMIZATION
IN DENSE WIRELESS NETWORKS
Sina Zahedpour Anaraki, Master of Science, 2011

Thesis directed by: Dr. Mehdi Kalantari
Department of Electrical and Computer Engineering

Due to large number of variables, optimizing information flow in a dense wire-

less network using discrete methods can be computationally prohibitive. Instead of

treating the nodes as discrete entities, these networks can be modeled as continuum

of nodes providing a medium for information transport. In this scenario multi-hop

information routes transform into an information flow vector field that is defined

over the geographical domain of the network. At each point of the network, the

orientation of the vector field shows the direction of the flow of information, and

its magnitude shows the density of information flow. Modeling the dense network

in continuous domain enables us to study the large scale behavior of the network

under existing routing policies; furthermore, it justifies incorporation of multivari-

ate calculus techniques in order to find new routing policies that optimize a suitable

cost function, which only depend on large scale properties of the network. Thus,

finding an optimum routing method translates into finding an optimal information

flow vector field that minimizes the cost function.

In order to transform the optimal information flow vector field into a routing

policy, connections between discrete space (small scale) and continuous space (large

scale) variables should be made and the question that how the nodes should inter-

act with each other in the microscopic scale in order that their large scale behavior

become optimal should be answered. In the past works, a centralized method of

calculating the optimal information flow over the entire geographical area that en-

compasses the network has been suggested; however, using a centralized method to

optimize information flow in a dynamic network is undesirable. Furthermore, the

value of information flow vector field is needed only at the locations of randomly

scattered nodes in the network, thus calculation of the information flow vector field

for the entire network region (as suggested in previous models) is an unnecessary

overhead. This poses a gap between the continuous space and discrete space models

of information flow in dense wireless networks. This gap is how to calculate and

apply the optimum information flow derived in continuous domain to a network

with finite number of nodes. As a first step to fill this gap, a specific quadratic

cost function is considered. In previous works, it is proved that the the vector field

that minimizes this cost function is irrotational, thus it is written as the gradient

of a potential function. This potential function satisfies a Poisson Partial Differen-

tial Equation (PDE) which in conjunction with Neumann boundary condition has a

unique solution up to a constant. In this thesis the PDE resulted by optimization in

continuous domain is discretized at locations of the nodes. By assuming a random

node distribution with uniform density, the symmetries present enable us to solve

the PDE in a distributed fashion. This solution is based on Jacobi iterations and

requires only neighboring nodes to share their local information with each other.

The gradient of the resulting potential defines the routes that the traffic should be

forwarded.

Furthermore, based on a graph theory model, we generalize our distributed

solution to a more general cost function, namely, the p-norm cost function. This

model also enables us to enhance the convergence rate of the Jacobi iterations.

DISTRIBUTED FLOW OPTIMIZATION IN
DENSE WIRELESS NETWORKS

by

Sina Zahedpour Anaraki

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2011

Advisory Committee:
Dr. Mehdi Kalantari , Chair/ Research Advisor
Professor Richard J. La, Advisor
Professor Mark Shayman

© Copyright by
Sina Zahedpour Anaraki

2011

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I would like to thank my advisor, Dr. Mehdi Kalantari for

giving me an invaluable opportunity to work on challenging and extremely interest-

ing projects. He has always made himself available for help and advice and there

has never been an occasion when I’ve knocked on his door and he hasn’t given me

time. It has been a pleasure to work with and learn from such an extraordinary

individual.

I would also like to thank my co-advisor, Professor Richard La. Without his

help and ideas, this thesis would have been a distant dream. Thanks are due to

Professor Mark Shayman for both teaching the random processes course, agreeing

to serve on my thesis committee and for sparing his invaluable time reviewing the

manuscript.

I owe my deepest thanks to my family - my mother, father and sister who have

always stood by me and guided me through my career, and have pulled me through

against impossible odds at times. Words cannot express the gratitude I owe them.

This work was partially supported by NSF under grant CCF-0729129 and

grant 0931957.

ii

Table of Contents

List of Tables iv

List of Figures iv

List of Abbreviations vi

1 Introduction 1
1.1 Notations and Definitions . 6
1.2 Background on Information Flow Vector Field 6

2 Distributed Solution for Optimizing the Quadratic Cost Function in Contin-
uous Space 12
2.1 Distributed Solution to Poisson PDE on a Uniform Grid 13
2.2 Solution for a Randomly Distributed Network with Uniform Distri-

bution . 15
2.3 Boundary Conditions . 20

3 Simulation Results 25

4 Network Model in Discrete Space 32
4.1 Network Model . 34
4.2 The Minimax Network Flow Optimiaztion 37
4.3 Acceleration of Jacobi Iterations . 43
4.4 Numerical Examples . 45

Bibliography 56

iii

List of Tables

4.1 Optimal p-norm flow for the network shown in Fig. 4.2. 46

List of Figures

1.1 When the source and destination nodes are not in communication
range, traffic is relayed through multi-hop path. As the number of
nodes in the path gets large, this path approaches to a smooth curve. 7

2.1 Nodes 0 . . . 4 are placed on a grid. The potential of the nodes is
calculated by (2.5). 13

2.2 Nodes 1 · · ·N are arranged on a circular pattern. This configuration
will be used as a starting point for the situation where the nodes are
randomly distributed in the region A with uniform distribution. . . . 16

2.3 Image nodes on the boundary of region A. 21

3.1 The position of nodes in the simulated network. The nodes are dis-
tributed uniformly and independently in area A = (0 1)× (0 1). . . 26

3.2 The computed potentials after 10000 Jacobi iterations (2.20). Note
that the Neumann boundary condition is implicitly applied by using
(2.20) for all nodes regardless of their location. 27

3.3 The potential computed using MATLAB assempde function. 28
3.4 The flow of traffic from source to sink. The source generates 12000

packets in 20000 simulation cycles. Similarity of the flow lines with
the electric fields in an electrostatic setting is due to the fact that in
both settings a Poisson PDE is solved in the domain. 29

3.5 The traffic near the boundary of the network. The flow lines are
approximately parallel to the boundary. 30

3.6 Energy consumption in the nodes during the simulation. 31

4.1 The circular flows e1 and e2 form a basis for the nullspace of matrix
K. Every circular flow e in the nullspace of K is a linear combination
these basis. 41

4.2 A simple network with 12 nodes, where v1 and v2 are generating 1
and 2 units of flow respectively, and node v12 is gathering the flow.
We are assuming that the channel capacity of all of the links are equal. 47

iv

4.3 Comparison of the convergence rate of Jacobi method, LSE-accelerated
Jacobi, Gauss-Seidel (GS), Successive Over Relaxation (SOR) with
parameter 1.37 and Conjugate Gradient (CG) methods for optimizing
J2. The parameters of LSE are q = 20 and r = 4. In this figure, the
horizontal axis is the number of iterations and the vertical axis is the
value of u

(`)
1 (the Lagrangian multiplier for node 1) in each iteration.

We observe the Jacobi, GS and SOR methods require 136, 69 and 64
iterations to converge with error tolerance 1%. Although CG is not
a distributed method, we provided its convergence rate in this figure
as a benchmark, where it converges in 8 iterations. Our proposed
method, LSE accelerated Jacobi, is distributed and converges to the
final solution in 22 iterations, which is considerably faster than other
distributed methods. 49

4.4 The convergence rate of Jacobi iterations for optimizing J2. 50
4.5 Eigenvalues of the Laplacian, reduced laplacian and W for graph

depicted in fig. 4.2. 52
4.6 Eigenvalues of the Laplacian, reduced laplacian and W for a complete

graph K12. 53
4.7 Eigenvalues of the Laplacian, reduced laplacian and W for a tandem

(string) graph with 12 nodes. 54
4.8 Convergence rate of Jacobi iterations for graphs discussed in example

2. 55

v

List of Abbreviations

PDE Partial Differential Equation
BC Boundary Condition
MAC Medium Access Control
FDM Finite Difference Method
FEM Finite Element Method
CG Conjugate Gradient
GS Gauss Seidel
SOR Successive Over Relaxation
SQP Sequential Quadratic Programming
rv Random variable
i.i.d. Independent and identically distributed

vi

Chapter 1

Introduction

A dense wireless sensor network is a network of large number of homogenous

devices distributed in a geographical area to collect data about environmental con-

ditions or events. Each device is equipped with a microcontroller, a short range

radio transceiver, and a battery. Common applications of such networks include

distributed systems of sensors and actuators, and monitoring and surveillance of a

geographic area. Recent advancements in low power electronics and wireless com-

munications have made it possible to manufacture such devices (which hereafter we

call them nodes) in very small size and with low cost. As a result, very large scale

deployment of these devices is possible in applications of interest. The information

generated by each node is transmitted through radio connection to a special node

with enough energy and computational power to be further processed using network

data fusion techniques[2]. We refer to this node as the data sink or sink in short;

note that large networks may have several sinks. Most of the nodes that generate

traffic are not in the communication range of the sinks, thus data packets should be

relayed along multi-hop paths through other nodes to be delivered to data sinks.

Since the nodes are usually powered by battery, it is important that the infor-

mation flow from the sources to sinks be such that the traffic load is not concentrated

on a small number of bottleneck nodes, otherwise their batteries will be depleted

1

and the connectivity of the network can be lost. In the modern wireless devices,

the main source of energy consumption is radio front-end [22], thus excessive radio

transmissions accelerates the depletion of the battery. Hence, developing Medium

Access Control (MAC) and routing protocols for these conditions is and active re-

search topic [27, 24, 20]. In this thesis, we focus on studying information flow for

dense wireless networks, based on the framework developed in previous works by

[18, 17, 19].

Common methods for studying and analyzing wireless networks model the

network as a discrete set of connected nodes [1]. As the density of nodes in a

network grows, careful behavioral analysis (in small scale) and global optimization

of routing protocols becomes very hard by using conventional methods that employ

a discrete model in space, as the number of variable grow rapidly.

A proposed method to overcome complexity issues of a dense wireless network

is to model the network as a continuum of nodes providing a medium for information

flow. In this model, information is treated as a fluid-like entity being transported

through a massively dense communication medium. The information generated by

each node goes through a sequence of many small range multi-hop transmissions in

the medium of nodes until it is received by a sink. This continuous space model for

flow of information in a dense network was introduced in previous works [18, 17, 19]

and independently in [26, 25].

In the proposed continuous space model, an information flow vector field mod-

els the transportation of nodes’ traffic. This vector field has two components at each

location of the network: a magnitude representing the spatial density of information

2

that flows at that location and an orientation that gives the direction to which the

traffic is forwarded. Basic flow conservation laws result in a differential equation and

a boundary condition that govern information flow in the entire netwrok. Based on

these equations the following observations are made. Firstly, the flow conservation

equations by themselves do not define a unique information flow vector field. This

opens room to find a vector field that minimizes a suitable cost function. In the

first part of this thesis we consider a cost function that is a quadratic form of the

magnitude of information density (which in turn is proportional to the communi-

cation cost in terms of energy). This optimization results in another differential

equation. Secondly, the information flow vector field that solves these equations is

conservative (or irrotational). As a result, the information flow vector field is the

gradient of a potential function defined over the domain of the network. As we see

later, this potential function defines the paths that traffic flows in the network. Fi-

nally, in [26], it is shown that finding an information flow vector field that minimizes

the quadratic cost function, also minimizes the number of nodes required to carry

a specified information density in a network.

It should be noted that the form of flow conservation laws governing the in-

formation flow vector field parallel some of Maxwell’s equations (more specifically

Gauss’ Law and Maxwell-Faraday equation) studied in electrostatics. As an exam-

ple, Maxwell-Faraday equation states that the electric field is conservative in a static

system, thus it can be represented by an electric potential. An analogous flow con-

servation applies to the information flow vector field; i.e., it can be represented by

a potential function. The potential function satisfies a Poisson Partial Differential

3

Equation (PDE) with Neumann boundary condition. Solution of this PDE leads

to a simple mechanism for routing the traffic: each node forwards the traffic to a

neighbor with least potential (steepest potential decent).

An important advantage of continuous space models for information flow is the

use of strong analytical tools and techniques in vector calculus and partial differential

equations for flow optimization; however, a main shortcoming of the previous works

in continuous information flow models is that the potential function is assumed

to be calculated in a central node; All of the previous works that use continuous

model for information flow assume that a central node calculates the potential as

a function of space and then it sends the results to all nodes. This is a significant

drawback and usefulness of continuous space models of information flow models will

be questionable in absence of practical methods that calculate the potential values

at the locations of nodes in a decentralized way.

The contribution for this thesis is twofold; firstly, in this work we bridge the

gap between continuous spaces models and discrete space models of information flow

in massively dense wireless networks. We study the network in both continuous and

discrete space and make connections between them. Secondly, we provide a method

to compute the potential at each node in a distributed fashion such that each node

computes its potential by using simple iterations. Such iterations use the potential

value at a node and the values broadcasted only by its neighboring nodes to find a

new potential value for that node. Simulations show that the iterations at each node

converge to the continuous space potential function at the location of that node. The

discrete and decentralized scheme for calculation of potential function enables the

4

routing method based on the potential function to be employed in networks with

large number of nodes in a geographically distributed region.

To achieve this goal, the Poisson PDE in continuous domain is approximated

by equations in discrete domain that is valid at locations of wireless nodes. We use a

method similar to Finite Difference Method (FDM) for a random setting suited for

wireless networks in which the nodes are distributed independently in the network

area with uniform distribution. The symmetries present in a uniform distribution

enable us to solve these equations using Jacobi iterations, without any information

about the distance of the neighboring nodes; i.e., each wireless node only needs to

communicate with its neighboring nodes to compute and update its potential value,

based on a simple formula. The broadcast nature of the wireless communication is

directly used in the proposed method.

Related Works: The continuous domain flow presented in this work falls

in the category of physical inspired models. Toumpis in [26] has independently

proposed a similar continuous flow method inspired by electric fields in electrostatics

problems. His other work in [25] provides a survey and reference list for other

physical inspired methods, most importantly, the seminal work of Jacquet [13] where

he finds analogies between flow paths in a network with varying density to paths of

rays of light in an inhomogeneous medium. In [4], Altman considers a network with

directional antennae and uses traffic engineering concepts in order to find optimal

traffic paths. A comprehensive survey of routing methods in wireless sensor networks

is provided in [3, 1, 2]. A recent work by Jung et al. [14, 15] proposes applying a

Finite Element Method (FEM) to solve the Poisson equation, however it is unclear

5

how FEM can be applied in a random setting where the nodes are not aware of their

positions and distances with respect to each other.

1.1 Notations and Definitions

Random variables (rv’s) are denoted by boldface, and vectors are designated

by an arrow. We assume that the network is distributed in a closed, bounded

and connected region A ⊂ R2 and denote the boundary of this region by ∂A. A

position vector is denoted by ~r = [x, y] in Cartesian coordination system, and by

~r = (r, φ) in a polar system. The gradient of a scalar valued function u(~r) is

∇u(~r) = ∂
∂x
u(~r)x̂ + ∂

∂y
u(~r)ŷ, where x̂ and ŷ are the unit vectors of the Cartesian

coordinates along the x and y axes respectively. The divergence and curl of a vector

field ~D(~r) = Dx(~r)x̂ + Dy(~r)ŷ are ∇ · ~D(~r) = ∂
∂x
Dx(~r) + ∂

∂y
Dy(~r) and ∇× ~D(~r) =(

− ∂
∂y
Dx(~r) + ∂

∂x
Dy(~r)

)
ẑ, respectively, where ẑ = x̂ × ŷ represents the unit vector

in direction of z axis.

1.2 Background on Information Flow Vector Field

In this section we review the previous works on flow optimization in dense

wireless networks [18, 17, 19]. Typically in a wireless network, the source and

destination of traffic are not in communication range of each other, thus the traffic

should be relayed through intermediate nodes in order to reach the destination.

Figure 1.1(a) depicts an example of a multi-hop path. As the number of nodes grows

large and the communication range of the nodes get smaller, the path approaches

6

(a) (b)

Figure 1.1: When the source and destination nodes are not in communication range,
traffic is relayed through multi-hop path. As the number of nodes in the path gets
large, this path approaches to a smooth curve.

to a smooth curve that connects the source to destination. This is depicted in figure

1.1(b). At each point, ~r, on the curve a tangent vector ~D is defined, such that its

magnitude is proportional to the amount of traffic and its direction specifies the

direction in which the traffic is relayed by a node at point ~r, with infinitesimally

small communication range. As the density of nodes approaches infinity, ~D (which

hereafter we call information flow vector field), becomes defined not only at the

locations of the nodes, but over the entire domain of the network A. The network

in this situation becomes a continuum of nodes which provides a medium that passes

the flow form sources to destinations through infinitesimal small hops. Let C be a

closed curve in A, n̂ denote the unit normal vector at each point on the curve and

d` denote an element of the curve, then based on the definition of information flow

vector field,
∮
C
~D · n̂d` is the total flow (in bps) that passes through C.

Let ρ : A → R model the spatial density of information sources that generate

the flow at each point of the network, i.e., at point ~r, ρ(~r) (bps/m2) of traffic is

generated. If ρ(~r) > 0, flow is being injected in the network, whereas ρ(~r) < 0

7

means there is a sink at point ~r. Let S be in A and ds be a surface element of S,

then
∫
S ρ(~r)ds is the total amount of flow generated in (or depending on the sign,

taken out of) the network by the nodes in area S. The definitions of information

flow vector field ~D and the source term ρ is not complete unless we assume a relation

between the two.

Assumption 1.1. Information flow is conserved in the network.

It follows from assumption 1.1 that
∮
∂S
~D · n̂d` =

∫
S ρ(~r)ds, for every S ⊆ A.

However, since
∫
S
∇ · ~Dds =

∫
∂S
~D · n̂dl (divergence theorem), it follows that

∫
S

∇ · ~Dds =

∫
S
ρ(~r)ds

is true for every S ⊆ A which leads to

∇ · ~D(~r) = ρ(~r) ~r ∈ A (1.1)

Assumption 1.2. The information flow vector field has no normal component at

the boundary of A.

A non-zero normal component on the boundary, means that a node on the

boundary is trying to forward flow to outside the network, where there are no nodes

available. By assumption 1.2 we limit ~D to be such that all the traffic is contained

in the network region A. Thus we have

~D(~r) · n̂ = 0 ~r ∈ ∂A (1.2)

8

where n̂ is the unit normal vector on the boundary, ∂A. Equation (1.1) and (1.2) do

not define ~D uniquely, which opens room for finding a flow that optimizes a suitable

cost function. In previous works [18, 17, 19], vector fields that optimize a quadratic

cost function of the form

J(~D) =

∫
A
‖ ~D‖2ds (1.3)

were studied.

Lemma 1.1. A vector field ~D with ∇ · ~D = ρ and ~D(~r) · n̂ = 0 optimizes (1.3) if

and only if ∇× ~D = 0.

Proof. Let ~D be a general vector field with ∇ · ~D = ρ and ~D · n̂ = 0. By Helmholtz

decomposition, for every vector field ~D with smooth enough derivatives (which we

assume ~D satisfies), we can write ~D = ~G + ~F , with ~G = −∇u, ∇ · ~F = 0 and

~F · n̂ = 0 on the boundary 1. Using integration by parts we derive that ~G and ~F

are orthogonal,

∫
A

~G · ~Fds = −
∫
A
∇u · ~Fds

= −
∫
∂A
u~F · n̂dl +

∫
A
u∇ · ~Fds

= 0

1 ~G captures the irrotational component of ~D, whereas ~F captures the rotational part. ~G is

simply found by solving ∇2u(~r) = −ρ(~r), ~r ∈ A, ∇u(~r) ·n̂ = 0, ~r ∈ ∂A. Furthermore, ~F = ~D+∇u.

9

now we have

J(~D) =

∫
A
‖~G‖2ds+

∫
A
‖~F‖2ds+ 2

∫
A

~G · ~Fds

=

∫
A
‖~G‖2ds+

∫
A
‖~F‖2ds

≥ J(~G) (1.4)

with equality if and only if ~F ≡ 0. Thus a vector is minimizes J if and only if

~D = −∇u or ∇× ~D = 0.

Lemma 1.1 enables us to write (1.1) and in the form

∇ · ∇u(~r) = −ρ(~r) ~r ∈ A

∇u(~r) · n̂ = 0 ~r ∈ ∂A

or

∇2u(~r) = −ρ(~r) ~r ∈ A (1.5)

∂u(~r)

∂n
= 0 ~r ∈ ∂A (1.6)

which is the Poisson PDE with Neumann boundary condition. Due to its similarity

with the electric potential function in electrostatics, we refer to u as the potential

function.

Remark. From (1.1) and (1.2) we have∫
A
ρds =

∫
A
∇ · ~Dds

=

∫
∂A

~D · n̂d` = 0 (1.7)

i.e., there rate at which the sources generated traffic should be equal to the rate at

which the sinks gather it.

10

Remark. Equation (1.5) in conjunction with (1.6) expresses a problem with a unique

solution up to a constant; i.e., if u is a solution then u + c, c being a constant, is

also a solution. However this issue does not pose a problem for finding optimal

information flow vector field, ~D = −∇u, since regardless of c, the flow paths will

remain the same, as ∇(u+ c) = ∇u.

11

Chapter 2

Distributed Solution for Optimizing the Quadratic Cost Function in

Continuous Space

In the previous chapter we derived the PDE and boundary condition governing

the optimal information flow for quadratic cost function J(~D), and showed that the

flow is written in terms of the gradient of the potential function. This implies

that having the potentials calculated, the nodes simply forward the flow along the

direction of steepest decent of potential (neighbor node with smallest potential).

This packet routing scheme results in flow paths in the network that implement the

continuous domain information flow vector field in the discrete setting of the real

network.

In this chapter, we will provide a distributed method to calculate the potential

function u numerically at the locations of the nodes, where the nodes are distributed

randomly and independently, with uniform distribution over the network area A.

Our proposed distributed method has three properties: first, it is iterative, and in

each iteration a node updates its own potential (u) only based on the potentials

of its neighboring nodes. Second, since the computational power of the nodes is

assumed to be small, the iterations should be simple, which in case of our proposed

method they are. Third, since the nodes are deployed massively, it is desirable that

the nodes be homogeneous, i.e., they all perform the same iterations regardless of

12

their location in the network (e.g., nodes close to the boundary and nodes in the

interior).

2.1 Distributed Solution to Poisson PDE on a Uniform Grid

In this section, we focus on solving the Poisson PDE with Neumann boundary

conditions, when the nodes are positioned on a uniform grid. We will extend this

special case to a more general random setting in the next section.

Figure 2.1: Nodes 0 . . . 4 are placed on a grid. The potential of the nodes is calculated
by (2.5).

A simple method to solve an elliptic PDEs numerically is finite difference

method, where in its simplest form, the region A is divided by a well defined uniform

grid with spacing h. As depicted in Fig. 2.1, let us assume that a node is placed

at each grid point. The second partial derivatives of u with respect to x and y are

approximated by the following finite differences:

∂2

∂x2
u(x0, y0) '

u(x0 − h, y0)− 2u(x0, y0) + u(x0 + h, y0)

h2
(2.1)

∂2

∂y2
u(x0, y0) '

u(x0, y0 − h)− 2u(x0, y0) + u(x0, y0 + h)

h2
(2.2)

13

Note that x0 + h = x1 and x0 − h = x3. Substituting these approximates in

the Poisson equation ∂2

∂x2
u+ ∂2

∂y2
u = −ρ we get

4u(x0, y0)−
(
u(x1, y1) + u(x2, y2) + u(x3, y3) + u(x4, y4)

)
= h2ρ(x0, y0) (2.3)

Applying the Neumann boundary conditions in this simple scenario is also

very straightforward [12]. Assuming node 0 is on a boundary parallel to the y-axis,

node 1 becomes an imaginary node and the boundary condition ∂u
∂n

= 0 adds the

constraint ∂u
∂x

= u(x1,y1)−u(x3,y3)
h

= 0, or u(x1, y1) = u(x3, y3).

This procedure can be repeated for all of the nodes in the interior of the

network and on the boundary to get an equation for each node potential. By giving

an index to each of the nodes, these equations can be written in matrix form:

AU = h2P (2.4)

Here, U and P are vectors containing the potential and traffic activity of all of the

nodes in the network arranged by their index. A is a matrix with block structure

and it contains the 4 and −1 coefficients corresponding to each equation.

This matrix equation can be solved with well known fast and efficient methods

based on Conjugate Gradient (CG), however we use the Jacobi method, since it

directly lends itself to a distributed solution. As a first step, we rearrange (2.3) to

get

u(x0, y0) '
1

4

(
u(x1, y1) + u(x2, y2) + u(x3, y3) + u(x4, y4)

)
+
h2

4
ρ(x0, y0) (2.5)

14

Assuming (k) denotes the kth iteration, the Jacobi method for solving (2.5)

involves iterations of the form

u(x0, y0)
(k+1) ' 1

4

(
u(x1, y1)

(k) + u(x2, y2)
(k) + u(x3, y3)

(k) + u(x4, y4)
(k)

)
+
h2

4
ρ(x0, y0) (2.6)

i.e., each node should iteratively approximate its potential by averaging the po-

tentials of its neighbors and adding a bias proportional to ρ. The approximation

improves by increasing the number of iterations. The convergence of the Jacobi

method for an FDM mesh is proved in [23].

2.2 Solution for a Randomly Distributed Network with Uniform Dis-
tribution

While the FDM method discussed in the previous section is distributed, it

can not be used in our problem, since the nodes are distributed randomly, not on

a grid. We extend this method to deal with a random node deployment, where

nodes are distributed uniformly and independently through the region A. By the

assumption of uniform distribution, the probability that a node position z falls in

region B is P(z ∈ B) = |B|
|A| . The independence assumption yields to P(∩Ni=1zi ∈

Bi) = ΠN
i=1P(zi ∈ Bi).

In the first step we generalize (2.5) for the case that the nodes are uniformly

(with equal space) placed on a circle with radius r.

Lemma 2.1. Let u be the solution of (1.5), then the value of u at each point is

15

Figure 2.2: Nodes 1 · · ·N are arranged on a circular pattern. This configuration
will be used as a starting point for the situation where the nodes are randomly
distributed in the region A with uniform distribution.

the average of u around a circle plus a bias proportional to ρ at that point, i.e., the

value of u at ~r0 is

u(~r0) '
∫ 2π

0

u(r, φ)
1

2π
dφ+

r2

4
ρ(~r0) (2.7)

Proof. Assume node 0 is at position ~r0, and nodes 1 . . . N are positioned with uni-

form spacing around a circle with center at ~r0 and radius r. Thus, the nodes di-

vide the circle to arcs of length 2π
N
r. Assume the center of a polar coordinate

system is placed at ~r0 and the polar axis is parallel to the x axis. The positions of

nodes 1, . . . , N in Cartesian and polar coordinates are ~ri = ~r0 + r(cosφi, sinφi) and

~ri = (r, φi), respectively, where φi = 2π
N

(i−1). This configuration is depicted in Fig.

2.2.

In Cartesian coordinates, using Taylor’s expansion for u and keeping up to

16

second order terms, we have

u(~ri) ' u(~r0) + (~ri − ~r0)T∇u(~r0)

+
1

2
(~ri − ~r0)TH(~r0)(~ri − ~r0) (2.8)

where H(~r0) is the Hessian matrix of u at position ~r0. Substituting ~ri − ~r0 by

r(cosφi, sinφi) in (2.8) yields

u(~ri) 'u(~r0) + r

[
cosφi sini

]∂u∂x
∂u
∂y



+
1

2
r2
[
cosφi sini

] ∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂y

∂2u
∂y2


cosφi

sini


or

u(~ri) ' u(~r0) + r

(
∂

∂x
u(~r0) cosφi +

∂

∂y
u(~r0) sinφi

)
+

1

2
r2
(
∂2

∂x2
u(~r0) cos2 φi + 2

∂2

∂x∂y
u(~r0) sinφi cosφi

+
∂2

∂y2
u(~r0) sin2 φi

)
(2.9)

We sum u(~ri) over i = 1, . . . , N and use identities

N∑
i=1

cosφi =
N∑
i=1

sinφi = 0 (2.10)

N∑
i=1

cos2 φi =
N∑
i=1

sin2 φi =
N

2
(2.11)

N∑
i=1

cosφi sinφi = 0 (2.12)

which results in:

N∑
i=1

u(~ri) ' Nu(~r0) +N
r2

4

(
∂2

∂x2
u(~r0) +

∂2

∂y2
u(~r0)

)
(2.13)

17

But ∂2

∂x2
u(~r0) + ∂2

∂y2
u(~r0) = −ρ(~r0), thus we have

u(~r0) '
1

N

N∑
i=1

u(~ri) +
r2

4
ρ(~r0) (2.14)

Let N ↑ ∞, the Riemann sum converges to an integral, thus equation (2.14) would

approach

u(~r0) '
∫ 2π

0

u(r, φ)
1

2π
dφ+

r2

4
ρ(~r0) (2.15)

In this equation u(r, φ) is the value of u at (r, φ) in polar coordinates.

Up to here we have assumed that the nodes 1, . . . , N were distributed deter-

ministically around node 0 on a circle. Now assume that all of the nodes in the

network are distributed uniformly and independently in the area A and that the

communication range of each node is R. Furthermore, assume that node 0 is lo-

cated at ~r0 inside the network far from the boundary (with distance more than R)

and it has M + 1 neighbors in its communication range. These neighboring nodes

are located at (r,Φ) and (ri,Φi) i = 1, . . . ,M . It is easy to show that random

variables r, ri, Φ and Φi are independent for i = 1, . . . ,M . Furthermore, Φ and

Φi i = 1, . . . ,M are uniformly distributed in the interval [0, 2π), therefore, they

are i.i.d. The random variables r, ri i = 1, . . . ,M are also i.i.d. Let gR(r) denote

the distribution of r. Since all of the neighboring nodes are in the communication

range, gR(r) is zero for r > R. The nodes are distributed uniformly, thus

PR(r ≤ r|r ≤ R) =
πr2

πR2
r ≤ R

thus

gR(r) = 2
r

R2
r ≤ R (2.16)

18

and

gR(r) = 0 r > R (2.17)

Lemma 2.2. Let the nodes be distributed uniformly and independently in region A.

Furthermore, let u be the solution of (1.5), then the value of u at each point, with

distance R or more from the boundary, is the average of the value of u for the nodes

in the communication range plus a constant bias proportional to the value of ρ at

that point.

Proof. Using (2.15), we will evaluate E[u(r,Φ)] (E[x] denotes mathematical expec-

tation of random variable x):

E[u(r,Φ)] =

∫ R

0

∫ 2π

0

u(r, φ)
gR(r)

2π
drdφ

=

∫ R

0

gR(r)dr

∫ 2π

0

u(r, φ)
1

2π
dφ

=

∫ R

0

(
u(~r0)−

r2

4
ρ(~r0)

)
gR(r)dr

= u(~r0)−
E[r2]

4
ρ(~r0) (2.18)

where we have used the fact that
∫ R
0
gR(r)dr = 1 and

∫ R
0
r2gR(r)dr = E[r2]. On the

other hand, note that since (ri,Φi) forms an i.i.d sequence, by strong law of large

numbers we have

1

M

M∑
i=1

u(ri,Φi)
a.s.−−→ E[u(r,Φ)] M ↑ ∞ (2.19)

19

For large M we can write:

u(~r0) '
1

M

M∑
i=1

u(ri,Φi) +
E[r2]

4
ρ(~r0) (2.20)

where from (2.16), E[r2] = R2

4
. Equation (2.20) states that a node located at ~r0 can

estimate its potential simply by averaging the potentials of its neighboring nodes

and adding a bias proportional to ρ(~r0). Like (2.5), after several iterations, this

estimation become more accurate.

Equation (2.20) is well suited for distributed calculation of potential function u,

since each node estimates its potential only based on the potential of its neighboring

nodes. Each node in the network broadcasts its potential to its neighbors, and

collects the potentials received from them.

2.3 Boundary Conditions

In the derivation of (2.20), we had two important assumptions: First, Φ is

uniformly distributed over [0, 2π), and second r and Φ are independent. Due to

symmetry of the uniform node distribution, these conditions are satisfied when node

0 is far from the boundary or if the node is exactly on the boundary. However, when

the distance of node 0 form the boundary is less than R (the communication range)

these assumptions do not hold. We call these nodes boundary nodes.

For the nodes exactly on the boundary, imposing Neumann boundary condition

on these nodes should proceed along lines similar to those of the uniform grid case.

Let us assume the boundary is smooth enough so its curvature at every point is much

larger than R, thus every part of the boundary with length 2R can be approximated

20

Figure 2.3: Image nodes on the boundary of region A.

by a straight line, as depicted in figure 2.3. We rewrite Lemma 2.1 to deal with the

situation that a node is on the boundary. We have arbitrarily assigned a Cartesian

axes, where x is perpendicular to the boundary. In this figure, node 0 is located at ~r0,

and nodes 1, . . . ,M are inside the network, near the boundary. Nodes (2), . . . , (M−

1) are image nodes with respect to the boundary, with their potentials denoted by

u(i).

Note that

u(M−i+1) − ui
2R

' ∇u · (cosφ(M−i+1), sinφ(M−i+1)) (2.21)

Due to symmetry with respect to ~r0 we have

M−1∑
i=2

u(M−i+1) − ui
2R

' ∇u · (
M−1∑
i=2

cosφ(i),
M−1∑
i=2

sinφ(i))

' c
∂u

∂x
(2.22)

21

with c > 0. The Neumann boundary condition for point ~r0 imposes that ∂u
∂x

= 0

which yields to

M−1∑
i=2

u(i) =
M−1∑
i=2

ui (2.23)

A sufficient condition for this to hold is u(i) = ui for i = 2, . . . ,M − 1, i.e., the

potential of image node (i) should be equal to that of node i. Following the steps

we took to prove Lemma 2.1, we have

u(~r0) '
1

M

(
u1 + uM +

M−1∑
i=2

(
ui + u(i)

))
+
r2

4
ρ(~r0) (2.24)

=
1

M

(
u1 + uM +

M−1∑
i=2

2ui

)
+
r2

4
ρ(~r0) (2.25)

Similar to the previous case, as M grows large u1+uM
M

→ 0 and Riemann sum

converges to an integral

u(~r0) '
∫ π

2

−π
2

u(r, φ)
1

π
dφ+

r2

4
ρ(~r0) (2.26)

Assume the nodes distributed uniformly, and node 0 has M + 1 neighbors

in its communication range. These neighboring nodes are located at (r,Φ) and

(ri,Φi), i = 1, . . . ,M . Due to symmetry, random variables r, ri, Φ and Φi are

independent for i = 1, . . . ,M , as in the previous case. However, Φ and Φi i =

1, . . . ,M are uniformly distributed in the interval [−π
2
, π
2
). The random variables r,

ri i = 1, . . . ,M are also i.i.d. Following the steps taken to prove Lemma 2.2 and

by using (2.26), we can show that for a node exactly on the boundary the value of

22

u, is the average of the value of u for nodes in communication range plus a constant

bias.

So far we have shown that the averaging technique works for estimating the

potential value both for nodes that are in the interior of the network and for the

nodes on the boundary. In order to use the scheme for all nodes, the remaining

work is to extend the method for the nodes that are not on exactly on the boundary

nor in the interior of the network. We refer to these nodes to semi-boundary nodes.

The distance of semi-boundary nodes from the boundary is nonzero but it is smaller

than R. Unfortunately, using the image technique (as presented for the boundary

nodes) will not help to generalize the averaging technique to semi-boundary nodes

due to lack of symmetry in the geometrical properties of the image nodes. One useful

fact is that the potential function is generally continuous. Note that the potential

function varies continuously (and often smoothly) while transitioning from boundary

nodes to the interior of the network. This fact helps use the conjecture that since

the averaging technique works for boundary nodes and interior nodes, therefore, it

must work for the nodes in between; hence averaging technique can be used for

semi-boundary nodes. We have verified validity of this conjecture through some

numerical examples discussed in the next chapter.

In the random node distribution the density of the nodes should be high enough

for two reasons: First increasing the node density increases the number of neighbors

in the communication range of each node, which would increase the accuracy of the

ML estimator, as suggested by (2.19), and second, the density of nodes should be

high enough to guaranty connectivity of the network and implementability of the

23

information flow lines. In [11] it is shown that if the total traffic in the network is θ

bps, density of the nodes should be O
(
θ2logθ

)
in order to guarantee these conditions.

24

Chapter 3

Simulation Results

In this chapter we present two examples to test the proposed algorithm for

approximating potential function.

Example 3.1. In the first example, we scattered 1000 nodes in a unit square. The

communication range of each node is 0.1. A single source is located at (0.1, 0.5)

and a sink is placed at (0.9, 0.5). Other nodes act as relays to pass the traffic from

source to sink. In order to compute the potential function u, each node first finds

the neighboring nodes in its communication range and then uses (2.20) to calculate

its potential. This process is carried on for 10000 iterations to increase the accuracy

of the potential. Note that after much smaller number of iterations the information

flow paths converge and remain almost unchanged.

Figure 3.1 depicts the placement of the nodes. The nodes are distributed

uniformly and independently in the area A = (0 1) × (0 1). Figure 3.2 depicts

the calculated potential, where the potential is interpolated on a grid and then

plotted. Figure 3.3 shows the potential function when calculated by MATLAB ®

function assempde, where the potentials are calculated by finite element method on

a mesh. It is observable that the two graph follow the same pattern: a peak at the

source and a smooth slope to the sink. Note that the source causes the potential of

neighboring nodes to increase while the sink causes this potential to decrease. After

25

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1: The position of nodes in the simulated network. The nodes are dis-
tributed uniformly and independently in area A = (0 1)× (0 1).

calculating the potentials, when a node needs to forward a packet, it searches among

its neighbors and sends its packet to the nearest neighbor with least potential. The

slope from source to sink in the potential function guarantees that the packets will

be delivered to the sink.

Example 3.2. In this example we derive information flow lines from the potential

function and use it for routing packets from a source to a sink. We simulated a

network placed on a uniform grid using the method presented earlier in equation

(2.5). The nodes are placed on a uniform grid so that the similarity of the flow

lines with the electric fields in an electrostatic setting is presented clearly. In the

source, a Poisson process generates approximately 12000 packets within 20000 of

simulation cycles. The calculated potential (by Jacobi method) is used to route the

packets from the source to the sink in the direction of the decent of the potential.

In order to utilize all of the nodes in the network and avoid energy depletion in the

nodes residing on a flow path, each node passes traffic with the highest probability

26

0
0.2

0.4
0.6

0.8
1 0

0.5

1−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.2: The computed potentials after 10000 Jacobi iterations (2.20). Note that
the Neumann boundary condition is implicitly applied by using (2.20) for all nodes
regardless of their location.

to a neighbor with minimum potential, but also passes traffic to other neighbors

at lower potential with less probability (the probability is proportional to potential

difference between the sender and the receiver). In order to compute the traffic

flow, we assumed that transmission of a packet from a node to another neighboring

node accounts for 1 unit of traffic moving in direction of a vector starting from the

sending node and ending to the receiving node. The resulted vector is accumulated

over the simulation period and then normalized. Figure 3.4 depicts the traffic flow

in the vicinity of the source and sink.

Figure 3.5 shows the traffic near the boundary. We can observe that the flow

27

0
10

20
30

40
50 0

20

40

60−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.3: The potential computed using MATLAB assempde function.

28

5 10 15 20 25 30 35 40 45

10

15

20

25

30

35

40

Figure 3.4: The flow of traffic from source to sink. The source generates 12000
packets in 20000 simulation cycles. Similarity of the flow lines with the electric
fields in an electrostatic setting is due to the fact that in both settings a Poisson
PDE is solved in the domain.

29

10 12 14 16 18 20 22

−2

0

2

4

6

8

Figure 3.5: The traffic near the boundary of the network. The flow lines are ap-
proximately parallel to the boundary.

is approximately parallel to the boundary which is required by Neumann boundary
condition.

Let us assume that each transmission causes 1 unit of energy to be consumed

in the transmitting node. Figure 3.6 depicts the energy consumption of the network

over the period of simulation. It can be seen that the energy consumption is higher

in the nodes near the source and the sink. Thus these nodes require higher initial

energy, or the density of the nodes near the source and the sink should be higher.

30

0

10

20

30

40

50

0

20

40

60

0

500

1000

1500

2000

2500

3000

Figure 3.6: Energy consumption in the nodes during the simulation.

31

Chapter 4

Network Model in Discrete Space

Balancing traffic load within a network has been studied extensively. It is well

known that assigning flow along the shortest path causes congestion in bottleneck

links, while other links are not utilized properly[6]. In order to avoid congestion,

some methods assign multiple paths from sources to destinations[9, 21]. The effect of

multipath routing on load balancing have been studied previously, where it is shown

that while in a wired network using multipath routing is beneficial, in a wireless

setting it has negligible effect on load balancing and congestion, unless the number

of paths is very large[10]. This has an important consequence since load balancing

and congestion control are key factors that determine quality of service and delay.

In this chapter we study the problem of flow assignment in a general frame-

work. We apply convex optimization techniques and present a distributed algorithm

to assign flows to the links such that a convex cost function, namely the p-norm of

network flow, is optimized. This optimization results in the most balanced network

flow allocation. Furthermore, in a network with a given configuration and channel

capacities, we show that if it is feasible to route the traffic of a set of sources to

the sinks without congestion, then the proposed flow assignment policy achieves it.

The distributed nature of the proposed method is an important factor that makes

it suitable for practical networks. We study the convergence rate of the proposed

32

method, introduce a method based on least squared error estimation to increases the

convergence rate and compare it with other well-known techniques for accelerating

distributed iterations. This is particularly important in battery powered wireless

networks where the energy cost of communication is high.

A Wireless Sensor Network (WSN) [28] is an example of a network that both

load balancing and reducing the energy cost overhead of routing have direct effect

on the lifespan of the network. In these networks, the nodes gather environmental

information and relay the information back to a single or multiple data collection

units for further processing. Since usually the sinks are outside of the communication

range of the sources, the traffic should be relayed through other nodes that are closer

to sinks. The wireless devices are usually battery powered, thus large traffic load on

a specific path depletes the batteries of the nodes on that path, which reduces the

reliability and lifespan of the network.

In our network model, we assume that multiple nodes are connected by com-

munication links with different capacities, and a set of sources generate a single

commodity traffic that should be routed to a set of sinks (i.e., there is no priority

or distinction between the sinks). Furthermore, we assume flow conservation law

holds, i.e., the outgoing traffic form a node is equal to the sum of incoming traffic

and traffic generated at the node. The network is represented by a graph, where a

vertex models a node and a weighted edge models the links. The weight of an edge

designates the link capacity. We employ the Sequential Quadratic Programming

(SQP) method and propose a distributed method to allocate the flows on the links,

such that a specific function is minimized. SQP reduces the minimization problem

33

to iterations of constrained quadratic programming and is known for stability and

fast convergence[5]. The quadratic programming problem results in a set of linear

equations, that are solved through distributed methods. After several iterations in

which only neighboring nodes are involved, an approximation of the global optimal

flow is achieved. This scheme can be used to find distributed methods to optimize

any general separable convex cost function; however, in this work we apply it to the

p-norm cost function. In the case of p = 2, the optimum flow resembles the current

flow that passes through an electric network. As p grows large, the flow generated

by the sources is redistributed more evenly in the network, and as p ↑ ∞ the optimal

flow approaches to the solution of the minimax problem.

A drawback of this method is that the linear equations resulted from SQP

are solved using Jacobi method[23], which is known to converge slowly to the final

optimal solution. Large number of iterations result in unacceptable routing overhead

an energy consumption. However, we show that the Jacobi method converges to the

final solution with a time constant that is proportional to the eigenvalues of a specific

matrix. This matrix has a dominant eigenvalue that can be estimated from a small

number of observations based on non-linear Least Squared Error estimation method.

4.1 Network Model

A single commodity network is modeled by a directed graph G(V,E, c), where

the set of vertices, V , models the nodes, the set of edges, E ⊆ V × V , models the

communication links and a weight function, c : E → R+, represents the channel

34

capacities of the links. We are assuming that the graph G has no self-loops1 and

it has at most one edge between every pair of nodes. Let |V | = n and |E| = m,

i.e., the network is composed of n nodes and m links. Since G is assumed to be

connected, we have m ≥ n− 1. We denote a link that starts from node vi and ends

to vj by (vi, vj). We define a function I : E → {1, 2, . . . ,m} that assigns a unique

index to each link. Furthermore, for each link we define a real valued flow that

models the network traffic on the link, and denote the flow on a link with index k

by fk. Note that the links are assumed to be able to pass the flow in both directions;

the direction of an edge is merely used as a reference for the direction of the flow.

For link k, if fk > 0 then the traffic flow is along the direction of the edge, whereas

fk < 0 means that the traffic flows in the opposite direction of the edge.

The traffic generated in the network is collected by a set of special nodes,

namely, sinks. Let us denote the set of all sinks by D. The set of other nodes

that are not collecting traffic is denoted by S = V \D, with |S| = s. Furthermore,

without loss of generality, let us assume S = {v1, . . . , vs}. For each node vi ∈ S we

define a non-negative value bi that represents the amount of traffic that is injected

into the network by that node. Notice that bi = 0 indicates that vi is not injecting

any traffic into the network, thus vi only contributes in relaying the traffic of other

sources to the sinks.

In our network model, we assume that flow is conserved, i.e., the outgoing

traffic flow from a node is equal to the sum of incoming traffic from other nodes and

1A self-loop is an edge between a node and itself.

35

the traffic generated by the node itself. Thus for every node vi ∈ S we have

∑
(vi,vj)∈E

fI(vi,vj) −
∑

(vj ,vi)∈E

fI(vj ,vi) = bi ∀ vi ∈ S (4.1)

Using the definition of the incidence matrix of graph G, we rewrite this system

of s linear equations in matrix form. Recall that the incidence matrix, K̂ (an n×m

matrix), of a directed graph is defined as

K̂i,k =


1 ∃vj ∈ V s.t. I(vi, vj) = k

−1 ∃vj ∈ V s.t. I(vj, vi) = k

0 o.w.

(4.2)

In a general graph, K̂f = b̂ expresses the flow conservation in the network,

where b̂ = [b1, . . . , bn] is the source vector for all n nodes. However, in the network,

there are sink (destination) nodes, such that they can gather all of the flow they

receive from their incoming links. In our problem there are |D| sinks that gather

the flow, thus |D| of flow equations expressed by K̂f = b̂ corresponding to the sink

nodes are redundant.

Let us eliminate the rows of K̂ that correspond to sink nodes (rows s+1, . . . , n)

and denote the resulting s×m matrix by K, which is a matrix with rank s. Then

the flow conservation equations are written as

Kf = b (4.3)

where f = [f1, . . . , fm]T is the flow vector and b = [b1, . . . , bs]
T is the source vector

for nodes in S.

36

4.2 The Minimax Network Flow Optimiaztion

Except for trivial networks2, equation (4.3) does not define the flow f uniquely.

This opens a room to find an optimum flow that minimizes a suitable cost function.

Let us denote the set of all f ’s that satisfy (4.3) by F(b). Furthermore, let us denote

the set of all feasible source vectors, b, by B. A feasible source vector, b, is one

which has the property that at least there exists one flow vector f ∈ F(b) such that

it satisfies the channel capacity constraints |fk| ≤ ck, k = 1, . . . ,m, where ck is the

channel capacity of kth link. In our previous works[16, 29], we defined the p-norm

cost function, Jp, and proposed a method to find its unique solution to (4.3) by

solving the following convex optimization problem

minimize
f∈Rm

Jp(f) =
m∑
k=1

(
|fk|
ck

)p
subject to Kf = b.

(4.4)

As p ↑ ∞, the unique solution of optimization problem (4.4) approaches to one of

the solutions of the minimax flow optimization

minimize
f∈Rm

max{|fk|
ck
, k = 1 · · ·m}

subject to Kf = b.

(4.5)

Let us denote the solution of (4.4) by f (p)∗ and a solution of (4.5) by f (∞)∗. We

proved that the solution of problem (4.5) has the following properties.

Lemma 4.1. If ∃k ∈ {1 · · ·m} s.t. |f (∞)∗
k | > ck, then ∀f ∈ F(b), ∃` ∈ {1 · · ·m}

s.t. |f`| > c`.

2An example is a network with one sink, with m = n − 1 which makes its graph form a tree.

In this case K becomes an (n− 1)× (n− 1) square matrix.

37

Lemma 4.1 states that if a source vector is infeasible for the minimax problem

(i.e., there exists a link such that the optimal minimax flow exceeds the capacity of

the link), then it is also infeasible for every other flow allocation methods. Thus the

minimax flow assignment policy results in the largest set of feasible source vectors,

with its feasible set equal to B.

Proof. If ∃k ∈ {1 · · ·m} s.t. |f (∞)∗
k | > ck, then maxl∈{1···m}

|f (∞)∗
l |
cl

> 1. Since f (∞)∗

solves the minimax problem, for all f ∈ F(b) we have

1 < max
l∈{1···m}

|f (∞)∗
l |
cl

≤ max
l∈{1···m}

|fl|
cl

(4.6)

Lemma 4.2. If f (∞)∗ solves the minimax problem (4.5), then it also solves the

following problem:

maximize
f∈Rm

min{1− |fk|
ck
, k = 1 · · ·m}

subject to Kf = b

(4.7)

Lemma 4.2 states the load balancing property of minimax flow allocation pol-

icy. In f (∞)∗ the traffic flow is distributed such that congestion (which results in

packet loss) is avoided in every link as much as possible. Its proof is simply derived

from lemma 4.1.

Geometrical interpretation of the p-norm optimization problem (4.4) and min-

imax optimization problem (4.5) is interesting. Assuming fk’s as independent vari-

ables, Kf = b defines a hyperplane in an m-dimensional space. Let yk = fk
ck

, then

for p = 2 the contours of ‖y‖p define m-dimensional ellipsoids. As p ↑ ∞ the con-

tours gradually deform into hyperrectangles. The optimization problem is finding

38

the smallest contour that touches the Kf = b hyperplane. The rectangular con-

tours of ‖y‖∞ do not define a smooth surface, whereas those of ‖y‖p are smooth,

thus approaching the minimax optimization problem as the limiting case of p-norm

optimization enables us to employ multivariate calculus and optimization methods

for differentiable functions, such as SQP.

Our proposed method to find a distributed solution to (4.5) involves iterations

of solving (4.4), where in each iteration p is increased until a stopping criterion

is met. In the SQP method, a quadratic approximation of the cost function is

calculated around an operating point. Based on the quadratic approximation, a

steepest decent direction is calculated and the operating point is updated. Let

f ∈ F(b) be an initial operating point and e be a perturbation around f . For p even

we have

Jp(f + e) = Jp(f) + eTh +
1

2
eTQe (4.8)

where h and Q are the gradient vector and Hessian matrix of Jp at operating point

f , respectively. Notice that both f and e should satisfy the flow conservation law,

thus Ke = 0. The Lagrange function is defined by

L(e) = Jp(f) + eTh +
1

2
eTQe− uTKe (4.9)

where u is a vector composed of Lagrange multipliers. Using the method of La-

grangian multipliers, the optimum direction of decent is calculated by setting∇eL =

0. We have

h + Qe−KTu = 0 (4.10)

39

which in conjunction with Ke = 0 yields to

KQ−1KTu = KQ−1h (4.11)

e = Q−1(KTu− h) (4.12)

Assuming Q is an m × m matrix with rank m, the s × s matrix KQ−1KT is full

rank and invertible since we have rank (KQ−1KT) = rank(K), and we know that K

is of rank s.

In the case of p-norm cost function Q, the Hessian matrix at operating point

f , is

Q = p(p− 1)



fp−21

fp−22 0

0
. . .

fp−2m


m×m

(4.13)

For h, the gradient vector, we have

h = p



fp−11

fp−12

...

fp−1m


m×m

(4.14)

thus, KQ−1h = 1
p−1b.

Remark. Since G is a connected graph, the rank of K̂ is n− 1[8]. This means that

eliminating one equation from n equation expressed by K̂f = b results in n − 1

linearly independent equations. Using rank-nullity theorem, the nullity of K̂ is

m− n+ 1, which is equal to the number of loops in the graph.

40

v1

v2 v3

v4

v5

v6

f1

f2

f3

f4 f5

f6 f7

e1

e2

Figure 4.1: The circular flows e1 and e2 form a basis for the nullspace of matrix K.
Every circular flow e in the nullspace of K is a linear combination these basis.

Remark. In the special case of a network with one sink, the nullspaces of K and K̂ are

equal. To show this, notice that nullspace(K) = (rowspace(K))⊥ and rowspace(K) =

rowspace(K̂), where ⊥ denotes the orthogonal complement of a subspace. A basis

for the nullspace of K is the set of all circular flows that pass through the loops of

the graph. As an example, figure 4.1 depicts a network with two loops. The circular

flows e1 = [0, 0, 0,−1,−1, 1, 1]T and e2 = [−1,−1,−1, 1, 1, 0, 0]T are basis for the

nullspace of K. Every circular flow e in the nullspace of K is a linear combination

of these basis. In this setting, starting from an initial flow (the operating point),

the SQP iterations find an optimal circular flow, given by (4.12), such that when

the circular flow is added to the initial operating point, the p-norm cost function

gets closer to its minimum.

Observe that the SQP steps are reduced to solving a system of linear equations

expressed by (4.11) and substituting its solution in (4.12). Thus we need to devise

a distributed yet computationally efficient method to compute u. The Conjugate

Gradient (CG) method is computationally efficient for solving (4.11), but it is not

suitable for distributed settings, since in each step the value of ui and bi for all of

41

the nodes is required, whereas in a distributed setting a node only has access to

those values for its neighbors. An alternative approach is the Jacobi method. Let3

L = KQ−1KT , z = 1
p−1b and B be a diagonal matrix with its diagonal elements

equal to that of L. The Jacobi method for solving Lu = z is

u(`+1) = (I−B−1L)u(`) + B−1z (4.15)

where u(`) is the approximate solution of Lu = z in the `th iteration and I is an

s× s identity matrix. It is easy to check that the matrix L is irreducibly diagonally

dominant. It is proved in [23] that under this condition, the Jacobi method for

solving Lu = z converges to the exact solution, regardless of the initial value for

u(1). Furthermore, It is straightforward to show that elements of the ith row of L

are non zero only for the neighbors of node ui. Since B is defined to be a diagonal

matrix, I − B−1L has the same property. This implies that a node vi updates

the value of ui simply by calculating a weighted average of uj’s of its neighboring

nodes and adds a bias proportional to bi. In each iteration only neighboring nodes

need to share their value of uj, hence the Jacobi method is directly applicable to

a distributed setting. However, the convergence rate of Jacobi method, especially

compared to that of CG method, is generally very slow.

3In graph theory literature L is referred to as the Laplacian matrix of a weighted graph, because

it approximates the Laplacian operator in discrete space.

42

4.3 Acceleration of Jacobi Iterations

In a network setting where the energy cost of node-to-node communication is

considerably larger than the energy cost of in-node computation (e.g. battery pow-

ered wireless sensor networks), it is desirable to devise a distributed algorithm that

is more based on in-node calculations rather than node-to-node communications.

There are standard approaches to increase the convergence rate of Jacobi method,

such as Gauss-Seidel (GS) method and Successive Over Relaxation (SOR)[23]. The

drawback of GS approach is that it requires a complex synchronization mechanism

in the network. The drawback of SOR is that it is excessively sensitive to network

configuration. We propose another approach that is based on Least Squared Error

(LSE) estimation.

Let us rewrite (4.15) in the following closed form 1

u(`+1)

 = W

 1

u(`)



= W`

 1

u(1)

 (4.16)

where

W =


1 01×s

B−1z I−B−1L

 (4.17)

The eigenvalues of W are λ1 > λ2 ≥ λ3 ≥ . . . ≥ λs+1, where λ1 = 1 and

λ2, . . . , λs+1 are the eigenvalues of I − B−1L. Since the Jacobi method is known

to converge in the case of an irreducibly diagonally dominant matrix, we also have

43

λ1 > |λ2| ≥ |λ3| ≥ . . . ≥ |λs+1|.

Let W = TΛT−1 be the eigenvalue decomposition of W. Furthermore, let

t1, . . . , ts+1 be the columns of T, t̂1, . . . , t̂s+1 be the rows of T−1, u(1) = 0s×1 and

x = [1, 0, 0, . . . , 0]T1×(s+1).

W`x =
s+1∑
i=1

λ`i〈t̂i,x〉ti

= 〈t̂1,x〉t1 +
s+1∑
i=2

λ`i〈t̂i,x〉ti (4.18)

≈ 〈t̂1,x〉t1 + λ`2〈t̂2,x〉t2 (4.19)

where 〈·, ·〉 denotes inner product. As ` grows large, the dominant eigenvalue, λ2,

determines the convergence rate of (4.18) and consequently the convergence rate of

(4.16) . Thus for a given node vi, as ` grows, u
(`)
i converges to its final value ui

exponentially, with a time constant proportional to λ2.

u
(`)
i ≈ ui + βλ`2 (4.20)

In our proposed method for accelerating the Jacobi iterations, a node such as vi

performs q Jacobi iterations, then based on the last r observed values u
(q)
i , u

(q−1)
i , . . . , u

(q−r+1)
i ,

it finds the least squared error estimates for ui, λ2 and β, it sets the value of u
(q+1)
i

equal to the estimated value for ui and then it resumes to normal Jacobi iterations.

This process is repeated until a stopping criterion is met. As suggested by equa-

tions (4.18) and (4.19), the value of q should be large enough so that in last r Jacobi

iterations the effect of eigenvalues λ3, . . . , λs+ 1 become negligible.

44

4.4 Numerical Examples

Example 4.1. In this example we will use the accelerated Jacobi method to find

optimal flow for J2. Figure 4.2 demonstrates a simple network consisting of two

sources, v1 and v2, where v1 injects 1 and v2 injects 2 units of traffic. Node v12 is the

sink. The channel capacity of all links are assumed to be equal. Figure 4.3 shows the

convergence rate of u
(`)
1 for different acceleration methods for optimization of J2. In

order to provide a benchmark we also included the CG method in the figure; however,

as mentioned earlier, CG is not a distributed method. The Jacobi algorithm requires

136 iterations to converge to u1 = 4.38 with error tolerance equal to 1%. For GS

and SOR acceleration methods, the number of iterations are 69 and 64 respectively.

For our proposed LSE acceleration method, only 22 iterations are sufficient for

convergence, which is considerably less than other distributed methods. We set the

parameters q and r equal to 20 and 4 respectively. Node v1 initially performs 20

Jacobi iterations in order to compute u
(1)
1 , . . . , u

(20)
1 . Then, based on observations

u
(17)
1 , . . . , u

(20)
1 , it computes the least squared error estimate of u1, β, and λ2, sets

u
(21)
1 equal to the estimated value for u1, then it resumes to Jacobi iterations. As

depicted in figure 4.4, the convergence rates of u
(`)
i show similar improvement.

45

p 2 4 6 8

f
(p)∗
1 0.124 0.076 0.037 0.023

f
(p)∗
2 0.384 0.454 0.480 0.488

f
(p)∗
3 0.441 0.470 0.483 0.489

f
(p)∗
4 0.260 0.454 0.480 0.481

f
(p)∗
5 0.107 0.870 0.818 0.797

f
(p)∗
6 0.800 0.752 0.740 0.738

f
(p)∗
7 0.057 0.216 0.238 0.243

f
(p)∗
8 0.538 0.693 0.722 0.732

f
(p)∗
9 0.480 0.686 0.721 0.732

f
(p)∗
10 -0.275 -0.615 -0.679 -0.703

f
(p)∗
11 1.335 1.485 1.497 1.500

f
(p)∗
12 1.522 1.515 1.503 1.500

f
(p)∗
13 0.793 0.747 0.749 0.750

f
(p)∗
14 0.633 0.738 0.748 0.750

f
(p)∗
15 0.721 0.754 0.751 0.750

f
(p)∗
16 0.851 0.762 0.752 0.750

f
(p)∗
17 -0.1604 -0.251 -0.251 -0.250

f
(p)∗
18 1.015 0.998 1.000 1.000

f
(p)∗
19 0.130 0.237 0.248 0.250

f
(p)∗
20 1.175 1.003 1.000 1.000

f
(p)∗
21 1.045 0.999 1.000 1.000

Table 4.1: Optimal p-norm flow for the network shown in Fig. 4.2.

46

v 1

v 2 v 3 v 4

v 5 v 6

v 7 v 8

v 9 v 1
0

v 1
1

v 1
2

f 1 f 2 f 3

f 4

f 5

f 6

f 7

f 8 f 9

f 1
0

f 1
1

f 1
2

f 1
3

f 1
4

f 1
5

f 1
6

f 1
7

f 1
8

f 1
9

f 2
0

f 2
1

b(
v 1

)
=

1

so
u
rc

e
1

b(
v 2

)
=

2

so
u
rc

e
2

si
n
k

F
ig

u
re

4.
2:

A
si

m
p
le

n
et

w
or

k
w

it
h

12
n
o
d
es

,
w

h
er

e
v 1

an
d
v 2

ar
e

ge
n
er

at
in

g
1

an
d

2
u
n
it

s
of

fl
ow

re
sp

ec
ti

ve
ly

,
an

d
n
o
d
e
v 1

2
is

ga
th

er
in

g
th

e
fl
ow

.
W

e
ar

e
as

su
m

in
g

th
at

th
e

ch
an

n
el

ca
p
ac

it
y

of
al

l
of

th
e

li
n
k
s

ar
e

eq
u
al

.

47

Table 4.1 shows the optimum value of flow for each link in order to optimize

Jp, p = 2, 4, 6, 8. The flows for p = 2 are derived from the calculated potentials

using accelerated Jacobi (f = KTu). The flows for p = 4, 6, 8 are derived from

direct SQP iterations. Observe that as p is increased to relatively small number

8, the flows on the bottleneck links, f11 and f12 become completely balanced. In-

creasing p furthermore has negligible effect on the flow allow allocation, thus the

SQP iterations are terminated. Furthermore, note that the difference between the

accelerated optimization of bottleneck flows for J2 and the optimum flows for J8 are

negligible, thus in this case, optimizing the 2-norm flow results in a quasi-balanced

network with small number of iterations.

48

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ℓ

u
(
ℓ
)

1

LSE
Jacobi
GS
SOR
CG

Figure 4.3: Comparison of the convergence rate of Jacobi method, LSE-accelerated
Jacobi, Gauss-Seidel (GS), Successive Over Relaxation (SOR) with parameter 1.37
and Conjugate Gradient (CG) methods for optimizing J2. The parameters of LSE
are q = 20 and r = 4. In this figure, the horizontal axis is the number of iterations
and the vertical axis is the value of u

(`)
1 (the Lagrangian multiplier for node 1) in

each iteration. We observe the Jacobi, GS and SOR methods require 136, 69 and
64 iterations to converge with error tolerance 1%. Although CG is not a distributed
method, we provided its convergence rate in this figure as a benchmark, where it
converges in 8 iterations. Our proposed method, LSE accelerated Jacobi, is dis-
tributed and converges to the final solution in 22 iterations, which is considerably
faster than other distributed methods.

49

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

0

0
.51

1
.52

2
.53

3
.54

4
.5

ℓ

u

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

u
9

u
1
0

u
1
1

F
ig

u
re

4.
4:

T
h
e

co
n
ve

rg
en

ce
ra

te
of

J
ac

ob
i

it
er

at
io

n
s

fo
r

op
ti

m
iz

in
g
J
2
.

50

Example 4.2. In this example we examine the eigenvalue distribution of the Lapla-

cian and reduced Laplacian matrices of a network and it relation with convergence

rate of the Jacobi method. In the first case we consider the graph studied in the

previous example. The largest eigenvalue of matrix W , as depicted in Fig. 4.5,

is 0.9669. Furthermore, the algebraic connecting of the graph is 0.4027. In the

second case, consider a complete graph, with 12 nodes, such that all of the nodes

are neighbors. In this case the largest eigenvalue of W , is 0.9167, and the algebraic

connectivity is 12. In the final case, we consider a tandem (or string) graph where

the nodes are placed on a line, and except the first and last nodes, all of the nodes

only have two neighbors. In this case the largest eigenvalue of W is 0.9898 and the

algebraic connectivity is 0.0681.

Figure 4.8 depicts the convergence rate of the Jacobi iterations for these graphs.

It is observed that as the graph becomes more connected (the algebraic connectivity

increases), the convergence of Jacobi iterations improve. Intuitively, this is an ex-

pected result, since as the graph become more connected, the noes can gather more

information about the structure of the network, and estimate their potential more

accurately. However, a proof for this result (for the connection between algebraic

connectivity and convergence rate of Jacobi iterations) is not established in this

thesis, and is postponed to future works.

51

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

7

X: 1
Y: 0.9669

Index of Eigenvalue

Ei
ge

nv
al

ue

Comparison of Eigenvalues

Laplacian
Reduced Laplacian
W

Algebraic Connectivity

Unity Eigenvalue

Figure 4.5: Eigenvalues of the Laplacian, reduced laplacian and W for graph de-
picted in fig. 4.2.

52

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

X: 1
Y: 0.9167

Index of Eigenvalue

Ei
ge

nv
al

ue

Comparison of Eigenvalues

Laplacian
Reduced Laplacian
W

Figure 4.6: Eigenvalues of the Laplacian, reduced laplacian and W for a complete
graph K12.

53

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X: 9
Y: 0.9898

Index of Eigenvalue

Ei
ge

nv
al

ue

Comparison of Eigenvalues

Laplacian
Reduced Laplacian
W

Figure 4.7: Eigenvalues of the Laplacian, reduced laplacian and W for a tandem
(string) graph with 12 nodes.

54

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Covergence of Jacobi iterations

Iteration

Graph of Fig. 4.2
Complete graph
K12
Tandem Graph

Figure 4.8: Convergence rate of Jacobi iterations for graphs discussed in example 2.

55

Bibliography

[1] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor
networks. Ad hoc networks, 3(3):325–349, 2005.

[2] IF Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer networks, 38(4):393–422, 2002.

[3] J.N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor net-
works: a survey. IEEE wireless communications, 11(6):6–28, 2004.

[4] E. Altman, P. Bernhard, M. Debbah, and A. Silva. Continuum equilibria for
routing in dense ad-hoc networks. In 45th Allerton Conference on Communi-
cation, Control and Computing, Illinois, USA, Sept. Citeseer.

[5] P.T. Boggs and J.W. Tolle. Sequential quadratic programming. Acta numerica,
4:1–51, 1995.

[6] J.A. Boyan and M.L. Littman. Packet routing in dynamically changing net-
works: A reinforcement learning approach. Advances in Neural Information
Processing Systems, pages 671–671, 1994.

[7] J. Bull and TL Freeman. Numerical performance of an asynchronous Jacobi
iteration. Parallel Processing: CONPAR 92VAPP V, pages 361–366, 1992.

[8] W.K. Chen. Graph theory and its engineering applications. World Scientific
Pub Co Inc, 1997.

[9] I. Cidon, R. Rom, and Y. Shavitt. Analysis of multi-path routing. Networking,
IEEE/ACM Transactions on, 7(6):885–896, 1999.

[10] Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks: single-
path routing vs. multi-path routing. In INFOCOM 2004. Twenty-third Annual
Joint Conference of the IEEE Computer and Communications Societies, vol-
ume 2, pages 1120–1125. IEEE, 2004.

[11] M. Haghpanahi, M. Kalantari, and M. Shayman. Implementing Information
Paths in a Dense Wireless Sensor Network. IEEE Global Communications
Conference,GLOBECOM, 2009.

[12] J.D. Hoffman. Numerical methods for engineers and scientists. CRC, 2001.

[13] P. Jacquet. Geometry of information propagation in massively dense ad hoc
networks. In Proceedings of the 5th ACM international symposium on Mobile
ad hoc networking and computing, page 162. ACM, 2004.

56

[14] S. Jung, M. Kserawi, D. Lee, and J.K.K. Rhee. Distributed potential field based
routing and autonomous load balancing for wireless mesh networks. Commu-
nications Letters, IEEE, 13(6):429–431, 2009.

[15] S. Jung, J. Sung, Y. Bang, M. Kserawi, H. Kim, and J.K.K. Rhee. Greedy
local routing strategy for autonomous global load balancing based on three-
dimensional potential field. Communications Letters, IEEE, 14(9):839–841,
2010.

[16] M. Kalantari, M. Haghpanahi, and M. Shayman. A p-norm Flow Optimization
Problem in Dense Wireless Sensor Networks. In INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pages 341–345. IEEE, 2008.

[17] M. Kalantari and M. Shayman. Energy efficient routing in wireless sensor
networks. In Proc. Conference on Information Sciences and Systems. Citeseer,
2004.

[18] M. Kalantari and M. Shayman. Routing in wireless ad hoc networks by analogy
to electrostatic theory. In 2004 IEEE International Conference on Communi-
cations, volume 7, 2004.

[19] M. Kalantari and M. Shayman. Routing in multi-commodity sensor networks
based on partial differential equations. In Information Sciences and Systems,
2006 40th Annual Conference on, pages 402–406, 2006.

[20] M. Li and Y. Liu. Iso-map: Energy-efficient contour mapping in wireless sensor
networks. IEEE transactions on knowledge and data engineering, pages 699–
710, 2010.

[21] P.P. Pham and S. Perreau. Performance analysis of reactive shortest path and
multipath routing mechanism with load balance. In INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, volume 1, pages 251–259. IEEE, 2003.

[22] M. Stemm and R. H. Katz. Measuring and Reducing Energy Consumption of
Network Interfaces in Hand-held Devices. IEICE Transactions on Communi-
cations, E80-B(8):11251131, 1997.

[23] J. Stoer and R. Bulirsch. Introduction to numerical analysis, chapter 8. Springer
Verlag, 2002.

[24] L. Tang, Y. Sun, O. Gurewitz, and D.B. Johnson. Pw-mac: An energy-efficient
predictive-wakeup mac protocol for wireless sensor networks. In INFOCOM,
2011 Proceedings IEEE, pages 1305–1313. IEEE, 2011.

[25] S. Toumpis. Mother nature knows best: A survey of recent results on wireless
networks based on analogies with physics. Computer Networks, 52(2):360–383,
2008.

57

[26] S. Toumpis and L. Tassiulas. Optimal deployment of large wireless sensor
networks. IEEE Transactions on Information Theory, 52(7):2935–2953, 2006.

[27] T. Van Dam and K. Langendoen. An adaptive energy-efficient mac protocol
for wireless sensor networks. In Proceedings of the 1st international conference
on Embedded networked sensor systems, pages 171–180. ACM, 2003.

[28] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Com-
puter Networks, 52(12):2292–2330, 2008.

[29] Sina Zahedpour and Mehdi Kalantari. p-norm flow optimization in a network.
CoRR, abs/1011.2246, 2010.

58

