Multi-phase Systolic Algorithms for
Spectral Decomposition

by K.J.R. Liu and K. Yao

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

TR 91-17

Multi-phase Systolic Algorithms for Spectral Decomposition

K.J.R. Liu K. Yao

Electrical Engineering Dept. Electrical Engineering Dept.
Systems Research Center University of California
University of Maryland Los Angeles, CA 90024-1591

College Park, MD 20742

ABSTRACT

In this paper, we propose two multi-phase systolic algorithms to solve the spectral de-
composition problem based on the QR algorithm. The spectral decomposition is one of
the most computationally intensive modern signal processing operations. While the QR
algorithm is well known to be an effective method to solve the eigenvalue problem, there
is still no single systolic array architecture that can compute the unitary Q matrix readily
and perform the QR algorithm efficiently. Previous methods using the QR algorithm had
communication problems among different architectures. In this paper, two arrays, a trian-
gular and a rectangular, are presented to implement the multi-phase algorithms. Details
on these multi-phase operations of the QR algorithm as well as architectural consequences
and performance evaluation are discussed in the paper. Efficient fault-tolerant schemes for
these multi-phase operations are also considered.

This work is partially supported by a UC MICRO grant and the NSF grant NCR-8814407.

1 Introduction

Computing the spectral decomposition of a matrix is an important issue in many modern
signal processing and system applications. The feasibility of real-time processing for sophis-
ticated modern signal processing systems depends crucially on efficient implementation of
parallel processing of the algorithms and associated architectures needed to perform these
operations [4,21]. While many variations exist in the literature for solving these matrix
problems, all these iterative methods are based either on the Jacobi-Hestennes method or
the QR algorithm [10,40,43]. While there are some fundamental differences between these
two approaches, both algorithms have good numerical stability and convergence rate prop-
erties and thus are desirable for possible implementation. Since present VLSI technology is
capable of building a multiprocessor system on a chip, many researchers have proposed dif-
ferent parallel processing architectures to solve eigenvalue and singular value decomposition
(SVD) problems.

For any complex-valued m x n matrix A, the classical spectral decomposition [41] of the
n X n Hermetian matrix A7 A4, is given by

n
AP A =Y Nl = VAV, (1)

i=1
where V' = [vy,---,2,]is an nXn unitary matrix, A = diag[A1,- -+, A,], and H is the complex
conjugate transpose operator. The Als are the eigenvalues satisfying Ay > Ay--- > A\, >0

and the vis are the eigenvectors satisfying A¥ Av; = Ajv;. The decomposition of A A
follows from the SVD [10] of A given by

A=USVH (2)

where U = [uy,- -, u,] is an mxn matrix with orthogonal column vectors, S = diag[sy,- -+, s,
and V is an n X n unitary matrix. The ss are the singular values satisfying sy > s > -+ >

s, > 0 and are the positive square roots of Ais such that A = $2. In this paper, we shall

use spectral decomposition in the broad sense of not only including the decompositions of

(1) and (2), but also including the eigenvalue decomposition of an arbitrary complex-valued

n X n matrix A given by

AX = AX, (3)

where X is an n X n matrix of eigenvectors and A = diag[A1, -+, \,] is the matrix of
eigenvalues of A.

Luk [24], Brent [3], and Gao and Thomas [7] have used effectively the Jacobi-like method
to solve these problems for either a multiprocessor system or systolic array. The basic
problem concerns the diagonalization of a 2 X 2 matrix by the rotation matrices J(6) and

K(¢)in

¥y oz
where w,z,y, and 2z are elements in two corresponding rows and columns of A. A two-
stage procedure is then used to find 8 and ¢ {24]. To find the SVD of a square matrix A, an
appropriate sequence of 2 X 2 matrices is computed by using the basic Jacobi transformation
in

50" [v] K(9) = [- } , (1)

Tij: A — JEAK; (5)

],

where J;; and K;; are rotations in the (7, 7) plane chosen to annihilate the (4,7) and (j,7)
elements of A respectively [24]. While the Jacobi-like method, as considered in [24], is
currently known as one of the most effective parallel SVD algorithm for full dense matrices,
the computations required to obtain the rotational matrices needed in this approach to
obtain the singular vectors are not simple (either through broadcast in the array or by
slowing down the operations) [24]. Moreno and Lang [29] also considered some alternatives
to the algorithms in [3].

On the other hand, other researchers have used the QR algorithm to solve the eigenvalue
problems. Heller and Ipsen [13,17] performed the QR iteration for banded matrix based on
an orthogonal systolic network and Schreiber [35] combined their network with Gentleman
and Kung’s QR array to compute the QR algorithm. These methods required the compu-
tation of the unitary matrix). However, problems exist in the concurrent computation of
() and the pipeline operation of the QR iteration [17]. In [28], Moldovan et al. studied the
mapping of a large QR algorithm onto a fixed size array. Torralba and Navarro [42] further
purposed a size-independent linear array for QR iteration and Hessenberg reduction. While
this approach can provide an efficient computation of one iteration of the QR iteration, it
is not obvious how to pipeline the iteration.

For some system applications, such as matrix rank determination and system identifica-
tion [20], the efficient computation of singular values is sufficient, while in other applications
such as antenna beamformation [27,38], spectral estimation [19,34], direct finding [11,30],
etc., the eigenvectors are crucially needed. This makes practical implementation of systolic
arrays discussed above difficult for many applications since they either cannot compute
the eigenvector or cannot obtain the eigenvector without broadcast. For example, for the
MUSIC algorithm [12], once we determine the signal subspace and noise subspace from the
eigenvectors, the sample spectrum is then determined by

1
sH(W)Xn X s(w)’

Sw) =

where X is the matrix of eigenvectors which generate the noise subspace and
s(w) = [1,e79%, ..., emiw(K-1)],

with K being the dimension of the matrix Xy. A system which consists of several systolic
modules to compute the MUSIC algorithm has been proposed in [33]. However, communi-
cation problems among the modules and the difficulty of matching the pipeline rates and
timings among different modules may pose difficulties for practical implementation.
Presently, there is no known simple efficient systolic array approach for the generation
of eigenvectors. The main reason is that there is no single architecture that is capable of
handling all the steps required in the algorithm such that we can pipeline the successive
iteration readily. The communication cost among different architectures is high and the
interface problem for an efficient data flow is demanding. In this paper, we propose two
multi-phase systolic algorithms to solve the spectral decomposition problem based on the
QR algorithm. By multi-phase operations we mean that the processing cells can perform
different arithmetic operations in different phase of the computations. Two systolic arrays,
one triangular and the other rectangular, are designed based on the multi-phase concept. A
key feature in our method for the successfully application of the QR algorithm is that the

() matrix of the QR decomposition can be computed explicitly by multi-phase operations.
With the proper feedback of this Q matrix, the QR algorithm can be computed and pipelined
effectively in a single systolic array. From the accumulation of those @ matrices in another
array, eigenvectors can be computed without needing global communication inside the array.

In Section 2, some preliminary matrix operations useful for the multi-phase operations
are discussed. In Section 3, we review the QR algorithm and show the evaluation of the
eigenvector from cumulative multiplications of the @ matrices. Then two multi-phase sys-
tolic arrays for the QR algorithm and the Hessenberg reduction are presented in Section 4.
Their performances, numerical stabilities, and convergence rates are studied in Section 5.
Finally, some efficient fault-tolerant schemes that can be incorporated with the arrays are
discussed in Section 6. A brief conclusion is given in Section 7.

2 Systolic Array Matrix Processing

In this section, we consider some preliminary matrix and associated systolic array operations
needed in the multi-phase systolic algorithms for spectral decompositions.

A. QR Decomposition

A non-degenerate m X n rectangular matrix A can be factored into two matrices Q and
R such that A = QR, where @ is an m X m unitary matrix and R is an m X n upper
triangular matrix. The matrix) can be computed using sequences of Givens rotations. An
elementary Givens transformation has the form of

¢ 8 0 -.- 0 TP Tit1 ot Tk _ 0 --- 0 rg 7‘§+1 e o
-8 C 0O --- 0 T; Tig1 o Tk 0O --- 0 0O "1’);'-{—1 ceeo

where

EaiaR Ol

(6)

T ZT;

—— S—.—_—.
9

/.2 2 /.2 2

(e ol e X

Several different QR systolic arrays have been considered by Gentleman and Kung [9],
Heller and Ipsen [14], and Luk [25]. In particular, the computation of the Q matrix without
broadcast is difficult for the array considered in [24, pp.266]. On the other hand, [9] has
shown that a triangular systolic array can be used to obtain the upper triangular matrix
R based on sequences of Givens rotations. This approach also leads to an efficient method
for performing recursive least-squares computation [26], and is also useful for finding the
singular value of a matrix [8]. This systolic array is shown in Fig.1 and the opcrations of
the cells are described in the first column (i.e., Phase 1) of Table 1. While the rotation
parameters are propagated to the right, the) matrix will not appear directly at the right
as originally suggested by [36]. In order to demonstrate this point, denote G;; as the Givens
rotation matrix of the (¢,7) plane. Then matrix @ can be obtained as

C =

where [] is an ordered matrix product defined by]_[}zm‘1 C; = Cpe1Cryn - - Cy, while []
denotes a conventional product, where the ordering of the terms are not relevant. From
Table 2, we can see, for a n x n QR triarray, the first rotation parameter coming out aft

the right edge occurs at time n + 1. After that, rotation parameters for different plane
rotation come out successively. If assuming that the operation of [] discussed above can
be obtained immediately, then there are m — 1 operations of [| to be processed when all
of [] are available and need to be multiplied. This observation leads to the conclusion
that we cannot obtain the @ matrix by cumulatively multiplying the rotation parameters
propagated to the right edge unless an additional rectangular array is used to accumulate
the rotation matrices. Thus, this is not an efficient way to obtain the @ matrix.
B. Computation of =7z
In [6], Comon and Robert presented a rectangular systolic array for the computation of
B~'A, where B and A are square and rectangular matrices respectively. The computation
takes two phases. First, the matrix B is fed into the array and B~! is computed. In the
second phase, the matrix A is input to produce B~'A. For the special case where B is
an upper triangular matrix denoted by R, instead of a full dense matrix, McWhirter and
Shepherd [27] used the property that a triangular array can compute R~72 in one phase
with the matrix R prestored in the triarray. Since this property is needed in Phase 2 of our
work, and no full derivation was given in [27], we present a brief derivation of this result.
Define r;; = (R); and rj; = (R™1);j, where r;; = 0 and ri; = 0 for ¢ > j, then it can be
shown that
= M, i 0
— Y= TikTki [T 1< S m

Let [y1,--+,92])T = R~Tz, then

J
ijZl‘z‘?"gj; J=1-,mn. (9)
=1

In particular, y; can be expressed in terms of r;; as

1 =«
!
27 1=1 k=1
. -1 k
= — (= D) wirhres). (10)
T5; k=14=1
From (9), y; is given by
1 = I
vi = = (=i = 2 wrhs) o
L i

(1) (2)

Thus, y; can be computed recursively according to the above equation in the following
algorithm:

Recursive Algorithm for Computing y = R~Tg

1
Nh=rs7 "

for j=2ton

begin
zj = &;
fork=1to0j-1
2j = 2j = YkTkj
Yi = 2/75j
end

The corresponding systolic array to implement the above algorithm is the same as the
one shown in Fig.1. The operations of the cells are shown in the second column of Table 1.
The first part of (11) , i.e., the division, is performed by the boundary cell while the second
part of (11) is accumulated by the internal cells. With R pre-stored in the triarray, Fig.2
shows the data flow of the input z and the output y.

C. Triangular-Matrix Multiplication B

The multiplication of a triangular matrix R and an rectangular full dense matrix B is
given by

n
(C)ij = (RB)i; = Y rirbyj, (12)
k=1
where 7 and by; are elements of matrices R and B. Using the same array as in Fig.1, with
It prestored in the triarray and the operations shown in the third column of Table 1, this
multiplication can be easily obtained if B is input row by row as in Fig.3.
D. Matrix Multiplication
There are many ways to implement a full matrix-matrix multiplication in a systolic array
[21]. In Fig.4, we show a typical architecture that can be incorporated with the multi-phase
operations to obtain eigenvectors. With input matrices @ and A arranged as in Fig.4, the
matrix BT, where B = AQ, will reside in the rectangular array when the computation is
completed. Details on this issue will be discussed in later sections.

3 QR Algorithm

In this section we review briefly the basic operation of the QR algorithm and show the
evaluation of the eigenvectors from the cumulative multiplication of successive Q matrices.
For a complex-valued n X n matrix A, it states that there is a unitary transform U such
that R = UAU¥Y is a upper triangular matrix with diagonal eigenvalues of descending
order. This follows from the QR Algorithm [10,40,43] where by setting A; = A, we have
A = QrRr and Ay = RpQp = QfAka, k = 1,---, with unitary @, and upper
triangular Rg. Furthermore, Aj converges to the upper triangular matrix with diagonal
eigenvalue elements. However, it is not obvious how to compute the eigenvectors from those
Qr and Rj we have calculated. With a derivation similar to that used in [43], here we
shows how to obtain the eigenvector associated with the largest eigenvalue from cumulative
multiplications of Q. From the above discussions, we have

Ay = QFQE - Q¥ 4,01Qs -+ - Q1. (13)
Define

k
Qr = []Qi=01Q2---Qx,
=1

1
Rk =]_[Ri:RkRk_l---Rl. (14)
i=k

Then we have) 3
QrArt1 = A1Qx. (15)

Thus the multiplication of QR can be expressed as

QrBr = Qi1Q2 - QrRrRi_1--- Ry
= QraApRi_1 = A\Qr 1 Rp_y = AF = AF, (16)

Let the eigenvalues of A satisfy, |A1| > |A2] > -+ > |A,]. Denote the matrix eigenvectors
and eigenvalues of A by X and A respectively. Then A* is given by

AF = XAFX L, (17)

Let the QR decomposition of X be X = QR and the LU decomposition of X~! be X1 =
LU, where L is an unit-lower triangular matrix. Then

A¥ = QRAYLU = QR(AFLA-F)AFD, (18)
where
AFLA* = I + Ey, (19)
and
D NI C RN L D N ‘
(B)ij = { 0, otherwise. (20)

Since, we have limj_,o, By = 0 and thus A*LA~* approaches the identity matrix. Then
(18) can be rewritten as
AF - QRAFU. (21)

Since the term RA*U is an upper triangular matrix, comparing to (16) we can see that
Qr — Q when k is large. That is, the Q matrix of the QR decomposition of A* approaches
that of the Q matrix of the QR decomposition of the matrix of eigenvector X. Define

Qr = [21’127 T '7gn]7

X = [£1’£27"'7£n]a (22)

and r;; as the (i,j) element of R. From Qj — X, we find r1g, — ; when £k is large.
Since z, is the eigenvector associated with the largest eigenvalue, we conclude that the first
column of the matrix Q approaches the eigenvector associated with the largest eigenvalue
of matrix A when k is large. If the matrix A is symmetric, which is often the case for signal
processing applications, the similar transformation Agyq = QE AQy is also symmetric.
Since Agy1 approaches the upper triangular matrix by the QR algorithm, A;; approaches

a diagonal matrix. That is
Ap — A, (23)

and)
OrA — X. (24)

In this case, for large k, the columns of (1, become proportional to the columns of eigenvector
in X.

If A is real, then Ay will converge to a real block upper triangular matrix with 1 x 1
and 2 x 2 main diagonal blocks. The complex conjugate pairs of eigenvectors of the 2 x 2
blocks can be solved easily using the quadratic formula. When A is not a squarc matrix,
the singular values and vectors are of interest. For a m X n matrix B, where m > n, the
SVD of B shows B = UXVT, where U is a m X n matrix of orthogonal columns, V is a nxn
unitary matrix, and ¥ is a n X n diagonal matrix with diagonal singular values given in
descending order. For many situations where high condition numbers are not encountered,
a simple symmetric n X n matrix C = BT B can be formed and the matrix V can be found
by direct use of the QR algorithm. Similarly, U can be found by using D = BBT.

4 Multi-phase Systolic Algorithms

In this section, we introduce the multi-phase systolic algorithms to compute the QR algo-
rithm. Two arrays, triangular and rectangular, can be used to compute the QR algorithm
with some advantages and disadvantages for each. We shall show that our methods com-
pute the Q matrix explicitly without requiring any global communication within the array.
Before we consider the multi-phase algorithms, two communication switches are first dis-
cussed. A circular multiplexer is a device which takes its inputs and distributes them in
different output positions as shown in Fig.5. We use a skewed row to represent the circular
multiplexor. A first in/first out (FIFO) buf fer is a buffer which takes its input to output in
a first in first out manner as shown in Fig.6. Both devices are commonly used in computer
and microprocessor systems for data arrangement [16]. The computation of a QR algorithin
consists of two basic steps. Initially, set A; = A.

(1) for k = 1,2,---, compute Ay, = Qg Ry;

(2) compute Agy1 = RiQk, stop if converge, otherwise go back to step (1).

4.1 Multi-phase Triangular Systolic Array

The QR Decomposition triarray proposed by Gentleman and Kung [9] is used in our ap-
proach. The R matrix is stored in the triarray after the computation. To compute the
matrix Agy4q in step (2), the Qr matrix has to be computed first. Let us call the computa-
tions in step (1) and step (2) an iteration. Several iterations are required for Ay, to converge.
For each iteration, we propose a three phase operation on a triarray as follows:

e Phase 1: QR decomposition for Ay
Compute the QR decomposition of the matrix Ay = @Ry, with the upper triangular
matrix Ry being stored in the triarray [9]. The data in Ay is input row by row and
skewed in time as shown in Fig.7.

e Phase 2: Computing the @ matrix
From the QR Decomposition, we have RETAg = Q% Let the #t* column of matrices
AT and Q¥ be denoted by a; and ¢. respectively. Then
-1

RI:T[QDQ%""QTL]: [glagy"'agn]‘ (25)

Section 2 showed that R;T_a; can be computed in the same triarray that was used in
Phase 1. Since the i** column of A7 is the i** row of Ay, then with Ay input row by
row skewed in time as shown in Fig.8, the operations of the processing cells are given
in the second column of Table 1. The triarray computes the @y matrix of A;. The
matrix () is then output row by row as shown in Fig.8. In order to start Phase 3,
the matrix @ has to be in the form of Fig.9. Observe that the output @y of Phase 2
shares the same snap-shot order as the desired arrangement of @ in Phase 3 after a
transpose operation. A circular multiplexer is used to distribute each column output
of @k into row input as indicated in Fig.8.

e Phase 3: Computing RpQx

With the operations of the processing cell as shown in the third column of Table 1
and the @ obtained in Phase 2, Fig.9 shows the computation of Axy1 = RiQr in
the triarray. Then the matrix Ag4q comes out column by column from the right side
of the triarray. Again, we observe that A4 shares the same snap-shot order as the
desired arrangement of Ay in Phase 1 after a transpose operation. If not convergent, a
new iteration is repeated by feeding back Ag4q into the triarray after using a circular
multiplexer as shown in Fig.9. Then Phase 1 operation begins as in Fig.7.

An attractive property of this multi-phase operation is that the feedback requirements
of the matrices in different phases are identical. Thus, only a circular multiplexer is necded
for each row outside the array. Observe that each column of the matrices input in all of the
phases needs n time steps to process and the next phase can be started at time n 4+ 1. We
find once the result is output at the right hand side of the triarray, after passing through the
circular multiplexer, it can be piped into the array for the next phase computation without
suffering any delay. If we assume the multiplexer is ideal such that the delay through it can
be ignored, it takes 3n+(2n—1) = 5n— 1 system clocks for one iteration. The (2rn—1) term
represents the initial time to feed the data into the array. If the number of iterations required
for convergence is S, then the total number of system clocks needed is 35Sn+(2n —1). Thus,
the converge rate of this algorithm is of the order of O((35 + 2)n). After the convergence
of the Ay matrix, those values on the boundary cell are the eigenvalues of the A matrix.

4.2 Multi-phase Rectangular Systolic Array

The above method requires the use of the R~7 operation in the computations. From a
numerical stability point of view, we may want to consider an alternative that uses a square
matrix for cumulative multiplication of the rotation parameters. Fig.10 shows a square
matrix which is an extended version of the Gentleman-Kung’s triangular array with two
delay elements (represented by black dots in Fig.10) in the vertical communication links
of the lower triangular part of the array. The processors in the lower triangular part are
identical to the internal cells in the upper triangular part. In [32], Reilly et al. used the
same array for a QRD array processing application. Denote

[A//I] = [a1; €1, Q05 €957 Q3 €] (26)

as the parallel combination of matrix A and I, where A = [ay,,,-+,a,] and [isan X n
identity matrix with e; as its i** column. The square array takes the input [A//I]. While

rotating A into an upper triangular matrix, it uses I to accumulate the rotation paramecters
by
Q[A//1] = [R]]Q]. (27)

We note that processors in the upper triangular part not only rotate the matrix A but also
cumulatively multiply the rotation parameters with I. Thus, its work load is, in general,
twice as that of Gentleman-Kung’s internal cell. Processors in the lower part, on the other
hand, only accumulate @) from the propagated rotation parameters. A two phase operation
for QR iteration is proposed as follows:

¢ Phase 1: QR decomposition
Compute the QR decomposition of matrix Ay = QRy; both Q) and R} are obtained
and stored. Then each row of @ is piped out and fed back to the array through a
FIFO buffer as shown in Fig.10.

e Phase 2: Computing RipQx
In this phase, the operation is identical to that of the Phase 3 in the triangular array.
A circular multiplexer is used to transform Agy; from row output into column input.
Continue this iteration until converged.

Due to the delay elements at the lower triangular part of the array and the work load
of each processor (except those in the lower triangular part) being twice as that of the
triangular array, the time to obtain the i** row of the Q; matrix, ¢;, is

t; = max(2(n + 37 - 3),2(2n + i — 2)),

where 2(n + 37 — 3) is the time for the left-most cell of the it" row to obtain its () element
and 2(2n + ¢ — 2) is the time for the right-most cell to finish. Obviously, when i > [%EL],
t; = 2(n+3i—3). Thus, the time required to obtain the whole () matrix is t,, = 82 — 6. By
assuming that it takes time n to sequentially pipe out the @ matrix, this algorithm takes
(97 — 6) + » + (2n — 1) to complete an iteration in the worst case. Again, denoting the
number of iteration as §, this algorithm converge in the order of O(5(10n—6)+2n —1) =
O((10S + 2)n). Of course, the performance can be improved by piping out each row of)
matrix when it is available instead of waiting for the whole @ matrix to be available. With
this, the performance can reach to the order of O((95 + 2)n).

4.3 The Hessenberg Reduction

In order to perform the QR algorithm efficiently in conventional Von Neumann type scrial
computers, we usually transform the data matrix A into an upper Hessenberg matrix beflore
applying the QR iteration. With this transformation, the amount of work per itcration is
reduced from O(n?) to O(n?) [10]. However, this motivation may not be relevant for parallel
processing architectures. The reasons are two folds:

1. Due to the the hardware resources in a parallel processing architecture, the compu-
tations can be performed concurrently without hindering the processing time. TFor
example, the computation times of the two multi-phase arrays discussed above arc of

the order O(n).

2. The data matrix is usually not in the Hessenberg form. The pre-processing of the
data matrix to Hessenberg form may not be able to be incorporated with the following
computations. That is, the pre-processing must be done separately.

Both reasons may lead to the conclusion that the Hessenberg form is not of practical interest
in parallel processing of the QR algorithm unless the Hessenberg form can be obtained easily
by using the same parallel processing architecture. Many prior works avoid this issue by
assuming that the Hessenberg form (or sometimes the tridiagonal form) is already available
from the beginning. Fortunately, the Hessenberg form can be obtained easily in conjunction
with the above proposed multi-phase algorithms and architectures.

To obtain the Hessenberg form, we can choose a unitary similarity transformation U
such that Ay = UM AU is a upper Hessenberg matrix [10]. The transformation U can
be obtained from sequences of Givens rotations. Denote G; as the product of the Givens
rotation matrices which zero out the proper positions of the i** column. Since the first ¢
rows will not be affected by G, the matrix G; is of the form G; = diag(I;, G;), where [
is an identity matrix of dimension 7. Suppose the Hessenberg form through its first &k — 1
columns has been obtained

By By Dis
(G1++-Gree))TA(Gy---Gro1) = | Bay By Bas |, (28)
0 B3 Bss

where By; and Bz are (k — 1) X (k — 1) and (n — k) X (n — k) matrices respectively. Then

Biy By B13Gy,
(Gr---GAGy--G)= | Bu Bn BnGy (29)
0 GfBsy GHBs3G;

is a Hessenberg form through its first & columns. Thus
Ay = (Gy -G AG -+ -Gy) (30)

is an upper Hessenberg matrix and

U=G .-G |1 g (31)
- 1 n—1 — Q_ G . <
Denote . r ’
o | _s (1 0| e
S EA o PN

where A = GR and R is of the form of an upper triangular matrix without the lowest right
element. Then Ay = AU = UH AU. Obviously, this is similar to the computations in the
QR iteration. To obtain GG and R, let

A=| - = . (33)

10

The QRD of A is
s A G 0F R
ican-[S T 2] 1)

Now, we can use the multi-phase operations to obtain the upper Hessenberg form. We call
this Phase 0, with three internal operations.

¢ Phase 0: The Hessenberg Reduction.

(1) Use Phase 1 Operation for QRD of A.
from A = QR, we obtain R in the triarray.

(2) Use Phase 2 Operation for computing the G matrix.
From @ = R-T AT we obtain matrix G.

(3) Use Phase 3 Operation for computing the Hessenberg matrix A;.
By forming

and .
10
we obtain the Hessenberg matrix A; = AU.

4.4 Computing the Eigenvectors

To compute an eigenvector, a matrix multiplication systolic array can be incorporated with
the multi-phase array such that those matrices Qq,- - -, Q) are accumulated to form the Qy
matrix. Noted that Q; = Qr-1Qx and the matrix Q1 is available at the start of the &t
iteration, while the matrix Q is coming out at Phase 2 operation of the k** iteration. Then
Qx is obtained by multiplying Qy_; and Q as shown in Fig.4. A system configuration
for triangular array is shown in Fig.1la and that for rectangular is shown in Fig.11b. As
discussed in Section 3, for a symmetric A matrix, when Ay converged, Q. yields the matrix
of eigenvectors. For a non-symmetric A matrix, the first column of Q yields the eigenvector

associated with the largest eigenvalue.

5 Performance Comparisons

5.1 Comparisons of the arrays

Although there are three phases of operations, the arithmetic operations in Phase 2 and
Phase 3 form a subset of the operations executed in Phase 1. Therefore we do not increase
the cell complexity in the multi-phase arrays. The performance and characteristics of both
triangular and rectangular arrays considered above are summarized in Table 3. The advan-
tages of the triangular array are: it requires less computational time and fewer cells, I/O
ports, and communication devices. Furthermore, all of the processing cells are fully utilized.
However, due to the computation of R~7 in Phase 2 of the operation, it may be numerically

11

less stable for certain highly ill-conditioned data. For example, consider the matrix given

by

0.7601 -0.3967 0.6060
—-0.3967 1.7475 -0.1962
0.6060 —0.1962 0.4924

with eigenvalues {2.0,1.0,10712}. If the triarray algorithm (which uses R~ to obtain Q%)

is used, the eigenvalues are obtained as {2.0,1.0,3.6818-107%}. On the other hand, based
on the rectangular array (where the R~7 is not explicitly computed), the eigenvalucs are
obtained as {2.0,1.0,9.9999 - 10713}, All these results are obtained using MATLAB with
double precision computations. As a result, we have a complexity versus numerical stability
tradeoff for the two multi-phase arrays.

5.2 Rate of Convergence

As in Luk [24], by convergence of the upper triangularity of A, we mean the paramcter

of f(Ay) defined as
of f(Ay) = 2 i)
N 7
where N is a number of off-diagonal elements, has fallen below some prechosen tolerance
value. As indicated in [24], it is difficult to monitor of f(Ag) in the parallel computation.
Luk then proposed that the iteration be stopped after a sufficiently large number S of
iterations. In the studies of Brent and Luk [3,24], they found that S < 9 for random
symmetric matrices of order n < 230 and 5 < 6 for n < 24. Therefore, they chose S = 10 for
n < 100 for the Jacobi-like method. Similar to their approach, we apply the QR algorithmn
to random n X n symmetric matrices (a;;), where the elements a;; for 1 < i < j < n were
uniformly and independently distributed in [~1,1]. The tolerance to meet the stopping
condition is of f(Ax) < 10710, We can see from Fig.12 that the number of iterations for a
QR algorithm to converge is in the order of 10 for matrix size smaller than 20 x 20. Even
though we can reduce the matrix to Hessenberg form for full dense matrix or tridiagonal form
for symmetric matrix, and the QR iteration with origin shift can accelerate the convergence
rate [15,39,44], the number of iterations is still on the order of 10. As an example, the 4 x 4
tridiagonal matrix

(35)

SO N =
S oA W
SOk O
~I O OO

still requires eight iterations to converge when the symmetric QR algorithm is used [10,
pp.424] This kind of property is not desirable for parallel processing implementation. It
is known that the Jacobi-like method may require more flops than the symmetric QR
algorithm. However, due to parallel implementation, many rotations may take place at
the same time. The computations involved in QR algorithm and Jacobi-like method arc
generally of the same complexity. From these discussions, the one which requires fewer
iterations is more attractive from the parallel implementational point of view. Furthermore,

12

the convergence rate of a QR iteration depends on the ratio of the eigenvalues. In our
simulations, in more than 10% of the cases, the randomly generated symmetric matrices
required significantly more iterations to converge. As pointed out before, it is difficult
to monitor the quantity of f(Ax) to decide when the algorithm converges in the parallel
computations. Since the convergence rate is highly dependent on the ratio of eigenvalues,
there is no general rule for choosing a sufficient number of iterations S to insure convergence.
This is an undesirable intrinsic property of the QR algorithm for parallel implementation
as compared to the Jacobi-like method.

6 Efficient Fault-tolerance Schemes

Reliable implementation is quite essential in parallel processing architectures. For a complex
parallel processing system, a single fault from any part of the system can make the whole
system useless. For various critical applications using spectral decomposition, highly-reliable
computations are demanded. Fault-tolerance is therefore needed in many of these problems.
A simple and cost effective fault-tolerant scheme is the checksum and weighted checksum
proposed by Abraham et al [1]. This scheme is one of the typical examples of the algorithm-
based fault-tolerance which has been applied to various signal processing and linear algebra
operations [22]. Defining the checksum vector ¢7 = [1,1,---,1], the column, row and full
checksum matrices A;, A, and A of a square n-by-n matrix A are defined as

A Ae
Af:[e ¢ "‘}.

If any fault occurs during the computation, the checksum criterion is not met and thus the
fault is detected. The weighted checksum scheme can be further used to correct errors [18].
It has been suggested in [5] that a (weighted) checksum scheme can be incorporated into
the QR iteration for error detection. These properties as well as others are considered here
for the multi-phase arrays.

Since there are different operations in different phases, the inherent natures of the op-
erations of each phase are thus different and should be examined for possible fault-tolerant
implementation individually. The fault-tolerant schemes for each phase of the multi-phasc
triangular array are given as follows:

e Phase 1: As pointed out in [5,22], row checksum is invariant for the QR decomposi-
tion. It can be seen

A =] 4 Ae |=Q| R Re | = QR,. (36)

This means that the QR decomposition of a row checksum matrix results in a row
checksum upper triangular matrix. Fig.13 shows the implementation of this scheme.

e Phase 2: Due to the nature of computations in this phase, row checksum is no longer
valid. Fortunately, column checksum is possible as given by

RTAL =R [AT ATe]=[Q" Q"c]=ql. (37)
An implementation of this scheme is shown in Fig.14.

¢ Phase 3: Although a row checksum upper triangular matrix R, and a column check-
sum unitary matrix ¢J. are obtained in the above phases, unfortunately, R.Q. does
not yield any relevant use. By defining the trace operation as the sum of the diagonal
elements in a square matrix, we obtain T'r[AB] = Tr[BA], where A and B are square
matrices. Therefore,

n

Tr[App] = Tr[ReQx] = Tr[QxRy] = Tr[A] = > A, (38)

=1

where J; is the eigenvalue of matrix Ay. This invariant property can be used to check
the result of the Phase 3 operation. If the trace of A is different from the trace
obtained before, a fault is then detected during the Phase 3 computation.

For the rectangular array, the Phase 2 operation is the same as the Phase 3 operation of
the triangular array. For its Phase 1 operation, an interesting feature of this computation
is given by

QA /L] = [R.]]Q:]. (39)

That is, a row checksum of the parallel combination of matrices A and I gives a row
checksum of the upper triangular matrix R, and a row checksum of the unitary matrix Q,.

7 Conclusions

The multi-phase systolic algorithms proposed in this paper can be used efficiently to solve
the eigenvalue and SVD problems based on the QR algorithm. In particular, the eigenvec-
tors can be obtained without global communication within the arrays using the multi-phase
operations. We showed that the QR algorithm can achieve a parallel implementation on
a single architecture. Two systolic arrays, a triangular and a rectangular, are proposed
for multi-phase implementation. Efficient algorithm-based fault-tolerance schemes can be
incorporated with both arrays easily. Since the operations in each phase belong to the same
types of computation, the cell complexity is thus not increased by multi-phase operations.
There is a tradeoff between numerical stability and complexity for both arrays. Each iter-
ation takes O(n) time units while the time required for convergence is O(Sn), where S is
the number of iterations. Unlike the Jacobi-like method, the convergence rate of the QR
algorithm depends on the ratio of the eigenvalues. As a consequence, S may vary for matri-
ces of the same size, with or without origin shift to accelerate the convergence. Generally,

S is in the order of 10 for the QR algorithm. From the parallel processing point of view,
we have demonstrated the advantage of the QR algorithm that can yield two multi-phase
systolic algorithms implementable on single architectures without requiring global connec-
tions, while from the intrinsic convergence rate point of view, the QR. algorithm is somewhat
less attractive as compared to the Jacobi-like method. Depending on specific system and

14

hardware requirements, one approach may be more desirable than the other. Of course, it
is most meaningful to have two basic approaches to choose from for real-time VLSI signal
processing based on spectral decomposition.

References

[1] J.A. Abraham et al., ”Fault tolerance techniques for systolic array”, IEEE Computer,
Vol 20, pp.65, July 1987.

[2] G. Bienvenue and H.F. Mermoz, "New principle of array processing in underwater pas-
sive listening”, in VLSI and Modern Signal Processing, S.Y. Kung et al., Eds.,
Prentice-Hall, 1985.

[3] R.P. Brent and F.T. Luk, ”The solution of of singular-value singular-value and symmetric
eigenvalue problems problems problems on multiprocessor array,” SIAM J. Sci. Stat.
Comput., Vol 6, pp. 69-84, Jan. 1985.

[4] K. Bromley and J.M. Speiser, ”Signal processing algorithm, architectures, and applica-
tions”, Proc. SPIE, Vol. 431, pp. 2-6, 1983.

[5] C.-Y. Chen and J.A. Abraham, "Fault-tolerant systems for the computation of eigenval-
ues and singular values”, Proc. SPIE, Vol 696, Advanced Algorithms and Architectures
for Signal Processing, 1986.

[6] P. Comon and Y. Robert, ”A systolic array for computing BA~'” IEEE Trans. ASSP,
ASSP-35, pp.717-723, June, 1987.

[7] G.R.Gaoand S.J. Thomas, ” An optimal parallel Jacobi-like solution method for singular
value decomposition”, Proc. Int’l Conf. Parallel Processing, pp. 47-53, 1988.

[8] G.D. de Villiers, ”A Gentleman-Kung architecture for finding the singular value of a
matrix”, Proc. Int’l Conf. Systolic Array, pp.545-554, Ireland, 1989.

[9] W.M. Gentleman and H.T. Kung, ”Matrix triangularization by systolic array,” Proc.
SPIE, Vol. 298, pp. 298, 1981.

[10] G.H. Golub and C.F. Van Loan, Matrix Computation, 2nd edition, Johns Hopkins
Press, 1989.

[11] S. Haykin, "Radar array processing for angle of arrival estimation”, in Array Signal
Processing, pp.194-292, Haykin, Ed., Prentice-Hall, 1985.

[12] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1986.

[13] D.E. Heller and I.C.F. Ipsen, ”Systolic networks for orthogonal equivalence transfor-
mations and their application”, 1982 Conf. Advanced Research in VLSI, M.I.T.

[14] D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal decomposition”, SIAM
J. Sci. Stat. Comput. Vol 4, pp.261-269, June, 1983.

15

[15] W. Hoffmann and B.N. Parlett, ”A new proof of global convergence for the tridiagonal
QL algorithm”, SIAM J. Numer. Anal. Vol 15, Oct. 1978.

(16] K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, 1984.

[17] L Ipsen, ”Singular value decomposition with systolic array,” Proc. SPIE, Vol 495,
pp-13-21, 1984,

[18] J.-Y Jou and J.A. Abraham, ”Fault-tolerant matrix arithmetic and signal processing
on highly concurrent computing structures”, Proc. IEEE, Vol 74, pp.732, May, 1986.

[19] S.M. Kay, Modern Spectral Estimation, Prentice-Hall, 1988.

[20] K. Konstantinides and K. Yao, ”Statistical analysis of effective singular values in matrix
rank determination”, IEEE Trans. ASSP, ASSP-36, pp.757-736, May 1988.

[21] S.Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[22] K.J.R. Liu and K. Yao, ”Gracefully degradable real-time algorithm-based fault-tolerant
method for QR recursive least-squares systolic array”, Proc. International Conference on
Systolic Array, pp. 401-410, Killarney, Ireland, May, 1989.

(23] F.T. Luk, ”A parallel method for computing the generalized singular value decompo-
sition”, J. Parallel and Distributed Computing 2, pp.250-260, 1985.

[24] F.T. Luk, ”A triangular processor array for computing singular value,” Lincar Algebra

and Its Applications, Vol. 77, pp. 259-273, 1986.

(25] F.T. Luk, ”A rotation method for computing the QR-decomposition”, SIAM J. Sci.
Stat. Comput. Vol 7, pp.452-459, Apr. 1986.

[26] J.G. McWhirter, ”Recursive least-squares minimization using a systolic array”, Proc.
SPIE, Vol 431, Real Time Signal Processing VI, 1983.

[27] J.G. McWhirter and T.J. Shepherd, ” An efficient systolic array for MVDR beamform-
ing,” Proc. Int’l Conf. Systolic Array, pp. 11-20, 1988.

(28] D.I. Moldovan, C.I. Wu and J.A.B. Fortes, "Mapping arbitrary large QR algorithm
into a fixed size VLSI array”, Proc. Int’l Conf. on Parallel Processing, pp.365-373, 1984.

[29] J.H. Moreno and T. Lang, ”A multilevel pipelined processor for the singular value
decomposition”, Proc. SPIE Vol 698, Real Time Signal Processing IX, 1986.

[30] N.L. Owsley, ”Sonar array processing”, in Array Signal Processing, pp.115-193,
Haykin, Ed., Prentice-Hall, 1985.

[31] C.C. Paige, ?Computing the generalized singular value decomposition”, STAM J. Sci.
Stat. Comput. Vol 7, Oct. 1986.

[32] J.P. Reilly, W.G. Chen, and K.M. Wong, ”A fast QR-based array processing algo-
rithm”, Proc. SPIE Vol 975, Advanced Algo. and Arch. for Signal Processing III, 36-47,
1988.

16

[33] W. Robertson and W. Phillips, ”A systolic MUSIC system for VLSI implementation”,
Proc. IEEE ICASSP, pp.2577-2580, 1989.

[34] R.O. Schmidt, ”A signal subspace approach to multiple emitter location and spectral
estimation”, Ph.D. dissertation, Stanford Univ. 1981.

[35] R. Schreiber, ”Systolic array for eigenvalue computation”, Proc. SPIE Vol 341, Real
Time Signal Processing V, 1982.

[36] R. Schreiber, ”Systolic linear algebra machines in digital signal processing”, in VLSI
and Modern Signal Processing, pp.389-405, S.Y. Kung et al., Eds., Prentice-1all,
1985.

[37] R. Schreiber, ”Solving eigenvalue and singular value problems on an undersized systolic
systolic array,” SIAM J. Sci. Stat. Comput. Vol 7, pp.441, Apr. 1986.

[38] R. Schreiber, "Implementation of adaptive array algorithms”, IEEE Trans. ASSP Vol
ASSP-34, pp.1038-1045, Oct. 1986.

[39] G.W. Stewart, "Incorporating origin shifts into the QR algorithm for symmetric tridi-
agonal matrices”, Comms. ACM, Vol 13, June, 1970.

[40] G.W. Stewart, Introduction to Matrix Computations, Academic Press, 1973.
[41] R.A. Thisted, Elements of statistical computing, Chapman and Ilall, 1988.

[42] N. Torralba and J.J. Navarro, ”Size-independent systolic algorithms for QR iteration
and Hessenberg reduction”, Proc. Int’l Conf. Systolic Array, pp.166-175, 1989.

[43] J.H. Wilkinson, Algebraic Eigenvalue Problem, Oxford University Press, 1965.

[44] J.H. Wilkinson, ”Global convergence of tridiagonal QR algorithm with origin shift”,
Linear Algebra and Its Applications 1, pp.409-420, 1968.

17

Figure Captions:
Fig.1 Triangular systolic array for QR decomposition.
Fig.2 Computation of R~T2 using a triarray.

Fig.3 Multiplication of a triangular matrix R and an rectangular full dense matrix B
with C' = RB using a triarray.

Fig.4 Matrix-matrix multiplication in a rectangular array.

Fig.5 A circular multiplexor.

Fig.6 A first in/first out buffer.

Fig.7 Phase 1: The QR decomposition.

Fig.8 Phase 2: Computing the Q@ matrix.

Fig.9 Phase 3: Computing the matrix product RQ.

Fig.10 Multi-phase rectangular array for the QR iteration.
Fig.11a System configuration of the multi-phase triarray.

Fig.11b System configuration of the multi-phase rectangular array.

Fig.12 The number of iterations for a QR algorithm to converge versus the matrix
size.

Fig.13 Row checksum for A, = QR,.
Fig.14 Column checksum for R=7 AT = Q7.
Table 1 Operations of the processing cells for different phases.

Table 2 The timing table for the rotation parameters to reach the right edge of the
QR triarray.

Table 3 Comparisons of the multi-phase triarray and rectangular array.

18

Fig.1

— y =Rk

Fig.2

b;;

b; by
b; b by
b. by

o}

Cis Cp Cpg

— > Cun Cpn Cy

Gz G G5

Fig.3

Gk

G G G2

Gz Gs Gs

Fig.4

]

il

Output ¢«———— Input

Fig.6

Fig.7

/
/ P
7/ / \
7 /
/ dzz 3
A2 d3
din
G b1 G /—»

R
— G: G G
G Gy Gz

Fig.8

7 /
7w
// (b3 ;)
J: G O
Ji» (b1
o
Vs

dis d;p dpp /-l

' dy; dyy o I

A3 dzp A3

Fig.9

A
/1]

,, lﬁu

Fi
12.10

Host Computer

/ I \
< B

\ /
) —

Iriarray

Matrix
Multiplier

Fig.11a

Host Computer

/ I \
e

Matrix Rectangular
Multiplier Array

Fig.11b

lteration

100

80

60

40

20

-~ Heration

10

T:“a@\lll

20

30

Fig.13

ZEON~

Fig.14

[2l9eL

uﬁea
L0+ Yilre — U 4
AT ¥e — 08 | e uwip L, nog i +— i
ds — ¥y — INOg
(5 H (5
.r:nﬁ
puo
ml — d
us {
1\ H“ g .l\.& —
4
T S 4T — 8 R A A
asimaayjo | (s‘0)
‘g— s {1—0
uayy () = “'r I
:nnﬁ

¢ 9Seld

Z aseyd

] oSeyd

aseyq

11°0D

Time n+l n+2 n+3 n+4 n+5 n+6
Fist o las | as | as | ae | an
TOW ’ k4 4 ’ 9 ’
Second

row 2y | e | @9 | 26
Third 34) | 3.5
TOW

Table 2

Triangular Rectangular

array array
COmputation O((3S+2)n) O((IOS"I"Z)D)
time WOTSt case
Numerical fai tabl
stability air stable
Number of n(n+1) 2 plus
cells 2 (n? -n) d-elements
1/0O ports 2n 3n
Utilization 1 <1
Communication 1 2
devices

Table 3

