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Iron-gallium alloys (Galfenol) are structural magnetostrictive materials that 

exhibit high free-strain at low magnetic fields, high stress-sensitivity and useful 

thermo-mechanical properties. Galfenol, like smart materials in general, is attractive 

for use as a dynamic actuator and/or sensor material and can hence find use in active 

shape and vibration control, real-time structural health monitoring and energy 

harvesting applications. Galfenol possesses significantly higher yield strength and 

greater ductility than most smart materials, which are generally limited to use under 

compressive loads. The unique structural attributes of Galfenol introduce 

opportunities for use of a smart material in applications that involve tension, bending, 

shear or torsion.  A principal motivation for the research presented in this dissertation 

is that bending and shear loads lead to development of non-uniform stress and 

magnetic fields in Galfenol which introduce significantly more complexity to the 

considerations to be modeled, compared to modeling of purely axial loads.  



  

This dissertation investigates the magnetostrictive response of Galfenol under 

different stress and magnetic field conditions which is essential for understanding and 

modeling Galfenol’s behavior under bending, shear or torsion. Experimental data are 

used to calculate actuator and sensor figures of merit which can aid in design of 

adaptive structures. The research focuses on the bending behavior of Galfenol alloys 

as well as of laminated composites having Galfenol attached to other structural 

materials. A four-point bending test under magnetic field is designed, built and 

conducted on a Galfenol beam to understand its performance as a bending sensor. An 

extensive experimental study is conducted on Galfenol-Aluminum laminated 

composites to evaluate the effect of magnetic field, bending moment and Galfenol-

Aluminum thickness ratio on actuation and sensing performance. 

A generalized recursive algorithm is presented for non-linear modeling of 

smart structures. This approach is used to develop a magnetomechanical plate model 

(MMPM) for laminated magnetostrictive composites. Both the actuation and sensing 

behavior of laminated magnetostrictive composites as predicted by the MMPM are 

compared with results from existing models and also with experimental data obtained 

from this research. It is shown that the MMPM predictions are able to capture the 

non-linear magnetomechanical behavior as well as the structural couplings in the 

composites. Model simulations are used to predict optimal actuator and sensor design 

criteria. A parameter is introduced to demarcate deformation regimes dominated by 

extension and bending. The MMPM results offer significant improvement over 

existing model predictions by better capturing the physics of the magnetomechanical 

coupled behavior. 
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Chapter 1: Introduction 

This dissertation explores the possibilities of using iron-gallium alloys as an 

active material in smart structures. These alloys, which are also known by the name 

of Galfenol, offer a combination of structural and magnetostrictive properties which 

can be utilized in novel devices. The design of such devices would require an in-

depth knowledge of the material’s response to mechanical and magnetic forces as 

well as its nature of interaction with other materials in a smart device. These factors 

are investigated in this work using both experimental techniques and physics-based 

modeling tools. 

The introduction attempts to provide sufficient background to the reader to aid 

in appreciation and comprehension of the contributions of this dissertation. The 

following sections will introduce the concept of smart structures and their 

applications and also provide an overview of commonly used smart materials. A 

discussion on the relative merits and demerits of smart materials will be used to 

motivate the study of magnetostrictive materials. This overview will be followed by a 

deeper discussion of the physics of magnetism and magnetostriction. A brief history 

of magnetostrictive materials and the state of the art in research related to iron-

gallium alloys will be presented. An introduction to modeling techniques using active 

materials in smart devices will also be presented. Finally the motivation, objectives 

and organization of this dissertation will be stated. 
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1.1. Smart structures 

A “smart structure,” also known as adaptive or intelligent structure, is a name 

given to a system which can perform an operation as a response to a stimulus. The 

classic example of such a smart system is the human body. For example, when we 

touch a hot object, the skin senses the temperature and this information is transmitted 

to the brain by nerves. The brain processes this information and sends a signal to the 

muscles to actuate and remove our hand from the hot object. A smart structure 

comprises of a sensor (skin), actuator (muscle), controller (brain) and information 

flow channels (nerve). 

 

Figure 1.1. Flow diagram of a smart system’s response to temperature. 

Figure 1.1 shows the flow of information in such a smart system where an 

artificial intelligent system can be created using engineered materials which will 

respond to temperature changes in the same way as a biological organism. 

In most present day smart structures, the controller is usually a single 

microprocessor or an appropriate electronic circuit with electrical conductors serving 
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as information flow channels. The controller receives the information from a sensor, 

processes it and sends an appropriate signal to an actuator which performs the desired 

action. 

 Smart structures are used in several applications as they offer a number of 

advantages over conventional systems. Mechanical, pneumatic and hydraulic power-

based technology can be bulky and may have limitations on the dynamic conditions at 

which they can be operated. Moreover, these conventional techniques may also 

require several mechanical components which can act as sources of significant noise 

and power loss and also create reliability issues due to wear and tear. On the other 

hand, smart structures can reduce weight which in turn can cut cost and power 

requirements. Additionally, the tunable nature and faster response time of smart 

structures enable them to be operated not only at different dynamic conditions but 

also over a larger bandwidth than most conventional devices. 

1.1.1. Applications of smart structures 

 Smart structure technology has been broadly used [1, 2] for active damping or 

vibration control, active shape control, stroke amplification, damage detection or 

structural health monitoring and energy harvesting. Several applications in the area of 

aerospace and automotive industries use smart structures. 

 Both fixed wing aircraft and rotorcraft applications have used concepts such 

as smart wing [3, 4] and smart rotor [4] respectively. The ideas behind a smart rotor 

[1] include actuation and control of leading/trailing edge flap angle (Figure 1.2), 

blade twist/camber and blade tip position. Such concepts could be used to mitigate the 

effects of flutter and blade-vortex interaction and thereby enhance flight safety. 
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Furthermore, structural health monitoring [5] and self-healing techniques [6] can be 

used to address problems related to fatigue. Other applications in the aerospace 

industry can be for morphing wings [7-9], synthetic jet actuators [10] and swash-

plate-less active pitch links [11]. 

 

Figure 1.2. Smart structure application in rotorcrafts. Rotor model with trailing 

edge flaps actuated with piezobimorphs. 

Source: http://www.agrc.umd.edu/research/smart-structures.html 

 Some of the possible areas of using smart structures in automotive 

applications [12] can be in active suspension systems to improve ride, minimize 

vibration and noise in engine mounts, improve performance of pumps and valves, 

shock absorbers, dampers and large energy-absorbing bumpers for improved 

crashworthiness. Some of the specific applications may include controlling the 

stiffness of seat belt and use of information from an accelerometer to deploy air bags 

in the event of an accident. 

1.1.2. Role of smart materials 

 Smart structures use smart or active materials as sensors and actuators. Active 

materials can transduce one form of energy to another. For example, a piezoelectric 

material can convert electrical energy to mechanical energy by deforming itself when 
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subjected to an electric field and thereby working as an actuator. On the other hand it 

can also convert mechanical energy to electrical energy by creating an electric field 

when subjected to pressure. The capability of energy transduction in active materials 

makes them different from a passive device such as a hydraulic press which only 

transmits (not transduce) mechanical energy through a fluid thereby producing a 

mechanical advantage. 

Although both sensing and actuation requires active materials, the 

requirements of desirable sensor [13] can be slightly different from that of an actuator 

as summarized in Table 1.1. Some of the common desirable characteristics for sensor 

and actuator materials are small size, low specific weight, low cost, high bandwidth, 

linearity, low hysteresis, low sensitivity to temperature or other factors which can 

interfere with the desired operation, structural integrity (not brittle) and minimum 

associated electronics. 

Table 1.1. Desirable characteristics of actuators and sensors. 

Actuator Sensor 

Large stroke High sensitivity 

Large blocked force Large range 

High stiffness High resolution 

High coupling factor Low drift 

Impedance matching High accuracy and precision 

 
In order to understand the behavior of smart materials and deploy them in 

smart structures, it is important to understand the physics of these materials. Such 

understanding can contribute in better materials processing and development of 
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accurate modeling techniques for predicting and controlling the response of these 

active materials. Some of the roadblocks for development of smart structures have 

been manufacturing cost of smart materials, operational reliability and structural 

integrity at extreme environments. A better understanding of the physics of these 

materials along with extensive characterization for evaluating material properties and 

development of appropriate modeling techniques and control algorithms could pave 

the way for design of advanced smart structures. 

1.2. Overview of smart materials 

Smart materials are either naturally available elements and compounds or 

engineered alloys and compounds which transduce one form of energy to another. 

The energy transduction is manifested as a change in shape and physical properties of 

the materials when they are exposed to an external energy field which produces a 

change in their atomic arrangement. Such changes in shape and properties of the 

material are used in actuator and sensor applications. Table 1.2 shows the different 

effects related to energy transduction between electrical, magnetic, mechanical and 

thermal fields. 

This section will present some of the commonly used smart materials and 

discuss more common areas of application. Section 1.2.1 will discuss the more widely 

used smart materials such as piezoelectric, magnetostrictive and shape memory alloy 

(SMA). These materials are grouped together due to certain common physical and 

functional characteristics shared by them which will be discussed in Section 1.2.2. 

Information on other active materials, such as electro-rheological (ER) and magneto-
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rheological (MR) fluids which are used in vibration dampers and fiber optics which 

are used as optical sensors, can be obtained in Ref. [1]. 

Table 1.2. Effects related to change of one form of energy to another. The input 

and output/stored energy are listed along the rows and columns respectively. 

 Mechanical Magnetic Thermal Electrical 

Mechanical Elastic, Plasticity, 

Pseudoelastic 

Magnetostrictive Friction Piezoresistive, 

Piezoelectric, 

Electrostrictive 

Magnetic Magnetostrictive, 

Ferromagnetic 

shape memory, 

Magneto-

rheological effect 

Magnetization Magnetocaloric 

effect 

Magnetoresistance, 

Hall-effect, 

Electromagnetic 

induction 

Thermal Thermal 

expansion, Shape 

memory effect 

Paramagnetic-

ferromagnetic 

phase 

transformation 

Temperature 

change 

Seebeck and Peltier 

effects 

Electrical Piezoelectric, 

Electrostrictive, 

Electro-

rheological effect 

Electromagnetic 

induction 

Joule heating, 

Seebeck and 

Peltier effects, 

Pyroelectric 

Polarization 

 

1.2.1. Introduction to ferroic materials 

The most commonly used active materials are the ones which show 

piezoelectric effect. Piezoelectric literally means pressure induced electricity which 
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refers to the fact that these materials exhibit an electrical polarity when subjected to 

mechanical stress. This direct effect is used for sensing purposes. An inverse effect 

describes a strain in these materials under the influence of an electric field which is 

used for actuation purposes. Piezoelectric materials can be ferroelectric (e.g. BaTiO3) 

or antiferroelectric (e.g. PbZrO3). Piezoelectricity is also exhibited by materials which 

are not ferroelectric (e.g. quartz) and can also be engineered in materials (e.g. PZT). 

The polarization can be reversed in a ferroelectric material which may not be the case 

in all piezoelectric materials. Piezoelectric materials need to be poled by applying a 

very high electric field along a particular direction in order to preferentially align the 

polarization along that direction. This helps in obtaining linear, reversible and bi-

directional strains from the material when it is subjected to moderate variations in 

electric field. Piezoelectricity develops as a result of non-centrosymmetric crystal 

structure which induces a spontaneous polarization in the crystal below the Curie 

temperature. The electromechanical coupling in these materials causes the distortion 

of the crystal from a cubic to a tetragonal shape which manifests as increasing strain 

with increasing polarization. 

Piezoelectric materials are used in a variety of actuator and sensor 

applications [1, 2]. They are widely used in several transducers like accelerometers, 

load cells and pressure sensors. Engineered piezoelectric transducers such as 

RAINBOW and THUNDER are used in valves, linear motors, configurable mirrors 

and synthetic jet actuators. Other aerospace applications include active control of 

twist and flap in rotor blades and development of configurable airfoils. Piezoelectric 
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stacks are also used in ultrasonic motors, sonars and for nano-positioning in AFM and 

STM stages. 

Piezoelectric materials offer several advantages such as large blocked stress (~ 

50 MPa) and free strain (~ 1000 µε), fast response as they are activated by electric 

field (voltage) with an operational bandwidth of upto 20 MHz and low impedance at 

high frequencies. These materials also exhibit certain restriction in their capabilities at 

high stresses (~ 500 MPa) at which they can get depoled and fractured. Depoling also 

takes place above Curie temperature. Another problem is the capacitive nature of the 

electrical behavior of these materials due to which they offer high impedance and 

drift in electrical signal at low frequencies. Moreover, the large hysteresis manifests 

as significant self-heating at high frequencies. 

Certain polymers (e.g. PVDF) also exhibit piezoelectricity due to an inherent 

polarity developed in the polymer chain. Such piezo-polymers can be used to make 

flexible smart fabrics for energy harvesting [14, 15], pressure sensor [12] and tactile 

sensor for posture recognition in vehicle seats [12]. 

A different type of electromechanically coupled material known as relaxor 

ferroelectrics or electrostrictives do not exhibit spontaneous polarization and hence 

show negligible hysteresis and low self-heating in dynamic applications which is 

extremely important for devices such as deformable mirrors [16] and pumps [17]. 

These materials show uni-directional strain i.e. the strain is always positive 

irrespective of the direction of applied electric field although the polarization is 

induced in the same direction as that of the electric field. Electrostrictive materials 

like PMN-PT (Lead Magnesium Niobate-Lead Titanate) exhibit about 1000 µε but 
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require very high electric field (voltage) and are brittle and extremely sensitive to 

temperature which restricts them from being used in harsh environments. Due to the 

absence of a spontaneous polarization, electrostrictives can be used as a sensor only 

in the presence of a bias electric field. 

Magnetostrictive materials, which are the primary focus of this dissertation, 

function like electrostrictive materials except that they are actuated by magnetic field 

instead of electric field. All ferromagnetic materials and some anti-ferromagnetic and 

ferrimagnetic materials exhibit magnetostriction. Magnetostrictive effect develops 

due to the reorientation of magnetization by both magnetic field and stress and hence 

is also known as magnetomechanical or magnetoelastic effect. The phenomena will 

be explained in greater depth in Sections 1.3 and 1.4. 

Magnetostrictive materials are used in a variety of applications [2] such as 

sonar, ultrasonic shaker, position controller for machine tool head, linear motor, 

torque sensor [18-23] acoustic devices and magnetic field sensor [24]. A number of 

works have shown use of magnetostrictive materials in hydrophone [25], linear 

position sensor [26] and non-contact position [27], strain [28] and stress [29] sensors. 

Magnetostrictive materials have also been used in conjunction with piezoelectric 

materials in hybrid tonpilz transducers [30, 31] and in other devices such as 

inchworm actuator [32] and rotational motor [33]. Use of magnetostrictive particulate 

composites has been proposed [34] for micro-positioners, vibration dampers and 

platform stabilizers. Magnetostrictive thin films are being used for monitoring 

biomechanical movements [35] and in micro-actuators [36], micro-biosensors [37] 

and several other MEMS applications [38]. A schematic of a wireless 
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magnetostrictive biosensor is shown in Figure 1.3. Magnetostrictive powered trailing 

edge [39] in smart wings has shown promise to reduce drag and save fuel in aircrafts. 

A review of the application in actuators and comparison of their performance with 

piezoelectric actuators can be found in Ref. [36]. A review of sensing applications of 

magnetostrictive materials can be found in Refs. [40-42]. 

 

Figure 1.3. Schematic of a wireless magnetostrictive biosensor. A shift in the 

resonance of the device takes place when bacterial cells get attached to it. The 

resonance shift can be observed in the pick-up coil signal [37]. 

Magnetostrictive materials such as Terfenol-D show high strain and blocked 

stress. In general, all magnetostrictives show fast response as magnetic field can be 

controlled by changing current which can be changed as fast as electric field. Unlike 

piezoelectric, these materials can be used under static and low frequency conditions 

with very low impedance but they offer high impedance at high frequencies (kHz 

range) due to the inductive nature of the materials. Another problem at high 
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frequency is related to formation of eddy current in the material which prevents 

excitation of the core of the material. Such problems can be overcome by using 

laminated materials. Most magnetostrictive materials have higher Curie temperature 

than piezoelectric materials as shown in Table 1.3 and hence can be operated at 

higher temperatures. Moreover, these materials do not need to be poled and hence 

there is no limitation in applying stress which can cause depoling. The small 

hysteresis shown by these materials translates to negligible self-heating, and the need 

for less complicated control algorithms for actuation and precise sensing output. 

Some of the challenges of using magnetostrictive materials are related to flux leakage 

and demagnetization effects which demands efficient design of transducer magnetic 

circuit. 

Another class of smart material which exhibit large strains due to twin 

boundary motion is known as ferroelastic material. These materials can respond to 

stress (pseudo-elasticity), temperature (shape memory alloys - SMA) or magnetic 

field (ferromagnetic shape memory alloys - FSMA). 

Traditional SMA such as Nitinol (Ni55Ti45) exists in a low temperature 

martensite phase and a high temperature austenite phase which can be reversibly 

obtained by cycling temperature. This is known as the two-way shape memory effect 

and is used for obtaining strains much larger than that due to simple thermal 

expansion. This effect can be used for low frequency and large stroke actuation. On 

the other hand, a material which is in the martensite phase will elongate when pulled 

but will regain its shape on heating even in the presence of the pulling force. This 

phenomenon is known as the one-way shape memory effect where the martensitic 
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phase elongates due to de-twinning but transforms to the austenitic phase on heating 

and regains its shape. It should be noted that this observation is contrary to thermal 

expansion. The shape recovery effect is used in applications such as braces, eyeglass 

frames and antennas. Also, the martensite phase can exhibit large strains at a constant 

stress due to de-twinning, which can be used in clamps and fasteners. The pseudo or 

super-elastic effect describes a large change in strain at almost a constant stress which 

occurs due to stress-induced martensite formation in a material which was originally 

in the austenite phase. Such materials exhibit almost complete strain recovery even 

from strains of as high as 50000 µε [1]. 

The FSMA such as Ni2MnGa and Fe70Pd30 exhibit similarly high strains due 

to de-twinning. The twin boundary motion is produced by magnetic field. The main 

advantage of FSMA over traditional SMA is that they can be used for high frequency 

applications as they are actuated by magnetic field and not temperature. On the other 

hand most FSMA are brittle and their bandwidth is limited by eddy current formation. 

Table 1.3 summarizes the properties of commonly used ferroic smart 

materials. It can be seen that Galfenol exhibits moderate free strain but has very low 

power requirements. Moreover, it shows much better structural properties and can be 

operated at temperatures higher than other materials. These benefits offered by 

Galfenol have motivated further research in this dissertation, particularly to utilize its 

structural properties. 
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Table 1.3. Properties of ferroic smart materials [1, 43-52]. 

Properties PZT-5H PVDF PMN-PT Terfenol-D Galfenol Nitinol 

Free strain 1000 µε 700 µε 1000 µε 2000 µε 350 µε 60,000 µε 

Actuation 

field 

5x105 

V/m 

108 

V/m 

106 

V/m 

240 

kA/m 

10 

kA/m 

100 MPa 

(depends on 

temperature) 

Young’s 

modulus 

69 GPa 2 GPa 14 GPa 48 GPa 65 GPa 27/90 GPa 

(martensite / 

austenite) 

Tensile 

strength 

76 MPa 

(Brittle) 

43 MPa 

(Ductile) 

30 MPa 

(Brittle) 

28 MPa 

(Brittle) 

515 MPa 

(Ductile) 

750 MPa 

(Ductile) 

Bandwidth 0.1 Hz – 

1 MHz 

0.1 Hz – 

1 MHz 

0.1 Hz – 

1 MHz 

0 – 

100 kHz 

0 – 

1 kHz 

0 – 

1 Hz 

Phase 

transition 

or Curie 

temperature 

193 oC 177 oC 166 oC 380 oC 675 oC 40 – 65 oC 

(martensite to 

austenite) 

 

1.2.2. A unified view of ferroic materials 

This section presents a view of the ferroic materials which can be unified 

based on energy and structural considerations. Although there are fundamental 

differences between the phenomena of ferroelectricity, ferromagnetism and 

ferroelasticity, nevertheless a unified view is appreciative of the underlying physics 

and is helpful for modeling purposes [2]. It is assumed that the reader is familiar with 
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basic material science and hence some of the terms used in this section are not 

explained in details. The terms relevant for ferromagnetic materials will be explained 

in details in Section 1.3 and 1.4.  

 

Figure 1.4. Domains in ferroic materials. 

As shown in Figure 1.4, all three ferroic materials have a fundamental 

structural unit which is a domain. It can be an electric or magnetic domain or an 

elastic domain (twin variant). Domains are formed below a critical temperature in 

order to reduce electrostatic, magnetostatic or elastic energy. The phase 

transformation at this critical temperature is of an order-disorder type. The high 

temperature phases, such as paraelectric, paramagnetic and austenite are disordered 

phases. The low temperature phases, such as ferroelectric, ferromagnetic and 

martensite are ordered phases. The ordering involves that of electric dipoles, 

magnetic moments or atoms in the crystal lattice. The domains are characterized by 

order parameters, such as polarization, magnetization and strain. Adjacent 

ferroelectric and ferromagnetic domains have polarization and magnetization in 

different direction respectively. Adjacent ferroelastic domains have different twin 

variants. The domains are separated by domain walls which form at pinning sites, i.e. 

at locations of material defects or stress inhomogeneities. 
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Ferroic materials respond to different fields which change their order 

parameter. Electric fields change the polarization and also cause electrostriction due 

to lattice distortion in ferroelectric materials. Magnetic fields change the 

magnetization and also cause magnetostriction in ferromagnetic materials. Whereas 

the polarization or magnetization follows the sign (direction) of the electric or 

magnetic field, the striction is always of the same sign (i.e. either elongation or 

contraction) in a given material irrespective of the sign of the field. Similarly stress 

fields can produce pseudo-elastic strains in ferroelastic materials. 

Inspite of such similarities, fundamental differences exist between the three 

types of ferroic materials. Ferroelectric such as BaTiO3 and ferroelastic materials 

exhibit first order phase transition which is marked by a discontinuity in the order 

parameter at the critical phase transition temperature. Other ferroelectrics such as 

KH2PO4 and ferromagnetic materials exhibit a second order phase transition which is 

evident from the monotonic change in the order parameter with temperature. Albeit, 

in both cases the order parameter becomes zero beyond the phase transition 

temperature. Ferroelectric materials have an actual fundamental unit which is an 

electric charge and hence there can be monopoles but such fundamental units do not 

exist for ferromagnetic and ferroelastic materials.  

1.3. Physics of ferromagnetism 

The comparative background provided in the previous section sets the stage to 

delve in further details of ferromagnetism which will be required to understand the 

behavior of magnetostrictive materials. 
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The knowledge of magnetism dates back to the days when Greeks in 

Magnesia observed that a loadstone (Fe3O4) always points along the same direction. 

Magnetic theory in materials developed in allusion to the concept of earth’s magnetic 

field which conceptualizes earth as a huge permanent magnet with its magnetic north 

pole facing nearly towards the geographical south pole and its magnetic south pole 

facing nearly towards the geographical north pole. Unlike mechanical forces, forces 

of magnetism are non-contact forces which are manifested in the form of dipoles 

(known as the north and south poles), where the like poles repel each other and unlike 

poles attract each other. 

In this section, the terms related to the study of magnetism are reviewed and 

the concept of electromagnetism and its description using the Maxwell’s equations is 

introduced. The origin of magnetism at the atomic scale is explained using a 

combination of classical physics and introductory quantum physics. Finally, the idea 

of magnetic domains as a result of energy balance is introduced. The motion of 

magnetic domains is related to the process of magnetization and magnetostriction. 

1.3.1. Fundamental magnetic quantities 

Hans Christian Oersted (1820) observed that a current carrying conductor 

produces a magnetic field and attributed it to the motion of charges that constitute an 

electric current. The “magnetic field strength” (H) is defined as the magnetic vector 

quantity at a point in a magnetic field which measures the ability of electric currents 

or magnetized bodies to produce magnetic induction at the given point [53]. Magnetic 

field strength is measured in oersted (cgs) or ampere per meter (SI) where 1 Am-1 = 

79.57747 Oe. 
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The Biot-Savart law (1820) shown in Equation (1.1) which gets its name from 

Jean-Baptiste Biot and Felix Savart, gives the elemental field dH generated at a 

distance r from an elemental conductor of length dl carrying the current i. 

24π
= ×

id
d

r

l
H r     (1.1) 

The integral form of the same law shown in Equation (1.2) was developed by Andre 

Marie Ampere (1820). Here H is the magnetic field produced by N number of current 

elements with current i in each of them in a closed circuit of a fixed length. 

.= ∫�Ni dH l      (1.2) 

It is possible to find the field generated at the center of an infinitely long solenoid by 

the simple application of Ampere’s Law. The field (H) at the center of a long solenoid 

of length l having N turns of a conductor carrying a current i is given by Equation 

(1.3) [54]. 

Ni
H

l
=      (1.3) 

Magnetic force is visualized in the form of imaginary lines known as lines of 

magnetic flux (Φ). The units of magnetic flux are maxwell (cgs) or weber (SI) where 

1 Wb = 108 Mx. These units were named after James Clerk Maxwell and Wilhelm 

Eduard Weber. The lines of flux are continuous, starting from the north pole and 

ending in the south pole. These lines can never intersect each other and the tangent to 

a line of force at a point gives the direction of the magnetic induction. The density of 

the flux lines determines the strength of the magnetic induction. 

The “magnetic induction” or “magnetic flux density” is denoted by (B) and 

gives a measure of the strength of magnetic flux induced in a material due to the 
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application of the external magnetic field. Magnetic induction is measured in gauss 

(cgs) or tesla (SI) where 1 T = 1 Wbm-2 = 104 G. These units were named after 

Johann Carl Friedrich Gauss and Nikola Tesla. The magnetic flux through a material 

of area A can be related to the magnetic induction using Equation (1.4). 

.Φ = B A      (1.4) 

The lines of induction always form a closed path, i.e. through any closed 

surface, the amount of flux entering and leaving are equal. This statement is also 

known as Gauss’s Law [55] and can be expressed by Equation (1.5). Note that the 

elemental area (dA) is a vector whose direction is normal to the surface. 

. 0=∫� dB A      (1.5) 

Magnetic induction and magnetic field can be related using the linear 

constitutive Equation (1.6). 

µ=B H      (1.6) 

Here µ is known as the magnetic permeability of the material. The magnetic 

permeability of vacuum (µo) has a constant value of 4π x 10-7 Hm-1 (SI) or 1 (cgs). 

The SI unit of permeability is henry per meter and is derived from the concept of 

inductance which will be introduced in Section 1.3.3. Permeability is a material 

property and can be a complicated function of magnetic field, stress, material 

temperature, thermal history, etc. Usually materials are characterized by their relative 

permeability (µr) which is defined by Equation (1.7). 

r

o

µ
µ

µ
=      (1.7) 
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Another term known as the magnetization (M) of a material indicates the 

amount of magnetic moment (m) per unit volume, aligned in the material due to an 

externally applied field H. In cgs unit system volume magnetization is denoted by 

4πM and is measured in gauss whereas in SI system magnetization is denoted by M 

and is measured in Am-1. Hence the total magnetic induction in a material is given by 

Equations (1.8) or (1.9). 

µ µ= +
o o

B H M  in SI system  (1.8) 

4π= +B H M  in cgs system  (1.9) 

Furthermore, magnetization is also related to magnetic field using the linear 

constitutive Equation (1.10) using a property called magnetic susceptibility (χm). 

χ=
m

M H      (1.10) 

Using Equations (1.6) – (1.10), a relationship between permeability and susceptibility 

can be stated using Equation (1.11). 

1
m r

χ µ= −      (1.11) 

Permeability gives a measure of the extent of magnetic flux that will pass through a 

material when it is kept in a magnetic field. Susceptibility gives a measure of the 

magnetic moment that will be aligned in the material by the externally applied 

magnetic field. 

The B (or M) vs. H curve represents the magnetic behavior of a material. These are 

also known as ‘hysteresis’ plots and were first observed in iron by Warburg (1881) 

[56] and named such by Ewing (1900) [57] to emphasize on the fact that the B or M 

of the materials lags behind the H in response. This behavior will be explained in 

details in Section 1.3.7. 
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1.3.2. Demagnetization and its significance 

When a ferromagnetic material of finite size is magnetized by an external 

magnetic field (H), the free poles which appear on its ends produce a magnetic field 

directed opposite to the magnetization [58]. This field is called the demagnetizing 

field (Hd). The demagnetizing field is proportional to the pole strength of the 

magnetized material and is a function of geometry and can be expressed using 

Equation (1.12) for a uniformly magnetized material. 

=
d

NdH M      (1.12) 

Here Nd is a demagnetizing factor which is dependent on the specimen geometry. In 

the SI system Nd is dimensionless and can be expressed as a tensor as shown in 

Equation (1.13) which satisfies the condition 1
xx yy zz

N N N+ + = . 

dx xx xy xz x

dy yx yy yz y

dz zx zy zz z

H N N N M

H N N N M

H N N N M

    
    =     
        

   (1.13) 

Here Nxx is the demag factor that determines the contribution to the demag field (Hdx) 

along the x-axis due to the magnetization (Mx) along the x-axis. 

The phenomenon of demagnetization severely affects measurement of 

magnetic properties of specimens with finite length as shown in Figure 1.5. A sample 

of infinite length has Nd = 0 whereas the effect of a smaller length is shown in Figure 

1.5 by considering an Nd = 0.005. A smaller value of susceptibility is obtained for a 

sample of smaller length. 
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Figure 1.5. (a) Demagnetization field in a sample of finite length created due to 

development of magnetic polarities. (b) Effect of demagnetization field on B vs. 

H curve of the material. 

A scheme of calculation can be used to correct the field inside the sample 

(Hin) if the applied field (Happ), the magnetic flux density (B) and demag factor (Nd) 

are known. The internal field can be expressed using Equation (1.14). 

in app d
H H N M= −     (1.14) 

Replacing M in Equation (1.14) by using Equation (1.8) with H = Hin, the corrected 

internal magnetic field can be obtained using Equation (1.15). 

0

1

d
app

in

d

N B
H

H
N

µ
−

=
−

    (1.15) 

The underlying assumption in such correction considers a homogenous magnetic 

material and applies the correction uniformly across the material. In reality the 

magnetic properties are not constant across the material. 

Analytical formulae for Nd were initially developed for prolate and oblate 

ellipsoids [59] and much later for rectangular prisms [60]. The demag factor (Nd) is 
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zero for toroid and along the length of an “infinitely” long cylinder [61]. Nd has been 

calculated for cylinders based on the aspect ratio (l/d). For a sphere or a cube Nxx = 

Nyy = Nzz = 1/3. For a thin circular plate having its diameter in the x-y plane, Nxx = Nyy 

= 0 and Nzz = 1. A more generalized approach for finding demag factors for arbitrary 

particle shape has been developed by Beleggia et al. [62].  

1.3.3. Electromagnetism and magnetic circuit 

The concept of demagnetization brings forth the idea of magnetic circuit such 

that Nd = 0 and 1 correspond to perfectly closed and open circuits respectively. Before 

presenting the idea of a magnetic circuit analogous to an electric circuit, it is 

important to be aware of certain postulates of electromagnetism. 

The phenomenon of electromagnetic induction can be best described by the 

laws proposed by Michael Faraday (1831) and Heinrich Lenz (1834). Faraday’s law 

states that the voltage induced in an electrical circuit is proportional to the rate of 

change of magnetic flux linking the circuit. Lenz’s law states that this induced voltage 

is in a direction which opposes the flux change producing it. These laws can be 

combined as shown in Equation (1.16) [54]. 

d
V N

dt

Φ
= −      (1.16) 

Here V is the induced electro-motive force (emf) produced by the flux Φ changing at 

the rate dΦ/dt and passing through a coil of N turns. Equation (1.16) can be written as 

Equation (1.17) in terms of the cross-section area A of the coil and flux density B. The 

principle of electromagnetic induction is used to measure B with a pick-up coil. 

dB
V NA

dt
= −      (1.17) 
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The phenomenon of self-inductance discovered by Joseph Henry (1832), 

described that a change in the direction of current flowing through a coil sets up an 

emf so as to oppose the change of the direction of the current. This effect is evident 

when an alternating current flows through a coil. An inductor stores electrical energy 

in the form of magnetic energy unlike a resistor which dissipates the electrical energy 

in the form of heat energy. Self-inductance (L) is defined as the ratio of back-emf 

(Eback) induced in a coil by a changing current to the rate of change of current (di/dt) 

through coil or total flux linkage per unit current [54] as shown in Equation (1.18). 

2
0

/
back r

E N AN
L

di dt i l

µ µΦ
= = =    (1.18) 

Here Φ is the flux linkage through a coil of length l and cross-section area A having N 

number of turns when an electric current i flows through it. The unit of inductance is 

henry. Power loss due to inductive impedance can be appreciable at higher 

frequencies and hence it poses an impediment in the design of dynamic 

magnetostrictive transducers. 

One significance of Ampere’s law is that it defines a magneto-motive force 

(mmf) which is analogous to the emf of an electrical system. Conceptually, a 

magnetic circuit can be created analogous to the electrical circuit where the magnetic 

flux (Φ) is equivalent to the electric current, the mmf (Fm) is equivalent to the emf 

and the magnetic reluctance (Rm) is equivalent to the electrical resistance. In a form 

that is analogous to Ohm’s law (actually a different form of the Ampere’s Circuital 

Law) [63] the relationship between these quantities can be as expressed as Equation 

(1.19) where Fm = Ni and Rm = l/µA. A schematic of a magnetic circuit representation 

of a system is shown in Figure 1.6. 
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m m
F R= Φ      (1.19) 

 

Figure 1.6. (a) A coil with current i and N turns wrapped around a closed 

ferromagnetic rectangular lamina having permeability µ, of perimeter l and 

cross-section area of each arm being A. (b) An equivalent magnetic circuit 

representation of the scenario shown in (a). 

Another electromagnetic phenomenon which should be introduced is the Hall-

effect, named after Edwin Hall (1879). This effect is a manifestation of Lorentz force, 

postulated by Hendrik Lorentz, and describes that a force (F) acts on a charge (q) 

moving with velocity (v) in the presence of an electric field (E) and magnetic 

induction (B) [54]. The Lorentz force can be calculated from Equation (1.20). 

( )= + ×  qF E v B     (1.20) 

The Hall-effect states that when a current carrying conductor is placed in a 

magnetic field where the magnetic flux lines are perpendicular to the direction of 

current, a potential difference, known as a Hall voltage (VH), will develop along a 

direction which is perpendicular to both the direction of current and magnetic flux. 

This effect arises as the charge carriers are deflected inside the conductor in the 

presence of a magnetic field thereby developing a polarity which gives rise to the 

potential difference. The Hall voltage can be calculated from Equation (1.21) where i 
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is the current, B is the flux density, t is the thickness of the conductor, n is the number 

of charge carriers and e is the unit of charge (= 1.609 x 10-19 coulomb). 

H

iB
V

tne
= −      (1.21) 

The Hall-effect is illustrated in Figure 1.7 and its use as a magnetic field sensor will 

be discussed in Section 1.3.4. 

 

Figure 1.7. Illustration of Hall-effect showing the development of Hall voltage 

along –y due to polarization of the conductor under the combined effect of a 

magnetic field and electric current along +z and +x directions respectively. 

1.3.4. Maxwell’s equations and their significance 

Equations (1.22) – (1.25) are known as Maxwell’s equations which are used in 

classical physics to describe an electromagnetic field [55]. 

∂
× = +

∂t
∇∇∇∇ f

D
H J   (Ampere’s Law) (1.22) 

∂
× = −

∂t
∇∇∇∇

B
E    (Faraday’s Law) (1.23) 

. 0=∇∇∇∇ B    (Gauss’s Law)  (1.24) 

. ρ=
f

∇∇∇∇ D    (Gauss’s Law)  (1.25) 
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Here ˆ ˆ ˆ∂ ∂ ∂
= + +

∂ ∂ ∂x y z
∇∇∇∇ i j k is the gradient operator, Jf is the free current density 

(current per unit area-perpendicular-to-flow due to the motion of free charges, unit: 

Am-2), D is the electric displacement (unit: Cm-2), E is the electric field (unit: Vm-1) 

and ρf is the free charge density (unit: Cm-3). The electric displacement can be related 

to the electric field using the constitutive Equation (1.26) [55] where P is the 

polarization (unit: Cm-2) of the dielectric material and ε is the electrical permittivity 

(unit: farad per meter or Fm-1). Note that εo = 8.854 x 10-12 Fm-1 is the permittivity of 

vacuum. 

ε ε= + =
o

D E P E     (1.26) 

The free current density can be expressed by Equation (1.27) [55] where v is the 

velocity of the charge flow. 

ρ=
ffJ v      (1.27) 

Maxwell’s equations summarize the relationships between the magnetic and 

electrical parameters in ferromagnetic conductive media. They also define the 

boundary conditions across magnetic media as illustrated in Figure 1.8. Since the 

divergence of B is zero, using Gauss’ law and divergence theorem we can get 

Equation (1.28) which shows that the normal component of B is continuous across 

magnetic media. This implies that a pick-up coil can only measure the component of 

B which is normal to its cross-section. 

2 1
ˆ ˆ. . . 0= − = ⇒ =

n n
B B∇∇∇∇ 2 1B B n B n    (1.28) 

Similarly, in absence of any surface current and under static (or quasi-static) 

condition, the curl of H is zero. Using Ampere’s circuital law and curl theorem we 
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can get Equation (1.29) which shows that the tangential component of H is 

continuous across the boundary of magnetic media. 

1 2 1 20× = − = ⇒ =
t t t t
H H H H∇∇∇∇ H    (1.29) 

 

Figure 1.8. (a) Continuity of tangential component of H across the boundary of 

magnetic media having no surface current. (b) Continuity of normal component 

of B across the boundary of magnetic media. 

This idea can be used to measure the tangential component of H at the surface 

of a ferromagnetic sample. A Hall-effect sensor adhered to the sample’s surface can 

measure the tangential component of B in air at the surface. This is same as 

measuring the tangential component of H in air at the surface as the relative 

permeability of air is unity. Since the tangential components of H inside and outside 

the sample at the boundary are equal, an approximate value of H inside the sample 

can be measured using this idea. This technique will be used in Chapter 2. 

1.3.5. Classification of magnetic materials 

The magnetostrictive effect introduced in Section 1.2.1 was related to 

ferromagnetic material but in general all materials can be classified into diamagnetic, 
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paramagnetic or ferromagnetic substances based on their susceptibility or the effect 

of externally applied magnetic field on the magnetic moments [64]. Diamagnetic 

substances develop a very weak induction only when an external magnetic field is 

applied. The induction in the material is in the direction opposite to that of the applied 

field as these materials have a negative susceptibility (~ 10-5). Paramagnetic 

substances have magnetic moments which cancel each other’s effect in the absence of 

an external magnetic field due to their random orientation in the bulk material. On 

applying a magnetic field, such materials develop a small induction in the same 

direction as the applied field. Paramagnetic materials have susceptibility in the range 

of 10-5 to 10-2. 

When paramagnetic substances are cooled below their Curie temperature (Tc) 

the magnetic moments inside them become ordered which can produce a net polarity 

in these substances even in the absence of an external magnetic field. This phase of 

the material is known as the ferromagnetic phase. Materials such as iron (BCC α 

phase), cobalt, nickel and some rare earth metals which exist in their ferromagnetic 

phase at room temperature are known as ferromagnetic materials. They can have 

susceptibility of as high as 106. In these materials the value of M >> H. The 

maximum value of M is known as saturation magnetization (Ms) which is obtained 

when the applied H is able to align all the magnetic moments in the material in the 

direction of the applied field. Saturation magnetization can be defined as the product 

of the magnetic moment of each atom and the number of atoms in the material 

divided by the volume of the material. 
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The magnetic moment mentioned here is due to the electron spin and orbital 

motion of electrons around the nucleus. The reason for development of magnetic 

moment and their ordering in ferromagnetic materials will be discussed in Sections 

1.3.6 and 1.3.7 respectively. 

Net magnetism and magnetostriction are also observed in ferrimagnetic 

materials (e.g. MFe2O4 where M2+ = metallic ion). This class of materials has an 

inverse spinel crystal structure where the M2+ ions are situated in the octahedral 

lattice site and the Fe3+ ions are situated in the octahedral as well as tetrahedral sites. 

The net magnetic moment arises due to incomplete cancellation of the spin moments 

of the M2+ and Fe3+ ions. 

The coupling of magnetic moments between adjacent ions or atoms can occur 

in materials other than ferromagnetic materials. Inspite of this there might be no net 

macroscopic magnetic moment if the spins of adjacent atoms or ions are arranged in 

opposite directions. This phenomenon is called antiferromagnetism (e.g. MnO). 

1.3.6. Magnetism at the atomic scale 

An obvious question that arises after learning about electromagnetism and 

magnetic materials is regarding the principle that give rise to magnetism in materials. 

The existence of magnetism can be attributed to the magnetic moments of electrons in 

atoms. This section assumes the familiarity of the reader with the Bohr model of an 

atom and the basic postulates of quantum mechanics [65]. According to the classical 

model (Bohr model) of an atom, both the orbital angular momentum which can be 

visualized as revolution of electrons around the nucleus and the spin angular 

momentum which can be visualized as rotation of electrons about its own axis, 



 

 31 
 

contribute to the magnetic moment. A pictorial representation of the revolving 

electron based on the Bohr model can be seen in Figure 1.9. 

 

Figure 1.9. Visualization of an electron in an orbit as a current carrying loop. 

The orbital magnetic moment can be derived as follows. A revolving electron 

can be visualized as a current loop where the current is given by Equation (1.30). 

Here e is the charge on the electron (= 1.602x10-19 C), v is the orbital speed of the 

electron and r is the orbital radius. 

2

ev
i

rπ
=      (1.30) 

The magnetic moment (morbital) due to this current loop is given by Equation (1.31). 

2 1

2 2
orbital

ev
m iA r evr

r
π

π

 
= = = 

 
  (1.31) 

Equation (1.31) can be written in terms of the orbital angular momentum (L) as 

Equation (1.32) where me (= 9.11 x 10-31 kg) is the mass of an electron and L = mevr. 



 

 32 
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e

e
m L

m

 
=  
 

    (1.32) 

Applying principles of quantum physics, ( )1L l l= + �  where
2

h

π
=�  = 1.05x10-34 Js 

and the orbital quantum number l = 0, 1, 2, n – 1; n being the principal quantum 

number. See Ref. [65] for more background on quantum numbers. 

The spin magnetic moment can be derived as follows. The magnetic moment 

due to electron spin (mspin) can be expressed by Equation (1.33) where ω is the 

angular speed of an electron about its own axis. 

2 21

2 2
spin

e
m iA r e r

ω
π ω

π

 
= = = 

 
  (1.33) 

Equation (1.33) can be written as Equation (1.34) in terms of the spin angular 

momentum (S). As per classical mechanics, 21

2
eS I m rω ω

 
= =  

 
, where I is the 

moment of inertia of the electron. 

spin

e

e
m S

m
=      (1.34) 

Applying principal of quantum mechanics, ( )
3

1
2

S s s= + =� �  where s = ±1/2 is 

the spin quantum number. The total magnetic moment of an electron can be expressed 

by Equation (1.35). 

2
2 2

orbital spin

e e

e e
m m m L S

m m

   
= + = +   

   
  (1.35) 

The term (eħ/2me) is known as Bohr magneton (µB = 9.27x10-24 JT-1). Atomic 

magnetic moments are expressed as multiples of Bohr magneton. Note 1 JT-1 = 1 



 

 33 
 

Am2. The contribution due to orbital magnetic moment is low, as electrons with 

opposite spins cancel each other’s effect. This also holds for the contribution due to 

spin magnetic moment except for the unpaired electrons. Thus the majority of 

magnetism arises due to the presence of unpaired electrons in an atom. The pairing up 

of electrons in different orbitals is based on Pauli’s exclusion principle and Hund’s 

rule of maximum multiplicity. 

The classical model gives a simplified explanation of the origin of magnetism 

in atomic level. This has been modified using the quantum mechanical model which 

also takes into account the effect of a magnetic field on electrons (Zeeman effect) and 

introduces the magnetic quantum number in order to fully describe an electron along 

with the principal, orbital and spin quantum numbers. A further wave-mechanical 

correction was done based on Schroedinger’s wave equation for electrons. Further 

details on this topic can be obtained in standard textbooks on magnetism [58, 63, 66]. 

1.3.7. Magnetic domains and process of magnetization 

In order to bridge the gap between magnetism at atomic scale and the 

magnetization process observed in bulk materials, it is imperative to discuss the idea 

of magnetic domains which was introduced in Section 1.2.2. 

During the mid 19th century, Weber tried to explain the phenomena of 

magnetism by considering molecular magnets which were free to turn about their 

center like a compass needle. On the other hand, James Alfred Ewing tried to model 

the magnetization behavior using minimization of magnetic potential energy [57]. 

Although these hypotheses had some initial success, Ewing’s theory failed to comply 

with the numeric values of the magnetic moments of ferromagnetic materials once 



 

 34 
 

they were experimentally found. Based on the initial works of Weber, Paul Langevin 

(1905) proposed the theory of paramagnetism [67]. Taking this theory a step forward, 

Pierre-Ernest Weiss (1907) proposed the theory of ferromagnetism [68] which is also 

known as “domain theory.” 

Weiss observed the discontinuity of specific heat at the Curie temperature and 

related this to an order-disorder transformation that leads to ordering of the magnetic 

moments in small regions called “domains” in the ferromagnetic phase. The domains 

exhibit spontaneous magnetization. In general, a bulk material is comprised of a 

number of domains each of which can be as large as a few millimeters. All the 

magnetic moments of the atoms within a domain orient along the same direction. In a 

demagnetized state, the domains are randomly oriented in the bulk material and 

therefore materials such as iron or nickel do not show any net magnetization unless 

exposed to a magnetic field. 

Magnetic domains were first observed [69] by Francis Bitter (1931) and soon 

Lev Davidovich Landau and Evgeny Mikhailovich Lifshitz (1935) explained [70] the 

formation of domains using the concept of magnetostatic energy. Theoretical studies 

on domain structures enabled the proposition of the concept of domain walls by Felix 

Bloch (1932) [71] and Louis Néel (1944) [72]. 

It is necessary to introduce certain energy terms in order to better understand 

the reason for existence of domains and how they evolve during the magnetization 

process. 

Weiss used the concept of a “Mean field” to describe the alignment of 

magnetic moments inside the domain. The mean field approximation required all 
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magnetic moments to equally interact with each other. The origin of this interaction 

was later explained by Heisenberg (1928) [73] as a quantum-mechanical exchange 

effect due to overlapping wave functions of neighboring atoms. The exchange energy 

per unit volume is given by Equation (1.36) [58] where A is the exchange stiffness 

and α is a vector that denotes the magnetization direction. 

22 2

exE A
x y z

  ∂ ∂ ∂    
= + +     

∂ ∂ ∂      

α α αα α αα α αα α α
   (1.36) 

The exchange stiffness depends on the crystal structure, inter-atomic distance and 

Curie temperature of the material. The exchange energy favors the alignment of all 

magnetic moments along the same direction. This does not happen in reality as there 

are other energy terms that need to be balanced. 

One such term is the magnetostatic energy. The magnetostatic energy per unit 

volume of a magnetic dipole with magnetization M in an externally applied magnetic 

field H can be expressed using Equation (1.37). 

ms o
E µ= − H.M     (1.37) 

Even in the absence of an external field, the magnetic dipole is subjected to its own 

demagnetizing field Hd (= NdM) such that the magnetostatic energy ~ 2

2
o

d
N M

µ
. 

Hence, in order to reduce the magnetostatic energy, it is favorable to breakdown a 

single large dipole into multiple domains as shown in Figure 1.10, provided the 

reduction in magnetostatic energy is greater than the energy required to form the 

domain walls. Smaller domains are formed at the boundaries of larger domains and 

are oriented perpendicular to the larger domains. These smaller domains, known as 

‘closure domains,’ eliminate the possibility of having free poles at the end of the bulk 
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material thus providing a closed flux path between the larger domains and reducing 

the magnetostatic energy to almost zero. 

   

Figure 1.10. (a) Single domain with large magnetostatic energy (b) Multiple 

domains reduce the magnetostatic energy (c) Formation of closure domains 

eliminates external magnetic poles. 

As evident from Figure 1.10, a domain wall is a region between two domains 

of different magnetization direction. Since it is not feasible to have two adjacent 

magnetic moments at the domain boundary aligned at a large angular difference due 

to the associated high exchange energy, the domain wall provides a layer of multiple 

atoms each oriented at a small angular difference from its neighbor. The cumulative 

change in angular difference through the domain wall thickness manifests as the 

difference in magnetization between the neighboring domains. This idea is 

schematically shown in Figure 1.11. 

(a) (b) (c) 
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Figure 1.11. Rotation of magnetic moments across a domain wall. 

The width of the domain wall is determined from a balance between the 

exchange energy and the magnetocrystalline anisotropy energy. The latter term 

denotes the energy required to rotate the magnetic moments away from certain “easy 

directions”. Magnetocrystalline anisotropy arises out of the coupling between spin 

and orbital magnetic moments [74]. As the orbital moments are constrained in their 

directions by the crystal lattice, the crystal symmetry influences the behavior of the 

spin due to the coupling. Hence, the magnetocrystalline anisotropy energy per unit 

volume is expressed using phenomenological expressions which are suitable to 

account for the symmetry. For a cubic crystal, this energy can be approximated using 

Equation (1.38). The energy distribution is shown in Figure 1.12. 

( )2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 2 1 2 3an

E K Kα α α α α α α α α= + + +   (1.38) 

Here 1 sin cosα θ ϕ= , 2 sin sinα θ ϕ=  and 3 cosα θ=  are the direction cosines of the 

magnetization (M = Msα) with respect to the three cube edges and K1 and K2 are the 

4th and 6th order anisotropy constants respectively. Based on a spherical coordinate 

system, 0 θ π≤ ≤  and 0 2ϕ π≤ ≤ . 
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Figure 1.12. (a) Spherical coordinate system with the <100> crystal directions 

aligned along the coordinate axes. (b) Energy distribution in a cubic crystal in 

the absence of external magnetic field and mechanical stress. Energy minima 

(concavity) are observed along the <100> directions. 

It was shown by Honda and Kaya [75], that if K1 > 0 and K2 > -9K1 then 

<100> are the easy directions whereas if K1 < 0 and K2 > (-9/4)K1 then <110> are the 

easy directions. For all other cases, <111> are the easy directions. 

The domain wall energy is 
w ex an

E Eγ = +  and under equilibrium the 

magnitude of exchange and anisotropy energies are equal at any part of the wall. The 

two basic types of domains walls are the Bloch and Néel walls. Bloch walls are 

predominant in thick specimens where the magnetic moments in the domain wall can 

orient normal to the plane of the sample whereas in a thin film all moments are 

oriented in the plane of the film and such a wall is known as Néel wall. The balance 

of domain wall energy and magnetostatic energy determines the size of the domains. 

An external magnetic field perturbs the energy equilibrium and tends to rotate 

the magnetic moments along its direction which is manifested as the magnetization of 

the material. In terms of domain theory, the magnetization takes place in three stages 
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[63]. A typical magnetization and magnetic induction vs. magnetic field behavior is 

shown in Figure 1.13. 

 

Figure 1.13. A typical hysteretic (a) M-H and (b) B-H curve of a ferromagnet. 

At low fields, the domains oriented along the direction of field grow while 

those oriented opposite to the field reduce in size. The domain growth takes place by 

a mechanism known as domain wall motion in which the moments inside the domain 

wall flip towards the direction of the applied field thus increasing the total volume of 

domains aligned with the external field. At intermediate fields which are high enough 

to overcome the anisotropy energy, the magnetic moments in the domains which were 

oriented away from the field flip towards the easy axes nearest to the magnetic field 

direction. Finally at high fields, the magnetic moments rotate from the easy axes 

towards the direction of magnetic field until the material saturates and exists in a 

single domain state. This last step is known as domain rotation. Note that although 
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the magnetization becomes constant once the material saturates, the magnetic 

induction increases with increasing field with a slope of µo. 

The hysteresis in these curves is caused due to pinning of domains by material 

defects or stress inhomogeneities. It gives a measure of the loss in magnetic energy 

(given by the area enclosed by the B-H curve) in order to perform the mechanical 

work of ‘moving the domains’ against the defects. The hysteresis also signifies that 

the same domain orientation may not exist at the same magnetization state during 

magnetization and demagnetization processes. Remanance is the induction (Br) or 

magnetization (Mr) that remains when the externally applied field is turned down to 

zero after taking the material to its saturation magnetization. The remanance is 

denoted by the points A and C in Figure 1.13. Coercivity (Hc) is the reverse magnetic 

field strength that is required to reduce the material induction to zero which is 

denoted by the points B and D in Figure 1.13. 

Section 1.4 will introduce the magnetoelastic energy which affects the energy 

balance in domains and domain walls in materials with significant magnetostriction 

thereby affecting the magnetization process in such materials. 

1.4. Phenomenon of magnetostriction 

The discussion on ferromagnetism led to the fact that magnetic processes are 

guided by energy minimization principles. In this section, the phenomenon of 

magnetostriction will be discussed in detail and will be related to elastic and 

magnetoelastic energy. The actuation and sensing effects will be explained by 

introducing the Zeeman and stress-induced anisotropy energy. The origin of 
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magnetostriction will be related to the spin-orbit coupling and a brief history of 

magnetostrictive materials will be presented. 

1.4.1. Magnetoelastic effects 

Magnetostriction describes the change in dimensions of a material due to a 

change in its magnetization. This phenomenon is a manifestation of magnetoelastic 

coupling which is exhibited by all magnetic materials to some extent. The effects 

related to magnetoelastic coupling are described by various names. 

Joule effect [76] describes the change in length due to a change in the 

magnetization state of the material. This is also known as linear magnetostriction and 

assumes that the volume of the material remains constant. This phenomenon was first 

observed by James Prescott Joule (1842) in iron wires. 

Villari effect (1865) [77] describes the mechanical stress-induced change in 

magnetization. A material with positive magnetostriction (e.g. iron) shows an 

increase in magnetization with an increase in stress whereas a material with negative 

magnetostriction (e.g. nickel) exhibits an increase in magnetization with a decrease in 

stress. Conventionally, a tensile stress is considered positive whereas a compressive 

stress is considered negative.  

Wiedemann effect (1858) [78] describes a twist in the material due to a helical 

field produced by passing a current through the material (e.g. wire). Matteucci effect 

describes the change in magnetization in the helical direction when a ferromagnetic 

material is twisted. 

Barrett (1882) [79] observed a change in volume of ferromagnetic materials 

under the influence of magnetic field and termed it as volume magnetostriction. The 
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term forced magnetostriction [80] describes an increase in the magnetostriction that 

can be obtained after attaining the saturation by increasing the temperature so that 

further increase in magnetic field reorders the magnetic moments which got 

disordered due to thermal agitation. Such an increase in magnetostriction is extremely 

small and has no practical application. 

Conventionally, the Joule and Wiedemann effects are used for actuation 

purposes while the Villari and Matteucci effects are used for sensing purposes. 

The observation of these macroscopic effects can be traced down to atomic 

scales. Magnetoelastic coupling arises from spin-orbit coupling and strong interaction 

between electron clouds of adjacent atoms [81]. Magnetic field applied to a material 

tries to orient the electron spin along the field direction but is resisted by the orbital 

motion which is strongly coupled to the crystal lattice structure [82]. The rotation of 

the orbits towards the direction of field and the associated distortion of the crystal 

lattice manifests as magnetostriction. Mechanical force acting on a material produces 

mechanical strain as the atomic bonds are stretched or twisted. At the same time the 

overlapping electron clouds in a bond are displaced thus affecting the electromagnetic 

state of the material. The change in the electromagnetic state of the material due to 

the applied force manifests as the inverse effect (i.e. Villari and Matteucci effects). 

The spin-orbit coupling also determines the magnetocrystalline anisotropy and 

it is imperative that smaller spin-orbit coupling and consequently smaller 

magnetocrystalline anisotropy enables the orbit to reorient itself to the direction of the 

electron spin at smaller magnetic fields. Thus the desirable spin-orbit coupling should 

be large enough to produce significant lattice distortion which will manifest as a large 



 

 43 
 

magnetostriction but at the same time the magnetocrystalline anisotropy should be 

small enough so that the lattice can be distorted by applying small magnetic fields. 

1.4.2. Fundamental relations in magnetostriction 

The dipole-dipole interaction energy between the atoms shown in Figure 1.14 

can be modeled using Equation (1.39) [58] where r is the bond length, [α1 α2 α3] are 

the magnetization direction cosines as defined in Equation (1.38) and [β1 β2 β3] are 

the direction cosines of the bond direction. 

( ) ( ) ( )
2

1 1 2 2 3 3

1
,

3
w r l r α β α β α β

 
= + + − 

 
αααα    (1.39) 

 

Figure 1.14. A one-dimensional representation of interaction between 

neighboring dipoles with magnetic moment m separated by bond length r. 

When the crystal is strained, the bond length and consequently the interaction 

energy change. The sum of the change in the interaction energy for the nearest 

neighbor pairs can be expressed as Equation (1.40) where the tensor [ε11 ε22 ε33 ε23 ε31 

ε12] describes the strain in the crystal. The term Emagel is the magnetoelastic energy. 
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The coefficients b1 and b2 are known as magnetoelastic coupling coefficients. They 

depend on the number of nearest neighbor pairs, unstrained bond length, the function 

l(r) and its spatial gradient. The spontaneous magnetostriction or equilibrium strain in 

a domain in the absence of any external stress or magnetic field can be obtained by 

minimizing the sum of magnetoelastic and elastic energy with respect to each of the 

strain components. The expression for elastic energy in a cubic crystal is shown in 

Equation (1.41) where c11, c12 and c44 are the elastic constants. 

( ) ( )
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= + + + + +
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  (1.41) 

The magnetostriction tensor   
�λλλλ  or equilibrium strains are shown in Equation 

(1.42). 
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The strain along the direction cosines [β1 β2 β3] can be expressed by Equation (1.43) 

[ ]1 2 3

2 2 2
11 1 22 2 33 3 23 2 3 31 3 1 12 1 2β β β

ε ε β ε β ε β ε β β ε β β ε β β= + + + + +  (1.43) 

The magnetostriction along [100] which is shown in Equation (1.44) can be obtained 

by substituting α1 = β1 = 1 and α2 = β2 = α3 = β3 = 0 in Equations (1.42) and (1.43). 
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Similarly the magnetostriction along [111] which is shown in Equation (1.45) can be 

obtained by substituting α1 = β1 = α2 = β2 = α3 = β3 = 1 3  in Equations (1.42) and 

(1.43). 

2
111

44

1

3

b

c
λ = −      (1.45) 

Combining Equations (1.42) – (1.45), the magnetostriction along any arbitrary 

direction [β1 β2 β3] can be expressed [83] using Equation (1.46) when the 

magnetization direction is along [α1 α2 α3]. 
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  (1.46) 

If the equilibrium strains from Equation (1.42) are substituted back in 

Equations (1.40) and (1.41), the sum of the magnetoelastic and elastic energies would 

translate into an equivalent 4th order magnetostrictive anisotropy energy which can be 

expressed by Equation (1.47). The coefficient ( ){ }2 2
12 11 100 44 111

9
2

4
c c cλ λ− − + is known 

as ∆K1. 

( ){ }( )
1

2 2 2 2 2 2 2 2
12 11 100 44 111 1 2 2 3 3 1

9
2

4K
E c c cλ λ α α α α α α∆ = − − + + +   (1.47) 

Hence the effective magnetocrystalline anisotropy is given by the sum of Equations 

(1.38) and (1.47). It should be noted that measured values of K1 include the value ∆K1 

as the magnetostrictive anisotropy (∆K1) cannot be experimentally distinguished from 

the pure magnetocrystalline anisotropy (K1). 
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1.4.3. Magnetostrictive actuation and sensing 

The spontaneous magnetostriction does not contribute to any useful actuation 

or sensing effect. On the other hand, a magnetic field can rotate the magnetic 

moments from their equilibrium directions thereby producing useful 

magnetostriction. The effect of magnetic field is incorporated by introducing the 

Zeeman energy given by Equation (1.48). Note that the expression for Zeeman energy 

is the same as that of the magnetostatic energy shown in Equation (1.37), the only 

difference being that the magnetic field in Zeeman energy is an externally applied one 

whereas the field referred to in Equation (1.37) is created by free magnetic dipoles 

within the material. 

mag o
W µ= − M.H     (1.48) 

 

Figure 1.15. A typical anhysteretic λ-H curve and the energy distribution at 

different magnetic fields. 
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Figure 1.15 shows a typical magnetostriction vs. magnetic field (λ-H) 

response along the [001] ‘easy’ direction of a cubic crystal with positive 

magnetostriction. The three-dimensional energy distributions for three distinct 

magnetic fields are shown below the λ-H curve. The concavities in the energy 

distribution denote the energy minima at a given magnetization state. The direction of 

energy minima are the preferred direction for alignment of magnetic moments. 

Magnetostriction monotonically increases with magnetic field until all the magnetic 

moments orient along the direction of the magnetic field. This magnetic saturation 

state of the material is signified by a single energy minimum oriented along the 

magnetic field direction. 

Similarly, a mechanical stress can also rotate the magnetic moments from 

their equilibrium directions thereby producing a change in the net magnetization in 

the presence of a bias magnetic field. In the absence of a bias field, the magnetic 

moments reorient so as to eliminate any free poles and hence there is no net 

magnetization. The effect of stress is incorporated by introducing the mechanical 

work energy given by Equation (1.49). 

( )11 11 22 22 33 33 23 23 31 31 12 12mechW σ ε σ ε σ ε σ ε σ ε σ ε= − + + + + +   (1.49) 

Under the influence of stress, the equilibrium strains are obtained by 

minimizing the sum of Equations (1.40), (1.41) and (1.49) which yields the 

equilibrium strains given by Equation (1.50). Here [ ]�
mechε  is the mechanical strain 

tensor given by Equation (1.51). 

[ ] [ ]  = +  
�� �ε λε λε λε λmechε     (1.50) 
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Substituting Equation (1.50) into (1.49) yields a stress-induced anisotropy energy 

given by Equation (1.52) which influences the magnetization direction. 

( )11 11 22 22 33 33 23 23 31 31 12 12Eσ σ λ σ λ σ λ σ λ σ λ σ λ= − + + + + +  (1.52) 

It should be noted that although Equations (1.42) and (1.46) can always be 

used to calculate the magnetoelastic component of strain, an appropriate technique 

should be used to find the equilibrium α under the influence of both magnetic field 

and stress. Modeling techniques which can be used to estimate the equilibrium 

magnetization directions will be discussed in Section 1.6. 

Figure 1.16 shows a typical magnetic induction vs. compressive stress (B-σ) 

response along the [001] ‘easy’ direction of a cubic crystal with positive 

magnetostriction. The three-dimensional energy distributions for three distinct 

compressive stresses are shown below the B-σ curve. Note that sensing can take place 

only when the stress-induced anisotropy energy can overcome the effect of 

magnetocrystalline anisotropy energy and the Zeeman energy due to the bias 

magnetic field. At high compressive stresses, energy minima occur along the 

directions which are perpendicular to the direction of stress and all magnetic moments 

orient in this plane normal to the stress direction. Such an orientation of the magnetic 

moments marks the magnetoelastic saturation and indicates that no sensing can take 

place for higher applied stresses. 
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Figure 1.16. A typical anhysteretic B-σ curve and the energy distribution at 

different compressive stresses under a constant bias magnetic field. 

Analogous to a bias field in sensing applications, a pre-stress is usually 

applied for actuator applications to obtain more useful magnetostriction. If a 

compressive pre-stress applied to a demagnetized sample is large enough to overcome 

the crystalline anisotropy, it will orient all magnetic moments in a plane normal to the 

stress direction. A large enough magnetic field applied parallel to the stress direction 

on the pre-stressed sample can reorient all the magnetic moments in the sample 

thereby yielding a larger useful magnetostriction than the same magnetic field can 

yield if it were applied to a demagnetized sample as shown in Figure 1.15. This 

happens because in a demagnetized sample, some magnetic moments are already 
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oriented along the field direction if the field is applied along one of the easy axes and 

therefore these moments do not contribute to useful magnetostriction. Figure 1.17 

shows the λ-H curve of a pre-stressed sample. 

 

Figure 1.17. A typical anhysteretic λ-H curve and the energy distribution at 

different magnetic fields under a constant compressive pre-stress. 

1.4.4. History of the development of magnetostrictive materials 

After the initial discovery of magnetoelastic effects in the mid-18th century, 

several researchers systematically studied the magnetostriction in different binary 

alloys of the iron, cobalt and nickel in the next half a century. Most of these alloys 

showed free strain of less than 100 µε as shown in Table 1.4. The importance of 

nickel as a transducer material for sonar motivated further research in 

magnetostrictive materials during and after World War I. However, with the 
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development of materials such as PZT which exhibited free strain of the order of 

1000 µε, magnetostrictive materials ended up taking the backseat. 

With advancements in low temperature measurements during the 1960s, it 

was observed that several rare earth elements exhibit colossal magnetostriction (> 

5000 µε) but only at temperatures close to absolute zero and showed almost 

negligible magnetostriction at room temperature. Moreover, these materials showed 

very high magnetocrystalline anisotropy and hence required extremely high magnetic 

fields (~ 106 Am-1) to obtain saturation magnetostriction. In early 1980s, researchers 

in the Naval Ordinance Laboratory used an optimal combination of terbium, iron and 

dysprosium which showed high magnetostriction at room temperature finally giving 

rise to the giant magnetostrictive material Terfenol-D. 

Commercially available [43] polycrystalline Terfenol-D exhibits about 1200 

µε at 1.5 x 105 Am-1 but has low Young’s modulus (25-35 GPa) and low tensile 

strength (28 MPa) which restricts its usage to applications involving only axial 

compression. A new era of structural magnetostrictive alloys started with the 

discovery of large magnetostriction in iron-gallium alloys [84, 85]. Section 1.5 will 

discuss iron-gallium system in details. 

 

Figure 1.18. Volume conserving magnetostriction (a) λ
γ
 and (b) λ

ε
 [81]. 
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The volume-conserving magnetostriction constants λγ and λε, shown in Figure 

1.18, are called as λ100 and λ111 in cubic materials. The values of these 

magnetostrictive constants for several single crystal materials are shown in Table 1.4.  

Table 1.4. Magnetostriction of single crystal materials measured at room 

temperature [58, 81]. 

Material λ
γ
 (x 10

-6
) λ

ε
 (x 10

-6
) 

Fe 24 -23 

Co -248 57 

Ni -66 -29 

Ni65Fe35 20 15 

Ni65Co35 40 -35 

Fe55Co45 130 35 

Tb * 8700 20 

Dy * 9400 5500 

TbFe2 * - 4000 

TbFe2 - 3690 

DyFe2 * -70 - 

DyFe2 - 1890 

Tb0.27Dy0.73Fe2 - 2300 

Fe97Si3 25 -7 

Fe80Al20 95 5 

Fe83Ga17 208 0 

* Values measured at temperatures close to absolute zero (-273 oC). 
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1.5. Iron-gallium alloys (Galfenol) 

This section discusses the properties of the iron-gallium alloys which make 

them attractive materials for actuator and sensor applications. The focus of the 

discussion is on the magnetostrictive properties and relevant metallurgical aspects of 

single crystal material which help in understanding the variation in alloy properties as 

a function of composition. Finally, the state of the art in processing of Fe-Ga alloys 

and its significance in transducer applications is presented.  

1.5.1. Metallurgy of Fe-Ga alloys 

It is required to have a prior knowledge of the basic metallurgical aspects of 

the iron-gallium system in order to understand the complexity of the relationship of 

Fe-Ga alloys and the magnetostriction exhibited by them. 

Single crystal iron at room temperature (i.e. α Fe) has a body-centered cubic 

(BCC) unit cell which is equivalent to an A2 structure in the strukturbericht notation. 

The iron-gallium equilibrium phase diagram is shown in Figure 1.19. For the purpose 

of this dissertation, we will only focus on the region between 0 to 30 atomic % 

gallium additions in iron. Figure 1.19 shows that at room temperature, the α Fe (A2) 

phase exists upto 12 at. % Ga while the α Fe3Ga (L12) phase exists between 25 to 30 

at. % Ga. The region between 12 to 25 at. % Ga is a mixture of these two phases. 

Other phases such as D03, B2 and β Fe3Ga (D019) exist at high temperature only. 
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Figure 1.19. Equilibrium phase diagram of iron-gallium system [86]. 

A schematic representation of the “unit” cells of A2, D03, L12 and B2 

structures are shown in Figure 1.20. The atomic radii of iron and gallium are 0.124 

and 0.122 nm respectively [64]. The size difference shown in the legend of Figure 

1.20 is only meant for visual clarity. In A2 structure, which is a disordered phase, 

each lattice point has an equal probability of hosting an iron or gallium atom. The D03 

and L12 are ordered Fe3Ga phases. The unit cell of a D03 structure consists of eight 

unit cells of a conventional BCC structure. The gallium atoms are situated in the 

body-center positions of the BCC cell or along the four alternate corners of the sub-

lattice shown in green dashed line in Figure 1.20(b), i.e. along the <110> direction of 

this sub-lattice. The L12 is an FCC structure with Ga and Fe atoms in the corner and 
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face-center positions respectively. The B2 is an ordered FeGa phase with the Ga atom 

in the body-center position of a cube with Fe atoms in the corners. 

 

Figure 1.20. “Unit” cells of (a) A2, (b) D03, (c) L12 and (d) B2 structures. 

Prior work [87] showed that addition of upto 20 atomic % Ga in Fe results in a 

disordered A2 phase having randomly substituted gallium atoms in the iron lattice. 

Addition of 20 to 30 atomic % Ga in Fe can produce D03 phase if the alloy is 

quenched from above 730 oC or L12 phase if it is annealed at 500 oC for three days 

and at 350 oC for over a month. Other works [88-91] also reported a disordered FCC 

(A1) phase. Investigation [87] of the saturation magnetization of these phases as a 

function of temperature established the first magnetic phase diagram for iron-gallium 

alloys. Further dilatometric study [89-91] of the iron-gallium system with different 

thermal history was used to create a metastable phase diagram. These works showed 

that iron-gallium alloys have complex thermal history-dependent stable as well as 

meta-stable phases which also differ in their magnetic properties. 
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Recent work [92] using scanning and transmission electron microscopy study 

of the iron-rich portion of the iron-gallium system has been helpful in modifying the 

magnetic and metastable phase diagram of the region. This non-equilibrium phase 

diagram, shown in Figure 1.21, is also useful for finding the Curie temperature for 

different alloy composition. Further investigation [93-95] of the iron-gallium system 

confirmed that addition of upto 18 at. % Ga in Fe, produces an A2 phase with D03-

like or B2-like nano-precipitates. Alloys with 18 to 21 at. % Ga showed a matrix of 

A2 phase with structurally inhomogeneous nano-precipitates on quenching but 

showed a mixture of A2 and D03 phases if the alloys were slowed-cooled. Alloys 

with 21 to 25 at. % Ga showed a mixture of A2 and D03 phases irrespective of their 

thermal history. For alloys with 25 to 29 at. % Ga, quenching produced a mixture of 

A2, B2 and D03 phases while slow-cooling yielded only the D03 phase. The effect of 

these phases on the magnetomechanical properties of iron-gallium alloys will be 

evident in Section 1.5.2. 

 

Figure 1.21. Non-equilibrium phase diagram of iron-gallium alloys [92]. 
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1.5.2. Magnetostriction and other properties of Fe-Ga alloys 

The investigation of magnetostriction of a number of binary iron alloys by 

Hall [96] showed that addition of aluminum in iron can increase the magnetostriction 

by five times. Motivated by these results, Clark et al. [84] investigated the effect of 

gallium addition in single crystal iron and found an increase in λ100 by a factor of 

twenty. This new alloy became known of as Galfenol. The magnetostriction constants 

for single crystal Galfenol alloys are shown in Figure 1.22. Similar studies [85] 

performed on directionally cast Fe-Ga alloys showed about seven times increase in 

magnetostriction compared to polycrystalline iron. 

 

Figure 1.22. (a) (3/2)λ100 and (b) (3/2)λ111 as functions of gallium content in iron-

gallium alloys [97]. 

Initial studies [97] on the effect of composition have identified Fe-Ga alloys 

with 15 to 30 atomic % gallium as the region of interest as the two peaks in 

magnetostriction occur within this composition range. As shown in Figure 1.22(a), a 

maximum magnetostriction of ~300 µε was shown by furnace cooled samples having 

17 and 27.5 atomic % Ga. Inbetween these two compositions, a low in the 

magnetostriction (~225 µε) is observed at 24 atomic % Ga. The reason for obtaining 
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the first peak in magnetostriction has been attributed [98] to the presence of randomly 

distributed gallium atom pairs in the A2 phase of iron. It is suggested that these 

gallium atom pairs act as defects thereby altering the effective crystalline anisotropy 

and hence increasing the magnetostriction [98]. First principle calculations [99] 

attribute the enhanced magnetostriction to the formation of B2-like structures. 

Recent measurement of atomic scale magnetostriction [100] in Fe81Ga19 

confirmed that large strains develop in the Fe-Ga bonds near the Ga-Ga environment 

although the strain between Ga-Ga bonds are negligible and the strain between Fe-Fe 

bonds show only a nominal increase from the magnetostriction observed in pure iron. 

Another recent work by Mudivarthi et al. [101] showed the reorientation of nano-

clusters in an irradiated sample of Fe81Ga19 as a response to externally applied 

magnetic field and mechanical stress using neutron scattering data. This work [101] 

may offer the experimental evidence of the correlation between magnetostriction and 

presence of nano-precipitates in A2 matrix which was earlier hypothesized [94, 95] 

and may be useful to evaluate the theory proposed by Khachaturyan et al. [102, 103]. 

These observations may offer the first set of experimental evidence of the origin of 

magnetostriction in Galfenol and may also help in understanding the underlying 

mechanism that enhances the magnetostriction of iron when substituted with non-

magnetic elements. 

 An extensive study on the effect of thermal history and gallium composition 

[92, 93, 104, 105] has shown that Galfenol alloys with D03 phase has a long range 

ordering of Ga atoms which lowers the magnetostriction. The D03 phase can be 
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expected to be present along with the A2 phase in alloys having more than 17.5 

atomic % Ga. 

The volume fraction of D03 phase in Fe-Ga alloys having more than 17.5 

atomic % Ga can be reduced by water-quenching which can help in increasing the 

saturation magnetostriction [104, 105] upto an addition of 19.5 atomic % Ga as 

shown in Figure 1.22(a).  A possible reason for obtaining the lowest magnetostriction 

near 25 atomic % Ga can be due to the formation of a stoichiometric compound 

(Fe3Ga) which indicates a highly ordered structure and hence cannot be altered by 

water quenching. The second peak in magnetostriction is not altered significantly by 

heat treatment. This composition is a mixture of multiple phases and hence the reason 

for obtaining a high magnetostriction is not very clear. A possible reason for the high 

magnetostriction can be due to a marked softening of the crystal lattice [97]. 

The actuator behavior of single crystal [84, 104, 106-108] and polycrystalline 

[85, 109-111] Galfenol have been extensively characterized for the composition range 

of 17 to 29 at. % Ga but the sensor behavior has been characterized only for 19 at. % 

Ga quenched [107] and slow-cooled [108] samples and 24.7 at. % Ga slow-cooled 

sample [112]. The details of actuator and sensor response of Galfenol will be 

discussed in Chapter 2. 

Although Galfenol offers only one-third the strain of commercial Terfenol-D, 

it requires less than one-tenth the magnetic field required to saturate Terfenol-D. This 

attribute can be useful for design of compact and low-weight devices by reducing the 

amount of coil and high power electronics which are usually required to obtain high 

drive current in Terfenol-D transducers. Moreover, Kellogg et al. [106] has shown 
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that Fe81Ga19 shows a variation of only 0.4 µε/oC in its saturation magnetostriction 

value between -21 oC to +80 oC and hence can be used for a large range of 

temperature without significant loss of magnetostriction. Galfenol can be easily 

machined and hence can be obtained in different shapes and sizes which might be 

useful for innovative devices. Galfenol can also be welded to passive structures which 

makes it an ideal material for structural health monitoring. 

The most important feature that motivates the use of Galfenol alloys in smart 

structures is their structural properties which give them a unique advantage over 

conventional smart materials such as PZT, PMN or Terfenol-D. Extensive mechanical 

characterization has been performed on Fe-Ga alloys. Wuttig et al. [113] measured 

the stiffness constants of Galfenol as a function of gallium content using acoustic 

measurement. Clark et al. [97] measured the elastic constants of Galfenol alloys as 

functions of temperature and composition using resonance ultrasound spectroscopy 

(RUS). Later, Petculescu et al. [114] used RUS to quantify the difference in the 

stiffness constants (c' and c44) between demagnetized and magnetically saturated 

conditions for 12 to 33 at. % Ga alloys at 4 K and 300 K temperatures. Kellogg et al. 

[115] used quasi-static tensile tests to measure a Young’s modulus of 65 GPa, tensile 

strength of 515 MPa and upto 2 % strain along the <100> direction of single crystal 

Fe83Ga17 which showed that Galfenol is ductile and strong enough for applications 

involving tension. The interesting phenomenon of auxetic effect (negative Poisson’s 

ratio) was observed [115] in a 27.2 at. % Ga sample along the <110> direction. 

Further tensile tests [116, 117] focused on investigation of Young’s modulus and 
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Poisson’s ratio for alloys with 17.4 to 33.2 at. % Ga along the <100> and <110> 

directions. 

Some of the other properties investigated in iron-gallium alloys include 

electrical resistivity [87], magnetocrystalline anisotropy [118], thermal expansion 

coefficient [105] and specific heat capacity [119]. Investigation [120-122] of 

magnetostriction in ternary Fe-Ga-X (X = Ni, Mo, Sn, Al, C, V, Cr, Mn, Co, Rh) 

alloys did not show any significant improvement in magnetostriction but addition of 

small amount (< 0.1 %) of carbon in samples with 18.6 at. % Ga increased the 

magnetostriction of slow-cooled alloys and appeared to have similar effect as 

quenching [123]. 

1.5.3. Processing of Fe-Ga alloys 

Although single crystal Galfenol exhibits good magnetostrictive and 

mechanical properties, it may not be the best choice for commercial applications 

owing to the slow rate of crystal growth and high auxiliary cost involved in accurate 

machining along the desired orientation. Therefore, extensive research effort has gone 

into processing of Galfenol alloys in order to find out the best method that will 

provide bulk samples at low cost without significantly compromising the structural 

and magnetoelastic properties. 

The earliest work on characterization of rolled, forged, extruded and 

directionally solidified polycrystalline Galfenol as well as powdered Galfenol can be 

attributed to Kellogg et al. [107, 124]. It was shown that based on the processing 

technique, a saturation magnetostriction between 30 to 170 µε could be obtained. 
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Subsequent work at ETREMA Products Inc. [110] led to the development of 

research and production grade polycrystalline Galfenol. The polycrystalline ingots 

were grown using Float Stand Zone Melt (FSZM) technique at the rate of 25 mm/hr 

and 350 mm/hr respectively which were much faster than the Bridgman grown single 

crystal at 2 to 4 mm/hr. Measurement of saturation magnetostriction in research and 

production grade polycrystalline 18.4 at. % Ga samples showed 220 µε and 168 µε 

respectively which were less than the 290 µε exhibited by a single crystal of same 

composition. The difference in magnetostriction was attributed to the grain size and 

texture [110]. The typical structural properties associated with Galfenol were 

exhibited by both the research (Young’s modulus = 72.4 GPa, tensile strength = 370 

MPa, elongation = 1.2 %) and production (Young’s modulus = 86.3 GPa, tensile 

strength = 348 MPa, elongation = 0.81 %) grade samples. 

Recent work by Na and Flatau [125, 126] on deformation processing of Fe-

Ga-X (X = B, C, Mo, Nb, and NbC) alloys showed that addition of NbC can improve 

roll ability and produce saturation magnetostriction of 183 µε. Moreover, appropriate 

atmospheric annealing and controlled doping with boron and sulfur may be used to 

obtain the most-wanted {100}<001> cube texture in rolled sheets as thin as 0.3 mm. 

These rolled sheets may offer a viable low-cost and high-performance option in 

applications that need structural conformation. 

Other processing techniques such as stress-annealing [127, 128] and magnetic 

field-annealing [129] have demonstrated the development of a uniaxial anisotropy in 

Galfenol which can be exploited to obtain more useful magnetostriction without 
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applying a pre-stress and have shown to be helpful in obtaining high magnetostriction 

even when the material is operated under tension. 

Rapid advances have taken place in the processing of Galfenol in micro and 

nano-scales. Weston et al. [130] measured the magnetic properties of 160-nm thick 

Fe81Ga19 (110) oriented films deposited epitaxially on Cu(100)/Si(100) substrates. 

Subsequently, Butera et al. [131] successfully obtained (100) oriented 90-nm thick 

films of Fe81Ga19 epitaxially deposited on MgO substrate. An extensive study of the 

effect of deposition conditions on film thickness, composition and calculated value of 

magnetostriction for (110) oriented Galfenol films deposited on glass as well as Si 

substrates showed promising results [132]. A comprehensive study of 

magnetostriction in Fe-Ga and Fe-Ga-Al systems performed using a high-throughput 

combinatorial approach [133] reflected the characteristics of bulk samples. 

Significant research [134, 135] has also taken place in order to develop Galfenol 

nanowire arrays of different composition having wires which are upto 60 µm in 

length and diameter varying from 10 to 200 nm. These micro/nano-scale processing 

techniques would be beneficial for use of Galfenol in MEMS and NEMS 

applications. 

1.5.4. Applications of Fe-Ga alloys 

Galfenol is a structural magnetostrictive material and hence it can be used to 

design devices which use its structural properties as well as magnetostrictive 

actuation and sensing capabilities. Several researchers have designed innovative 

proof-of-concept devices using the special attributes of Galfenol. 
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Yoo et al. [136] designed a tuning fork-based gyro sensor shown in Figure 

1.23(a) which uses mm-size Galfenol patches as actuator and sensor material in 

bending. Downey et al. [137] showed that mm-scale Galfenol rods can be used as a 

sensor in bending and the results of this work [137] was used to conceptualize a 

nanowire-based broadband acoustic sensor shown in Figure 1.23(b). Further work 

[138] in this area led to the mechanical characterization of Galfenol nanowires which 

showed that although their Young’s modulus is similar to that of bulk material, they 

possess almost three times the tensile strength. Datta and Flatau [139] showed that 

Galfenol could be adhered to a structural material and used as strain sensor in 

bending. 

 

Figure 1.23. (a) Tuning fork-based gyro sensor [136] and (b) nanowire acoustic 

sensor [134, 137] using Galfenol in bending mode. 

Hale and Flatau [140] and Parsons et al. [141] demonstrated the application of 

Galfenol in tactile sensing and torque sensing respectively. Ghodsi et al. [142] 

developed a positioning actuator for cryogenic environment. Ueno et al. developed 

linear actuator [143, 144], wobbler [145] and vibrator [146]. 
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These devices showed proof-of-concept results but their performance can be 

improved with further knowledge of design parameters that play crucial role in 

determining the efficiency of these devices. In order to build an efficient prototype it 

is required to know the following: 

• choice of active material (i.e. most suitable alloy composition) 

• operating condition (pre-stress and bias magnetic field) 

• size and geometry of active material 

• impedance matching criteria 

• location of active material in the device. 

An investigation of these design parameters is performed in this dissertation. 

1.6. Overview of magnetomechanical models 

Modeling techniques are vital to device design. Magnetomechanical models 

can be used to evaluate design parameters, predict device response and control smart 

devices in a desired manner. An appropriate model is expected to account for the 

behavior of the material and its interaction with its environment. The modeling of 

material behavior is addressed in Section 1.6.1 and the interaction of an active 

material with other components of a device is discussed in Section 1.6.2. A brief 

review of these modeling techniques is presented in order to motivate the model 

proposed in Chapter 5 of this dissertation. 

1.6.1. Constitutive material models 

Constitutive relations that describe the material behavior are usually based on 

energy minimization techniques. The first part of such a technique involves the 
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formulation of an energy functional which includes or precludes certain terms based 

on assumptions appropriate for the purpose of the model. The second part involves 

the use of mathematical techniques to extract the information about a required 

physical response of the material under the influence of force fields that perturb the 

energy. 

The simplest model for magnetoelastic material is the coupled linear 

constitutive equations [2, 80, 81]. Considering both strain and magnetic induction in 

the material as functions of stress and magnetic field, a first order truncated Taylor 

series expansion about a given operating point (Ho, σo) can be written as Equations 

(1.53) and (1.54). Note that stress and magnetic field are assumed to be independent 

inputs to the material. 

, ,o o o oH H

d d dH
Hσ σ

ε ε
ε σ

σ

∂ ∂
= +
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   (1.53) 

, ,o o o oH H

B B
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σ
σ

∂ ∂
= +
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   (1.54) 

The following Gibb’s free energy formulation can be used to couple 

Equations (1.53) and (1.54) and also to provide physical interpretations of the 

differential quantities. The total workdone (dW) on a unit volume of ferromagnetic 

material by a stress and magnetic field due to infinitesimal change in strain and 

magnetic induction can be expressed by Equation (1.55). Note that dW is not an exact 

differential. 

dW d HdBσ ε= +     (1.55) 
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For a reversible process, the change in internal energy (dU) can be expressed using 

Equation (1.56) which can be obtained by substituting Equation (1.55) in the 1st Law 

of Thermodynamics. Here S and T denote entropy and temperature respectively. 

dU d HdB TdSσ ε= + +    (1.56) 

The Gibb’s free energy of the system is given by Equation (1.57) 

G U HB TSσε= − − −    (1.57) 

The change in Gibb’s free energy in an isothermal reversible process can be 

expressed by Equation (1.58). 

dG dU d d BdH HdB TdSε σ σ ε= − − − − −   (1.58) 

Combining Equations (1.56) and (1.58), the change in Gibb’s free energy can be 

written as shown in Equation (1.59). 

dG d BdHε σ= − −     (1.59) 

Equation (1.59) can be used to interpret the differential quantities in Equations 

(1.53) and (1.54) as follows. The mechanical compliance of the material in a process 

where the magnetic field (Ho) is maintained constant while the stress is quasi-

statically perturbed about a given stress (σo) is expressed by Equation (1.60). 

2
,

2
, ,

o o

o o o o

H

H H

G
s

σ

σ σ

ε

σ σ

∂ ∂
= − =

∂ ∂
   (1.60) 

Similarly, magnetic permeability of the material in a process where the stress (σo) is 

maintained constant while the magnetic field is quasi-statically perturbed about a 

given field (Ho) is expressed by Equation (1.61). 
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The strain coefficient (d = ∂ε/∂H) and stress sensitivity (d* = ∂B/∂σ) which couple the 

effects of magnetic field and mechanical stress are expressed by Equations (1.62) and 

(1.63) respectively and are identical to each other as evident from their relation to the 

2nd derivative of the Gibb’s free energy. 
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For small quasi-static perturbations of stress and magnetic field about a given 

operating stress[ ]�σσσσ and magnetic field (H), the 3-D linearized coupled constitutive 

equations can be written as shown in Equations (1.64) and (1.65). 

i ij j ik k
s d Hε σ= +     (1.64) 

*
m mj j mk k

B d Hσ µ= +    (1.65) 

Note that the indices i and j vary from 1 to 6 and the indices m and k vary from 1 to 3, 

such that x4 = x23, x5 = x31 and x6 = x12 where x stands for ε or σ. The compliance 

tensor is identical to the inverse of the stiffness tensor as shown in Equation (1.51) 

and the stress sensitivity tensor is the transpose of the strain coefficient tensor. 

Various non-linear models have also been developed to account for the 

magnetomechanical response of ferromagnetic materials over different operating 

conditions. Higher order series expansion of the free energy yielded the Landau 

model [147, 148]. Bergqvist and Engdahl [149] combined the effects due to stress and 

magnetic field into an equivalent field term and incorporated this in the Preisach 

operator to model the effect of stress on magnetization. A stress-induced field term 
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was introduced into the Langevin term by Jiles to model the effect of stress on 

magnetization vs. field curves [150] as well as the effect of magnetic field on 

magnetization vs. stress curves [151]. Ghosh and Gopalakrishnan [152] used a neural 

network technique to non-linearize the coupled constitutive equations and 

successfully predicted both the actuation and sensing characteristics of 

magnetostrictive materials. These models were limited to one-dimensional analysis 

and did not account for magnetocrystalline anisotropy which is required to capture the 

directional preference of magnetization orientation based on the crystal symmetry of 

different materials. 

Armstrong [153, 154] extended the Stoner-Wohlfarth [155] model to cubic 

anisotropy and was able to come up with a three-dimensional model for 

magnetostrictive actuation. This approach was adapted to model both the actuator and 

predict the sensor responses of single crystal and polycrystalline Galfenol subjected 

to collinear stress and magnetic fields [111, 156, 157]. This approach will be 

discussed in detail in Chapter 2. An extension to this approach was developed [128] 

to add stress-annealing effect by incorporating a uniaxial anisotropy. These models 

included Zeeman, stress-induced anisotropy and magnetocrystalline anisotropy 

energy but excluded the exchange energy because it is non-zero only within the 

domain wall and hence forms a small fraction of the total energy of a bulk sample. 

Moreover, the preclusion of the magnetostatic energy incapacitates the ability of these 

models to account for demagnetization effects. 

Smith [158] developed a homogenized energy model which included 

magnetostatic, stress-induced anisotropy, magnetocrystalline anisotropy and 
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exchange energy terms. The exchange interaction was phenomenologically 

incorporated using Boltzmann statistics which ironically considers only non-

interacting particles. Moreover the use of Boltzmann statistics is only applicable to a 

large number of particles and may not be a valid assumption near saturation when the 

material is almost in a single domain state. Using Armstrong’s [153] energy 

formulation and Smith’s [158] framework of homogenized energy model, Evans and 

Dapino [159] developed a magnetomechanical model which takes into account six 

possible directions of magnetization orientation instead of two directions in Smith’s 

work [158]. These approaches introduce dynamic effects into the constitutive model 

using thermal relaxation techniques and are particularly useful for obtaining closed 

minor loops when operating an actuator or sensor with DC bias magnetic field and 

stress respectively. 

Besides these macroscopic models, micro-magnetic models [160-165] which 

use the Landau-Lifshitz-Gilbert (LLG) equation can also be used to predict static as 

well as dynamic magnetomechanical behavior. These models include all the relevant 

energy terms which affect the magnetization direction and hence can be more 

accurate for prediction of domain evolution and domain wall dynamics but they 

require excessive computation time and resources thereby making them not a 

preferred choice for prediction of bulk material response. Nevertheless, micro-

magnetic models should be considered for design of MEMS and NEMS 

magnetostrictive devices. 
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1.6.2. Device-level models 

The constitutive material models are suitable to predict the material response 

but they cannot be used directly to model a device. In order to do so, they need to be 

integrated with structural and magnetic models which can accommodate the forces or 

electric currents applied to the device and predict the displacement and electrical 

voltage response from the device. 

Structural models are used to solve the mechanical boundary value problem of 

the device. They can be constructed using lumped parameter (mass-spring-damper) 

formulation [81] or continuum mechanics formulation such as beam/plate theory or 

finite element methods. The details of incorporating induced-strain actuation in plate 

theory [1, 2] will be discussed in Chapter 5. 

Magnetic models are used to solve the magnetic boundary value problem of 

the device. They can also be constructed using lumped parameter magnetic circuit 

formulation [81] or by explicitly solving the Maxwell’s equations with appropriate 

constraints in a finite element formulation [166]. 

The final step in device-level modeling involves integration of the constitutive 

material model, the structural model and the magnetic model. Traditionally, lumped 

parameter type “equivalent” circuit approach [81] is used to integrate the results 

obtained from each of the component models. The transition from mechanical to 

magnetic circuit takes place using a transformer ratio; known as coupling factor. The 

coupling factor will be discussed in detail in Chapter 2. An alternate approach [166] 

of model integration uses a commercial finite element package (e.g. COMSOL 

Multiphysics®) that offer the flexibility of coupling multiple boundary value 
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problems. The algorithm for traditional device-level modeling is shown in Figure 

1.24. 

 

Figure 1.24. Flow diagram of traditional device-level model. 

1.7. Objectives and organization of the dissertation 

The broad objective of this dissertation is to understand the magnetostrictive 

response of Galfenol and develop design parameters and modeling tools which can be 

used for the development of actuators and sensors using Galfenol. The main 

advantage of Galfenol over other smart materials lies in its combination of structural 

and magnetostrictive properties which enables it to be used as a transducer material in 

tension, bending, shear or torsion. This dissertation attempts to understand the 

behavior of Galfenol particularly under bending as it encompasses the response of the 

material in tension as well as compression. An emphasis has been given to explain the 

material’s response in terms of the physics of the process. All studies have been 

performed using single crystal Galfenol under quasi-static conditions in order to 

estimate the baseline performance. 

Chapter 2 describes experimental studies and model simulations of the effect 

of stress, magnetic field and alloy composition on figures of merit such as energy 
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density, magnetomechanical coupling factor and sensing gage factor. The goal of this 

chapter is to understand the behavior of Galfenol alloys under different stress and 

magnetic field conditions and demonstrate a generalized technique for obtaining 

figures of merit which can serve as design parameters for developing adaptive 

transducers and control systems for such transducers. This database can be used to 

choose an appropriate alloy and also to optimize the performance of transducers 

under varying operating stress and magnetic field conditions. The outcome of this 

work helped in determining an appropriate alloy composition for further tests and 

aided in the design of the bending experiments described in Chapters 3 and 4. The 

experimental characterization provided the model parameters which were used in 

Chapter 5 for model validation. 

Chapter 3 discusses the challenges related to characterization of a 

magnetostrictive member subjected to bending and proposes a suitable experimental 

technique to overcome some of these challenges. This technique, i.e., a four-point 

bending test, is performed on a Galfenol beam under different bias magnetic fields. 

The magnetic response of the beam is shown and is explained using an energy-based 

approach. The outcome of this work helps in determining the sensing capability of 

only a Galfenol member as opposed to the Galfenol being attached to a structural 

component. This work logically leads to the topic described in Chapter 4. 

Chapter 4 introduces the concept of laminated magnetostrictive composite and 

describes experimental characterization of the actuator and sensor performance of 

cantilevered Galfenol-Aluminum unimorph. A detailed experimental study is 

performed by varying three parameters; applied magnetic field, tip loading and 
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Aluminum layer thickness. The experimental results demonstrated non-linearity in the 

magnetomechanical response of the structure and also exhibited structural coupling 

between the extensional and bending modes of the structure. In order to investigate 

these observations, an appropriate modeling technique had to be developed. 

Chapter 5 describes a modeling approach that can couple the non-linear 

behavior of the active material with the structural components and magnetic circuit of 

a device using a recursive algorithm which combines the constitutive material model 

with the mechanical and magnetic boundary value problems posed by the device that 

is being modeled. The model simulations were used to perform a wider range of 

parametric study of the effect of magnetic field, mechanical stress and active/passive 

layer thickness ratio which was earlier introduced in Chapter 4. The simulation results 

were also compared to the experimental behavior presented in Chapter 4. 

Finally, Chapter 6 summarizes the work of Chapters 2-5 and highlights the 

original contribution of this dissertation. Possible applications are described where 

the knowledge of this dissertation might be utilized. Future research directions are 

suggested to improve the modeling technique introduced in this work. 
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Chapter 2: Experimental studies and model simulations of 

actuator and sensor figures of merit 

Design of transducers using active materials requires the knowledge of certain 

figures of merit which provide a measure of efficiency for these active materials as an 

actuator or a sensor and are also helpful for comparing different active materials. The 

energy density, which gives a measure of the energy that can be obtained from the 

material and the magnetomechanical coupling factor, which is a dimensionless 

number that gives a measure of the transduction efficiency of the material are both 

commonly used as actuator figures of merit. Similarly, a dimensionless gage factor 

can serve as the figure of merit for sensing applications. These figures of merit are 

usually evaluated as material constants assuming a linear behavior of the material 

over useful operating stress and magnetic field ranges. The calculation of these 

figures of merit requires the knowledge of the material parameters introduced in 

Equations (1.60) – (1.63). 

2.1. Background and scope of this work 

Prior work by Clark et al. calculated stress-dependent permeability (µ) and 

strain coefficient (d) in single crystal Fe83Ga17 [84] and Fe78.6Ga21.4 [104], but these 

calculations involved the choice of saturation magnetic field and an averaging over 

the entire B-H or λ-H curve for each pre-stress. Kellogg et al. [107] showed both 

stress and magnetic field-dependent values of stress sensitivity (d*) and Young’s 

modulus (E) of a water-quenched Fe81Ga19 single crystal sample by using a 

polynomial fit of the experimental B-σ and ε-σ curves respectively. Since Kellogg et 
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al. [107] could not maintain constant magnetic field during the major-loop cyclic 

stress tests, the values of d* and E were under-estimated and over-estimated 

respectively. Atulasimha et al. [167] were able to obtain better estimates of d* and E 

by experimentally maintaining a constant magnetic field. 

This chapter presents the actuator and sensor characterization results of 

Fe84Ga16 and discusses the physical reasons for the non-linear behavior observed. The 

experimental results are used to obtain material properties such as permeability, 

Young’s modulus, strain coefficient and stress sensitivity as functions of discrete 

operating stresses and magnetic fields which are in turn used to calculate the energy 

density, magnetomechanical coupling factor and gage factor of the material at these 

operating conditions. 

An energy-based model is used to simulate the experimental behavior of 

Fe84Ga16. It is shown that all the parameters required for the energy-based model can 

be obtained from the actuator characterization and this single set of parameters are 

sufficient to model both the actuator and sensor behavior. The model is used to 

simulate the material properties and the figures of merit as continuous functions of 

stress and magnetic field in Fe84Ga16, which are compared with the experimental 

values. The effect of alloy composition as well as operating conditions on the actuator 

and sensor figures of merit are studied by using the model to simulate the stress and 

magnetic field-dependent figures of merit of Fe84Ga16, Fe82.5Ga17.5 and Fe81Ga19. 

2.2. Experiment 

This section describes the sample preparation technique, the experimental 

setup and test procedures used for characterizing the Fe84Ga16 sample as an actuator 
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and sensor. The sample preparation and experimental details for Fe82.5Ga17.5 and 

Fe81Ga19, are available in prior work by Datta et al. [105] and Atulasimha et al. [108]. 

An in-house built transducer [107] was used to characterize the sample under quasi-

static stresses and magnetic fields applied along the <100> long axis of the rod-

shaped sample. Both the actuator and sensor characterization involved the 

measurement of strain, magnetic field and magnetic induction along the <100> 

direction of the sample. 

2.2.1. Sample description 

All samples used in this study were prepared in Materials Preparation Center, 

Ames, Iowa [168]. The 25-mm long and 6.25-mm diameter rod of Fe84Ga16 shown in 

Figure 2.1, was obtained from a single crystal ingot grown using the Bridgman 

technique in a resistance furnace [168].  

 

Figure 2.1. Fe84Ga16 rod-shaped sample. The <100> crystal direction is along the 

length of the rod. 

Appropriate quantities of iron and gallium were cleaned and arc melted 

several times under an argon atmosphere. The buttons were then remelted and the 

alloy drop cast into a copper chill cast mold to ensure compositional homogeneity 

throughout the ingot. The as-cast ingot was placed in an alumina crucible and heated 

under a vacuum to 900 °C. After reaching 900 ºC, the growth chamber was backfilled 
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with ultra high purity argon to a pressure of 1.03 x 105 Pa. This over-pressurization is 

necessary in order to maintain stoichiometry. Following pressurization, heating was 

continued until the ingot reached a temperature of 1600 °C and held for 1 hour before 

being withdrawn from the furnace at a rate of 4 mm/hr. The ingot was annealed at 

1000 ºC for 168 hours using heating and cooling rates of 10 ºC per minute. The ingot 

is considered to be in the “slow-cooled” state after this annealing process. Using back 

reflection Laue diffraction, the rod was oriented and sectioned from the ingot with a 

<100> crystal axis aligned within ± 0.5o of the rod’s longitudinal axis. Energy 

Dispersive Spectroscopy performed on the rod showed that it contains 83.8 ± 0.6 

atomic % iron and 16.2 ± 0.6 atomic % gallium. Sample details of Fe82.5Ga17.5 and 

Fe81Ga19 can be found in Refs. [105, 108]. 

2.2.2. Description of transducer 

A schematic of the water-cooled quasi-static transducer [107] is shown in 

Figure 2.2. The transducer comprised of a housing that formed a closed magnetic 

circuit which enclosed a solenoid (drive coil) having a sample chamber in its core. A 

Techron LVC623 linear amplifier was used to supply current to the drive coil. It is 

important to obtain a closed magnetic circuit so that the characterization results are 

independent of the demagnetization effects which can arise due to the finite length of 

the sample. Annealed low carbon steel end-pieces were used as interfaces between 

the sample and the transducer housing to form a closed magnetic circuit. These end-

pieces and an output shaft from the transducer also constituted a load path which was 

used to apply compressive forces upto 3650 N. As the temperature can affect the 

magnetization and magnetostriction data, a digital thermocouple was used to monitor 
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the solenoid temperature, which was maintained at 23 oC by running water through 

cooling tubes placed around the solenoid. 

 

Figure 2.2. Schematic of the transducer assembly, after Kellogg et al. [107]. 

2.2.3. Instrumentation 

Figure 2.3 shows the instruments mounted on the sample. The strain in the 

sample was measured by two resistive strain gages (Vishay Micro-Measurements: CEA-

06-250UN-350) attached in a quarter bridge configuration on diametrically opposite 

sides of the rod at mid-length to counter the effect of any bending moment. An 

Allegro 1323 linear Hall-effect sensor placed parallel to the sample measured the 

magnetic field and a pick-up coil with 50 turns wound around the sample measured 

the magnetic induction using an integrating fluxmeter. The data was collected during 

the experiment using a computer-controlled system at 50 scans per second. A finite 

element model of the experimental setup showed that the magnetic induction and 
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magnetic field measurement can vary at most by 4 % based on the position of the 

pick-up coil and Hall sensor along the length of the sample [45]. 

 

Figure 2.3. Measurement devices mounted on the sample. 

Table 2.1 describes the measurement devices used to measure the strain, 

magnetic field and magnetic induction. The resolution was calculated based on a 12-

bit National Instruments PCI-MIO-16E-4 data acquisition card which was used to 

acquire the data from the measurement devices. The error estimate in measurement is 

calculated as the sum of the absolute values of possible errors in any quantity used to 

calculate the physical quantity of interest from the measured voltage. 

Table 2.1. Description of measurement devices. 

Quantity Measurement device Sensitivity Resolution Range Error 

Strain Strain gages  and Vishay 

3800 strain indicator 

2500 µε/V 0.61 µε ± 10 V 3 % 

Magnetic 

field 

Hall sensor and Vishay 2310 

signal conditioner 

31 kA/Vm 7.56 A/m 0 – 5 V 4 % 

Magnetic 

induction 

Pick-up coil and Walker MF-

10D fluxmeter 

1 T/V 2.44x10-4 T ± 3 V 2 % 
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2.2.4. Actuator characterization under constant stress 

Figure 2.4 shows the different components of the actuator characterization test 

setup. The actuator characterization involved measurement of the magnetic induction 

(B) and magnetostriction (λ) of the sample under quasi-static 0.01 Hz, 70 kA/m 

amplitude sinusoidal applied magnetic field (H) conditions for 4 cycles. This 

magnetic field cycle was repeated with the sample subjected to compressive pre-

stresses (σ) of 0, 18, 34, 50 and 66 MPa using lead dead weights arranged in a free-

hanging weight assembly. Prior to each test, the sample was stabilized after applying 

the compressive stress and then demagnetized over 167 cycles using a 1 Hz 

sinusoidal magnetic field which underwent a 5 % geometric decay every 1.5 cycles 

from an initial amplitude of 97 kA/m. The actuator characterization provided 

information on material properties such as saturation magnetization (Ms), saturation 

magnetostriction (3λ100/2), magnetic permeability (µ) and strain coefficient (d). 

 

Figure 2.4. Actuator characterization setup. 
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2.2.5. Sensor characterization under constant magnetic field 

Figure 2.5 shows the different components of the sensor characterization test 

setup. The sensor characterization involved measurement of the magnetic induction 

and total strain (ε) of the sample under quasi-static compressive stress from zero to 

120 MPa and back to zero at a linear ramp rate of 2 MPa/s while the sample was 

subjected to DC bias magnetic fields of 0, 1, 1.8, 3.5, 5.3, 7.3, 8.8, 17.8, 35.5 and 71.2 

kA/m. The compressive stress cycle was applied using a hydraulic MTS 810 

universal testing machine in feedback force-control mode. The compressive force was 

measured using a load cell. The test sequence comprised of demagnetizing the sample 

followed by applying the DC bias magnetic field and cycling the stress. At the end of 

the stress cycle, the magnetic field was turned off. The sensor characterization 

provided information on material properties such as saturation magnetization (Ms), 

saturation magnetostriction (3λ100/2), Young’s modulus (E) and stress sensitivity (d*). 

 

Figure 2.5. Sensor characterization setup. 
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Initially, the DC bias magnetic fields were produced by applying a constant 

current to the drive coil of the transducer such that the desired magnetic field was 

obtained when the sample was at zero stress. It was observed that a constant current 

through the solenoid did not produce a constant magnetic field in the sample during 

the stress cycle as shown in Figure 2.6. 

 

Figure 2.6. Magnetic field vs. compressive stress in the Fe84Ga16 sample for 

different constant drive currents which produced the desired initial bias fields at 

zero stress. 

This behavior can be explained with the help of an equivalent magnetic circuit 

of the transducer and sample shown in Figure 2.7. The total magneto-motive force 

(MMFTOT) produced by a drive coil is the product of its number of turns (N) and 

current (i) flowing through it.  The steel housing of the transducer can be modeled as 

a fixed reluctance (RT). The Galfenol rod can be modeled as a variable reluctance 

(RS).  
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Figure 2.7. (a) Schematic of the magnetic components in the test setup and (b) its 

equivalent magnetic circuit. 

The mmf across the Galfenol sample can be obtained from Equation (2.1) 

using the idea of a voltage-divider circuit. 

S
FeGa TOT

S T

R
MMF MMF

R R

 
=  

+ 
   (2.1) 

The magnetic field in the sample can be obtained using Ampere’s law which takes the 

form of Equation (2.2) where LFeGa is the length of the Galfenol sample. 

FeGa S
FeGa

FeGa FeGa S T

MMF RNi
H

L L R R

 
= =  

+ 
   (2.2) 

A change in the sample reluctance occurs due to stress-induced change in the 

permeability of the sample which in turn changes the mmf and internal magnetic field 

of the sample even for a constant drive current [108] as evident from Equation (2.2).  

Figure 2.6 shows that a constant drive current produces the desired magnetic 

field under zero stress. On application of sufficient compressive stress, the magnetic 

moments start to rotate away from the direction of stress application which effectively 

reduces the magnetic permeability of the sample which in turn increases the sample 



 

 85 
 

reluctance while the reluctance of the steel housing remains constant. The increased 

sample reluctance causes an increase in the mmf dropped across the sample for a 

constant input mmf across the drive coil [108]. A higher mmf across the sample 

increases the magnetic field in the sample as can be observed in Figure 2.6. 

Note that the sample length (LFeGa) and cross-section area also change due to 

the strain in the material but these changes are on the order of 0.1 % compared to 

about a 100 times change in the permeability which dominates the change in RS. An 

idea about the relative magnitude of changes in these quantities can be obtained from 

the results shown in Sections 2.4 and 2.5. 

In order to overcome this problem, a feedback controller [108] was used to 

measure the response from the Hall-effect sensor and adjust the current in the drive 

coil to maintain a constant magnetic field in the sample throughout the stress cycle. 

The reference voltage (Vref) in the controller was set as the Hall sensor output at the 

desired magnetic field and was compared with the actual Hall sensor output (Vout) 

during the stress cycle. The controller algorithm used a proportional gain of 5.5. A 

small differential gain of 0.5 was used to decrease overshoot from the setpoint. The 

controller response at 10 Hz was sufficient to keep the magnetic field constant for the 

given stress rate and data acquisition rate. Figure 2.8 shows the block diagram of the 

feedback control system which was used to obtain the desired magnetic field within 4 

% accuracy. The plant gain includes the amplifier gain (15 V/V), Hall sensor 

sensitivity (3.23x10-5 Vm/A), current gain (0.59 A/V) and drive coil parameter 

(16100 turns/m). Although the controller was used during the stress cycle, it had to be 

disconnected during the demagnetization sequence. 
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Figure 2.8. Block diagram of feedback controller system used to maintain a 

constant magnetic field in the sample during a quasi-static stress cycle. 

Figure 2.9 shows that when the feedback controller was used to control the 

drive current, a constant magnetic field condition could be obtained during the entire 

quasi-static compressive stress cycle. Unable to maintain a constant magnetic field 

would result in an under-estimate of both stress sensitivity and compliance of the 

material. In the absence of such a controller, the characterization results would be 

dependent on the transducer magnetic circuit and hence would undermine the proper 

understanding of the magnetostrictive material being characterized. 

 

Figure 2.9. Magnetic field vs. compressive stress in the Fe84Ga16 sample with the 

feedback controller operational. 
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2.3. Energy-based non-linear constitutive magnetomechanical model 

The modeling approach used in this chapter was originally used by Armstrong 

[153] to model the actuation in Terfenol-D and was later adapted to both model the 

actuator response and predict the sensor behavior of single crystal and polycrystalline 

Galfenol subjected to axial stress [111]. In this work, the model is used to predict the 

magnetomechanical response of a single crystal rod along its <100> longitudinal axis. 

Section 2.3.1 will discuss the energy formulation and Section 2.3.2 will outline the 

probabilistic approach of modeling the bulk magnetization and magnetostriction. A 

qualitative comparison with other appropriate models is also presented. 

2.3.1. Energy formulation 

The energy terms which affect both strain and magnetization in a material 

were introduced in Sections 1.3 and 1.4. These terms are; exchange energy, 

magnetocrystalline anisotropy energy, magnetostatic energy, elastic energy, 

magnetoelastic energy, Zeeman energy and mechanical workdone. 

Since, in this work we are only interested in modeling the magnetization and 

strain response of a bulk material, we can ignore the effect of exchange energy. The 

exchange energy is non-zero only within the domain walls and the volume of 

domains walls is only a small fraction of a bulk sample. Hence the omission of the 

exchange energy can be a practical assumption for this purpose. Note that the 

exchange energy should not be neglected while modeling the material at smaller 

length (e.g. thin films or nanostructures) scales where its effect becomes more 

predominant. Similarly, the magnetostatic energy may also be omitted from the 

energy formulation if we model a material which has been characterized in a closed 
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magnetic circuit such that its demagnetization factor is zero. This assumption is also 

fairly true as the transducer used for material characterization in this work provides a 

closed magnetic flux path. 

With these assumptions, the change in the Gibb’s free energy for a quasi-

static, isothermal and reversible process can be expressed as the sum of changes in 

the magnetocrystalline anisotropy energy, magnetoelastic energy, elastic energy, 

Zeeman energy and mechanical workdone. Note that this energy formulation assumes 

that the magnetomechanical process takes place for quasi-static stress and magnetic 

field which for all practical purposes remain constant while the strain and 

magnetization in the material is perturbed. Mathematically, stress and magnetic field 

are the independent variables whereas strain and magnetization are the dependent 

variables. It was shown in Section 1.4 that minimization of the Gibb’s free energy 

with respect to strain yields two significant results. 

The first of these results states that the equilibrium strain in the material is the 

sum of a purely mechanical strain and a magnetoelastic strain. The mechanical strain 

depends only on the mechanical stress and the stiffness constants of the material. The 

magnetoelastic strain depends on the magnetization, i.e. the orientation of the 

magnetic moments and also on the spontaneous magnetostriction that arises due to the 

spin-orbit coupling. Note that the stiffness constants mentioned here should be 

evaluated under the condition such that no magnetic moment rotation can take place. 

The second result from the energy minimization with respect to strain showed 

that the substitution of the equilibrium strains in the free energy yields a stress-

induced anisotropy energy (Eσ) and a 4th order magnetostrictive anisotropy (∆K). 
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From here onwards we will denote the sum of the magnetostrictive anisotropy (∆K) 

and the 4th order magnetocrystalline anisotropy (K1) as the net 4th order 

magnetocrystalline anisotropy (K1). This is a practical nomenclature because these 

two parameters cannot be experimentally distinguished from each other, i.e. 

experimentally measured values of K1 also includes ∆K [169] unless each and every 

magnetic moment in the material can be clamped [170].  

In this work we use the saturation magnetization (Ms), the magnetostrictive 

constant (λ100) and the 4th and 6th order anisotropy constants (K1 and K2 respectively) 

to calculate the Zeeman, stress-induced anisotropy and magnetocrystalline anisotropy 

energies per unit volume due to a stress (σ) and a magnetic field (H) applied along the 

[100] direction as shown in Equations (2.3), (2.4) and (2.5) respectively. 

1H o s
E M Hµ α= −      (2.3) 

2
100 1

3

2
Eσ λ σα= −      (2.4) 

( ) ( )2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 2 1 2 3an

E K Kα α α α α α α α α= + + +   (2.5) 

The stress-induced anisotropy energy [58, 159, 169, 170] has been 

erroneously called the magnetoelastic energy in several works [111, 153]. The 

difference between these two energy terms has been explained in details in Section 

1.4. It is also ascertained that ignoring the effect of the 6th order magnetocrystalline 

anisotropy constant K2 as done in prior work [153, 171] can severely change the 

magnetization and magnetostriction response to magnetic field, particularly at 

intermediate magnetic fields when the material is not saturated and all of the direction 
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cosines (α1, α2, α3) of magnetization are non-zero. Hence appropriate estimates of K2 

are used in this work. 

The free energy (ETOT) of the system corresponding to different orientations in 

3D space can be expressed in terms of their direction cosines (α1, α2, α3) as shown in 

Equation (2.6).  

( ),TOT H anE E E Eσϕ θ = + +     (2.6) 

The direction cosines can be expressed in terms of the azimuthal angle (φ) and polar 

angle (θ) such that 1 sin cosα θ ϕ= , 2 sin sinα θ ϕ=  and 3 cosα θ= . It should be noted 

that Equation (2.6) is only appropriate for a single crystal but has been often used for 

modeling polycrystalline material [128, 159, 171] without taking into consideration 

the fact that the different orientations of the grains in a polycrystalline materials 

cannot be accounted for by using only one set of magnetization direction cosines in a 

global coordinate system. An appropriate method for adapting this energy 

formulation for polycrystalline materials by incorporating the volume fraction of 

grains with different orientations has been shown by Atulasimha et al. [111]. 

2.3.2. Modeling of constitutive behavior 

Zhang and Chen [164] have shown that if the exchange and magnetostatic 

energy terms are not ignored then the Landau-Lifshitz-Gilbert equation can be used to 

predict the bulk magnetization and magnetostriction response as functions of stress 

and magnetic field. Although this technique can provide accurate results without 

imposing assumptions on the energy terms, it is computationally intensive, 

particularly for implementation in 3D. 
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A computationally efficient homogenized energy technique was successfully 

implemented by Smith [158] and Evans and Dapino [159]. This technique is useful 

for modeling hysteresis and minor loops but is limited by the consideration of only 

two [158] or six [159] energy minima in the material and require additional 

parameters compared to Armstrong’s approach [153]. Moreover, these models [158, 

159] assume that the bulk magnetization and magnetostriction is affected by thermal 

relaxation and incorporates that using Boltzmann statistics. Boltzmann statistics is 

only applicable to a large number of non-interacting particles and hence may not be 

appropriate in ferromagnetic materials as the magnetic moments interact with each 

other through the exchange coupling. Even if the idea of non-interacting particles is 

applied to domains instead of the magnetic moments, it is known that the number of 

domains in a bulk material diminishes rapidly at high magnetic fields and hence the 

assumption of “large number” which is associated with Boltzmann statistics will not 

hold true under most operating conditions. 

On the other hand, Armstrong [153] modeled the bulk response of the material 

using a phenomenological probabilistic approach. Although the probabilistic 

approach takes the form of Boltzmann distribution, it should be noted that this is 

purely a phenomenological approach which does not use any postulate of Boltzmann 

statistics. Furthermore, the only justification for using it in place of the LLG equation 

(which includes exchange and magnetostatic energy terms) is because it provides a 

computationally efficient method for calculating the bulk response. In this work, we 

will use the anhysteretic modeling technique which is deemed suitable for Galfenol as 

Fe-Ga alloys exhibit negligible hysteresis. 
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In order to develop an expression for the bulk magnetization and 

magnetostriction, it is necessary to understand the following probabilistic approach. 

Let us assume that a bulk magnetic material is composed of a number of non-

interacting magnetization units. The fraction of these units at a state (i, j), which is 

defined by the orientation (φi, θj) of these units, may be denoted by pij. From the 

physics of ferromagnetism, we know that a larger number of magnetic moments 

would align along a direction of lower energy. Since pij is proportional to the number 

of magnetic moments and inversely proportional to ETOT(φi, θj), a probability density 

function given by Equation (2.7) can be used to express pij as a function of ETOT(φi, 

θj). The choice of an exponential distribution in Equation (2.7) is made to avoid a 

singularity at ETOT = 0. 

( )
( ),

, exp
ϕ θ

ϕ θ
 −

=  
Ω  

TOT i j

ij i j m

E
p N    (2.7) 

Here Nm is a normalizing factor which can be calculated from Equation (2.8) from the 

definition of a probability density function and Ω is an empirical scaling factor. It is 

assumed that the energy is distributed in a sphere of unit radius. 
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Let us assume Q(φ, θ) is a distributed physical quantity. The expected value 

<Q> can be obtained from Equation (2.9). 
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In order to calculate the magnetization along [100], we substitute Q(φ, θ) with M[100] 

(= Msα1) in Equation (2.9) and convert the definite integrals to finite summations 

which gives us Equation (2.10). An optimum value of ∆φ = ∆θ = 5o is used for all 

cases to get converged solutions in reasonable computation time. 
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The magnetic induction is calculated using Equation (2.11). 

( )oB M Hµ= +     (2.11) 

The same hypothesis can be extended to calculate the magnetostriction along [100] 

using Equation (2.12). 
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The total strain can be described by Equation (2.13) where ES is the purely 

mechanical Young’s modulus of the material and is also known as the modulus at 

magnetic saturation. This is the modulus measured when all the magnetic moments 

are oriented either parallel or anti-parallel. 

S
E

σ
ε λ= +      (2.13) 

Although model parameters such as Ms and λ100 can be easily obtained from 

the magnetomechanical actuator characterization described earlier, the parameters K1, 

K2, and Ω have to be obtained empirically in order to get the best fit of the 

experimental characterization curves. Experimentally measured values of K1 and K2 
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for quenched iron-gallium alloys [118] are used as a starting estimate for determining 

these empirical values. A detailed study of the effect of the model parameters on the 

model prediction can be found in the work of Atulasimha et al. [156]. The model 

parameters used for the different samples in this chapter are shown in Table 2.2. 

Table 2.2. Model parameters used in energy-based model. 

Parameters Fe84Ga16 Fe82.5Ga17.5 Fe81Ga19 

Ms (kA/m) 1456 1420 1321 

λ100 (µε) 165 210 212 

K1 (kJ/m3) 13 16 17.5 

K2 (kJ/m3) -90 -90 0 

Ω (J/m3) 600 630 707 

ES (GPa) 76 65 59 

2.4. Model validation 

This section presents the experimental results obtained from the actuator and 

sensor characterization of Fe84Ga16. The trends are explained using the energy terms 

discussed earlier. Model simulations of the actuation and sensing behavior are 

presented and a statistical method is developed to estimate the error in model 

simulations. 

2.4.1. Model fitting of actuator behavior 

Figure 2.10 shows the magnetic induction in Fe84Ga16 as a function of the 

quasi-static magnetic field at different compressive pre-stresses acting on the sample. 

The saturation magnetization of the sample was calculated to be 1445 ± 43 kA/m. It 
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was observed that the higher the compressive stress acting on the material, the higher 

is the magnetic field required to produce the same magnitude of magnetic induction 

as a result of which a higher magnetic field is required to saturate the material. 

 

Figure 2.10. Energy-based model prediction (dashed lines) and experimental 

(solid lines) magnetic induction (B) vs. magnetic field (H) at different 

compressive pre-stresses (σ) in the Fe84Ga16 sample. 

Although in the absence of stress, the equivalent <100> directions have 

minimum energy in a magnetic material with cubic anisotropy, it can be hypothesized 

that if the compressive stress applied along the [100] crystal direction is high enough 

to overcome the magnetocrystalline anisotropy energy, then all the magnetic 

moments end up aligning perpendicular to the direction of stress and hence the [100] 

direction does not remain an easy axis. Under such a pre-stressed condition, when a 

small magnetic field is applied along [100], the magnetic moments lying in the [010] 

and [001] energy wells start rotating away from [010] or [001] but do not align along 

[100] as it still remains a high energy direction. A net magnetic induction is still 
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measured along [100] due to the sum of the component of the local magnetizations 

directed along [100] as the magnetic moments precess around the [010] or [001] 

energy wells. On increasing the magnetic field to a critical value, an energy well is 

created along [100] which is marked by the sudden change in the slope of the B-H 

curve. This condition is described as the "burst region" in B-H curves. This critical 

value of magnetic field increases with increasing compressive pre-stress. On further 

increasing the magnetic field, more and more magnetic moments align along [100] as 

it becomes an absolute minimum energy direction. As the energy well along [100] 

grows deeper, the energy wells along [010] and [001] get shallower and finally these 

wells along [010] and [001] disappear. At this stage, all the magnetic moments align 

along [100] marking the onset of saturation which is denoted by the knee of the B-H 

curve. 

Figure 2.11 shows the strain in Fe84Ga16 as a function of the quasi-static 

magnetic field at different compressive pre-stresses acting on the sample. In order to 

compare the magnetoelastic strains only due to the magnetic field at different constant 

pre-stresses, the strains obtained only due to the pre-stress in the absence of a 

magnetic field were zeroed in Figure 2.11. 

The saturation magnetostriction of the sample was calculated to be 242 ± 7 µε 

by recording the maximum strain due to magnetic field obtained at non-zero pre-

stresses. In the absence of a pre-stress, the magnetic moments in the sample are 

assumed to be distributed equally along all easy or minimum energy directions. 

Hence a magnetic field applied along [100] can only rotate those magnetic moments 
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which are initially aligned along [010] or [001] towards [100] thereby producing the 

magnetostriction. 

 

Figure 2.11. Energy-based model prediction (dashed lines) and experimental 

(solid lines) magnetostriction (λ) vs. magnetic field (H) at different compressive 

pre-stresses (σ) in the Fe84Ga16 sample. 

When a sufficient compressive stress is applied along [100], the magnetic 

moments rotate away from [100] and align along [010] or [001]. When a magnetic 

field is applied along [100] of the pre-stressed sample, it is able to rotate much larger 

number of moments from [010] and [001] to [100] thereby yielding higher 

magnetostriction. It was ensured that the minimum compressive stress (18 MPa) 

applied during the experiment was high enough to orient all magnetic moments 

perpendicular to [100]. 

Similar to the magnetization behavior, it was observed that the higher the 

compressive stress acting on the material, the higher is the magnetic field required to 

produce the same magnetostriction as a result of which a higher magnetic field is 



 

 98 
 

required to saturate the material. Also, for each compressive pre-stress, the λ-H 

curves have a region of very low slope until the magnetic field is high enough to 

overcome the magnetocrystalline and stress-induced anisotropy energy. The higher 

the pre-stress, the higher was the critical magnetic field required to initiate this “burst 

region.” This critical magnetic field for each pre-stress was found to be the same at 

which the slope of the B-H curve changes abruptly. 

Table 2.3. Estimation of magnetoelastic strain in Fe84Ga16 at different pre-

stresses and zero magnetic field. 

Pre-stress 

[σo – MPa] 

Measured pre-

strain [εo - µε] 

Pure mechanical 

strain [σ/ES - µε] 

Magnetoelastic strain 

[λ(σ = σo, H = 0) - µε] 

0 0 0 0 

-18 -440 -237 -203 

-34 -658 -447 -211 

-50 -906 -658 -248 

-66 -1065 -868 -197 

 
Table 2.3 shows that the difference between the pre-strains and the purely 

mechanical strain at a given pre-stress yields the increase in useful magnetostriction 

which is manifested as an increase in saturation magnetostriction on saturating the 

sample by applying a magnetic field at that pre-stress. The purely mechanical strain 

was calculated using ES = 76 GPa. The value of λ(σ = σo, H = 0) was calculated to be 

-215 ± 23 µε using Equation (2.13). Note that this value is roughly the difference 

between the saturation magnetostriction at zero pre-stress and at higher pre-stresses 
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shown in Figure 2.11. This analysis confirms that the pre-stress produces a negative 

magnetoelastic strain which is regained as the additional useful magnetostriction on 

application of magnetic field. 

Figure 2.12 shows the change in the azimuthal position of the energy minima 

as the sample, which is originally in a demagnetized state under a constant pre-stress, 

is saturated by increasing the magnetic field. Figure 2.12 can be compared to Figure 

1.17 which showed the 3D energy distribution in a demagnetized pre-stressed sample 

subjected to increasing magnetic fields upto saturation. 

 

Figure 2.12. Arbitrary total energy [ETOT(σ,H)]  vs. azimuthal angle (φ) of the 

magnetization direction at a constant pre-stress of -66 MPa and for magnetic 

field from 0 (demagnetized) to 30 kA/m (saturated). The energy map is plotted at 

a polar angle (θ) of 90
o
, i.e. in the azimuthal plane. 
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2.4.2. Model prediction of sensor behavior 

Figure 2.13 shows the magnetic induction in Fe84Ga16 as a function of the 

quasi-static compressive stress at different constant bias magnetic fields acting on the 

sample. The saturation magnetization of the sample was calculated to be 1430 ± 50 

kA/m. At zero magnetic field, stress has no effect on the net magnetization or 

magnetic induction because the magnetic domains rearrange in such a way that the 

magnetization in the domains end up forming closure loops to ensure that there is no 

stray magnetic field coming out of the material. Hence it is not possible to perform 

magnetostrictive sensing in the absence of a bias magnetic field. 

 

Figure 2.13. Energy-based model prediction (dashed lines) and experimental 

(solid lines) magnetic induction (B) vs. compressive stress (σ) at different DC 

bias magnetic fields (H) in the Fe84Ga16 sample. 

On application of a bias magnetic field along [100], magnetic moments orient 

along the direction of the magnetic field and a net magnetic induction is observed at 

zero stress. If the bias magnetic field is high enough to align all the magnetic 
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moments along the direction of magnetic field then the material is said to be saturated 

at zero stress. On application of a compressive stress, the stress-induced anisotropy 

energy has to work to overcome the Zeeman and magnetocrystalline anisotropy 

energies during which no magnetic moments rotate. This region is denoted by the 

horizontal part of the curves close to zero stress in Figure 2.13 (clearly visible for bias 

fields ≥ 7.3 kA/m). On increasing the magnitude of stress, once the stress-induced 

anisotropy energy overcomes the Zeeman and magnetocrystalline anisotropy 

energies, the magnetic moments start to rotate away from the direction of magnetic 

field. This region is denoted by the downward sloping part of the B-σ curves for bias 

fields between 1 and 17.8 kA/m. 

Figure 2.13 also shows that beyond a certain critical value of compressive 

stress, the value of B attains saturation. The higher the bias magnetic field, the higher 

is the stress required to attain saturation. The reason for obtaining a non-zero value of 

B at saturation is due to the fact that under the influence of both stress and magnetic 

field used in this study, the absolute energy minimum does not occur at 90o from the 

direction of stress application but is usually at some azimuthal angle less than 90o 

thereby having a component of B along the direction of field/stress. For a given value 

of high compressive stress, the higher the bias magnetic field, the more the deviation 

of the magnetization vector from 90o and hence the higher the value of saturation B. 

For a given bias field, it is theoretically possible to apply a stress which can produce 

the energy minimum at 90o but the magnitude of the stress required to attain this state 

would be on the order of several GPa which is much higher than the strength of the 

material and hence for all practical purposes we can expect to see a residual B at high 
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stresses. This hypothesis was validated using the energy-based model by finding the 

azimuthal angle corresponding to the deepest energy well for different combinations 

of high compressive stress and magnetic fields as shown later in Figure 2.15. 

Figure 2.14 shows the strain in Fe84Ga16 as a function of the quasi-static 

compressive stress at different constant bias magnetic fields acting on the sample. At 

zero magnetic field, there is no strain in the sample at zero stress. On increasing the 

applied stress, a non-linear elastic region is observed which corresponds to additional 

magnetoelastic strain due to magnetic moment rotation superimposed on the elastic 

strain. Beyond a critical compressive stress (~ 15 MPa), all the magnetic moments 

align along the equilibrium direction and hence a linear ε-σ curve is observed. 

 

Figure 2.14. Energy-based model prediction (dashed lines) and experimental 

(solid lines) strain (ε) vs. compressive stress (σ) at different DC bias magnetic 

fields (H) in the Fe84Ga16 sample. 

On application of a bias magnetic field, the material exhibits a magnetoelastic 

strain even at zero stress. On increasing the compressive stress, a linear ε-σ curve is 
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seen until the stress-induced anisotropy overcomes the Zeeman energy and the 

magnetic moments start to rotate away from the field/stress direction. The magnetic 

moment rotation is exhibited by a non-linear region in the ε-σ curve which becomes 

linear once again at high stresses once all the magnetic moments have aligned along 

the equilibrium direction. The higher the bias magnetic field, the higher the 

compressive stress required to rotate the magnetic moments and hence the non-

linearity in the ε-σ curves gets shifted towards higher compressive stresses at higher 

bias magnetic fields. The stress range used for the experiment was not sufficient to 

overcome the Zeeman energy due to 71 kA/m and hence the magnetic moments in the 

sample remain aligned along the direction of magnetic field throughout the stress 

cycle at this bias field. The Young’s modulus of the sample at magnetic saturation or 

“hard modulus” was calculated to be 76 ± 5 GPa. It was observed that the Young’s 

modulus can change as a function of stress as well as magnetic field due to additional 

strain arising from magnetic moment rotation. This phenomenon is known as Delta-E 

effect and will be discussed in Section 2.5.  

Figure 2.14 shows that the difference in strain at zero stress between zero and 

saturating bias magnetic fields is around 60 µε which is equal to the value of 

maximum magnetostriction that can be observed at zero pre-stress in Figure 2.11. 

Also, the difference in strain at high stresses between zero and saturating bias 

magnetic fields is around 247 ± 4 µε which is equal to the saturation magnetostriction 

observed at non-zero pre-stresses in Figure 2.11. It is noteworthy that the 

magnetization and magnetostriction at saturation obtained from two independent 
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experiments yielded similar values and hence provided a measure of consistency for 

the actuator and sensor characterization techniques described in this chapter. 

 

 

Figure 2.15. Arbitrary total energy [ETOT(σ,H)] vs. azimuthal angle (φ) of the 

magnetization direction at magnetic fields of (a) 1 kA/m and (b) 7.3 kA/m for 

compressive stresses ranging from 0 to 100 MPa. The energy map is plotted at a 

polar angle (θ) of 90
o
, i.e. in the azimuthal plane. 
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Figure 2.15(a) shows an energy map at very low magnetic field (1 kA/m) 

when the material is not saturated at zero stress and Figure 2.15(b) shows the energy 

map at a magnetic field (7.3 kA/m) when the onset of magnetic saturation is evident 

at zero stress. The strikingly different energy profiles for the same stresses but at 

these two different magnetic fields help in the understanding of the sensing behavior 

of the material by visualizing the azimuthal position and number of energy minima at 

different operating stress and magnetic field conditions. Figure 2.15 can be compared 

to Figure 1.16 which showed the 3D energy distribution in a magnetically biased 

sample subjected to increasing compressive stresses. 

2.4.3. Error estimation 

In order to use the energy-based model for design purposes, it is important to 

get an estimate of error between the experimental results and model fit. As the model 

provides a smooth function while the experimental data does not, in order to compare 

these two the experimental data was grouped into n divisions, each with equal number 

of data points. The mean and standard deviation of the ith division is denoted by iy  

and SDi respectively. The terms fit

iy  and SDo denote the model predicted value for the 

i
th division and the standard deviation of the residuals ( )fit

i i
y y−   respectively. The 

standardized absolute relative error (SARE) given by Equation (2.14) was calculated 

for the experimental data and model fit to quantify the goodness of the fit. 

( )
1

1 1
fit

n
i i o

n i i i

y y SDstandardized residual
SARE

n standardized mean n y SD=

−
= =∑ ∑  (2.14) 
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Table 2.4 shows the SARE between the model prediction and experimental data for 

the Fe84Ga16 sample. 

Table 2.4. Error estimates between experimental data and model fit. 

Relationships B-H λ-H B-σ ε-σ 

SARE (%) 2.5 1.1 2.3 8.4 

 

2.5. Evaluation of stress and magnetic field-dependent material properties 

A set of coupled 1-D linear constitutive relations described by Equations 

(2.15) and (2.16) can be used to express small changes in strain and magnetic 

induction in magnetomechanically coupled materials about a given operating point of 

stress and magnetic field as described in detail in Section 1.6.1. 

ε σ= +s dH      (2.15) 

*σ µ= +B d H     (2.16) 

Equations (2.15) and (2.16) suggest that the material properties such as permeability 

(µ), axial strain coefficient (d), axial stress sensitivity (d*) and compliance (s) or 

Young’s modulus (E = 1/s) can be calculated from the slopes of the plots shown in 

Figures 2.10, 2.11, 2.13 and 2.14 respectively. 

Although values for all four of these material properties are generally used as 

if they are single-valued constants, the purpose of this section is to examine a more 

suitable assessment of these material properties as suggested in Equations (2.17) and 

(2.18), which reflect the stress and magnetic field-dependency of these material 

properties. 

( ) ( ), ,s H d H Hε σ σ σ= +     (2.17) 



 

 107 
 

( ) ( )* , ,B d H H Hσ σ µ σ= +    (2.18) 

2.5.1. Experimental method 

The material properties were calculated from the experimental B-H, λ-H, B-σ 

and ε-σ plots using a moving average scheme. This method reduced the large error 

that can arise if numerical differentiation is performed on experimental data which is 

not smooth. A window of 0.4 kA/m (for B-H and λ-H) and 1 MPa (for B-σ and ε-σ) 

were chosen and a straight line was fitted to all the data points lying inside this 

window. The slope of the line gave the material properties at the mean value of the 

field/stress range of that window. The window was moved across the entire range of 

data to obtain the material properties as functions of magnetic field/stress at different 

pre-stresses/DC bias magnetic fields respectively. 

A limitation on the experimentally obtained data was that all the four 

magnetomechanical properties could be obtained only for the fifty possible 

combinations of the five pre-stresses and the ten bias magnetic fields at which the 

material was characterized. 

2.5.2. Model simulations 

In order to obtain all the material properties as continuous functions of stress 

and magnetic field, the energy-based model was used to generate B-H, λ-H, B-σ and 

ε-σ curves for stresses ranging from -150 to 50 MPa at an interval of 1 MPa and 

magnetic fields ranging from 0 to 100 kA/m at an interval of 0.1 kA/m. The first 

derivative of these curves obtained by numerical differentiation produced the material 

properties µ(σ,H), d(σ,H), d*(σ,H) and E(σ,H). 
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2.5.3. Magnetomechanical properties 

The experimental and model simulation of material properties of Fe84Ga16 as 

functions of stress and magnetic field are shown in Figures (2.16) – (2.19). Figures 

(2.16) – (2.19) show that the model simulations capture the trend in the material 

properties with varying stress and magnetic field quite well but the model simulations 

appear to over-predict or under-predict the values of the properties. Such error 

between the experimentally obtained values and model simulations can be traced 

back to the fact that the model provides a good fit of the B-H, λ-H, B-σ and ε-σ 

curves on an average sense and not at all points on these curves. Any small deviation 

of the model from the experimental curves would be amplified during the numerical 

differentiation required to obtain the material properties. Nevertheless, the simulated 

values are of the same order of magnitude as the experimentally obtained values and 

for most of the operating region lie within the experimental scatter. Hence the model 

simulations can be safely assumed to reflect the experimental results. The SARE 

calculated for µr-H, d-H, d*-σ and E-σ curves in Figures (2.16) – (2.19) are 7.2 %, 

12.4 %, 19.1 % and 28 % respectively. 
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Figure 2.16. (a) Comparison of energy-based model prediction (black dashed 

lines) and experimental (colored markers) relative permeability (µr) in the 

Fe84Ga16 sample. (b) Model simulation of relative permeability as a continuous 

function of stress and magnetic field - µr(σ,H), in the Fe84Ga16 sample. 
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Figure 2.17. (a) Comparison of energy-based model prediction (black dashed 

lines) and experimental (colored markers) strain coefficient (d) in the Fe84Ga16 

sample. (b) Model simulation of strain coefficient as a continuous function of 

stress and magnetic field - d(σ,H), in the Fe84Ga16 sample. 
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Figure 2.18. (a) Comparison of energy-based model prediction (black dashed 

lines) and experimental (colored markers) stress sensitivity (d*) in the Fe84Ga16 

sample. (b) Model simulation of stress sensitivity as a continuous function of 

stress and magnetic field – d*(σ,H), in the Fe84Ga16 sample. 
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Figure 2.19. (a) Comparison of energy-based model prediction (black dashed 

lines) and experimental (colored markers) Young’s modulus (E) in the Fe84Ga16 

sample. (b) Model simulation of Young’s modulus as a continuous function of 

stress and magnetic field - E(σ,H), in the Fe84Ga16 sample. 
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2.5.4. Discussion on the trend in material properties 

The trend in the material properties can be explained in terms of energy 

balance in the material. For a given compressive pre-stress, the values of µr, d and d* 

initially increase with increasing magnetic field until they reach a peak value at a 

critical magnetic field. This peak value indicates a balance of magnetocrystalline 

anisotropy, stress-induced anisotropy and Zeeman energies such that a small 

perturbation from this operating point will induce maximum number of magnetic 

moments to rotate. The higher the pre-stress, the higher is the critical magnetic field 

required to attain the peak values of the material properties. Beyond this critical 

magnetic field, the values of µr, d and d* decrease with increasing magnetic field. 

Similarly if the bias magnetic field is kept constant, the values of µr, d and d* 

initially increase with increasing compressive pre-stress until they reach a peak value 

at a critical compressive stress which corresponds to the energy balance. The higher 

the bias magnetic field, the higher is the critical stress required for the energy balance. 

Beyond this critical stress, the values of µr, d and d* decrease with increasing 

compressive stress.  

The dependence of E on σ and H, i.e. the Delta-E effect, is somewhat different 

as can be observed in Figure 2.19. If the bias magnetic field is kept constant and the 

compressive stress is increased, the Young’s modulus initially decreases due to 

additional magnetoelastic strain produced by magnetic moment rotation. The value of 

E reaches a minima when the stress-induced anisotropy energy balances the Zeeman 

and magnetocrystalline anisotropy energies. On further application of stress, E 

increases and asymptotes to a value of 76 GPa which corresponds to the Young’s 
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modulus at saturation (ES). Similar trend is observed at different constant pre-stresses 

and varying magnetic fields. 

A tensile stress collinear to the magnetic field further enhances the anisotropy 

along that direction and saturates the material at a lower magnetic field than what is 

required if there were no stress. This is evident in Figure (2.16) – (2.19) from the fact 

that the variation in magnetomechanical properties under tension is negligible. 

There are two special cases that need to be discussed here. The first case deals 

with quasi-statically changing the magnetic field while no stress is applied to the 

material which changes the symmetry of the energy map from 4-fold to 1-fold and 

hence all the magnetic moments orient along one energy minimum thereby producing 

magnetostriction and exhibiting a non-zero d. In this case, the magnetic field has to 

overcome only the magnetocrystalline anisotropy. Hence the peak in strain coefficient 

(d) is observed at very small magnetic field. 

In the second case, when the stress is varied quasi-statically in the absence of 

any magnetic field, the symmetry of the energy map changes from 4-fold to 2-fold 

which indicates that the magnetic moments are equally likely to reside in both the 

energy minima thereby not producing any net change in magnetic induction and 

exhibiting a zero value of d* at all stresses while still exhibiting a softening of the 

Young’s modulus due to magnetoelastic strain arising from reorientation of magnetic 

moments. 

Another insight available from Figures 2.17 and 2.18 is that often d and d* are 

assumed to be equivalent in a small region about an operating point [81]. Figure 2.20 

shows the difference between the d and d* values calculated from experimental data 
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at different operating conditions as shown in Figures 2.17 and 2.18. While much of 

this plot has values of close to zero, supporting this assumption, it is interesting to 

note that the discrepancies are larger than the experimental uncertainty and they also 

show a consistent trend  with changing stress and magnetic field. For a given stress, 

the difference between d and d* appears to increase with an initial increase in 

magnetic field until this difference reaches a maximum. At higher magnetic fields, 

this difference decreases to zero. It can be also observed in Figure 2.20, that as the 

compressive stress is increased in the material, the maxima in the difference between 

d and d* occurs at a relatively higher magnetic field. 

 

Figure 2.20. Difference between d and d* calculated from quasi-static 

measurements performed on the Fe84Ga16 sample at different operating stress 

and magnetic field conditions. 
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2.6. Energy density 

This section presents the experimental and model simulation results obtained 

from the investigation of the effect of stress, magnetic field and composition on the 

energy density of Fe-Ga alloys. 

The energy density (U) of a magnetostrictive material is the magnetoelastic 

energy that can be stored in a unit volume of the material. Energy density can be 

calculated as the area under the actuator load line at a given operating magnetic field. 

The actuator load line is the region in a ε-σ curve which lies in between the free strain 

(ε = λ at σ = 0) and blocked stress (σ = σb at ε = 0). In general, if the actuator load line 

is non-linear then the energy density has to be calculated using numerical integration. 

A close inspection of the actuator load lines in Figure 2.14 showed that for Galfenol 

the actuator load lines are highly linear (R2 > 0.99) for all bias magnetic fields. Hence 

it is reasonable to approximate the blocked stress (σb) as the product of Young’s 

modulus (E) and magnetostriction (λ) for a given pre-stress and operating magnetic 

field. Therefore the energy density can be obtained by calculating the area under the 

linear actuator load line using Equation (2.19). 

( ) ( ) ( )21 1
, , ,

2 2b
U H E H Hσ σ λ σ λ σ= =    (2.19) 

The experimental values of energy density were obtained at 32 unique 

operating points as shown in Figure 2.21(a). The Young’s modulus and 

magnetostriction at these operating points were obtained by using the scheme 

explained in Section 2.5. A maximum energy density of 2.29 ± 0.09 kJ/m3 was 

calculated for Fe84Ga16 at saturation magnetostriction. 
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Although the model prediction shown in Figure 2.21(b) matches the trend 

shown in Figure 2.21(a), the model appears to under-predict the maximum energy 

density. This behavior of the model can be traced back to the fact that the error 

between the model and experimental characterization curves is minimized on average 

but not at all operating points. Moreover, as the energy density is proportional to the 

square of the magnetostriction, an error in the model fit of the magnetostriction will 

be amplified in the model prediction of the energy density. An error estimate using 

Equation (2.14) showed that the SARE between the experimental values and model 

prediction of energy density of Fe84Ga16 is 4.7 %. 

Figure 2.22 shows the simulated values of energy density of Fe82.5Ga17.5 and 

Fe81Ga19 as a continuous function of stress and magnetic field. The maximum energy 

density of Fe82.5Ga17.5 and Fe81Ga19 is higher than that of Fe84Ga16 owing to their 

higher saturation magnetostriction. Although Fe82.5Ga17.5 and Fe81Ga19 have similar 

saturation magnetostriction, Fe82.5Ga17.5 shows a higher value of maximum energy 

density as it has a higher Young’s modulus compared to Fe81Ga19. 
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Figure 2.21. (a) Experimental values of energy density (U) of Fe84Ga16 at σ = 0, -

18, -34, and -66 MPa and H = 0, 1, 1.8, 3.5, 5.3, 7.3, 8.8 and 17.8 kA/m. (b) Model 

simulation of energy density of Fe84Ga16 as a continuous function of magnetic 

field and stress – U(σ,H). 
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Figure 2.22. Model simulation of energy density of (a) Fe82.5Ga17.5 and (b) 

Fe81Ga19 as a continuous function of magnetic field and stress – U(σ,H). 



 

 120 
 

2.7. Magnetomechanical coupling factor 

This section presents the experimental and model simulation results obtained 

from the investigation of the effect of stress, magnetic field and composition on the 

magnetomechanical coupling factor of Fe-Ga alloys. 

The magnetomechanical coupling factor (k) is a measure of the transduction 

efficiency and hence can be defined as the geometric mean of the actuator and sensor 

efficiencies (ηa, ηs). The actuator efficiency (ηa) is the ratio of the magnetoelastic 

work output
1 1

= =
2 2

 
 
 

σλ σdH  to the magnetic work input 21 1
= =

2 2

 
 
 

BH µH . The 

sensor efficiency (ηs) is the ratio of the magnetoelastic work 
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. The 

coupling factor can be expressed in terms of the material properties as shown in 

Equation (2.20). 
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(2.20) 

A different derivation of the same coupling factor which can be also obtained 

from the ratio of magnetoelastic energy to the geometric mean of the magnetic and 

mechanical energies is shown in Refs. [2, 81]. 

Prior work by Wun-Fogle et al. [171] simulated µ, d and k as functions of 

stress and magnetic field in stress-annealed polycrystalline Galfenol using an energy-
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based model. The energy formulation used was restricted to that of single crystal and 

a value of Young’s modulus at constant magnetic induction, calculated at magnetic 

saturation, was used in the simulation of k for non-saturated conditions. 

In the present work, the experimental capability of maintaining constant 

magnetic field using a feedback controller is put to advantage in order to obtain stress 

and magnetic field-dependent Young’s modulus values which are used in Equation 

(2.20) to calculate appropriate values of stress and magnetic field dependent coupling 

factor from experimental data. 

The experimental values of coupling factor were obtained at 32 unique 

operating points as shown in Figure 2.23(a). The material properties at these 

operating points were obtained by using the scheme explained earlier. The coupling 

factor is always zero at zero magnetic field. It can be observed that for each pre-

stress, the coupling factor increases with increasing magnetic field, reaches a peak 

value and then steadily decreases to zero at higher magnetic fields. As the pre-stress 

is increased, the peak in coupling factor occurs at a higher magnetic field. The highest 

value of k = 0.51 ± 0.03 was observed at σ = -18 MPa and H = 3.5 kA/m in Fe84Ga16. 

The material properties obtained from the energy-based model as continuous 

functions of stress and magnetic field were used in Equation (2.20) to obtain the 

coupling factor of Fe84Ga16 as shown in Figure 2.23(b). The model confirms the trend 

in coupling factor observed in the experimental values. It should be noted that an 

error between the model and the experimental actuator and sensor characterization 

curves along with the error in the numerical derivatives used to obtain the material 

properties would affect the calculation of k. An error estimate using Equation (2.14) 
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showed that the SARE between the experimental values and model prediction of 

coupling factor of Fe84Ga16 is 15.7 %. 

 

 

Figure 2.23. (a) Experimental values of coupling factor (k) of Fe84Ga16 at σ = 0, -

18, -34, and -66 MPa and H = 0, 1, 1.8, 3.5, 5.3, 7.3, 8.8 and 17.8 kA/m. The error 

bars are shown only for σ = -18 and -66 MPa. (b) Model simulation of coupling 

factor of Fe84Ga16 as a continuous function of magnetic field and stress – k(σ,H). 
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The magnetomechanical coupling factor gives a measure of the 

magnetoelastic workdone by the material for a given magnetic and mechanical work 

input. The higher the compressive stress acting on the material, the higher is the 

magnetic field required to obtain the maximum work from the material and hence the 

coupling factor peaks at higher magnetic field as the pre-stress is increased. The same 

idea holds true if the magnetic field is kept constant while the stress is varied. 

Moreover as the stress and magnetic field tend to zero, the coupling factor also tends 

to zero as no magnetoelastic work is obtained from the material. At the other extreme, 

the coupling factor can also tend to zero if the magnitude of stress is high enough at a 

given bias magnetic field or conversely the magnitude of actuating magnetic field is 

high enough at a given pre-stress such that the material attains saturation and the 

magnetic moments cannot rotate any further to perform magnetoelastic work. The 

general trend in variation of k with stress and magnetic field can be deduced using the 

energy plots shown in Figures 2.12 and 2.15 as explained below. 

The variation in k depends on the volume fraction of magnetic moments 

available which can undergo non-180o rotation. Hence the extent of variation in k 

depends on the bias magnetic field or pre-stress as that decides the volume fraction of 

magnetic moments which are available for non-180o rotation and also the energy 

barrier that needs to be overcome by the stress-induced anisotropy or Zeeman energy 

respectively in order to rotate the magnetic moments from the direction of one energy 

minima to another. 

The volume fraction of magnetic moments residing in an energy well is 

proportional to the depth of the energy well. A maxima in k denotes the operating 
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condition such that a small perturbation in either the magnetic field or stress results in 

the rotation of maximum volume fraction of magnetic moments. Such a condition 

requires availability of shallow energy wells at non-180o intervals which correspond 

to low stresses and magnetic fields as denoted by σ = 0, -10 and -20 MPa curves in 

Figure 2.15(a). 

If the stress-induced anisotropy is significantly higher than the Zeeman energy 

then there is no possibility of non-180o rotation as there are only two energy wells 

separated by a 180o interval and hence k = 0 under such conditions, as denoted by σ = 

-40 and -100 MPa curves in Figure 2.15(a). Conversely, if the Zeeman energy is 

significantly higher than the stress-induced anisotropy then there cannot be any non-

180o rotation as there is only one energy well at 0o and hence k = 0 under such 

conditions, as denoted by H = 30 kA/m curve in Figure 2.12. 

In general, the higher the bias magnetic field or pre-stress, the lower the 

volume fraction of magnetic moments that are available for non-180o rotation and 

hence, the smaller maxima in k. 

A series of simulations using different combinations of stresses and magnetic 

fields showed that a maximum coupling factor of ~ 0.74 can be obtained from 

Fe84Ga16 for compressive stresses inbetween 10 to 20 MPa and magnetic fields 

between 1.5 to 3.5 kA/m. 

Figure 2.24 shows the simulated values of coupling factor of Fe82.5Ga17.5 and 

Fe81Ga19 as a continuous function of stress and magnetic field. The samples with 16, 

17.5 and 19 at. % Ga show maximum coupling factors of higher than 0.7 inspite of 

the fact that these samples have different magnetomechanical properties. In these 
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alloys, the permeability at the combination of stresses and magnetic fields where the 

highest coupling factor is exhibited is about the same. The peak coupling factor 

remains the same as a decreasing Young’s modulus with increasing gallium content 

(within 16-19 at. %) is compensated for by increasing d and d*. 

 

 

Figure 2.24. Model simulation of coupling factor of (a) Fe82.5Ga17.5 and (b) 

Fe81Ga19 as a continuous function of magnetic field and stress – k(σ,H). 
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2.8. Gage factor 

This section presents the experimental and model simulation results obtained 

from the investigation of the effect of stress, magnetic field and composition on the 

sensing gage factor of Fe-Ga alloys. 

Prior work by Wun-Fogle et al. [172] defined a sensing figure of merit (Fµ) 

analogous to the gage factor of a resistive strain gage by replacing the electrical 

resistance with magnetic permeability (µ) in the definition of gage factor as shown in 

Equation (2.21). 

1
µ

µ

µ ε

∂
=

∂
F      (2.21) 

Since magnetic induction can be directly measured, unlike permeability,  in this 

chapter, we will use the sensing figure of merit or gage factor (GF) defined by Datta 

and Flatau [139] as shown in Equation (2.22).  
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The dimensionless gage factor defined by Equation (2.22) satisfies the 

physical conditions that GF cannot be defined when B = 0, i.e. if the material is not 

exposed to a bias magnetic field and also the fact that GF = 0 when the material 

saturates and d* = 0. As d* and E are always positive, the sign of GF is the same as 

the sign of B. The sign of B simply shows the direction along which the bias magnetic 

field has been applied and can be arbitrarily set to be positive as the B-H curves in the 

1st and 3rd quadrants are the reflection of each other about the origin as is evident 
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from Figure 2.10. Furthermore, Equation (2.22) is flexible enough to accommodate 

both strain and stress sensing which is evident from the expression shown here. 

The experimental values of gage factor were obtained at 20 unique operating 

points as shown in Figure 2.25(a). The material properties at these operating points 

were obtained by using the scheme explained earlier. It can be observed that for each 

bias magnetic field, the gage factor increases with increasing compressive stress, 

reaches a peak value and then steadily decreases at higher stresses. As the bias 

magnetic field is increased, the peak in gage factor occurs at a higher compressive 

stress. The highest value of GF = 7000 ± 1470 was observed for σ = -34 MPa and H = 

1 kA/m in Fe84Ga16. 

The material properties obtained from the energy-based model as continuous 

functions of stress and magnetic field were used in Equation (2.22) to obtain the gage 

factor of Fe84Ga16 as shown in Figure 2.25(b). The model aids in the identification of 

a trend in the gage factor. 

A notable difference between the experimental and simulated value of GF is 

observed beyond saturation. The experimentally calculated values of GF at very high 

stresses are exactly zero because experimental d* is exactly equal to zero beyond 

saturation. The model predicts a small non-zero value of GF at very high stresses due 

to its exponential nature as evident from Equations (2.10) and (2.12) and suggests that 

GF tends to zero as the compressive stress tends to infinity. An error estimate using 

Equation (2.14) showed that the SARE between the experimental values and model 

prediction of gage factor of Fe84Ga16 is 11 %. 
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Figure 2.25. (a) Experimental values of gage factor (GF) of Fe84Ga16 at σ = 0, -18, 

-34, -50 and -66 MPa and H = 1, 3.5, 7.3 and 17.8 kA/m. For visual clarity, the 

error bars are shown only for the cases when H = 1 and 7.3 kA/m. (b) Model 

simulation of gage factor of Fe84Ga16 as a continuous function of stress and 

magnetic field – GF(σ,H). 
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Figure 2.26. Model simulation of gage factor of (a) Fe82.5Ga17.5 and (b) Fe81Ga19 

as a continuous function of stress and magnetic field – GF(σ,H). 

A series of simulations using different combinations of stresses and magnetic 

fields showed that gage factor greater than 7000 can be obtained from Fe84Ga16 for 

compressive stresses inbetween 5 to 15 MPa and magnetic fields less than 0.5 kA/m. 

Figure 2.26 shows the simulated values of sensing gage factor of Fe82.5Ga17.5 and 



 

 130 
 

Fe81Ga19 as a continuous function of stress and magnetic field. The highest GF 

amongst all the compositions is shown by Fe82.5Ga17.5. The peak values of GF are 

slightly lower for both Fe84Ga16 and Fe81Ga19. This is because the difference in d* 

between these compositions is more than their difference in Young’s modulus and 

hence the value of d* influences GF more significantly. These results imply that 

energy harvesting using Galfenol would require very low bias magnetic fields and 

small compressive pre-stresses for most optimum performance. These results also 

support the empirical observations made by Staley and Flatau [173]. 

2.9. Evaluation of clamped material properties 

This section will present calculated and simulated values of two material 

properties which are seldom discussed. These are the Young’s modulus (EB) at 

constant magnetic induction and the relative permeability (µε) at constant strain. 

Based on the rigorous mathematical interpretation of the linear constitutive equations 

presented in Section 1.6.1, it can be said that EB is the magnetically clamped modulus 

when a change in strain in the material can be expressed in terms of small changes in 

independent variables stress and magnetic induction (instead of magnetic field). 

Similarly, µε is the mechanically clamped relative permeability when a change in 

magnetic induction in the material can be expressed in terms of small changes in 

independent variables strain (instead of stress) and magnetic field. 

2.9.1. Young’s modulus at constant magnetic induction 

From prior discussion, it is apparent that when a stress is applied to a 

magnetostrictive material in the presence of an external (applied) magnetic field, both 
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internal magnetic field (H) and magnetic induction (B) changes in the material. The 

internal magnetic field changes due to a change in the reluctance of the sample which 

occurs as the permeability of the sample changes as a function of stress. It was shown 

in Section 2.2 that the internal magnetic field had to be kept constant using a feedback 

controller in order to obtain stress-strain data at constant magnetic fields in the 

material which in turn was used to calculate the Young’s modulus as a function of 

stress and magnetic field in the material. 

The magnetic induction changes due to reorientation of magnetic moments 

along energy minima created as a result of the effect of superposition of both 

magnetic field and stress. It has been shown [81] that the Young’s modulus at a given 

stress and magnetic induction in a material can be different from the Young’s 

modulus at a given stress and magnetic field which produces the same magnetic 

induction, depending on whether the magnetic field or magnetic induction is held 

constant when the stress is quasi-statically changed in the material. The modulus at 

constant induction (EB) can be obtained from a process where both stress and 

magnetic field are simultaneously adjusted so as to ensure that B remains constant as 

stress changes. Alternatively, EB can also be obtained by combining Equations (2.15), 

(2.16) and (2.20) and eliminating H which gives the relationship shown in Equation 

(2.23) [81]. 
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σ
=

−

H

B
E H

E B
k H

    (2.23) 

 Figure 2.27 shows the calculated and model simulation values of Young’s 

modulus as a function of stress and magnetic induction in Fe84Ga16. The values of the 

modulus at constant magnetic field (EH) and the magnetomechanical coupling factor 
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(k) were obtained from the results shown in Sections 2.5 and 2.7. 

 

 

Figure 2.27. (a) Calculated values of Young’s modulus (E
B
) under iso-induction 

conditions in Fe84Ga16 as a discrete function of stress and magnetic induction. (b) 

Model simulation of E
B
(σ,B) in Fe84Ga16 as a function of magnetic induction and 

stress. 

It should be noted that the values of both EH and EB → Ea at H = 0 and B = 0 
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respectively and as σ → 0, where Ea is the modulus of the material in a demagnetized 

state. For both these scenarios, the stress-induced anistropy has to work only against 

the magnetocrystalline anisotropy in order to rotate the magnetic moments. 

Theoretically Ea can be assumed to be a material constant but only if the material is 

perfectly demagnetized at the beginning of the magnetomechanical transduction 

process so that an equal number of magnetic moments are oriented along each of the 

six different easy axes in the material prior to the transduction. Since this initial 

condition cannot be ensured in a practical process, sample history determines the 

experimental value of Ea, which most likely will be somewhat different than its 

theoretical value. 

At B = 0, as stress increases, the magnetic moments rotate along the two 

possible directions which are parallel (if the stress is tensile) or perpendicular (if the 

stress is compressive) to the direction of stress until the material saturates at stresses 

high enough to change the cubic symmetry of the total energy in the material to a 

tetragonal one. At these high stresses, EB = Es. At σ = 0, EB monotonically increases 

with B until all magnetic moments are oriented along the same direction when EB = 

Es. The variation in EB at other intermediate values of B and σ can be explained using 

the energy-based hypothesis presented earlier. Most importantly, it should be noted 

that E
B = ES, only if the material is saturated, i.e., when there is only one energy 

minimum as shown by the H = 30 kA/m curve in Figure 2.12 or two energy minima 

which are 180o apart from each other as shown by the σ = -100 MPa curve in Figure 

2.15. 
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2.9.2. Permeability at constant strain 

Analogous to the modulus at constant induction, it can be shown [81] that the 

relative permeability at a given strain and magnetic field in the material will be 

different from the relative permeability at a given stress and magnetic field which 

produces the same strain, depending on whether the stress or strain is held constant 

when the magnetic field is quasi-statically changed in the material. The permeability 

at constant strain (µε) can be obtained from a process where both stress and magnetic 

field are simultaneously adjusted so as to ensure that ε remains constant as magnetic 

field changes. Alternatively, µε can also be obtained by combining Equations (2.15), 

(2.16) and (2.20) and eliminating σ which gives the relationship shown in Equation 

(2.24) [81]. 

( ) ( ) ( )2, 1 , ,ε σµ ε σ µ σ = − H k H H   (2.24) 

 Figure 2.28 shows the calculated and model simulation values of relative 

permeability as a function of strain and magnetic field in Fe84Ga16. The values of the 

permeability at constant stress (µσ) and the magnetomechanical coupling factor (k) 

were obtained from the results shown in Sections 2.5 and 2.6. 

The trend shown by µε in Figure 2.28 can be once again explained using the 

energy-balance approach. Note that a relative permeability of one denotes that the 

material has saturated. It should also be noted that under iso-strain conditions, 

magnetic field in the material induces stress as the material cannot expand freely. 

This stress can be used to calculate the stress-induced anisotropy in the material. 
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Figure 2.28. (a) Calculated values of relative permeability (µ
ε
) under iso-strain 

conditions in Fe84Ga16 as a discrete function of magnetic field and strain. (b) 

Model simulation of µ
ε
(ε,H) in Fe84Ga16 as a function of strain and magnetic 

field. 

When the material is in a state of tensile strain, a small magnetic field 

collinear to the strain direction can be sufficient to orient the magnetic moments 

along strain/field direction thereby saturating the material. Hence, when the material 
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has constant tensile pre-strain, increasing magnetic fields monotonically decrease 

permeability. If the material has a constant compressive pre-strain, increasing 

magnetic fields initially decrease the permeability upto a critical magnetic field which 

balances the stress-induced anisotropy energy. Beyond this magnetic field, increasing 

magnetic fields result in decreasing permeability. This trend is analogous to the 

behavior observed in Figure 2.16. 

2.10. Summary 

In this work, single crystal Fe84Ga16, Fe82.5Ga17.5 and Fe81Ga19 were studied as 

magnetostrictive actuators and sensors along the <100> crystal direction under 

different quasi-static stress and magnetic field conditions. Analysis of the 

experimental data showed that the permeability, strain coefficient, stress sensitivity, 

Young’s modulus, energy density, magnetomechanical coupling factor and sensing 

gage factor vary significantly based on the stress, magnetic field and gallium content 

in Fe-Ga alloys. 

An energy-based model was used to obtain non-linear fit of both the actuator 

and sensor characteristics of the samples. It was shown that for a given alloy 

composition, a set of model parameters obtained from experimental actuator 

characterization can also be used to predict the sensing behavior. The model was 

further used to generate the material properties and actuator and sensor figures of 

merit as continuous functions of stress and magnetic field in the material which were 

compared with experimentally obtained values at discrete operating stresses and 

magnetic fields. The model can be a valuable tool to learn about the magnetostrictive 

material’s non-linear response under varying operating stress and magnetic field 
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without performing time-consuming extensive experimental characterization. 

Moreover, the material properties obtained from the model can be used for design of 

magnetostrictive actuators, sensors and energy harvesting devices. 

This study can be used to set some general guidelines for using 

magnetostrictive iron-gallium alloys in actuator and sensor applications. A critical 

compressive pre-stress ( )1 1006K λ≈  is required to obtain the maximum saturation 

magnetostriction for actuator applications. The magnitude of the pre-stress depends 

on the magnetocrystalline anisotropy and magnetostriction and hence depends on the 

alloy composition. 

It is desirable to operate the material at saturation in order to obtain maximum 

free strain, blocked stress and energy density as an actuator although the coupling 

factor for such an operating condition is zero. The peak values of the energy density 

for different alloy compositions are listed in Table 2.5. 

The higher the compressive pre-stress, the higher is the critical magnetic field 

1 1006

4
o s

K

M

λ σ

µ

 −
≈ 
 

at which the “burst region” in B-H and λ-H curves is observed. The 

“burst region” describes the condition when magnetic moments from other easy axes 

start flipping towards the direction of easy axis closest to the applied magnetic field. 

For sensing applications, an increasing bias magnetic field increases the 

operating stress range but decreases the stress sensitivity. Moreover, if the bias 

magnetic field is high enough ( )1 4 o sK Mµ≈  to saturate the material at zero stress, 
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then a critical stress 1

100
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 is required below which the sensor cannot be 

operated. 

Hence there is no single operating point for magnetostrictive materials which 

can give the best performance under all conditions. A suitable pre-stress or bias 

magnetic field should be chosen based on the operating conditions of an actuator or 

sensor respectively. In order to operate the material under the optimal condition in a 

changing environment, a feedback controller can be used to vary the pre-stress or bias 

magnetic field in actuators and sensors respectively. 

Table 2.5. Effect of composition on the simulated maximum values of actuator 

and sensor figures of merit. 

Figure of merit Fe84Ga16 Fe82.5Ga17.5 Fe81Ga19 

Energy density (kJ/m
3
) 2.1 3.1 2.8 

Magnetomechanical coupling factor 0.74 0.78 0.73 

Sensing gage factor 7000 9000 8250 

 

For all compositions, the highest values of coupling factor and gage factor 

which are listed in Table 2.5 were observed for operating compressive stresses lower 

than 20 MPa and below magnetic field of 5 kA/m. This observation confirms that to 

achieve maximum transduction from magnetic to mechanical energy or vice versa the 

initial orientation of the magnetic moments should be such that a small perturbation 

in the total energy of the system produced by a change in stress or magnetic field 

would rotate maximum number of magnetic moments. It was found that the highest 
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energy density, magnetomechanical coupling and sensing gage factor were exhibited 

by Fe82.5Ga17.5 thereby making it the ideal alloy composition for both actuation and 

sensing applications. In general, the criteria for a good actuator can be used in 

vibration control and shape morphing applications whereas the criteria for a good 

sensor can be used in structural health monitoring and energy harvesting applications. 
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Chapter 3: Experimental studies on Galfenol beam as a sensor 

in bending 

As a structural magnetostrictive alloy, Galfenol can be expected to be used in 

applications involving bending [137]. In this chapter, we will investigate the 

magnetomechanical transduction in a bending Galfenol member. The challenges 

related to existing characterization techniques involving bending is discussed to 

motivate a technique [174] which uses a four-point bending. It is expected that the 

experimental approach described in this chapter will be useful for evaluating the 

sensing performance of any structural magnetostrictive material. The experimental 

results are analyzed using an energy-based approach. Before describing the details of 

experimental characterization in bending, it is necessary to understand the mechanics 

of a bending beam. 

3.1. Classical beam theory 

Structural members subjected to transverse loads and operating in flexural 

mode are known as beams. For the purpose of this chapter, we will consider the 

Euler-Bernoulli assumptions of the Classical Beam Theory which are as follows 

[175]. 

1. The cross-section of the beam has a longitudinal plane of symmetry 

known as the neutral plane. 

2. The resultant of the transversely applied loads lies in the longitudinal 

plane of symmetry. 
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3. Plane sections originally perpendicular to the longitudinal axis of the beam 

remain plane and perpendicular to the longitudinal axis after bending. 

4. In the deformed beam, the planes of cross-sections have a common 

intersection, that is, any line originally parallel to the longitudinal axis of 

the beam becomes an arc of a circle described by the radius of curvature. 

These assumptions are applicable to a beam whose length is 8-10 times more than 

both its width and its thickness. 

 

Figure 3.1. An Euler-Bernoulli beam in a Cartesian coordinate system. 

Let us assume a beam with length (L) along the x-direction and thickness (t) 

along the z-direction as shown in Figure 3.1, is subjected to a bending force. If the 

transverse displacement (w) along the z-direction after the bending deformation is 

much smaller than the beam thickness, then the axial displacement (u) along the x-

direction can be expressed using Equation (3.1). 

dw
u z

dx
= −      (3.1) 

The axial strain (εx) can be expressed using Equation (3.2) 

2

2x

du d w
z

dx dx
ε = = −      (3.2) 

Using Equation (3.2) along with the constitutive equation (σx = Eεx) for elastic 

material (where E is the Young’s modulus of the beam material), a moment balance 
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about the y-axis would yield Equation (3.3) which describes the relationship between 

bending moment (M), stress and beam dimensions. 

x

M
z

I
σ = −       (3.3) 

In Equation (3.3), I is the 2nd moment of area which can be calculated from Equation 

(3.4) for a beam with a uniform rectangular cross-section as shown in Figure 3.1. 

2 2
2 3

2 2

1

12

b t
y z

b t
y z

I z dzdy bt

=+ =+

=− =−

= =∫ ∫     (3.4) 

Equations (3.2) and (3.3) imply that the stress and strain at a beam cross-section 

varies along the thickness for a given bending moment. This variation is shown in 

Figure 3.2. 

 

Figure 3.2. A bending beam with compressive and tensile strain/stress above and 

below the neutral axis respectively. 

Figure 3.2 shows that when a beam is subjected to transverse loading, the 

deformed beam has opposite states of strain and stress on opposite sides of a plane 

which is known as the neutral axis in the two-dimensional representation of the beam. 

The spatial variation in strain and stress even for a constant bending moment makes 

characterization under bending distinctly different from characterization of a rod 

under constant axial force that was described in Chapter 2. An intuitive question that 

might arise is that whether the opposing stress states produce a net zero change in 
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magnetic induction when a magnetostrictive beam is subjected to bending in the 

presence of a bias magnetic field. 

3.2. Motivation and scope of this work 

The question posed at the end of the previous section motivates the study of 

the distribution of stress and magnetic induction along the thickness of a 

magnetostrictive beam which is fixed at x = 0 and free at x = L. A beam with these 

boundary conditions is also known as a cantilevered beam. Cantilevered beams are 

often used for bending characterization [137]. 

The stress at a given point in a cantilevered beam subjected to a transverse tip 

loading (F) can be described using Equation (3.5) which can be obtained by 

substituting M = F(L - x) in Equation (3.3). 

( )
( )

2

12
, 1

x

F L x FL z x
x z z

I bt t L
σ

−   
= − = − −  

  
   (3.5) 

Figure 3.3 shows the stress distribution along the span and thickness of a 

cantilevered beam calculated using Equation (3.5). The simulation results are 

expressed in terms of non-dimensionalized length (x/L) and thickness (z/t). The 

parameters used in this calculation are F = 2 N, L = 25 mm, b = t = 1.6 mm. 

Using this stress distribution in the energy-based model described in Chapter 

2, the magnetic induction distribution in a Fe84Ga16 beam can be simulated as shown 

in Figure 3.4. Note that B varies significantly along the span as well as thickness of 

the beam. A GMR or Hall-effect sensor placed on the surface of the beam would 

measure a value proportional to B at the location of the sensor. A pick-up coil 

wrapped around the beam would measure a thickness-averaged B. 
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Figure 3.3. Stress (σx) distribution in a cantilevered beam. 

 

Figure 3.4. Magnetic induction (Bx) distribution in a cantilevered Fe84Ga16 beam 

for a bias magnetic field of 0.5 kA/m. 

Figure 3.5 shows the simulation results of thickness-averaged B along the 

span of the same cantilevered beam subjected to a 2 N tip loading, for different bias 

magnetic fields. For the purpose of these simulations, we assumed that the bias field 

is uniform inside the beam. These simulation results show that the thickness-averaged 
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B measured by a pick-up coil may vary significantly along the beam span and hence 

the measurement of B will be affected by the length and position of the pick-up coil. 

 

Figure 3.5. Thickness-averaged magnetic induction along the span of a 

cantilevered Fe84Ga16 beam for bias magnetic fields of 0, 0.25, 0.5, 1, 2, 4 kA/m. 

These challenges related to characterization of cantilevered magnetostrictive 

beam can introduce significant variation in the experimental results and hence 

motivates the development of an alternate characterization technique for bending 

magnetostrictive members. In this chapter, the concept of four-point bending test 

under magnetic fields will be introduced. The experimental design will be discussed 

with particular emphasis on the magnetic and mechanical boundary conditions and 

how that can help in reducing the experimental variability of a magnetostrictive beam 

characterized as a sensor in bending. 
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3.3. Design of experiment 

This section will discuss about the design of the magnetomechanical four-

point bending experimental setup. The test setup consists of magnetic and mechanical 

components. The mechanical components were designed based on the guidelines 

given in ASTM C1161 [176]. The magnetic components were designed to apply 

different DC bias magnetic fields along the length of the Galfenol beam. The details 

of the experimental design are discussed as follows. 

3.3.1. Mechanical components 

 

Figure 3.6. (a) Assembled view and (b) parts view of the mechanical components 

of the four-point bending test. 

Figure 3.6 shows the mechanical components of the four-point bending test 

setup. It was ensured that all load-bearing components are non-magnetic so that they 
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do not interfere with the magnetic flux path. The fixture was made of Aluminum 

7075 and the load applicator and support rods were made of silicon carbide. 

 

Figure 3.7. A beam subjected to four-point bending, after Ref.[177]. (a) Free-

body diagram showing the applied and resultant forces. (b) Bending moment 

diagram. (c) Shear force diagram. 

Figure 3.7(a) shows the free-body diagram of the Galfenol beam specimen 

placed between the top and bottom fixtures. The four silicon carbide rods form line 

contacts with the beam which can be described by four points as shown in Figure 

3.7(a). The two upper rods which are separated by a distance (2a) apply equal loads 

of magnitude (P/2). The two lower rods which are separated by a distance (4a) 

provide equal reaction forces of magnitude (-P/2). 
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Figure 3.7(b) shows the bending moment along the beam span. The primary 

advantage of four-point bending is that it offers a region of constant bending moment 

between the load applicators. In this region, the stress varies only along the direction 

of thickness. Hence, if a pick-up coil is wrapped around this region of the beam, it 

can be expected that the thickness-averaged B measured by the coil would be 

independent of the position and length of the coil. 

A second advantage of using four-point bending is evident from Figure 3.7(c) 

which shows the shear force diagram. The shear force diagram implies that in the 

region between the upper rods, the shear stress (σxz) can be expected to be zero. This 

condition ensures that only one component of stress (σx) is non-zero in the mid-span 

of the beam and hence the setup can be effectively reduced to a one-dimensional 

problem. Moreover, the stress-induced changes in magnetic induction in the beam 

would be only dependent on σx. 

 

Figure 3.8. Stress (σx) distribution in a beam subjected to four-point bending. 
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Figure 3.8 shows the stress distribution in a beam of length 25-mm and cross-

section 2-mm x 2-mm subjected to four-point bending. A force (P) of -20 N was used 

for simulation. As anticipated from Figure 3.7, a region of constant stress can be seen 

in Figure 3.8 for 0.3 ≤ x/L ≤ 0.7. A value of xo = 2.5 mm and a = 5 mm were used in 

the simulation to be consistent with the actual design. 

3.3.2. Magnetic components 

 

Figure 3.9. (a) Schematic showing the position of the Galfenol sample in the 

electromagnet. (b) Photograph of the electromagnet. 

Figure 3.9 shows the electromagnet that was specially designed to apply DC 

bias magnetic fields to the sample kept inside the four-point bending fixture. Since 

the sample could not be kept inside a solenoid as that would obstruct the load path, an 

electromagnet had to be designed which would provide a magnetic flux path. The 

electromagnet core was made of 1018 steel. The pole pieces were tapered to the 

cross-section dimensions of the sample in order to maximize flux concentration. The 
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solenoid was made of insulated copper coil having 2600 turns and it had a length of 

8.25 cm. Note that in this setup, the nature of loading prevents the design of a 

perfectly closed magnetic circuit. Therefore, a finite element analysis was performed 

to estimate the effectiveness of the magnetic flux path. 

A 3D electromagnetic finite element analysis was performed using the AC/DC 

module in COMSOL Multiphysics 3.4. The “Magnetostatics” formulation used 

vector - quadratic elements. The magnetic boundary value problem is solved by 

COMSOL using the governing Equation (3.6) where A is a vector potential and J is 

the current density in the coil. Note that Equation (3.6) is a special form of the 

Maxwell’s equations described in Section 1.3.4. The current density is the current 

flowing through per unit area perpendicular to the flow of current. In this case, the 

relevant area is the length of the solenoid times the thickness of the conducting wires 

in the solenoid. 

( )
1

o r
µ µ

 
× × = 
 

A J∇ ∇∇ ∇∇ ∇∇ ∇     (3.6) 

The relation between B and A is described by Equation (3.7). The potential A is 

chosen to be a vector in order to satisfy the subsidiary condition given by the Gauss’s 

law ( ). 0=∇∇∇∇ B . The constitutive relation is given by Equation (3.8). 

= ×B A∇∇∇∇      (3.7) 

1

o r
µ µ

=H B      (3.8) 

For simulation purposes, relative permeability of 104 and 1 were assigned to 

steel and copper coil respectively. The relative permeability of Galfenol was obtained 

as a function of B at zero stress from the simulated data created in Chapter 2. A 
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rectangular parallelepiped air domain with relative permeability of one and of roughly 

three times the size of the electromagnet along each of the x, y and z-directions was 

defined to ensure that the flux leakage is accurately estimated. A boundary condition 

of magnetic insulation was assigned to the boundaries of the air domain. This 

boundary condition ensures that the magnetic field has only tangential component at 

the boundary of the air domain. 

 

Figure 3.10. Flow of magnetic flux lines in the experimental setup. The flux lines 

in air are suppressed for visual clarity. 

Figure 3.10 shows the simulated magnetic flux lines for 

2 2 2 2

ˆ ˆ ˆ0 o o
J z J y

y z y z
= − +

+ +
J i j k where Jo = 3.95 x 106 A/m2. Note that the centerline 

of the solenoid is aligned with the global x-axis, i.e., it passes through y = 0 and z = 0. 

It can be seen in Figure 3.10 that the flux lines flow through the steel electromagnet 
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core and concentrate in the Galfenol sample that is placed between the electromagnet 

pole pieces. The simulation also showed that in general the flux leakage is more 

predominant at edges and corners. 

Figure 3.11. Spatial distribution of Bx in the Galfenol beam. The plot shows the 

variation in Bx along the section of the beam between the two upper rods. This 

section is indicated by the red dashed line. 

Figure 3.11 shows the simulated distribution of magnetic induction in the 

beam placed between the electromagnet pole pieces. A line plot of the variation of Bx 

between the load application points showed that Bx can vary at most by 35 % in this 

region. Considering that the nature of the experiment prevents a perfectly closed 

magnetic circuit, the estimation of the variation in magnetic induction is important to 

understand the variation in bias field for a constant current applied through the 

solenoid. 
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3.4. Magnetomechanical four-point bending test 

This section describes the Galfenol sample used for the experiment and the 

test procedure of the magnetomechanical four-point bending test. 

3.4.1. Sample description 

The rectangular parallelepiped single crystal Galfenol beam sample shown in 

Figure 3.12 was obtained from the same ingot described in Chapter 2 from which the 

Fe84Ga16 rod was obtained. An EDS analysis of this Galfenol beam showed a 

composition of 81.2 ± 0.7 atomic % iron and 18.8 ± 0.7 atomic % gallium. The 

compositional gradient in the ingot can be attributed to the growth and processing 

technique. 

 

Figure 3.12. Single crystal Galfenol (Fe81Ga19) beam sample used in 

magnetomechanical four-point bending test. 

The Galfenol beam measured 25 mm x 2 mm x 2 mm and its length, width 

and thickness were oriented along the crystallographic <100> directions. The size of 

the Galfenol beam corresponded to smallest dimensions prescribed in ASTM C1161 

[176]. A larger sample could not be obtained owing to the restriction imposed by the 

size of the iron-gallium ingot. 
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3.4.2. Test procedure 

 

Figure 3.13. Schematic of the magnetomechanical four-point bending test setup. 

Figure 3.13 shows the assembled test setup. The mechanical fixture was 

mounted on a hydraulic MTS 810 universal testing machine. A silicon carbide ball 

that was used to transfer load from the MTS machine to the mechanical fixture 

provided a point contact in order to ensure that only axial force is exerted on the 

Galfenol beam. The electromagnet was clamped on two sides and placed in the same 

horizontal plane as the sample so as to apply magnetic field along the length of the 

sample. The DC bias magnetic field was applied by passing a constant current 

through the solenoid. The load was quasi-statically cycled once from 0 to 40 N at a 
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ramp rate of 2 mm/min. At the end of the load cycle, the constant current in the 

solenoid was switched off. Before each test, the sample was demagnetized over 167 

cycles using a 1 Hz sinusoidal field which underwent a 5 % geometric decay every 

1.5 cycles from an initial amplitude of 15 kA/m. The procedure was repeated for 

applied magnetic fields of 0, 1.35 ± 0, 1.99 ± 0, 2.71 ± 0, 7.52 ± 0.33 and 11.01 ± 

0.12 kA/m which were obtained by passing currents of 0, 0.05, 0.15, 0.25, 1 and 1.75 

ampere through the solenoid. 

 Note that these applied magnetic fields were measured in air by placing a 

hand-held gaussmeter (F. W. Bell Model 5080) in between the pole pieces of the 

electromagnet for different constant current in the solenoid. In this experiment, the 

bias magnetic field in the sample could not be maintained during the loading cycle 

using the feedback controller described in Chapter 2 because of the lack of closed 

magnetic circuit. Moreover, the stress distribution in the Galfenol beam creates a 

spatial distribution of the magnetic field in the beam unlike in the Galfenol rod 

described in Chapter 2, where a uniform stress-state in the entire rod ensured a 

uniform change in reluctance and magnetic field in the Galfenol sample. 

A pick-up coil with 100 turns wrapped around the sample and connected to an 

integrating fluxmeter measured the thickness-averaged magnetic induction along the 

beam span between the load applicators. 

3.5. Results and discussion 

This section describes the results obtained from the magnetomechanical four-

point bending test and attempts to explain the trends using a qualitative energy-based 

approach. 



 

 156 
 

In Chapter 2, stress could be used as an independent input parameter in the 

characterization as it was uniform in the rod-shaped sample for a given axial force. 

For a given transverse force, a stress distribution occurs along the thickness and 

length of the beam. The physical quantity that remains constant along the thickness at 

a given beam section is the bending moment. However, the same bending moment 

can produce a different stress distribution based on the cross-section dimensions of 

the beam. Hence, in this chapter, the parameter (Mxt = M/bt
2) is introduced to replace 

the use of stress as an input parameter in characterization involving bending. Note 

that Mxt has the dimension of stress and the magnitude of stress due to pure bending at 

any point along the beam thickness is bounded by 0 ≤ |σx| ≤ 6Mxt. 

3.5.1. Sensor characterization in bending 

Figure 3.14 shows the thickness-averaged magnetic induction (Bx) measured 

by the pick-up coil placed in the mid-section of the beam in between the load 

application points. The maximum induction that could be observed in the Galfenol 

sample was limited to ~0.5 T because of the following reason. An applied magnetic 

field of 7.52 kA/m was sufficient to saturate the electromagnet steel core and hence 

any additional current through the solenoid did not significantly increase the flux 

through the electromagnet. Although the electromagnet was useful for concentrating 

the magnetic flux into the Galfenol sample, the lack of a perfectly closed magnetic 

circuit caused significant flux leakage and could generate a magnetic induction of 

only 0.5 T in the Galfenol sample while the electromagnet core got saturated. 
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Figure 3.14. Thickness-averaged magnetic induction (Bx) as a function of Mxt at 

applied bias magnetic fields of 0, 1.35, 1.99, 2.71, 7.52 and 11.01 kA/m. 

At a given non-zero magnetic bias field (H), Galfenol is expected to show an 

increase in B under tension and a decrease in B under compression. If the effect of 

tension and compression due to bending on B were equal then B should remain 

constant at all Mxt.  Such behavior is observed at zero and low H (upto 2.71 kA/m). At 

higher H (7.52 and 11.01 kA/m), the magnetic moments are mostly aligned in the 

direction of H and hence a tensile stress collinear to H does not contribute to any 

change in B and the magnetic response is dominated by compressive stress. This is 

evident from the decrease in B. If Mxt is increased to a critical value, the magnetic 

moments in the compressive region of the sample are all aligned perpendicular to H. 

Beyond this Mxt, no stress induced change in magnetic moment orientation takes 

place thereby leading to a steady value of B. 
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3.5.2. Discussion on experimental trends 

The trends shown in the magnetomechanical four-point bending test can be 

explained in terms of the total energy per unit volume of the Galfenol beam. The total 

energy considered here is the sum of the magnetocrystalline anisotropy, stress-

induced anisotropy and Zeeman energies. 

The thickness-averaged B can be deduced using the principle of superposition. 

The net B measured by the pick-up coil can be assumed to be the average of the B 

below the neutral axis of the Galfenol beam which is in tension and the B above the 

neutral axis of the beam which is in compression. The B below and above the neutral 

axis will be proportional to the volume fraction of magnetic moments and their 

orientation in these regions respectively. This information can be qualitatively 

deduced from the energy maps shown in Figures 3.15 and 3.16. 

Note that the magnetic fields used for simulation are internal magnetic fields 

in Galfenol and not the applied magnetic field. Moreover, a lumped parameter 

approach is used in demarcating regions with compressive and tensile stresses in the 

beam instead of using a detailed profile of the stress variation along the beam 

thickness. These assumptions are acceptable as we are only interested in 

understanding the physics of the behavior qualitatively. A more rigorous modeling 

technique for bending magnetostrictive beams will be developed in Chapter 5. 

Figure 3.15(a) shows the four equal energy minima in Galfenol in the absence 

of stress and magnetic field owing to its cubic magnetocrystalline anisotropy. Figure 

3.15(b) shows that when a small bias magnetic field is applied, say along 0o, only a 

small fraction of the magnetic moments which were earlier oriented along 90o, 180o 
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and 270o rotate towards 0o as the energy wells along 90o, 180o and 270o still continue 

to exist. 

 

Figure 3.15. Total energy distribution, ETOT(σ,H), in the azimuthal plane (a) in a 

demagnetized and un-stressed sample, (b) after applying a low bias magnetic 

field, (c) in the region above neutral axis after bending and (d) in the region 

below neutral axis after bending. 

When the Galfenol sample undergoes bending in presence of a small bias 

field, the parts of it which are in compression and tension have the energy distribution 

as shown in Figure 3.15(c) and Figure 3.15(d) respectively. The compressive stress 

rotates the magnetic moments lying above the neutral axis of the beam from 0o and 

180o toward 90o and 270o. The tensile stress rotates the magnetic moments lying 

below the neutral axis of the beam from 90o and 270o toward 0o and 180o. As a net 
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effect, there is an insignificant change in thickness-averaged B before and after 

bending in the presence of a small bias magnetic field. 

Figure 3.16(a) shows the four equal energy minima in Galfenol in the absence 

of stress and magnetic field owing to its cubic magnetocrystalline anisotropy. Figure 

3.16(b) shows that when a large bias magnetic field is applied along 0o, most of the 

magnetic moments which were earlier oriented along 90o, 180o and 270o rotate 

towards 0o. 

 

Figure 3.16. Total energy distribution, ETOT(σ,H), in the azimuthal plane (a) in a 

demagnetized and un-stressed sample, (b) after applying a high bias magnetic 

field, (c) in the region above neutral axis after bending and (d) in the region 

below neutral axis after bending. 
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When the Galfenol sample undergoes bending in presence of the large bias 

field, the parts of it which are in compression and tension have the energy distribution 

as shown in Figure 3.16(c) and Figure 3.16(d) respectively. The compressive stress 

rotates some of the magnetic moments lying above the neutral axis of the beam from 

0o toward 90o and 270o. The tensile stress can rotate the magnetic moments lying 

below the neutral axis of the beam to either 0o or 180o. Since most of the magnetic 

moments are already oriented along 0o under the influence of a large bias field, the 

tensile stress has no effect. As a result, the effect of compressive stress in the upper 

half of the beam dominates over the effect of tensile stress in the beam’s lower half, 

and a net change in thickness-averaged B is observed before and after bending in the 

presence of a large bias magnetic field. 

3.6. Summary 

In this chapter, the use of a magnetostrictive beam as a sensing element was 

introduced. Existing characterization technique which uses cantilevered beam was 

reviewed. It was shown that the continuous span-wise variation of bending moment 

(and stress) makes it experimentally challenging to evaluate the sensing performance 

of a cantilevered magnetostrictive beam. 

The concept of a magnetomechanical four-point bending test was introduced 

as an alternate characterization technique. The main advantage of this technique is 

that it produces a region of constant bending moment along the span of the beam in-

between the two loading points. A prototype fixture was designed, built and used to 

test a single crystal Fe81Ga19 beam at different applied bias magnetic fields. 

Challenges related to application of bias field in bending sensor due to lack of a 
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closed magnetic circuit were discussed. The experimental results were analyzed using 

the energy terms introduced in Chapter 1. 

In conclusion, it can be said that magnetostrictive sensing can be performed in 

bending even when both tensile and compressive stresses are developed in the 

material. The sensing is primarily due to the dominating effect of compression over 

tension.  A critical bias magnetic field is required below which the magnetostrictive 

sensing cannot be observed under bending. 
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Chapter 4: Experimental studies on laminated Galfenol-

Aluminum composite 

Active materials are often integrated with passive structural materials in 

laminated composites which can be used as smart structures. The simplest laminated 

active composite is a bi-layered structure with an active and a passive layer. Such a 

bi-layered structure which has one active layer is also known as a unimorph. A 

unimorph can work as the fundamental element of bending-based smart structure. 

This type of smart structure undergoes actuation due to the strain induced by the 

active layer. The unimorph configuration can be also used for sensing mechanical 

quantities. For example, a force applied to the unimorph would produce a stress in the 

active layer thereby changing its properties which in turn can be measured and 

correlated to the applied force.  

In this chapter, we will investigate the actuation and sensing behavior of 

laminated Galfenol-Aluminum composite beams such as the one shown in Figure 4.1. 

The concept of induced-strain actuation in composite beams comprising of active and 

passive lamina will be introduced. Applications of Galfenol-based laminated 

composites and motivation to study their design and performance criteria will be 

stated. The design of experimental setup and challenges related to measurement 

techniques will be discussed which will be followed by the interpretation of the 

actuator and sensor characterization results from the tests performed on the Galfenol-

Aluminum unimorphs. 
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Figure 4.1. A Galfenol-Aluminum laminated composite beam. 

4.1. Classical laminated beam theory with induced-strain actuation 

The Euler-Bernoulli beam theory can be used [1] for structural analysis of 

laminated beams with the following assumptions. 

1. The bond layer between the laminae is infinitesimally small and there is 

no flaw or gap in the bond layer. 

2. There is no shear deformation in the bond layer, i.e. the laminae cannot 

slip relative to each other. 

3. The bond layer has infinite stiffness and hence the composite beam 

behaves like a single lamina with integrated properties. 

Section 3.1 presented the relevant mathematical expressions required for 

modeling pure bending but in general a composite beam may undergo both extension 

and bending. Therefore, the axial displacement along x-direction may be expressed 

using Equation (4.1) where uo is the extensional displacement of the mid-plane of the 

composite beam and the other terms are the same as described in Section 3.1. 

o dw
u u z

dx
= −      (4.1) 

Similarly the total axial strain (εx) can be expressed using Equation (4.2) where εo is 

the mid-plane strain and κ is the curvature about the y-axis. Note that a non-zero mid-
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plane strain indicates that the neutral axis (where εx = 0) of the composite beam will 

not coincide with its mid-plane. 

2

2

o o

x

u d w
z z

x dx
ε ε ε κ

∂
= = − = −

∂
    (4.2) 

Let us assume that a composite beam with NL number of laminae is subjected 

to a force (F) along the x-direction and a bending moment (M) about the y-axis. If σx 

is the axial stress developed in the beam, then a force-balance along the x-axis and 

moment-balance about the y-axis would yield Equations (4.3) and (4.4). 

12

12

k

k

ht NL

x x

kt h

F bdz bdzσ σ
+

=−

= =∑∫ ∫     (4.3) 

12

12

k

k

ht NL

x x

kt h

M bzdz bzdzσ σ
+

=−

= − = −∑∫ ∫    (4.4) 

 

Figure 4.2. Cross-section of Galfenol-Aluminum unimorph showing the different 

parameters required to calculate the composite stiffness terms. 

Here hk is the distance of the edge of each lamina from the mid-plane as shown in 

Figure 4.2. Note that the mid-plane is considered as the plane where z = 0. For an 

active material with free strain (λ), the 1D Hooke’s law can be written as shown in 

Equation (4.5) where E is the Young’s modulus. 

( ) ( )o

x x
E E zσ ε λ ε κ λ= − = − −     (4.5) 
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Substituting Equation (4.5) in Equations (4.3) and (4.4) and integrating over the 

thickness of each lamina, the force and moment balance in the beam can be expressed 

in terms of Equations (4.6) and (4.7) respectively. It is assumed that the Young’s 

modulus and width of each lamina do not vary across the thickness of each lamina.  

( ) ( ) ( )2 2
1 1 1

1

1

2

NL
o

k k k k k k k k k
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F E b h h h h h hε κ λ+ + +
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 
= − − − − −  
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M E b h h h h h hε κ λ+ + +
=

 
= − − + − + −  
∑   (4.7) 

Equations (4.6) and (4.7) can be combined and written as Equation (4.8) which can be 

used to obtain the mid-plane strain and curvature of the composite beam [1]. 
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   (4.8) 

The terms used in Equation (4.8) which are namely the extensional stiffness 

(EA), extension-bending coupling stiffness (ES), bending stiffness (EI), actuation-

induced force (Fλ) and actuation-induced moment (Mλ) can be obtained from 

Equations (4.6) and (4.7) as shown in Equations (4.9) – (4.13). 
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Equation (4.8) signifies that the axial and bending displacements can be 

coupled in a laminated composite beam and the active strain in any of the laminae 

produces both extensional force and bending moment which deform the active 

composite beam. This theory can be applied to analyze the Galfenol-Aluminum 

unimorphs that will be used in this chapter. 

4.2. Motivation and scope of this work 

Several works have shown the application of Galfenol-based unimorphs 

where a Galfenol lamina was attached to other materials [132, 136, 178]. However, 

no experimental work or theoretical estimation have been done that help in 

understanding the effect of composite stiffness and operating conditions on the 

actuation and sensing performance of such unimorphs. In this chapter, experiments 

will be designed and performed based on the theory discussed in Section 4.1 to study 

the effect of stiffness and operating conditions on the performance of active 

unimorphs. 

The unimorphs will be comprised of a Galfenol layer of constant thickness 

and an Aluminum layer of a thickness that will be varied to alter the stiffness of the 

different unimorphs. The effect of operating condition will be evaluated by 

performing experiments at different magnetic fields and mechanical loading 

conditions. 

Actuator characterization is expected to provide information on optimal 

stiffness, magnetic field and mechanical loading criteria that would produce 
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maximum bending displacement in the unimorph. The sensor characterization is 

expected to provide information on the effect of unimorph stiffness, bias magnetic 

field and mechanical loads on several sensing parameters which will be defined. The 

results of these characterizations are expected to provide design criteria for smart 

structures using Galfenol unimorphs that can produce maximum output under 

different operating conditions. 

4.3. Description of experiment 

This section describes the Galfenol and Aluminum samples that were used to 

make the unimorphs. The choice of thickness of the different Aluminum samples is 

justified using the theory described in Section 4.1. The test setups used for 

characterizing the unimorphs as actuator and sensor are described. The magnetic and 

mechanical aspects of the experimental setup are analyzed separately in Sections 4.4 

and 4.5 to provide a deeper insight into the effect of both of these aspects in the 

experiment design. 

4.3.1. Description and characterization of Galfenol lamina 

The rectangular parallelepiped single crystal Galfenol lamina sample shown in 

Figure 4.3 was obtained from the same ingot described in Chapter 2 from which the 

Fe84Ga16 rod and the Fe81Ga19 beam were obtained. An EDS analysis of this Galfenol 

lamina showed a composition of 81.8 ± 0.7 atomic % iron and 18.2 ± 0.7 atomic % 

gallium. The composition stated here is based on an average of EDS data obtained at 

five equi-spaced points along the length of the Galfenol sample. 
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Figure 4.3. Single crystal Galfenol (Fe82Ga18) sample used in the unimorphs. 

The Galfenol lamina measured 25 mm x 8.4 mm x 1.86 mm and its length, width and 

thickness were oriented along the crystallographic <100> directions. A larger sample 

could not be obtained owing to the restriction imposed by the size of the iron-gallium 

ingot. 

Based on the theory discussed in Section 4.1, it is evident that in order to 

design the unimorphs, it is necessary to obtain a measure of the magnetostriction of 

the Galfenol lamina. However, the transducer setup described in Chapter 2 could not 

be used to characterize this Galfenol sample due to its non-cylindrical shape. 

Therefore, an 82–mm long and 35–mm diameter solenoid with ~2800 turns was used 

to apply the magnetic field. 

The Galfenol lamina was placed inside the solenoid along the center of the 

long axis and was subjected to a cyclic quasi-static magnetic field with an amplitude 

of 65 kA/m at a frequency of 0.01 Hz. Prior to the application of the quasi-static 

magnetic field, the Galfenol sample was demagnetized over 167 cycles using a 1 Hz 

sinusoidal magnetic field which underwent a 5 % geometric decay every 1.5 cycles 

from an initial amplitude of 80 kA/m. 



 

 170 
 

Note that all magnetic field values mentioned in this chapter were measured in 

air using a hand-held gaussmeter. Hence these values correspond to those of the 

applied magnetic fields. The Hall-effect sensor could not be used to estimate a single-

valued internal magnetic field in Galfenol due to the absence of a closed magnetic 

circuit which caused flux leakage and spatial magnetic field variation as will be 

shown later using finite element analysis. 

The strain (λ||) along the length of the Galfenol lamina which was placed 

parallel to the direction of applied magnetic field was measured using a Vishay CEA-

13-500UW-120 resistive strain gage. A maximum free strain of 226 ± 5 µε was 

observed as shown in Figure 4.4. 

 

Figure 4.4. Free strain (λ||) vs. applied magnetic field in the single crystal 

Galfenol (Fe82Ga18) sample. 
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4.3.2. Choice of thickness of Aluminum laminae 

In order to study the effect of composite stiffness on the out-of-plane tip 

displacement (wTIP) of cantilevered unimorphs, Aluminum laminae of different 

thickness (t1) were chosen. For small out-of-plane tip displacement such that the 

curvature (κ ≈ ∂2
w/∂x2) is independent of the position, wTIP (= w at x = L1) can be 

obtained from the curvature and lengths of the Aluminum (L1) and Galfenol (L2) 

layers using Equation (4.14). 

( )2
2 2 1 22

κ
κ= + −

TIP
w L L L L  for L2 ≤ L1 (4.14) 

From Equation (4.2) and Figure 4.2, it can be deduced that the curvature can be 

obtained from the difference of strains on the surfaces of the passive and active layers 

divided by the thickness (t) of the composite beam as shown in Equation (4.15). 

PASSIVE ACTIVE

x x

t

ε ε
κ

−
=     (4.15) 

 

Figure 4.5. Normalized tip displacement of cantilevered Galfenol-Aluminum 

unimorph vs. Aluminum layer thickness. Assumed L1 = L2 = L. 
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The normalized tip displacement (wTIPt/L2) of cantilevered Galfenol-

Aluminum unimorphs as a function of the thickness (t1) of the Aluminum layer for a 

constant Galfenol layer thickness (t2 = 1.86 mm) and free strain (λ = 226 µε) is shown 

in Figure 4.5. The simulation used Young’s modulus values of Aluminum as E1 = 70 

GPa and Galfenol as E2 = 63 GPa. Based on this simulation result, Aluminum 

laminae of thickness 0.46, 0.91, 1.85, 3.71 and 7.43 mm were obtained using wire 

EDM for making the Galfenol-Aluminum unimorphs which were expected to show 

different maximum values of tip displacement. These thickness values are marked by 

the dashed lines in Figure 4.5. A series of experiments were conducted to evaluate the 

performance of these unimorphs as actuators and sensors in bending. 

4.3.3. Description of no-load actuator characterization 

The no-load actuator tests were performed to study the effect of magnetic field 

on the actuation of the unimorphs having different stiffness. The composite stiffness 

was varied by using Aluminum layers that were 0.46, 0.91, 1.85, 3.71 and 7.43-mm 

thick. The same 1.86-mm thick Galfenol lamina was used in all the unimorphs. The 

Galfenol and Aluminum pieces were laminated using Vishay M-Bond. The 

Aluminum layers were 35-mm long and 8.4-mm wide. The 10-mm overhang of the 

Aluminum layer was inserted into a clamping device. 

 

Figure 4.6. Schematic of the no-load actuator test setup. 
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The cantilevered unimorph was placed at the center of the solenoid described 

earlier and as shown in Figures 4.6 and 4.7. Vishay CEA-13-500UW-120 resistive 

strain gages attached on the free surfaces of the Galfenol and Aluminum layers were 

used to measure the strains while the unimorph was subjected to a cyclic quasi-static 

magnetic field with an amplitude of 65 kA/m at a frequency of 0.01 Hz. The 

demagnetization sequence described in Section 4.3.1 preceded each test run. The test 

sequence was repeated four times on each unimorph to ensure consistency in the 

acquired data. 

 

Figure 4.7. (a) Strain gage bonded on the unimorph surface. (b) Side view of the 

cantilevered unimorph. (c) End view of the clamped unimorph placed inside the 

drive coil. (d) Side view of the drive coil. 
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At the end of all experiments performed on each unimorph, the Galfenol and 

Aluminum were delaminated by immersing the composite beam in an acetone bath 

and subjecting it to ultrasonic shaking for 20 minutes. 

4.3.4. Description of pre-load actuator characterization 

 

Figure 4.8. (a) Schematic of the pre-load actuator test setup. (b) Free body 

diagram of the laminated section showing the shear force and bending moment. 

The pre-load actuator tests were performed to study the effect of magnetic 

field and mechanical pre-load on the actuation of the unimorphs having different 

stiffness. A schematic and photograph of the test setup are shown in Figures 4.8 and 

4.9 respectively. In order to produce significant bending moments in the Galfenol 

patch attached near the clamped end by hanging different loads at the free end, a 

longer Aluminum beam had to be used. All Aluminum beams used for the pre-load 

tests were 305-mm long out of which 10 mm was inserted in the clamping fixture. In 

order to avoid bending of the beams due to their own weight, only the stiffer 

Aluminum beams, with thicknesses of 1.84, 3.70 and 7.43 mm, were used. 
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Figure 4.9. The pre-load actuator test setup. 

Different constant loads (P) were applied by hanging precision weights from 

the free end of the cantilevered beam. After the beam was stabilized, the 

demagnetization sequence was carried out followed by the quasi-static magnetic field 

cycle. Strains on the free surfaces of Galfenol and Aluminum near the clamped end 

were measured using Vishay CEA-13-500UW-120 resistive strain gages. Prior to 

recording the strain due to the quasi-static cyclic magnetic field as described for the 

no-load tests, the pre-strain due to the mechanical load was also noted in these tests. 

Since the three beams used in the experiment were of different thickness, the 

same load would produce different stress profile across the thickness of these beams. 

Hence it would be inaccurate to directly compare the characterization results obtained 

from the different beams. In order to avoid this problem, a set of different loads were 

chosen for the different beams such that the parameter Mxt (= M/bt
2), introduced in 

Chapter 3, remains same. The actual loads and the corresponding values of Mxt used 

in the characterization for the three different beams are shown in Table 4.1. The 
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bending moment [M = P(L-x)] was calculated at the mid-length of the strain gage by 

substituting L = 295 mm and x = 12.7 mm. Experiments were performed for both 

positive and negative values of Mxt by laterally inverting the unimorph such that the 

Galfenol was made the bottom and the top layer respectively. Note that it was not 

possible to obtain identical values of Mxt for the three cases due to the finite 

combinations of loads available. 

Table 4.1. Values of actual load (P) and Mxt used for the different beams. 

t = 9.29 mm t = 5.56 mm t = 3.7 mm 

P (g) Mxt (MPa) P (g) Mxt (MPa) P (g) Mxt (MPa) 

0 0 0 0 0 0 

47 0.18 16 0.17 7 0.17 

87 0.33 32 0.34 14 0.33 

157 0.60 57 0.61 25 06 

207 0.79 67 0.71 32 0.77 

307 1.17 107 1.14 47 1.13 

457 1.74 157 1.67 57 1.37 

557 2.12 207 2.2 67 1.61 

707 2.69 257 2.73 87 2.09 

807 3.07 307 3.26 107 2.57 

907 3.45 357 3.80 157 3.77 

1140 4.34 407 4.33 207 4.97 

1367.5 5.21 507 5.39 - - 
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4.3.5. Description of sensor characterization 

 

Figure 4.10. Schematic of the sensor characterization test setup. 

The sensor characterization used the same test setup as described for the pre-

load actuator tests except for the fact that an Allegro 1323 linear Hall-effect sensor 

was attached at one end of the Galfenol layer as shown in Figures 4.10 and 4.11.  

 

Figure 4.11. (a) Top view and (b) side view of the cantilevered unimorph 

showing the position of the Hall-effect sensor. 
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The Hall-effect sensor acquired a signal proportional to the change in 

magnetic induction in the Galfenol patch under the influence of different magnetic 

fields and bending loads. Note that the Hall sensor measured a signal proportional to 

B and not H because it was placed in such a way that it measured the axial component 

of the magnetic flux lines emanating from the Galfenol patch. Also note that since 

there is a spatial variation in B within the Galfenol layer during bending, the Hall 

sensor can only measure a signal proportional to B but not the absolute value of B as 

was measured using a pick-up coil in Chapters 2 and 3. Furthermore, as mentioned 

earlier, the internal magnetic field in Galfenol also varies spatially and hence cannot 

be maintained using the feedback controller described in Chapter 2. Hence all 

references to magnetic field would indicate the applied magnetic field, i.e. the 

magnetic field measured in air at the center of the solenoid for a given drive current. 

The sensor characterization was performed in two different ways to measure 

the consistency in experimental data. In the first method, the Hall sensor data was 

acquired while the magnetic field was quasi-statically cycled for each of the different 

loads hanging from the free end of the beam. In the second method, a constant drive 

current was used to produce a bias applied magnetic field. In the presence of this bias 

field, the mechanical loads were quasi-statically varied and the change in Hall sensor 

response was noted. The second method was used for four different bias magnetic 

fields. The Hall sensor data obtained as a function of magnetic field and Mxt from the 

two different methods were compared. Note that the first method is analogous to 

measurement of B-H curves whereas the second method resembles the measurement 

of B-σ curves, both of which were discussed in Chapter 2. 
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4.4. Magnetic analysis of test setup 

In this section, the method of magnetic field application is analyzed using 

finite element method and an estimate of the spatial distribution of the magnetic flux 

and the demagnetization effect in the Galfenol lamina is obtained.  

4.4.1. Estimation of magnetic flux variation 

Since the drive coil is of finite length (Lc) and diameter (Dc) the magnetic field 

produced inside it will not be uniform and may not be calculated using Equation 

(1.3). The relevant analytical formula to calculate the magnetic field along the 

centerline of the coil is given by Equation (4.16) [63] where N and i are the number of 

turns in the coil and current respectively. Note that –Lc/2 ≤ x ≤ Lc/2.  

( ) ( )
1 1

2 22 22 2

2 2

2 2 2 2

c c

c
c c c c

L x L xNi
H

L
D L x D L x

 
 + −

= + 
    + + + −

    

 (4.16) 

Besides using Equation (4.16), the magnetic field variation along the long axis 

of the coil was also measured using a hand-held gaussmeter for i = 0.5 A. 

Furthermore, a 3D electromagnetic finite element analysis was performed using the 

AC/DC module in COMSOL Multiphysics 3.4. The “Magnetostatics” formulation 

used vector - quadratic elements. The relevant boundary value problem for magnetic 

FEA was defined in Section 3.3. Comparison of experimental measurements of H at 

the center of the solenoid for different i with the estimated magnetic field from the 

FEA showed that Jo = 9 x 105 A/m2 corresponded to i = 0.5 A. 

Results from all the three methods of magnetic field estimation are shown in 

Figure 4.12. It was found that the value of H at the center of the solenoid 
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corresponded to the value given by Equation (1.3) and that H monotonically drops to 

half of the peak value at the two ends of the solenoid. Figure 4.12 also indicates that it 

is desirable to place the Galfenol lamina in the central region of the solenoid in order 

to expose it to maximum magnetic field for a given drive current with minimum 

spatial variation in the field. 

 

Figure 4.12. Comparison of measured values of magnetic field in air along the 

long axis of the solenoid with calculated values from analytical expression and 

finite element analysis. 

A 3D FEA analysis of the magnetic components in the unimorph actuator and 

sensor tests that comprised of the drive coil (solenoid), the Galfenol lamina and an air 

domain surrounding them was also performed. Since the clamps were made of 

Aluminum (µ r = 1), they could be considered as a part of the air domain. Figure 4.13 

shows these components. 
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Figure 4.13. Schematic of the magnetic components of the experimental setup. 

The constitutive B-H relation (at σ = 0) for Galfenol was obtained from a 

look-up table generated using the energy-based model described in Chapter 2. The 

model parameters are shown in Table 4.2. The model parameters were estimated from 

Figure 4.4 and Table 2.2. For a value of B calculated in Galfenol, the value of H was 

obtained from the look-up table using piecewise-cubic interpolation. 

Table 4.2. Parameters used in the energy-based constitutive model for Fe82Ga18. 

Ms (kA/m) λ100 (µε) K1 (kJ/m
3
) K2 (kJ/m

3
) Ω (J/m

3
) 

1330 220 16.5 -45 200 

 
This analysis was useful to estimate the spatial variation of B in the Galfenol 

lamina which in turn was helpful to determine appropriate position for placement of 

strain gage and Hall-effect sensor on the Galfenol lamina. 
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As shown in Figure 4.14, the 3D magnetic FEA indicated that most of the 

magnetic flux lines concentrated through the Galfenol lamina. The flux lines formed 

closed loops around the solenoid and were found to be axially symmetric. 

 

Figure 4.14. Concentration of magnetic flux lines through Galfenol. 

 

Figure 4.15. Spatial distribution of Bx in the x-y plane of the Galfenol lamina and 

the variation in Bx along the span of the Galfenol lamina. 
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Figure 4.15 shows the spatial variation of the x-component of B in the 

Galfenol lamina for a drive current of 2 A (Jo = 3.6 x 106 A/m2). The plotted values 

were calculated on a plane passing through the mid-thickness of the lamina. Figure 

4.15 shows that Bx does not vary significantly along a 15-mm mid-span in the 

Galfenol lamina. The uniformity of Bx in the mid-region of Galfenol makes it the 

ideal position for placement of strain gage as shown in Figure 4.7. However, Bx 

sharply drops off near the two ends along the length of the Galfenol sample and its 

value reduces by ~ 70 % from its peak value observed along the mid-span.  

The determination of a suitable position for the Hall sensor is somewhat more 

challenging. Figure 4.16 shows a close-up of the finite element simulation of the 

magnetic flux lines flowing through and around the Galfenol sample. Ideally, the Hall 

sensor should be placed perpendicular to the flux lines in order to measure Bx. 

 

Figure 4.16. FEA simulation of magnetic flux lines through Hall sensor placed at 

one end of the Galfenol sample. 

Based on the information from Figure 4.16, the Hall sensor cannot be placed adjacent 

to the strain gage on the free surface of the Galfenol sample as then it would be 

tangential to the flux lines. Hence, as shown in Figures 4.11 and 4.16, the only option 

is to place the Hall sensor at one end of the Galfenol sample.  
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Figure 4.17 shows the finite element simulation of Bx along the long axis of 

the solenoid when a current of 2 A is passed through the coil. An expected increase in 

Bx is seen inside the Galfenol sample due to its higher relative permeability compared 

to that of air. The span-wise variation in Bx makes the Hall sensor measure a signal 

which is highly dependent on its position. Moreover, the effect of bond layer and 

small air gap between the Hall sensor and Galfenol further mitigates the signal and 

hence the Hall sensor ends up measuring a signal that is proportional to the maximum 

magnetic induction in Galfenol. Figure 4.17 shows an estimate of the difference 

between the Hall sensor signal and maximum Bx in Galfenol. This knowledge is 

important in order to interpret the sensor characterization results. 

 

Figure 4.17. FEA simulation of Bx along the long axis of the solenoid. 
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4.4.2. Estimation of demagnetization 

The existence of an open magnetic circuit in the experimental setup motivates 

the estimation of the demagnetization effect in the Galfenol lamina. For a rectangular 

prism with dimensions a, b and c along the x, y and z axes respectively, the 

demagnetization factor can be obtained using the analytical expression shown in 

Equation (4.17) [60]. 

          (4.17) 

Here Dz = Nzz. The demagnetization factors along the x and y directions, i.e. Nxx and 

Nyy, for a rectangular prism can be calculated using the same formula by applying 

twice the circular permutation c → a → b → c. Using this formula, the 

demagnetization factors calculated for the Galfenol lamina were; Nxx = 0.062, Nyy = 

0.192 and Nzz = 0.746. 

An alternative method using the energy-based model was also used to 

estimate the demagnetization factor (Nxx) for the Galfenol sample. In this method, the 

energy-based model was used to simulate the magnetostriction shown in Figure 4.4 

using the parameters shown in Table 4.2. Equation (1.14) was used to obtain the 

applied magnetic field from the simulated magnetization and prescribed internal 

magnetic field values. An initial guess of Nxx = 0.062 as obtained from Equation 
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(4.17) was used. Empirical variation of Nxx about the initial guess showed that Nxx = 

0.035 provided the best fit with the experimental data as shown in Figure 4.18. 

 

Figure 4.18. Energy-based model fit of magnetostriction in Fe82Ga18 as a 

function of the applied magnetic field. The demag factor Nd = Nxx in this case. 

A second alternative method for finding the demagnetization factor used the 

results of the magnetic finite element analysis. Using the subdomain integration 

option in COMSOL Multiphysics 3.4, the volume-averaged values were calculated 

for Bx (= 1.4677 T), internal Hx (= 15.942 kA/m) and applied Hx (= 63.2 kA/m) in the 

Galfenol sample for a drive current of 2 A in the solenoid. Substituting these values in 

Equation (1.15) yielded a value of Nd = Nxx = 0.041. Note that the estimate of Nxx 

obtained from the 2nd and 3rd methods are close to each other as both of them 

considered the fact that the entire sample was not homogenously magnetized using 

empirical and finite element approaches respectively. These estimates of Nxx were 

significantly different from the one obtained from the analytical expression given by 

Equation (4.17) which is valid only for a homogenously magnetized body. 



 

 187 
 

4.5. Mechanical analysis of test setup 

In this section, the structural aspects of the experimental setup are analyzed 

using the finite element method. The objective of this study is to find whether the 

location of strain gages were appropriate for measuring the desired strain or the strain 

gages measured an average strain from a large spatial strain distribution. Furthermore, 

since the aspect ratio of some of the unimorphs did not strictly conform to that 

suggested in the Euler-Bernoulli beam theory, it was desired to perform a 3D 

structural analysis using finite element method to find the relative magnitudes of the 

stress components in both the Galfenol and Aluminum layers. 

The 3D structural finite element analysis was performed using the Structural 

Mechanics module in COMSOL Multiphysics 3.4. The “Solid, Stress-Strain - static” 

analysis used Lagrange – quadratic elements. The mechanical boundary value 

problem is solved by COMSOL using the static stress equilibrium Equation (4.18) 

where bx, by and bz are the components of body forces along x, y and z-directions 

respectively. 
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    (4.18) 

The strain displacement relation for small strains is shown in Equation (4.19).  
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The strain compatibility Equation (4.20) serves as the subsidiary condition. 
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The stress-strain constitutive relation is described by Equation (4.21) where [c] is the 

stiffness matrix and λ = {λxx λyy λzz λyz λzx λxy}
T is the free strain vector. 

{ } [ ] { } { }cσ ε λ= −        (4.21) 
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  (4.22) 

The stiffness matrix for isotropic materials can be obtained from the Young’s 

modulus (E) and Poisson’s ratio (ν) as shown in Equation (4.22). For modeling 
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purposes it was considered that EAl = 70 GPa, EFe-Ga = 63 GPa, νAl = 0.33 and νFe-Ga = 

0.45 [115]. The free strain in Galfenol was implemented in COMSOL by assigning 

values of saturation magnetostriction (λxx = 220 x 10-6
 λyy = -110 x 10-6

 λzz = -110 x 

10-6) to the variables (εx,i εy,i εz,i) which denote a uniform pre-strain in the material. All 

shear free strain components were considered to be zero due to the orientation of the 

single crystal Fe82Ga18 sample being used. For Aluminum, the free strains were set to 

zero. 

The 3D structural FEA was used to simulate three cases. The first case studied 

the effect of free strain on the unimorph where both Galfenol and Aluminum layers 

were of same length. This case simulated the no-load actuator tests. The second case 

studied the effect of free strain on the unimorph when the Aluminum layer was longer 

than the Galfenol layer. This case simulated the pre-load actuator test setup without 

any hanging loads. The simulation results from these two cases are discussed in 

Section 4.5.1. Section 4.5.2 shows the simulation results for the third case where the 

effect of both free strain and hanging load on the unimorph created for the second 

case were considered. For all these cases, the clamping of one end of the composite 

structure was simulated by assigning a “fixed” boundary condition on the faces at one 

end along the span of both the Galfenol and Aluminum layers whereas all other faces 

were assigned a “free” boundary condition.  

4.5.1. Effect of free strain 

The simulation for the first case was performed for the five different 

Aluminum thicknesses that were used in the experiments. Figure 4.19 shows the 

simulation result for the 7.43-mm thick Aluminum layer used which represents the 
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extreme scenario where the 3D effects should be most prominent. It is evident from 

Figure 4.19 that the strain on the free surfaces of both Galfenol and Aluminum layers 

are fairly uniform except very close to the clamped end and the tip of the composite 

beam. The existence of such uniform strain makes these areas suitable for strain gage 

bonding as shown in Section 4.3. 

 

Figure 4.19. Strain profile (εxx) on free surfaces of Galfenol and Aluminum 

layers in the unimorph due to a uniform free strain in the Galfenol layer. 

Since the Euler-Bernoulli beam theory is only applicable if the shear-stresses 

are negligible, it was deemed necessary to find the maximum magnitude of all the 

stress components in the unimorphs with different thicknesses. In all the five 

unimorphs, the most dominant stress component was σxx with a maximum magnitude 

of 5 MPa. The only other non-zero stress component was σyy with a maximum 

magnitude of 1.5 MPa.  The 3D FEA showed that a 2D plate-theory type analysis 
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might be sufficient for modeling these unimorphs. Such a 2D model will be 

developed and presented in Chapter 5. 

In order to further compare the predictions of 1D beam theory and 3D finite 

element structural models, the normalized tip displacement was calculated using both 

these models. The 1D analysis used Equations (4.14) and (4.15) whereas the 3D 

analysis used the actual tip displacement in z-direction in order to calculate the 

normalized tip displacement. The simulation results are shown in Table 4.3. 

Table 4.3. Predicted values of normalized tip displacement (-wTIPt/L
2
 x 10

-6
) of 

unimorphs with different Aluminum layer thickness (t1 in mm) used in no-load 

actuator tests. 

t1 0.46 0.91 1.85 3.71 7.43 

1D 109 149 165 144 101 

3D 106 143 160 141 104 

 

The simulated values of normalized tip displacement shown in Table 4.3 corroborates 

the fact that the aspect ratio of the unimorphs does not have a significant effect and a 

complete 3D structural analysis may not be necessary to model the unimorphs. 

The simulation for the second case was performed for the three different 

Aluminum thicknesses that were used in the experiments. The strain on the free 

surfaces of both Galfenol and Aluminum layers in the area where the strain gages 

were attached were found to be uniform. In all the three unimorphs, the most 

dominant stress component was σxx with a maximum magnitude of 5 MPa. The only 

other non-zero stress component was σyy with a maximum magnitude of 2MPa. The 



 

 192 
 

normalized out-of-plane tip displacements (wTIPt/L2
2) for the unimorphs are shown in 

Table 4.4. 

Table 4.4. Predicted values of normalized tip displacement (-wTIPt/L2
2
 x 10

-6
) of 

unimorphs with different Aluminum layer thickness (t1 in mm) used in pre-load 

actuator tests. 

t1 1.84 3.70 7.43 

1D 3712 3256 2274 

3D 3635 3078 2096 

 

The simulated values of normalized out-of-plane tip displacement listed in Table 4.4 

shows that even for the thickest unimorph the difference between 1D and 3D 

predictions is 7.8 % which is within the bounds of experimental uncertainty. Hence 

the beam theory formulae may be used to analyze the experimental results that will be 

presented in Sections 4.6 and 4.7. 

4.5.2. Effect of free strain and bending load 

In these simulations, the hanging load was simulated by assigning an edge 

load (unit: N/m) at the free end of the beam. The edge load was calculated by 

dividing the desired force by the width of the beam. Figure 4.20 shows the setup with 

the position of the load and the clamped end of the beam. 
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Figure 4.20. Geometry and boundary conditions used for 3D finite element 

analysis of pre-load actuator tests. 

In order to evaluate the extreme scenario, the thickest beam (t1 = 7.43 mm) 

and highest tip loading (1367.5 g) were considered. Once again the dominant stress 

component was found to be σxx having a maximum magnitude of 30 MPa while the 

same for σyy was only 2 MPa. All other stress components were found to be 

negligible. However, this simulation showed a slightly higher variation in strain (εxx) 

in the region where the strain gages were bonded. Figure 4.21 shows the strain 

distribution on the free surfaces of Galfenol and Aluminum. A variation of ~ 10 % 

and 4 % were observed for the Galfenol and Aluminum surfaces respectively in the 

strain gage region for a load along negative z-axis. For the same edge load acting 

along positive z-axis, the variation in strain on Galfenol and Aluminum surfaces was 

26 % and 9 % respectively. A positive edge load produces strain which is of opposite 

sign to that of the free strain and hence leads to a higher variation in strain. 
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Figure 4.21. Strain profile (εxx) on free surfaces of Galfenol and Aluminum 

layers in the unimorph due to a uniform free strain in the Galfenol layer and an 

edge load (-1595 N/m) at the free end of the Aluminum layer. 

4.6. Actuator characterization results 

This section presents the results obtained from the no-load and pre-load 

actuator tests described in Section 4.3. The magnetic field, Mxt and Aluminum layer 

thickness in the unimorphs are considered as control parameters and their effect on 

strain on Galfenol and Aluminum surfaces are shown and analyzed. These strains are 

used to calculate the tip displacements of the unimorphs which are compared to the 

model predictions listed in Tables 4.3 and 4.4. 
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4.6.1. Effect of laminate thickness under no-load condition 

The effect of changing the Aluminum layer thickness on the strains observed 

on the free surfaces of Galfenol and Aluminum layers are shown in Figures 4.22 and 

4.23 respectively. The strains are plotted as a function of the applied magnetic field. 

 

Figure 4.22. Strain (εxx) measured on the surface of Galfenol as a function of 

applied magnetic field for unimorphs with different Aluminum layer thickness. 

Figure 4.22 shows that for each unimorph, the strain on Galfenol surface 

increases monotonically till it saturates at some magnetic field. This behavior is 

similar to that of the λ-H curve shown earlier. However, the slope of the curve as well 

as the saturation strain value appeared to increase with decreasing Aluminum layer 

thickness. A possible explanation for this behavior is that for a given Galfenol layer 

thickness, a thinner Aluminum layer provides less constraint to the Galfenol layer 

thereby letting it expand more freely. It should also be noted that for all the 
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unimorphs except for one (i.e. t1 = 7.43 mm), the maximum strain on Galfenol surface 

is higher than saturation magnetostriction of this Galfenol sample. Therefore the 

strain on the free surface of Galfenol is due to both extension and bending and should 

not be construed as the free strain of Galfenol. 

 

Figure 4.23. Strain (εxx) measured on the surface of Aluminum as a function of 

applied magnetic field for unimorphs with different Aluminum layer thickness. 

Zero-strain is indicated with a grey dashed line. 

Figure 4.23 shows that the behavior of the strain on the Aluminum surface is 

somewhat different than the strain on the Galfenol surface. In general, for all 

unimorphs, the magnitude of strain increased with increasing magnetic field until it 

saturated. However, the monotonic behavior of strain with increasing magnetic field 

as well as the monotonic behavior of saturation strains with increasing Aluminum 

layer thickness as shown in Figure 4.22 does not hold true for Figure 4.23. 
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For t1 = 7.43, 3.71 and 1.85 mm, the strain on Aluminum surface decreases 

monotonically with increasing magnetic field thereby clearly exhibiting a bending of 

these unimorphs. For t1 = 0.91 mm, the strain initially appears to decrease with 

increasing magnetic field upto 30 kA/m beyond which the strain increases with 

increasing magnetic field and even changes sign at 43 kA/m. This behavior indicates 

that at lower magnetic fields the unimorph predominantly deforms due to bending but 

at higher magnetic fields (> 30 kA/m), the effect of bending reduces and finally for 

fields higher than 43 kA/m the deformation is dominated by extension which is 

evident from the same sign of strain on both the Galfenol and Aluminum surfaces. 

For t1 = 0.46 mm, the strain on Aluminum surface is positive at all magnetic fields 

which shows that this unimorph predominantly deforms by extension. 

The negative values of saturation strain on the Aluminum surface increases 

when t1 is changed from 7.43 mm to 3.71 mm but decreases on further reducing t1 to 

1.85 mm. The saturation strains for t1 = 0.91 and 0.46 mm are positive and are 

increasing with decreasing t1. Note that although the change in t1 follows a geometric 

progression, i.e. each being the half of the previous value, no such monotonic 

behavior can be observed in the saturation strain values for different t1. It appears that 

the saturation strain varies very little for large Aluminum thickness but varies 

significantly for smaller Aluminum thickness. This behavior is related to the 

contribution of Aluminum to the integrated stiffness of the composite structure and 

will be explained in details in Chapter 5 using model simulations.  

In order to visualize the extension and bending of each of the unimorphs 

separately, the strains shown in Figures 4.22 and 4.23 could be used to calculate the 



 

 198 
 

mid-plane strain (εo) and normalized tip displacement of the unimorphs based on the 

beam theory assumptions using Equations (4.23) and (4.24) respectively. Here, εAL 

and εFEGA are the strains on the Aluminum and Galfenol surfaces respectively. 

2
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Figure 4.24. Mid-plane strain (ε
o
) as a function of applied magnetic field for 

unimorphs with different Aluminum layer thickness. 

Figure 4.24 shows the mid-plane strain in the unimorphs as a function of 

applied magnetic field. For a given Aluminum layer thickness, the mid-plane strain 

monotonically increases with increasing magnetic field and for a given magnetic 

field, the mid-plane strain monotonically increases with decreasing Aluminum layer 

thickness. The unimorph structure tends to extend more freely with decreasing 
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Aluminum layer thickness as the contribution of Aluminum to the composite stiffness 

decreases. Hence the mid-plane strain asymptotes to the free strain of the Galfenol 

layer with decreasing Aluminum layer thickness. The free strain of Galfenol shown in 

Figure 4.4 is also shown in Figure 4.24 to emphasize this fact.  

 

Figure 4.25. Normalized tip displacement (-wTIPt/L
2
) as a function of applied 

magnetic field for unimorphs with different Aluminum layer thickness. The 

circles show the 3D FEA predictions from Table 4.3. 

Figure 4.25 shows the normalized tip displacement in the unimorphs as a 

function of applied magnetic field. For a given Aluminum layer thickness, the mid-

plane strain monotonically increases with increasing magnetic field except for t1 = 

0.46 mm. This apparently anomalous behavior can be explained by combining the 

information from Figure 4.22 and 4.23 and using them in Equation (4.24). For t1 = 

0.46 mm, the strain on both the Galfenol and Aluminum surfaces are of same signs. 
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Hence if the rate of change of strain with respect to magnetic field is higher in 

Galfenol than in Aluminum, the magnitude of normalized tip displacement can 

decrease with increasing magnetic field. It can be deduced that this effect may be 

even more prominent for a thinner Aluminum layer. 

At magnetically saturated conditions, the normalized tip displacement 

increases with decreasing values of t1 upto 1.85 mm. For t1 smaller than 1.85 mm, 

normalized tip displacement decreases with decreasing values of t1. This trend is 

consistent with the 1D and 3D simulations shown in Table 4.3. However, the 3D FEA 

predictions appear to consistently under-predict the saturation values of tip 

displacement as shown in Figure 4.25 using the circles on each curve. 

The under-prediction of experimental results by both 1D and 3D models is 

possibly due to the omission of the effect of the bond layer between Galfenol and 

Aluminum layers and any associated imperfection or local delamination in the bond. 

The bond layer can be modeled as an additional layer between Galfenol and 

Aluminum in the Euler-Bernoulli composite beam. Using the formulae in Section 4.1, 

the effect of the bond layer on the normalized tip displacement of the unimorphs can 

be estimated as a function of the Young’s modulus of the cured bond and the bond 

layer thickness as shown in Figure 4.26. Since the exact value of the Young’s 

modulus of the bond is unknown, the simulation was performed using possible range 

of values for typical cured cyanoacrylate glue. Moreover, since the thickness of the 

bond layer can vary in the different unimorphs, the simulation was performed for a 

range of bond layer thickness. Figure 4.26 shows that normalized tip displacement 

can increase with increasing bond layer thickness and the bond’s Young’s modulus 
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significantly from an ideal condition of a non-existing bond layer. The simulation 

results of Figure 4.26 provides a possible explanation of the higher saturation values 

of normalized tip displacement calculated from experiment compared to the values 

predicted by ideal models which ignored the effect of a bond layer. 

 

Figure 4.26. Effect of thickness and Young’s modulus of bond layer on 

normalized tip displacement (-wTIPt/L
2
) for Galfenol and Aluminum layer 

thickness of 1.86 and 0.46 mm respectively. 

4.6.2. Effect of bending loads in absence of magnetic field 

From the discussion in Section 3.5, we know that the maximum bending stress 

due to an externally applied bending moment is 6Mxt. Figures 4.27 – 4.29 show the 

measured strain and calculated bending stress (6Mxt) at the surface of the beam where 

the strains were measured for the three different unimorphs. These strains were 

measured in the absence of a magnetic field. 



 

 202 
 

 

Figure 4.27. Measured strain vs. calculated bending stress (= 6Mxt) for 7.43-mm 

thick Aluminum beam and also for the unimorph made with the same. 

 

Figure 4.28. Measured strain vs. calculated bending stress (= 6Mxt) for 3.7-mm 

thick Aluminum beam and also for the unimorph made with the same. 
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Figure 4.29. Measured strain vs. calculated bending stress (= 6Mxt) for 1.84-mm 

thick Aluminum beam and also for the unimorph made with the same. 

Additionally, the strains measured on the surface of the Aluminum beams 

prior to bonding the Galfenol patch are also shown in Figures 4.27 – 4.29. For all 

cases the stress-strain curve of only the Aluminum beam was perfectly linear and 

consistently showed  a slope of 68 ± 1 GPa which is close the literature value (70 

GPa) of Young’s modulus of Aluminum. 

The strains measured on the Galfenol surface showed a highly non-linear 

response even in the absence of a magnetic field due to the stress-induced 

magnetoelastic strain. However, the Galfenol strain appeared to be locally linear at 

higher magnitudes of Mxt when the stress developed on the Galfenol surface was 

sufficient to magnetoelastically saturate the Galfenol lamina at the surface by 

orienting the magnetic moments near the Galfenol surface either parallel or 

perpendicular to the strain measurement direction depending on whether the local 
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stress is tensile or compressive respectively. Note that at other points along the 

thickness of the Galfenol layer the stress would be lower and hence magnetic 

moments would still have different orientations. 

Another prominent feature of the strain measured on the Galfenol surface is 

that it increased with decreasing Aluminum layer thickness thereby exhibiting a 

different slope in the different unimorphs. This shows that the unimorphs do not 

undergo pure bending even when a bending moment is applied in the absence of 

magnetic field and hence the strain measured on the Galfenol surface cannot be used 

to obtain the true Young’s modulus of Galfenol from bending measurements. 

Similarly, the strain measured on the Aluminum surface of the unimorphs were also 

different than that measured from the pure Aluminum beam for a given Mxt. 

Moreover, the strain on the Aluminum surface of the unimorph was non-linear due to 

the effect of non-linear Young’s modulus (Delta E effect) of Galfenol which affected 

the composite stiffness. Note that the apparent Young’s modulus of Galfenol varied 

along its thickness due to the variation of stress and stress-induced magnetoelastic 

strain thereby making the unimorph a highly non-linear elastic structure. A method of 

modeling this behavior will be shown in Chapter 5. 

In general, the results shown in Figures 4.27 – 4.29 clearly exhibited the 

integrated mechanical properties in the Galfenol-Aluminum laminated composites 

which motivate the use of a suitable structural model for predicting the behavior of 

these unimorphs. The non-linear strains obtained in the absence of a magnetic field 

also motivates the use of a non-linear constitutive material model instead of a single-



 

 205 
 

valued free strain to model the actuation in these unimorphs. A modeling approach 

combining these features will be developed in Chapter 5. 

4.6.3. Effect of bending loads in presence of magnetic field 

This section shows the effect of variation of all three parameters which have 

been introduced, on the actuation behavior of unimorphs. These parameters are the 

applied magnetic field, bending load (Mxt) and the Aluminum layer thickness. In 

Figures 4.30 – 4.33, the Aluminum layer thickness is kept constant (1.84 mm) while 

the effect of changing the applied magnetic field and Mxt is discussed with respect to 

the strains measured on the free surface of the Galfenol and Aluminum layers. In 

Figure 4.34, the actuation-induced normalized tip displacement is calculated at 

magnetic saturation and shown as a function of Mxt and Aluminum layer thickness in 

the different unimorphs. 

Figures 4.30 – 4.33 show that the strain response with respect to the applied 

magnetic field is analogous to the λ-H curves. This is expected because a higher 

magnetic field will enhance the magnetostriction in the Galfenol layer thereby 

increasing the magnitude of strain transferred to the Aluminum layer until the 

magnetostriction saturates. As expected from Figure 4.23, the strain on Aluminum 

surface is of opposite sign compared to the strain on Galfenol surface for this 

combination of Galfenol/Aluminum thickness at all magnetic fields. Also note that 

Figures 4.30 – 4.33 show the actual strain in order to give a feel of the relative 

difference between the pre-strain induced due to Mxt in the absence of a magnetic 

field and the strain due to magnetic actuation while Mxt is kept constant. 
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Figures 4.30 and 4.31 show that increasingly negative values of Mxt induce 

increasing tensile pre-stresses in the Galfenol layer thereby reducing the effective free 

strain that can be obtained from it. Note that a stress gradient still exists along the 

thickness of the Galfenol layer and hence this scenario is not the same as subjecting a 

Galfenol rod to uniaxial tension. This gradient of pre-stress in Galfenol creates a 

gradient of magnetically induced-strain on application of magnetic fields. This 

complexity cannot be modeled with the existing modeling techniques described 

earlier which assume a uniform and constant free strain in the active layer of the 

unimorph. An appropriate modeling technique will be discussed in Chapter 5. 

 

Figure 4.30. Total strain on Galfenol surface vs. applied magnetic field for 

different Mxt which produce tension in the Galfenol layer in the unimorph 

having a 1.84-mm thick Aluminum layer. 
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Nevertheless, as a result of reduced free strain due to tensile pre-stresses, the 

maximum values of magnetic field-induced strain on both Galfenol and Aluminum 

surfaces reduce with increasingly negative Mxt applied to the unimorph as shown in 

Figures 4.30 and 4.31. This implies that a device using a Galfenol-based unimorph 

should ensure that any external forces acting on that device should not create 

significant tensile stresses in the Galfenol layer which could block the actuation 

strain.  

 

Figure 4.31. Total strain on Aluminum surface vs. applied magnetic field for 

different Mxt which produce tension in the Galfenol layer in the unimorph 

having a 1.84-mm thick Aluminum layer. 

Figures 4.32 and 4.33 show that increasingly positive values of Mxt induce 

increasing compressive pre-stresses in the Galfenol layer thereby increasing the 

effective free strain that can be obtained from it. However, the extent of increase in 
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free strain in Galfenol will depend on the stress distribution along its thickness and 

hence on the Aluminum layer thickness too. The limiting value of the free strain is 

(3/2)λ100 which can be obtained if the minimum magnitude of compressive stress in 

Galfenol is sufficient to orient all the magnetic moments perpendicular to the length 

of the Galfenol sample. Once again, it should be noted that this behavior of the 

unimorph cannot be modeled by assuming a constant free strain in Galfenol layer. 

The modeling of this scenario would require the combination of a structural model 

and a non-linear material constitutive model. 

 

Figure 4.32. Total strain on Galfenol surface vs. applied magnetic field for 

different Mxt which produce compression in the Galfenol layer in the unimorph 

having a 1.84-mm thick Aluminum layer. 

As a result of increased free strain due to compressive pre-stresses, the 

maximum value of magnetic field-induced strain on both Galfenol and Aluminum 
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surfaces increases with increasingly positive Mxt applied to the unimorph as shown in 

Figures 4.32 and 4.33. This implies that a device using a Galfenol-based unimorph 

may be subjected to external forces that would create significant compressive stresses 

in the Galfenol layer in order to improve the actuation performance. 

 

Figure 4.33. Total strain on Aluminum surface vs. applied magnetic field for 

different Mxt which produce compression in the Galfenol layer in the unimorph 

having a 1.84-mm thick Aluminum layer. 

The same analysis repeated on the strains obtained from the Galfenol and 

Aluminum surfaces in the unimorphs with 3.7 and 7.43-mm thick Aluminum layers 

showed the same trends with respect to variations in magnetic field and Mxt. 

Figure 4.34 shows the actuation-induced normalized tip displacement of the 

three different unimorphs as a function of Mxt. These values were calculated from the 

strains observed at magnetic saturation. The tip displacement due to application of Mxt 
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at zero magnetic field was subtracted in order to compare the additional tip 

displacement only due to magnetic actuation effect. The tip displacement was 

normalized with respect to the length of the active layer and total thickness of active 

and passive layers so that the effect of Mxt can be compared. Since in these 

unimorphs, the active and passive layers are of different lengths, the choice of total 

thickness of active and passive layers but only the length of active layer for 

calculating the normalized tip displacement was based on Equations (4.14) and 

(4.15). 

 

Figure 4.34. Actuation-induced normalized tip displacement (-wTIPt/L2
2
) vs. Mxt 

at magnetic saturation for the unimorphs with 7.43, 3.70 and 1.84-mm thick 

Aluminum layers. 

The experimental values at Mxt = 0 were compared to the predicted values in 

Table 4.4. Both the 1D and 3D models predicted the trend and order of magnitude of 
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the values well. However, they consistently under-predicted the tip displacement 

values in all three unimorphs probably because they did not account for the bond 

layer. 

Figure 4.34 confirms the observations made from Figures 4.30 – 4.33. A 

negative Mxt induces tension in Galfenol and reduces its actuation capability whereas 

a positive Mxt induces compression in Galfenol thereby enhancing its actuation 

capability. The tip displacement can be reduced to zero by applying a sufficiently 

negative Mxt which can block the actuation-induced bending moment. On the other 

hand, there is also a critical value of positive Mxt which is required to obtain the 

maximum tip displacement. Further increase in Mxt does not increase the tip 

displacement. Figure 4.34 also shows that the values of both blocking Mxt and critical 

Mxt are inversely proportional to the Aluminum layer thickness for the three 

unimorphs on which the experiments were performed. This proportionality indicates 

that the composite stiffness of the unimorphs plays an important role in determining 

the actuation performance of the active layer as well as the entire composite structure. 

Such complex behavior of active structures can only be modeled using a combination 

of structural and non-linear material constitutive models as mentioned earlier. Such a 

model can be used for investigation of the actuation performance of unimorphs for a 

wider range of parameter variation. 

4.7. Sensor characterization results 

Prior work by Datta and Flatau [139] presented magnetostrictive strain 

sensing results using two different configurations of Galfenol-based unimorph. These 

results were obtained at only one bias magnetic field which was provided by a 
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permanent magnet placed on the Galfenol layer in the unimorph. Such a configuration 

introduced significant inhomogeneity in the magnetic flux distribution in the Galfenol 

layer and also restricted the study of the effect of magnetic biasing on the sensing 

behavior which is known to be an important performance parameter from the 

discussion in Chapter 2. 

The results shown in this section were obtained using a non-contact magnetic 

biasing mechanism that used a solenoid and hence the sensing behavior could be 

evaluated at different bias magnetic fields by controlling the current in the solenoid. 

However, a practical restriction on the measurement was imposed by the range of the 

Hall sensor which acquired a signal proportional to the magnetic induction in the 

Galfenol layer. The Hall sensor could measure upto 1000 gauss and hence would 

saturate at an applied magnetic field of 20-25 kA/m depending on the applied Mxt. 

A commercially available Hall sensor with higher range would exhibit a lower 

sensitivity to change in magnetic induction and hence it would not be able to measure 

change in magnetic induction due to small changes in Mxt. This trade-off between 

range and sensitivity in a Hall sensor is not avoidable and hence it is advisable to 

choose an appropriate Hall sensor which can operate within the desired range with an 

acceptable sensitivity for any magnetostrictive sensing application. 

4.7.1. Self-consistency in sensor data 

It was shown in Chapter 2 that B(σ, H) is a state function for quasi-static 

changes in σ and H. Based on this premise, the unimorph sensor characterization was 

performed using two different methods as described in Section 4.3 in order to verify 

the consistency in the Hall sensor data (BHall). 
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Figure 4.35 shows a typical plot obtained from the first method where the 

BHall was acquired for quasi-statically varying Happ at different constant Mxt. Using 

this plot, it is possible to find BHall at different Mxt at a constant Happ as shown by the 

vertical grey dashed line on Figure 4.35. These data points can be plotted as BHall vs. 

Mxt at constant Happ as shown in Figure 4.36 by the circles for Happ = 10 kA/m. 

In the second method, the Happ was kept constant by passing a constant current 

through the solenoid while the tip loading was varied to obtain different Mxt and 

correspondingly different values of BHall. The BHall vs. Mxt data obtained from the 

second method is shown by the solid line in Figure 4.36. A comparison of the data 

obtained from the two different methods clearly shows that the sensor 

characterization data was self-consistent. 

 

Figure 4.35. Hall sensor output vs. applied magnetic field obtained at constant 

Mxt of -5.21, -1.74, 0, 1.74 and 5.21 MPa from the unimorph with 7.43-mm thick 

Aluminum layer. 
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Figure 4.36. Hall sensor output vs. Mxt obtained at a constant applied magnetic 

field of 10 kA/m from the unimorph with 7.43-mm thick Aluminum layer. 

4.7.2. Effect of bias magnetic fields 

Figure 4.37 shows BHall vs. Mxt at Happ of 4.6, 9.8, 14.7 and 19.2 kA/m 

obtained from the unimorph with 1.84-mm thick Aluminum layer. Such sensor 

characterization curves obtained from other unimorphs were qualitatively similar. 

Therefore, the effect of bias magnetic field and Mxt on the sensing behavior will be 

discussed using the representative plots shown in Figure 4.37. The labels “tension” 

and “compression” denote the dominant stress state in the Galfenol patch due to the 

applied Mxt. Also note that the subplots in Figure 4.37 have different maximum and 

minimum values of BHall on their y-axis but the range is same (100 G) in all the 

subplots. 
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Figure 4.37. Hall sensor output vs. Mxt at bias applied magnetic fields of (a) 4.6 

kA/m, (b) 9.8 kA/m, (c) 14.7 kA/m and (d) 19.2 kA/m in the unimorph with 1.84-

mm thick Aluminum layer. 

Figure 4.37 shows that at a given bias applied magnetic field, the material 

saturates at a relatively small magnitude of Mxt (≤ 2.5 MPa) if the Galfenol patch is in 

tension. Note that both bias field and tension acting together favor the orientation of 

magnetic moments along the length of the Galfenol patch thereby saturating Galfenol. 

Saturation of BHall is not observed if the Galfenol is in compression unless the bias 

field is very small (4.6 kA/m) such that relatively small compressive stresses which 

can be produced by Mxt ≤ 5 MPa is sufficient to rotate most magnetic moments 

perpendicular to the length of the Galfenol patch. Note that the characteristic curve 
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shown in the lower right quadrant of Figure 4.37 is analogous to the B-σ curves 

obtained under compression which were shown in Chapter 2 whereas the curves in 

upper left quadrant is analogous to B-σ curves under tension. 

Although the aforementioned analogy is helpful to relate the bending behavior 

with the axial sensing behavior, it should be noted that since the internal magnetic 

field could not be kept constant under bending, the sensing behavior is highly 

influenced by the shape anisotropy and the stress distribution in the Galfenol patch 

both of which affect the internal field for a constant applied magnetic field. Keeping 

these factors in view, the features shown by the curves in Figure 4.37 could be 

explained more accurately. 

For example, it is logical to assume that as the bias field would increase, 

Galfenol would saturate in tension at a lower value of Mxt. However, Figure 4.37 

shows that although the applied magnetic field is changed by a factor of four, the 

saturation in tension always takes place close to Mxt = 2.5 MPa. This behavior can be 

explained by the reasoning that for a given applied magnetic field, an increasing 

tensile stress decreases the internal magnetic field (as explained in Chapter 2) and a 

smaller fraction of magnetic moments orient along the length of the Galfenol patch 

than it would be expected. Hence the sensing range in tension is increased by a 

compensating reduction in the internal magnetic field. 

Similarly, the internal magnetic field in Galfenol would increase for 

increasing compressive stresses thereby reducing the range as well as sensitivity of 

the Galfenol sensor under compression. However, this phenomenon can be put to 

advantage for designing a Galfenol-based bending sensor which requires equal range 
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of operation in tension and compression. Since the internal field depends on the 

demagnetization factor, applied field and stress, an iterative design and experimental 

approach could be used to find suitable dimensions and bias applied magnetic field 

that could be used to operate the Galfenol sensor in the desired stress range. Since 

such an iterative design procedure can be time consuming and costly, it is desired to 

develop a modeling technique for a magnetostrictive sensor in bending which can be 

used to simulate sensing behavior in order to choose such design parameters. Such a 

modeling technique will be shown in Chapter 5. 

4.7.3. Analysis of sensor parameters 

It is required to define certain parameters [179] in order to gain more useful 

information from sensor characterization curves. These parameters are useful for 

sensor design and for comparing sensor performance under different conditions. 

Sensitivity is the ratio of change in the output signal (BHall) to change in input 

signal (Mxt). This can be obtained from the slope of the best fit straight line to the 

BHall vs. Mxt plot. It can be expressed in T/GPa which is also the unit for stress 

sensitivity (d*) under axial loading. Note that the sensitivity listed in Table 4.5 is 

significantly lower than the values of d* shown in Chapter 2. This indicates that the 

device sensitivity will always be significantly lower than the sensitivity of the active 

material. 

Table 4.5 indicates that in all the unimorphs, the device sensitivity is higher 

when Galfenol is in compression (i.e. positive Mxt) except for the lowest bias field 

(4.6 kA/m). Also, the sensitivity increased with increasing bias fields for both 

positive and negative Mxt. The effect of unimorph thickness could not be clearly 
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distinguished due to small variations in Hall sensor position between one unimorph 

and another. 

Table 4.5. Effect of bias applied magnetic field (Happ in kA/m), nature of Mxt 

(negative/positive) and Aluminum layer thickness (t1 in mm) on sensitivity 

(T/GPa) of Galfenol-Aluminum unimorphs. 

Happ 4.6 9.8 14.7 19.2 

Mxt - + - + - + - + 

t1 = 7.43 0.47 0.79 0.69 1.54 0.81 1.87 0.89 2.01 

t1 = 3.70 0.48 0.47 0.55 1.01 0.59 1.25 0.64 1.36 

t1 = 1.84 0.52 0.37 0.56 0.79 0.59 1.02 0.64 1.16 

 
Operating range is the range of input for which the sensor can give a 

proportional (preferably linear) output. No comment can be made about the entire 

operating range of the unimorph sensors since the operating range of the Hall sensor 

used in the experiments did not allow the measurement of magnetic signal upto 

saturation.  However, it can be said that for the bias fields at which the experiments 

were performed, the unimorphs showed a linear sensing response for -2.5 MPa ≤ Mxt 

≤ 5 MPa. Note that in dynamic applications, the range of frequency within which the 

sensor can work needs to be defined too. 

Resolution (Rndev) of a magnetostrictive sensing device is the smallest change 

in input which produces a measurable change in the output. This parameter depends 

on the sensitivity of the Hall sensor (SHall ≈ 2.5 mV/gauss), the sensitivity 

(∂BHall/∂Mxt) of the magnetostrictive sensing device and the resolution (Rnmeas = 0.25 

mV) of the voltage measuring device which measures the output of the Hall sensor. 



 

 219 
 

The resolution of the magnetostrictive sensing device can be expressed using 

Equation (4.25). 

( )
meas

dev

Hall Hall xt

Rn
Rn

S B M
=

∂ ∂
     (4.25) 

Table 4.6 lists the sensing resolution of the unimorph sensors under different 

bias fields and loading conditions. In general, the resolution was better when the 

Galfenol patch was in compression. The resolution showed nominal improvement 

with increasing bias fields. 

Table 4.6. Effect of bias applied magnetic field (Happ in kA/m), nature of Mxt 

(negative/positive) and Aluminum layer thickness (t1 in mm) on sensing 

resolution (x 10
3
 Pa) of Galfenol-Aluminum unimorphs. 

Happ 4.6 9.8 14.7 19.2 

Mxt - + - + - + - + 

t1 = 7.43 21 13 14 6 12 5 11 5 

t1 = 3.70 20 21 18 10 16 8 15 7 

t1 = 1.84 19 26 17 12 16 10 15 8 

 
Accuracy is the ratio of maximum error of output to the full scale output 

expressed as a percentage. The highest value of standard deviation for any data point, 

which was ~ 2 gauss, was considered as the maximum error. The full scale output is 

the difference between the values of BHall corresponding to the maximum and 

minimum values of Mxt. In these experiments, the accuracy was between 1.3 – 4.6 %. 

Linearity is the maximum deviation of experimental data points from best 

straight line fit between output and input. A straight line can be fitted to the BHall vs. 
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Mxt plot and the correlation coefficient (R2) can be considered as the measure of 

linearity. Table 4.7 lists the values of R2 obtained from the straight line fits of the 

sensor characterization data. As expected from previous analyses, the values in Table 

4.7 also confirm that higher bias fields and compressive stresses in Galfenol produced 

more linear sensing response from the unimorphs. 

Table 4.7. Effect of bias applied magnetic field (Happ in kA/m), nature of Mxt 

(negative/positive) and Aluminum layer thickness (t1 in mm) on correlation 

coefficient (R
2
) of Galfenol-Aluminum unimorphs. 

Happ 4.6 9.8 14.7 19.2 

Mxt - + - + - + - + 

t1 = 7.43 0.818 0.993 0.873 0.999 0.870 0.999 0.861 0.999 

t1 = 3.70 0.788 0.972 0.810 0.996 0.809 0.999 0.824 0.999 

t1 = 1.84 0.713 0.935 0.774 0.987 0.781 0.992 0.798 0.999 

 
Hysteresis is the change in output for the same input applied cyclically. The 

standard deviation in BHall obtained for each value of strain gives a measure of the 

hysteresis. The hysteresis in the data was extremely small (≤ 2 G) under the operating 

conditions of the experiments. 

Offset is the value of output for zero input. This is the signal (Bo) obtained 

from the Hall sensor when a bias magnetic field is applied in the absence of a 

mechanical loading. Table 4.8 lists the Hall sensor offset values under different bias 

applied magnetic fields for the different unimorphs. Note that for the same Happ, a 

different Bo could be measured based on small misalignment or variation in the 

position of Hall sensor which can occur during bonding. 
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Table 4.8. Offset (Bo in gauss) in Hall sensor output for different bias applied 

magnetic fields (Happ in kA/m) in the Galfenol-Aluminum unimorphs with 

Aluminum layer thickness (t1 in mm). 

Happ 4.6 9.8 14.7 19.2 

t1 = 7.43 208 440 666.25 867.5 

t1 = 3.70 142.75 311 475 620 

t1 = 1.84 148.25 324.5 496.5 647.75 

 
Noise is a measure of the clarity of the signal. Noise can be introduced due to 

drift in measuring instruments, harmonics of the frequency at which the power line 

operates, or even faulty electrical or mechanical connections. Most of it can be taken 

care by applying simple signal conditioning on the output signal. Since all 

experiments were performed under quasi-static conditions, the electronically acquired 

data displayed a 60 Hz noise due to the power line. Hence appropriate filtering and 

averaging was performed on the raw data. 

Operating conditions include environmental factors for which the calibration 

of a device is valid. All material properties are temperature dependent and phase 

transformations take place at certain temperatures. Humidity and pH values of the 

operating environment affect corrosion rate. Dynamic conditions can lead to fatigue. 

Hence it is necessary to have the knowledge of operating conditions. All experiments 

on the unimorphs were performed at room temperature (~ 20 ± 1 oC) under quasi-

static conditions. The solenoid was surrounded by ice-packs to avoid any significant 

local temperature variation due to Joule heating. The temperature in air inside the 

solenoid was measured using a commercial thermometer. 
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Figure of merit (FM) is a dimensionless number which defines the 

performance of the magnetostrictive sensing device. An experimental figure of merit 

based on Equation (2.20) can be defined for a bending sensor as shown in Equation 

(4.26). Here |∆Mxt| is the absolute value of operating range for which the sensitivity 

has been calculated. Note that Equation (4.26) includes the effect of device 

sensitivity, operating range and magnetic bias condition and hence can be considered 

as a comprehensive measure of the device performance. 

app

xt Hall

o xt H H

M B
FM

B M
=

∆ ∂
=

∂
    (4.26) 

Table 4.9. Effect of bias applied magnetic field (Happ in kA/m), nature of Mxt 

(negative/positive) and Aluminum layer thickness (t1 in mm) on figure of merit 

(FM) of Galfenol-Aluminum unimorphs. 

Happ 4.6 9.8 14.7 19.2 

Mxt - + - + - + - + 

t1 = 7.43 0.11 0.20 0.08 0.19 0.06 0.15 0.05 0.13 

t1 = 3.70 0.18 0.17 0.10 0.17 0.06 0.14 0.05 0.12 

t1 = 1.84 0.18 0.12 0.09 0.12 0.06 0.10 0.05 0.09 

 
Table 4.9 lists the values of FM obtained from the unimorphs under different 

bias fields and loading conditions. These values reiterate earlier observations which 

showed that better sensing performance could be obtained at higher bias field and if 

the Galfenol was under compression. The FM values also showed that for the lowest 

bias field (4.6 kA/m) the sensing performance under tension and compression were 

similar. 
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From the analysis of gage factors of Galfenol in Chapter 2, it is known that the 

sensitivity of Galfenol peaks at small values of magnetic bias and compressive stress. 

Since all the unimorphs showed improvement of sensing performance with increasing 

bias applied magnetic field, it can be deduced that for all these applied magnetic 

fields, the internal magnetic fields in Galfenol were possibly less than or equal to the 

bias magnetic field where the peak in gage factor was observed in Chapter 2. 

4.8. Summary 

In this chapter, the concept of a magnetostrictive laminated composite was 

introduced. A unimorph with an active magnetostrictive layer and a passive structural 

layer was identified as the simplest active composite which could be used in bending 

applications both as an actuator and as a sensor. The composite stiffness, mechanical 

load and magnetic field were identified as the key parameters that influence the 

performance of magnetostrictive laminated composites. 

Galfenol-Aluminum unimorphs were built based on design criteria set by 

beam theory with induced-strain actuation. These unimorphs were characterized as 

actuators and sensors which can work in bending mode. The effect of unimorph 

stiffness, mechanical pre-load and actuating magnetic field on the actuator 

performance was studied. The out-of-plane tip displacement of the unimorphs 

normalized with respect to the composite thickness and length of active layer was 

chosen as the performance parameter for actuation. Similarly, the effect of unimorph 

stiffness, bias magnetic field and nature of mechanical loading on the sensor 

performance was also studied. Several performance parameters for sensing were 

defined and calculated. 
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A number of challenges related to experimental characterization were 

analyzed and discussed. Some of these challenges, such as the effect of bond layer on 

stiffness matching condition dealt with the structural aspect of the unimorphs whereas 

other issues such as demagnetization and magnetic flux variation dealt with the 

magnetic aspect of these magnetostrictive composites. Challenges related to 

measurement and interpretation of magnetic signal for sensing purposes using 

commercial magnetic field sensors was also discussed. 

The experimental studies revealed the presence of coupling between the 

magnetic circuit of the device, the structural design of the setup and the 

magnetomechanical response of the active material. The experimental results showed 

consistent trends which had to be explained using a combination of theories discussed 

so far. A suitable modeling technique for magnetostrictive laminated composites 

would be one that can be used to simulate the actuation and sensing behavior for a 

wider range of parameter variation which could not be performed in the experimental 

studies. Chapter 5 will present such a coupled modeling technique. 

 



 

 225 
 

Chapter 5: Modeling of magnetostrictive laminated composite 

In this chapter, a generalized modeling approach is described for a 

magnetostrictive device which is then used to develop a magnetomechanical plate 

model (MMPM) to predict the strain, stress and magnetic induction in laminated 

structures with magnetostrictive and non-magnetic layers. 

The MMPM is used to perform simulation studies of a unimorph structure 

having a magnetostrictive Galfenol layer attached to different non-magnetic passive 

layers. The actuation response from the patch is obtained for in-plane axial magnetic 

field acting on the unimorph. The MMPM is used to predict the normalized tip 

displacement due to induced-strain actuation in cantilevered unimorph beams and the 

results are compared with existing modeling techniques. 

The model is used to study the effect of tensile and compressive axial forces, 

and bending moments on the actuation and sensing response of the unimorph at 

different magnetic fields. A study is also performed to understand the effect of total 

thickness of the structure, the ratio of the active/passive layer thickness and the effect 

of the mechanical properties of different passive materials on the actuator and sensor 

performance. 

Finally, the MMPM is used to model the actuation and sensing response of the 

unimorphs discussed in Chapter 4. The results demonstrate that the model captures 

the non-linearity in the magnetomechanical process and the different structural 

couplings in a magnetostrictive laminated composite. 
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5.1. Background and scope of this work 

Several researchers have attempted to address the challenges involved in 

modeling the actuation and sensing behavior of magnetostrictive composites using 

different approaches. Klokholm [180] developed an analytical expression to find the 

magnetostriction constant of a magnetostrictive thin film attached to a non-magnetic 

substrate from the measured displacement of the free end of a cantilevered composite 

beam. Another analytical expression for the same scenario was obtained by du 

Tremolet de Lacheisserie et al. [181] which differed from Klokholm’s formula by a 

factor of (1 - ν)/(1 + ν). Assuming a Poisson’s ratio of ν = 0.33, for a given cantilever 

tip displacement; Lacheisserie’s formula would predict a magnetostriction which is 

nearly half of what Klokholm’s formula would predict. In a later work, Klokholm et 

al. [182] validated their formula with experimental results from thin film 

measurements. A tacit assumption in both these approaches was that the film 

thickness is negligible compared to the substrate thickness and hence the structure 

undergoes pure mechanical bending due to a “bending moment” arising from the 

constraint imposed by the passive substrate on the free strain of the active layer.  

This limitation in the model was addressed in other analytical approaches 

[183] using beam theory and shell theory to account for both expansional and bending 

strains due to induced-strain actuation of a composite beam but these approaches did 

not account for the effect of magnetic field and stress on the magnetostrictive layer. 

In a later work [184], an improved analytical model was obtained using energy 

minimization methods, which was shown to be valid for all active/passive layer 

thickness ratios. However, the omission of the magnetocrystalline anisotropy energy 
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which indicates the preference of magnetic moment orientation along particular 

directions called easy axes made this model only suitable to handle only isotropic 

saturation magnetostriction in amorphous magnetostrictive materials. Moreover, 

Guerrero’s model [184] does not account for the change in magnetostriction or 

magnetic induction in the active layer due to the stress developed in the active 

material as a result of the deformation of the composite structure due to induced-

strain actuation.  

Wun-Fogle et al. [185] used a planar magnetization rotation model for 

predicting the sensing performance of an amorphous magnetostrictive material 

adhered to an Aluminum beam subjected to various loading conditions. This approach 

is well suited for one-dimensional prediction of the magnetostrictive response in the 

regime where magnetization rotation takes place. The scheme used for calculating the 

magnetostriction is suitable for prediction along the magnetic easy axis provided all 

the magnetic moments in the material are initially aligned perpendicular to this axis. 

Their model included the magnetomechanical interactions unlike the other models 

discussed, but the structural interaction with the Aluminum beam and its effect on the 

performance of the magnetostrictive material was not taken into account. 

Structural interactions between the active and passive layers of a 

magnetostrictive composite were addressed in a finite element approach [186]. 

However, this work used constant magnetomechanical properties of the active layer 

thereby ignoring the effect of stress developed due to structural deformation of the 

active layer on its magnetomechanical properties. 
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In order to overcome these limitations, a magnetomechanical plate model 

(MMPM) is developed in this chapter by combining an energy-based constitutive 

magnetostrictive model with the classical laminated plate theory and a lumped 

parameter magnetic model. Although the results shown in this chapter are relevant for 

quasi-static mechanical stress and magnetic field application, the model algorithm can 

be used in a dynamic setting too. The model described here is two-dimensional in 

nature and can be used to analyze laminated structures in which active 

magnetostrictive layers actuate the structures. 

This model offers the following advantages. The energy-based constitutive 

magnetostrictive model offers the flexibility of applying stress and magnetic field in 

any direction in 3D space and the resulting non-linear magnetization and 

magnetostriction can also be predicted along any direction. The plate theory accounts 

for Poisson’s effect and other types of mechanical coupling such as extension-

bending coupling. The lumped parameter magnetic model accounts for 

demagnetization and helps in calculating the internal magnetic field for a given 

applied magnetic field. Most importantly, a recursive algorithm used in this work 

accounts for the change in magnetostriction and internal magnetic field in the active 

layer due to the stress developed in it as a result of the deformation of the composite 

structure due to induced-strain actuation and application of external forces. 

5.2. Model formulation 

This section will describe a generalized coupled modeling approach for 

magnetostrictive devices using a recursive algorithm. In order to use this technique in 

laminated magnetostrictive composites, a constitutive magnetostrictive model, the 
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classical laminated plate theory and a lumped parameter magnetic model will be 

introduced. Finally, a specific algorithm for combining these theories to develop the 

MMPM will be described. 

5.2.1. Magnetostrictive device modeling approach 

Physics-based modeling of a magnetostrictive actuation or sensing device 

requires the modeling of three mutually dependent problems. These three problems 

are namely the structural analysis of the device, the magnetic analysis of the device 

and modeling the constitutive behavior of the active material which is at the core of 

the device. The flow diagram of such a modeling approach is shown in Figure 5.1. 

 

Figure 5.1. Flow diagram of device-level model. 

The structural analysis of the device is performed by solving the mechanical 

boundary value problem. The structural model accounts for the effect of an external 

force (axial and shear forces, bending moment and torque) acting on the device and 

predicts the displacement (in and out-of-plane displacements and twist) of the device. 
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It also calculates the stress in the magnetostrictive material in the device. The 

structural analysis can be performed using lumped parameter force-balance approach 

(zero-dimension), beam theory (1D), plate theory (2D) or finite element method (3D). 

The general mechanical boundary value problem has been discussed in Chapter 4. 

The magnetic analysis is performed by solving the magnetic boundary value 

problem. The magnetic model accounts for the effect of an external applied 

magnetizing source (current in a solenoid or remnant magnetization in a permanent 

magnet) on the device and predicts the corresponding magnetic quantities 

(magnetization, magnetic induction and magnetic flux). It also considers the entire 

device as a magnetic circuit and hence can predict the magnetic field in any of the 

components of this circuit. The magnetic model is necessary to account for 

demagnetization effect. The magnetic analysis can be performed using lumped 

parameters, simple magnetic circuits or finite element methods. The general magnetic 

boundary value problem has been discussed in Chapters 3 and 4. 

Once the stress and magnetic field in the magnetostrictive material are known 

by solving the mechanical and magnetic boundary value problems, the material 

constitutive model can be used to predict the magnetization (or magnetic induction) 

and magnetostriction in the active material. The coupled linear constitutive equations 

and several non-linear phenomenological and energy-based models described in 

Chapters 1 and 2 can be used for this purpose. 

Most device level [2, 81] models use a combination of two out of the three 

analyses mentioned above. For example, magnetostrictive actuator models use a 

magnetic circuit to calculate magnetic field from drive current and uses this magnetic 
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field value in a constitutive model to calculate the magnetostriction in the active 

material. Other types of actuator models consider the magnetostriction to be a known 

and constant value and use that value in a structural model to calculate deformation or 

force induced by the active material. Conversely, sensor models assume a known and 

constant value of bias magnetic field in the material. The stress in the material is 

calculated from a structural model without taking into consideration any actuation 

effect caused by the bias magnetic field. The stress and bias magnetic field values are 

used in a constitutive model to calculate the magnetic induction in the material. 

Mudivarthi et al. [166] developed a bi-directionally coupled magnetoelastic 

model (BCMEM) approach which used a recursive solution of all of the three 

problems.  Hence there was no distinction made between actuation and sensing effect 

as both cases required solving the mechanical and magnetic boundary value problems 

using a non-linear constitutive material model for the magnetostrictive material. 

Whereas other models consider stress and magnetic field as the fundamental 

independent inputs, this approach considered them to be mutually dependent. The 

model was validated against experimental data obtained from Galfenol-based 

unimorph strain sensor [139].  

It was evident from the discussion of the experimental results in Chapter 4 

that stress and magnetic field cannot be considered as independent inputs in 

magnetostrictive composites. In an actuation scenario, the magnetostriction produced 

by an applied magnetic field deforms the composite and produces stress in the active 

material. The stress changes the permeability of the material and therefore the internal 

magnetic field also changes. The development of stress and change in internal 
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magnetic field as a result of actuation affects the magnetostriction which in turn 

changes the actuation stress in the material. Therefore this problem can be accurately 

solved only by using a recursive approach. In a sensing scenario, the stress produced 

by an external mechanical force changes the permeability and internal magnetic field 

for a given bias applied magnetic field. Furthermore, the internal magnetic field also 

produces magnetostriction which also deforms the structure thereby producing 

additional stress in the material. This stress once again leads to change in the internal 

magnetic field thereby making the problem a recursive one. 

In this chapter, the recursive approach is applied to model the actuation and 

sensing behavior of magnetostrictive laminated composites. Since the preliminary 

analysis in Chapter 4 showed that a 2D structural model would be sufficient to 

analyze the unimorphs, the classical laminated plate theory was deemed to be an ideal 

candidate for the structural model. As the magnetic field in the experiment was 

applied only in one direction using a solenoid, a lumped parameter magnetic model 

was deemed sufficient to analyze this scenario. Similarly, the energy-based 

magnetostrictive model which was used in Chapter 2, was considered a good choice 

for modeling the non-linear constitutive behavior of Galfenol in magnetostrictive 

composites. These modeling components will be described in details in Sections 5.2.2 

– 5.2.4. Finally, Section 5.2.5 will present the algorithm for combining these models 

into a recursive algorithm that can be used as a coupled magnetomechanical plate 

model (MMPM) for predicting the actuation and sensing behavior of magnetostrictive 

laminated composites. 
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5.2.2. Energy-based constitutive magnetostrictive model 

The energy-based constitutive magnetostrictive model [153] described in 

Chapter 2 is presented here in its 3D form. The model uses the saturation 

magnetization (Ms), the magnetostrictive constants (λ100, λ111) and the 4th and 6th order 

magnetocrystalline anisotropy constants (K1, K2) to calculate the Zeeman, stress-

induced anisotropy and magnetocrystalline anisotropy energies per unit volume due 

to a magnetic field (H) applied along the direction cosines (β1, β2, β3) and a stress (σ) 

applied along the direction cosines (γ1, γ2, γ3) as shown in Equations (5.1), (5.2) and 

(5.3) respectively. 

( )1 1 2 2 3 3H o sE M Hµ α β α β α β= − + +    (5.1) 

( )

( )

2 2 2 2 2 2
100 1 1 2 2 3 3

111 1 2 1 2 2 3 2 3 3 1 3 1

3

2

3

Eσ λ σ α γ α γ α γ

λ σ α α γ γ α α γ γ α α γ γ

= − + +

− + +

 (5.2) 

( ) ( )2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 2 1 2 3an

E K Kα α α α α α α α α= + + +  (5.3) 

However, in a 3D scenario, the stress-induced anisotropy energy cannot be 

calculated using Equation (5.2) which shows only one magnitude of stress and one set 

of direction cosines. In order to include the effect of all the components of a stress 

tensor, the eigen-value problem shown in Equation (5.4) should be solved to get the 

principal stresses (σj) and a set of direction cosines (γ1j, γ2j, γ3j) for each principal 

stress and these values should be used as shown in Equation (5.5) to calculate the 

total stress-induced anisotropy energy for a 3D case. 
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The total energy (ETOT) of the system corresponding to different orientations 

of the magnetic moments with direction cosines (α1, α2, α3) is shown in Equation 

(5.6). The direction cosines can be expressed in terms of the azimuthal angle (φ) and 

polar angle (θ) such that 1 sin cosα θ ϕ= , 2 sin sinα θ ϕ=  and 3 cosα θ= . 

( ),TOT H anE E E Eσϕ θ = + +     (5.6) 

The magnetization components are calculated using Equation (5.7). 
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The magnetic induction is calculated using Equation (5.8). 

( )oµ= +B M H     (5.8) 

The magnetostriction components are calculated using Equation (5.9). 
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The model parameters used to simulate the non-linear magnetomechanical 

behavior of Fe82Ga18 are shown in Table 5.1. The model parameters were estimated 

from Figure 4.4 and Table 2.2. 

Table 5.1. Parameters used in the energy-based constitutive model. 

Ms (kA/m) λ100 (µε) λ111 (µε) K1 (kJ/m
3
) K2 (kJ/m

3
) Ω (J/m

3
) 

1330 220 -13 16.5 -45 200 

 

5.2.3. Classical laminated plate theory 

While the energy-based constitutive model is sufficient to predict the 

actuation and sensing behavior in a magnetostrictive material along a given direction, 

it needs to be coupled with a structural model to address actuation leading to or 

sensing due to extension/contraction, shear, twist and anticlastic or synclastic 

bending. The bending can be anticlastic or synclastic depending on opposite or 

similar signs of the curvatures along the x and y-directions which are denoted by κx 

and κy respectively. The classical laminated plate theory was found to be suitable for 

modeling 2D laminated structures with active magnetostrictive layers and passive 

structural layers. A typically deformed unimorph exhibiting anticlastic bending under 

the influence of magnetic fields and/or mechanical forces is shown in Figure 5.2. 
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Figure 5.2. Schematic of a deformed unimorph. The grey and black patches are 

the active and passive layers respectively. 

In the MMPM, plate theory is used to determine the magnitudes as well as the 

directions of stresses in the magnetostrictive layers and in turn these are used in the 

energy-based constitutive model and therefore the magnetostriction becomes a 

function of axial/shear forces and/or bending/twisting moments. 

To apply CLPT [187] to the laminated structure, it is assumed that there is 

perfect bonding between the layers. Additionally, each lamina has to satisfy the 

Kirchhoff-Love thin-plate assumptions. Plates are assumed to be in a state of plane 

stress (σz = 0) under the influence of in-plane forces. A plate subjected to bending or 

twisting moments will produce out-of-plane displacement which should be small 

compared to the plate thickness. Planes normal to the neutral plane always remain 

normal to it (γyz = γxz = 0) and are also unstretched along the plate’s thickness (εz = 0). 

This formulation leads to what appears to be a contradictory assumption, i.e., 

both plane stress (σz = 0) and plane strain (εz = 0). This assumption was discussed and 

explained by Bhaskar et al. [188] who showed it to be appropriate for thin plates. 

Hence the non-zero values of εz calculated by earlier models [181, 184] violate the 

formulation of models which are based on the assumption of thin plates. 
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As shown in Equation (5.10), CLPT can be used to find the mid-plane axial 

and shear strains { } { }
T

o o o o

x y xy
ε ε ε γ=  and bending and twisting curvatures 

{ } { }
T

x y xy
κ κ κ κ= of a laminated structure with NL layers using the structural 

stiffness and forces acting on it. 
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The extensional [A], coupling [B] and bending [D] stiffnesses of the structure can be 

calculated from Equations (5.11), (5.12) and (5.13) respectively. The mechanical and 

actuating forces {N} and {Nλ} and moments {M} and {Mλ} per unit length, are 

explained in detail later. 
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Here i, j = 1, 2 and 6 for plane stress condition and hk is the distance of the kth layer 

from the mid-plane (z = 0). The reduced stiffness matrix [Q] of a material under plane 

stress and having a cubic symmetry is given by Equation (5.14).  
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The mechanical properties of the different passive materials used in the model 

simulations are shown in Table 5.2. For an isotropic material, the shear modulus is 

given by 
( )2 1

EG
ν

=
+

. Single crystal Galfenol (Fe82Ga18) is not isotropic but has a 

cubic symmetry and hence its Young’s modulus (E = 63 GPa) and Poisson’s ratio (ν 

= 0.45) are the same along any of the equivalent <100> directions and G  = 128 GPa 

[115]. 

Table 5.2. Mechanical properties of different passive materials [189]. 

Material Aluminum Silicon Alumina 

E (GPa) 70 165 530 

ν 0.33 0.22 0.24 

 
The stiffness matrix of the laminated unimorph structure is shown below. 

11 12 11 12

12 11 12 11

66 66

11 12 11 12

12 11 12 11

66 66

0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0

A A B B

A A B B

A B

B B D D

B B D D

B D

− − 
 − − 
 −
 
− − 
 − −
 

−  

 

The terms A11, D11 and D66 are the standard extensional, bending and torsional 

stiffness respectively. The numerical values of stiffness terms with subscripts 11 and 

22 are equal and those with subscripts 12 and 21 are also equal as the materials are 

assumed to be either cubic or isotropic. The non-zero value of A12 indicates the 

extension-contraction coupling in the x-y direction due to Poisson’s effect. A non-

zero B11 (or B22) indicates an extension-bending coupling in the same direction as the 

loading whereas B12 indicates an extension-bending coupling between orthogonal 
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directions. The presence of the B66 term indicates a shear-twist coupling in the 

laminated structure. The D12 indicates a coupling between the curvatures κx and κy 

due to bending along the x and y-directions respectively. 

The mechanical axial and shear forces and bending and twisting moments per 

unit length acting on the laminated structure are given by the vectors {N} and {M} 

respectively. The actuation forces and moments per unit length due to 

magnetostriction can be calculated from Equations (5.15) and (5.16) respectively [1].  

{ } [ ] { } ( )1
1

NL

k kkk
k

N Q h hλ λ +
=

= −∑    (5.15) 

{ } [ ] { } ( )2 2
1

1

1

2

L

k kkk
k

M Q h hλ λ +
=

= − −∑    (5.16) 

Figure 5.3 illustrates the symbols used in this work for describing the in-plane forces 

and moments per unit length acting on a thin plate. 

 

Figure 5.3. (a) Forces per unit length (N) acting on a thin plate. The arrows 

indicate the direction of the forces. Tensile force is considered positive. (b) 

Moments per unit length (M) acting on a thin plate. The arrows indicate the axis 

about which the moments are applied. Anti-clockwise moment is considered 

positive. 
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For comparison between laminates of different thickness, the parameters such 

as force per unit cross-section (Nxt = Nx/t) or normalized moments (Mxt = Mx/t
2) are 

more appropriate and hence will be often used in this chapter. 

The strains and stresses at any point z (lying in the k
th layer) along the 

thickness of the structure can be calculated from Equations (5.17) and (5.18) 

respectively. 

{ } { } { }o zε ε κ= −     (5.17) 

{ } [ ] { } { }( )
kk

Qσ ε λ= −    (5.18) 

5.2.4. Lumped parameter magnetic model 

While the energy-based magnetostrictive model can predict the actuation and 

sensing behavior in a magnetostrictive material for a given internal magnetic field in 

the material, it needs to be coupled with a magnetic model to calculate the internal 

magnetic field corresponding to a measurable applied magnetic field. For magnetic 

fields applied along one direction, a lumped parameter model can be used to calculate 

the internal field from the applied field by using the relative permeability (µr) and 

demagnetization factor (Nd) of the magnetostrictive material in Equation (5.19). 

( )1 ,µ σ
=

− +

app

in

d d r in

H
H

N N H
    (5.19) 

Note that for the same applied field, a change in the stress state of the material 

will change the permeability thereby changing the internal field. This can be readily 

implemented by considering stress and magnetic field-dependent permeability as 

shown in Chapter 2. The use of a variable permeability in Equation (5.19) makes it a 

recursive equation. 
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Figure 5.4 shows the effect of demagnetization factor on the internal magnetic 

field for different applied magnetic fields. Note that the plot is shown in log scale to 

account for the large difference between applied and internal fields at higher values of 

demagnetization factor. 

 

Figure 5.4. Effect of demagnetization factor on internal magnetic field for a 

given applied magnetic field. 

Although a lumped parameter approach is not suitable for obtaining spatial 

variation in magnetic quantities in the magnetostrictive material, however it can be 

computationally efficient for modeling along one direction using an average 

demagnetization factor calculated based on an average of the magnetic field 

distribution in the material as shown in Chapter 4. 
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5.2.5. Algorithm of Magnetomechanical Plate Model 

The energy-based constitutive model was combined with the CLPT and 

lumped parameter magnetic model to develop a magnetomechanical plate model 

(MMPM). The input and output parameters of these models were coupled using the 

recursive algorithm shown in Figure 5.5. 

 

Figure 5.5. Recursive algorithm used for coupling the material, structural and 

magnetic model in the magnetomechanical plate model. 

The applied magnetic field along the x-direction (Hx) and an initial guess of 

small non-zero (to ensure convergence) stress were used in the energy-based 

constitutive model to obtain the magnetostriction (λx = λ11, λy = λ22 and λxy = λ12) and 

magnetic induction (Bx = B1). The magnetic induction was used to calculate the 

permeability. The magnetostriction values were used to calculate {Nλ} and {Mλ}. 

These values along with values of initial mechanical forces (Nx, Ny or Nxy) were used 

in the CLPT to calculate the mid-plane strains and curvatures. The values of {εo} and 

{κ} obtained were used to find the strains and stresses on the free surfaces of the 



 

 243 
 

active and passive layers using Equations (5.17) and (5.18). The magnetic model was 

used to calculate the internal magnetic field using Equation (5.19). The stresses (σx, σy 

and τxy) on the Galfenol layer and the internal magnetic field were used to update the 

value of the stress-induced anisotropy and Zeeman energy respectively in the energy-

based model to obtain new magnetostriction and magnetic induction values which 

were used to recalculate the strains and stresses using CLPT and internal magnetic 

field using magnetic model. The process was repeated until the calculated stress and 

internal magnetic field on the Galfenol patch converged to within 0.1 % deviation. 

The advantage of using the MMPM is illustrated using Figures 5.6 and 5.7. 

The results shown in these figures were obtained using an MMPM simulation on a 

Galfenol-Aluminum unimorph where both the materials were of equal length (25 

mm) and width (8.4 mm). The thickness of the Galfenol and Aluminum layers were 

1.86 mm and 3.7 mm respectively. 

Figure 5.6 shows the internal vs. applied magnetic field in the Galfenol layer 

calculated using a demagnetization factor of 0.035. The “no coupling” curve was 

obtained by using permeability values in Equation (5.19) which were obtained at the 

required internal magnetic field but at zero stress. The MMPM simulation considered 

the stress developed in the Galfenol layer which altered the permeability and hence 

affected the calculated values of internal magnetic field. 
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Figure 5.6. Internal vs. applied magnetic field calculated in Galfenol layer of a 

Galfenol-Aluminum unimorph. The Galfenol layer was assigned an Nd = 0.035. 

 

Figure 5.7. Strain on Galfenol surface vs. internal magnetic field in a Galfenol-

Aluminum unimorph. 
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Figure 5.7 shows the strain calculated on the free surface of the Galfenol layer 

in the unimorph as a function of the internal magnetic field. The difference between 

the “no coupling” and MMPM curves are caused by the fact that MMPM modifies the 

free strain in Galfenol based on both its stress and internal magnetic field states 

whereas the “no coupling” curve considers only the internal magnetic field which is 

also calculated erroneously as shown in Figure 5.6 if the coupling is not considered. 

These results motivate the use of the MMPM for design and analysis of 

Galfenol-based unimorph actuators and sensors. 

5.3. Model simulation results 

In this section, the coupled model (MMPM) is used to simulate the actuation 

and sensing behavior of Galfenol-based unimorphs. In Section 5.3.1, the out-of-plane 

tip displacement of cantilevered unimorphs obtained from MMPM is compared with 

the same obtained from other models in order to highlight the difference in their 

prediction capabilities. 

From the perspective of actuator design, the primary interest lies in studying 

the strain and stress in Galfenol as a function of the magnetic field and how much of 

that strain and stress is transferred to the substrate leading to extension and bending of 

the composite structure. It is also of interest to know stiffness-matching criteria and 

effect of pre-loads on the actuation performance. Sections 5.3.2 and 5.3.3 will present 

simulation results showing the effect of magnetic field and axial pre-load on the 

structure, the effect of varying the ratio of active to passive layer thickness and the 

effect of mechanical properties of the passive layer on the actuator performance. 
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From the perspective of sensor design, the primary interest lies in studying the 

change in magnetic induction in Galfenol as a function of the applied force or 

bending moment. Section 5.3.4 will present simulation results showing the effect of 

bias applied magnetic fields and tensile and compressive extensional forces on the 

sensor performance. 

Finally in Section 5.3.5, the MMPM simulations are compared with the 

experimental results obtained from the actuator and sensor characterization described 

in Chapter 4. 

5.3.1. Comparison with existing models 

The analytical formulae used by Lacheisserie [181], Klokholm [182] and 

Guerrero [184] were used to find the normalized tip displacement (∆t/L
2) of a 

cantilevered Galfenol-Aluminum unimorph as a function of the thickness ratio (tr). 

Here t is the thickness of the composite beam, L is its length and thickness ratio (tr) is 

the ratio of the thicknesses of the active and passive layers. The net tip displacement 

(∆) is the difference between out-of-plane tip displacements (wTIP) obtained when the 

magnetic field is parallel and perpendicular to the length of the beam respectively. 

For either of the magnetic field conditions, the tip displacement (wTIP) of the 

cantilevered unimorph can be obtained from Equation (5.20). Here κx, which is the 

beam’s curvature along the x-direction, can be obtained from the axial strains on the 

surfaces of the active and passive layers of the unimorph as shown in Equation (5.21). 

2

2

κ
= x

TIP
w L      (5.20) 

ε ε
κ

−
=

PASSIVE ACTIVE

x x
x

t
    (5.21) 
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The results obtained from the other models are compared with that obtained 

from the MMPM for an applied magnetic field (Happ = 65 kA/m) along the x-direction 

in Figure 5.8. Both Lacheisserie and Klokholm predict an infinite increase in the tip 

displacement with an increasing thickness ratio. The displacement predicted by 

Klokholm’s model is (1 - ν)/(1 + ν) times that of Lacheisserie’s prediction. Both 

Guerrero’s model and MMPM predict that the magnitude of normalized tip 

displacement increases initially with an increase in the thickness ratio and reaches a 

maximum when the strain due to bending is maximum. Further increase in tr 

decreases ∆ as the unimorph extends freely at increasingly higher tr. 

 

Figure 5.8. Normalized out-of-plane tip displacement (∆t/L
2
) vs. thickness ratio 

(tr) of a cantilevered Galfenol-Aluminum unimorph obtained at an applied 

magnetic field (Happ = 65 kA/m). The Galfenol layer was assigned an Nd = 0.035. 
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Table 5.3. Comparison of normalized tip displacement of cantilevered Galfenol-

Aluminum unimorph as predicted by models proposed by Lacheisserie [181], 

Klokholm [180], Guerrero [184] and the MMPM. 

tr 0.0001 0.01 1 100 10000 

Lacheisserie 8.17 x 10-8 8.25 x 10-6 16 x 10-4 8.25 8.17 x 104 

Klokholm 4.12 x 10-8 4.16 x 10-6 8.23 x 10-4 4.16 4.12 x 104 

Guerrero 9.95 x 10-8 9.76 x 10-6 2.48 x 10-4 9.65 x 10-6 9.84 x 10-8 

MMPM 3.20 x 10-8 3.17 x 10-6 1.08 x 10-4 5.48 x 10-6 5.65 x 10-8 

 

Table 5.3 lists the values of the normalized tip displacement at certain 

thickness ratios as predicted by the earlier models and compares them with the values 

predicted by MMPM at the same thickness ratios. For the purpose of comparison, 

same material properties and saturation magnetostriction value for Galfenol were 

used in all the models. The results of MMPM were evaluated at Happ = 65 kA/m 

which is sufficient to saturate Galfenol as evident from the experimental results 

shown in Chapter 4. Guerrero’s model and MMPM predict similar tip displacement 

only at high thickness ratio when the stress developed in the Galfenol patch is 

negligible and does not affect the magnetostriction. If the stress developed in the 

Galfenol patch is significant, as in the cases with low tr, and induces anisotropy so as 

to oppose the magnetic field-induced anisotropy, the magnetostriction will change as 

a function of the stress developed in Galfenol which in turn will affect the tip 

displacement and the stress developed in the Galfenol patch. Since the recursive 

scheme explained in Section 5.2.5 takes care of this coupled behavior, the MMPM 
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provides a more flexible and accurate framework for modeling the response of 

magnetostrictive composites at any magnetic field and thickness ratio. 

5.3.2. Effect of actuating magnetic field and pre-load 

In order to study the effect of magnetic field and axial pre-load, a unimorph 

structure of thickness (t = 3.7 mm) having single crystal Galfenol (Fe82Ga18) attached 

to Aluminum such that tr = 0.5 was used for simulation purposes. The formulation is 

independent of the actual length and width of the structure as the values of stiffness 

and forces were defined for unit length and width. Since it is easy to measure the 

strain in a laminated structure by placing strain gages on the free surfaces of the 

structure, which in turn can be used to calculate the curvature and tip displacement of 

the structure, the results presented here refer to the values calculated at the free 

surfaces of the Galfenol and Aluminum layers. For all cases, the Galfenol layer was 

assigned a demagnetization factor of 0.035 along the x-direction. 

The strains (εx and εy) and stresses (σx and σy) in Galfenol and Aluminum 

along the x and y-directions as functions of the applied magnetic field along the x-

direction are shown in Figures 5.9 and 5.10 respectively. These figures show the 

results when there are no external mechanical forces or moments acting on the 

structure. As Galfenol exhibits positive magnetostriction, a magnetic field applied 

along the x-direction extends the free surface of the Galfenol layer along the x-

direction but the material contracts along the y-direction. An increasing magnitude of 

strain is observed along both the x and y-directions on the free surface of the Galfenol 

layer with increasing magnetic field until the material saturates at high fields. 
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The maximum change in strain (∆εx) in Galfenol due to applied magnetic field 

was found to be 208 µε. On actuation, the structure shows a negative curvature (κx) 

along the x-axis and positive curvature (κy) along the y-axis which make both the 

strain and stress in Aluminum compressive along the x-direction and tensile along the 

y-direction. In order to calculate the stress in the Galfenol layer, the free-strain (λ) has 

to be subtracted from the total strain as indicated in Equation (5.18). Since the 

Galfenol layer is constrained by the Aluminum layer due to the bonding, the total 

strain on its free surface is less than the free strain. This leads to the development of a 

small compressive stress along the x-direction and small tensile stress along the y-

direction on the free surface of Galfenol. 

 

Figure 5.9. Strains (εx and εy) on the surfaces of Galfenol and Aluminum layers 

vs. applied magnetic field (Hx) for Nxt = 0. 
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Figure 5.10. Stresses (σx and σy) on the surfaces of Galfenol and Aluminum 

layers vs. applied magnetic field (Hx) for Nxt = 0. 

A compressive pre-stress applied to Galfenol along the same direction as the 

magnetic field is expected to provide an initial alignment to the magnetic moments 

perpendicular to the field direction and produce a corresponding decrease in initial 

length in this direction due to the stress-induced magnetoelastic strain in addition to 

the mechanical strain. In the presence of a magnetic field, the magnetic moments 

align themselves along the field direction recovering the pre-stress induced 

magnetostriction and thereby yielding a higher net actuation strain. A different 

scenario arises when a tensile pre-stress is applied to Galfenol along the same 

direction as the magnetic field. A tensile stress is expected to initially align the 

magnetic moments parallel to the field direction and produce a corresponding 

increase in initial length in this direction due to the stress-induced magnetostriction in 

addition to the mechanical strain. In the presence of a magnetic field the remaining 
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magnetic moments align themselves along the field direction thereby yielding a 

smaller actuation strain. 

It is evident from Equation (5.18) that it is not possible to apply a constant 

pre-stress to the laminated structure but it is possible to apply a constant initial force 

per unit cross-section. Hence a simulation was run to find out the effect of constant 

initial force per unit cross-section on the Galfenol-Aluminum laminated structure. It 

was assumed that the structure was subjected to a constant initial force per unit cross-

section (Nxt) and the actuation response from the structure was obtained as the applied 

magnetic field was varied from 0 to 65 kA/m. 

 

Figure 5.11. Strains (εx and εy) on the surfaces of Galfenol and Aluminum layers 

vs. applied magnetic field (Hx) for Nxt = -20 MPa. 
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Figure 5.12. Stresses (σx and σy) on the surfaces of Galfenol and Aluminum 

layers vs. applied magnetic field (Hx) for Nxt = -20 MPa. 

The variations in strains (εx and εy) and stresses (σx and σy) on the free surfaces 

of Galfenol and Aluminum layers as functions of the applied magnetic field for an 

axial compressive initial force per unit cross-section of Nxt = -20 MPa are shown in 

Figures 5.11 and 5.12 respectively. The compressive Nxt imparts an initial negative 

strain (εx) and stress (σx) in the structure which are different at the free surfaces of the 

two materials. If there were no extension-bending coupling in the structure, then Nxt 

would have produced the same pre-strain in both the materials. Additionally if the 

Young’s modulus and Poisson’s ratio of both the materials were the same then the 

initial stress would also have been the same. 

The maximum change in strain (∆εx) in Galfenol due to applied magnetic field 

increased to 318 µε thereby increasing the strain in the Aluminum surface. The 

simulation supported the idea that higher actuation strain can be obtained by 
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introducing a compressive initial force per unit cross-section. It is also evident from 

Figure 5.12 that the change in σx and σy in Galfenol and σy in Aluminum is 

insignificant compared to the change in σx in Aluminum due to actuation. 

A simulation was also carried out to find the effect of a tensile initial force per 

unit cross-section of Nxt = +20 MPa on the actuation response. The tensile pre-load 

imparts an initial positive strain (εx) and stress (σx) in the structure which are different 

in the two materials due to the difference in the mechanical properties of Galfenol and 

Aluminum and the inherent extension-bending coupling in the structure. The 

maximum change in strain (∆εx) in Galfenol reduced to 1.33 µε thereby reducing the 

strain in the Aluminum surface to almost zero. The simulation supported the idea that 

lower actuation strain is obtained by introducing a tensile initial force per unit cross-

section. It was also found that application of +/-Ny and Hx was analogous to the 

application of -/+Nx and Hx. The effect of application of +/-Mx and -/+My were 

similar. The simulation effect of Mx will be shown in Section 5.3.5. 

The shear strain (γxy) and stress (τxy) in both Galfenol and Aluminum were 

zero as κxy = 0 for all the scenarios presented above due to the absence of any shear 

force or twisting moment acting on the structure and also because of the absence of 

any structural coupling in the unimorph between the extension/shear, bending/shear, 

extension/torsion and bending/torsion modes. The lack of these structural couplings 

in the unimorph also resulted in no effect on strains and stresses along the x and y-

directions due to application of Nxy and Hx. The effect of Mxy is analogous that of Nxy 

for strains and stresses along the x and y-directions.  
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Model simulations showed that shear strain could be created by applying a 

combination of Hx and Hy even in the absence of any external mechanical forces. The 

shear strain is produced due to the existence of a non-zero λxy under the influence of 

two mutually perpendicular magnetic fields or a magnetic field directed in a way such 

that it has two non-zero mutually perpendicular components. Figures 5.13 and 5.14 

show the shear strains on the free surfaces of Galfenol and Aluminum layers 

respectively. The values of magnetic field shown in Figures 5.13 and 5.14 are the 

internal magnetic fields. For a given Hy, the maximum shear strain is obtained when 

Hx = Hy. Since the value of shear strain depends on Nxy and Mxy, the maximum shear 

strain that can be obtained is limited by the magnetostriction of the Galfenol layer and 

the properties of the laminate. 

 

Figure 5.13. Shear strain (γxy) on Galfenol surface vs. internal magnetic field 

along the x-direction (Hx) at different values of internal magnetic field along the 

y-direction Hy. 
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Figure 5.14. Shear strain (γxy) on Aluminum surface vs. internal magnetic field 

along the x-direction (Hx) at different values of internal magnetic field along the 

y-direction Hy. 

A dimensionless parameter, “percentage strain transfer” defined by Equation 

(5.22) was used to analyze the actuation behavior as a function of different thickness 

ratios (tr) and stiffness ratios (Qr) of the laminated structure. 
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 (5.22) 

In Equation (5.22), Qr is the ratio of the stiffness [E/(1-ν2)] of the active layer to that 

of the passive layer and ∆εi is the change in strain measured along the direction i in 

the material due to a magnetic field. 

Table 5.4 shows the maximum change in strain along the x and y-directions in 

both Galfenol (Fe-Ga) and Aluminum (Al) under different conditions of initial force 

per unit cross-section and the corresponding STi. The initial εx and εy denote the pre-



 

 257 
 

strain in the material only due to the initial force at zero magnetic field. The change in 

strain is calculated between applied magnetic fields of Hx = 0 and Hx = 65 kA/m. 

Table 5.4. Induced strain (∆ε) and percentage strain transfer (ST) from Galfenol 

to Aluminum (tr = 0.5, Qr = 1.05) under different Nxt. 

 Initial εx (µε) ∆εx (µε) STx Initial εy (µε) ∆εy (µε) STy 

Nxt = 0  

Fe-Ga 0 208 -34 0 -106 -34 

Al 0 -70 0 36 

Nxt = -20 MPa  

Fe-Ga -422 318 -34 171 -131 -34 

Al -240 -107 68 44 

Nxt = +20 MPa  

Fe-Ga 527 1.33 -34 -242 -0.64 -34 

Al 205 -0.45 -44 0.22 

 

The simulation results showed that in general the strain variation with field 

follows the same trend in both the active and passive layers and the STi varies by less 

than 1 % with initial mechanical force and measurement direction. The data shown in 

Table 5.4 confirms the significant effect of axial initial force per unit cross-section on 

actuation strain in both the active and passive materials in a unimorph. 

Table 5.5 shows the maximum change in stress (∆σ) along the x and y-

directions in both Aluminum and Galfenol under different conditions of initial force 

per unit cross-section acting on the laminated structure. The initial σx and σy denote 

the pre-stress on the free surfaces of the laminated structure only due to the initial 
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force at zero magnetic field. The change in stress is calculated between applied 

magnetic fields of Hx = 0 and Hx = 65 kA/m. 

Table 5.5. Actuation stresses in Galfenol and Aluminum (tr = 0.5, Qr = 1.05) 

under different initial Nxt. 

 Initial σx (MPa) ∆σx (MPa) Initial σy (MPa) ∆σy (MPa) 

Nxt = 0 

Fe-Ga 0 -0.18 0 0.39 

Al 0 -4.53 0 1.02 

Nxt = -20 MPa 

Fe-Ga -20 -0.22 -0.25 0.59 

Al -17 -7.20 -0.85 0.72 

Nxt = 20 MPa 

Fe-Ga 20 -0.001 0.45 0.003 

Al 15 -0.03 1.83 0.005 

 
It should be noted that the magnitude of change in stress (∆σx or ∆σy) is always 

larger in the passive layer than in the active layer. The large change in stress in the 

passive layer develops due to the actuation effect while the small change in stress in 

the Galfenol layer develops as it is constrained by the passive layer. In the absence of 

any constraint, the free strain in the Galfenol layer would not have produced any 

stress in it. 

5.3.3. Effect of laminate thickness and stiffness 

Based on the results shown in Section 5.3.2, STi was deemed as a suitable 

parameter to evaluate the performance of unimorph actuator as a function of the 



 

 259 
 

thickness of the unimorph structure as well as the ratio of the thicknesses of the active 

and passive layers. Section 5.3.3 shows simulation results which were obtained by 

using passive layers of Aluminum (Qr = 1.05), Silicon (Qr = 0.46) and Alumina (Qr = 

0.14) in the unimorph along with the Galfenol layer. For each combination of active 

and passive layers, the total thickness of the unimorph was varied from 0.1 to 100 

mm and for each of these unimorph thicknesses, tr was varied from 10-4 to 104 in 

order to simulate structures of different thicknesses with very thick passive material 

and very thick active material respectively. Strain (εx) and stress (σx) on free surfaces 

of Galfenol and passive layers as well as the STx were calculated at an internal 

magnetic field Hx = 20 kA/m and in the absence of any external mechanical pre-loads. 

The results showed that the strains, stresses and % strain transfer are functions 

of the mechanical properties of the passive and active layers and tr but they are 

independent of the total thickness of the structure. On actuation, the unimorph 

exhibits both mid-plane strains and curvatures. Along any direction (x or y), the 

curvature is proportional to the inverse of the total thickness and the mid-plane strain 

is independent of the total thickness. The distance (z) from the mid-plane of the 

structure to the plane where the strains and stresses are being calculated can be 

expressed as a fraction of the total thickness of the structure. Hence the strains and 

stresses at the free surfaces of the structure calculated using Equations (5.17) and 

(5.18), and the STi are independent of the total thickness of the structure. 
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Figure 5.15. Effect of thickness ratio (tr) on the strain (εx) on Galfenol surface for 

different stiffness ratios (Qr). 

 

Figure 5.16. Effect of thickness ratio (tr) on the stress (σx) on Galfenol surface for 

different stiffness ratios (Qr). 
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Figure 5.15 shows the strain along the x-direction (εx) on the free surface of 

the Galfenol layer as a function of the thickness ratio (tr) for different stiffness ratios. 

The strain is always tensile, peaking at some tr = trc for each stiffness ratio, and 

dropping slightly for higher values of tr to approach a constant value. For tr < trc, the 

strain decreases rapidly with decreasing tr. This behavior is related to the constraint 

imposed by the thick passive layer on the thin active layer. For tr > trc, the strain on 

free surface of the Galfenol layer is higher for stiffer passive layers. At high tr, the 

strain approaches the free strain of the active material. As shown in Figure 5.15, the 

strain at tr = trc is higher than the free strain of the active material, owing to the 

superposition of maximum bending strain with extensional strain. The behavior of the 

active layer under actuation induced bending is counter-intuitive when contrasted 

with that of pure mechanical bending. 

Figure 5.16 shows the stress (σx) on the free surface of the Galfenol layer as a 

function of the thickness ratio for different stiffness ratios. The stress is compressive 

at low tr due to the constraint imposed on the thin active layer by a thicker passive 

layer. On increasing tr, the stress becomes zero at a point when the summation of 

bending and extensional strain in the Galfenol layer equals its free strain. Beyond this 

value of tr, the stress becomes tensile and keeps increasing till it peaks at tr = trc. For tr 

> trc, the stress decreases on increasing tr and approaches zero as the active material 

strains freely at high tr. 
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Figure 5.17. Effect of thickness ratio (tr) on the strain (εx) on passive layer 

surface for different stiffness ratios (Qr). 

 

Figure 5.18. Effect of thickness ratio (tr) on the stress (σx) on passive layer 

surface for different stiffness ratios (Qr). 
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Figures 5.17 and 5.18 show the strain (εx) and stress (σx) respectively on the 

free surface of the different passive layers used in the unimorph as a function of the 

thickness ratio. The strain and stress are compressive for tr < trc and tensile for tr > trc. 

The strain and stress attain the maximum magnitude under compression at a tr which 

corresponds to the state of zero stress on the free surface of the Galfenol layer as 

shown in Figure 5.16. Below this value of tr, the magnitude of strain and stress 

decreases with decreasing tr and approaches zero at very small tr due to very low 

actuation force. For tr > trc, as the passive layer becomes thinner and offers less 

resistance to deformation due to actuation, the strain on its free surface approaches to 

the free strain of the active material and hence the strains in the different passive 

layers become independent of Qr. The stress always depends on Qr and hence for a 

given value of strain, a stiffer passive layer develops a greater stress. 

A visual comparison of Figures 5.15 and 5.17 shows that the strains on the 

opposite free surfaces of the unimorph can be tensile under induced-strain actuation 

unlike in pure mechanical bending where the strains on the opposite surfaces of a 

beam/plate are of opposite nature. Comparison of Figures 5.16 and 5.18 shows that 

the stress-states on the free surfaces of the unimorph can be both tensile or 

compressive unlike in pure mechanical bending. 

The physical significance of the parameter STi is evident from Figure 5.19 

which shows STx as a function of tr for the Galfenol layer attached to different passive 

layers. A negative STi indicates that the strain on opposite surfaces of the structure are 

of opposite signs and hence bending is the predominant mode of deformation while a 

positive STi indicates that the strain on opposite surfaces of the structure are of similar 
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nature (can be both tensile or compressive) and hence the deformation is dominated 

by extension or contraction. 

 

Figure 5.19. Effect of thickness ratio (tr) on the % strain transfer (STx) along the 

x-direction for different stiffness ratios (Qr). 

A critical thickness ratio (trc) can be defined to denote the situation when STi = 

0. As tr increases above trc, extension dominates the deformation of the structure. 

Figure 5.19 also shows the expected result that as tr tends to infinity, the passive layer 

vanishes thereby exhibiting 100 % strain transfer due to pure extension. As tr 

decreases below trc, bending starts to dominate the structural deformation. Although 

the theory formulated here shows that there will be no induced strain for tr = 0 as 

there will be no actuation, the theory also suggests that as the thickness of the active 

layer tends to zero (say in case of a thin film), the strain transferred from the free 

surface of the active layer to the free surface of the passive layer approaches -50 %. 



 

 265 
 

It is interesting to note that for tr < 0.5, STx appears to be independent of Qr. 

For small values of tr, the active layer becomes thin enough such that its mechanical 

properties do not affect the stiffness of the composite structure and it merely provides 

a surface force on the passive layer. Under these conditions, the strain is both due to 

extension and bending and it can be assumed that there is no strain/stress gradient 

across the thickness of the active layer. It should be noted that the trc observed in 

Figure 5.19 is the same trc which corresponds to the maximum strain (Figure 5.15) 

and maximum stress (Figure 5.16) in the active layer. 

It should be noted that the maximum strain due to bending is different from 

the total strain which is due to the superposition of bending and extension. Since the 

out-of-plane tip displacement depends only on the component of strain due to 

bending, this necessitates the introduction of the new parameter trw to denote the 

thickness ratio for a given active/passive layer combination which produces the 

maximum tip displacement. 

Figure 5.20 shows the normalized out-of-plane tip displacement of unimorph 

cantilevers with Galfenol attached on different passive layers. For all cases, it can be 

observed that a peak in the tip displacement occurs at some thickness ratio (tr = trw). 

For tr < trw, the actuation moment (Mλ) shown in Equation (5.16) decreases due to an 

effective decrease in active layer thickness thereby reducing the out-of-plane tip 

displacement. For tr > trw, the actuation moment (Mλ) decreases while increasing the 

extensional actuation force (Nλ) shown in Equation (5.15) thereby extending the 

entire structure at high tr. 
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Figure 5.20. Effect of thickness ratio (tr) on the normalized out-of-plane tip 

displacement of a cantilevered unimorph beam for different stiffness ratios (Qr). 

The thickness ratio trw can be used to get an estimate of the optimum thickness 

ratio required to produce maximum tip displacement of the actuator for a given 

combination of active/passive layers. For the chosen parameters for Galfenol the 

magnitude of the maximum normalized tip displacement was found to be 2.45 x 10-4. 

This value depends on the properties of the active layer only, so for a given active 

layer the same tip displacement can be obtained by varying the thickness for different 

passive layers. For the Galfenol active layer, the trw obtained from Figure 5.20 for Al, 

Si and Al2O3 passive layers were 1.10, 1.77 and 3.14 respectively. 
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Figure 5.21. Critical thickness ratio (trc) and thickness ratio (trw) for maximum 

tip displacement as a function of stiffness ratio (Qr). 

Figure 5.21 shows trc and trw as functions of the stiffness ratio (Qr) varying 

from 0.1 to 10 which covers a wide range of stiffness values for all practical 

purposes. Both trc and trw decreases roughly as the square root of Qr. 

The critical thickness ratio (trc) denotes the condition when the stiffness of the 

passive layer is just enough to counter the actuation force so that there is neither any 

extension nor any bending at the free surface of the passive layer and hence STi = 0. 

As trc denotes the thickness ratio which produces the maximum stress on the free 

surface of the Galfenol patch, this configuration would also lead to maximum stress-

induced change in magnetization in the Galfenol layer thereby producing the highest 

sensitivity to change in stress at a constant magnetic field. Hence trc is the most 

desirable configuration for sensing purposes. 
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For the Galfenol active layer, the trc obtained from Figure 5.19 for Al, Si and 

Al2O3 substrates were 2.11, 3.13 and 5.38 respectively. It was observed that for a 

given active material (like Galfenol), the Young’s modulus of the passive materials 

affects the trc more strongly than the Poisson’s ratio. Hence for simulation purposes, 

Poisson’s ratio was considered to be 0.33 for all cases shown in Figure 5.21. A 

change in ν by 50 % for Si and 37.5 % for Al2O3 produced a difference in trc by only 

1 % and 0.6 % respectively. 

5.3.4. Effect of applied force and bias magnetic field 

The results presented in this subsection were obtained from the simulation of a 

unimorph structure having a single crystal Galfenol (Fe82Ga18) layer attached to an 

Aluminum layer such that tr = 0.5. The results presented here refer to the values 

calculated at the free surface of the Galfenol patch. 

Figure 5.22 shows the magnetic induction along the x-direction (Bx) as a 

function of the axial force per unit cross-section applied along the x-axis (Nxt) and the 

bias applied magnetic field (Hx) in the same direction. A positive Nxt extends (and 

also causes bending due to coupling). The value of Bx at zero force indicates the 

induction due to bias field. 
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Figure 5.22. Effect of axial force per unit cross-section along the x-direction (Nxt) 

on the magnetic induction (Bx) at different bias applied magnetic fields (Hx). 

It was shown in Chapter 2, that if the internal magnetic field can be kept 

constant then the sensing range would increase with increasing bias field but the 

sensor operating region would shift towards compressive stresses. Note that in Figure 

5.22 the internal magnetic field also changes when Nxt is changed at a given applied 

magnetic field. A positively increasing Nxt induces tensile stress in Galfenol thereby 

reducing the internal magnetic field while a negatively increasing Nxt increases the 

internal magnetic field. Therefore, the stress and internal magnetic field developed for 

a given Nxt and applied magnetic field produces opposing effects on the magnetic 

induction of Galfenol. As a result of this, the sensitivity is reduced compared to the 

material’s sensitivity (d*) under all operating conditions. 
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This coupled behavior between stress and internal magnetic field also affects 

the operating range in a way contrary to that discussed in Chapter 2. Since a 

positively increasing Nxt increases the tensile stress but reduces the internal field, a 

higher operating range can be obtained in tension. Whereas a negatively increasing 

Nxt increases the compressive stress which reduces Bx but also increases internal field 

which contributes to increase in the value of Bx. As a result, the operating range in 

compression is reduced compared to a hypothetical case of constant internal magnetic 

field. In general, an increase in the bias applied magnetic field increases the operating 

range both along positive and negative Nxt and not only along negative Nxt as it would 

happen if the internal magnetic field were kept constant. The simulation results 

showed that in bending it is possible to use Galfenol as a sensor in tension even at 

higher bias magnetic field.  

For all bias applied magnetic fields, a distinctively linear sensor operating 

region is observed at small values of tensile and compressive force but if the 

tensile/compressive force is increased beyond a critical value (depending on the bias 

magnetic field), Bx appears to saturate. This behavior can be explained by the 

following reasoning. The linear region denotes the operating conditions which favor 

the maximum rotation of magnetic moments due to small perturbations in stress or 

magnetic field as discussed in Chapter 2. Since tension collinear to the magnetic field 

favors alignment of magnetic moments along the field/stress direction, a small value 

of tension produces sufficient stress-induced anisotropy which along with the Zeeman 

energy is able to orient most magnetic moments along the field/stress direction. Note 
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that tension does not significantly increase the value of Bx as it also orients some 

magnetic moments towards 180o from the direction of bias field. 

The saturation behavior under compression is significantly different. For any 

given bias magnetic field, the value of Bx under compression appears to approach 

zero induction, as the stress-induced anisotropy works against the Zeeman energy to 

orient the magnetic moments away from the field/stress direction. For a small bias 

field, it may be possible to achieve zero induction by applying a significant amount of 

compressive force. However, if the bias field is high enough to almost saturate the 

material, then the stress required to counteract the Zeeman energy may be higher than 

the strength of the material and hence under all practical conditions a residual Bx 

would exist in the material. This behavior would also lead to a “second” linear 

operating region in the unimorph sensor but one with a significantly reduced 

sensitivity. 

5.3.5. Comparison of experimental data and model prediction 

In order to appreciate the usefulness of the MMPM model, it is imperative to 

compare the model predictions with certain baseline experimental results which can 

highlight the effectiveness of the model with respect to its prediction capability for 

different input parameter variation. This subsection will compare MMPM simulation 

results with the experimental results obtained from Chapter 4. 

Table 5.6 lists the experimental values of strain on Galfenol and Aluminum 

surfaces, the calculated values of mid-plane strain and normalized tip displacement 

and the % strain transfer in the unimorphs with different thickness ratios used in the 

no-load actuator tests in Chapter 4. Corresponding to each experimental value, the 
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MMPM prediction is also listed. All values were measured or calculated at an applied 

magnetic field of 65 kA/m when the Galfenol layer was saturated. The model 

predictions are of the same order of magnitude as the experimental values and also 

exhibit similar trends in variations of strains and other output parameters for the 

variation in the input parameter of thickness ratio. 

Table 5.6. Comparison of MMPM prediction with experimental data obtained 

from the different unimorphs at Happ = 65 kA/m from the no-load actuator tests. 

All values (except STx) are shown in parts per million. 

tr  ε
FEGA

 ε
AL

 ε
o
 wTIP(t/L

2
) STx (%) 

0.25 Experiment 176 -57 59.5 116.5 -32 

 MMPM 138 -57 40.5 97.5 -41 

0.50 Experiment 285 -75 105 180 -26 

 MMPM 206 -69 108 177 -34 

1.00 Experiment 313 -55 129 184 -18 

 MMPM 263 -54 104.5 158.5 -21 

2.04 Experiment 331 15 173 158 5 

 MMPM 284 -3 140.5 143.5 -1 

4.04 Experiment 356 99 227.5 128.5 28 

 MMPM 274 61.5 167.75 106.25 22 
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Figure 5.23. Comparison of MMPM prediction with experimental strain data 

obtained from Galfenol surface in the unimorph with tr = 0.5 at different Mxt. 

 

Figure 5.24. Comparison of MMPM prediction with experimental strain data 

obtained from Aluminum surface in the unimorph with tr = 0.5 at different Mxt. 
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Figures 5.23 and 5.24 compare the experimental values and MMPM 

prediction of variation in strain as a function of magnetic field on the Galfenol and 

Aluminum surfaces of the unimorph with tr = 0.5. Results are shown for zero, 

negative and positive values of Mxt obtained from the pre-load actuator tests described 

in Chapter 4. It is evident that the MMPM is able to account for variation in both 

external mechanical forces (bending moment in this case) and magnetic fields. 

 

Figure 5.25. Experimental and predicted values of Hall sensor output vs. Mxt at 

bias applied magnetic fields of (a) 4.6 kA/m, (b) 9.8 kA/m, (c) 14.7 kA/m and (d) 

19.2 kA/m in the unimorph with tr = 0.5. 

Figure 5.25 compares the experimental values and model prediction of sensor 

characterization. The results are shown for the Galfenol-Aluminum unimorph with tr 
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= 0.5 and at bias applied magnetic fields of 4.6, 9.8, 14.7 and 19.2 kA/m. The 

MMPM prediction for each case is shown with the solid line. The dashed line shows 

the modeling results when no recursion was performed, which is similar to prior 

magnetostrictive sensor modeling approaches [185, 190]. Figure 5.25 clearly shows 

the benefit of the recursive approach used in MMPM without which the error is 

nearly 300 % for all cases shown here. 

The main challenge in modeling the sensor results was due to the fact that the 

magnetic field in Galfenol close to the Hall sensor was significantly different from 

the applied magnetic field at the center of the Galfenol layer along the solenoid axis. 

Moreover the Hall sensor has a finite surface out of which some area was bonded to 

the side (i.e.) along the thickness of the Galfenol layer whereas the rest of the surface 

of the Hall sensor was exposed to air. Hence the experimental data recorded by the 

Hall sensor is an average of the x-component of the magnetic flux emanating from the 

cross-section of Galfenol as well as the flux in air adjacent to the Hall sensor surface. 

An accurate modeling of such a scenario requires 3D tools. However, Figure 5.25 

shows that the MMPM solution which is based on the Bx calculated at the free surface 

of Galfenol is at the most 25 % different from the experimental values. In order to 

account for the spatial variation in magnetic field, the MMPM used values of applied 

magnetic field which produced the experimental Bx at Mxt = 0. Since the “no 

recursion” model cannot use an applied magnetic field as input, appropriate values of 

internal magnetic field was used such that the bias induction at Mxt = 0 matched with 

the experimental values. 
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The difference between experimental values and model predictions for all the 

cases shown above can be attributed to the following causes. Firstly, the experimental 

values are affected by the bond layer between the Galfenol and Aluminum layer 

which is not modeled in the MMPM. The effect of bond layer can be significant 

especially when the Aluminum layer thickness becomes comparable to the bond layer 

thickness such as for tr = 2.04 and 4.04. It should be noted that the experimental strain 

values are average values measured over the area of the strain gage whereas the 

model values are calculated for a point. Also, the structural component of MMPM 

(i.e. CLPT) is inherently a 2D model which is less stiff than a 3D structural model. 

This may affect the results for thick structures such as the ones with tr = 0.25 and 

0.50. 

Furthermore, the internal magnetic field calculated by the lumped parameter 

magnetic model is also a point estimate. Although this should not contribute to a 

significant error in modeling the actuation behavior if the Galfenol layer is saturated, 

it is possible though that under experimental conditions, some areas might not have 

been fully saturated due to spatial variation magnetic field. However, if the spatial 

variation in magnetic quantities is not accounted for, it may lead to significant error in 

modeling the sensing behavior. The extent of error would depend on the magnetic 

circuit and the experimental method of measurement of magnetic quantities. 

The maximum error contribution is due the energy-based material constitutive 

model. As shown in Chapter 2 that although this model is capable of predicting the 

non-linear magnetomechanical behavior of magnetostrictive materials, the prediction 

is of a best-fit nature and does not coincide perfectly with experimental behavior at all 



 

 277 
 

operating conditions. Hence the predicted values using this constitutive model are 

significantly affected by this error. Also note that an error introduced in the first step 

of recursion due to the values predicted by the constitutive model would also lead to 

subsequent erroneous predictions of stress, strain and magnetic field by the structural 

and magnetic models. 

5.4. Summary and conclusions 

In this chapter a generalized modeling approach for magnetostrictive devices 

was described. Based on this approach, a magnetomechanical plate model (MMPM) 

was developed by combining a lumped parameter magnetic model, the classical 

laminated plate theory and an energy-based non-linear constitutive magnetostrictive 

model using a recursive algorithm. 

The MMPM was used to simulate the quasi-static strain response of Galfenol-

based unimorph actuators and the quasi-static magnetic induction response of 

Galfenol-based unimorph sensors. The effects of applied magnetic field, axial pre-

load, active/passive layer thickness ratio and passive layer mechanical properties on 

the strains and stresses on the free surfaces of the unimorph actuators were studied. 

The effects of bias applied magnetic fields and the nature of loading on the magnetic 

induction response of unimorph sensors were also studied. The predictions reflected 

the non-linear magnetomechanical response as well as the structural and magnetic 

coupling in the unimorph. 

A non-dimensional parameter STi (percentage strain transfer) was introduced 

to explain the behavior of the unimorph actuators in extension and bending dominated 

regimes and a critical thickness ratio (trc) was defined to demarcate these two 
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regimes. It was deduced that trc also corresponded to the optimal thickness ratio for 

maximum sensitivity in a unimorph sensor. 

Similarly, a condition for obtaining maximum out-of-plane tip displacement 

was also obtained. The out-of-plane displacements of cantilevered unimorph beams 

normalized with respect to the thickness and length of the unimorphs were calculated 

as function of magnetic field, thickness ratio and stiffness ratio. It was shown that for 

any active/passive layer combination, a particular thickness ratio (trw) which produces 

the maximum curvature in the structure would produce the maximum tip 

displacement.  

This model presents a significant improvement over other existing models as 

it accounts for the effect of stress developed in the magnetostrictive layer under its 

own actuation effect and recalculates the magnetostriction as a function of the 

magnetic field as well as the stress in the magnetostrictive patch. The effect of stress 

on the internal magnetic field for a given applied magnetic field is also implemented 

by considering stress and magnetic field-dependent permeability in Galfenol. The 

effect of shape anisotropy is implemented using a bulk demagnetization factor. 

 Existing models [183-185] which do not consider the coupling between stress 

and internal magnetic field in Galfenol would either over-predict or under-predict the 

actuation forces and moments depending on the internal magnetic field and stress 

developed in the Galfenol layer. It was shown that other models [180-182] which 

predict tip displacement of magnetostrictive unimorph are only suitable for thin films 

and they largely over-predict at thickness ratios above 0.05. 
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The model simulations of unimorph sensor showed that the sensitivity, 

operating range and linearity of a unimorph sensor can be tuned by varying the bias 

applied magnetic field. The trends were explained using energy principles. 

Finally, the MMPM was used to simulate representative experimental cases 

presented earlier in Chapter 4. The model predictions showed good correlation with 

the experimental results. Possible reasons for difference between model predictions 

and experimental values were also discussed. 

The generalized modeling approach presented in this chapter is not only 

restricted to modeling of magnetostrictive devices but can also be used for other 

smart materials. For example, a piezoelectric device can use a combination of a 

structural model, an electrostatic or electrodynamic model and an appropriate non-

linear electromechanical constitutive model. They key difference of this modeling 

approach with other models lie in the recursive technique used in the algorithm which 

can account for bi-directional coupling effects of one input parameter (stress) on other 

input parameters (magnetic or electric field) in the device. This generalized approach 

is expected to be helpful in modeling active vibration control, morphing structures, 

structural health monitoring devices and energy harvesting devices. 
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Chapter 6: Conclusions 

In conclusions, a summary of the research carried out as part of this 

dissertation is presented. The original contributions of this dissertation and their 

significance are stated and suggestions for future work to expand or improve upon 

this research are made. 

6.1. Summary of research 

Prior work on high performance rare-earth magnetostrictive materials such as 

Terfenol-D had focused on material characterization in axial mode because these 

materials could not be used in bending due to their brittleness. Although bending 

characterization has been performed on amorphous magnetostrictive alloys, a 

comprehensive literature survey showed that a lack of consistency in experimental 

design and terminology and limitation in physical understanding of 

magnetomechanical coupled mechanics requires further in-depth research in this area. 

Galfenol was considered as a suitable active material because of its unique 

combination of magnetostrictive and mechanical properties which could be utilized in 

bending applications. 

The main objectives of this dissertation were to understand the effect of 

operating conditions on the actuator and sensor performance of magnetostrictive 

Galfenol alloys and to use this information for further studies and understanding of 

the actuation and sensing behavior of Galfenol in bending mode. 

Chapter 2 described the use of well-established material characterization and 

non-linear modeling techniques in axial mode to study the effect of stress, magnetic 
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field and alloy composition on figures of merit such as energy density, 

magnetomechanical coupling factor and sensing gage factor. Results showed that 

maximum energy density could be obtained at magnetic saturation under the 

simultaneous influence of a compressive stress collinear to magnetic field, which is 

sufficient to align all the magnetic moments in the material normal to the stress 

direction in the absence of magnetic field. 

The maximum coupling factor and sensing gage factor was observed at small 

values of magnetic fields and compressive stresses. It was deduced from the spatial 

energy distribution in this range of stress/magnetic field that a peak in the 

magnetomechanical transduction takes place at such operating conditions when a 

small perturbation in either magnetic field or stress can lead to the reorientation of a 

large number of magnetic moments. 

The experimental work in Chapter 2 provided information consistent with 

prior work describing material behavior under compressive stresses. Using the model 

parameters obtained from these experiments, the behavior of the material under 

tensile stresses could be extrapolated. The understanding of material behavior under 

both tension and compression and at small as well as relatively large (saturating) 

magnetic fields was extremely useful in understanding Galfenol’s response under 

bending. 

The information from this work also helped in determining alloy composition 

and operating conditions for further tests and aided in the design of the bending 

experiments described in Chapters 3 and 4. The experimental characterization also 
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provided the model parameters which were used in the energy-based constitutive 

model in Chapter 5. 

Chapters 3 and 4 described experimental work involving bending 

characterization of Galfenol under the influence of magnetic field. Chapter 3 

described the simplest bending scenario when only a Galfenol member was subjected 

to bending while Chapter 4 described experimental characterization of laminated 

Galfenol-Aluminum structures subjected to bending. The results from Chapter 3 

highlighted the usefulness of Galfenol bending members in sensing applications. The 

results from Chapter 4 showed the interaction of Galfenol with other passive 

structural materials. This information is necessary for fabricating Galfenol-based 

magnetomechanical transducers which can work under bending loads. 

Chapter 3 also discussed the challenges in designing a magnetic flux path for 

a magnetostrictive device operating in bending. A four-point bending test was 

proposed, designed and performed on a Galfenol beam under different bias applied 

magnetic fields. The results showed that a Galfenol member can be used as a sensor 

in bending but a critical bias magnetic field is required for operation of such a sensor. 

Moreover, the net sensing response is due to the compressive stresses in the Galfenol 

member rather than the tensile stresses. These results were qualitatively explained 

using the balance of magnetocrystalline anisotropy energy, Zeeman energy and 

stress-induced anisotropy energy in the material. The results from Chapter 3 

determined the sensing response of only a Galfenol member as opposed to the 

Galfenol being attached to a passive structural material which was described in 

Chapter 4. 
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Chapter 4 discussed the concept of laminated magnetostrictive composites 

using Galfenol and other passive structural materials. Extensive finite element and 

analytical simulations were performed to design experiments which were conducted 

on cantilevered Galfenol-Aluminum unimorph actuators and sensors. The 

experiments studied the effect of three parameters; applied magnetic field, tip loading 

and Aluminum layer thickness. The experimental results demonstrated non-linearity 

in the magnetomechanical response of the structure and also exhibited structural 

coupling between the extensional and bending modes of the structure. In order to 

investigate these observations and perform a wider range of parametric study, an 

appropriate coupled modeling technique was developed in Chapter 5. Besides 

performing a parametric study on Galfenol-Aluminum unimorphs, a number of useful 

evaluation criteria for sensors were defined and calculated in Chapter 4. These 

sensing criteria could be used in future work for comparing the sensing performance 

of magnetostrictive unimorphs. 

Chapter 5 described a generalized recursive modeling algorithm which can be 

applied to any smart material device by appropriate choice of component models. 

Unlike previous models which assume stress and magnetic field as fundamental 

independent inputs in magnetostrictive models, this approach assumes a mechanical 

force and a magnetizing source as the fundamental inputs. It was discussed how stress 

and magnetic field can affect each other in a magnetostrictive device which motivated 

the use of a recursive approach. A magnetomechanical plate model (MMPM) was 

developed based on this approach. 
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The MMPM simulations were compared to existing modeling techniques to 

emphasize on the importance of the algorithm described in Chapter 5. The MMPM 

was used to perform simulations over a wide range of variation in magnetic field, 

axial mechanical forces and bending moments and active/passive layer thickness 

ratio. These simulation results were helpful in determining certain optimal 

configurations and conditions for Galfenol-based unimorph actuators and sensors. 

Finally, the MMPM simulations were compared with the experimental results from 

Chapter 4. 

The work in this dissertation was focused on experimental study and modeling 

of quasi-static behavior of single crystal Galfenol in order to spend more effort in 

understanding the physics of the problem, setting up standard experimental 

techniques and providing baseline results. This work can be extended to 

polycrystalline Galfenol alloys and can be implemented in dynamic settings. 

However, additional experimental challenges related to eddy currents and hysteresis 

will have to be addressed using careful magnetic circuit design, transducer structural 

design and processing of active materials. 

6.2. Contributions of this research 

The original contributions of this dissertation are stated below. 

• Magnetomechanical transducer figures of merit were experimentally 

evaluated for a particular composition of single crystal Galfenol (Fe84Ga16). 

The effect of stress and magnetic field on these figures of merit was also 

shown. 
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• A non-linear energy-based magnetostrictive constitutive model was used to 

predict these figures of merit not only as a function of stress and magnetic 

field but also as a function of composition of Galfenol. The model can be used 

to obtain the figures of merit at any desired operating condition without 

performing experiments at those precise conditions. This database of figures 

of merit is expected to aid in the design of adaptive transducers. This database 

can be used for choosing appropriate Galfenol composition, operating range 

and bias conditions. 

• Statistical methods were developed and used to quantify error estimates 

between experimental and model simulation values of figures of merit. The 

error estimates are useful for providing a bound on the deviation in 

performance of a device based on simulated figures of merit compared to 

using experimental values for device design. 

• Experimental values of Young’s modulus at constant induction and relative 

permeability at constant strain were calculated for single crystal Galfenol. The 

effect of magnetic induction and stress on the modulus and the effect of 

magnetic field and strain on the permeability values were shown using 

experimental data. This is the first published values of these material 

properties. 

• A classical four-point bending test concept was extended for bending 

characterization in the presence of magnetic field to measure the sensing 

performance of Galfenol beams under bending loads and at different bias 

applied magnetic fields. This method ensured that the location and size of the 
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device measuring the magnetic induction changes in Galfenol beam does not 

influence the evaluation of sensing performance thereby providing an 

experimentally consistent technique. 

• Experimental studies were designed and performed on cantilevered Galfenol-

Aluminum unimorph beams. The actuation performance of these beams was 

quantified by the normalized out-of-plane tip displacement calculated from 

the strains measured from the surface of Galfenol and Aluminum layers. The 

sensor performance was quantified using several parameters which were 

defined. This study focused on the effect of magnetic field, bending loads and 

Aluminum layer thickness on the actuator and sensor performance of the 

unimorphs and provided information on optimizing the configuration and 

operating condition for Galfenol-based unimorph actuators and sensors. 

• A magnetomechanical plate model was developed to predict actuator and 

sensor behavior of magnetostrictive laminated composites. The model 

simulations were used to perform a wider range of parametric studies. The 

model predictions were also compared with the results from the experimental 

studies on Galfenol-Aluminum unimorphs. It was demonstrated that the model 

can not only capture the non-linear magnetostrictive behavior but also the 

structural couplings in a magnetostrictive laminated composite and can 

estimate the internal  magnetic field in Galfenol under the influence of any 

applied magnetic field and mechanical forces and moments. 
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6.3. Recommendations and future work 

This section will make certain recommendations and suggest future work on 

Galfenol devices based on the understanding and experience gained through the 

course of working on this dissertation research. 

Although single crystal alloys exhibit superior magnetomechanical properties, 

it is desirable to use processed polycrystalline alloys for future commercial 

applications. That would require the knowledge of figures of merit of those 

specifically processed materials. The figures of merit described in Chapter 2 for 

single crystal Galfenol alloys could serve as an upper bound but the same 

experimental procedures may be used for getting accurate information on figures of 

merit of processed polycrystalline materials. Such a database does not exist at this 

point of time. A database of stress and magnetic field-dependent figures of merit for 

not only single crystals but also processed polycrystalline Galfenol would be 

extremely useful for transducer designers. 

The results from Chapter 2 showed that there can be significant error between 

the energy-based magnetostrictive model and experimental data if a constant (Ω) is 

used as a fitting parameter in the model for all operating conditions. Such error can 

contribute to higher errors in other modeling approaches which use the energy-based 

constitutive model such as the one discussed in Chapter 5. This issue has not been 

addressed by any work that has used similar energy-based models. Since it was 

explained in Chapter 2 that Ω is merely a statistical fitting parameter, there is no 

reason why it should be assumed to be a constant. Therefore, a multivariate 

regression analysis should be performed to evaluate Ω as a function of stress and 
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magnetic field and henceforth a variable Ω should be used to provide more accurate 

values of magnetostriction and magnetic induction at different operating stresses and 

magnetic fields. 

Although sufficient work exists on quasi-static magnetomechanical 

transduction characterization of single crystal and polycrystalline Galfenol alloys, no 

published work exist on dynamic characterization of Galfenol. Since it is expected 

that most real-life applications using Galfenol would be of dynamic nature, it is 

extremely important to focus on dynamic characterization of Galfenol. Dynamic 

characterization may involve its own challenges such as eddy current losses, skin-

effect, inductive losses in drive coil and structural design of a transducer with 

appropriate inertial effects. Dynamic characterization results are expected to exhibit 

the variation in magnetomechanical properties as a function of drive frequency and 

will also reveal whether Galfenol could be a useful magnetostrictive transducer in 

dynamic conditions inspite of possessing a higher permeability under most operating 

conditions than rare-earth based magnetostrictive materials. Such dynamic 

experimental data will also be useful for validating dynamic models. 

Similarly, there is a need to develop a dynamic non-linear magnetostrictive 

constitutive model. The current form of the energy-based model and its variants are 

not suitable for predicting the dynamic behavior of the material as there are no strain 

rate or magnetization rate terms in the energy kernel used in the models. As of now, 

the only approach for dynamic modeling is using the micromagnetic LLG equation 

[160, 164] which is accurate but computationally intensive. Hence it would be 

beneficial to attempt a modification of the energy-based model shown here by adding 
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strain rate and magnetization rate and possibly internal damping in the energy kernel 

so that magnetization and magnetostriction can be predicted as a function of not only 

stress and magnetic field but also their frequencies. 

The four-point bending test under magnetic field described in Chapter 3 could 

serve as a standardized test for sensor characterization of any magnetostrictive 

material under bending. It would be easier to perform the tests using a longer sample 

as prescribed in ASTM C1161 [176], than the one used in this work. Also, a better 

magnetic flux path may be designed by introducing several thin chips of high 

permeability Metglas to fill the small air gap between the electromagnet poles and the 

sample. 

Further experiments based on the ones shown in Chapter 4 may be conducted 

with processed polycrystalline Galfenol to evaluate the performance of specific 

materials as unimorph actuators and sensors. A laser-based technique may be used to 

directly measure the tip displacement of cantilevers instead of using the measured 

strain values to indirectly calculate the displacement using beam theory assumptions. 

However since the area around Galfenol will always be covered by a solenoid in such 

experiments, resistive strain gages might still be the best method for measuring 

strains. 

Other lay-ups using different combinations of active/passive layers may be 

used in such unimorphs. Note that a bimorph configuration might end up producing a 

pure extension if the extension-bending coupling is reduced to zero through 

appropriate choice and thickness of materials. In particular, it would be interesting to 

find the response of an active laminated composite with one layer having positive 
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magnetostriction (e.g. Galfenol) and the other layer having negative magnetostriction 

(e.g. Nickel). Another interesting combination such as Galfenol/PZT [191] might lead 

to the formation of magnetoelectric laminated composite. Other such interesting lay-

ups can also be considered by depositing thin films for application in magnetostrictive 

MEMS devices. It should be noted that for all these cases, the most important design 

parameter would be the aspect ratio which controls the shape anisotropy and 

demagnetization factor. 

The unimorph sensor characterization shown in Chapter 4 could be modified 

to develop a standard measurement technique such that magnetic induction changes 

measured from different unimorphs can be directly compared. Also, to further 

investigate the sensor response of unimorphs at higher bias fields (close to or beyond 

saturation), the sensor characterization could be performed with Hall-effect sensors 

having higher ranges. However, such Hall-effect sensors would also have poor 

resolution that will affect the linearity and accuracy of the results. 

Further work needs to be done on the model presented in Chapter 5 to extend 

its capabilities firstly to 3D quasi-static scenario and finally to 3D dynamic scenarios. 

A finite element approach could be used to replace the CLPT and lumped parameter 

magnetic model but that would also involve extreme computational challenge to solve 

the energy-based constitutive model recursively coupled with a finite element model 

having three components of the magnetic field vector and 6 components of the stress 

tensor at each node. Recent works by Mudivarthi et al. [166] and Graham et al. [192] 

have shown significant advantages of using finite element structural and magnetic 
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models in this modeling framework. However it has not been possible yet to account 

for the effect of all components of magnetic field and stress using a 3D model. 

As Galfenol exhibits very low hysteresis, the anhysteretic version of 

Armstrong’s [153] model was used in Chapter 5. For other materials that exhibit 

significant hysteresis, energy-based hysteretic models developed by Armstrong [154], 

Atulasimha [157] or Evans [193] can be used to replace the anhysteretic model shown 

here. 

Finally, it should be clearly stated that this model is valid in the regime of 

continuum mechanics. Although this model can be used for prediction involving 

extremely small thickness ratio, the actual thickness effects might not be negligible at 

very small length scales where surface tension and other forces play significant role 

in controlling the structural deformations. Therefore, to model magnetostrictive 

MEMS or nano-scale devices, the component models should be replaced with more 

appropriate ones while keeping the same framework and recursive algorithm.   
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