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ABSTRACT

The evaporation of a volatile species from an otherwise non-
volatile liquid spill is considered to assess the effects of
initial composition and liquid phase resistance to mass transfer
on evaporation rate. An idealized but reasonable general model
is developed for the liquid phase. At the surface, vapor-liquid
equilibria and mass transfer by wind convection are incorporated
into a non-linear, third type, jump boundary condition. The
resulting moving boundary value problem is solved numerically and
the dimensionless surface flux and cumulative fraction evaporated
are found to depend upon a modified Biot No., molecular weight
ratio and initial mass fraction of volatile. Limiting case
models are developed for the extremes of infinitely dilute versus
pure fluid, and surface convection limited versus liquid phase
diffusion limited behavior. Their range of applicability is
determined by comparing their predictions with those of the
general model. By estimating the range of Biot No. that might be
encountered, it is shown that ligquid phase resistance is
important even for shallow spills and that detailed knowledge of
vapor-liquid equilibria is often not required. Application of

the models to real spills is discussed.



Introduction

The release of hazardous chemicals to the atmosphere due to
accidental spillage of volatile liquids is a subject of great
concern. Incidents involving road and rail tank cars can result

3 of volatile liquid (Moein,

in the vaporization of 5 to 75 m
1978). Storage tank failures can lead to even larger releases.
In the event of such accidents, those responsible for mitigation
and public safety must know in what time frame they must act and
require rational tools to estimate the potential consequences of
the incident. These include fire and explosion hazard and
exposure of response teams and the public to toxic vapors.
Numerous models exist to predict the rise and transport of
gaseous substances on the winds, provided that the source term is
known. For neutral density and buoyant plumes, validated plume
rise models exist (e.g. Briggs, 1975). Many dispersion models
can accomodate or can be adapted to include a time varying source
of finite dimensions and chemical reaction with atmospheric
constituents. Recently, much attention has been given to
"heavier than air" emissions (e.g. Britter, 1979; Eidsvik, 1981;
Fay and Ranck, 1983; de Nevers, 1984; Fay and Zemba, 1985).
Calculation of evaporation rates (source term) for pure substan-
ces is relatively straightforward (Mackay and Matsugu, 1973)
since there are no liquid phase concentration gradients and a
lumped parameter approach, with time as the only independent
variable, can accomodate most of the important physical
phenomena. For the multicomponent case, ligquid phase
concentration gradients can result in a diffusional resistance to

mass transfer which is not adequately accomodated by current



models. Furthermore, the importance of liquid phase diffusion
has not been gquantified.

Mackay and Matsugu (1973) modeled evaporation of gasoline by
analogy to batch distillation. Calculated rates were higher than
experimental measurements and the authors attributed this to use
of the well mixed liquid phase assumption. Drivas (1982)
developed an analytical lumped parameter (well mixed liquid)
model for isothermal evaporation of hydrocarbon spills subject to
the restriction that the ratio of surface area to total moles of
liguid always remained constant. This implies that the spill
shrinks in cross-section rather than in depth as evaporation
proceeds. Feigley (1983) criticized his use of Raoults Law to
describe the vapor-liquid equilibria, so Drivas provided a
modified expression which accomodates constant liquid phase
activity coefficients. The Drivas approach is based on
modification of a model proposed by Harrison et. al. (1975) for
evaporation of crude o0il from sea-surface slicks. This model
also accounted for losses to the immiscible water phase.

Some authors have considered the evaporation of small
guantities of toxic substances from water pools of constant
temperature and depth. Mackay and Yeun (1983) considered several
organic solutes. In their experiments they maintained a well
mixed liquid phase, via agitation, except for a thin surface
boundary layer. They developed a correlation for the overall
mass transfer coefficient which included both liquid and gas
phase resistances. Bouwmeester and Vlek (198la, 1981b)

considered the release of ammonia from flooded rice fields and



ponded water. Their analytical model accounted for diffusional
resistance in the liquid but assumed that the liquid depth was
infinite and that the ammonia concentration was constant at the
water-soil interface.

An exact model to predict the evaporation rate of a
multicomponent spill should account for liquid and gas phase
resistance, wind induced surface waves and convection cells,
evaporative cooling and radiative heating. Furthermore, an
evaporation proceeds the liquid depth decreases thereby slowing
changes in the liquid phase composition. From a thermodynamic
viewpoint, the liquid is seldom ideal. Concentration gradients
can induce gradients in specific volume and mass diffusivity and
the vapor and liquid compositions at the spill surface cannot be
related simply. The resulting moving boundary value problem is
guite complex and even if solvable, cannot be generalized to
extract information on the relative importance of the various
phenomena. The purpose of this work is to assess the effect of
liguid phase diffusion and initial composition on evaporation
rate. We therefore solve an idealized problem to determine when
simpler models and thermodynamic relationships can be employed
without subtantial loss of accuracy.

We consider the evaporation of a single volatile component
from an otherwise non-volatile mixture. The liquid is assumed to
be an ideal solution of constant temperature and mass
diffusivity. Gas phase resistance and vapor-liguid equilibria
are incorporated into a third type, moving boundary condition at
the liguid-air interface. The partial differential equation

which describes the spatial and temporal variation of liguid



phase composition is solved numerically and the time dependent
surface vapor flux and cumulative fraction evaporated are thereby
determined. The solution depends upon three parameters for which
a sensitivity analysis is provided. Simpler models which apply
to extremes in composition and predominant resistance to transfer
are developed and their range of applicability is determined.
Application of the models to real spills is discussed.

Theory

We refer to the volatile component as A and treat all non-
volatile components as a single species B so that the spill can
be treated as a binary mixture. It is assumed that spillage
occurs instantaneously and the liquid is initially well mixed.
The surface area is large compared to the initial uniform depth
and remains constant as evaporation proceeds. There is no
seepage into the ground. Then, the concentration of A is only a
function of time and the vertical coordinate. At any time, t,
the spill depth is L(t) with L(0)=LO. The ground-liquid
interface is at z=0 and the liquid-air interface (spill surface)
is at z=L(t).

It is assumed that the background concentration of A in the
atmosphere is negligible and that the liquid and vapor at the
spill surface are in thermodynamic equilibrium. Dalton's Law
applies. The molar flux of A at the spill surface or the
evaporation rate per unit area is given by

N,(z=L(t)) = K P,/RT (1)
where Km is the gas side mass transfer coefficient and can

therefore be estimated from correlations for evaporation of a



pure liquid. The partial pressure in the liquid is given by
Raoult's Law or any convenient linear relationship so that Eq. 1
becomes

N, (z=L(t)) = n,(2=L(t))/M, = Kmp:xA/RT (2)

Since Egq. 2 is a jump boundary condition for the liquid
phase species continuity equation, it is tempting to employ a
molar frame of reference (Toor, 1962). However, the total molar
concentration is not constant since the molecular weights of A
and B differ so it would remain as a variable in the resulting
differential equation. Furthermore, this is not a case of
equimolar counter diffusion so a molar average convection term
would arise (Bird et. al., 1960). Most liquids are of similar
density. For an ideal solution it is reasonable to assume
that the total mass density remains constant thereby requiring
equimass counter diffusion so that the process is purely Fickian
in a mass frame of reference. The mass flux of A at time t in

any vertical plane in the liquid is

o=

- ow

|

(oD}

The customary species continuity equation (Bird et. al.,
1960) applies to a material coordinate system. Since mass is
being lost from the liquid, an additional convection term arises
which accounts for compression of the coordinate system and its
effect on the concentration profile (Slattery, 1972). The liquid

phase composition is therefore described by
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where dL/dt is the velocity of the surface given by

%:—_.—n (z = L(t)) (5)

The initial condition is wpsw, at t=0. Since there is no seepage
to the ground, the no flux boundary condition, 2 wA/B z =0,
applies at z=0. The surface boundary condition follows from Egs.

2 and 3 by converting mole fraction to mass fraction (Bird et.

al., 1960).

s
3w K P, M w
A m A B A
(z = L(t)) = =p D,p _ (6)
}4 RT 1 + (MA/MB - l)wA

The initial mass of A per unit area of spill is p wolg-
The amount evaporated up to time t is obtained by integrating the
surface flux so that the cumulative fraction of A evaporated is

given by

Wolp (7)

t
£,=_1 jnA(z = L(t))dt
0
It is appropriate to solve the equations in dimensionless
form by defining dimensionless time T =DABt/L02, distance n
=z/Ly, spill depth h=L/LO, concentration w=wA/w0, and mass flux

n ,=n,L,/(wy pDpp). The dimensionless differential equation is



oW _ 3°w _ dh 3w (8)

at T =0, w=1 (9)
atn=0,aw=o
™ (10)
L]
at n = h(t), ny(n = h(1)) = - 3w = Bi w (11)

3n T+ wj(a-1)w
where Bi=xmLOp§MB/(DAB PRT) is a modified Biot No. and ¢

=MB/MA is the molecular weight ratio. The dimensionless surface

velocity is

dh _ _ Voo
= =" Y nA(n h(T)) (12)

with h(0)=1. The fraction of A evaporated is

T
fa = {n;\(n=h(r))dr (13)

When evaporation of A is complete, fA =1 and h = wge

It is seen that three parameters, Bi, w5 and & , govern the
solution. A more compact form is possible for certain limiting
cases. The above will subsequently be referred to as the general
model. A formal and detailed derivation is given by Cologer
(1986).

Numerical Solution

The numerical solution to the general model utilizes a
predictor-corrector process based on an implicit, forward
difference scheme. Movement of the top boundary is accomodated
by employing a variable number of spatial grid blocks and a
variable top grid size (Crank, 1975). First derivatives are
given as forward difference fractions and the spatial second

derivative is a three point central difference fraction in the



forward time step (Carnahan et. al., 1969).

During the predictor phase of each time step, liquid level
effects are ignored. The moving boundary convection term on the
right hand side of Eg. 8 is deleted and the simplified equation is
represented numerically by
TE Wig1,g41 * (14200 W5 g41 T Wiog g4 T Vig (14)
for the bulk liguid. Subscripts i and J refer to spatial and
temporal points, respectively and r = An/Arz. Near the
boundaries, the finite difference equations incorporate the
boundary conditions, uneven grid spacing at the top (liquid-air
surface), and an imaginary grid point one step beyond both the
top and bottom (Davis, 1984). The bottom, no flux boundary

condition of Eq.10 is given by

(W1,041 = ¥Wo1,94+1)/2 8n =0 (15)

The top, jump boundary condition of Eg. 11 is given by

(Wre1,3+41 = ¥m-1,3+41) + B Vo g4

2 P An 1 + wo(a-l) L
14

0 (16)

where P defines the relative size of the top grid block and i m
is the grid point at the evaporating liguid surface. The mass
fraction in the denominator of the second term is equal to its
present value. This contributes an explicit character to the
numerical scheme thereby increasing its sensitivity to the size
of the time step. However, use of a more cumbersome nonlinear
representation of the top boundary is avoided. Therefore the

matrix of unknown coefficients remains tridiagonal and is readily

inverted.



At the end of the predictor phase, summation of the
normalized mass fractions at each grid point, weighted by the
size of the two neighboring grid blocks, gives the dimensionless
mass of A remaining in the spill. The present surface flux is
most accurately determined by subtracting this mass from that at
the end of the previoius time step and dividing by At. The
present fA follows from summation of the mass evaporated over all
previous time steps. The value of P, and after several time
steps that of m, 1is directly updated since, for a constant
density system, the mass remaining and the spill depth are directly
related.

Dropping the liquid level displaces the top layer of A and B
whose mass must be incorporated into the liquid remaining below.
During the corrector phase, the weight fraction profile resulting
from the predictor phase is modified according to the moving
boundary convection term of Eg. 8 by maintaining conservation of
mass of both species. This corrected profile is used as the
starting point for the predictor phase of the next numerical time
step.

A sensitivity analysis of solution stability dictated the
use of 100 spatial grid blocks and a time step size AT =
An4/2Bi for o < 10. The time for complete evaporation
increases with o . For o > 10, AT was increased to keep
the total number of time steps approximately equal. The details
of the numerical procedure and the computer code are given by
Cologer (1986). The scheme is readily adapted to nonideal vapor-

ligquid equilibria by treating Pi in Bi as a pseudo vapor



pressure and updating Bi at each time step.

Limiting Case Models

Several limiting case models have been developed to validate
the numerical scheme of the general model and to determine the
conditions for which simpler, more easily applied models are
adequate. In general, the evaporation rate depends upon Bi, wo
and o. In a coordinate system in these variables, regions
will exist in which a limiting case model will give the same
results as the general model. The extent of these regions can be
determined by comparison.

For the limiting case models, the assumptions of the general
case apply but additional simplifications are possible. One type
of limiting behavior depends upon the predominant resistance to
mass transfer. This is primarily determined by the Biot No.
which is the ratio of the transfer rate at the surface by wind
convection to that to the surface by diffusion. For small Bi,
the major resistance is in the gas. Liquid phase diffusion is
rapid so concentration gradients are small and the well mixed
assumption applies. This is referred to as the convection
limited case. For large Bi, the major resistance is in the
liquid. Concentration gradients are steep and the surface liquid
is rapidly depleted in A. This is termed the diffusion limited
case. The critical values of Bi which determine these behavioral
extremes depend upon w, and a. A second type of limiting
behavior is based upon initial mixture composition and
corresponds to evaporation of trace quantities of A and
evaporation of pure A. The former is referred to as the infinite

dilution case and the latter as the pure liquid case.
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It is useful to understand the significance of extremes in
o, For -0, Mp >>Mp so that the mole fraction of A is small
compared to w, and the spill is infinitely dilute in A on a molar
basis. qg»» corresponds to almost pure A on a molar basis.

Convection Limited Model. For a well mixed spill, the surface

flux is given by the right hand side of Eg.6 and wa is only a

function of time. A species material balance yields

s

w

-p g_ (Lw.) = n_(z=L(t)) = Km PA MB A
dt A A RT

1l + (MA/MB - 1) Wy (17)

at t=0, WaSWg and L=L,
Although DAB does not enter, it is convenient, for comparison
purposes, to recast Eg. 17 in terms of previously defined

dimensionless variables.

d ' Bi w
-d—'l:—(hw) = nA(n=h(T)) = 'I +""w'—oT_a_'l)w (18)

at 17=0, w=1 and h=l

Eg. 13 still applies and the quantities of interest still depend
upon all 3 parameters. However, use of TC=Bi'r and ni =
nA‘/Bi results in a solution which depends only upon Wy and  a.
Since we must solve simultaneously for w and the spill
depth, a second relationship is required. It is inherent in the
following explicit numerical scheme. At the beginning of each
time step, w, fA and the spill depth are known from the previous
time step. This w is used to calculate the current surface

flux from the right hand side of Eq. 18. The mass of A

evaporated is computed, used to update fA and removed from the

11



liquid. The spill depth and composition are updated via a simple
mass balance. The procedure is repeated until all A has
evaporated.

In practice, the convection limited model is more
conveniently applied using molar quantities and Eq. 1 or 2.
Furthermore, it is readily adapted to non-ideal mixtures by
updating the partial pressure and specific volume at each time
step.

Diffusion Limited Model. At large Bi, liquid A diffusing to the

surface is rapidly swept away. Except for small t, the surface
w will be close to zero. Egq. 11 can therefore be replaced by a
zero concentration boundary condition. The general numerical
scheme can be modified accordingly and an explicit treatment of
the surface boundary condition is no longer necessary.
Quantities of interest will no longer depend upon Bi or a.

Infinite Dilution Models. Three infinite dilution models were

developed. These are a two resistance model which applies to all
Bi, a convection limited model which only applies at low Bi, and
a diffusion limited model which only applies at high Bi.

If wy is small the liquid depth remains constant as
evaporation proceeds. Thus dh/d't= 0, h(t) =1 and Yo (a=1)w <<1
provided that ¢ is not too large. This insures that the initial
mole fraction of A is also small and that the mean molecular

weight is equal to Mg . With these simplifications, Egs. 8 to 11

reduce to



ow 32w
-B—TT = —3'-7 at T=0, w=1l
n
a
at n=0, az =0 at n=1, %% + Biw=0

Eq. 19 can be solved analytically to yield

w .
w= 2 X: e-AnT — Bi - cos Ann
n=0 An + Bi® + Bi cos)\n

where the eigenvalues are the roots of An tan An
evaporation rate is found by substituting Eqg.

dimensionless form of Eq.
o
2).
n=

The cumulative fraction of A evaporated up to time

-XZT Biz
1 (An + Bi

ny, (n=1) =

+ Bi)

3 and evaluating the result at n =

(19)

(20)

= Bi. The

20 into the

1.

(21)

T is found by

substituting Eq. 21 into 13 and integrating to obtain

2
= (1-e™™n T) Bi2
=2 ZLO Az(xz + B'2 + Bi)
n= n n 1 b

fA
We will refer to Egs.

dilution model.

(22)

20 to 22 as the two resistance infinite

More limited infinite dilution models can be developed by

considering the magnitude of Bi.

A convection limited,

infinite

dilution model is obtained from Egq. 18 by noting that now h( 1) =

1l and wg (o= 1)w <<1.

manipulation yield

w=eBl"7

nA'(11= 1) = Bi e BT
-Bi T

fA =1 - e

Analytical integration and subsequent

(23)
(24)
(25)

A diffusion limited, infinite dilution model is obtained by



replacing the surface boundary condition of Eq. 19 by w = 0 at

N =1, The results are
_ . 2 -(n + 1/2)%#%¢r (-1
W= 2 Z: e cos(n + 1/2)mn (26)
n=0 (n + 1727w
' ot - 2 2
nA(n=1) = 2 Z: e~(n + 1/2)%n% (27)
n=0 .
w _om(n + 1/2) %1% (28)
_ (1-e )
fA—2 2 2
n=0 (n + 1/2)°n

For the two resistance and convection limited infinite
dilution cases, quantities of interest depend only on Bi. For
the diffusion limited case they are also independent of Bi. As
before, the Bi dependency can be absorbed for the convection

limited case by use of To and n€.

A
These models can be applied to a broader class of mixtures

s
than those for finite Wy by replacing P, in the definition of Bi
with a Henry's Law constant.

Pure Liquid Evaporation Model. The evaporation of pure A is

given by Eg.2 with XA = 1. Since the surface flux is constant,

£ = nA(z=L(t))t/(pL0). Although D,y and My are not relevant,
previously defined dimensionless variables are used for

comparison with the general model. Then

n, ( n=1) = B, ( n=1) = Bi/a (29)

fA = Bi T/u (30)
where n, = wOnA.' Evaporation is complete when £, =1 or 1 =
a/Bi.
Results

The general model was applied to various combinations of BEi,



wy and o . Systematic trials were performed for the range 10-15_

Bi< 10°; 0.01< wy< 0.99; and 1< o < 1,000. Other
combinations were employed as necessary. The region a< 1l was
not considered since the volatile species is usually of lower
molecular weight. The limiting case models were used to scope
and verify the general model. Typical results are given below.
A larger sample is given by Cologer (1986).

Liguid phase concentration profiles for Wo = 0.5 and a =1
are given in Figure 1. At Bi = 0.1 the profiles are flat
indicating that the spill is well mixed and mass transfer is
convection limited. As Bi increases gradients become
progressively steeper and the surface concentration, Weo
decreases relative to the bulk or average concentration within

the spill. Eventually, w_ approaches zero indicating that

s
transfer is diffusion limited. Similar trends occur for other wj,
and o but at higher transitional values of Bi.

The effect of initial composition on the fraction of A
evaporated is given for o = 1 in Figure 2. The curves labeled
A and E result from the two resistance infinite dilution and pure
fluid models, respectively. At constant Bi the curves for
constant wg lie in order in an envelope between the infinite
dilution and pure fluid limits. The evaporation time decreases
as wq increases even though more A is initially present. For a
= 1, mole and mass fractions are equal and Eq. 1l reduces to nA‘
= Bi w. Therefore w is a measure of the surface partial pressure
relative to the vapor pressure contained within Bi. With

decreasing Wg, the decrease in Pp is greater than that in the



amount to be evaporated. This type of behavior will be referred
to as that determined by partial pressure.

Since the surface concentration decreases relative to the
bulk as Bi increases, the w, = 0.9 curves of Figure 2
increasingly deviate from the pure fluid curves. This effect
becomes less pronounced as Y9 decreases so the envelope of curves
broadens. Despite the drop in relative surface concentration,
the evaporation time decreases as Bi increases. Therefore,
enhanced mass transfer due to increased Bi more than compensates
for the decrease in relative partial pressure.

Certain conclusions at o= 1 do not apply to higher o since
the ratio of mole to mass fraction increases with o . For

wo(a—l) w >> 1, Eg.1ll reduces to n, = Bi/w0 @« or n, = Bi/ o .

A
The evaporation rate is equal to that for a pure liquid until
large times when W, becomes small. The evaporation time is
primarily determined by the quantity of A initially present so it

should increase with Wge The curves of constant w5 will lie in

order to the right of the infinite dilution curve so the behavior

is opposite that determined by partial pressure. The C and D
series curves of Figure 3a display quantity determined behavior.
The envelope broadens and the evaporation time increases with o
since the amount of A on a molar basis increases. The infinite
dilution curve applies to all a and the effect of o on
evaporation time decreases as W ” 0, as it should.

As a and wy decrease, actual behavior increasingly deviates
from that for a pure fluid. A transition occurs from quantity to
partial pressure determined behavior. The curves move to the

left through the infinite dilution curve and their order must



reverse as 0> 1l. The B series curves of Figure 3a lie within
this transition region. Curves for o = 100 and Wy < 0.1 would
also be in transition. The behavior is complex and not easily
gqualified due to the competitive processes involved.

Figure 3a applies to Bi = 10 where We is relatively large so
that quantity determined evaporation occurs for o >100 even at wo
= 0.1. As Bi increases the relative surface concentration
decreases so that wo((x-l)w in Eq. 11 may no longer be large even
at high a and wge Pure fluid type evaporation diminishes and the
effect of reduced partial pressure becomes more pronounced.
Therefore a transition from quantity to partial pressure
determined behavior is also caused by increased Bi. This is
demonstrated at Bi = 1000 in Figure 3b where the curves for o=
100 display partial pressure determined behavior and those for
a = 1000 have intersected the infinite dilution curve. The a =
1000 curves will begin the reversal process at slightly higher Bi.

The B series curves of Figure 3b apply to a= 1 and 10
indicating that the spill is diffusion limited for a <10 and for
all wy. For o= 100 the spill is only diffusion limited for wo <
0.1l. A comparison of Figures 3a and 3b shows that the
evaporation time decreases as Bi increases for the same reasons
as for the o =1 case. This decrease with Bi continues until
a diffusion limited situation is encountered.

Figure 2 shows that at 0= 1, the infinite dilution
assumption is valid for about Wy <0.05 and becomes slightly

better as Bi increases due to a relative decrease in w_. Figure

3 reveals that as o increases the wg = 0.1 and infinite dilution



curves increasingly deviate due to increased ratio of mole to
mass fraction. For o= 1 and W = 0.01 the general and two
resistance infinite dilution models always gave the same result.
For o= 1000 it was necessary to employ wg < 1074 to achieve
congruence. The initial mole fraction appears to be the better
criterion for invoking the infinite dilution assumption which
should only be applied for Xp <0.05.

A comparison of the wg = 0.9 and pure fluid curves of
Figures 2 and 3 indicates that the pure fluid approximation
improves as ¢ increases due to increased ratio of mole to mass
fraction. However, it deteriorates rapidly as Bi increases due
to lower relative surface concentration. Congruence of the pure
liguid and general model with wo = 0.99 hardly ever occurred
except at low Bi and high o . Under these circumstances a
convection limited (well mixed liquid) model is probably a better
choice.

The transition from convection to diffusion limited behavior
is conveniently seen by examining fA as a function of Bi at
constant wy and . Figure 4 presents results at Wy = 0.3. The
A curve is predicted by the diffusion limited model and therefore
applies to all appropriate Bi and a. The B and C series curves
were determined from the general and convection limited models,
respectively. Figure 4a reveals that at o= 1, the spill becomes
diffusion limited and the general model yields curve A for Bi
slightly greater than 100 and larger. At Bi = 0.1 the convection
limited and general model curves are congruent. At higher Bi the
well mixed model underpredicts the evaporation time since it does

not account for decreased surface partial pressure due to liquid

18



phase resistance to transfer.

Figure 4b presents similar results for a= 100. As o
increases so do the critical values of Bi which determine the
onset of both limiting cases. This occurs since concentration
gradients are not as large on a molar basis. Figure 5 is a
similar plot developed using the three infinite dilution models
and therefore applies to all ao. The effect of Wo on the
transitional values of Bi is similar to that of o but for a
different reason. As Yo increases, longer evaporation times are
required before there is considerable reduction in surface
concentration.

By comparing the results of the general and limiting case
models in terms of liquid phase concentration profile, surface
flux and cumulative fraction of A evaporated, a regime plot was
developed which allows determination of when the limiting case
models are applicable. It is given in Figure 6. For a given o,
the convection limited model is applicable below the lower or
solid curve. The diffusion limited model can be applied above
the upper or dashed curve. In between, the general model is
recommended. The curves end slightly to the left of wWg = 1 since
evaporation of a pure liquid is always convection limited.
However, the curves show the drastic effect that even small
quantities of non-volatile component can have on spill behavior.

Although the limiting case models still require numerical
computation except at infinite dilution, their solutions can be
conveniently plotted. Figure 7 provides the diffusion limited

solution which is independent of both Bi and a. In this regime
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the evaporation time always decreases with increasing wg and the
evaporation rate is determined by partial pressure since w, > 0.
The convection limited solution, which is independent of Bi in

terms of Tc = Bi T, is given in Figure 8. The evaporation time

is determined by partial pressure at o= 1 and by quantity at
large a. For 1 < o <10 the behavior is complex since the order
of the curves must reverse. Fortunately, the numerical scheme is
easily implemented.

While the cumulative fraction evaporated gives the time

frame for emergency response and mitigation, plots of n, versus 1

provide the source term for atmospheric dispersion models.
Typical surface fluxes at ¢ = 10 are given in Figure 9. The
curves provide additional insight into spill behavior. When

comparing curves of constant w recall that the definition of

OI

nA contains w0 in its denominator. At Bi

diffusion limited so the curves Al’ B1 and Cl apply to all

1000 the spill is

appropriate Bi and o (Figure 6). The flux decreases steadily as

evaporation proceeds. At short times Ny increases with wo due

to inereased surface partial pressure. At long times the reverse
trend occurs since the evaporation time decreases as w5 increases

(Figure 7).

Like the evaporation time, n, decreases as Bi decreases.
L]

At shorter times nA becomes more constant and the order of the

curves of constant W,y reverse as the spill moves from partial

pressure toward quantity determined behavior. Recall that for

a > 10, the surface flux approaches that of a pure liquid as Bi
]

decreases (see Figure 3 discussion). The region of constant n,

becomes broader with decreasing Bi and increasing WO‘ The order



of the curves can reverse themselves several times. At Bi = 100,

nA. is initially smaller than at higher Bi. As evaporation
proceeds, the surface becomes increasingly depleted in A and the
curves collapse into those for a diffusion limited condition. At
low Bi a convection limited condition is approached. The
evaporation rate remains constant until long times and then falls
rapidly since the spill has become significantly depleted. The
order of the curves reverse since the evaporation time increases
as w, increases (Figure 8). For Bi<1 and 0.3 <wy < 0.5, use of
: = nA'/Bi in place of Ny would result in curves that are

‘

independent of Bi; that is, n, increases directly with Bi. For

A is greater than that of vo-

'
n

all Bi, the effect of Bi on n

Discussion

Application of the results to real spills requires an
estimate of the range of Bi that can occur. The gas side mass
transfer coefficient can be predicted from the correlation

developed by Mackay and Matsugu (1973) for pure liquids.

0.78 ,-0.11 SC-O.67 (31)

K = 0.0292 u d

m

where Km = m/hr, u is the windspeed, m/hr, d is the effective
spill diameter, m, and Sc is the Schmidt No. for species A in
air. Eg. 31 was developed from wind tunnel data for the
evaporation of cumene into a simulated atmospheric boundary
layer. The correlation of Mackay and Yeun (1983) is less
appropriate since it applies to the evaporation of slightly
soluble organics from water bodies and includes liquid phase

resistance due to a thin surface boundary layer above an
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otherwise well mixed liquid.

The expected range of variables in Eq. 34 is 1< u<10 m/s,
3<d<35 mand 0.6<8c< 3.0 for which 0.0016 < K <0.036 m/s.
Typical molecular weights and vapor pressures for volatile

s
species are 15¢< MA< 100 and 0.2°¢< Pp< 2 atm. Let p = 1000 Kg/m3

OK. Consider the case g= 1. Since the mixture is

and T = 293
relatively inviscid, a reasonable range of liquid diffusivity is
0.5 x 107%< D, <2 x 107 m?/s. Then, for a spill of Ly = 1 cm
depth, 1 <Bi <6400. For an average condition, Bi =£270. For all
W5, Figure 6 shows that even these very shallow spills are never
convection limited. Diffusion 1limited behavior is approached
even for the average condition and the upper end of the Bi range
extends well into this regime. Spills from diked tanks can be
one to two orders of magnitude greater in depth pushing them
farther toward diffusion limited behavior.

Most volatile species are of low molecular weight.
Therefore, an increase in o is somewhat equivalent to one in My
and the Bi range scales almost directly with &. For instance,
at o = 100 and LO = 1 cm, 100 <Bi <64,000. However, as MB
increases so does viscosity, so Dpp may decrease resulting in
higher Bi. With this type of scaling Figure 6 reveals that the
conclusions for a = 1 apply at all higher .

It appears that liquid phase resistance to transfer is always
signficant at least for the case of a single volatile component.
The general model or its diffusion limited solution (Figure 7) is
required except at infinite dilution where Egs. 20 to 22 or 26 to
28 apply. This conclusion has some important practical

conseqguences. In the presence of non-volatiles, a species A will
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evaporate more slowly than would be predicted by a well-mixed
liquid/lumped parameter model. For most spills the surface is
substantially depleted in A within a short time after evaporation
begins. Therefore it is not necessary to have detailed knowledge
of the vapor-liquid equilibria. It is often sufficient to

s

replace PA in Bi by a Henry's Law constant or some pseudo vapor

pressure applicable at low X That is, the models can be

A
reasonably applied even when the vapor liquid equilibira are non-
ideal. Since evaporation is slow, evaporative cooling effects
are not so important except at high heats of evaporation/
dissolution. The isothermal assumption is not as restrictive
as first thought. The effect of cooling is to slow the
evaporation rate so the models will still yield a conservative
upper estimate.

On the other hand, the low surface partial pressure of the
volatile component presents a seriouis limitation particularly
for diffusion limited behavior. It may no longer be reasonable
to assume that the components represented here as B are non-
volatile. While the vapor pressure of B may be much less than that
of A, its surface partial pressure can be a significant fraction
of that of A. Evaporation of B will cause the spill depth to
decrease more rapidly thereby concentrating the remaining A and
increasing its evaporation rate. This may be somewhat
counteracted by evaporative cooling so model estimates may still
be reasonable.

Most spills will interact with soil or other ground

surfaces. Despite the no flux boundary condition, the models can
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be applied to the remaining liquid if seepage behavior can be
quantified. The effective liquid pool will initially contain a
concentration gradient but this should have little effect on the
steep surface gradients which form rapidly and control the
evaporation rate.

The assumption of constant mass density is not valid when
component specific volumes are substantially different or when
molecular interactions are strong. If p decreases as A
evaporates the ligquid level will not fall as rapidly. The spill
will remain stable since the negative concentration gradients
will cause negative density gradients. Actual concentration
gradients will be smaller than predicted so the models will
provide a conservative upper estimate of evaporation rates. If o
increases, the liquid depth will drop more rapidly and positive
density gradients may cause the spill to become unstable. While
buoyant convection currents may cause the bulk of the liquid to
tend towards well mixed, a liquid surface boundary layer of
considerable resistance will still remain. Mass transfer will be
enhanced and the process cannot be accurately simulated by the
models presented here. A similar situation will occur at high
wind speed due to wind driven surface waves and convection
currents.

Since liquid phase resistance is significant when non-
volatiles are present, it is reasonable to assume that it also
plays an important role when all components are volatile.
Relative to a well mixed liquid, the more volatile components
will exhibit lower surface partial pressure and vice versa. A

well mixed model will overpredict evaporation rates for the more
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volatile species and underpredict those for the less volatile
species.
Summary

For evaporation of a volatile species from an otherwise non-
volatile multicomponent liquid spill, liquid phase resistance to
mass transfer is significant. Lumped parameter (well mixed
liquid) models will therefore overestimate the evaporation rate
even for very shallow pools. A somewhat idealized numerical
model has been developed which should yield reasonable estimates
of evaporation rate except at high wind speed and heat of
evaporation/dissolution, and for extremely non-ideal
thermodynamic behavior. A regime plot has been developed (Figure
6) which allows one to determine when a simpler convection
limited or diffusion limited model can be employed without
substantial loss of accuracy. Analytical infinite dilution
models can be employed for XA‘< 0.05. Since most real spills
approach diffusion limited behavior, the surface concentration of
the volatile species is small. In many cases a Henrys Law
constant can be used in place of detailed vapor-ligquid
equilibrium data to estimate the evaporation rate.
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Nomenclature

Bi

DAB

d

S R N SR

(@]

=
>

=
os]

2
>

jo ]
-

o o} ol s a]] o]
r o0y F oP >

n
(9]

K. Lg P: Mp/(Dpp PRT), modified Biot No.
liquid phase mass diffusivity, m?/s
effective spill diameter, m

cumulative mass fraction of A evaporaced
L/LO, dimensionless spill depth

gas side mass transfer coefficient, m/s
instantaneous spill depth, m

initial spill depth, m

molecular weight of volatile species A
molecular weight of non-volatile speéies B
molar flux of A, Kg/m2's

mass flux of A, Kg/mz-s

n, LO/(wO pDpp), dimensionless mass flux
WO nA,

[]
n, /Bi, dimensionless mass flux

dimensionless mass flux

partial pressure of A at liquid-air interface, atm
vapor pressure of A, atm

82.05 x 107° m3-atm/g mole~0K, universal gas constant
gas phase Schmidt No. for species A in air

absolute ambient temperature, Ok

time, s

wind speed, m/s

wA/WO' normalized mass fraction of A

mass fraction of A in liquid

initial mass fraction of A in liquid

normalized mass fraction of A at spill surface

mole fraction of A in liquid



Z

vertical coordinate, m

Greek Symbols

Q

=

MB/MA' molecular wieght ratio
z/Lo, dimensionless vertical coordinate
total mass density of liquid, Kg/m3
2 . . .
DABt/LO , dimensionless time

Bi 1, dimensionless time
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Figure Captions

Liquid phase concentration profiles at various f, for
wg = 0.5 and o= 1.

Cumulative fraction of A evaporated as a function of
wy and Bi at a = 1.

Cumulative fraction of A evaporated as a function of
wy and a. a) Bi =10, b) Bi = 1000.

Cumulative fraction of A evaporated for various Bi at
wn = 0.3. Comparison of results from the general and
limiting case models. a) o =1, b)o = 100.

Cumulative fraction of A evaporated for various Bi
predicted by the infinite dilution models.
Comparison of results from the two resistance and
limiting case models.

Transition curves showing region of validity of
convection limited and diffusion limited models.

Cumulative fraction of A evaporated for the diffusion
limited regime. The curves of constant wo apply to
all appropriate Bi and o .

Cumulative fraction of A evaporated for the
convection limited regime as a function of Wy and a .
The dependency on Bi is contained within 1 c*

Surface mass flux versus time as a function of Bi and
w, at o= 10. a) Large Bi: A plus sign indicates
diffusion limited behavior at that and higher Bi. b)
Small Bi: A minus sign indicates convection limited
behavior at that and lower Bi.
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