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We extend economic analysis of the nuclear power industry by developing
and employing three tools. They are 1) compilation and unification of operating
and accounting data sets for plants and sites, 2) an abstract industry model
with major economic agents and features, and 3) a model of nuclear power plant
operators.

We build a matched data set to combine dissimilar but mutually dependant
bodies of information. We match detailed information on the activities and
conditions of individual plants to slightly more aggregated financial data. Others
have exploited the data separately, but we extend the sets and pool available
data sets. The data reveal dramatic changes in the industry over the past thirty
years. The 1980s proved unprofitable for the industry. This is evident both in
the cost data and in the operator activity data. Productivity then improved
dramatically while cost growth stabilized to the point of industry profitability.

Relative electricity prices may be rising after nearly two decades of decline. Such



demand side trends, together with supply side improvements, suggest a healthy
industry.

Our microeconomic model of nuclear power plant operators employs a forward-
looking component to capture the information set available to decision makers
and to model the decision-making process. Our model includes features often
overlooked elsewhere, including electricity price equations and liability. Failure
to account for changes in electricity price trends perhaps misled earlier scholars,
and they attributed to other causes the effects on profits of changing price struc-
tures. The model includes potential losses resulting from catastrophic nuclear
accidents. Applications include historical simulations and forecasts.

Nuclear power involves risk, and accident costs are borne both by plant own-
ers and the public. Authorities regulate the industry and balance conflicting
desires for economic gain and safety. We construct an extensible model with
regulators, plant operators, insurance companies, and consumers. The model
possesses key attributes of the industry seldom found in combination elsewhere.
We then add additional details to make the model truer to reality. The work
extends and corrects existing literature on the definition, effects, and magnitudes

of implicit subsidies resulting from liability limits.
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Chapter 1

Introduction

Nuclear power both offers great promise and poses tremendous threat to the
American economy. On the one hand, it provides the greatest source of energy
without carbon dioxide emissions, and it provides a domestic energy supply that
does not add significantly to trade deficits. On the other hand, at every moment a
disaster on the scale of the Chernobyl accident is unlikely but remains possible at
over 100 U.S. reactors. No other private industry imposes such extreme risks on
so many, and few industries offer such benefits relative to existing alternatives.
Few industries have been the focus of more research than the nuclear power
industry. Among the narrow field of nuclear industry economics, a vast array
of publications span topics from the speed of technology adoption to costs of
regulation to the nature and magnitude of lingering effects of the Three Mile
Island accident. Given the size of the literature, what is left to study?

Despite the wide array of fine papers published by leading economists, im-
portant questions remain unanswered, and on many topics consensus remains
elusive. For several decades, no new construction was begun, and it seemed that

rising costs would force closure of existing plants. Profitability seems now to be



improving, and the ever increasing American demand for energy forces us again
to consider whether increasing our capacity of nuclear power generation might
be the optimal course. Even some environmentalists recently have called for in-
creasing reliance on nuclear power in order to reduce carbon dioxide emissions.
For these reasons, we must take another look at the questions and problems
unique to this industry.

Of particular importance are the means by which we handle the risks of nu-
clear accidents. For nearly fifty years, the federal government has offered liability
protections to the industry, so that they bear only partial liability for offsite dam-
ages in the event of a serious accident. Many are concerned about the effects
of such protections, fearing that operators have too little incentive to operate
safely and that the public has no guarantee of compensation. Unfortunately, few
academic papers have been published on the topic to define or measure the ben-
efits to operators of these protections or to determine their effects on operator
behavior.

Problems for nuclear power began while the industry was young. First, plants
proved more costly to construct than was expected. Next, they proved more
expensive to operate than was expected. Finally, the regulatory burden and
public opposition proved greater than anticipated. These matters have been
studied at great length, and many factors are known to contribute to each. Far
less work has been done to determine the effects on the industry of weakening
demand, and it seems that while many agree that high costs and burdensome
regulations largely caused the industry’s troubles, there is little consensus on the
relative importance of each factor and how they might be related.

We find it essential to begin by constructing a model of the nuclear power



industry in order to determine the relationships among costs, demand, and reg-
ulation, and to determine the nature and magnitude of effects of liability pro-
tections.

We begin by building a unifying model of the nuclear power industry. Given
the breadth and depth of the literature, the work summarized within reveals
but a glimpse at the potential of such efforts. Still, constructing an adequate
conceptual framework requires thinking about nuclear industry economics in un-
conventional fashions, so that establishment of stylized facts leading to unifying
economic model in itself illuminates truths before unseen. Even small models,
we will see, help to answer challenging questions. And so as we begin, we keep
our goal in mind. We will not exhaust the possibilities in this present study.
Rather, our present goal is to begin by offering a small but powerful model of
the industry that reveals crucial economic and regulatory relationships and sheds
light on the little understood topic of liability limits. If we succeed, then much
work will remain to be done, supported and prompted by these beginnings.

Three frameworks are established and employed. Each has much potential
in present form and much is revealed as we begin to exploit that potential.
The greater promise, however, may be realized by extending further the work
begun. Present work may be summarized as 1) compilation and unification of
operating and accounting data sets for individual plants and sites, 2) construction
of an industry model with nuclear power plant operators, industry regulators,
and consumers, and 3) construction of a detailed model of nuclear power plant
operators.

The first framework is the assemblage of data. Our key contribution is the

construction of a matched data set that combines dissimilar but mutually de-



pendant bodies of information. On the one hand, we have detailed information
on the activities and conditions of individual reactor units. On the other hand,
we have slightly more aggregated financial data on each site, which may include
several reactor units, and we have regional data on electricity prices. Others
have exploited the data separately, but we extend the sets and we go further.
By pooling available data and matching reactor, site, and regional information,
we produce a very rich data set with great potential.

The second framework is an extensible model that provides foundations to
support broad coverage of nuclear power economics. The present model exhibits
primary agents important to the industry, including regulators, power plant oper-
ators, insurance companies, and consumers. The model possesses key attributes
of the industry seldom found in combination elsewhere. Also, the scope of the
model encompasses more than is typical in models of nuclear power economics.
Model solutions and applications yield two important contributions. First, the
model reveals relationships between costs, demand, and regulation that existing
literature fails to make clear, and it shows the impacts of these factors on the
well-being of firms and consumers. Second, the model yields definitions of the
implicit subsidies provided to firms through liability protections. These defini-
tions are derived from models of regulated firms, and they extend understanding
of the scope of the matter. Our work demonstrates the importance of considering
the entire scope of regulatory impacts on firms when attempting to determine
effects of liability limits on safety and when attempting to quantify the benefits
to the industry of liability limits. These contributions are important, though
even greater promise of the model may be seen by considering a few of the pos-

sible extensions fully supported by this work. For example, political activists



clamoring both for expanding and banishing nuclear power surely affect regu-
lators, so that levels of regulation and the severity of its enforcement depend
on the public’s opinions and level of concern. As a second example, the model
easily could be extended to feature explicitly a broad set of electricity generating
technologies, each with its own advantages and shortcomings, in order to gain
perspective on nuclear power’s inherent risks relative to fossil fuel technology’s
degradation of the environment. In this way, we can consider the benefits of
continued operations of nuclear plants versus reduction of nuclear output. Our
construction of a basic economic model with the key economic players together
with key industry features make such extensions and applications feasible and
relatively simple.

The third framework develops models at the microeconomic level. We offer
a model of the firm, where in this case the firms are nuclear power plants. To
support the modeling efforts, we also construct a software package to aid in the
construction of similar models. Our model includes several features often over-
looked in other empirical and theoretical work. These include incorporation into
the model electricity prices and their effects on revenue and profits. The effects
on profits affect the behavior of operators that our model is designed to repre-
sent. Our model also incorporates measures of risk and the liability associated
with the possibility of catastrophic accidents. We attempt to determine whether
liability protections induce detectable changes on operator behavior.

Even cursory analysis of the data we compile reveals dramatic changes in the
industry over the past thirty years. We see that the 1980s proved very costly and
unprofitable for the nuclear industry. Using our matched set, this is revealed both

in the cost data and in the activities of individual plants. In following decades,



however, our extensions show that productivity improved dramatically. At the
same time, cost growth stabilized and profits per unit of output improved to
the point that operations currently seem to generate healthy profits. Our panel
data allow us to learn about the variation of costs and productivity across plants
that the aggregate figures typically reported by the industry fail to reveal. The
improved economic picture may be seen too by glancing at recent media reports
on the energy industry. For the first time in decades, new nuclear power plant
construction is being proposed and permits are being acquired. It is striking both
that plant operators believe themselves capable of building and operating plants
profitably and that regulators believe it politically feasible to grant building
permits and even to negotiate potential tax incentives.

The regional price data indicate that after nearly two decades of falling rel-
ative prices, electricity prices may be rising again. National energy efficiency
continues to improve, and so electricity demand growth remains far lower than
rates seen forty years ago. Still, the growing American population and economy
demands ever more power to facilitate expansion. These demand side trends, to-
gether with supply side improvements observed in the cost and operating data,
indicate that the industry is healthy and may continue to thrive for years to
come.

On the other hand, disaster is possible. Costs of disastrous nuclear accidents
clearly are borne not solely by plant owners but also by the public. For this
reason, government authorities ostensibly representing public interests regulate
the industry and balance the conflicting desires for economic gain and safety.
Yet regulation of an industry so technically complex, while dealing both with

powerful industry lobbies and consumer and environmental political activism,



yields a terribly thorny problem. We begin to deal with the problem by building
a big-picture model. That is, we assemble a structure with the major players and
a vague representation of critical industry details. On this foundation, we add,
piece by piece, additional details to make the model ever truer to reality. Even
in these early stages and with the relatively simple forms presented here, we
extend existing literature on the nature, magnitude, and effects of the liability
limits often assumed essential to corporate survival yet still poorly understood.

While it is essential to make sense of the overall economic world of nuclear
power, we have particular interest in the operation of nuclear power plants. We
thus take a close look at their operation. Nuclear power plants were designed
and are permitted to operate for a limited number of years. Operators have a
clear interest in considering potential profits in all remaining years rather than
to focus solely on the current period. We thus employ a forward-looking model
in an attempt to capture the information set available to decision makers and
then to model the decision-makers as they employ this information. Given the
nature of forward-looking models and the limitations of current analytical and
econometric tools and technology, it is difficult to employ all available data in the
operators’ information sets; of course, available data is but a small part of the
complete information set possessed by operators. It thus is a struggle to select
a sufficient set of data for the model that will produce satisfactory results. We
believe that earlier efforts to model power plant operators left out key data and
that their results suffered accordingly. An important contribution of this work is
the inclusion of electricity price information. Electricity price trends have varied
over the past several decades. Failure to account for these changes may have led

earlier scholars to attribute to other causes the effects on profits of changing price



structures. In particular, economic effects of weakening demand may have been
mistaken for impacts of heightened regulation. Our model also includes potential
losses resulting from catastrophic nuclear accidents. The models can be employed
in several important applications, including 1) optimal lifespan predictions given
various assumptions about electricity price growth, 2) structural stability tests to
analyze the effects of changing regulations while accounting for structural price
shifts occurring at the same time, and 3) analysis of the effects of modifications
to policies that limit liability.

And so, we have assembled data and models and employed them to learn
much about the nuclear power industry, yet they offer far more potential than
developed here. Some possible extensions are suggested throughout the following
chapters. Hopefully, the reader will find the work sufficiently promising that
additional possibilities continually will become obvious.

We thus begin. We start with the history of the American nuclear power
industry, and based on this picture we build a static model of the industry
and its regulation. The static model proves sufficient to reproduce a number
of major historical events. We then extend the static model to a multiperiod
framework in order to determine the optimal evolution of operators’ decisions
and regulatory policies. Finally, we extend the dynamic model to a numerical
framework in order to incorporate additional important features of the industry.
A key application of our model is a close look at liability protections offered to
the industry and their effects on firm and regulatory policies. These protections
are considered throughout the first section.

The second section begins with the development of regional price data, monthly

operations data for each commercial nuclear reactor, and annual cost data for



each nuclear site. We employ the price and available output data to construct
estimates of revenue earned through the generation of electricity. Perhaps be-
cause estimation and even definition of such revenue is difficult, such estimates
are not available in other scholarly work, and because they are not forced to
do so, plant owners do not release revenue information. While it is difficult to
establish the accuracy of our estimates, the patterns revealed over the past three
decades correspond nicely to well-known historical facts and thus inspire confi-
dence in our results. Other data work summarizes changes in operating policies,
which yielded much improved productivity and reliability, and development and
descriptions of cost data that also show dramatic improvements in performance.
Very likely, regulatory reforms contributed to these improvements. By devel-
oping dynamic programming models of nuclear power plant operators, we gain
improved understanding of truths hidden in the data. We summarize estimation
results of the model, and conclude with applications of the model.

The text concludes with a summary our work and a description of intended
extensions. An appendix describes software developed to support this work and

similar modeling efforts.



Part 1

Economics and Regulation of U.S.

Nuclear Power

10



Should operators of nuclear power plants continue to run their plants given
the current economic circumstances and regulatory policies? Should regulators
adopt a conciliatory stance to feed the economic desires of producers and con-
sumers, or should they enforce hard-line standards to lessen the risks of nuclear
accidents? What are the effects of liability limits on the decisions of plant oper-
ators, and what is the economic benefit to plant owners?

The four chapters comprising this section summarize the history of nuclear
power economics in the United States, and they describe and apply a series of
economic models in search of answers to these questions.

Chapter 2 begins with a review of the history of nuclear power industry
operations, regulation of the industry, and the evolving economics of nuclear
power. We go on to develop models of the economics and regulation of the
nuclear power industry, similar to the models developed by Steven Shavell of
the Harvard Law School. While the models are intended to capture matters
of political economy and ultimately should prove capable of portraying such
details, we begin by studying models that focus on regulation and economics,
and we then extend the model to illustrate effects of changing political climates.
Nevertheless, we continue to label them as political economy models to remind us
of intended directions of development. Politics certainly play important roles in
the industry, and so it remains desirable to portray such features along with other
key aspects. An important contribution is offered when we apply the model in the
analysis of liability protections to the industry. We employ our model to derive
a broad view of potential benefits that nest earlier efforts. Deriving benefits to
the industry from a model of firms and regulators reveals that earlier concepts

of implicit subsidies was too narrow. We show the importance of considering
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additional factors that heavily may affect the level of safety and economic benefits
to operators.

We find the relative simplicity of a static model adequately powerful to de-
velop a model core that is sufficient to support many extensions, including dy-
namics. First, though, we take a closer look in Chapter 3 at protections offered
to the nuclear power industry in the form of liability limits. These protections
originally were passed as the Price-Anderson Act of 1957. Many assume that
survival of the nuclear industry depends on these provisions. It remains unclear,
however, whether this is true or even what is the magnitude of economic benefits
afforded to the companies. We examine earlier attempts to quantify the amounts.
However, in addition to taking too narrow a view of potential benefits, we show
that published calculations are flawed and their models improbable. We offer
corrected calculations and improved models. These imply that the magnitude
of implicit subsidies may be far lower than reported earlier.

We next return to our model in Chapter 4 and extend it to a multiperiod
framework. The dynamics are simple, but they are sufficient to capture the im-
portance of forward-looking behavior both by plant operators and by regulators.
The pattern of private investment in maintenance and safety is of particular in-
terest, and we are able to derive investment rules that vary over the life of the
plant. We also derive optimal regulatory policies that take these tendencies into
account. We apply the model to extend our understanding of the effects of the
Price-Anderson liability limits in a multiperiod framework. The result yields a
means of calculating the value to the industry of maintaining liability protection
policies.

In Chapter 5, we construct a numerical version of our dynamic model. The
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numerical framework allows us freedom to add features that under the previous
analytical model proved infeasible or at least cumbersome. Many of the features
that will be present in our model of the firm, including stochastic price evolution,
are introduced here to provide a bridge between our theoretical model of the in-
dustry and our empirical model of the firm. Unique contributions of our work
include the specification of insurance premiums paid by operators, taking into
account the behavioral policies of the firms, and the modeling of the shared lia-
bility features specified by American regulatory policies. We employ the model
in two exercises. First, we check the reaction of our model, measured as changes
to profits and optimal behavior, to changes in the evolution in electricity prices
as occurred in the American economy in the 1980s. Second, we check the model’s
response to extensions of allowed maximum lifespans, as recently was made pos-
sible by nuclear regulatory authorities. In a chapter appendix, we derive a means
by which we can speed calculation for a class of numerical problems, and we show
how to apply the method to numerical dynamic programming problems like ours.

Chapter 6 concludes the first section and summarizes our findings. We now

set out on our quest to summarize the American nuclear power industry.
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Chapter 2

A Static Approach

2.1 Introduction

This study develops models of the political economy of the nuclear power indus-
try, which extend greatly theoretic work developed by Shavell [57] and applies
it to the nuclear power industry. The primary motivations of nuclear power
operators and of nuclear industry regulators are considered. Optimal rules are
computed to govern behavior of each agent. These rules take into account the
effects of the agents’ own actions on the behavior of others. It is assumed that
operators’ primary motivations are to maximize profits. Operators’ choices in-
clude whether to operate and how much to invest in maintenance and safety
enhancements. Regulators seek to ensure adequate electricity supplies while
minimizing costs and expected damage from nuclear accidents. We consider
four cases. First, we consider the case in which regulators are benevolent so-
cial planners who can guide the economy to the first-best solution. Next, we
consider the cases in which regulators employ either regulatory standards for

safety enhancements or liability levels for damages, but not both. Finally, we
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consider the case in which regulators govern with both instruments. It is this
last case that best describes oversight of the nuclear power industry, while other
cases provide important reference points and limiting cases for consideration of
liability protections.

We review the history of nuclear power industry operations, regulation of the
industry, and the evolving economics of nuclear power. The results of the model
developed here then are compared to the economic history of the industry to
see whether the model qualitatively reproduces observed phenomena. Finally,
the model is employed to construct measures of subsidies created by adoption of
potentially sub-optimal liability levels. These measures are compared to others
in the literature.

The models are based closely on Shavell [57]. In that paper, he derives
optimal regulatory policies when firms face liability. However, there are several
significant discrepancies between his model and the nuclear power industry. This
work seeks to eliminate some, but not all, such discrepancies. In the process,
we extend his theoretical work significantly and make it far more useful and
realistic.

First, Shavell assumes that in the event of an accident causing damages to
third parties, the firm escapes liability with a positive probability. Instead, we
assume that operators cannot avoid liability for damages. This assumption,
which admittedly is too strong, is based on terms of the Price-Anderson Act.
This policy specifies minimal levels of insurance that each nuclear power plant
operator must carry. It also sets terms for industry self-insurance in addition
to the commercial insurance coverage. Operators are exempt from liability for

damages in excess of the amount specified in the policy. We assume that oper-
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ators cannot escape liability for the reason given in the MIT study [6, p. 81]:
"The compensation provision of both the first and second layers of insurance are
‘no fault” and not subject to civil liability litigation."

The second and primary difference between this model and Shavell’s is that
output matters here. In Shavell’s model, profits implicitly were assumed always
positive, so that firms never exited the market. Similarly, it implicitly was
assumed that social welfare always was greater with production than without,
so that regulators never forced individual plants or the industry to close. In
this model, firms’ output decisions are binary: they produce at full capacity if
expected profits are non-negative, and otherwise the firms close. Hence, output
does not decline continuously with regulation. In the aggregate, however, output
is a decreasing function of regulation. If expected damages are too great, so that
social welfare is believed greater without production, then regulators can force
plants with the greatest risk to close, so long as their policy instruments allow
them sufficiently precise control. Similarly, if liability or regulation becomes too
great, then firms will decide to exit the market.

Among a variety of applications that we provide, perhaps the most important
is employment of the model to determine the benefits to firms, effects on firm
behavior, and the impact on safety of offering the industry limits on liability. In
the past, the benefits to firms, or “implicit subsidies,” typically were defined as
the difference in insurance premiums between insuring against all possible dam-
ages and insuring against the maximum amount of liability set by regulators. In
addition, it has been assumed that liability limits leave operators with too little
incentive to enhance and maintain safety standards, so that risk to the public is

unnecessarily high. In contrast to earlier approaches, our model shows the im-
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portance of considering simultaneously the overall effects of regulation, including
both liability protections and other policies. If regulators optimally determine
these policies, then regulations on safety should account for limited liability. Our
results show that the net effect of regulation and liability protections on safety
and profits cannot be determined without additional empirical work, and our
results provide guidance for conducting such research while taking into account

the existing work of others.

2.1.1 Economics of the American Nuclear Power Industry

The economics of operating nuclear power plants proved far less favorable for
operators than was expected. Construction costs proved higher, operating costs
proved greater, and electricity demand growth and price growth fell sharply.
Many papers have been published that analyze the economics of constructing
nuclear power plants (See, for example, Ellis and Zimmerman [18] for the history
of construction, and see the University of Chicago study [8] for a comparison of
many results on the topic.) While there is little consensus in ranking possible
causes, it is clear that it proved more expensive to build plants than was pre-
dicted. Two primary reasons are that 1) expected increasing returns to scale
failed to materialize, so unit costs for constructing large commercial reactors
were not much lower than for small research reactors, and 2) plants took longer
to build than was expected. One reason for long construction times is greater
regulation of the construction process, but there is not a clear consensus on the
importance of this factor. The NRC [30, footnote 57| reports that lengthened

construction times were due, in part, to reluctance of operators to open plants
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for fear that demand was too weak to absorb the additional production.

Once plants were completed and began operations, they proved more costly
to operate than was expected (ETA [2]). Operating costs grew rapidly through
the 1980s and early 1990s, although expenditure growth has slowed and efficiency
has increased (Rust and Rothwell [56]).

Finally, demand side conditions deteriorated as the nuclear power industry
gained momentum (Nelson and Peck [39] and NRC [30]). Average annual elec-
tricity demand growth exceeded seven percent in the decade or more prior to
1973. Growth rates then fell abruptly to less than three percent. (See, for ex-
ample, Price [43, p. 107|. See Haltiwanger, et al [14] for a historical review of
electricity prices.) The NRC reports that the ratio of electricity demand growth
to overall economic growth fell from 1.5 in the 1970s to 1.0 in the 1980s, while
energy spending per dollar of GDP fell at 2% per year. Price [43] reports world-
wide increases in energy efficiency following the oil price shocks of the 1970s.
Relative electricity prices continued to grow steadily until the early to mid1980s.
At that point, however, relative prices began a long, slow decline. Rothwell and
Eastman [51] report that from 1979 to 1981, the realized or allowed rate of re-
turn was less than the cost of capital for U.S. electric utilities. The need for ever
more base load capacity became much less pressing in the 1970s, and the shift in
electricity price growth forced increases in efficiency for plants to remain viable.
Nelson and Peck show that the reality of weakening demand set in slowly, and
that the industry consistently over-estimated future demand growth from the
mid1970s to the mid1980s. Price also notes that the industry was slow to react

to signs of deteriorating economic conditions.

1See Price [43, p. 9| for a similar argument.
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Many partially constructed plants, and even some completed plants, were
abandoned as it became clear that demand growth was weakening. Similar
phenomena were observed among coal-fired plants (Ellis and Zimmerman [18]
and Price [43]). A number of operating plants were decommissioned, and no
new starts were made in the following two decades. In recent years, though,
growing interest in new construction has developed, although significant excess
baseload capacity remains (Nivola [41]).

When the U.S. government was considering the creation of a private nuclear
power industry, they realized that the enormous risks associated with operating a
nuclear facility meant that liability would need to be limited in order to ensure vi-
ability of the industry. In 1957, the government enacted the Price-Anderson Act
(PAA) which provides liability caps for off site damages. The stated objectives
of this policy were 1) to protect the public by ensuring prompt compensation
after an accident and 2) to foster the development of the nuclear power industry
(Dubin and Rothwell [16]). Such liability caps eliminated the need for plant
operators to protect themselves from possible losses for damages in excess of
the liability limit, thus limiting the need to purchase liability insurance. Many
argue that by enabling operators to avoid these additional insurance premiums
regulators provide an implicit subsidy to the industry. While estimates for the
value of these subsidies are fairly small (Dubin and Rothwell [16|, Heyes and
Heyes |28, 29|, and Denenberg [15] (note that problems exist in the estimates of
Dubin and Rothwell and Heyes and Heyes)), many still argue that the industry
would not survive without them. Unfortunately, these estimates are difficult to
compute, and little faith should be put in most published estimates (Heyes [26]).

Many consider the 1979 accident at the Three Mile Island (TMI) plant to be
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the primary cause of the deterioration of the nuclear power industry. However,
there are numerous causes, including those listed above. In fact, the backlog of
new orders fell and plants under construction were abandoned even before the
TMI accident (Ellis and Zimmerman [18]). Hence, all of these factors should be
incorporated in any model claiming to portray the economics of the nuclear power
industry. Unfortunately, most models focus only on one, or perhaps a few, such
factors. Given the growing interest in resuming construction of nuclear power
plants (University of Chicago [8] and MIT [6]), it is important that we improve

our understanding of the political economy of nuclear power.

2.1.2 Layout of this paper

Our work develops a model of nuclear power plant operations and industry reg-
ulation. First, the model is described, with timings, objective functions for
operators and regulators, and derivation of optimal decision rules. Next, a series
of propositions are stated and proved, following closely the lead of Shavell [57]
while extending greatly his work. Next, predictions of the model are compared
to observed phenomena in the 1970s and 1980s. The model is used to derive
measures of implicit subsidies created by enforcement of limited liability levels,
and the measures are compared to others in the literature. Finally, limitations
are noted and possible extensions are suggested.

Before beginning, we note that our initial efforts, summarized here, are con-
cerned more with regulation of the nuclear power industry than with political
economics. However, politics are of great importance in the nuclear power in-
dustry and such features readily may be added to extend our work. We will

return to the topic in our conclusions.
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2.2 The Model

2.2.1 Timing

This model has two primary groups of players, nuclear industry regulators and
power plant operators, who move sequentially in a static game-theoretic frame-
work. Regulators seek to maximize social welfare, and the firms’ problem is to
maximize profits while satisfying the demands of regulators. It is assumed that
a continuum of markets exists, with one nuclear facility per market. No attempt
is made to explain the existence of power plants, and for simplicity prices and
demand for electricity are exogenous. Firms are identical, except for the amount
of damage that they cause if an accident occurs. We consider only one period. At
the end of the period, assuming that the firm survives, the firm incurs shutdown
costs and closes permanently.

The level of demand first is announced. Next, regulators determine the op-
timal level of liability to impose on the nuclear power industry, and the level is
announced. Given this announcement, power plant operators decide an optimal
level of investment in safety-enhancing maintenance and similar expenditures.
If production yields more expected profits than the cost of decommissioning,
then firms invest, produce electricity, collect the revenue, and pay operating and
investment expenses. Accidents then occur with an endogenously determined
probability dependent on the level of investment. These accidents cause dam-
age to third parties, for which regulators may hold plant operators liable. If
expected profits are less than the cost of decommissioning, then operators make
no investments and close their plants immediately.

Exposure to liability with corresponding spending on safety, or spending to
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meet regulatory requirements, reduces profits. We assume that aggregate out-
put may fall with profits, as unprofitable firms exit the market, so that greater
safety comes at the expense of output. The model has firms that either produce
or shut down, depending on whether profits are non-negative; non-negativity is
the condition for production, given our assumption for sake of simplicity that
shut-down costs are zero. We assume that regulators care about both output and
safety, and are cognizant of the effects on output of their own actions. Essen-
tially, we assume a continuum of identical markets, where prices and preferences
are exogenous. Hence, regulators consider separately consumers’ utility in each
market. In each, either firms produce at full capacity and consumers receive
utility from the product, or firms close and consumers receive a level of utility
from zero consumption.

The definition of regulation is narrow, such that policies specify minimal
standards for investment in safety-enhancing goods and services. We consider
regimes with various combinations of regulation and liability, and we compare
social welfare for each.

We note an important paper by Baron and Myerson [10] in which they con-
sider the optimal regulation of a monopolist with costs that are unknown to the
regulator. Regulators have three instruments: to close the firm or to allow oper-
ations, to set the quantity produced or the market price, and to offer a subsidy
or to impose a tax on the firm. While we do not include some of the details of
the Baron-Myerson model, their paper does contain material of some relevance
for the nuclear power industry. Given our focus on nuclear power plant opera-
tors, however, and given the existence of mixed generating technologies in nearly

every market, it is not clear that their model would be ideal in this case. Regu-
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lated electricity prices must accommodate not only the most efficient generating
technology but a sufficient number of plants in each market to satisfy demand,
including plants with higher marginal costs. That is, regulators cannot tailor
market prices to individual plants or technologies. Hence, we consider prices
exogenous and instead focus on other matters. Still, the idea of Baron and My-
erson of tailoring regulatory policies so that firms will reveal private information
is of great importance. In their study, the private information was the structure
of firms’ operating costs. In our case, firms have private information about po-
tential damages. Unfortunately, the present model does not yet incorporate the

policy instruments required to entice firms to reveal private information.

2.2.2 Definitions

The continuum of (nearly) identical firms are indexed by the level of potential
damages, h, that they pose to their communities. In fact, h is the only distin-
guishing characteristic of the firms. We assume that h is an exact amount. This
magnitude of potential damage, known only to the firm, is such that h € [a, D]
where 0 < a < b < co. Regulators do not know potential damages for indi-
vidual firms, but they do know the distribution of damages across firms f(h),
which is nonzero on and only on [a,b]. We use a proper probability distribution
f(h) only for convenience, in that it integrates to one and we can use familiar
techniques from statistics. More general specifications of f(h) could integrate
to any positive value, as it simply specifies the number (or measure) of firms.
Industry capacity and potential output is (). We assume that all plants have the
same capacity. We assume that electricity prices, less unit production costs, are

identically equal to one, so that net potential revenue at full capacity also equal
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. Firms may invest in goods and services, indexed by x such that 0 < z, to
lessen the probability of an accident. The probability of an accident p(zx), given
the level of investment z, is identical for each firm and depends only on invest-
ment. The first derivative of the probability function is negative and the second
derivative is positive. (See Dubin and Rothwell [17] for a similar specification.)

Regulators seek to maximize social welfare. A component of the social wel-
fare function is U. For industry output ¢, where ¢ € {0,Q}, U(q) = q + u(q).
Hence utility U is a quasilinear utility function, and is determined by the sum
of industry net revenue and the benefit to consumers u(q) of consuming g. The
numeraire in this utility function is industry net revenue. The balance of the
social welfare function is in the same units (dollars) and is composed of invest-
ment and potential damages, as described below. Hence, regulators care about
the utility consumers obtain from consumption, industry profits, and potential

damages.

2.2.3 Industry Regulators

Industry regulators seek to balance the need for adequate electricity supplies and
the need for safety from nuclear accidents. If there is excess demand without
operation of nuclear plants, then neither desire can be satisfied fully without
sacrificing the other. We model these conflicting desires with a welfare function
for which regulators seek 1) to maximize output to satisfy consumers’ demand
and operators’ profit motives and 2) to minimize expected losses from accidents.

We consider various regulatory regimes with various combinations of regu-
lation and liability. We assume that the level of liability is outside the control

of regulators. Regulators thus have at most one instrument for governing the
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industry: they choose a minimum level of investment for operators.

We consider only cases in which operators bear either zero liability or liability
not exceeding the value of the firm. Whether firms face liability is not under
the control of regulators. We do not consider the possibility that regulators will
compensate firms for losses, nor do we consider punitive damages.

Similarly, we do not consider the possibility that regulators or consumers will
compensate firms for higher levels of investment, in the sort of exchange proposed
by Coase. The model could be extended to include such possibilities, but such

exchanges have not been observed and thus such possibilities are ignored.

2.2.4 The Social Planning Problem

The social planners’ optimization problem, in which they seek to maximize social

welfare for each market 7, is specified as

¢(h;) = max {U(O), max U(Q:) —x; — p(xy) hz} (2.1)

for control of plant ¢ with potential losses h;. We assume that social planners
know h;. Social planners thus know more than the simple regulators considered
later, for the regulators know only the distribution f(h). The planner must
decide whether to keep the plant idle or to allow operation. If the plant is closed,
then social welfare in the corresponding market is U(0). If the plant operates
after investing z;, then expected damages are p(z;)h;, and social welfare in the
corresponding market is U(Q) — x; — p(z;)h;.

The optimal level of investment is found by differentiating the second term

on right-hand side of Equation 2.1.
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dGi(h)
ox

=—1—-p'(x)h;= 0 (2.2)

After simplifying, we have a rule for investment as a function of potential dam-

ages’:

) =67 ()
i
where (p/ )_1 is the inverse of the derivative of the probability function p. We see
that optimal investment increases with potential damages.

Clearly, social welfare declines with potential damages. Hence, social plan-
ners may find it optimal to allow plants with little risk to operate (that is, plants
with h close to a), but plants with high risk shut down (that is, plants with h
close to b). We can define the level of damages hSP such that social planners are

indifferent between operating and closing the plant:

{BSP L U(0) = U(Q) — 25T (h) — p (257 (h)) h}
We limit the range for A5 such that h5F € [a,b]. Hence, plants with h < hSP

close, and remaining plants operate:

ilSP < hz
Output= B
Q : h; <h”
We confirm that social welfare strictly decreases with potential damages,

assuming that it is optimal to produce:

3¢ 0 Lt =0

ok —p(x°F) <0 : ¢F >0

2Note also that the SOC holds: 5%&)2 =—p"(x)h <0

x
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Hence, social welfare strictly decreases in potential damages, regardless of the
probability function p.
Total social welfare, or the sum of welfare across all markets, is found by

integrating welfare for individual markets:

P~ / max {U(0), U(Q) — 257 (h) — p («57 (h)) b} f(R)dh
_ / (U(Q) — 25P(h) — p (+97 (b)) h} f(h)dh +[1 — F (BSP)] x U(0)
where F(g) = [? f(h)dh for g € [a,b] is the measure of plants that operate.

Aggregate output is

;LSP

Qf(h)dh

a

=Q x F(h*")

2.2.5 The Case of Liability Only

We next consider a market in which private firms are permitted to operate freely
of regulation, but they do face liability. We assume that the level of liability
y is given, and may be assumed to be the level of assets or the value of the
firm. Alternatively, it may be set to any arbitrary level. In this analysis, we
assume that y € (0,b]. That is, we assume that maximum liability is a positive
number that is no greater than potential damages in the worst case. For reasons
given in the introduction, we assume that firms are held liable for damages with
probability 1. We do not allow the possibility that firms will escape responsibility

for damages.
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Operators

Power plant operators seek to maximize expected profits. They do so first by
determining an optimal level of investment in safety improvements and mainte-
nance, given their level of liability and revenue. If expected profits are greater
than decommissioning costs given the optimal investment level, then operators
choose to produce. The level of potential plant-level output, @), is given by the
level of installed capital. Electricity prices less unit production costs are assumed
positive and are normalized to one, and so for positive production levels, () both
is the level of output and revenue less operating costs. If the value of the firm
(revenue less operating and investment costs less expected liability claims) are
less than decommissioning costs, the plants close immediately and incur shut-
down costs. In this version of the model, shutdown costs are assumed zero for
simplicity.

The profit maximization problem for firm ¢ with potential damages h; is

specified as

1% (h) = max {Ome () mm{hi,y}} (23)

If the firm does not produce, then the firm exits the market with zero profits.
If the plant does produce, then the firm earns net revenue (), less investment x
and expected liability p(z) min{h,y}. Note that the firm’s liability either is the
total amount of damage h or the value of the firm y, which ever is less.

There is no capital investment in this model. Because we assume that demand
equals or exceeds @), there is no load following. Hence, the firms’ output decision
is whether to invest and to produce () units of electricity or whether to close

permanently. We assume that no output is lost when operators invest. Of course,
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output likely is lost as the result of investment, adding costs in addition to the
direct expenditures. The assumption is made solely to simplify the model.
Optimal investment is determined by differentiating Equation 4.3:3
1T (hy) op(z)

— = _1—Tm1n{hi,y}=0 (2.4)

For simplicity, we ignore the constraints that are required to ensure that x > 0,
so that maintenance expenditures are irreversible for all probability functions
p; this assumption is not restrictive so long as p is sufficiently steep for low
investment. After simplifying, we have the investment rule as a function of

potential damages:

) = 0 () 2.5)

We see that the investment rule is identical to that of the social planner, so long

as liability covers all damages. Profits are non-increasing in potential damages:

SI1- 0 D y<h
oh
—p(zt) + h<y
Hence, we may determine a point hZ such that firms are indifferent between

closing and operating:
{BL L Q=a"(h)+p(« (b)) h}

where h% € [a,b]. Firms with h < A" find operations profitable, and remaining

firms close:
Q : h;<ht
q; = R
0 : ht< h;

2
3Note also that the SOC holds: S~ = —p"(x)h < 0 for h < y.

62z
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We see that investment increases with potential damages, so long as liability

covers those damages:

et _ () () | |

oh oh oh
Regulators

Social welfare may be found as under social planning, but now taking the firms’

investment function as given:

¢t o= {U(Q) — 2"(h) — p (x*(h)) b} f(h)dh + L — F(h")] x U(0)

Aggregate output is
]TLL

Qf(h)dh = Q x F(h")

2.2.6 The Case of Regulation Only

We next consider the case in which firms operate without liability, but regulators
impose a minimal standard for investment. Ignoring the possibility of subsidies,
this scenario presents a lower bound for liability limits, measured as the benefits
presented to firms by limiting their liability levels. We later will compare these
results to those for the case of both regulation and liability, which provides the

other relevant extreme when considering the effects of liability limits.

Operators

The profit function is specified as:

17 (h) = max {o, max {Q - x}}
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Given zero liability and zero damages to to value of the firm, and because this
model has only one period, firms clearly find it optimal to invest as little as

possible. Hence, each sets investment to the regulated level s:

z®(h;) = s

For s < (@, firms find it profitable to operate, but not otherwise. Hence, the

output rule is:

0 @ Q@<s
Q : s<@Q

Either all firms operate, or all firms close.

q; =

Regulators

Regulators take into account the effects of their policies on the decisions made
by plant operators. Hence, in effect they choose whether output will be zero or

positive. The regulators’ optimization problem is

t = mac{v0) ey [ W@ -5 -prman} @)

0<s<@Q

— max {U(0), (U@ - s - p(5) EM}}

0<s<Q

We see that the regulator must set a single minimal standard for investment
expenditures for all firms. The regulator cannot impose regulations tailored to
individual firms because we assume that h is known only by the firms themselves.
In the second line of the optimization problem, we see that the regulators’ prob-
lem is identical to the social planners’ problem for the average firm, with one

exception. The exception is that the regulation s must be no greater than @) so
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that operations for the average firm are profitable. If both regulators and social
planners find it optimal for the average firm to operate, but regulators find the
constraint binding, then it may be optimal for them to set higher standards but
also to subsidize production, so that firms remain profitable. However, we do
not consider this form of subsidies in this chapter.

The optimal level of regulation may be found by differentiating the social

welfare function given by Equation 4.6:*

5t op
= = —1——F < 2.
ds 0s (h) <0 (2.7)

. 1 —1
= s = min {Q, (p') (m)}
We see that either regulation is set to the optimal level of investment for the
average firm under social planning, or investment exhausts profits. Again, in-
vestment is equal to the socially optimal level for the average firm or is equal to
(Q, whichever is less.

We can calculate the level of social welfare under optimal regulation:

B = maX{U(O),U(Q)—sR—p(sR)E(h)}

Note again that either the industry is closed or all firms operate under regulation.

Hence, output either is 0 or Q).

2.2.7 Liability and Regulation

The final regulatory regime that we consider includes both regulation and liabil-

ity.

4Note also that the SOC holds:

2
% — _p'(s)E(h) < 0.
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Operators

Operators again seek to maximize profits, given their levels of liability. Their
choice concerning investment now is constrained by the lower bound set by reg-
ulators. Firms either find regulation binding, and thus invest at level s, or they
do not find the policy binding and so invest as if there were no regulation. In
the latter case, the firm invests according to the rule derived in Section 4.2.5.
Hence, the firm first determines their optimal investment according to the rule
in Section 4.2.5. If this level is greater than the mandated level, then the firm
sets its investment level accordingly. Otherwise, the firm sets its investment level
to the regulatory standard. Next, the firm determines whether, given its invest-
ment level, operations are expected profitable. If so, the firm invests, produces,
collects revenue, and pays any damage claims up to their level of liability. If
firms determine that operations are not expected to be profitable, then the firm
exits with zero profits.

We specify the profit function:

IT"%(h;, s) = max {0,Q — max {s,2"(h;) } — p (max {s,z"(h;)}) min {h;, y}}
(2.8)

and corresponding investment rule.

2"R(h;, 5) = max {s, xL(hi)}

As we found earlier, we may find a point A% (s) for which firms with this
level of potential damages are indifferent between operating and closing. Now,
the indifference point depends on the level of regulation s. The point may be

found as:
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{BLR(S) : () = max {3, :(:L(h)} +p (max {s,xL(h)}) min {h, y}}

although we constrain values of h2%(s) to the interval [a,b]. To solve the regu-
lators’ optimization problem, we must determine how AF(s) changes with the
level of regulation s. To determine this, we use the implicit function theorem.

First, define

C(h,s) = max {s,z"(h)} + p (max {s,z"(h)}) min {h,y} = Q

as the function which determines the combination of regulatory policies s and
potential damages h that yield zero profits. By differentiating C' with respect to
h, we find

[ 522 (14 p(ah)h] +p(a) ¢ h<y,s <k
oC p(s) : h<yazt<s
oh 822 1+ p/(a)h] . y<h,s<at

0 cy<hat<s

After simplifying, using the first order condition from Section 4.2.5, we have

5C p(max{s,xL})  h<y
oh 0 y<h

Because regulation either binds or has no effect on the firm, the derivative is
zero for s < . The derivative of C' with respect to s is:
sC 1+ p/'(s)min{h,y} : zF¢<s

ds
0 s < b
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With these equations, we can compute the derivative of A% (s) with respect to

S:

5iLLR(S) B _%
- oC
0s &
( 5
CLPERG) oy gk <
0 0.W
\
[ sitrs) L
T <0 h<y,z"<s
= 3
6hL;(s) =0 0.W.

\

Hence, we see that h“%(s) is non-increasing in regulation. We claim that this
is so by noting that dC/ds is zero for s = x*(h"%(s)), according to the first
order condition from Section 4.2.5. For regulation to bind, it must be true that
z(h*(s)) < s, and so C/ds must be less than zero.

Output is determined according to profitability of operations. Production for

firm i may be determined by comparing h; to A% (s):

Aggregate output is

LR (s) 3
/ Qf(h)dh = Q x F(hHR(s))

We employ the graph in Figure 2.1 to outline the implications of various
parameter values for the profits. In the figure, the x-axis covers the relevant
range of potential damages (a to b), and the y-axis depicts profits. We assume
that maximum liability is y € (a,b). The upper graph ({51, S2, S3,G}) is the

level of profits, assuming that regulation is not binding, so that firm h; invests
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xL(h;). Points on the graph marked {S;} are points of indifference between the
level of regulation s;, for s; < s < s3, and private investment.

Consider first the possibility that point A on the vertical axis is less than or
equal to zero. Then clearly profits are less than or equal to zero for firms with
h = a, and so profits are negative for all h > a. Aggregate output will be zero,
regardless of the level s;.

Consider next the possibility that point B on the vertical axis is zero, and
suppose regulation is so. Then firms with hy < h close, as profits are negative.
Remaining firms operate, but they find regulation binding and so they invest s,.
Their profits are given by {E, Sy}. The slope of the profit function is —p(sz).

Consider next the possibility that point C on the vertical axis is zero, and
suppose first that regulation is ss. Then the profit function is {F, Sy, S3, G}.
Firms with h € [a, hy] find regulation binding. Firms with h € (hg,y| invest
xL(h), and firms with h € (y, b] invest 2L (y). Suppose instead that regulation is
s3. Then all firms find regulation binding, and the profit function is {F, S3, G}.
Note that firms with A € (y,b] earn zero profits and are indifferent between
regulation and private investment levels.

Finally, suppose that point D on the vertical axis is greater than or equal to
zero, and suppose regulation is s4. Then again, all firms find regulation binding,

and all firms earn less than if they invested at privately-optimal levels.

Regulators

Regulators choose a minimal standard for investment in order to maximize social

welfare as before. This time, we consider three sets of parameters.

1. it <a
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Figure 2.1: Profits

{{Si} LS = mL(min{y, h})}
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First, we assume that technology and the market is such that it is privately
optimal for all firms to close, even if regulators set the minimal standard
to its lowest level (s = 0). In this case, the only possibility for regulators
to foster output is through subsidies; however, we do not consider such
subsidies. In this case, we obtain the same solution as in the liability-only

case, and social welfare with zero output is
=" = v (2.9)

. a < h*R(s) < h(s)
In this scenario, at least some firms find it profitable to operate despite
liability, but regulation is sufficiently high so that all firms that operate

find regulation binding. The regulators’ objective function is:

' U(0), ‘
LR _ max max  [M4U(Q) = s —p(s)h} [ () dh
xL(a)<J:L<h(s))§s
\ +[1 — F(h(s))] x U(0) )
(2.10)

Regulators choose between forcing the market to close and allowing prof-
itable operations. Regulations are constrained. First, let us define h(s) =
(a:L)*l (s) as the point of indifference between s and x'. Then any solution

to the problem above must satisfy the following constraints:
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Regulation must be sufficiently high that all firms that find operations
profitable also find regulation binding. At the same time, we assume that

regulation is sufficiently low that some firms find operations profitable:

a < h*(s) = 2 (a) < 2% (h*(s))

. a < h(s) < h(s)
Finally, we consider the case in which at least some firms operate, and at

least some do not find regulation binding.

U(0)7
max  [MAUQ) —s—p(s)h} f(h)dh

LR — max 0£s<{LL(ELR<s>>
+ foi {U(Q) = 2 (h) = p («(h)) h} £ (h) dh
+[1 = F(h")] x U(0)

Vs

(2.11)
As before, regulators choose between forcing the market to close and al-
lowing operations. If any firms find regulation binding, it will be those
with lowest h. To find social welfare, regulators add together the benefits
of production for firms investing at the regulated level, plus the benefits of
firms investing higher levels, plus the benefits of zero production for firms
that close. Policy choices are constrained on the lower end by zero; we
do not consider subsidies. We set an upper bound on regulation for this

h(s) < h(s) = a*(h(s)) = «*((27) 7} (s)) = s < 2" (B*(s))

At least some firms find it profitable to operate while investing above man-

dated levels. We define the point of indifference between s and z* as
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We can find solutions to the objective functions above. First, we solve for
the case in which regulation binds for all operating firms. By differentiating the

welfare function with respect to s, we see that

LR hLE (s) hLE (s)
Gt / F(h)dh — p(s) / hf (h)dh

s
I 0@ = s —p(iH(s)} £ (54() - £ P o)

RLR (s) RLR(s)
. / F(hydh — 5/ (s) / f (h)dh

ShER(s)
0s

+

T FRHR(s)) [U(Q) = U(0) = s = p(s) - (s)|

= 0

Consider the last term in the simplified form of the equation. Note that the
derivative is non-zero only if h < y and s > x”. In specifying the problem, we
assumed that s > 2%, To determine the sign of the term in brackets, we assume
that h < y, for otherwise the preceding derivative is zero and so the bracketed
term is not relevant. By definition, profits for firms with h = ELR(S) are zero.
Recall that we defined social welfare as profits plus utility from consumption less
consumers’ liability. Consumers have no liability when h < y, and profits are
zero for }NlLR(S). By employing these facts, we can simplify the last term in the

equation above.

LR ;LLR(S) BLR(S)
545_1 _ _/a f(h)dh—p’(s)/a hf(h)dh
hLR(s)

=0
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Hence, we see that at the optimum (assuming an interior solution), the cost of
additional investment, plus the benefits of lower expected damages, less the net
benefits to consumers of production from firms that exit the market sum to zero.

If we suppose that ff(s) f(h)dh > 0, as it will be if this case is relevant, then

we can simplify the first order conditions for the second case, and we have

/ S hf(h)dh] oh(s)  f(h ())
= —p/(sIR) [ o u —u(0 2.12
L e | i i g M@ O 212
= —p'(SLR)E(h|h<E(SLR%L—M:;S) F(R(s)[h < h(s)) [u(Q) = u(0)]

Because Oh*(s)/ds < 0, we know that 1 < —p/(s“®)E(h|h < h(s"®). Thus, we
have

" <25 (B(hlh < R(s5")
If all firms find operations profitable, then this rule is identical to that in the
case of regulation only. For hFR(sLR) < y, regulation will be lower than in
the regulation-only case due to the loss of consumption benefits. Given the
profitability constraint on regulation, and denoting the solution to Equation 2.12

as s5, we have
57 = min {Q — p(s5) R (557, 53}

The solution for the third case is found in similar fashion:

SCLR h(s) h(s)
= [ an-p) [ nfn

a

In this third case, assuming that fah(sLR) f(h)dh > 0, we can find a similar rule

to that in the second case:
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=1 = —p'(s) (2.13)

1" nf(h)dh
I f(h)dh
= —p'(s)E (h|h < h(s))

By solving for regulation, assuming an interior solution, we have
s = 2" (E (h|h < h(s)))

Again, we find that the rule for regulation is similar to the solution for the
regulation-only case. The optimal policy is to set regulation to the social op-
timum for affected firms. Given the profitability constraint, and denoting the

solution to Equation 2.13 as s3, we have
57 = min {Q — p(s5 )R R(s57), 53}

In summary, we reviewed three cases. The first requires that firms close,
regardless of the level of regulation, because of unfavorable technological and
economic conditions. If the first case does not hold, then regulators choose
between the second and third cases. Given the optimal levels of regulation si%t

and sE® for the respective cases, the regulators’ decision may be summarized as

follows:

U(0),
JELUQ) — sy~ p (sERY B f(h)dh
. +1 = F(RFR(s57)] x U(0), -
JEOLUQ) — sk — p (skRY B f(h)dh
S {U(Q) = 2"(h) = p (x> (h)) b} f(h)dh
+[1 — F(hF)] x U(0)
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Regulators choose between closing the industry, forcing all firms that operate to
invest the mandated amount, and allowing some to invest at the private optimum
while forcing others to invest the standard amount. In the following section, we

will determine more precisely the regulatory levels s/® and siZ.

2.3 Propositions

In this section, we establish a series of claims about optimal regulation and
operations in the markets described above. These correspond to the proposi-
tions given in Shavell [57|, while incorporating our extensions to the model and

applying the results to the case of nuclear power.

2.3.1 Proposition 1:

The level of care taken by risk-bearing firms as a function of their liability is

“(h) = 25" (min {h,y}) (2.15)

S $SP (h)

Hence, the level of care of taken by operating firms is less than or equal to the
first-best; in fact, it is equal to the first-best level so long as the magnitude of
the potential harm is less than the level of assets.

If ¢ (a) < U(0) and 11X (a) < 0, then Q°F = QF = 0. Likewise, if ¢°F(b) >
U(0) and T (b) > 0, then Q%7 = QL = Q. In both cases, output under liability
matches output under social planning. In all other cases, either too many firms

or not enough firms operate relative to the social optimum.
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e Proof

1. The equality for Equation 2.15 is clear, since Equation 2.5 is of the same
form as Equation 2.2. Note that 257 is increasing in h, while min{y, h} is

increasing for h < y and is constant for h > y. These imply the inequality.

The conditions listed for Q5 = QL. such that A5 = ke, are obvious.
We list remaining feasible cases, and categorize them either as Q°F < QF

or Q°F > QF.

Too many firms operate under liability, so that A5F < AL, if 1) y < a,
U(0) < ¢F(a), ¢°F(b) < U(0), and 0 < T%(a); 2) ¢°F(a) < U(0) and
0 < I¥(a); or 3) U(0) < ¢*F(y), (37 (b)) < U(0), and 0 < IT*(y) = II*(b).
Regarding the third, suppose IT¥(y) > 0. Then IT*(b) > 0 since liability
does not increase past y, and optimal investment is constant for all h > .
In this case, all firms will operate. If (°F(b) < 0, then not all firms will
operate under social planning, and Q°F < QL. If U(0) < ¢°F(b) and

0 < TIE(b), then Q = QF = Q°F.

Too few firms operate under liability, so that h5F > A if 1) y < a, U(0) <
¢5P(a), and 11 (a) < 0; or if 2) U(0) < ¢°F(a) and 11X (y) < 0. Regarding
the second, suppose ¢*F(y) < U(0). Then ¢ (y) —T(y) = U(Q) — Q > 0,
for U(Q) = Q + u(Q), since 257 (h) = z*(h) for all a < h < y. Hence,
for all h <y, profits and output are zero when social welfare is less than

u(Q) > 0, and thus Q* < Q7.
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2.3.2 Proposition 2

The optimal regulatory standard equals the level of investment in the social
planning case for the firm posing the average level of potential damage, so long

as regulated firms remain profitable:
s = min{Q, 2" (E(h))} (2.16)

< (B (h)

The optimal regulatory level equals the first-best level of care for the average firm
so long as it does not exceed its revenue (i.e. so long as Q < x°F(E(h))). The
regulator chooses between shutting down the industry and allowing all firms to
operate with this level of care. If the industry remains in operation, then parties
posing less risk of damage than E(h) invest more than the social planning level,
and those posing greater risk than F(h) invest less than the first-best level.

If all firms close in the first-best solution, then all firms close under regulation.
If all firms operate in the first-best solution, and if the firms are profitable under
regulation, then the optimal level of output is achieved, but social welfare is less
than first-best. If only some firms operate under the first-best solution, then
output under regulation either will be to little (if the industry closes) or too

great (if all firms operate). Clearly, social welfare is less than first-best.
e Proof

1. Since the simplified RHS of Equation 2.6 is of the same form as Equa-
tion 2.1, then Equation 2.16 follows, so long as x°7(E(h)) < Q. Since
297 (h) increases with h, parties posing less risk than E(h) invest too much
and parties posing more risk invest too little, assuming that production re-

mains profitable under regulation.
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If the social planner finds it best for all firms to close, then because it

is feasible and no superior solution is possible, so too does the regulator.

If s = 25P(E(h)) < @, and if U(0) < ¢9F(b), then all firms operate
both under social planning and regulation; hence output is the same for
both. Because only the average firm invests optimally under regulation,

social welfare is lower.

Under regulation, either no firms operate or all firms operate. If only
some firms close under social planning, then either too few or too many
will operate under regulation, depending on the level of social welfare for

zero output versus full output.

If UQ) — s — p(s®)E(h) < U(0), then regulators force the industry
to close. If instead social welfare is greater with production but @ <
2P (E(h)), then it may be socially optimal to set regulation so that all
firms operate with zero profits, while investing less than the first-best level

for the average firm.

2.3.3 Proposition 3

Social welfare is greater under regulation than under liability if the liability
is sufficiently low (y sufficiently low) or if the range of potential damages is
sufficiently small (h tightly distributed about FE(h)); otherwise social welfare

under liability is greater than under regulation. The exception is when, despite
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bankruptcy protection, high levels of liability cause firms to exit and output to
fall. If consumers value the lost products more than the risk reduction, then
it may be better to regulate a profitable level of investment with zero liability

rather than simply to offer zero regulation and bankruptcy protection.
e Proof

1. We first want to show that there is a ¥ where 0 < y < b such that regula-

tion is superior to liability for y < g, but not otherwise.

We can compute the benefit of regulation versus liability as

17U = [U(Q) = a(h) — pla’ ()R] } f(h)dbh.
(=¢F =max (1= F(hH)] [U(Q) — UO)] - [s" — [ 2"(h) f(R)dh]
— [P B = [ p(at(R)hf (h)an]
where the first term holds for Qf = 0 and the second holds for Qf = Q. If
y equals 0, then Equation 2.15 implies that investment is equal to 0 for all
h € [a,b], and thus the situation for firms under liability is identical to the
situation for firms under regulation facing the policy s = 0. The equation

above becomes

U(0) = [U(Q) = p(0)E(h)],
=5t —[p(s") = p(0)] E(h)

P — (¢ = max

since z7(h) = 0 and h” = b. Note that this equation is equivalent to

GR(S = $R7q = QR) - CR(S = O7q = Q)
U(0) = [U(Q) —p(0)E(h)],
—s — [p(s") - p(0)] E(h)

— Imax

47



From this equation, it is clear that the left-hand side is non-negative, for
social welfare under regulation can be no greater than at ¢ = QF and
s = sf. If the first term in brackets is greater, then regulators find it bet-
ter to close the industry than to choose any feasible level of regulation such
that production is positive, including the feasible level s = 0. However,
this means that the first term must be positive, since optimal closure of
the industry means that utility of zero consumption is greater than full
production and zero investment. If the second term in brackets is greater,
then regulators find it better to choose a feasible level of regulation that
allows non-negative profits and thus a positive level of production. For
the optimal level of regulation s® > 0, the second term must be positive,

as it is equivalent to the difference between social welfare with optimal

R R

regulation s > 0 and suboptimal regulation s = 0. Hence, since s™ is
the (unique) optimal s and is positive, social welfare must be higher under
regulation than under liability when y equals 0. This and the continuity

of social welfare in y prove that regulation yields better outcomes than

liability for sufficiently low liability levels.

Taking the derivative of social welfare under liability with respect to y,

we see that
( 0 . W<y
6t | I - BB ()R oy <hE=b
% 11— F)u(0) - u(@)] = Ty =0
+p(aE(y)) [ {h — y} £ (h)dh

When potential damages for all operating firms fall short of the value of
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the firm, then small changes in the maximum level of liability do not affect
the firms’ behavior, and so social welfare is not affected. If all firms find it
profitable to operate, and some mass of firms operate under the protection
of limited liability, then social welfare strictly increases with small changes
in liability, since these same firms invest greater amounts. Because the in-
creases move their investment levels closer to the socially optimal amounts,

welfare increases.

If firms that operate under the protection of limited liability just break
even, so that [I(y) = 0, then a small increase in liability could have a large
effect on output and social welfare. A small increase in y would cause
profits for [1 — F(y)] firms to become negative, so these firms would exit
the market and output would fall by a proportional amount. Consumers
would lose the benefit of consuming the foregone products, which would
have an adverse affect on social welfare. On the other hand, the amount of
liability that [1 — F(y)] firms had been escaping, and thus had been falling
on consumers or some other entity, would disappear. This would enhance
social welfare. The net effect depends on the preferences of consumers and

the magnitude of liability that firms escape.

Hence, if liability is superior to regulation for some y;, then generally
the same must be true for any y, > y;, for in almost all cases we see that
social welfare is non-decreasing in y under liability, but is unaffected by y
under regulation. The possible exception occurs for y; and y, such that

15 (y1) > 0 and 1% (y;) < 0, so that the increase in liability causes firms to
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exit. In this case, if consumers prefer the reduction of risk over the ben-
efits of consumption, then ¢ would rise. Otherwise, if consumers value
the products more than escaping their share of potential damages, then ¢*
falls. In this last case, social welfare is not non-decreasing in y, and welfare

could be higher under regulation both for low y and for relatively large y.

For y — b and II*(y) > 0, ¢! — (5, since investment under liability
is at the first best level for all h < y. Under these conditions, regulation
cannot do better and surely will do worse if the variance of h is sufficiently
large. For I1*(y) < 0 as y — b, regulation either could prove superior
in all cases or could prove superior for small and large y, depending on

consumers preferences for consumption versus the escape of liability.

Hence, we prove that there is a y, where 0 < y < b, such that regula-
tion is superior to liability for y < gy, and that liability will yield greater
welfare otherwise, with the notable exception of when consumption losses

outweigh safety gains in terms of social welfare.

To see the result of h tightly distributed about its mean, consider first
the average firm as it operates either under regulation or liability. Note

from Equation 2.15 that for 0 < IT*(E(h)),

v"(B(h)) = " (min{E(h),y})

IA

v (E(h))
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and that

st = min{Q), !ESP(E(h))}

< z°7(E(h))

For E(h) < y and 2°7(E(h)) < Q, then z%(E(h)) = sf and regulation
is as good as liability in maximizing social welfare for the average firm.
If 25F(y) < Q and y < E(h), then zL(E(h)) < sf and regulation is su-
perior to liability for maximizing social welfare for the average firm. If
Q < 2°P(E(h)) and Q < z°F(y), then investment and output are zero
under liability but may be positive under regulation; they will be positive
only if it is socially optimal. Hence, regulation generally is superior to

liability for the average firm.

In cases where x(E(h)) < s so that (L(E(h)) < ¢R(E(h)), then con-
tinuity implies that there is a non-degenerate interval including E(h) in
which U(Q) — s —p (s%) h > U(Q) — 2" (h) — p (z*(h)) h. If the probabil-
ity mass within the interval is sufficient, the difference in expected social

welfare between liability alone and regulation alone, given by

hL
{[U(Q) — 2" (h) —p (2" (h)) h] } f(h)dh

a

—[U(Q) — s —p (s") E(h)]

will be negative, and regulation will be superior to liability.

If h = E(h) for all firms, so that all firms are identical, then clearly the first-

best solution can be reached under regulation so long as z°7(E(h)) < Q,
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for then either s® = 2P (E(h)) or all firms are closed, with the decision
following the first-best. This solution would not be reached under liability
when y < E(h) and II*(E(h)) > 0, for then z%(E(h)) < 2°F(E(h)). If
instead y > E(h) and IIL(E(h)) > 0, then s = 2L(E(h)) = 257 (E(h)),
and so regulation is as good as liability. If II( £(h)) < 0 under liability, but
optimal regulation allows operation, then regulation is superior; however,
sf = min{Q, 25T (E(h))} in this case, and so the social-planning level of
welfare might not be reached. Hence, regulation is at least as good as
liability when all firms are identical. As argued above, continuity allows

us to extend the argument to the case where the distribution of potential

damages is sufficiently small.

2.3.4 Proposition 4

For the optimal use of both regulation and liability, we classify three potential

outcomes:

1. For a < y, the optimal minimum level of investment is less than the level
required in the regulation-only case, and it equals the investment level in

the liability-only case for those parties posing the least potential damage:
st = 5P (a) < T (2.17)

No firms’ decisions are constrained by the regulations. All are induced by
liability to take at least as much care as the required standard s“f. A

sufficient condition for Equation 2.17 is

ot (EL) > SR (2.18)
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or, equivalently, that the motivation to lower risk is sufficiently great (y

sufficiently high), while profits remain sufficiently high for firms with h = a.
e Proof

(a) sL® € [29F(a), s¥]: For every h, expected social welfare is greater at
s = 197 (a) than at lower levels of investment, so that s“% > 257 (a).
Of course, this assumes that firms with potential damages a find it
profitable to operate at sL® = 25F(a). If this is not the case, then
Equation 2.18 does not hold, and either the industry optimally is

forced to close or Proposition 4b or Proposition 4¢ holds.

To prove that sE® < sf let W(s;r) be expected social welfare un-
der regulation only, and let W (s;rl) be expected social welfare under

combined regulation and liability. Then for any s; < s
Wi(sy;r) —Wise;r) < Wi(sy;rl) — Wi(se;rl) (2.19)

WE show this by establishing the corresponding weak inequality for

each h < h% and s, < Q:

max {U(0), U(Q) — s1 — p(s1) h}
—max {U(0),U(Q) — s2 — p(s2) h}
max {U(0), U(Q) — max{sy, z"(h)} — p(max{s, z*(h)})h}
—max {U(0),U(Q) — max{sy, 2" (h)} — p(max{ss, x*(h)})h}
(2.20)

To verify Equation 2.20, note that equality holds for A such that

z¥(h) < s;. For h such that s; < z¥(h), both for s; < xl(h) < sy
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and for s, < z%(h), the inequality is strict. The argument easily
can be modified to show the same condition when s; < s5 < ) and

hl < h, when s; < Q < so, and when Q < 51 < so.

As M maximizes W (s;7l) over s, W (s rl) — W (st%;rl) < 0. But
then if s < s/ Equation 2.19 would imply W (st r) — W (sEE;r) <
0, which would contradict our finding that s is the unique optimum
under regulation. Thus s™f < s%.

sUR < sB while II*R(AY) > 0 at investment level s/% < & (BL) im-
plies that some firms invest amounts exceeding s™%, that is, s/ <
zLR(hY), solong as 0 < ITX%(a): If not, then it must be that 2 % (hF) <
st and so for s > s Equation 2.10 is relevant. Since Equa-
tion 2.10 has a unique maximum either at s’ or at the point s*% >
zL (k") such that TI*?(h%) = 0, and we assumed that s < s® while
profits at hL were positive given investment level s“f, then Equa-
tion 2.10 must have a unique maximum over s > s at sf. But

then the social welfare function could not have had a maximum at

sttt < g% This contradiction is our proof.

stR < sR while TI“R(AL) > 0 at investment level s“® implies that
st is determined by s'® = 2°F(a), so long as I1*f(a) > 0: From
(b), we know that if s“% < s% while IT*?(h%) > 0 at investment level
sttt then Equation 2.11 is relevant for all s in an interval properly

including 2°F (a) and s, We can split the equation into three of the
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following four integrals:
h(s)
/ [U(Q) — s — p(s)h] f(h)dh
min{y,hL}
+ [ 0@ = 2 = e ()] S
h(s)

+lychr {/yb [U(Q) — 2" (y) — p(="(y))h] f(h)dh}
+ I ey {[1 - F(BL)]U(O)} (2.21)

Note that for s € [#°F(a), 257 (y)], the terms in the third and fourth
lines of Equation 2.21 are constant and thus are irrelevant for the
optimization problem. Note also that the second integral, on the
second line, is maximized for all h € [h(s), min{y, h“?}]. The first
integral, finally, falls short of the social welfare maximum for h(s) > a,

or

S 0@Q) = 5 = pls)h] f(R)dh
< [V U@ — a5 (h) — p(a (W)h] £ (h)dh

since s > z°F(h) for all h € [a, h(s)). The two terms are equal only
for s = 257 (a), so that all firms with h € [a,y] invest the first-best
amounts. Firms with h € (min{y, h*?},b] either close or invest in
the amount determined by their liability, z“%(h) = x”(h). Hence, if
a < y, a possible solution is that regulation is not relevant. In this
case, all firms invest the privately-optimal amount z*(h).

(d) If Equation 2.18 holds, then s“® < s: Suppose not. Then by (i),
st = s But suppose Equation 2.18 implies that Equation 2.11 is

relevant at s’; we need only follow the argument in (1c) to show that

stB = 25P(a) < %,
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2. All firms operate and find regulation binding. Either the optimal level

equals the optimal regulation-only level, or regulation drive profits to zero

for for firms with the most potential damage; that is, either

or

I (y) = 0

given z¥(y) < sM < s, Liability is insufficient to inspire greater invest-

ment than s“%. This will result for zX(y) sufficiently low for a < y and

0 < ITX(y), so that 257 (y) < s

(2)

If TIX%(y) > 0 at investment level sf, and if s*® = s, then no firm
invests more than s®: Otherwise, 2(y) > s®, which by (1d) implies

sl < 5B a contradiction.

If TIX(y) > 0 but ITX2(y) < 0 at investment level s%, and if 2l (y) <
sERthen IT*R(y) = 0 and s*® < sf': Since profits fall with investment
given a fixed liability level y, profits are lower for investment s than
for s < s®. Since profits are zero at s“%, no firm would choose to
invest more. If profits were positive, then regulators could improve

welfare by increasing regulation toward s’.

If 2L (y) is sufficiently low for a < y, and 0 < II¥(y), then zX(y) <
st < sft and either st = sf or TTX(y) = 0: Assume the contrary.
Then in particular it must be possible that s“® < s® while 0 < IT#(y)
for an 2%(y) < 257 (a). But by (1b) we know that if s*% < s® and

profits are positive, then L (y) > s/®. Hence, 57 (a) > s“. This,
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however, contradicts (1a), so that certainly for all 2L (y) as low as

9P (a), 2% (y) < sLB < SR

Note that as the liability limit decreases, so does investment, and
it approaches 75 (a) as y approaches a. Hence, if y is sufficiently

small, x¥(y) < sHt < st

3. The optimal regulatory standard allocates all profits when y < a, 0 <
1% (a), and profits are negative for s = 2°F (a); that is, the optimal liability

level is

{s" 1 Q=s+p(s)y}

such that z%(a) < s*# < Q. If U(0) < ¢%(s) for s = s then all firms
operate. Otherwise, regulators force all firms to close. If firms operate, no
party is induced by liability to take more care than x’(a), but all firms

find regulation s“f binding.

This will obtain if y < a and production by all firms at s® < 257 (a) both
provides greater social welfare than zero consumption and allows those
firms to earn non-negative profits. In this case, z%(y) < s < 257 (a). In
other words, firms invest * = max{s, 57 (min{h,y})}. Then, for y < a
and 0 < IT¥(a) and U (0) < ¢ for s = sE it may be optimal to set
rl(a) < s < 25F(a) to gain the benefit of consumption despite sacrific-

ing safety.

If production is positive under regulation, then s < s%.
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()

(b)

If y < a, 0 < IX(a), and profits are negative for s = x°F(a), then

zl(a) < sH: This follows from (1a).

If IXR(a) < 0 for s = 25F(a) but 0 < I (a) for sif < Q, and if
U(0) < ¢ for s = s" < @, then all firms operate: First, if U(0) < ¢
for s = st < (), then it is welfare-maximizing for all firms to operate
with x > si®. Because firms bear (limited) liability costs, liability
levels strictly must be less than net revenue (s'® < Q) for firms
to remain profitable. Because x°F(h) and z*(h) are increasing in
h <y, and because 0 < IT1X(a), investments of z*(a) < 2% < 25F(a)
fall closer to the first-best solution while leaving profits non-negative.
Hence, it is optimal to allow all firms to operate while forcing them
to invest si® > xl(a), given the assumption that U(0) < ¢(£(s) for
s = stk

LR < B If produc-

If production is positive under regulation, then s
tion is positive under regulation, then s < . Positive production
under both liability and regulation requires that s*? < Q — p(st®)y,
given the other assumptions listed above. If s < 257(a), then it
must be the case that s = @, for otherwise it social welfare would
be increased by moving s closer to the first-best solution for a. How-

E — s = (), and so given the

ever, profits clearly are negative for s”
assumptions above, it must be true that s“% < s® with the difference
being p(s™f)y. Essentially, this is the amount of the firms’ insurance
premiums, assuming that insurance is available at an actuarially fair

rate. Hence, regulators find it optimal to set regulation lower than the

optimum under zero liability, but the savings go to pay for insurance.
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2.3.5 Summary

In this section, we examined optimal conditions under three regulatory regimes.
First, we considered the case with limited liability but no regulation. Next,
we considered the case in which there is regulation but no liability. We then
compared the relative merits of the first two alternatives.

Finally, we considered the case in which there is both limited liability and
regulation. In this case, assuming that technology and economics allow at least
some firms to operate with the given level of liability as long as regulation is
sufficiently low, regulators’ choices depend on the level of liability limits. If
all firms realize the benefits of liability limits, then regulators set regulation
such that all firms find it binding. If profits were non-positive for all firms at
investment level 2°F(a), then regulators set their policies sufficiently high to
drive profits to zero for all firms. If some firms face full liability, but the liability
level is relatively low while profits remain positive for firms facing the greatest
liability, then regulators set policies such that all firms operate and all invest at
the regulated level. If the liability limit is relatively high, such that most firms
invest at the first-best level, then regulators set policies sufficiently low that they

fail to bind for any firm.

2.4 Applications

In this section, we consider a series of applications of the model. The first several
consider whether this model responds to parameter changes in a way consistent
with historical market changes. The final applications derive estimates of implicit

subsidies to firms for liability limits, and we address the question of what is the
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optimal level of liability limits.

2.4.1 A Fall in Excess Demand

Demand growth was very high in the decade or more preceding 1973, with aver-
age annual growth rates exceeding seven percent. Following 1973, average annual
growth rates fell to less than three percent. Suppliers had been preparing for
continued high growth rates by investing heavily in new base load plants, espe-
cially nuclear and coal-fired power plants. This significant reduction in demand
growth forced many planned and partially constructed plants to be abandoned,
and less profitable plants were closed.

To allow for changes in demand, suppose that U(Q) is scaled by parameter ¢.
When multiplied by utility u(Q), ¢ becomes a preference parameter. Suppose it
also affected profits directly, so that net revenue becomes ¢(). Thus, changes in
consumers’ tastes affect firms directly as changes to market prices. In the model
above, ¢ = 1. The level of utility for zero consumption remains unchanged at
u(0). Hence, for a shift from ¢ = 1 to ¢ < 1, positive consumption becomes
relatively less desirable compared to zero consumption.

A reduction of excess demand, in terms of our model parameters, would
appear as an fall in ¢. There is no construction in our model, and we assume
that all produced electricity is sold. Hence, these changes have no direct effect
on privately optimal investment % in our model. However, firms are more likely
to exit as net revenue ¢@) falls. Hence, aggregate output may fall with ¢.

If we ignore changes to production capacity, and if instead we assume that
all changes to excess demand come through the preference parameter ¢, then

the level of maintenance spending remains unchanged for all firms that operate
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but are not bound by regulation. However, the condition for whether regula-
tors should allow production is affected, as is the optimal level of regulation in
relevant cases. We see in Equation 2.14 that for sufficiently large reductions in
demand, regulators will shut down the industry.

Of course, the nuclear energy industry was not shut down completely in the
1970s or 1980s, when this shift in excess demand occurred. Hence, if we believe
that y < a as described in Proposition 2.3.4-3, then the predictions of our model

LE in order to maintain profitability. This is

require that regulators decrease s
so because under our assumptions, regulation either allows all firms to operate
or all firms close. In reality, most agree that regulations were heightened. Con-
tinued production with a mere thinning of producers indicates that our model’s
predictions are too extreme. We will revisit the matter in the section below

on exit costs. Still, our model does predict a qualitative response that at least

vaguely is accurate under some parameter vectors.

2.4.2 Increased Aversion to Losses

The 1979 accident at the Three Mile Island (TMI) nuclear power plant made
the possibility of a serious accident real to most Americans. While this accident
turned out to be relatively minor, and little or no off site damage was caused by
escaping radiation, the 1986 accident at Chernobyl truly was catastrophic. Such
events led some to adjust upward their assessment of the probability of accidents
that would cause harm to third parties, which is represented in this model as an
increase in p. (See, for example, Zimmerman [63| and Price [43, p. 58].) Suppose

that the perception of probability function p is scaled upward by parameter o
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to become ap.® Under liability, privately optimal investment becomes

ab(h) = ()" <_m)

As operators perception of their own risk increases, so too does their invest-
ment. This reduces expected profits directly, so firms are more likely to exit and

aggregate output may fall. In general, profits change by

o1l Oxl I
o= —[1—a) S — pla®) min {y, )

For high levels of expected damage, the derivative is negative even for o > 1.

Under regulation only, the optimal policy becomes

5® = min {Q, W)™ (_aEl(h)> }

In this case too, assuming an interior solution, regulation forces investment to

increase and profits to fall, so aggregate output also may fall. The condition for
whether regulators should allow production also is affected by aversion to losses,
and it becomes more likely that regulators will force plants to close. Under both
liability and regulation, investment will increase for all firms, since all invest
either z%(h) or s™f and these terms both increase.

At lease some of the increase in aversion to loss, however, is represented bet-
ter as a change in preferences. Specifically, the public developed greater concern
for safety and relatively less concern for economic well-being. Consequent pres-

sure on politicians may have caused regulators’ preferences to shift similarly.

Of course, o must be restricted such that o € [0,1/p (0)] so that ap € [0, 1]. These awkward
restrictions make clear that the constant parameter should be generalized to a function « (h)
such that a (h) p(z (h)) € [0,1] and satisfies our assumptions regarding derivatives. We then

might consider shifts in the function a.
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Such changes may be modeled simply as in the preceding section on decreasing
demand.

Alternatively, we can redefine the parameter « in our analysis above to rep-
resent political preferences or public tolerance of nuclear power risks. In this
case, there are no parameter restrictions. o < 0 indicates a public comprised of
thrill-seekers, and a = 0 indicates an indifferent population. Increasing positive
values of « indicate growing aversion to potential harm. For o — 0o, consumers
reject nuclear power regardless of potential benefits. If we assume a > 0, which
seems reasonable, then we might ask what determines the magnitude of the pref-
erence parameter. In our static model in which each market and each group of
consumers are identical, we might assume the parameter exogenous and perform
comparative-statics analysis. A slightly more interesting approach would be to
assume a range of randomly-distributed preferences. The distribution would be
analogous to the real-world distribution of ideological and political persuasions
concerning the corporate world, consumer safety, and the natural environment.
Perhaps still more interesting and important cases could be analyzed with a
dynamic version of this model. With such a model, tolerance for risk and per-
ception of risk could be based on past performance of plants; of course, this
particular application also would require other extensions to our model. If the
public had imperfect information concerning the risk posed by the plant in their
own market, and if past performance offered a signal of the true risk, then prefer-
ences might lean against nuclear operations (high «/) following poor performance
or misbehavior, and the public might be tolerant of operations (low «) following
periods of good performance. Regulators would have political interests lead-

ing them to care about the public’s perception of risk in addition to economic
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well-being and their own risk assessments. This methodology could incorporate
problems of waste disposal that currently plague the industry. Waste disposal,
especially temporary storage, perhaps poses greater political problems than tech-
nical problems. It thus would be better to consider waste storage as a political
constraint that may force plants to close when allowed space is exhausted. These
factors too best would be captured in a dynamic political economy model.
Increasing aversion makes it less likely that plants will be allowed to operate,
which generally is consistent with the events of the late 1970s and 1980s. The
perception of risk appears to have increased following the TMI accident, although
there is evidence that it was trending upward throughout the 1970s. In the
following years, many plants were closed, investment expenditures increased,
and profits fell. However, Zimmerman [63| argues that existing power plants
lost little value as a result of TMI once the uncertainty immediately following
the accident was resolved. The primary impact of that accident was felt by those

building new plants.

2.4.3 Increasing Maintenance Expenditures

It is difficult to find data on maintenance expenditures alone. Usually, this
data is combined with operating costs. Such data are reported by the Energy
Information Administration (|2, p. 9]) for 1974 to 1992 in constant dollars per
kilowatt of plant capacity. Prices are assumed equal, or at least proportional to,
the implicit price deflator for GDP. Most notable are rapid cost increases between
1975 and 1984, followed by falling costs through 1992. Costs reported by the ETA
increased roughly six-fold in 1993 dollars, from about $10 per kilowatt in 1975

to about $60 per kilowatt in 1984. The aggregation over operating expenses and
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maintenance costs does not allow us to make claims about maintenance alone.
We might reason maintenance costs generally grew at least as fast as operating
costs, however, based on the stricter regulatory policies enacted in the late 1970s
and early 1980s, and based on stricter enforcement of such policies.

Rothwell [48| reports that older plants, which generally are more expensive
to operate, are most likely to close. Plants in regions with lower electricity
prices also are more likely to close, although these pressures may be lessened by
pollution controls and possible future taxes on carbon emissions. In this era of
deregulation of electricity markets, we might expect acceleration of plant closings
as profits are squeezed both by lower prices and the higher costs of maintaining
aging plants. (Also see Rust and Rothwell [56] for a forecast of plant closings.)

Higher expected decommissioning costs and higher estimated accident prob-

abilities also would lead to higher spending.

2.4.4 Exit Costs

In the work above, we assumed that decommissioning costs were zero. We can
adjust the point of indifference h% between operating and closing for the liability-

only case, given positive closure costs c:
{EL Q4 c=z"(h) +p (" (R)) h}

It is easy to see that hl increases with ¢ so that firms are more likely to remain in
the market when exit costs increase. Exit costs do not enter the investment func-
tion % (h), nor do they enter the interior regulation rule s® = (p/)~' (=1/E(h)).
However, if the corner solution holds for regulation, then the optimal policy be-

comes s% = @) + ¢ which is increasing in exit costs. Similar extension may be
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made for the case of both liability and regulation.

We see then that higher expected decommissioning costs would lead to higher
spending. I do not have evidence that closure costs increased. We might suppose
that they did, as regulatory standards generally increased through the 1970s.

Suppose that there is a distribution of exit costs, such that the cost for closing
plant ¢ is 0 < ¢;, and suppose that c is not correlated with h. Then the corner
solution under regulation only becomes less clear. Before, aggregate output was
Q for s < @ and zero otherwise. With a distribution of exit costs, aggregate

R increases past @, and aggregate output reaches

output will begin to fall as s
zero when s = @Q + max(c). Hence, firms with low exit costs will close first
when economic conditions deteriorate. In the section above on excess demand,
we noted that the number of power plants fell at the same time that demand
weakened, but aggregate output did not reach zero. A distribution of exit costs
provides a simple, though simplistic, explanation.

Note that we have not accounted for on-site cleanup costs following an acci-
dent. We might expect that such considerations would lead firms to invest more.
If cleanup costs are greater than normal decommissioning costs, then we also
expect firms to be more inclined to exit. The expected cost of decommissioning
Unit 1 at the Peach Bottom power plant was reported to be about $130 million,
and the cost of cleaning up the damaged Unit 2 at Three Mile Island was es-
timated to be $433 million.® See Price [43] for an international comparison of
decommissioning costs.

Surely the mandated changes and other regulatory policies, together with

re-optimization and reassessment by plant operators, explain much of the be-

6Reported in the Lancaster New Era on December 3, 2003.
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havior recorded in the data. Of course, this model assumes that maintenance is
preventative rather than reactionary. We have no data on preventative mainte-
nance. Also, there likely is some distinction between maintenance that makes
production more reliable and that which reduces the likelihood of an accident.

While there is some overlap, we model only the latter.

2.4.5 Liability Levels

While Shavell defined liability y as the value of the firm, making the model
conform to standard bankruptcy rules, it equally well could be defined otherwise.
In the U.S., liability is established under the Price-Anderson Act. This generally
means that liability is less than the value of the firms operating nuclear power
plants.

Prior to 1988, these levels were set in nominal terms and were adjusted in-
frequently. Since then, the levels are set in real terms and adjust automatically
for general inflation. Still, the liability levels are not linked directly to poten-
tial accident costs. One obvious reason for this is the difficulty of establishing
the distribution of accident costs, or even to establish an upper bound for these
costs. Making cost estimation still more difficult are the great regional differ-
ences among plants. Some plants are located in rural settings with relatively
low values for surrounding properties, while others are in urban settings with
tremendous real estate values. However, commercial insurance companies do
assess potential damages for each plant. Factors they consider are the size of the
plant, population and property values in the surrounding area, and the prob-
ability of an accident at the plant (Dubin and Rothwell [17, 16]). Dubin and

Rothwell [17] fail to find that power plants in highly-populated areas respond
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more quickly to opportunities to improve safety. This may indicate that Price-
Anderson protections give too little incentive for operators to minimize risk and
that regulators’ ability to construct and implement optimal policies tailored to
specific locations is limited.

The assumptions in our model regarding potential damages are not satisfac-
tory. A troubling assumption is that operators have complete knowledge of h but
that regulators know only the distribution. In reality, it seems that regulators
should have an estimate of h that at least approaches the accuracy of the firm’s
assessment. A better assumption would be that firms have private knowledge of
the probability of an accident p, which may be different for each firm. Another
troubling assumption is that the potential damage for each firm is a single value.
In reality, there is a distribution of potential damages for each plant (Dubin and
Rothwell [16], Heyes and Heyes [29]). We might define h; to be the expected
value of potential damages for firm 4, and f(h) becomes the distribution of mean
values across firms. In this case, all firms might benefit from liability limits,
even if their mean damage assessment falls below the limit. We will continue to
ignore such problems in the following analysis.

The definition of the value of the firm becomes troublesome when we consider
the possibility of catastrophic accidents. Consider the possibility that all assets
of a firm are devoted to a single plant. Suppose that the plant is destroyed in an
accident. Whether the value of the firm had been defined as the present value
of profits or as the value of the firm’s capital (see Rothwell [50] for a comparison
of the net present value of profits to resale plant prices), the value of the firm
is destroyed. For liability laws to be credible and thus to affect investment, the

firm must hold other assets or insurance. This problem is less apparent in a

68



dynamic model, because the appeal of future profits make firms more inclined
to avoid accidents today. However, it remains a problem in any finite-horizon
model, for expected future profits diminish over time.

We could extend our model by allowing regulators to choose a level of liability
g € [0,y] to maximize social welfare, where y is the value of the firm. In such
a model, it is possible that changes in other parameters, as described in the
sections above, have been modest, and that the optimal liability level ¢ would
not have changed much. If so, then it is possible that such a model would be
consistent with reality. However, it seems unlikely that regulators choose the
liability level to maximize a simple welfare function as presented in this model.
Recent difficulties with renewing the Price-Anderson Act, for example, show that
political pressures affect significantly the establishment of policies.

In our model, we assume that maximum liability is specified exogenously,
and is not under the control of the regulator. If we define y as the value of
the firm, which is the maximum liability level under standard bankruptcy law,
then we already have analyzed the relevant extremes: the regulation-only case
sets liability to zero, and the regulation and liability case sets liability to the
full value of the firm. If we define g € [0, y| as the actual level of liability, then
we might use the results above to analyze the current regulatory framework. A
comparison of results for y and y would begin to address the arguments that
Price Anderson should be abandoned. We begin such comparisons in the next
section, where we construct measures of the benefits to firms for setting ¢ below

the full value of the firm.

69



2.4.6 Implicit Subsidies

The benefit to plant owners of liability caps y < y can be computed using
the operators’ objective function from Equation 2.8. We must remember that
private benefits do not mean necessarily that social welfare suffers, given our
specification of the welfare function. We consider later the effect of § < y on
social welfare. Nevertheless, we adopt the common phrase "implicit subsidies"
to describe the difference in profits for the two regimes.

We can compute the value of subsidies for a given firm ¢ by comparing profits
under two regulatory regimes; we omit the subscript ¢ to simplify the notation.
In the following equation, we first assume that production takes place under
both regimes, and we first consider the case described in Proposition 4-1 (a < y
and sI® = 25F(a)). We consider two alternative liability rates § and y, where
§ <y < hso that z%(§) < z*(y) and p (z*(g)) > p(z*(y)). The value of
operations is [T and II under policies y and y, respectively. The value of subsidies

18

S = -1 (2.22)

)9 —p (:BL(y)) Y]

= [#"(g) —="(y)] +p (IL(?J)) G-yl + [p(="@) —p(a"W)]y

We see then that operators save by spending less on investment goods. Less
investment means that the probability of an accident will be higher, but the lower

liability level makes the net effect on profits ambiguous. From an earlier section,

we saw that the left-hand derivatives of profits is ag% L= —p (max {s, xL}),
=y

so 0 < S at least for y — y. Expected liability can be decomposed into the
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expected difference in payments given the new accident probability, plus the
difference in accident probabilities times the original liability level.

Most other attempts to estimate the benefits of liability caps consider only
the second term in the last line of equation above. They assume that y = h,
ignoring standard bankruptcy rules, and that z*(¢) = 2L (y). Hence, authors like
Dubin and Rothwell (|16]) essentially estimate subsidies as p (z%(9)) x (h — §).

Most debate compares current liability levels, where g clearly is less than h,
at least in the worst case, to an alternative regime where operators bear full
liability (i.e. y = h). Such arguments in reality concern whether it is optimal
to allow operations, as it commonly is assumed that no plant would operate if
forced to shoulder full liability. However, if there is a § such that y < y < h, and
if ¢ is the liability level that leaves firms indifferent between decommissioning
and operations, then private benefits are not greater under a g regime than under
a regime with full liability h. If we maintain the assumption that exit costs are

zero, then II = 0. To calculate subsidies, we replace II in the equation above

with II
S = M-I (2.23)
= [I-0
= I

Note that we obtain the same result for any y > ¢, so that subsidies do not
increase without bound as potential damages h > ¢ increases, regardless of
the limited liability level §. Implicit subsidies are equal to reported profits less
expected liability.

If we were to follow other authors in assuming that y = h, that firms operate
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despite expected losses, and that investment is 2%(§) under both regimes, then
for § < y < y the results above show that our estimated subsidies would be

exaggerated as

x = {Q—="@) —p (") 3} — {Q—2"()) —p (+"(®) v}
- {Q-2"@) —p("@) 9} —{Q ")) —p («"(®)
= —{Q—2"@) —p(«"(®) 7} —{Q —2"() —p (+"(®)
= —{Q-2"@) —p(« ()

= -1

SN—
Ny
—

Note that —II > 0 since profits for a firm with liability y would be negative.
Hence, given our unlikely simplifying assumption about investment, which them-
selves may lead to exaggerated measures of implicitly subsidies, alternative es-
timates in the literature further exaggerate implicit subsidies by the losses that
firms would incur if forced to remain in the market while bearing liability y > 9.

In Proposition 4-1, we saw that under given conditions regulation played no
role, as it was set sufficiently low so that it failed to bind for any firm. Hence,
so long as a < g, the optimal regulation level is not affected.

Under the conditions for Proposition 4-2, all firms find regulation binding.
Since optimal investment increases with h, then regulation will continue to bind
for y < y, provided that the regulatory policy continues to exceed the private

investment level. Assuming that policies do not change, the subsidy will be

S = 1I-1I
— {Q—SLR—p(SLR) ?j} . {Q_SLR_p(SLR) y}
= p(s") [y — 9]
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For unchanged regulatory policies, then, the benefits to firms is the expected
value of escaping liability y — . We ignore here the expenses of s'f > zf,
however, so the picture for operators might be less rosy than the result suggested.

If y = h <y, then the approach to measuring subsidies taken by other authors

is correct. If y > y or if h > y, then those estimates are exaggerated by

This is the same result that we saw above. Alternatively, we can specify y =
P (SLR) [y — 7], so that other estimates exaggerate subsidies by expected damages
in excess of .

In the preceding paragraph, we assumed that s“f is unaffected by changes
in 9. However, we can show that 8’:;% < 0 for h® > y and is zero otherwise.
By considering the case of Proposition 4-2, we assume that all firms operate,
or h“R = p. If this is true both for y and ¢, then optimal regulation s“?
indeed remains unchanged. Recall, however, that s*® = 2%(a) for relatively
high liability limits (see Proposition 4-1), and s“* € (2%(y), s”] is optimal for
relatively low liability limits (see Proposition 4-3). Thus, for § < y, then s/f =

z%(a) could be optimal under y while s“* € (2%(3), s"] could be optimal for g.
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In this case, assuming that y < ¢ and that s“® = s for §, subsidies are

S = II-I
= {Q-s"—p ()i}~ {Q-at) —p (=" W) v}
== "2 )] - [p(s") s - p (" W) ¥]

= "2 -p (") G-yl - [p(s") —p("W)]y

On the last line, the first term is negative and the second and third are positive.
Firms’ gains from liability limits partially are offset by spending requirements
that exceed privately-optimal levels. This case is quite interesting, for investment
is higher for ¢ than for y. If expected profits are negative under y, then a possible
justification for setting § < y is that lower accident probabilities and higher
aggregate output can be gained. Essentially, firms are able to save on insurance
premiums but are forced to spend the money on investment.

For y < a, as described in Proposition 4-3, profits are zero for all firms.
Hence, so long as §y < y < a, there are no subsidies under optimal regulation
and limited liability. If § < a < y, then the results in Proposition 4-3 are not
relevant, for we assumed that profits are negative for y < a and s = 25F(a). If
this is true for y < a, then profits surely will be negative for a < y. Hence, given
the conditions specified for Proposition 4-3, there are no subsidies if regulation
is set optimally. The level of regulated investment, however, does depend on the

liability limit. The optimal policy rule is
s =Q — p(s")g

We saw earlier that the break-even point falls as regulation rises. Thus, regula-

tion increases to maintain zero profits when decreasing the liability limit from
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y > a to § < a. This greater spending on safety measures again means that
limiting liability can both decrease the probability of an accident and increase

aggregate output.

2.4.7 Social Welfare Under Liability Caps

Again consider the regulatory regime in Proposition 4a. Consider liability levels
§ < § < h, and again suppose that IT = 0. We now consider differences in social
welfare among the alternative liability levels.

First, note that ((h) = ((0) since firms close under liability h. If liabil-
ity is lowered to g, output becomes positive and social welfare becomes 5 =
U(Q) — z5(g) — p(zX(H))h = w(Q) — p(z*(g)) (h — 7). This is the sum of the
benefit of consumption less the liability borne by consumers. If ¢ > ¢(0), then
welfare improves with the reduction in liability to the point where firms earn
zero profits. If liability is lowered further to ¢, then social welfare becomes
U(Q) = 24(§) — p(a*(§))h = Q + u(Q) — #"(§) — p(«"(§)h. 1 { > ((0), then
welfare improves with the reduction in liability and firms earning positive profits.
Without additional information, we cannot determine whether society is better
off with liability y, g, or h.

In the section above, we showed that investment spending can be higher
under lower liability limits. In such cases, liability is transferred from firms to
consumers. In exchange, firms are forced to spend their gains on additional
safety measures. Clearly, this lowers expected damages. We might argue it best
to take this to the extreme by adopting the regulation-only policy. In that case,
net revenue may be exhausted by forced spending on investment goods. Bar-

ring explicit subsidies for investment products, this achieves the lowest possible
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accident probabilities. Given our specification of quasi-linear preferences in the
social welfare function, regulators care only about the level of expected harm;
they do not care about who bears liability in the event of an accident. If we
believe that the distribution of liability matters, then we face a limitation of the

present model.

2.5 Conclusions

We specified a model of firms and regulators that incorporates key features of
the nuclear power industry. In particular, firms seek to maximize profits while
facing required maintenance and safety standards, and they operate under the
possibility of major accidents with corresponding liability for losses. Regulators
seek to balance conflicting desires to satisfy the economic wishes of consumers
and firms while ensuring that the public is afforded a reasonable degree of safety.

Our model thus combines industry output and profits, electricity demand
and social welfare, and safety and liability regulation. Few other models of
the nuclear power industry assemble these details. The resulting model thus
proves useful in sorting and assembling alternative factors that contributed to
the evolution of the industry. Other work in the literature typically focus on
particular cost or regulatory factors, but we consider both along with additional
critical matters concerning demand and liability. In current form and with simple
extensions, we show the model capable of reproducing many crucial historical
facts and events.

The key application of our model is the analysis of implicit subsidies. We

show that only under special cases will the current accepted definition of implicit
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subsidies remain valid. We derive measures of implicit subsidies from a model of
firms and regulators, in contrast to other attempts that simply propose equations
with little support. We show that it is important to consider the full regulatory
picture when attempting to understand and to quantify implicit subsidies, for
otherwise the results tend to be exaggerated in terms of benefits to operators and
increased risk to the public. In addition, we show the importance of considering
standard bankruptcy rules as the alternative to Price-Anderson, a simple fact
usually overlooked by other scholars and critics. Our resulting definitions of
implicit subsidies should guide future attempts to calculate their levels.

This model would benefit from many improvements and extensions. Some
already were described. Others include finding a solution for the optimal liability
level. As was noted, we may be forced to move away from the convenient quasi-
linear specification of social welfare in order to get an interesting solution.

Other possibilities include the allowance of differences across plants for p(z),
and to make f(h) a distribution of potential damages for each plant. (See Dubin
and Rothwell [17] for a similar specification.) This could improve the plausibil-
ity of assumptions regarding private versus public information. Liability limits
would affect all plants in all cases.

Rothwell [47] notes the relationship between safety and plant performance.
That is, plants with high accident probabilities generally are more troublesome
and expensive to operate. Hence, operators have incentives to maintain their
plants in order to maximize output and minimize repair costs, even if they face
no liability. Dubin and Rothwell [17] find that operators of less-reliable plants
moved more quickly to invest in safety equipment. They also report that relia-

bility generally falls with the age of the plant, suggesting that older plants have
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higher accident probabilities. This correlation between reliability and accident
probabilities likely will prove important in any future quantitative analysis and
in more detailed theoretical work. Still, we might expect our qualitative results
to survive.

A particularly useful extension will be to make the model dynamic. In a
dynamic model, we can examine how optimal firm behavior and optimal policies
change over time. If we relax the assumption that regulators observe invest-
ment perfectly, and if firms have incentives to misbehave, then we can introduce
monitoring and penalties for misbehavior, including civil and criminal penalties.
Penalties are best explored in a dynamic model, for firms often seem to suffer
most from the costs of being forced to close temporarily. These costs include the
purchase of replacement power and higher levels of investment spending. While
regulators do impose fines, they have been relatively small and thus seem rela-
tively unimportant. The EIA |2] reports that industries highest annual level of
fines between 1975 and 1991 was less than $8 million in 1993 dollars. Following
a near-accident at the Davis-Besse power plant in 2000, the NRC imposed a
fine of about $6 million, but the owner reportedly spent hundreds of millions on
replacement power and repairs. Price [43, p. 111] reports that the operator of
TMI was fined "over a million dollars" and that 33 plant operators also were
fined following the 1979 accident. Again, these amounts pale in comparison to
the reported $250 million in retraining and improvements for the surviving plant,
in addition to the costs associated with a two-year closure. This detail best can

be captured in a dynamic model.”

"Shavell and Polinsky [42] provide similar analysis in a static model. They derive optimal

enforcement efforts, when observation and detection of misbehavior is costly, and the optimal
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When we consider the possibility of plant closures, whether because of low
social welfare or low profitability, the problem of optimal regulation becomes
far more complex. While our results are similar to those of Shavell, they reflect
the increased complexity of the model. For essential goods like electricity, and
for great potential damages as with nuclear power production, it is important
to consider whether it might be better to close individual plants or even the
industry. At the same time, we must consider the effects of burdensome regula-
tion both on the decisions of firm operators and on the corresponding effects on
consumers. Hence, the increased burden of complexity is necessary as we seek

optimal regulatory policies for the industry.

level of fines.
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Chapter 3

Price Anderson Liability Limits

We turn briefly from our model to take a closer look at the Price-Anderson Act.
We review other attempts to quantify the benefits to firms of these liability pro-
tections. We noted in the last chapter possible problems with the definition of
implicit subsidies specified by others. Nevertheless, in this chapter we set aside
those concerns and take seriously the work of others. We correct several mis-
takes made in earlier attempts and offer extended models, based on given facts
regarding the industry and its history, in an attempt to lessen certain unlikely
implications of existing models. This work provides quantitative estimates of
implicit subsidies to firms that will be useful in later chapters.

The models of this chapter may be viewed as extensions of the applications
of the previous chapter. We follow the lead of earlier authors, however, and so
we do not consider all forms of potential benefits that firms may realize as the
result of these protections. The estimates calculated here will be employed in the
dynamic programming model developed in the second section of this dissertation.
Immediately following this chapter, though, we will return to the modelling

efforts begun in the previous chapter.
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3.1 Introduction

The possibility of accidents leading to catastrophic destruction poses a significant
concern for operators of nuclear power plants, industry regulators, and others.
Because private insurers seem unwilling or unable to cover all potential losses,
Congress passed the Price-Anderson Act (PAA) in 1957 to cap liability for power
plant operators and to ensure prompt reimbursement to the public for losses.
Dubin and Rothwell ([16], DR) proposed a simple technique to estimate the
benefit of PAA to power plant operators using 1) private insurance premiums
that operators purchase to cover a legislated amount of offsite damage and 2)
expert assessment of the probability and magnitude of damage in the worst case.
In 1998, Heyes and Heyes (|28], HH) corrected a mistake in DR’s specification of
private insurance terms. Benefits to the nuclear industry, as calculated by DR
and HH, have been used to support PAA (e.g. Rothwell [49]) and to criticize
liability caps (in Congressional testimony by PIRG Legislative Director Anna
Aurilio (|9]) and in Canadian federal court testimony by Ralph Winter (Heyes
[26])). PAA expired in 2002 but then was extended to December 2004. In 2005,
the act was extended for another 20 years. Whether such policies continue to be
offered may determine whether new plants are built in this country, and so it is

imperative that we understand clearly the effects of such policies.

3.2 The Dubin-Rothwell-Heyes-Heyes Model

DR and HH (DRHH) calculated implicit subsidies to the nuclear industry by
first solving a two-equation system for the parameters of an embedded density

function f(L), where L represents offsite losses. The first equation describes
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private insurance coverage purchased by each operator. In 1984, operators paid
an average of $0.4m per year' (Brownstein [11]) for coverage of offsite dam-
ages between $1m and $160m.2 DR assume a 30% markup?, leaving $0.28m in
expected losses. The insurance companies cover all offsite damages for totals
between $1m and $160m, and they cover the first $160m of damage for worse ac-
cidents. The second equation summarizes a 1985 NRC assessment: a worst-case
accident will result in $10,000m in offsite property damage and will occur with

0.00008% probability per reactor year. The equations are specified as follows:

160 o]
0.28 = /L x f(L)dL +160 | f(L)dL (3.1)
1 160

0.0000008 = / f(L)dL =1 — F(10,000).

10,000

Given an appropriate two-parameter density function, the system can be
solved numerically. Calculation of expected losses above the liability cap, less
the amount of industry liability and conditional on the parameter estimates,
yields the implicit subsidy per reactor year to power plant operators. Implicit
subsidies are the insurance premiums operators are spared for coverage above

the liability cap; they are calculated as

Disaster o0
Subsidy = / (L— PAA) x f(L)dL + (Disaster — PAA) / f(L)dL
PAA Disaster

(3.2)

!Unless stated otherwise, all monetary figures are in millions m of 1985 dollars.
2Required coverage rose to $300m by 2003, in current dollars (NEST-DOE [7]).
3Tf there are no accidents within 10 years, 70% of the premium is returned to the operators

(Denenberg [15]). Hence, DR assume that expected losses amount to 70% of the premium.
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where PAA is the industry’s liability limit* and Disaster is a worst-case damage

estimate.” DR recommend the log-logistic cumulative distribution function

1
F(L) = 1 + e—(atbxIn(L))’ (3.3)
and the corresponding density function
—(a+bxIn(L)) b
¢ X — (3.4)

f(L) = (1 + 67(a+b><ln(L)))2 L

where a and b are parameters. Unfortunately, DR and HH omitted the term b/L
in the density function and thus their results are not consistent with the intended
model.® This problem caused estimates in both papers to be exaggerated.
Results for the corrected DRHH model are presented in the first column of
Table 3.1, and the density function is plotted in Figure 3.1. Before the PAA was
amended in 1988, the model suggests operators implicitly received an average
subsidy of $0.033m per reactor year, and they received about $0.003m following

the amendment. Before the Act expired in 2002, the implicit subsidy was valued

4Qperators are equally and jointly liable for a portion of offsite damages. Liability for the
industry is capped at $560m, $7,153m, $6,018m ($9,300 in 2002 dollars), and $6,418m ($10,100
in 2003 dollars) for pre1988, post1988, 2002, and 2003, respectively, in millions of 1985 dollars.
Prices are deflated with the PCE deflator.

®Note that DR and HH omit the term (Disaster — PAA) x 70 f (L) dL, which accounts
for the probability mass at L = Disaster. Pinater

6See Meeker and Escobar [37] for details of the log-logistic density function. The functions
shown here are equivalent to theirs with 1/b = ¢ and = a/b = u. Note that if b < 1.0, so that
the upper tail approaches zero too slowly, the mean does not exist. Hence, the interpretation
of the 1985 NRC assessment and the corresponding specification of Equation 3.1 are crucial:
if losses truly are distributed according to the log-logistic distribution but if damages are not

limited to a maximum Disaster, then the value Subsidy in Equation 3.2 will be infinite for any

calibration leading to b < 1.0.
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at about $0.005m per reactor year; the amount fell slightly in 1985 dollars with
extensions of the PAA in FY2003 legislation. These values are far smaller than
those reported by HH; their estimates were $13.3m before 1988, and $2.3m after
the amendments.”

Integration of the density function from $1m to infinity yields the implied
likelihood of an accident causing significant offsite damage. The model predicts
that such accidents will occur with a 6.84% probability per reactor year. This
seems high given the industry’s relatively safe operating history. Denenberg [15]
calculated the insurance industry’s estimate as 1/1700, or 0.059% per reactor
year.® An alternative proxy for the probability of accidents may be the likelihood
of core melt. In 1985, the NRC estimated this likelihood to be 0.03% per reactor
year (New York Times [62]), which also is far less than the accident probability
implied here. However, the insurance market characterization given by DRHH
rules out both of these estimates. Beginning with the first equation in (1), we see
again that expected losses for private insurers are the total of expected losses for
“minor” accidents plus the probability of major accidents times the maximum
payout of $160m. Clearly, these expected losses are less than those under a

hypothetical alternative insurance structure in which insurers pay $160m for

"Denenberg [15] derived an accident probability of 1/1700, or 0.00059 per reactor year. He
assumed damages of $40,000m per accident. The product of probability and magnitude implies
subsidies of about $23.5m per reactor year. DR argue that this methodology is unreasonable
since the true probability density is not uniform, and so these simple calculations are not
reliable.

8Denenberg assumed a pure insurance component of 58%; hence, if a $1000 premium buys
$1m of coverage, then the pure insurance component is $580. This implies perceived risk of

$580 / $1m, or 1/1700 .
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accidents of any magnitude. However, we can divide the corresponding equation
by $160m and then simplify to obtain a lower bound for insurers’ beliefs about

the likelihood of an accident:

160

0.28:/L><f(L)dL+160>< F(L)dL

1 160
160 e’}
< / 160 x f(L)dL+160 x | f(L)dL (3.5)
1 160
0.28 r
= o = 0.00175 < /f(L)dL:P(l <L)
1

According to the specified equation, insurers believe that accidents causing signif-
icant offsite damage will occur with probability greater than 0.175% per reactor
year. Note that this result does not depend on the chosen density function, nor
does it depend on assumed worst-case magnitudes or probabilities. While this
lower bound is far below the estimate reported above, it still seems implausible
given the industry’s operating history and related risk assessments, and so we

must consider alternative descriptions of the insurance market.

3.3 Alternative Models

If plants operate without offsite losses for 10 years, then they are eligible for a
70% refund of paid premiums (Denenberg [15]). DR thus assumed that expected
losses totaled 70% of the premium, or $0.28m, and that the remaining 30% was
overhead and profit. Instead, we extend the DRHH equation to capture these

details. Insurance premiums ($0.4m per reactor year) are the sum of expected
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losses, overhead and profit, and the expected discounted value of refunds:

160

04— /fo(L)dL+160/f(L)dL

1 160

{04 x 7} + {0.4 X 0.7 % [f—(”} 10} (3.6)

+7r

where 7 is the percentage of overhead and profits and r is the average yield
of investments. The first bracketed terms are expected losses as described in
DRHH. The second term in brackets is overhead, profit, and other expenses.
Denenberg reported costs in 1972 that totaled 58% of premiums; this implies
that 7 is 42%. The last term is the expected discounted value of refunds. Recall
that 70% of the premium is eligible for return. This is discounted at the market
rate” and is multiplied by the probability of safe operations for 10 years (F(1)'%),
where F(1) is the yearly probability of no significant accident.

Results for this model are displayed in the second column of Table 3.1. Cal-
ibration values are unchanged from the DRHH model. The rate of return r
is set to 0.07, and the markup rate m is set to 0.42. The probability density
is not plotted, but its shape is similar to the DRHH distribution. This model
projects subsidies of $0.028m per reactor year under the original terms of PAA
and $0.003m per reactor year after the 1988 amendments. For regulations in ef-
fect in 2002, the subsidy was somewhat higher ($0.005m), but again the value fell
slightly under the 2003 PAA extension. Note that these projections are slightly
lower than those of the corrected DRHH model and that all values are in 1985
dollars.

The implied likelihood of an accident is 2.5% per reactor year. While implied

risk is two-thirds lower than implied by the DRHH model, it still is well above

9Denenberg assumes a market rate of return of 7%; we do the same.
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other risk assessments. We can derive a lower bound for this risk, from the

perspective of insurers, corresponding to Equation 3.5:

160

s 1_p10
0.4:/L><f(L)dL+160 F(L)AL + 0.4 X 7+ 0.4 x 0.7 % [HH}
;
1 160
160 [e’s)
1_0 10
</160><f(L)dL+160>< F(L)AL 404 % 7404 x 0.7 {HT}
1 160
1 — 10
=160x0+04x7m+04x0.7x [1+ } = 0.00057 < 0. (3.7)
T

Equation 3.7 is solved for § =P (1 < L); one real, positive root exists. This char-
acterization of insurance markets, when evaluated at the given rates of return
and markup, implies that insurers perceive at least a 0.0565% chance per re-
actor year of incurring losses.!® This lower bound is very close to Denenberg’s
perceived risk estimate of 0.059%, even though our methodology is more elab-
orate. However, our model must be modified if we are to obtain a probability
distribution that approaches this lower bound. Of course, this lower bound for
perceived risk levels still may be far from true levels of perceived and actual risk,
but arguably it is more reasonable than levels implied by the models above.

Suppose we alter the model to allow explicit calibration of the probability of

10When evaluated with » = 0.07 and 7 = 0.42, the lower bound is 0.0565%. When 7 = 0.60,
it 1s 0.0111%, and when 7 = 0.20, it is 0.1120%. Hence, the lower bound is sensitive to the

choice of these values.
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an accident. This value # =P(1 < L) can be employed in the following way:

160

0.4 = /fo(L)dL+160/f(L)dL +{0.4 x 7}

1 160

+ {0.4 x 0.7 x %}
1+ 7]

o0

0.0000008 = / F(L)dL (3.8)

10000
where the density function f(L) is constructed from a Bernoulli density function
with parameter § =P(1 < L) and a three-parameter log-logistic density function

with a threshold parameter equal to one:

0 e—(a+b><ln(L—1)) b . ’

X X : <

f(L) = (14 em(atban(E=))2 = (L —1) . (39)
1—-46 0L <1

In this model, accidents occur with probability #; given such an accident,
losses are distributed according to the log-logistic function. Note that we are
constrained in calibrating 6 by the lower bound established in Equation 3.7.
This lower bound is not theoretical only; numerical routines also begin to fail
as 6 approaches the limit. Hence, we could employ the Denenberg estimate of
0.059%, but we are unable to employ the NRC estimate for core melt (0.03%).
Unfortunately, the results are rather sensitive to the choice of #, but implied
subsidies seem to remain relatively small even as 6 approaches the bound.

Results for this model are displayed in the fourth column of Table 3.1. Again,
calibration values are unchanged from the DRHH model, the rate of return is
7%, and markup is 42%. The probability of an accident is 0.057%, which is
slightly above the lower bound derived above. The probability density between

$1m and $10,000m is plotted in Figure 3.1. Note that earlier models distribute
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much probability mass in the neighborhood above $1m, indicating that the prob-
ability of “minor” accidents is relatively high, and that probability density then
falls monotonically as damages increase. Denenberg suggests that the actual
distribution instead is bimodal, with a mass concentration at low damage lev-
els and another at much higher levels. Our model calibrates a high probability
mass for losses under $1m. A second mode is evident in Figure 3.1 (the first
is not shown) at approximately $250m. Estimated subsidies are significantly
higher than those of previous calculations in this paper: $0.239m before the
1988 amendments, $0.003m following the changes, and about $0.012m in 2003.
Estimates for policies after 1988 changed relatively little with the specification
changes, but estimated subsidies under the original policies now are over 9 times
greater. Note, however, that the mode and subsidy estimates depend heavily on
the calibrated point mass at zero. Perhaps the value employed is appropriate,
but we are unable to calculate results for lower perceived accident probabilities
because of the limitations of the theory as shown in Equation 3.7. Hence, while
some qualitative properties of this model seem superior, certain doubts remain
even if we accept its many other assumptions.

A significant criticism of the DR model was its calibration of worst-case dam-
ages ($10,000m). The employed statistic included only offsite property damage
and, in particular, omitted damage to health and loss of life. Denenberg cites
an Atomic Energy Commission study, conducted in the early 1960’s, that esti-

mates damage (in current dollars) at $40,500m.'! Suppose that we arbitrarily

1 This figure includes $17.0 billion for property damage, $13.5 billion for deaths, and $10.0
billion for injuries. The estimate accounts for 45,000 deaths, with lifetime earnings per person

of $300,000. It also accounts for 100,000 severe injuries, with a cost of $100,000 per worker.
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set the magnitude of damage in the worst case to $500,000m in 1985 dollars but
keep the NRC probability estimate of 8.0E-7. While this calibration is ad hoc,
the corresponding results should indicate the sensitivity of the estimates to cal-
ibrated damages. Of course, the results also depend heavily on the many other
assumptions.

Estimates are shown in the third column of Table 3.1 for our first alterna-
tive model with an accident probability of 0.08% per reactor year. Estimated
subsidies were about $1.158m per reactor year before 1988 and averaged about
$0.960m after the amendments. Note that these values are lower than those
reported by HH even though their (erroneous) calculations covered losses only
to $10,000m. Hence, this model (given its calibrated values) suggests that im-
plicit subsidies are significant but not enormous, and they are smaller than those
predicted earlier for less severe scenarios.

Estimates are shown in the fifth column of Table 3.1 for the second alternative
model with an accident probability of 0.057% per reactor year and assumed
worst-case damages of $500,000m. This model implies subsidies of about $5.110m
per reactor year before 1988 and about $3.357m in 2003. The density function
for this model is depicted in Figure 3.2. We see that the second mode for this
distribution is approximately $400m, where the first mode of course is between
0 and 1.

Tests for the DRHH model and the first alternative model were repeated

2

using the Pareto distribution.!? For all calibrations listed in this paper, the

It does not account for diseases that develop years later, and it does not include dislocation
costs for evacuation of the contaminated area. The study was performed by the Brookhaven
National Laboratory for the Atomic Energy Commission.

12The Pareto PDF and CDF are f (L) = a x b/ (L +b)*"" and F (L) =1 —b*/ (L + b)*,
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results were similar to those using the log-logistic distribution. Tests also were
conducted with lower and higher markup rates (7 in Equations 3.6 and 3.8).
Expected losses and implicit subsidies fall as the assumed markup rate increases.
However, even for markup rates of 20% (results shown here employ Denenberg’s
report of 42%) and the high damage assumption (where worst-case damages are

$500,000m) implicit subsidies are similar to those reported by HH.

3.4 Conclusion

What, then, can we conclude about the magnitude of implicit subsidies provided
by PAA? First, we acknowledge the significant limitations of the model noted
by previous authors. Rothwell [49] notes that results depend heavily on 1) the
assumed distribution function and 2) on the assumed worst-case magnitude and
probability. Heyes [26] doubts the ability of private insurers to assess accurately
their expected losses. Further, he doubts the ability of any such method to reveal
the truth accurately: “For use in informing policy, results from studies such as
these should be heavily salted.” Estimation of current subsidy levels based on
the implied 1985 distribution requires the additional dubious assumption that
the cost distribution has not shifted. That is, we assume that safety has not
improved with operator experience nor has safety diminished with reactor age.
Hence, we must exercise caution in the use of these results lest they mislead us.

While keeping such limitations in mind, we can conclude that the method-
ology proposed by DRHH and the alternatives suggested here imply implicit

subsidies far lower than reported earlier. The results, together with the assump-

respectively.
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tion of perfect insurance markets, imply that PAA should make little difference
since projected expected losses above PAA are small. Of course, insurance mar-
kets may not be perfect and may not offer complete coverage regardless of the
probability distribution. Hence, construction of new plants in coming years may
depend heavily on recent extensions to PAA.

Useful extensions of this work should incorporate the data reported in the
1998 NRC report [30]. This document summarizes the types of insurance of-
fered the nuclear industry and offers details of PAA. Published in the document
are aggregate annual premiums refunded to operators. Also published is a his-
tory of claims under PAA and corresponding payments. Some of the reported
payments result from policies not considered here. Information on remaining
policies should be reconciled with our stylized picture of the industry as related
to risk and insurance coverage, and in particular the probability of claims against

insurance companies.
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3.5 Appendix

Table 3.1: Results

DRHH Alt. Alt. Alt. Alt.
Model Model 1 | Model 1: | Model 2 | Model 2:
Hi Dam- Hi Dam-
ages ages
Calibration: $160m $160m $160m $160m $160m
Insurance Coverage
Disaster Cost $10,000m | $10,000m | $500,000m | $10,000m | $500,000m
Disaster Probability 8.0E-7 8.0E-7 8.0E-7 8.0E-7 8.0E-7
Accident Probability 0.06839 0.02535 0.00768 0.00057 0.00057
Results: Parameter a | 2.61167 3.64933 4.86102 -15.97674 | -10.61556
Parameter b 1.24067 1.12801 0.69939 2.44772 1.30944
Expected Losses $0.337m $0.166m $1.313m $0.516m $5.417m
Subsidy Pre1988 $0.033m 0.028m $1.158m $0.239m 5.110m
Subsidy Post1988 $0.003m $0.003m $0.959m $0.003m $3.242m
Subsidy 2002 $0.005m $0.005m $0.963m $0.014m $3.416m
Subsidy 2003 $0.005m $0.004m $0.956m $0.012m $3.357m

The rate of return r is 0.07 and markup 7 is 0.42. Dollar figures are in millions

of 1985 dollars. Expected losses are total expected losses, including all insured

and uninsured losses. Industry liability caps are $560m, $6,018m ($9,300m in

2002 dollars), and $6,418m ($10,100m in 2003 dollars) for prel988, post1988,

2002, and 2003, respectively. Prices are deflated with the PCE deflator.
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Figure 3.1: Density Functions

Probability Density for Offsite Damages %107
0.08 T 8
0.07 7

s\

I
o >

Log-Logistic Density - Point Mass at Zero

~

Log-Logistic Density
o
o
R

o
o
=)

A
1
)
1
1
1
1
[}
1
1
1
[y
1
)
1
1
1
1
1
1
[}
1
[}
1
1
[}

3
0.02 / 2
] )
’ !
7 3
7 1
s \
0.01 , / \ 1
e \
—“' \\
—— -
0 . . = 0
100 1000 10000
Losses (Millions)

Figure 3.2: Density Functions—Hi Damages
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e In Figure 3.1, the corrected DRHH loss function is plotted to the left (solid
line), and the cost function for Equation 3.9 is plotted to the right (dashed

line). The x-axis is in millions of 1985 dollars.

e In Figure 3.2, the cost function was constructed with worst-case damages
of $500,000m. The x-axis covers values between $1m and $1,000,000m in

1985 dollars.
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Chapter 4

A Dynamic Programming Approach

This chapter extends greatly our models of regulation and industry economics.
We earlier developed the primary features of our stylized world of nuclear power
economics by building a static model and using comparative statics to analyze
its properties. In reality, of course, dynamics matter in ways that cannot be
represented well in a static model. We thus extend our earlier work by adding
simple dynamics to our basic static model that will prove sufficient to reveal op-
timal paths of output, investment, and regulation, and to support more detailed
dynamic models in the next chapter.

Many dynamic features do not appear in this chapter. We incorporate some
of the omitted features in the following chapter, where we build a numerical
version of the dynamic model. The purpose of this chapter instead is to push
our analytical model farther in the direction of dynamics. This proves difficult
even with our reasonably simple models, and we resort to numerical methods for
some of our results.

We employ our model in the calculation of the value to the nuclear power

industry of liability limits. We derive measures of the amount the industry would
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be willing to pay in order to preserve those protections. This extends our work
on the subject in Chapter 2 in order to account for the flow of implicit subsidies

over time and to account for evolving behavior of firms and regulators.

4.1 Introduction

This work develops dynamic models of the political economy of the nuclear power
industry, extending our earlier work with static models. The primary motivations
of nuclear power operators and of nuclear industry regulators are considered.
Optimal rules are computed to govern behavior of each agent over the life of the
industry. These rules take into account the effects of the agents’ own actions on
the behavior of others. It is assumed that operators’ primary motivations are to
maximize profits. Operators’ choices include whether to operate and how much
to invest in maintenance and safety enhancements. Regulators seek to ensure
adequate electricity supplies while minimizing costs and expected damage from
nuclear accidents. We consider four cases. First, we consider the case in which
regulators are benevolent social planners who can guide the economy to the first-
best solution. Next, we consider the cases in which regulators employ either
regulatory standards for safety enhancements or liability levels for damages.
Finally, we consider the case in which regulators govern with both instruments.
The model is employed to construct measures of subsidies created by adoption of
limited liability levels. These measures are compared to others in the literature.

The models in this chapter are based on our extensions of Shavell’s work [57].
In that paper, he derives optimal regulatory policies when firms face liability.

However, there are several significant discrepancies between his model and the
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nuclear power industry. This chapter extends our efforts to eliminate some, but
not all, such discrepancies.

In the event of an accident causing damages to third parties, we assume that
firms strictly are held liable for all damages. This assumption, while admittedly
is too strong, is based on terms of the Price-Anderson Act. This policy specifies
minimal levels of insurance that each nuclear power plant operator must carry. It
also sets terms for industry self-insurance in addition to the commercial insurance
coverage. Operators are exempt from liability for damages in excess of the
amount specified in the policy. We assume that operators cannot escape liability
for the reason described in the 2003 MIT study [6, p. 81]: "The compensation
provision of both the first and second layers of insurance are ‘no fault’” and not
subject to civil liability litigation."

Output matters here. Firms’ output decisions are binary: they produce at full
capacity if the expected present value of profits is non-negative, and otherwise
the firms close. Hence, output does not decline continuously with regulation. In
the aggregate, however, output is a decreasing function of regulation. If expected
damages are too great, then regulators can force the industry to close. Similarly,
if liability or regulation becomes too great, then firms will decide to exit the
market. In either case, the benefits of greater safety come at the expense of
economic well-being.

This model has multiple periods. The solution is found using finite-horizon
dynamic programming techniques, although infinite-horizon techniques also could
be applied. We argue that finite-horizon modeling is appropriate for the Amer-
ican nuclear industry, since plants were engineered to operate about 60 years

and all existing plants operate under 40 or 60-year licenses, and it is not certain

98



whether a second generation of plants will be politically or economically feasible
in the foreseeable future.

We apply the results of this model in two ways. First, we derive the present
value to the industry of liability protections. This is the amount of money that
the firm would be willing to pay in order to maintain liability protections. In
contrast to earlier attempts to quantify these implicit subsidies, we take into ac-
count the value of future benefits in addition to current benefits, and we consider
in our calculations the net effect of all regulation rather than to focus solely on
liability protections. This yields a more accurate picture of the effects of regu-
lation on profits, behavior, and safety. Finally, we discuss the application and
extension of this work to cover political matters affecting regulation and industry

economics.

4.1.1 Layout of this paper

This chapter develops a model of nuclear power plant operations and indus-
try regulation. First, the model is described, with timings, objective functions
for operators and regulators, and derivation of optimal dynamic decision rules.
Where it is not possible to derive a complete set of analytical solutions, the
results are supplemented with numerical solutions. The key application of the
model is the derivation of measures of implicit subsidies created by enforcement
of limited liability levels, and we find the present value of these benefits. We also
describe techniques of political economy that can extend our work to capture
important elements of the industry not captured in our basic model. Finally,

limitations are noted and possible extensions are suggested.
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4.2 The Model

4.2.1 Timing

This model has two primary groups of players, nuclear industry regulators and
power plant operators, who move sequentially in a dynamic game-theoretic
framework. Regulators seek to maximize social welfare, and the firms’ problem
is to maximize profits while satisfying the demands of regulators. It is assumed
that a continuum of markets exists, with one nuclear facility per market. No
attempt is made to explain the existence of power plants, and prices and de-
mand for electricity are exogenous. Firms are identical, except for the amount
of damage that they cause if an accident occurs. We consider a finite number of
time periods. When the maximum lifespan has been reached, assuming that the
firm survives, the firm incurs any shutdown costs and closes permanently.

At time zero, the level of demand is announced; we assume that this level
is fixed throughout time. In the beginning of each period, starting in Period 1,
regulators determine the optimal level of liability to impose on the nuclear power
industry, and the level is announced. Given this announcement, power plant op-
erators decide an optimal level of investment in safety-enhancing maintenance
and similar expenditures. If production yields a higher expected present value
than the cost of decommissioning, then firms produce electricity, collect the rev-
enue, and pay operating and investment expenses. Accidents occur at the end of
each period with an endogenously determined probability. These accidents cause
damage to third parties, for which regulators may hold plant operators liable. If
the expected present value of the firm is less than the cost of decommissioning,

then operators make no investments and close their plants immediately. If the

100



firm remains in operation at the end of its maximum allowed lifespan, the plant
incurs decommissioning costs and closes permanently.

Exposure to liability with corresponding spending on safety, or spending to
meet regulatory requirements, reduces profits. We assume that aggregate output
may fall with profits, as unprofitable firms exit the market, so that greater
safety comes at the expense of output. The model has a continuum of firms that
either produce or shut down, depending on whether profits are non-negative. We
assume that regulators care about both output and safety, and are cognizant of
the effects on output of their own actions. Essentially, we assume a continuum
of identical markets, where prices are exogenous. Hence, regulators consider
separately consumers’ utility in each market. In each, either firms produce at
full capacity and consumers receive utility from the product, or firms close and
consumers receive a level of utility from zero consumption.

The definition of regulation is narrow, such that policies specify minimal
standards for investment in safety-enhancing goods and services. We consider
regimes with various combinations of regulation and liability, and we compare

social welfare for each.

4.2.2 Definitions

The continuum of (nearly) identical firms are indexed by the level of potential
damage, h. In fact, h is the only distinguishing characteristic of the firms. We
assume that h is an exact amount. This magnitude of potential damage, known
only to the firm, is such that h € [a,b] where 0 < a < b < co. Regulators do not
know potential damages for individual firms, but they do know the distribution

of damages f(h), which is nonzero on and only on [a,b]. We use a probability
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distribution f(h) only for convenience, in that it integrates to one and we can
use familiar techniques from statistics. More general specifications of f(h) could
integrate to any positive value, as it simply specifies the number or measure of
firms with potential damages h. Industry capacity and potential output is Q.
We assume that all plants have the same capacity. We assume that electricity
prices, less unit production costs, are identically equal to one, so that net revenue
also equals (). Firms may invest in goods and services, indexed by z such
that 0 < =z, to lessen the probability of an accident. The probability of an
accident p(z), given the level of investment z, is identical for each firm and
depends only on investment. The first derivative of the probability function is
negative and the second derivative is positive. (See Dubin and Rothwell [17]
for a similar specification.) We assume that p does not change with plant age,
thus abstracting from the physical deterioration that tends to leave plants less
reliable, and we assume no cumulative effects for investment levels.

Regulators seek to maximize social welfare. A component of the social wel-
fare function is U. For industry output ¢, where ¢ € {0,Q}, U(q) = ¢ + u(q).
Hence utility U is a quasilinear utility function, and is determined by the sum
of industry net revenue and the benefit to consumers u(q) of consuming g. The
numeraire in this utility function is industry revenue. The balance of the social
welfare function is in the same units (dollars). Investment and potential dam-
ages comprise the balance, as described below. Hence, regulators care about
the utility consumers obtain from consumption, industry profits, and potential
damages in excess of firms’ liability.

Time is indexed by ¢, beginning with ¢ = 1. The maximum possible lifespan

is T. If firms operate in Period T, then they must close in Period T+ 1. We
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assume that the model parameters are time-invariant; that is, demand, prices,
maximum liability, the functions p(.) and f(.), the utility functions, and the
values of h and () for each firm do not vary over time. The endogenous terms of
course may vary, including investment, regulation, output, and social welfare.
A matter not pursued fully are the effects of attrition, through accidents,
voluntary closure, or forced regulatory shut down, on the capacity of the industry.
Note that given a continuum of firms, any positive accident probability will make
disasters inevitable each period. In reality, accidents are rare. We thus deviate
slightly from rational expectations. We assume that the accident probability
p is an ex ante measure each period, but no accidents actually occur. In this
way, firms and regulators take into account the possibility of accidents when
making decisions, but our model does not imply an unreasonably high number

of accidents. This matter deserves further attention in future work.

4.2.3 Industry Regulators

Industry regulators seek to balance the need for adequate electricity supplies and
the need for safety from nuclear accidents. If there is excess demand without
operation of nuclear plants, then neither desire can be satisfied fully without
sacrificing the other. We model these conflicting desires with a welfare function
such that regulators seek 1) to maximize output to satisfy consumers’ demand
and 2) to minimize expected losses from accidents.

We consider various regulatory regimes with various combinations of regula-
tion and liability. Hence, regulators have at most one instrument for governing
the industry. They choose a minimum level of investment for operators. Whether

liability is imposed, and if so the level of liability, is outside the control of the
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regulators.

We consider only cases in which operators bear either zero liability or liability
up to the value of the firm. We do not consider the possibility that regulators
will compensate firms for losses, nor do we consider punitive damages.

Similarly, we do not consider the possibility that regulators or consumers will
compensate firms for higher levels of investment, in the sort of exchange proposed
by Coase. The model could be extended to include such possibilities, but such

exchanges have not been observed and thus such possibilities are ignored.

4.2.4 Social Planners

The social planners’ problem, in which they seek to maximize social welfare in
each market, is to choose each period between closing permanently the plant in
that market or to run the plant with a given level of investment. If the plant is

decommissioned in Period ¢, where t € {1, T}, then social welfare is

ol tC+l(1)8€ 1_(#)T+2—t
o — [7(0) + 2 = (0 -
O

All plants must close by Period T + 1, so we have

CT+1(hi) = U(O)

In all preceding periods, assuming that plant ¢ was not previously decommis-
sioned, social welfare can be represented as welfare given zero production and
consumption plus the difference between welfare with potentially positive pro-

duction' and welfare with zero production. We label the difference in social

'We use the adjective “potentially” because social planners will not allow production if

expected social