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We extend economic analysis of the nuclear power industry by developing

and employing three tools. They are 1) compilation and uni�cation of operating

and accounting data sets for plants and sites, 2) an abstract industry model

with major economic agents and features, and 3) a model of nuclear power plant

operators.

We build a matched data set to combine dissimilar but mutually dependant

bodies of information. We match detailed information on the activities and

conditions of individual plants to slightly more aggregated �nancial data. Others

have exploited the data separately, but we extend the sets and pool available

data sets. The data reveal dramatic changes in the industry over the past thirty

years. The 1980s proved unpro�table for the industry. This is evident both in

the cost data and in the operator activity data. Productivity then improved

dramatically while cost growth stabilized to the point of industry pro�tability.

Relative electricity prices may be rising after nearly two decades of decline. Such



demand side trends, together with supply side improvements, suggest a healthy

industry.

Our microeconomic model of nuclear power plant operators employs a forward-

looking component to capture the information set available to decision makers

and to model the decision-making process. Our model includes features often

overlooked elsewhere, including electricity price equations and liability. Failure

to account for changes in electricity price trends perhaps misled earlier scholars,

and they attributed to other causes the e�ects on pro�ts of changing price struc-

tures. The model includes potential losses resulting from catastrophic nuclear

accidents. Applications include historical simulations and forecasts.

Nuclear power involves risk, and accident costs are borne both by plant own-

ers and the public. Authorities regulate the industry and balance con�icting

desires for economic gain and safety. We construct an extensible model with

regulators, plant operators, insurance companies, and consumers. The model

possesses key attributes of the industry seldom found in combination elsewhere.

We then add additional details to make the model truer to reality. The work

extends and corrects existing literature on the de�nition, e�ects, and magnitudes

of implicit subsidies resulting from liability limits.
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Chapter 1

Introduction

Nuclear power both o�ers great promise and poses tremendous threat to the

American economy. On the one hand, it provides the greatest source of energy

without carbon dioxide emissions, and it provides a domestic energy supply that

does not add signi�cantly to trade de�cits. On the other hand, at every moment a

disaster on the scale of the Chernobyl accident is unlikely but remains possible at

over 100 U.S. reactors. No other private industry imposes such extreme risks on

so many, and few industries o�er such bene�ts relative to existing alternatives.

Few industries have been the focus of more research than the nuclear power

industry. Among the narrow �eld of nuclear industry economics, a vast array

of publications span topics from the speed of technology adoption to costs of

regulation to the nature and magnitude of lingering e�ects of the Three Mile

Island accident. Given the size of the literature, what is left to study?

Despite the wide array of �ne papers published by leading economists, im-

portant questions remain unanswered, and on many topics consensus remains

elusive. For several decades, no new construction was begun, and it seemed that

rising costs would force closure of existing plants. Pro�tability seems now to be
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improving, and the ever increasing American demand for energy forces us again

to consider whether increasing our capacity of nuclear power generation might

be the optimal course. Even some environmentalists recently have called for in-

creasing reliance on nuclear power in order to reduce carbon dioxide emissions.

For these reasons, we must take another look at the questions and problems

unique to this industry.

Of particular importance are the means by which we handle the risks of nu-

clear accidents. For nearly �fty years, the federal government has o�ered liability

protections to the industry, so that they bear only partial liability for o�site dam-

ages in the event of a serious accident. Many are concerned about the e�ects

of such protections, fearing that operators have too little incentive to operate

safely and that the public has no guarantee of compensation. Unfortunately, few

academic papers have been published on the topic to de�ne or measure the ben-

e�ts to operators of these protections or to determine their e�ects on operator

behavior.

Problems for nuclear power began while the industry was young. First, plants

proved more costly to construct than was expected. Next, they proved more

expensive to operate than was expected. Finally, the regulatory burden and

public opposition proved greater than anticipated. These matters have been

studied at great length, and many factors are known to contribute to each. Far

less work has been done to determine the e�ects on the industry of weakening

demand, and it seems that while many agree that high costs and burdensome

regulations largely caused the industry's troubles, there is little consensus on the

relative importance of each factor and how they might be related.

We �nd it essential to begin by constructing a model of the nuclear power
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industry in order to determine the relationships among costs, demand, and reg-

ulation, and to determine the nature and magnitude of e�ects of liability pro-

tections.

We begin by building a unifying model of the nuclear power industry. Given

the breadth and depth of the literature, the work summarized within reveals

but a glimpse at the potential of such e�orts. Still, constructing an adequate

conceptual framework requires thinking about nuclear industry economics in un-

conventional fashions, so that establishment of stylized facts leading to unifying

economic model in itself illuminates truths before unseen. Even small models,

we will see, help to answer challenging questions. And so as we begin, we keep

our goal in mind. We will not exhaust the possibilities in this present study.

Rather, our present goal is to begin by o�ering a small but powerful model of

the industry that reveals crucial economic and regulatory relationships and sheds

light on the little understood topic of liability limits. If we succeed, then much

work will remain to be done, supported and prompted by these beginnings.

Three frameworks are established and employed. Each has much potential

in present form and much is revealed as we begin to exploit that potential.

The greater promise, however, may be realized by extending further the work

begun. Present work may be summarized as 1) compilation and uni�cation of

operating and accounting data sets for individual plants and sites, 2) construction

of an industry model with nuclear power plant operators, industry regulators,

and consumers, and 3) construction of a detailed model of nuclear power plant

operators.

The �rst framework is the assemblage of data. Our key contribution is the

construction of a matched data set that combines dissimilar but mutually de-
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pendant bodies of information. On the one hand, we have detailed information

on the activities and conditions of individual reactor units. On the other hand,

we have slightly more aggregated �nancial data on each site, which may include

several reactor units, and we have regional data on electricity prices. Others

have exploited the data separately, but we extend the sets and we go further.

By pooling available data and matching reactor, site, and regional information,

we produce a very rich data set with great potential.

The second framework is an extensible model that provides foundations to

support broad coverage of nuclear power economics. The present model exhibits

primary agents important to the industry, including regulators, power plant oper-

ators, insurance companies, and consumers. The model possesses key attributes

of the industry seldom found in combination elsewhere. Also, the scope of the

model encompasses more than is typical in models of nuclear power economics.

Model solutions and applications yield two important contributions. First, the

model reveals relationships between costs, demand, and regulation that existing

literature fails to make clear, and it shows the impacts of these factors on the

well-being of �rms and consumers. Second, the model yields de�nitions of the

implicit subsidies provided to �rms through liability protections. These de�ni-

tions are derived from models of regulated �rms, and they extend understanding

of the scope of the matter. Our work demonstrates the importance of considering

the entire scope of regulatory impacts on �rms when attempting to determine

e�ects of liability limits on safety and when attempting to quantify the bene�ts

to the industry of liability limits. These contributions are important, though

even greater promise of the model may be seen by considering a few of the pos-

sible extensions fully supported by this work. For example, political activists
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clamoring both for expanding and banishing nuclear power surely a�ect regu-

lators, so that levels of regulation and the severity of its enforcement depend

on the public's opinions and level of concern. As a second example, the model

easily could be extended to feature explicitly a broad set of electricity generating

technologies, each with its own advantages and shortcomings, in order to gain

perspective on nuclear power's inherent risks relative to fossil fuel technology's

degradation of the environment. In this way, we can consider the bene�ts of

continued operations of nuclear plants versus reduction of nuclear output. Our

construction of a basic economic model with the key economic players together

with key industry features make such extensions and applications feasible and

relatively simple.

The third framework develops models at the microeconomic level. We o�er

a model of the �rm, where in this case the �rms are nuclear power plants. To

support the modeling e�orts, we also construct a software package to aid in the

construction of similar models. Our model includes several features often over-

looked in other empirical and theoretical work. These include incorporation into

the model electricity prices and their e�ects on revenue and pro�ts. The e�ects

on pro�ts a�ect the behavior of operators that our model is designed to repre-

sent. Our model also incorporates measures of risk and the liability associated

with the possibility of catastrophic accidents. We attempt to determine whether

liability protections induce detectable changes on operator behavior.

Even cursory analysis of the data we compile reveals dramatic changes in the

industry over the past thirty years. We see that the 1980s proved very costly and

unpro�table for the nuclear industry. Using our matched set, this is revealed both

in the cost data and in the activities of individual plants. In following decades,
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however, our extensions show that productivity improved dramatically. At the

same time, cost growth stabilized and pro�ts per unit of output improved to

the point that operations currently seem to generate healthy pro�ts. Our panel

data allow us to learn about the variation of costs and productivity across plants

that the aggregate �gures typically reported by the industry fail to reveal. The

improved economic picture may be seen too by glancing at recent media reports

on the energy industry. For the �rst time in decades, new nuclear power plant

construction is being proposed and permits are being acquired. It is striking both

that plant operators believe themselves capable of building and operating plants

pro�tably and that regulators believe it politically feasible to grant building

permits and even to negotiate potential tax incentives.

The regional price data indicate that after nearly two decades of falling rel-

ative prices, electricity prices may be rising again. National energy e�ciency

continues to improve, and so electricity demand growth remains far lower than

rates seen forty years ago. Still, the growing American population and economy

demands ever more power to facilitate expansion. These demand side trends, to-

gether with supply side improvements observed in the cost and operating data,

indicate that the industry is healthy and may continue to thrive for years to

come.

On the other hand, disaster is possible. Costs of disastrous nuclear accidents

clearly are borne not solely by plant owners but also by the public. For this

reason, government authorities ostensibly representing public interests regulate

the industry and balance the con�icting desires for economic gain and safety.

Yet regulation of an industry so technically complex, while dealing both with

powerful industry lobbies and consumer and environmental political activism,
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yields a terribly thorny problem. We begin to deal with the problem by building

a big-picture model. That is, we assemble a structure with the major players and

a vague representation of critical industry details. On this foundation, we add,

piece by piece, additional details to make the model ever truer to reality. Even

in these early stages and with the relatively simple forms presented here, we

extend existing literature on the nature, magnitude, and e�ects of the liability

limits often assumed essential to corporate survival yet still poorly understood.

While it is essential to make sense of the overall economic world of nuclear

power, we have particular interest in the operation of nuclear power plants. We

thus take a close look at their operation. Nuclear power plants were designed

and are permitted to operate for a limited number of years. Operators have a

clear interest in considering potential pro�ts in all remaining years rather than

to focus solely on the current period. We thus employ a forward-looking model

in an attempt to capture the information set available to decision makers and

then to model the decision-makers as they employ this information. Given the

nature of forward-looking models and the limitations of current analytical and

econometric tools and technology, it is di�cult to employ all available data in the

operators' information sets; of course, available data is but a small part of the

complete information set possessed by operators. It thus is a struggle to select

a su�cient set of data for the model that will produce satisfactory results. We

believe that earlier e�orts to model power plant operators left out key data and

that their results su�ered accordingly. An important contribution of this work is

the inclusion of electricity price information. Electricity price trends have varied

over the past several decades. Failure to account for these changes may have led

earlier scholars to attribute to other causes the e�ects on pro�ts of changing price
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structures. In particular, economic e�ects of weakening demand may have been

mistaken for impacts of heightened regulation. Our model also includes potential

losses resulting from catastrophic nuclear accidents. The models can be employed

in several important applications, including 1) optimal lifespan predictions given

various assumptions about electricity price growth, 2) structural stability tests to

analyze the e�ects of changing regulations while accounting for structural price

shifts occurring at the same time, and 3) analysis of the e�ects of modi�cations

to policies that limit liability.

And so, we have assembled data and models and employed them to learn

much about the nuclear power industry, yet they o�er far more potential than

developed here. Some possible extensions are suggested throughout the following

chapters. Hopefully, the reader will �nd the work su�ciently promising that

additional possibilities continually will become obvious.

We thus begin. We start with the history of the American nuclear power

industry, and based on this picture we build a static model of the industry

and its regulation. The static model proves su�cient to reproduce a number

of major historical events. We then extend the static model to a multiperiod

framework in order to determine the optimal evolution of operators' decisions

and regulatory policies. Finally, we extend the dynamic model to a numerical

framework in order to incorporate additional important features of the industry.

A key application of our model is a close look at liability protections o�ered to

the industry and their e�ects on �rm and regulatory policies. These protections

are considered throughout the �rst section.

The second section begins with the development of regional price data, monthly

operations data for each commercial nuclear reactor, and annual cost data for
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each nuclear site. We employ the price and available output data to construct

estimates of revenue earned through the generation of electricity. Perhaps be-

cause estimation and even de�nition of such revenue is di�cult, such estimates

are not available in other scholarly work, and because they are not forced to

do so, plant owners do not release revenue information. While it is di�cult to

establish the accuracy of our estimates, the patterns revealed over the past three

decades correspond nicely to well-known historical facts and thus inspire con�-

dence in our results. Other data work summarizes changes in operating policies,

which yielded much improved productivity and reliability, and development and

descriptions of cost data that also show dramatic improvements in performance.

Very likely, regulatory reforms contributed to these improvements. By devel-

oping dynamic programming models of nuclear power plant operators, we gain

improved understanding of truths hidden in the data. We summarize estimation

results of the model, and conclude with applications of the model.

The text concludes with a summary our work and a description of intended

extensions. An appendix describes software developed to support this work and

similar modeling e�orts.
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Part I

Economics and Regulation of U.S.

Nuclear Power
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Should operators of nuclear power plants continue to run their plants given

the current economic circumstances and regulatory policies? Should regulators

adopt a conciliatory stance to feed the economic desires of producers and con-

sumers, or should they enforce hard-line standards to lessen the risks of nuclear

accidents? What are the e�ects of liability limits on the decisions of plant oper-

ators, and what is the economic bene�t to plant owners?

The four chapters comprising this section summarize the history of nuclear

power economics in the United States, and they describe and apply a series of

economic models in search of answers to these questions.

Chapter 2 begins with a review of the history of nuclear power industry

operations, regulation of the industry, and the evolving economics of nuclear

power. We go on to develop models of the economics and regulation of the

nuclear power industry, similar to the models developed by Steven Shavell of

the Harvard Law School. While the models are intended to capture matters

of political economy and ultimately should prove capable of portraying such

details, we begin by studying models that focus on regulation and economics,

and we then extend the model to illustrate e�ects of changing political climates.

Nevertheless, we continue to label them as political economy models to remind us

of intended directions of development. Politics certainly play important roles in

the industry, and so it remains desirable to portray such features along with other

key aspects. An important contribution is o�ered when we apply the model in the

analysis of liability protections to the industry. We employ our model to derive

a broad view of potential bene�ts that nest earlier e�orts. Deriving bene�ts to

the industry from a model of �rms and regulators reveals that earlier concepts

of implicit subsidies was too narrow. We show the importance of considering
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additional factors that heavily may a�ect the level of safety and economic bene�ts

to operators.

We �nd the relative simplicity of a static model adequately powerful to de-

velop a model core that is su�cient to support many extensions, including dy-

namics. First, though, we take a closer look in Chapter 3 at protections o�ered

to the nuclear power industry in the form of liability limits. These protections

originally were passed as the Price-Anderson Act of 1957. Many assume that

survival of the nuclear industry depends on these provisions. It remains unclear,

however, whether this is true or even what is the magnitude of economic bene�ts

a�orded to the companies. We examine earlier attempts to quantify the amounts.

However, in addition to taking too narrow a view of potential bene�ts, we show

that published calculations are �awed and their models improbable. We o�er

corrected calculations and improved models. These imply that the magnitude

of implicit subsidies may be far lower than reported earlier.

We next return to our model in Chapter 4 and extend it to a multiperiod

framework. The dynamics are simple, but they are su�cient to capture the im-

portance of forward-looking behavior both by plant operators and by regulators.

The pattern of private investment in maintenance and safety is of particular in-

terest, and we are able to derive investment rules that vary over the life of the

plant. We also derive optimal regulatory policies that take these tendencies into

account. We apply the model to extend our understanding of the e�ects of the

Price-Anderson liability limits in a multiperiod framework. The result yields a

means of calculating the value to the industry of maintaining liability protection

policies.

In Chapter 5, we construct a numerical version of our dynamic model. The
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numerical framework allows us freedom to add features that under the previous

analytical model proved infeasible or at least cumbersome. Many of the features

that will be present in our model of the �rm, including stochastic price evolution,

are introduced here to provide a bridge between our theoretical model of the in-

dustry and our empirical model of the �rm. Unique contributions of our work

include the speci�cation of insurance premiums paid by operators, taking into

account the behavioral policies of the �rms, and the modeling of the shared lia-

bility features speci�ed by American regulatory policies. We employ the model

in two exercises. First, we check the reaction of our model, measured as changes

to pro�ts and optimal behavior, to changes in the evolution in electricity prices

as occurred in the American economy in the 1980s. Second, we check the model's

response to extensions of allowed maximum lifespans, as recently was made pos-

sible by nuclear regulatory authorities. In a chapter appendix, we derive a means

by which we can speed calculation for a class of numerical problems, and we show

how to apply the method to numerical dynamic programming problems like ours.

Chapter 6 concludes the �rst section and summarizes our �ndings. We now

set out on our quest to summarize the American nuclear power industry.
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Chapter 2

A Static Approach

2.1 Introduction

This study develops models of the political economy of the nuclear power indus-

try, which extend greatly theoretic work developed by Shavell [57] and applies

it to the nuclear power industry. The primary motivations of nuclear power

operators and of nuclear industry regulators are considered. Optimal rules are

computed to govern behavior of each agent. These rules take into account the

e�ects of the agents' own actions on the behavior of others. It is assumed that

operators' primary motivations are to maximize pro�ts. Operators' choices in-

clude whether to operate and how much to invest in maintenance and safety

enhancements. Regulators seek to ensure adequate electricity supplies while

minimizing costs and expected damage from nuclear accidents. We consider

four cases. First, we consider the case in which regulators are benevolent so-

cial planners who can guide the economy to the �rst-best solution. Next, we

consider the cases in which regulators employ either regulatory standards for

safety enhancements or liability levels for damages, but not both. Finally, we
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consider the case in which regulators govern with both instruments. It is this

last case that best describes oversight of the nuclear power industry, while other

cases provide important reference points and limiting cases for consideration of

liability protections.

We review the history of nuclear power industry operations, regulation of the

industry, and the evolving economics of nuclear power. The results of the model

developed here then are compared to the economic history of the industry to

see whether the model qualitatively reproduces observed phenomena. Finally,

the model is employed to construct measures of subsidies created by adoption of

potentially sub-optimal liability levels. These measures are compared to others

in the literature.

The models are based closely on Shavell [57]. In that paper, he derives

optimal regulatory policies when �rms face liability. However, there are several

signi�cant discrepancies between his model and the nuclear power industry. This

work seeks to eliminate some, but not all, such discrepancies. In the process,

we extend his theoretical work signi�cantly and make it far more useful and

realistic.

First, Shavell assumes that in the event of an accident causing damages to

third parties, the �rm escapes liability with a positive probability. Instead, we

assume that operators cannot avoid liability for damages. This assumption,

which admittedly is too strong, is based on terms of the Price-Anderson Act.

This policy speci�es minimal levels of insurance that each nuclear power plant

operator must carry. It also sets terms for industry self-insurance in addition

to the commercial insurance coverage. Operators are exempt from liability for

damages in excess of the amount speci�ed in the policy. We assume that oper-
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ators cannot escape liability for the reason given in the MIT study [6, p. 81]:

"The compensation provision of both the �rst and second layers of insurance are

`no fault' and not subject to civil liability litigation."

The second and primary di�erence between this model and Shavell's is that

output matters here. In Shavell's model, pro�ts implicitly were assumed always

positive, so that �rms never exited the market. Similarly, it implicitly was

assumed that social welfare always was greater with production than without,

so that regulators never forced individual plants or the industry to close. In

this model, �rms' output decisions are binary: they produce at full capacity if

expected pro�ts are non-negative, and otherwise the �rms close. Hence, output

does not decline continuously with regulation. In the aggregate, however, output

is a decreasing function of regulation. If expected damages are too great, so that

social welfare is believed greater without production, then regulators can force

plants with the greatest risk to close, so long as their policy instruments allow

them su�ciently precise control. Similarly, if liability or regulation becomes too

great, then �rms will decide to exit the market.

Among a variety of applications that we provide, perhaps the most important

is employment of the model to determine the bene�ts to �rms, e�ects on �rm

behavior, and the impact on safety of o�ering the industry limits on liability. In

the past, the bene�ts to �rms, or �implicit subsidies,� typically were de�ned as

the di�erence in insurance premiums between insuring against all possible dam-

ages and insuring against the maximum amount of liability set by regulators. In

addition, it has been assumed that liability limits leave operators with too little

incentive to enhance and maintain safety standards, so that risk to the public is

unnecessarily high. In contrast to earlier approaches, our model shows the im-
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portance of considering simultaneously the overall e�ects of regulation, including

both liability protections and other policies. If regulators optimally determine

these policies, then regulations on safety should account for limited liability. Our

results show that the net e�ect of regulation and liability protections on safety

and pro�ts cannot be determined without additional empirical work, and our

results provide guidance for conducting such research while taking into account

the existing work of others.

2.1.1 Economics of the American Nuclear Power Industry

The economics of operating nuclear power plants proved far less favorable for

operators than was expected. Construction costs proved higher, operating costs

proved greater, and electricity demand growth and price growth fell sharply.

Many papers have been published that analyze the economics of constructing

nuclear power plants (See, for example, Ellis and Zimmerman [18] for the history

of construction, and see the University of Chicago study [8] for a comparison of

many results on the topic.) While there is little consensus in ranking possible

causes, it is clear that it proved more expensive to build plants than was pre-

dicted. Two primary reasons are that 1) expected increasing returns to scale

failed to materialize, so unit costs for constructing large commercial reactors

were not much lower than for small research reactors, and 2) plants took longer

to build than was expected. One reason for long construction times is greater

regulation of the construction process, but there is not a clear consensus on the

importance of this factor. The NRC [30, footnote 57] reports that lengthened

construction times were due, in part, to reluctance of operators to open plants
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for fear that demand was too weak to absorb the additional production.1

Once plants were completed and began operations, they proved more costly

to operate than was expected (EIA [2]). Operating costs grew rapidly through

the 1980s and early 1990s, although expenditure growth has slowed and e�ciency

has increased (Rust and Rothwell [56]).

Finally, demand side conditions deteriorated as the nuclear power industry

gained momentum (Nelson and Peck [39] and NRC [30]). Average annual elec-

tricity demand growth exceeded seven percent in the decade or more prior to

1973. Growth rates then fell abruptly to less than three percent. (See, for ex-

ample, Price [43, p. 107]. See Haltiwanger, et al [14] for a historical review of

electricity prices.) The NRC reports that the ratio of electricity demand growth

to overall economic growth fell from 1.5 in the 1970s to 1.0 in the 1980s, while

energy spending per dollar of GDP fell at 2% per year. Price [43] reports world-

wide increases in energy e�ciency following the oil price shocks of the 1970s.

Relative electricity prices continued to grow steadily until the early to mid1980s.

At that point, however, relative prices began a long, slow decline. Rothwell and

Eastman [51] report that from 1979 to 1981, the realized or allowed rate of re-

turn was less than the cost of capital for U.S. electric utilities. The need for ever

more base load capacity became much less pressing in the 1970s, and the shift in

electricity price growth forced increases in e�ciency for plants to remain viable.

Nelson and Peck show that the reality of weakening demand set in slowly, and

that the industry consistently over-estimated future demand growth from the

mid1970s to the mid1980s. Price also notes that the industry was slow to react

to signs of deteriorating economic conditions.

1See Price [43, p. 9] for a similar argument.
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Many partially constructed plants, and even some completed plants, were

abandoned as it became clear that demand growth was weakening. Similar

phenomena were observed among coal-�red plants (Ellis and Zimmerman [18]

and Price [43]). A number of operating plants were decommissioned, and no

new starts were made in the following two decades. In recent years, though,

growing interest in new construction has developed, although signi�cant excess

baseload capacity remains (Nivola [41]).

When the U.S. government was considering the creation of a private nuclear

power industry, they realized that the enormous risks associated with operating a

nuclear facility meant that liability would need to be limited in order to ensure vi-

ability of the industry. In 1957, the government enacted the Price-Anderson Act

(PAA) which provides liability caps for o� site damages. The stated objectives

of this policy were 1) to protect the public by ensuring prompt compensation

after an accident and 2) to foster the development of the nuclear power industry

(Dubin and Rothwell [16]). Such liability caps eliminated the need for plant

operators to protect themselves from possible losses for damages in excess of

the liability limit, thus limiting the need to purchase liability insurance. Many

argue that by enabling operators to avoid these additional insurance premiums

regulators provide an implicit subsidy to the industry. While estimates for the

value of these subsidies are fairly small (Dubin and Rothwell [16], Heyes and

Heyes [28, 29], and Denenberg [15] (note that problems exist in the estimates of

Dubin and Rothwell and Heyes and Heyes)), many still argue that the industry

would not survive without them. Unfortunately, these estimates are di�cult to

compute, and little faith should be put in most published estimates (Heyes [26]).

Many consider the 1979 accident at the Three Mile Island (TMI) plant to be
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the primary cause of the deterioration of the nuclear power industry. However,

there are numerous causes, including those listed above. In fact, the backlog of

new orders fell and plants under construction were abandoned even before the

TMI accident (Ellis and Zimmerman [18]). Hence, all of these factors should be

incorporated in any model claiming to portray the economics of the nuclear power

industry. Unfortunately, most models focus only on one, or perhaps a few, such

factors. Given the growing interest in resuming construction of nuclear power

plants (University of Chicago [8] and MIT [6]), it is important that we improve

our understanding of the political economy of nuclear power.

2.1.2 Layout of this paper

Our work develops a model of nuclear power plant operations and industry reg-

ulation. First, the model is described, with timings, objective functions for

operators and regulators, and derivation of optimal decision rules. Next, a series

of propositions are stated and proved, following closely the lead of Shavell [57]

while extending greatly his work. Next, predictions of the model are compared

to observed phenomena in the 1970s and 1980s. The model is used to derive

measures of implicit subsidies created by enforcement of limited liability levels,

and the measures are compared to others in the literature. Finally, limitations

are noted and possible extensions are suggested.

Before beginning, we note that our initial e�orts, summarized here, are con-

cerned more with regulation of the nuclear power industry than with political

economics. However, politics are of great importance in the nuclear power in-

dustry and such features readily may be added to extend our work. We will

return to the topic in our conclusions.
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2.2 The Model

2.2.1 Timing

This model has two primary groups of players, nuclear industry regulators and

power plant operators, who move sequentially in a static game-theoretic frame-

work. Regulators seek to maximize social welfare, and the �rms' problem is to

maximize pro�ts while satisfying the demands of regulators. It is assumed that

a continuum of markets exists, with one nuclear facility per market. No attempt

is made to explain the existence of power plants, and for simplicity prices and

demand for electricity are exogenous. Firms are identical, except for the amount

of damage that they cause if an accident occurs. We consider only one period. At

the end of the period, assuming that the �rm survives, the �rm incurs shutdown

costs and closes permanently.

The level of demand �rst is announced. Next, regulators determine the op-

timal level of liability to impose on the nuclear power industry, and the level is

announced. Given this announcement, power plant operators decide an optimal

level of investment in safety-enhancing maintenance and similar expenditures.

If production yields more expected pro�ts than the cost of decommissioning,

then �rms invest, produce electricity, collect the revenue, and pay operating and

investment expenses. Accidents then occur with an endogenously determined

probability dependent on the level of investment. These accidents cause dam-

age to third parties, for which regulators may hold plant operators liable. If

expected pro�ts are less than the cost of decommissioning, then operators make

no investments and close their plants immediately.

Exposure to liability with corresponding spending on safety, or spending to
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meet regulatory requirements, reduces pro�ts. We assume that aggregate out-

put may fall with pro�ts, as unpro�table �rms exit the market, so that greater

safety comes at the expense of output. The model has �rms that either produce

or shut down, depending on whether pro�ts are non-negative; non-negativity is

the condition for production, given our assumption for sake of simplicity that

shut-down costs are zero. We assume that regulators care about both output and

safety, and are cognizant of the e�ects on output of their own actions. Essen-

tially, we assume a continuum of identical markets, where prices and preferences

are exogenous. Hence, regulators consider separately consumers' utility in each

market. In each, either �rms produce at full capacity and consumers receive

utility from the product, or �rms close and consumers receive a level of utility

from zero consumption.

The de�nition of regulation is narrow, such that policies specify minimal

standards for investment in safety-enhancing goods and services. We consider

regimes with various combinations of regulation and liability, and we compare

social welfare for each.

We note an important paper by Baron and Myerson [10] in which they con-

sider the optimal regulation of a monopolist with costs that are unknown to the

regulator. Regulators have three instruments: to close the �rm or to allow oper-

ations, to set the quantity produced or the market price, and to o�er a subsidy

or to impose a tax on the �rm. While we do not include some of the details of

the Baron-Myerson model, their paper does contain material of some relevance

for the nuclear power industry. Given our focus on nuclear power plant opera-

tors, however, and given the existence of mixed generating technologies in nearly

every market, it is not clear that their model would be ideal in this case. Regu-
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lated electricity prices must accommodate not only the most e�cient generating

technology but a su�cient number of plants in each market to satisfy demand,

including plants with higher marginal costs. That is, regulators cannot tailor

market prices to individual plants or technologies. Hence, we consider prices

exogenous and instead focus on other matters. Still, the idea of Baron and My-

erson of tailoring regulatory policies so that �rms will reveal private information

is of great importance. In their study, the private information was the structure

of �rms' operating costs. In our case, �rms have private information about po-

tential damages. Unfortunately, the present model does not yet incorporate the

policy instruments required to entice �rms to reveal private information.

2.2.2 De�nitions

The continuum of (nearly) identical �rms are indexed by the level of potential

damages, h, that they pose to their communities. In fact, h is the only distin-

guishing characteristic of the �rms. We assume that h is an exact amount. This

magnitude of potential damage, known only to the �rm, is such that h ∈ [a, b]

where 0 < a < b < ∞. Regulators do not know potential damages for indi-

vidual �rms, but they do know the distribution of damages across �rms f(h),

which is nonzero on and only on [a, b]. We use a proper probability distribution

f(h) only for convenience, in that it integrates to one and we can use familiar

techniques from statistics. More general speci�cations of f(h) could integrate

to any positive value, as it simply speci�es the number (or measure) of �rms.

Industry capacity and potential output is Q. We assume that all plants have the

same capacity. We assume that electricity prices, less unit production costs, are

identically equal to one, so that net potential revenue at full capacity also equal
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Q. Firms may invest in goods and services, indexed by x such that 0 ≤ x, to

lessen the probability of an accident. The probability of an accident p(x), given

the level of investment x, is identical for each �rm and depends only on invest-

ment. The �rst derivative of the probability function is negative and the second

derivative is positive. (See Dubin and Rothwell [17] for a similar speci�cation.)

Regulators seek to maximize social welfare. A component of the social wel-

fare function is U . For industry output q, where q ∈ {0, Q}, U(q) ≡ q + u(q).

Hence utility U is a quasilinear utility function, and is determined by the sum

of industry net revenue and the bene�t to consumers u(q) of consuming q. The

numeraire in this utility function is industry net revenue. The balance of the

social welfare function is in the same units (dollars) and is composed of invest-

ment and potential damages, as described below. Hence, regulators care about

the utility consumers obtain from consumption, industry pro�ts, and potential

damages.

2.2.3 Industry Regulators

Industry regulators seek to balance the need for adequate electricity supplies and

the need for safety from nuclear accidents. If there is excess demand without

operation of nuclear plants, then neither desire can be satis�ed fully without

sacri�cing the other. We model these con�icting desires with a welfare function

for which regulators seek 1) to maximize output to satisfy consumers' demand

and operators' pro�t motives and 2) to minimize expected losses from accidents.

We consider various regulatory regimes with various combinations of regu-

lation and liability. We assume that the level of liability is outside the control

of regulators. Regulators thus have at most one instrument for governing the
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industry: they choose a minimum level of investment for operators.

We consider only cases in which operators bear either zero liability or liability

not exceeding the value of the �rm. Whether �rms face liability is not under

the control of regulators. We do not consider the possibility that regulators will

compensate �rms for losses, nor do we consider punitive damages.

Similarly, we do not consider the possibility that regulators or consumers will

compensate �rms for higher levels of investment, in the sort of exchange proposed

by Coase. The model could be extended to include such possibilities, but such

exchanges have not been observed and thus such possibilities are ignored.

2.2.4 The Social Planning Problem

The social planners' optimization problem, in which they seek to maximize social

welfare for each market i, is speci�ed as

ζ(hi) = max

{
U(0),max

xi≥0
U(Qi)− xi − p (xi)hi

}
(2.1)

for control of plant i with potential losses hi. We assume that social planners

know hi. Social planners thus know more than the simple regulators considered

later, for the regulators know only the distribution f(h). The planner must

decide whether to keep the plant idle or to allow operation. If the plant is closed,

then social welfare in the corresponding market is U(0). If the plant operates

after investing xi, then expected damages are p(xi)hi, and social welfare in the

corresponding market is U(Q)− xi − p(xi)hi.

The optimal level of investment is found by di�erentiating the second term

on right-hand side of Equation 2.1.
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δζi(h)

δx
= −1− p′(x)hi = 0 (2.2)

After simplifying, we have a rule for investment as a function of potential dam-

ages2:

xSP (hi) = (p′)
−1

(
−1

hi

)
where (p′)−1 is the inverse of the derivative of the probability function p. We see

that optimal investment increases with potential damages.

Clearly, social welfare declines with potential damages. Hence, social plan-

ners may �nd it optimal to allow plants with little risk to operate (that is, plants

with h close to a), but plants with high risk shut down (that is, plants with h

close to b). We can de�ne the level of damages h̃SP such that social planners are

indi�erent between operating and closing the plant:

{
h̃SP : U(0) = U(Q)− xSP (h)− p

(
xSP (h)

)
h
}

We limit the range for h̃SP such that h̃SP ∈ [a, b]. Hence, plants with h < h̃SP

close, and remaining plants operate:

Output=

 0 : h̃SP < hi

Q : hi ≤ h̃SP

We con�rm that social welfare strictly decreases with potential damages,

assuming that it is optimal to produce:

δζspi
δh

=

 0 : qSPi = 0

−p(xSP ) < 0 : qSPi > 0

2Note also that the SOC holds: δζi(h)2

δ2x = −p′′(x)h < 0
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Hence, social welfare strictly decreases in potential damages, regardless of the

probability function p.

Total social welfare, or the sum of welfare across all markets, is found by

integrating welfare for individual markets:

ζSP =

∫ b

a

max
{
U(0), U(Q)− xSP (h)− p

(
xSP (h)

)
h
}
f(h)dh

=

∫ h̃SP

a

{
U(Q)− xSP (h)− p

(
xSP (h)

)
h
}
f(h)dh+ [1− F

(
h̃SP

)
]× U(0)

where F (g) =
∫ g
a
f(h)dh for g ∈ [a, b] is the measure of plants that operate.

Aggregate output is ∫ h̃SP

a

Qf(h)dh

=Q× F (h̃SP )

2.2.5 The Case of Liability Only

We next consider a market in which private �rms are permitted to operate freely

of regulation, but they do face liability. We assume that the level of liability

y is given, and may be assumed to be the level of assets or the value of the

�rm. Alternatively, it may be set to any arbitrary level. In this analysis, we

assume that y ∈ (0, b]. That is, we assume that maximum liability is a positive

number that is no greater than potential damages in the worst case. For reasons

given in the introduction, we assume that �rms are held liable for damages with

probability 1. We do not allow the possibility that �rms will escape responsibility

for damages.
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Operators

Power plant operators seek to maximize expected pro�ts. They do so �rst by

determining an optimal level of investment in safety improvements and mainte-

nance, given their level of liability and revenue. If expected pro�ts are greater

than decommissioning costs given the optimal investment level, then operators

choose to produce. The level of potential plant-level output, Q, is given by the

level of installed capital. Electricity prices less unit production costs are assumed

positive and are normalized to one, and so for positive production levels, Q both

is the level of output and revenue less operating costs. If the value of the �rm

(revenue less operating and investment costs less expected liability claims) are

less than decommissioning costs, the plants close immediately and incur shut-

down costs. In this version of the model, shutdown costs are assumed zero for

simplicity.

The pro�t maximization problem for �rm i with potential damages hi is

speci�ed as

ΠL(hi) = max

{
0,max

xi≥0
Qi − xi − p (xi) min {hi, y}

}
(2.3)

If the �rm does not produce, then the �rm exits the market with zero pro�ts.

If the plant does produce, then the �rm earns net revenue Q, less investment x

and expected liability p(x) min{h, y}. Note that the �rm's liability either is the

total amount of damage h or the value of the �rm y, which ever is less.

There is no capital investment in this model. Because we assume that demand

equals or exceeds Q, there is no load following. Hence, the �rms' output decision

is whether to invest and to produce Q units of electricity or whether to close

permanently. We assume that no output is lost when operators invest. Of course,
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output likely is lost as the result of investment, adding costs in addition to the

direct expenditures. The assumption is made solely to simplify the model.

Optimal investment is determined by di�erentiating Equation 4.3:3

δΠL(hi)

δx
= −1− δp(x)

δx
min {hi, y} = 0 (2.4)

For simplicity, we ignore the constraints that are required to ensure that x ≥ 0,

so that maintenance expenditures are irreversible for all probability functions

p; this assumption is not restrictive so long as p is su�ciently steep for low

investment. After simplifying, we have the investment rule as a function of

potential damages:

xL(hi) = (p′)
−1

(
−1

min {hi, y}

)
(2.5)

We see that the investment rule is identical to that of the social planner, so long

as liability covers all damages. Pro�ts are non-increasing in potential damages:

δΠL

δh
=

 0

−p(xL)

:

:

y ≤ h

h < y

Hence, we may determine a point h̃L such that �rms are indi�erent between

closing and operating: {
h̃L : Q = xL (h) + p

(
xL (h)

)
h
}

where h̃L ∈ [a, b]. Firms with h ≤ h̃L �nd operations pro�table, and remaining

�rms close:

qi =

 Q : hi ≤ h̃L

0 : h̃L < hi

3Note also that the SOC holds: δΠL
2

δ2x = −p′′(x)h < 0 for h < y.
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We see that investment increases with potential damages, so long as liability

covers those damages:

δxL

δh
=
δ ((p′)−1(h))

δh

δ
(

−1
min{hi,y}

)
δh

≥ 0

Regulators

Social welfare may be found as under social planning, but now taking the �rms'

investment function as given:

ζL =

∫ h̃L

a

{
U(Q)− xL(h)− p

(
xL(h)

)
h
}
f(h)dh+ [1− F (h̃L)]× U(0)

Aggregate output is ∫ h̃L

a

Qf(h)dh = Q× F (h̃L)

2.2.6 The Case of Regulation Only

We next consider the case in which �rms operate without liability, but regulators

impose a minimal standard for investment. Ignoring the possibility of subsidies,

this scenario presents a lower bound for liability limits, measured as the bene�ts

presented to �rms by limiting their liability levels. We later will compare these

results to those for the case of both regulation and liability, which provides the

other relevant extreme when considering the e�ects of liability limits.

Operators

The pro�t function is speci�ed as:

ΠR
i (h) = max

{
0,max

s≤x
{Q− x}

}
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Given zero liability and zero damages to to value of the �rm, and because this

model has only one period, �rms clearly �nd it optimal to invest as little as

possible. Hence, each sets investment to the regulated level s:

xR(hi) = s

For s ≤ Q, �rms �nd it pro�table to operate, but not otherwise. Hence, the

output rule is:

qi =

 0 : Q < s

Q : s ≤ Q

Either all �rms operate, or all �rms close.

Regulators

Regulators take into account the e�ects of their policies on the decisions made

by plant operators. Hence, in e�ect they choose whether output will be zero or

positive. The regulators' optimization problem is

ζR = max

{
U(0), max

0≤s≤Q

∫ b

a

[U(Q)− s− p (s)h] f(h)dh

}
(2.6)

= max

{
U(0), max

0≤s≤Q
{U(Q)− s− p (s)E(h)}

}
We see that the regulator must set a single minimal standard for investment

expenditures for all �rms. The regulator cannot impose regulations tailored to

individual �rms because we assume that h is known only by the �rms themselves.

In the second line of the optimization problem, we see that the regulators' prob-

lem is identical to the social planners' problem for the average �rm, with one

exception. The exception is that the regulation s must be no greater than Q so
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that operations for the average �rm are pro�table. If both regulators and social

planners �nd it optimal for the average �rm to operate, but regulators �nd the

constraint binding, then it may be optimal for them to set higher standards but

also to subsidize production, so that �rms remain pro�table. However, we do

not consider this form of subsidies in this chapter.

The optimal level of regulation may be found by di�erentiating the social

welfare function given by Equation 4.6:4

δζR

δs
= −1− δp

δs
E (h) ≤ 0 (2.7)

⇒ sR = min

{
Q, (p′)

−1

(
−1

E (h)

)}
We see that either regulation is set to the optimal level of investment for the

average �rm under social planning, or investment exhausts pro�ts. Again, in-

vestment is equal to the socially optimal level for the average �rm or is equal to

Q, whichever is less.

We can calculate the level of social welfare under optimal regulation:

ζR = max
{
U(0), U(Q)− sR − p

(
sR
)
E (h)

}
Note again that either the industry is closed or all �rms operate under regulation.

Hence, output either is 0 or Q.

2.2.7 Liability and Regulation

The �nal regulatory regime that we consider includes both regulation and liabil-

ity.

4Note also that the SOC holds: δζR
2

δ2s = −p′′(s)E(h) < 0.
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Operators

Operators again seek to maximize pro�ts, given their levels of liability. Their

choice concerning investment now is constrained by the lower bound set by reg-

ulators. Firms either �nd regulation binding, and thus invest at level s, or they

do not �nd the policy binding and so invest as if there were no regulation. In

the latter case, the �rm invests according to the rule derived in Section 4.2.5.

Hence, the �rm �rst determines their optimal investment according to the rule

in Section 4.2.5. If this level is greater than the mandated level, then the �rm

sets its investment level accordingly. Otherwise, the �rm sets its investment level

to the regulatory standard. Next, the �rm determines whether, given its invest-

ment level, operations are expected pro�table. If so, the �rm invests, produces,

collects revenue, and pays any damage claims up to their level of liability. If

�rms determine that operations are not expected to be pro�table, then the �rm

exits with zero pro�ts.

We specify the pro�t function:

ΠLR(hi, s) = max
{
0, Q−max

{
s, xL(hi)

}
− p

(
max

{
s, xL(hi)

})
min {hi, y}

}
(2.8)

and corresponding investment rule.

xLR(hi, s) = max
{
s, xL(hi)

}
As we found earlier, we may �nd a point h̃LR(s) for which �rms with this

level of potential damages are indi�erent between operating and closing. Now,

the indi�erence point depends on the level of regulation s. The point may be

found as:
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{
h̃LR(s) : Q = max

{
s, xL(h)

}
+ p

(
max

{
s, xL(h)

})
min {h, y}

}
although we constrain values of h̃LR(s) to the interval [a, b]. To solve the regu-

lators' optimization problem, we must determine how h̃LR(s) changes with the

level of regulation s. To determine this, we use the implicit function theorem.

First, de�ne

C(h, s) ≡ max
{
s, xL(h)

}
+ p

(
max

{
s, xL(h)

})
min {h, y} = Q

as the function which determines the combination of regulatory policies s and

potential damages h that yield zero pro�ts. By di�erentiating C with respect to

h, we �nd

δC

δh
=



δxL

δh

[
1 + p′(xL)h

]
+ p(xL) : h < y, s < xL

p(s) : h < y, xL ≤ s

δxL

δh

[
1 + p′(xL)h

]
: y ≤ h, s < xL

0 : y ≤ h, xL ≤ s

After simplifying, using the �rst order condition from Section 4.2.5, we have

δC

δh
=

 p(max
{
s, xL

}
) : h < y

0 : y ≤ h

Because regulation either binds or has no e�ect on the �rm, the derivative is

zero for s < xL. The derivative of C with respect to s is:

δC
δs

=

 1 + p′(s) min {h, y} : xL ≤ s

0 : s < xL
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With these equations, we can compute the derivative of h̃LR(s) with respect to

s:

δh̃LR(s)

δs
= −

δC
δs
δC
δh

=

 −1+p′(s)h̃LR(s)
p(s)

: h < y, xL ≤ s

0 : o.w.

⇒


δh̃LR(s)

δs
< 0 : h < y, xL < s

δh̃LR(s)
δs

= 0 : o.w.

Hence, we see that h̃LR(s) is non-increasing in regulation. We claim that this

is so by noting that ∂C/∂s is zero for s = xL(h̃LR(s)), according to the �rst

order condition from Section 4.2.5. For regulation to bind, it must be true that

x(h̃LR(s)) < s, and so ∂C/∂s must be less than zero.

Output is determined according to pro�tability of operations. Production for

�rm i may be determined by comparing hi to h̃
LR(s):

qi =

 0 : h̃LR(s) < hi

Q : hi ≤ h̃LR(s)

Aggregate output is ∫ h̃LR(s)

a

Qf(h)dh = Q× F (h̃LR(s))

We employ the graph in Figure 2.1 to outline the implications of various

parameter values for the pro�ts. In the �gure, the x-axis covers the relevant

range of potential damages (a to b), and the y-axis depicts pro�ts. We assume

that maximum liability is y ∈ (a, b). The upper graph ({S1, S2, S3, G}) is the

level of pro�ts, assuming that regulation is not binding, so that �rm hi invests
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xL(hi). Points on the graph marked {Si} are points of indi�erence between the

level of regulation si, for s1 < s2 < s3, and private investment.

Consider �rst the possibility that point A on the vertical axis is less than or

equal to zero. Then clearly pro�ts are less than or equal to zero for �rms with

h = a, and so pro�ts are negative for all h > a. Aggregate output will be zero,

regardless of the level s1.

Consider next the possibility that point B on the vertical axis is zero, and

suppose regulation is s2. Then �rms with h2 < h close, as pro�ts are negative.

Remaining �rms operate, but they �nd regulation binding and so they invest s2.

Their pro�ts are given by {E, S2}. The slope of the pro�t function is −p(s2).

Consider next the possibility that point C on the vertical axis is zero, and

suppose �rst that regulation is s2. Then the pro�t function is {E, S2, S3, G}.

Firms with h ∈ [a, h2] �nd regulation binding. Firms with h ∈ (h2, y] invest

xL(h), and �rms with h ∈ (y, b] invest xL(y). Suppose instead that regulation is

s3. Then all �rms �nd regulation binding, and the pro�t function is {F, S3, G}.

Note that �rms with h ∈ (y, b] earn zero pro�ts and are indi�erent between

regulation and private investment levels.

Finally, suppose that point D on the vertical axis is greater than or equal to

zero, and suppose regulation is s4. Then again, all �rms �nd regulation binding,

and all �rms earn less than if they invested at privately-optimal levels.

Regulators

Regulators choose a minimal standard for investment in order to maximize social

welfare as before. This time, we consider three sets of parameters.

1. h̃L ≤ a
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Figure 2.1: Pro�ts

{
{Si} : si = xL(min{y, h})

}
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First, we assume that technology and the market is such that it is privately

optimal for all �rms to close, even if regulators set the minimal standard

to its lowest level (s = 0). In this case, the only possibility for regulators

to foster output is through subsidies; however, we do not consider such

subsidies. In this case, we obtain the same solution as in the liability-only

case, and social welfare with zero output is

ζLR1 = ζL = U(0) (2.9)

2. a < h̃LR(s) ≤ h(s)

In this scenario, at least some �rms �nd it pro�table to operate despite

liability, but regulation is su�ciently high so that all �rms that operate

�nd regulation binding. The regulators' objective function is:

ζLR2 = max


U(0),

max
xL(a)<xL(h̃(s))≤s

∫ h̃(s)
a

{U(Q)− s− p (s)h} f (h) dh

+[1− F (h̃(s))]× U(0)


(2.10)

Regulators choose between forcing the market to close and allowing prof-

itable operations. Regulations are constrained. First, let us de�ne h(s) ≡(
xL
)−1

(s) as the point of indi�erence between s and xL. Then any solution

to the problem above must satisfy the following constraints:

h̃LR(s) ≤ h(s) ⇒ xL(h̃LR(s)) ≤ xL(h(s)) = xL((xL)−1(s)) = s
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Regulation must be su�ciently high that all �rms that �nd operations

pro�table also �nd regulation binding. At the same time, we assume that

regulation is su�ciently low that some �rms �nd operations pro�table:

a < h̃LR(s) ⇒ xL(a) < xL(h̃LR(s))

3. a ≤ h(s) < h̃L(s)

Finally, we consider the case in which at least some �rms operate, and at

least some do not �nd regulation binding.

ζLR3 = max



U(0),

max
0≤s<xL(h̃LR(s))

∫ h(s)
a

{U(Q)− s− p (s)h} f (h) dh

+
∫ h̃L
h(s)

{
U(Q)− xL(h)− p

(
xL(h)

)
h
}
f (h) dh

+[1− F (h̃L)]× U(0)


(2.11)

As before, regulators choose between forcing the market to close and al-

lowing operations. If any �rms �nd regulation binding, it will be those

with lowest h. To �nd social welfare, regulators add together the bene�ts

of production for �rms investing at the regulated level, plus the bene�ts of

�rms investing higher levels, plus the bene�ts of zero production for �rms

that close. Policy choices are constrained on the lower end by zero; we

do not consider subsidies. We set an upper bound on regulation for this

scenario:

h(s) < h̃LR(s) ⇒ xL(h(s)) = xL((xL)−1(s)) = s < xL(h̃LR(s))

At least some �rms �nd it pro�table to operate while investing above man-

dated levels. We de�ne the point of indi�erence between s and xL as
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ht(s) ≡
(
xLRt

)−1
(s)

We can �nd solutions to the objective functions above. First, we solve for

the case in which regulation binds for all operating �rms. By di�erentiating the

welfare function with respect to s, we see that

δζLR2

δs
= −

∫ h̃LR(s)

a

f(h)dh− p′(s)

∫ h̃LR(s)

a

hf(h)dh

+
δh̃LR

δs

{
U(Q)− s− p (s) h̃LR(s)

}
f
(
h̃LR(s)

)
− f(h̃LR(s))

δh̃LR(s)

δs
U(0)

= −
∫ h̃LR(s)

a

f(h)dh− p′(s)

∫ h̃LR(s)

a

hf(h)dh

+
δh̃LR(s)

δs
f(h̃LR(s))

[
U(Q)− U(0)− s− p(s)h̃LR(s)

]
= 0

Consider the last term in the simpli�ed form of the equation. Note that the

derivative is non-zero only if h < y and s > xL. In specifying the problem, we

assumed that s > xL. To determine the sign of the term in brackets, we assume

that h < y, for otherwise the preceding derivative is zero and so the bracketed

term is not relevant. By de�nition, pro�ts for �rms with h = h̃LR(s) are zero.

Recall that we de�ned social welfare as pro�ts plus utility from consumption less

consumers' liability. Consumers have no liability when h < y, and pro�ts are

zero for h̃LR(s). By employing these facts, we can simplify the last term in the

equation above.

δζLR2

δs
= −

∫ h̃LR(s)

a

f(h)dh− p′(s)

∫ h̃LR(s)

a

hf(h)dh

+
δh̃LR(s)

δs
f(h̃LR(s)) [u(Q)− u(0)]

= 0
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Hence, we see that at the optimum (assuming an interior solution), the cost of

additional investment, plus the bene�ts of lower expected damages, less the net

bene�ts to consumers of production from �rms that exit the market sum to zero.

If we suppose that
∫ h̃(s)
a

f(h)dh > 0, as it will be if this case is relevant, then

we can simplify the �rst order conditions for the second case, and we have

1 = −p′(sLR)

[∫ h̃(s)
a

hf(h)dh∫ h̃(s)
a

f(h)dh

]
+
δh̃(s)

δs

f(h̃(s))∫ h̃(s)
a

f(h)dh
[u(Q)− u(0)] (2.12)

= −p′(sLR)E(h|h < h̃(sLR) +
δh̃(s)

δs
f(h̃(s)|h ≤ h̃(s)) [u(Q)− u(0)]

Because ∂h̃LR(s)/∂s ≤ 0, we know that 1 ≤ −p′(sLR)E(h|h < h̃(sLR). Thus, we

have

sLR2 ≤ xSP
(
E(h|h < h̃(sLR2 ))

)
If all �rms �nd operations pro�table, then this rule is identical to that in the

case of regulation only. For h̃LR(sLR2 ) < y, regulation will be lower than in

the regulation-only case due to the loss of consumption bene�ts. Given the

pro�tability constraint on regulation, and denoting the solution to Equation 2.12

as s∗2, we have

sLR2 = min
{
Q− p(sLR2 )h̃LR(sLR2 ), s∗2

}
The solution for the third case is found in similar fashion:

δζLR3

δs
= −

∫ h(s)

a

f(h)dh− p′(s)

∫ h(s)

a

hf(h)dh

= 0

In this third case, assuming that
∫ h(sLR)

a
f(h)dh > 0, we can �nd a similar rule

to that in the second case:
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⇒ 1 = −p′(s)

[∫ h(s)
a

hf(h)dh∫ h(s)
a

f(h)dh

]
(2.13)

= −p′(s)E (h|h < h(s))

By solving for regulation, assuming an interior solution, we have

s = xSP (E (h|h < h(s)))

Again, we �nd that the rule for regulation is similar to the solution for the

regulation-only case. The optimal policy is to set regulation to the social op-

timum for a�ected �rms. Given the pro�tability constraint, and denoting the

solution to Equation 2.13 as s∗3, we have

sLR3 = min
{
Q− p(sLR3 )h̃LR(sLR3 ), s∗3

}
In summary, we reviewed three cases. The �rst requires that �rms close,

regardless of the level of regulation, because of unfavorable technological and

economic conditions. If the �rst case does not hold, then regulators choose

between the second and third cases. Given the optimal levels of regulation sLR2

and sLR3 for the respective cases, the regulators' decision may be summarized as

follows:

ζLR = max



U(0),∫ h̃LR(sLR)

a

{
U(Q)− sLR2 − p

(
sLR2

)
h
}
f(h)dh

+[1− F (h̃LR(sLR2 ))]× U(0),∫ h(sLR3 )

a

{
U(Q)− sLR3 − p

(
sLR3

)
h
}
f(h)dh

+
∫ h̃L
h(sLR3 )

{
U(Q)− xL(h)− p

(
xL(h)

)
h
}
f(h)dh

+[1− F (h̃L)]× U(0)



(2.14)
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Regulators choose between closing the industry, forcing all �rms that operate to

invest the mandated amount, and allowing some to invest at the private optimum

while forcing others to invest the standard amount. In the following section, we

will determine more precisely the regulatory levels sLR2 and sLR3 .

2.3 Propositions

In this section, we establish a series of claims about optimal regulation and

operations in the markets described above. These correspond to the proposi-

tions given in Shavell [57], while incorporating our extensions to the model and

applying the results to the case of nuclear power.

2.3.1 Proposition 1:

The level of care taken by risk-bearing �rms as a function of their liability is

xL(h) = xSP (min {h, y}) (2.15)

≤ xSP (h)

Hence, the level of care of taken by operating �rms is less than or equal to the

�rst-best; in fact, it is equal to the �rst-best level so long as the magnitude of

the potential harm is less than the level of assets.

If ζSP (a) ≤ U(0) and ΠL(a) ≤ 0, then QSP = QL = 0. Likewise, if ζSP (b) ≥

U(0) and ΠL(b) ≥ 0, then QSP = QL = Q. In both cases, output under liability

matches output under social planning. In all other cases, either too many �rms

or not enough �rms operate relative to the social optimum.
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• Proof

1. The equality for Equation 2.15 is clear, since Equation 2.5 is of the same

form as Equation 2.2. Note that xSP is increasing in h, while min{y, h} is

increasing for h < y and is constant for h ≥ y. These imply the inequality.

The conditions listed for QSP = QL, such that h̃SP = h̃L, are obvious.

We list remaining feasible cases, and categorize them either as QSP < QL

or QSP > QL.

Too many �rms operate under liability, so that h̃SP < h̃L, if 1) y < a,

U(0) < ζSP (a), ζSP (b) < U(0), and 0 ≤ ΠL(a); 2) ζSP (a) ≤ U(0) and

0 ≤ ΠL(a); or 3) U(0) ≤ ζSP (y), ζSP (b) < U(0), and 0 ≤ ΠL(y) = ΠL(b).

Regarding the third, suppose ΠL(y) ≥ 0. Then ΠL(b) ≥ 0 since liability

does not increase past y, and optimal investment is constant for all h ≥ y.

In this case, all �rms will operate. If ζSP (b) < 0, then not all �rms will

operate under social planning, and QSP < QL. If U(0) ≤ ζSP (b) and

0 ≤ ΠL(b), then Q = QL = QSP .

Too few �rms operate under liability, so that h̃SP > h̃L, if 1) y < a, U(0) <

ζSP (a), and ΠL(a) < 0; or if 2) U(0) < ζSP (a) and ΠL(y) < 0. Regarding

the second, suppose ζSP (y) ≤ U(0). Then ζSP (y)−Π(y) = U(Q)−Q > 0,

for U(Q) = Q + u(Q), since xSP (h) = xL(h) for all a ≤ h ≤ y. Hence,

for all h ≤ y, pro�ts and output are zero when social welfare is less than

u(Q) > 0, and thus QL < QSP .
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2.3.2 Proposition 2

The optimal regulatory standard equals the level of investment in the social

planning case for the �rm posing the average level of potential damage, so long

as regulated �rms remain pro�table:

sR = min{Q, xSP (E(h))} (2.16)

≤ xSP (E (h))

The optimal regulatory level equals the �rst-best level of care for the average �rm

so long as it does not exceed its revenue (i.e. so long as Q ≤ xSP (E(h))). The

regulator chooses between shutting down the industry and allowing all �rms to

operate with this level of care. If the industry remains in operation, then parties

posing less risk of damage than E(h) invest more than the social planning level,

and those posing greater risk than E(h) invest less than the �rst-best level.

If all �rms close in the �rst-best solution, then all �rms close under regulation.

If all �rms operate in the �rst-best solution, and if the �rms are pro�table under

regulation, then the optimal level of output is achieved, but social welfare is less

than �rst-best. If only some �rms operate under the �rst-best solution, then

output under regulation either will be to little (if the industry closes) or too

great (if all �rms operate). Clearly, social welfare is less than �rst-best.

• Proof

1. Since the simpli�ed RHS of Equation 2.6 is of the same form as Equa-

tion 2.1, then Equation 2.16 follows, so long as xSP (E(h)) ≤ Q. Since

xSP (h) increases with h, parties posing less risk than E(h) invest too much

and parties posing more risk invest too little, assuming that production re-

mains pro�table under regulation.
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If the social planner �nds it best for all �rms to close, then because it

is feasible and no superior solution is possible, so too does the regulator.

If sR = xSP (E(h)) ≤ Q, and if U(0) ≤ ζSP (b), then all �rms operate

both under social planning and regulation; hence output is the same for

both. Because only the average �rm invests optimally under regulation,

social welfare is lower.

Under regulation, either no �rms operate or all �rms operate. If only

some �rms close under social planning, then either too few or too many

will operate under regulation, depending on the level of social welfare for

zero output versus full output.

If U(Q) − sR − p(sR)E(h) < U(0), then regulators force the industry

to close. If instead social welfare is greater with production but Q <

xSP (E(h)), then it may be socially optimal to set regulation so that all

�rms operate with zero pro�ts, while investing less than the �rst-best level

for the average �rm.

2.3.3 Proposition 3

Social welfare is greater under regulation than under liability if the liability

is su�ciently low (y su�ciently low) or if the range of potential damages is

su�ciently small (h tightly distributed about E(h)); otherwise social welfare

under liability is greater than under regulation. The exception is when, despite
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bankruptcy protection, high levels of liability cause �rms to exit and output to

fall. If consumers value the lost products more than the risk reduction, then

it may be better to regulate a pro�table level of investment with zero liability

rather than simply to o�er zero regulation and bankruptcy protection.

• Proof

1. We �rst want to show that there is a ỹ where 0 < ỹ < b such that regula-

tion is superior to liability for y ≤ ỹ, but not otherwise.

We can compute the bene�t of regulation versus liability as

ζR−ζL = max


∫ h̃L
a

{
U(0)−

[
U(Q)− xL(h)− p(xL(h))h

]}
f(h)dh,[

1− F (h̃L)
]
[U(Q)− U(0)]−

[
sR −

∫ h̃L
a

xL(h)f(h)dh
]

−
[
p(sR)E(h)−

∫ h̃L
a

p(xL(h))hf(h)dh
]


where the �rst term holds for QR = 0 and the second holds for QR = Q. If

y equals 0, then Equation 2.15 implies that investment is equal to 0 for all

h ∈ [a, b], and thus the situation for �rms under liability is identical to the

situation for �rms under regulation facing the policy s = 0. The equation

above becomes

ζR − ζL = max

 U(0)− [U(Q)− p(0)E(h)] ,

−sR −
[
p(sR)− p(0)

]
E(h)


since xL(h) = 0 and h̃L = b. Note that this equation is equivalent to

ζR(s = sR, q = QR)− ζR(s = 0, q = Q)

= max

 U(0)− [U(Q)− p(0)E(h)] ,

−sR −
[
p(sR)− p(0)

]
E(h)



47



From this equation, it is clear that the left-hand side is non-negative, for

social welfare under regulation can be no greater than at q = QR and

s = sR. If the �rst term in brackets is greater, then regulators �nd it bet-

ter to close the industry than to choose any feasible level of regulation such

that production is positive, including the feasible level s = 0. However,

this means that the �rst term must be positive, since optimal closure of

the industry means that utility of zero consumption is greater than full

production and zero investment. If the second term in brackets is greater,

then regulators �nd it better to choose a feasible level of regulation that

allows non-negative pro�ts and thus a positive level of production. For

the optimal level of regulation sR > 0, the second term must be positive,

as it is equivalent to the di�erence between social welfare with optimal

regulation sR > 0 and suboptimal regulation s = 0. Hence, since sR is

the (unique) optimal s and is positive, social welfare must be higher under

regulation than under liability when y equals 0. This and the continuity

of social welfare in y prove that regulation yields better outcomes than

liability for su�ciently low liability levels.

Taking the derivative of social welfare under liability with respect to y,

we see that

δζL

δy
=



0 : h̃L < y∫ b
y
{− δxL

δy
− δp

δx
δxL

δy
h}f(h)dh : y < h̃L = b

[1− F (y)][u(0)− u(Q)] : ΠL(y) = 0

+p(xL(y))
∫ b
y
{h− y}f(h)dh

When potential damages for all operating �rms fall short of the value of
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the �rm, then small changes in the maximum level of liability do not a�ect

the �rms' behavior, and so social welfare is not a�ected. If all �rms �nd it

pro�table to operate, and some mass of �rms operate under the protection

of limited liability, then social welfare strictly increases with small changes

in liability, since these same �rms invest greater amounts. Because the in-

creases move their investment levels closer to the socially optimal amounts,

welfare increases.

If �rms that operate under the protection of limited liability just break

even, so that Π(y) = 0, then a small increase in liability could have a large

e�ect on output and social welfare. A small increase in y would cause

pro�ts for [1 − F (y)] �rms to become negative, so these �rms would exit

the market and output would fall by a proportional amount. Consumers

would lose the bene�t of consuming the foregone products, which would

have an adverse a�ect on social welfare. On the other hand, the amount of

liability that [1−F (y)] �rms had been escaping, and thus had been falling

on consumers or some other entity, would disappear. This would enhance

social welfare. The net e�ect depends on the preferences of consumers and

the magnitude of liability that �rms escape.

Hence, if liability is superior to regulation for some y1, then generally

the same must be true for any y2 > y1, for in almost all cases we see that

social welfare is non-decreasing in y under liability, but is una�ected by y

under regulation. The possible exception occurs for y1 and y2 such that

ΠL(y1) ≥ 0 and ΠL(y2) < 0, so that the increase in liability causes �rms to
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exit. In this case, if consumers prefer the reduction of risk over the ben-

e�ts of consumption, then ζL would rise. Otherwise, if consumers value

the products more than escaping their share of potential damages, then ζL

falls. In this last case, social welfare is not non-decreasing in y, and welfare

could be higher under regulation both for low y and for relatively large y.

For y → b and ΠL(y) ≥ 0, ζL → ζSP , since investment under liability

is at the �rst best level for all h ≤ y. Under these conditions, regulation

cannot do better and surely will do worse if the variance of h is su�ciently

large. For ΠL(y) < 0 as y → b, regulation either could prove superior

in all cases or could prove superior for small and large y, depending on

consumers preferences for consumption versus the escape of liability.

Hence, we prove that there is a ỹ, where 0 < ỹ < b, such that regula-

tion is superior to liability for y ≤ ỹ, and that liability will yield greater

welfare otherwise, with the notable exception of when consumption losses

outweigh safety gains in terms of social welfare.

To see the result of h tightly distributed about its mean, consider �rst

the average �rm as it operates either under regulation or liability. Note

from Equation 2.15 that for 0 ≤ ΠL(E(h)),

xL (E(h)) = xSP (min{E(h), y})

≤ xSP (E(h))

50



and that

sR = min{Q, xSP (E(h))}

≤ xSP (E(h))

For E(h) ≤ y and xSP (E(h)) ≤ Q, then xL(E(h)) = sR and regulation

is as good as liability in maximizing social welfare for the average �rm.

If xSP (y) < Q and y < E(h), then xL(E(h)) < sR and regulation is su-

perior to liability for maximizing social welfare for the average �rm. If

Q < xSP (E(h)) and Q < xSP (y), then investment and output are zero

under liability but may be positive under regulation; they will be positive

only if it is socially optimal. Hence, regulation generally is superior to

liability for the average �rm.

In cases where xL(E(h)) < sR so that ζL(E(h)) < ζR(E(h)), then con-

tinuity implies that there is a non-degenerate interval including E(h) in

which U(Q)− sR−p
(
sR
)
h > U(Q)−xL(h)−p

(
xL(h)

)
h. If the probabil-

ity mass within the interval is su�cient, the di�erence in expected social

welfare between liability alone and regulation alone, given by

∫ h̃L

a

{[
U(Q)− xL (h)− p

(
xL (h)

)
h
]}
f(h)dh

− [U(Q)− sR − p
(
sR
)
E(h)]

will be negative, and regulation will be superior to liability.

If h = E(h) for all �rms, so that all �rms are identical, then clearly the �rst-

best solution can be reached under regulation so long as xSP (E(h)) ≤ Q,
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for then either sR = xSP (E(h)) or all �rms are closed, with the decision

following the �rst-best. This solution would not be reached under liability

when y < E(h) and ΠL(E(h)) ≥ 0, for then xL(E(h)) < xSP (E(h)). If

instead y ≥ E(h) and ΠL(E(h)) ≥ 0, then sR = xL(E(h)) = xSP (E(h)),

and so regulation is as good as liability. If Π(E(h)) < 0 under liability, but

optimal regulation allows operation, then regulation is superior; however,

sR = min{Q, xSP (E(h))} in this case, and so the social-planning level of

welfare might not be reached. Hence, regulation is at least as good as

liability when all �rms are identical. As argued above, continuity allows

us to extend the argument to the case where the distribution of potential

damages is su�ciently small.

2.3.4 Proposition 4

For the optimal use of both regulation and liability, we classify three potential

outcomes:

1. For a < y, the optimal minimum level of investment is less than the level

required in the regulation-only case, and it equals the investment level in

the liability-only case for those parties posing the least potential damage:

sLR = xSP (a) < sR (2.17)

No �rms' decisions are constrained by the regulations. All are induced by

liability to take at least as much care as the required standard sLR. A

su�cient condition for Equation 2.17 is

xL
(
h̃L
)

> sR (2.18)
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or, equivalently, that the motivation to lower risk is su�ciently great (y

su�ciently high), while pro�ts remain su�ciently high for �rms with h = a.

• Proof

(a) sLR ∈ [xSP (a), sR]: For every h, expected social welfare is greater at

s = xSP (a) than at lower levels of investment, so that sLR ≥ xSP (a).

Of course, this assumes that �rms with potential damages a �nd it

pro�table to operate at sLR = xSP (a). If this is not the case, then

Equation 2.18 does not hold, and either the industry optimally is

forced to close or Proposition 4b or Proposition 4c holds.

To prove that sLR ≤ sR, let W (s; r) be expected social welfare un-

der regulation only, and let W (s; rl) be expected social welfare under

combined regulation and liability. Then for any s1 < s2

W (s1; r)−W (s2; r) ≤ W (s1; rl)−W (s2; rl) (2.19)

WE show this by establishing the corresponding weak inequality for

each h ≤ h̃L and s2 ≤ Q: max {U(0), U(Q)− s1 − p (s1)h}

−max {U(0), U(Q)− s2 − p (s2)h}

 ≤
 max

{
U(0), U(Q)−max{s1, x

L(h)} − p(max{s1, x
L(h)})h

}
−max

{
U(0), U(Q)−max{s2, x

L(h)} − p(max{s2, x
L(h)})h

}


(2.20)

To verify Equation 2.20, note that equality holds for h such that

xL(h) ≤ s1. For h such that s1 < xL(h), both for s1 < xL(h) ≤ s2
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and for s2 < xL(h), the inequality is strict. The argument easily

can be modi�ed to show the same condition when s1 < s2 ≤ Q and

h̃L < h, when s1 < Q ≤ s2, and when Q < s1 < s2.

As sLR maximizes W (s; rl) over s, W (sR; rl) −W (sLR; rl) ≤ 0. But

then if sR < sLR, Equation 2.19 would imply W (sR; r)−W (sLR; r) ≤

0, which would contradict our �nding that sR is the unique optimum

under regulation. Thus sLR ≤ sR.

(b) sLR < sR while ΠLR(h̃L) > 0 at investment level sLR < xL
(
h̃L
)
im-

plies that some �rms invest amounts exceeding sLR, that is, sLR <

xLR(h̃L), so long as 0 < ΠLR(a): If not, then it must be that xLR(h̃L) ≤

sLR, and so for s ≥ sLR, Equation 2.10 is relevant. Since Equa-

tion 2.10 has a unique maximum either at sR or at the point sLR >

xL(h̃L) such that ΠLR(h̃L) = 0, and we assumed that sLR < sR while

pro�ts at h̃L were positive given investment level sLR, then Equa-

tion 2.10 must have a unique maximum over s ≥ sLR at sR. But

then the social welfare function could not have had a maximum at

sLR < sR. This contradiction is our proof.

(c) sLR < sR while ΠLR(h̃L) > 0 at investment level sLR implies that

sLR is determined by sLR = xSP (a), so long as ΠLR(a) ≥ 0: From

(b), we know that if sLR < sR while ΠLR(h̃L) > 0 at investment level

sLR, then Equation 2.11 is relevant for all s in an interval properly

including xSP (a) and sLR. We can split the equation into three of the
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following four integrals:∫ h(s)

a

[U(Q)− s− p(s)h] f(h)dh

+

∫ min{y,h̃L}

h(s)

[
U(Q)− xSP (h)− p(xSP (h))h

]
f(h)dh

+ Iy<h̃L

{∫ b

y

[
U(Q)− xL(y)− p(xL(y))h

]
f(h)dh

}
+ Ih̃L≤y

{
[1− F (h̃L)]U(0)

}
(2.21)

Note that for s ∈ [xSP (a), xSP (y)], the terms in the third and fourth

lines of Equation 2.21 are constant and thus are irrelevant for the

optimization problem. Note also that the second integral, on the

second line, is maximized for all h ∈ [h(s),min{y, h̃LR}]. The �rst

integral, �nally, falls short of the social welfare maximum for h(s) > a,

or ∫ h(s)
a

[U(Q)− s− p(s)h] f(h)dh

<
∫ h(s)
a

[
U(Q)− xSP (h)− p(xSP (h))h

]
f(h)dh

since s > xSP (h) for all h ∈ [a, h(s)). The two terms are equal only

for s = xSP (a), so that all �rms with h ∈ [a, y] invest the �rst-best

amounts. Firms with h ∈ (min{y, h̃LR}, b] either close or invest in

the amount determined by their liability, xLR(h) = xL(h). Hence, if

a < y, a possible solution is that regulation is not relevant. In this

case, all �rms invest the privately-optimal amount xL(h).

(d) If Equation 2.18 holds, then sLR < sR: Suppose not. Then by (i),

sLR = sR. But suppose Equation 2.18 implies that Equation 2.11 is

relevant at sR; we need only follow the argument in (1c) to show that

sLR = xSP (a) < sR.
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2. All �rms operate and �nd regulation binding. Either the optimal level

equals the optimal regulation-only level, or regulation drive pro�ts to zero

for for �rms with the most potential damage; that is, either

sLR = sR

or

ΠLR(y) = 0

given xL(y) < sLR < sR. Liability is insu�cient to inspire greater invest-

ment than sLR. This will result for xL(y) su�ciently low for a ≤ y and

0 < ΠL(y), so that xSP (y) < sR.

(a) If ΠLR(y) ≥ 0 at investment level sR, and if sLR = sR, then no �rm

invests more than sR: Otherwise, xL(y) > sR, which by (1d) implies

sLR < sR, a contradiction.

(b) If ΠL(y) > 0 but ΠLR(y) < 0 at investment level sR, and if xL(y) <

sLR, then ΠLR(y) = 0 and sLR < sR: Since pro�ts fall with investment

given a �xed liability level y, pro�ts are lower for investment sR than

for sLR < sR. Since pro�ts are zero at sLR, no �rm would choose to

invest more. If pro�ts were positive, then regulators could improve

welfare by increasing regulation toward sR.

(c) If xL(y) is su�ciently low for a ≤ y, and 0 ≤ ΠL(y), then xL(y) <

sLR ≤ sR, and either sLR = sR or ΠLR(y) = 0: Assume the contrary.

Then in particular it must be possible that sLR < sR while 0 < ΠLR(y)

for an xL(y) ≤ xSP (a). But by (1b) we know that if sLR < sR and

pro�ts are positive, then xL(y) > sLR. Hence, xSP (a) > sLR. This,
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however, contradicts (1a), so that certainly for all xL(y) as low as

xSP (a), xL(y) < sLR ≤ sR.

Note that as the liability limit decreases, so does investment, and

it approaches xSP (a) as y approaches a. Hence, if y is su�ciently

small, xL(y) < sLR ≤ sR.

3. The optimal regulatory standard allocates all pro�ts when y < a, 0 ≤

ΠL(a), and pro�ts are negative for s = xSP (a); that is, the optimal liability

level is

{sLR : Q = s+ p(s)y}

such that xL(a) ≤ sLR < Q. If U(0) < ζR(s) for s = sLR, then all �rms

operate. Otherwise, regulators force all �rms to close. If �rms operate, no

party is induced by liability to take more care than xL(a), but all �rms

�nd regulation sLR binding.

This will obtain if y < a and production by all �rms at sR < xSP (a) both

provides greater social welfare than zero consumption and allows those

�rms to earn non-negative pro�ts. In this case, xL(y) ≤ sLR < xSP (a). In

other words, �rms invest x = max{s, xSP (min{h, y})}. Then, for y < a

and 0 < ΠL(a) and U (0) < ζR for s = sLR, it may be optimal to set

xL(a) ≤ sLR < xSP (a) to gain the bene�t of consumption despite sacri�c-

ing safety.

If production is positive under regulation, then sLR < sR.
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(a) If y < a, 0 < ΠL(a), and pro�ts are negative for s = xSP (a), then

xL(a) ≤ sLR: This follows from (1a).

(b) If ΠLR(a) < 0 for s = xSP (a) but 0 ≤ ΠLR(a) for sLR < Q, and if

U(0) < ζR for s = sLR < Q, then all �rms operate: First, if U(0) < ζR

for s = sLR < Q, then it is welfare-maximizing for all �rms to operate

with x ≥ sLR. Because �rms bear (limited) liability costs, liability

levels strictly must be less than net revenue (sLR < Q) for �rms

to remain pro�table. Because xSP (h) and xL(h) are increasing in

h < y, and because 0 < ΠL(a), investments of xL(a) < xLR < xSP (a)

fall closer to the �rst-best solution while leaving pro�ts non-negative.

Hence, it is optimal to allow all �rms to operate while forcing them

to invest sLR > xL(a), given the assumption that U(0) < ζR(s) for

s = sLR.

(c) If production is positive under regulation, then sLR < sR: If produc-

tion is positive under regulation, then sR ≤ Q. Positive production

under both liability and regulation requires that sLR ≤ Q− p(sLR)y,

given the other assumptions listed above. If sR < xSP (a), then it

must be the case that sR = Q, for otherwise it social welfare would

be increased by moving sR closer to the �rst-best solution for a. How-

ever, pro�ts clearly are negative for sLR = sR = Q, and so given the

assumptions above, it must be true that sLR < sR, with the di�erence

being p(sLR)y. Essentially, this is the amount of the �rms' insurance

premiums, assuming that insurance is available at an actuarially fair

rate. Hence, regulators �nd it optimal to set regulation lower than the

optimum under zero liability, but the savings go to pay for insurance.
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2.3.5 Summary

In this section, we examined optimal conditions under three regulatory regimes.

First, we considered the case with limited liability but no regulation. Next,

we considered the case in which there is regulation but no liability. We then

compared the relative merits of the �rst two alternatives.

Finally, we considered the case in which there is both limited liability and

regulation. In this case, assuming that technology and economics allow at least

some �rms to operate with the given level of liability as long as regulation is

su�ciently low, regulators' choices depend on the level of liability limits. If

all �rms realize the bene�ts of liability limits, then regulators set regulation

such that all �rms �nd it binding. If pro�ts were non-positive for all �rms at

investment level xSP (a), then regulators set their policies su�ciently high to

drive pro�ts to zero for all �rms. If some �rms face full liability, but the liability

level is relatively low while pro�ts remain positive for �rms facing the greatest

liability, then regulators set policies such that all �rms operate and all invest at

the regulated level. If the liability limit is relatively high, such that most �rms

invest at the �rst-best level, then regulators set policies su�ciently low that they

fail to bind for any �rm.

2.4 Applications

In this section, we consider a series of applications of the model. The �rst several

consider whether this model responds to parameter changes in a way consistent

with historical market changes. The �nal applications derive estimates of implicit

subsidies to �rms for liability limits, and we address the question of what is the
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optimal level of liability limits.

2.4.1 A Fall in Excess Demand

Demand growth was very high in the decade or more preceding 1973, with aver-

age annual growth rates exceeding seven percent. Following 1973, average annual

growth rates fell to less than three percent. Suppliers had been preparing for

continued high growth rates by investing heavily in new base load plants, espe-

cially nuclear and coal-�red power plants. This signi�cant reduction in demand

growth forced many planned and partially constructed plants to be abandoned,

and less pro�table plants were closed.

To allow for changes in demand, suppose that U(Q) is scaled by parameter φ.

When multiplied by utility u(Q), φ becomes a preference parameter. Suppose it

also a�ected pro�ts directly, so that net revenue becomes φQ. Thus, changes in

consumers' tastes a�ect �rms directly as changes to market prices. In the model

above, φ = 1. The level of utility for zero consumption remains unchanged at

u(0). Hence, for a shift from φ = 1 to φ < 1, positive consumption becomes

relatively less desirable compared to zero consumption.

A reduction of excess demand, in terms of our model parameters, would

appear as an fall in φ. There is no construction in our model, and we assume

that all produced electricity is sold. Hence, these changes have no direct e�ect

on privately optimal investment xL in our model. However, �rms are more likely

to exit as net revenue φQ falls. Hence, aggregate output may fall with φ.

If we ignore changes to production capacity, and if instead we assume that

all changes to excess demand come through the preference parameter φ, then

the level of maintenance spending remains unchanged for all �rms that operate
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but are not bound by regulation. However, the condition for whether regula-

tors should allow production is a�ected, as is the optimal level of regulation in

relevant cases. We see in Equation 2.14 that for su�ciently large reductions in

demand, regulators will shut down the industry.

Of course, the nuclear energy industry was not shut down completely in the

1970s or 1980s, when this shift in excess demand occurred. Hence, if we believe

that y < a as described in Proposition 2.3.4-3, then the predictions of our model

require that regulators decrease sLR in order to maintain pro�tability. This is

so because under our assumptions, regulation either allows all �rms to operate

or all �rms close. In reality, most agree that regulations were heightened. Con-

tinued production with a mere thinning of producers indicates that our model's

predictions are too extreme. We will revisit the matter in the section below

on exit costs. Still, our model does predict a qualitative response that at least

vaguely is accurate under some parameter vectors.

2.4.2 Increased Aversion to Losses

The 1979 accident at the Three Mile Island (TMI) nuclear power plant made

the possibility of a serious accident real to most Americans. While this accident

turned out to be relatively minor, and little or no o� site damage was caused by

escaping radiation, the 1986 accident at Chernobyl truly was catastrophic. Such

events led some to adjust upward their assessment of the probability of accidents

that would cause harm to third parties, which is represented in this model as an

increase in p. (See, for example, Zimmerman [63] and Price [43, p. 58].) Suppose

that the perception of probability function p is scaled upward by parameter α
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to become αp.5 Under liability, privately optimal investment becomes

xL(h) = (p′)−1

(
− 1

αmin {y, h}

)
As operators perception of their own risk increases, so too does their invest-

ment. This reduces expected pro�ts directly, so �rms are more likely to exit and

aggregate output may fall. In general, pro�ts change by

∂Π

∂α
= − [1− α]

∂xL

∂α
− p(xL) min {y, h}

For high levels of expected damage, the derivative is negative even for α > 1.

Under regulation only, the optimal policy becomes

sR = min

{
Q, (p′)−1

(
− 1

αE(h)

)}
In this case too, assuming an interior solution, regulation forces investment to

increase and pro�ts to fall, so aggregate output also may fall. The condition for

whether regulators should allow production also is a�ected by aversion to losses,

and it becomes more likely that regulators will force plants to close. Under both

liability and regulation, investment will increase for all �rms, since all invest

either xL(h) or sLR, and these terms both increase.

At lease some of the increase in aversion to loss, however, is represented bet-

ter as a change in preferences. Speci�cally, the public developed greater concern

for safety and relatively less concern for economic well-being. Consequent pres-

sure on politicians may have caused regulators' preferences to shift similarly.

5Of course, α must be restricted such that α ∈ [0, 1/p (0)] so that αp ∈ [0, 1]. These awkward

restrictions make clear that the constant parameter should be generalized to a function α (h)

such that α (h) p (x (h)) ∈ [0, 1] and satis�es our assumptions regarding derivatives. We then

might consider shifts in the function α.
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Such changes may be modeled simply as in the preceding section on decreasing

demand.

Alternatively, we can rede�ne the parameter α in our analysis above to rep-

resent political preferences or public tolerance of nuclear power risks. In this

case, there are no parameter restrictions. α < 0 indicates a public comprised of

thrill-seekers, and α = 0 indicates an indi�erent population. Increasing positive

values of α indicate growing aversion to potential harm. For α→∞, consumers

reject nuclear power regardless of potential bene�ts. If we assume α > 0, which

seems reasonable, then we might ask what determines the magnitude of the pref-

erence parameter. In our static model in which each market and each group of

consumers are identical, we might assume the parameter exogenous and perform

comparative-statics analysis. A slightly more interesting approach would be to

assume a range of randomly-distributed preferences. The distribution would be

analogous to the real-world distribution of ideological and political persuasions

concerning the corporate world, consumer safety, and the natural environment.

Perhaps still more interesting and important cases could be analyzed with a

dynamic version of this model. With such a model, tolerance for risk and per-

ception of risk could be based on past performance of plants; of course, this

particular application also would require other extensions to our model. If the

public had imperfect information concerning the risk posed by the plant in their

own market, and if past performance o�ered a signal of the true risk, then prefer-

ences might lean against nuclear operations (high α) following poor performance

or misbehavior, and the public might be tolerant of operations (low α) following

periods of good performance. Regulators would have political interests lead-

ing them to care about the public's perception of risk in addition to economic
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well-being and their own risk assessments. This methodology could incorporate

problems of waste disposal that currently plague the industry. Waste disposal,

especially temporary storage, perhaps poses greater political problems than tech-

nical problems. It thus would be better to consider waste storage as a political

constraint that may force plants to close when allowed space is exhausted. These

factors too best would be captured in a dynamic political economy model.

Increasing aversion makes it less likely that plants will be allowed to operate,

which generally is consistent with the events of the late 1970s and 1980s. The

perception of risk appears to have increased following the TMI accident, although

there is evidence that it was trending upward throughout the 1970s. In the

following years, many plants were closed, investment expenditures increased,

and pro�ts fell. However, Zimmerman [63] argues that existing power plants

lost little value as a result of TMI once the uncertainty immediately following

the accident was resolved. The primary impact of that accident was felt by those

building new plants.

2.4.3 Increasing Maintenance Expenditures

It is di�cult to �nd data on maintenance expenditures alone. Usually, this

data is combined with operating costs. Such data are reported by the Energy

Information Administration ([2, p. 9]) for 1974 to 1992 in constant dollars per

kilowatt of plant capacity. Prices are assumed equal, or at least proportional to,

the implicit price de�ator for GDP. Most notable are rapid cost increases between

1975 and 1984, followed by falling costs through 1992. Costs reported by the EIA

increased roughly six-fold in 1993 dollars, from about $10 per kilowatt in 1975

to about $60 per kilowatt in 1984. The aggregation over operating expenses and
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maintenance costs does not allow us to make claims about maintenance alone.

We might reason maintenance costs generally grew at least as fast as operating

costs, however, based on the stricter regulatory policies enacted in the late 1970s

and early 1980s, and based on stricter enforcement of such policies.

Rothwell [48] reports that older plants, which generally are more expensive

to operate, are most likely to close. Plants in regions with lower electricity

prices also are more likely to close, although these pressures may be lessened by

pollution controls and possible future taxes on carbon emissions. In this era of

deregulation of electricity markets, we might expect acceleration of plant closings

as pro�ts are squeezed both by lower prices and the higher costs of maintaining

aging plants. (Also see Rust and Rothwell [56] for a forecast of plant closings.)

Higher expected decommissioning costs and higher estimated accident prob-

abilities also would lead to higher spending.

2.4.4 Exit Costs

In the work above, we assumed that decommissioning costs were zero. We can

adjust the point of indi�erence h̃L between operating and closing for the liability-

only case, given positive closure costs c:

{
h̃L : Q+ c = xL(h) + p

(
xL(h)

)
h
}

It is easy to see that h̃L increases with c so that �rms are more likely to remain in

the market when exit costs increase. Exit costs do not enter the investment func-

tion xL(h), nor do they enter the interior regulation rule sR = (p′)−1 (−1/E(h)).

However, if the corner solution holds for regulation, then the optimal policy be-

comes sR = Q + c which is increasing in exit costs. Similar extension may be
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made for the case of both liability and regulation.

We see then that higher expected decommissioning costs would lead to higher

spending. I do not have evidence that closure costs increased. We might suppose

that they did, as regulatory standards generally increased through the 1970s.

Suppose that there is a distribution of exit costs, such that the cost for closing

plant i is 0 < ci, and suppose that c is not correlated with h. Then the corner

solution under regulation only becomes less clear. Before, aggregate output was

Q for sR ≤ Q and zero otherwise. With a distribution of exit costs, aggregate

output will begin to fall as sR increases past Q, and aggregate output reaches

zero when sR = Q + max(c). Hence, �rms with low exit costs will close �rst

when economic conditions deteriorate. In the section above on excess demand,

we noted that the number of power plants fell at the same time that demand

weakened, but aggregate output did not reach zero. A distribution of exit costs

provides a simple, though simplistic, explanation.

Note that we have not accounted for on-site cleanup costs following an acci-

dent. We might expect that such considerations would lead �rms to invest more.

If cleanup costs are greater than normal decommissioning costs, then we also

expect �rms to be more inclined to exit. The expected cost of decommissioning

Unit 1 at the Peach Bottom power plant was reported to be about $130 million,

and the cost of cleaning up the damaged Unit 2 at Three Mile Island was es-

timated to be $433 million.6 See Price [43] for an international comparison of

decommissioning costs.

Surely the mandated changes and other regulatory policies, together with

re-optimization and reassessment by plant operators, explain much of the be-

6Reported in the Lancaster New Era on December 3, 2003.
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havior recorded in the data. Of course, this model assumes that maintenance is

preventative rather than reactionary. We have no data on preventative mainte-

nance. Also, there likely is some distinction between maintenance that makes

production more reliable and that which reduces the likelihood of an accident.

While there is some overlap, we model only the latter.

2.4.5 Liability Levels

While Shavell de�ned liability y as the value of the �rm, making the model

conform to standard bankruptcy rules, it equally well could be de�ned otherwise.

In the U.S., liability is established under the Price-Anderson Act. This generally

means that liability is less than the value of the �rms operating nuclear power

plants.

Prior to 1988, these levels were set in nominal terms and were adjusted in-

frequently. Since then, the levels are set in real terms and adjust automatically

for general in�ation. Still, the liability levels are not linked directly to poten-

tial accident costs. One obvious reason for this is the di�culty of establishing

the distribution of accident costs, or even to establish an upper bound for these

costs. Making cost estimation still more di�cult are the great regional di�er-

ences among plants. Some plants are located in rural settings with relatively

low values for surrounding properties, while others are in urban settings with

tremendous real estate values. However, commercial insurance companies do

assess potential damages for each plant. Factors they consider are the size of the

plant, population and property values in the surrounding area, and the prob-

ability of an accident at the plant (Dubin and Rothwell [17, 16]). Dubin and

Rothwell [17] fail to �nd that power plants in highly-populated areas respond
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more quickly to opportunities to improve safety. This may indicate that Price-

Anderson protections give too little incentive for operators to minimize risk and

that regulators' ability to construct and implement optimal policies tailored to

speci�c locations is limited.

The assumptions in our model regarding potential damages are not satisfac-

tory. A troubling assumption is that operators have complete knowledge of h but

that regulators know only the distribution. In reality, it seems that regulators

should have an estimate of h that at least approaches the accuracy of the �rm's

assessment. A better assumption would be that �rms have private knowledge of

the probability of an accident p, which may be di�erent for each �rm. Another

troubling assumption is that the potential damage for each �rm is a single value.

In reality, there is a distribution of potential damages for each plant (Dubin and

Rothwell [16], Heyes and Heyes [29]). We might de�ne hi to be the expected

value of potential damages for �rm i, and f(h) becomes the distribution of mean

values across �rms. In this case, all �rms might bene�t from liability limits,

even if their mean damage assessment falls below the limit. We will continue to

ignore such problems in the following analysis.

The de�nition of the value of the �rm becomes troublesome when we consider

the possibility of catastrophic accidents. Consider the possibility that all assets

of a �rm are devoted to a single plant. Suppose that the plant is destroyed in an

accident. Whether the value of the �rm had been de�ned as the present value

of pro�ts or as the value of the �rm's capital (see Rothwell [50] for a comparison

of the net present value of pro�ts to resale plant prices), the value of the �rm

is destroyed. For liability laws to be credible and thus to a�ect investment, the

�rm must hold other assets or insurance. This problem is less apparent in a
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dynamic model, because the appeal of future pro�ts make �rms more inclined

to avoid accidents today. However, it remains a problem in any �nite-horizon

model, for expected future pro�ts diminish over time.

We could extend our model by allowing regulators to choose a level of liability

ŷ ∈ [0, y] to maximize social welfare, where y is the value of the �rm. In such

a model, it is possible that changes in other parameters, as described in the

sections above, have been modest, and that the optimal liability level ŷ would

not have changed much. If so, then it is possible that such a model would be

consistent with reality. However, it seems unlikely that regulators choose the

liability level to maximize a simple welfare function as presented in this model.

Recent di�culties with renewing the Price-Anderson Act, for example, show that

political pressures a�ect signi�cantly the establishment of policies.

In our model, we assume that maximum liability is speci�ed exogenously,

and is not under the control of the regulator. If we de�ne y as the value of

the �rm, which is the maximum liability level under standard bankruptcy law,

then we already have analyzed the relevant extremes: the regulation-only case

sets liability to zero, and the regulation and liability case sets liability to the

full value of the �rm. If we de�ne ŷ ∈ [0, y] as the actual level of liability, then

we might use the results above to analyze the current regulatory framework. A

comparison of results for y and ŷ would begin to address the arguments that

Price Anderson should be abandoned. We begin such comparisons in the next

section, where we construct measures of the bene�ts to �rms for setting ŷ below

the full value of the �rm.
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2.4.6 Implicit Subsidies

The bene�t to plant owners of liability caps ŷ < y can be computed using

the operators' objective function from Equation 2.8. We must remember that

private bene�ts do not mean necessarily that social welfare su�ers, given our

speci�cation of the welfare function. We consider later the e�ect of ŷ < y on

social welfare. Nevertheless, we adopt the common phrase "implicit subsidies"

to describe the di�erence in pro�ts for the two regimes.

We can compute the value of subsidies for a given �rm i by comparing pro�ts

under two regulatory regimes; we omit the subscript i to simplify the notation.

In the following equation, we �rst assume that production takes place under

both regimes, and we �rst consider the case described in Proposition 4-1 (a < y

and sLR = xSP (a)). We consider two alternative liability rates ŷ and y, where

ŷ < y < h so that xL(ŷ) < xL(y) and p
(
xL(ŷ)

)
> p

(
xL(y)

)
. The value of

operations is Π̂ and Π under policies ŷ and y, respectively. The value of subsidies

is

S = Π̂− Π (2.22)

=
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
ŷ
}
−
{
Q− xL(y)− p

(
xL(y)

)
y
}

= [xL(ŷ)− xL(y)] +
[
p
(
xL(ŷ)

)
ŷ − p

(
xL(y)

)
y
]

= [xL(ŷ)− xL(y)] + p
(
xL(ŷ)

)
[ŷ − y] +

[
p
(
xL(ŷ)

)
− p

(
xL(y)

)]
y

We see then that operators save by spending less on investment goods. Less

investment means that the probability of an accident will be higher, but the lower

liability level makes the net e�ect on pro�ts ambiguous. From an earlier section,

we saw that the left-hand derivatives of pro�ts is ∂ΠLR

∂h

∣∣∣
h=y

= −p
(
max

{
s, xL

})
,

so 0 < S at least for ŷ → y. Expected liability can be decomposed into the
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expected di�erence in payments given the new accident probability, plus the

di�erence in accident probabilities times the original liability level.

Most other attempts to estimate the bene�ts of liability caps consider only

the second term in the last line of equation above. They assume that y = h,

ignoring standard bankruptcy rules, and that xL(ŷ) = xL(y). Hence, authors like

Dubin and Rothwell ([16]) essentially estimate subsidies as p
(
xL(ŷ)

)
× (h− ŷ).

Most debate compares current liability levels, where ŷ clearly is less than h,

at least in the worst case, to an alternative regime where operators bear full

liability (i.e. y = h). Such arguments in reality concern whether it is optimal

to allow operations, as it commonly is assumed that no plant would operate if

forced to shoulder full liability. However, if there is a ỹ such that ŷ < ỹ < h, and

if ỹ is the liability level that leaves �rms indi�erent between decommissioning

and operations, then private bene�ts are not greater under a ỹ regime than under

a regime with full liability h. If we maintain the assumption that exit costs are

zero, then Π̃ = 0. To calculate subsidies, we replace Π in the equation above

with Π̃

S = Π̂− Π̃ (2.23)

= Π̂− 0

= Π̂

Note that we obtain the same result for any y > ỹ, so that subsidies do not

increase without bound as potential damages h > ỹ increases, regardless of

the limited liability level ŷ. Implicit subsidies are equal to reported pro�ts less

expected liability.

If we were to follow other authors in assuming that y = h, that �rms operate
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despite expected losses, and that investment is xL(ŷ) under both regimes, then

for ŷ < ỹ < y the results above show that our estimated subsidies would be

exaggerated as

χ =
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
ŷ
}
−
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
y
}

−
[{
Q− xL(ŷ)− p

(
xL(ŷ)

)
ŷ
}
−
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
ỹ
}]

= −
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
ỹ
}
−
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
y
}

= −
{
Q− xL(ŷ)− p

(
xL(ŷ)

)
y
}

= −Π

Note that −Π > 0 since pro�ts for a �rm with liability y would be negative.

Hence, given our unlikely simplifying assumption about investment, which them-

selves may lead to exaggerated measures of implicitly subsidies, alternative es-

timates in the literature further exaggerate implicit subsidies by the losses that

�rms would incur if forced to remain in the market while bearing liability y > ỹ.

In Proposition 4-1, we saw that under given conditions regulation played no

role, as it was set su�ciently low so that it failed to bind for any �rm. Hence,

so long as a ≤ ŷ, the optimal regulation level is not a�ected.

Under the conditions for Proposition 4-2, all �rms �nd regulation binding.

Since optimal investment increases with h, then regulation will continue to bind

for ŷ < y, provided that the regulatory policy continues to exceed the private

investment level. Assuming that policies do not change, the subsidy will be

S = Π̂− Π

=
{
Q− sLR − p

(
sLR
)
ŷ
}
−
{
Q− sLR − p

(
sLR
)
y
}

= p
(
sLR
)
[y − ŷ]
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For unchanged regulatory policies, then, the bene�ts to �rms is the expected

value of escaping liability y − ŷ. We ignore here the expenses of sLR > xLR,

however, so the picture for operators might be less rosy than the result suggested.

If y = h ≤ ỹ, then the approach to measuring subsidies taken by other authors

is correct. If ỹ > y or if h > ỹ, then those estimates are exaggerated by

χ =
{
Q− sLR − p

(
sLR
)
ŷ
}
−
{
Q− sLR − p

(
sLR
)
y
}

−
[{
Q− sLR − p

(
sLR
)
ŷ
}
−
{
Q− sLR − p

(
sLR
)
ỹ
}]

=
{
Q− sLR − p

(
sLR
)
ỹ
}
−
{
Q− sLR − p

(
sLR
)
y
}

= −
{
Q− sLR − p

(
sLR
)
y
}

= −Π

This is the same result that we saw above. Alternatively, we can specify χ =

p
(
sLR
)
[y − ỹ], so that other estimates exaggerate subsidies by expected damages

in excess of ỹ.

In the preceding paragraph, we assumed that sLR is una�ected by changes

in ŷ. However, we can show that ∂h̃LR

∂y
≤ 0 for h̃LR ≥ y and is zero otherwise.

By considering the case of Proposition 4-2, we assume that all �rms operate,

or h̃LR = b. If this is true both for y and ŷ, then optimal regulation sLR

indeed remains unchanged. Recall, however, that sLR = xL(a) for relatively

high liability limits (see Proposition 4-1), and sLR ∈
(
xL(y), sR

]
is optimal for

relatively low liability limits (see Proposition 4-3). Thus, for ŷ < y, then sLR =

xL(a) could be optimal under y while sLR ∈
(
xL(ŷ), sR

]
could be optimal for ŷ.
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In this case, assuming that y < ỹ and that sLR = sR for ŷ, subsidies are

S = Π̂− Π

=
{
Q− sR − p

(
sR
)
ŷ
}
−
{
Q− xL(y)− p

(
xL(y)

)
y
}

= − [sR − xL(y)]−
[
p
(
sR
)
ŷ − p

(
xL(y)

)
y
]

= −[sR − xL(y)]− p
(
sR
)
[ŷ − y]−

[
p
(
sR
)
− p

(
xL(y)

)]
y

On the last line, the �rst term is negative and the second and third are positive.

Firms' gains from liability limits partially are o�set by spending requirements

that exceed privately-optimal levels. This case is quite interesting, for investment

is higher for ŷ than for y. If expected pro�ts are negative under y, then a possible

justi�cation for setting ŷ < y is that lower accident probabilities and higher

aggregate output can be gained. Essentially, �rms are able to save on insurance

premiums but are forced to spend the money on investment.

For y < a, as described in Proposition 4-3, pro�ts are zero for all �rms.

Hence, so long as ŷ < y < a, there are no subsidies under optimal regulation

and limited liability. If ŷ < a < y, then the results in Proposition 4-3 are not

relevant, for we assumed that pro�ts are negative for y < a and sLR = xSP (a). If

this is true for ŷ < a, then pro�ts surely will be negative for a < y. Hence, given

the conditions speci�ed for Proposition 4-3, there are no subsidies if regulation

is set optimally. The level of regulated investment, however, does depend on the

liability limit. The optimal policy rule is

sLR = Q− p(sLR)ŷ

We saw earlier that the break-even point falls as regulation rises. Thus, regula-

tion increases to maintain zero pro�ts when decreasing the liability limit from
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y > a to ŷ < a. This greater spending on safety measures again means that

limiting liability can both decrease the probability of an accident and increase

aggregate output.

2.4.7 Social Welfare Under Liability Caps

Again consider the regulatory regime in Proposition 4a. Consider liability levels

ŷ < ỹ < h, and again suppose that Π̃ = 0. We now consider di�erences in social

welfare among the alternative liability levels.

First, note that ζ(h) = ζ(0) since �rms close under liability h. If liabil-

ity is lowered to ỹ, output becomes positive and social welfare becomes ζ̃ =

U(Q) − xL(ỹ) − p(xL(ỹ))h = u(Q) − p(xL(ỹ)) (h− ỹ). This is the sum of the

bene�t of consumption less the liability borne by consumers. If ζ̃ > ζ(0), then

welfare improves with the reduction in liability to the point where �rms earn

zero pro�ts. If liability is lowered further to ŷ, then social welfare becomes

U(Q) − xL(ŷ) − p(xL(ŷ))h = Q + u(Q) − xL(ŷ) − p(xL(ŷ))h. If ζ̂ > ζ(0), then

welfare improves with the reduction in liability and �rms earning positive pro�ts.

Without additional information, we cannot determine whether society is better

o� with liability ŷ, ỹ, or h.

In the section above, we showed that investment spending can be higher

under lower liability limits. In such cases, liability is transferred from �rms to

consumers. In exchange, �rms are forced to spend their gains on additional

safety measures. Clearly, this lowers expected damages. We might argue it best

to take this to the extreme by adopting the regulation-only policy. In that case,

net revenue may be exhausted by forced spending on investment goods. Bar-

ring explicit subsidies for investment products, this achieves the lowest possible
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accident probabilities. Given our speci�cation of quasi-linear preferences in the

social welfare function, regulators care only about the level of expected harm;

they do not care about who bears liability in the event of an accident. If we

believe that the distribution of liability matters, then we face a limitation of the

present model.

2.5 Conclusions

We speci�ed a model of �rms and regulators that incorporates key features of

the nuclear power industry. In particular, �rms seek to maximize pro�ts while

facing required maintenance and safety standards, and they operate under the

possibility of major accidents with corresponding liability for losses. Regulators

seek to balance con�icting desires to satisfy the economic wishes of consumers

and �rms while ensuring that the public is a�orded a reasonable degree of safety.

Our model thus combines industry output and pro�ts, electricity demand

and social welfare, and safety and liability regulation. Few other models of

the nuclear power industry assemble these details. The resulting model thus

proves useful in sorting and assembling alternative factors that contributed to

the evolution of the industry. Other work in the literature typically focus on

particular cost or regulatory factors, but we consider both along with additional

critical matters concerning demand and liability. In current form and with simple

extensions, we show the model capable of reproducing many crucial historical

facts and events.

The key application of our model is the analysis of implicit subsidies. We

show that only under special cases will the current accepted de�nition of implicit
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subsidies remain valid. We derive measures of implicit subsidies from a model of

�rms and regulators, in contrast to other attempts that simply propose equations

with little support. We show that it is important to consider the full regulatory

picture when attempting to understand and to quantify implicit subsidies, for

otherwise the results tend to be exaggerated in terms of bene�ts to operators and

increased risk to the public. In addition, we show the importance of considering

standard bankruptcy rules as the alternative to Price-Anderson, a simple fact

usually overlooked by other scholars and critics. Our resulting de�nitions of

implicit subsidies should guide future attempts to calculate their levels.

This model would bene�t from many improvements and extensions. Some

already were described. Others include �nding a solution for the optimal liability

level. As was noted, we may be forced to move away from the convenient quasi-

linear speci�cation of social welfare in order to get an interesting solution.

Other possibilities include the allowance of di�erences across plants for p(x),

and to make f(h) a distribution of potential damages for each plant. (See Dubin

and Rothwell [17] for a similar speci�cation.) This could improve the plausibil-

ity of assumptions regarding private versus public information. Liability limits

would a�ect all plants in all cases.

Rothwell [47] notes the relationship between safety and plant performance.

That is, plants with high accident probabilities generally are more troublesome

and expensive to operate. Hence, operators have incentives to maintain their

plants in order to maximize output and minimize repair costs, even if they face

no liability. Dubin and Rothwell [17] �nd that operators of less-reliable plants

moved more quickly to invest in safety equipment. They also report that relia-

bility generally falls with the age of the plant, suggesting that older plants have
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higher accident probabilities. This correlation between reliability and accident

probabilities likely will prove important in any future quantitative analysis and

in more detailed theoretical work. Still, we might expect our qualitative results

to survive.

A particularly useful extension will be to make the model dynamic. In a

dynamic model, we can examine how optimal �rm behavior and optimal policies

change over time. If we relax the assumption that regulators observe invest-

ment perfectly, and if �rms have incentives to misbehave, then we can introduce

monitoring and penalties for misbehavior, including civil and criminal penalties.

Penalties are best explored in a dynamic model, for �rms often seem to su�er

most from the costs of being forced to close temporarily. These costs include the

purchase of replacement power and higher levels of investment spending. While

regulators do impose �nes, they have been relatively small and thus seem rela-

tively unimportant. The EIA [2] reports that industries highest annual level of

�nes between 1975 and 1991 was less than $8 million in 1993 dollars. Following

a near-accident at the Davis-Besse power plant in 2000, the NRC imposed a

�ne of about $6 million, but the owner reportedly spent hundreds of millions on

replacement power and repairs. Price [43, p. 111] reports that the operator of

TMI was �ned "over a million dollars" and that 33 plant operators also were

�ned following the 1979 accident. Again, these amounts pale in comparison to

the reported $250 million in retraining and improvements for the surviving plant,

in addition to the costs associated with a two-year closure. This detail best can

be captured in a dynamic model.7

7Shavell and Polinsky [42] provide similar analysis in a static model. They derive optimal

enforcement e�orts, when observation and detection of misbehavior is costly, and the optimal
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When we consider the possibility of plant closures, whether because of low

social welfare or low pro�tability, the problem of optimal regulation becomes

far more complex. While our results are similar to those of Shavell, they re�ect

the increased complexity of the model. For essential goods like electricity, and

for great potential damages as with nuclear power production, it is important

to consider whether it might be better to close individual plants or even the

industry. At the same time, we must consider the e�ects of burdensome regula-

tion both on the decisions of �rm operators and on the corresponding e�ects on

consumers. Hence, the increased burden of complexity is necessary as we seek

optimal regulatory policies for the industry.

level of �nes.
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Chapter 3

Price Anderson Liability Limits

We turn brie�y from our model to take a closer look at the Price-Anderson Act.

We review other attempts to quantify the bene�ts to �rms of these liability pro-

tections. We noted in the last chapter possible problems with the de�nition of

implicit subsidies speci�ed by others. Nevertheless, in this chapter we set aside

those concerns and take seriously the work of others. We correct several mis-

takes made in earlier attempts and o�er extended models, based on given facts

regarding the industry and its history, in an attempt to lessen certain unlikely

implications of existing models. This work provides quantitative estimates of

implicit subsidies to �rms that will be useful in later chapters.

The models of this chapter may be viewed as extensions of the applications

of the previous chapter. We follow the lead of earlier authors, however, and so

we do not consider all forms of potential bene�ts that �rms may realize as the

result of these protections. The estimates calculated here will be employed in the

dynamic programming model developed in the second section of this dissertation.

Immediately following this chapter, though, we will return to the modelling

e�orts begun in the previous chapter.
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3.1 Introduction

The possibility of accidents leading to catastrophic destruction poses a signi�cant

concern for operators of nuclear power plants, industry regulators, and others.

Because private insurers seem unwilling or unable to cover all potential losses,

Congress passed the Price-Anderson Act (PAA) in 1957 to cap liability for power

plant operators and to ensure prompt reimbursement to the public for losses.

Dubin and Rothwell ([16], DR) proposed a simple technique to estimate the

bene�t of PAA to power plant operators using 1) private insurance premiums

that operators purchase to cover a legislated amount of o�site damage and 2)

expert assessment of the probability and magnitude of damage in the worst case.

In 1998, Heyes and Heyes ([28], HH) corrected a mistake in DR's speci�cation of

private insurance terms. Bene�ts to the nuclear industry, as calculated by DR

and HH, have been used to support PAA (e.g. Rothwell [49]) and to criticize

liability caps (in Congressional testimony by PIRG Legislative Director Anna

Aurilio ([9]) and in Canadian federal court testimony by Ralph Winter (Heyes

[26])). PAA expired in 2002 but then was extended to December 2004. In 2005,

the act was extended for another 20 years. Whether such policies continue to be

o�ered may determine whether new plants are built in this country, and so it is

imperative that we understand clearly the e�ects of such policies.

3.2 The Dubin-Rothwell-Heyes-Heyes Model

DR and HH (DRHH) calculated implicit subsidies to the nuclear industry by

�rst solving a two-equation system for the parameters of an embedded density

function f(L), where L represents o�site losses. The �rst equation describes
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private insurance coverage purchased by each operator. In 1984, operators paid

an average of $0.4m per year1 (Brownstein [11]) for coverage of o�site dam-

ages between $1m and $160m.2 DR assume a 30% markup3, leaving $0.28m in

expected losses. The insurance companies cover all o�site damages for totals

between $1m and $160m, and they cover the �rst $160m of damage for worse ac-

cidents. The second equation summarizes a 1985 NRC assessment: a worst-case

accident will result in $10,000m in o�site property damage and will occur with

0.00008% probability per reactor year. The equations are speci�ed as follows:

0.28 =

160∫
1

L× f (L) dL+ 160

∞∫
160

f (L) dL (3.1)

0.0000008 =

∞∫
10,000

f (L) dL = 1− F (10, 000).

Given an appropriate two-parameter density function, the system can be

solved numerically. Calculation of expected losses above the liability cap, less

the amount of industry liability and conditional on the parameter estimates,

yields the implicit subsidy per reactor year to power plant operators. Implicit

subsidies are the insurance premiums operators are spared for coverage above

the liability cap; they are calculated as

Subsidy =

Disaster∫
PAA

(L− PAA)× f (L) dL+ (Disaster − PAA)

∞∫
Disaster

f (L) dL

(3.2)

1Unless stated otherwise, all monetary �gures are in millions m of 1985 dollars.

2Required coverage rose to $300m by 2003, in current dollars (NEST-DOE [7]).

3If there are no accidents within 10 years, 70% of the premium is returned to the operators

(Denenberg [15]). Hence, DR assume that expected losses amount to 70% of the premium.
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where PAA is the industry's liability limit4 and Disaster is a worst-case damage

estimate.5 DR recommend the log-logistic cumulative distribution function

F (L) =
1

1 + e−(a+b×ln(L))
, (3.3)

and the corresponding density function

f(L) =
e−(a+b×ln(L))

(1 + e−(a+b×ln(L)))2
× b

L
(3.4)

where a and b are parameters. Unfortunately, DR and HH omitted the term b/L

in the density function and thus their results are not consistent with the intended

model.6 This problem caused estimates in both papers to be exaggerated.

Results for the corrected DRHH model are presented in the �rst column of

Table 3.1, and the density function is plotted in Figure 3.1. Before the PAA was

amended in 1988, the model suggests operators implicitly received an average

subsidy of $0.033m per reactor year, and they received about $0.003m following

the amendment. Before the Act expired in 2002, the implicit subsidy was valued

4Operators are equally and jointly liable for a portion of o�site damages. Liability for the

industry is capped at $560m, $7,153m, $6,018m ($9,300 in 2002 dollars), and $6,418m ($10,100

in 2003 dollars) for pre1988, post1988, 2002, and 2003, respectively, in millions of 1985 dollars.

Prices are de�ated with the PCE de�ator.

5Note that DR and HH omit the term (Disaster − PAA)×
∞∫

Disaster

f (L) dL, which accounts

for the probability mass at L = Disaster.

6See Meeker and Escobar [37] for details of the log-logistic density function. The functions

shown here are equivalent to theirs with 1/b ≡ σ and = a/b ≡ µ. Note that if b ≤ 1.0, so that

the upper tail approaches zero too slowly, the mean does not exist. Hence, the interpretation

of the 1985 NRC assessment and the corresponding speci�cation of Equation 3.1 are crucial:

if losses truly are distributed according to the log-logistic distribution but if damages are not

limited to a maximum Disaster, then the value Subsidy in Equation 3.2 will be in�nite for any

calibration leading to b ≤ 1.0.
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at about $0.005m per reactor year; the amount fell slightly in 1985 dollars with

extensions of the PAA in FY2003 legislation. These values are far smaller than

those reported by HH; their estimates were $13.3m before 1988, and $2.3m after

the amendments.7

Integration of the density function from $1m to in�nity yields the implied

likelihood of an accident causing signi�cant o�site damage. The model predicts

that such accidents will occur with a 6.84% probability per reactor year. This

seems high given the industry's relatively safe operating history. Denenberg [15]

calculated the insurance industry's estimate as 1/1700, or 0.059% per reactor

year.8 An alternative proxy for the probability of accidents may be the likelihood

of core melt. In 1985, the NRC estimated this likelihood to be 0.03% per reactor

year (New York Times [62]), which also is far less than the accident probability

implied here. However, the insurance market characterization given by DRHH

rules out both of these estimates. Beginning with the �rst equation in (1), we see

again that expected losses for private insurers are the total of expected losses for

�minor� accidents plus the probability of major accidents times the maximum

payout of $160m. Clearly, these expected losses are less than those under a

hypothetical alternative insurance structure in which insurers pay $160m for

7Denenberg [15] derived an accident probability of 1/1700, or 0.00059 per reactor year. He

assumed damages of $40,000m per accident. The product of probability and magnitude implies

subsidies of about $23.5m per reactor year. DR argue that this methodology is unreasonable

since the true probability density is not uniform, and so these simple calculations are not

reliable.

8Denenberg assumed a pure insurance component of 58%; hence, if a $1000 premium buys

$1m of coverage, then the pure insurance component is $580. This implies perceived risk of

$580 / $1m, or 1/1700 .
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accidents of any magnitude. However, we can divide the corresponding equation

by $160m and then simplify to obtain a lower bound for insurers' beliefs about

the likelihood of an accident:

0.28 =

160∫
1

L× f (L) dL+ 160×
∞∫

160

f (L) dL

<

160∫
1

160× f (L) dL+ 160×
∞∫

160

f (L) dL (3.5)

⇒ 0.28

160
= 0.00175 <

∞∫
1

f (L) dL = P (1 < L) .

According to the speci�ed equation, insurers believe that accidents causing signif-

icant o�site damage will occur with probability greater than 0.175% per reactor

year. Note that this result does not depend on the chosen density function, nor

does it depend on assumed worst-case magnitudes or probabilities. While this

lower bound is far below the estimate reported above, it still seems implausible

given the industry's operating history and related risk assessments, and so we

must consider alternative descriptions of the insurance market.

3.3 Alternative Models

If plants operate without o�site losses for 10 years, then they are eligible for a

70% refund of paid premiums (Denenberg [15]). DR thus assumed that expected

losses totaled 70% of the premium, or $0.28m, and that the remaining 30% was

overhead and pro�t. Instead, we extend the DRHH equation to capture these

details. Insurance premiums ($0.4m per reactor year) are the sum of expected
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losses, overhead and pro�t, and the expected discounted value of refunds:

0.4 =


160∫
1

L× f (L) dL+ 160

∞∫
160

f (L) dL


+ {0.4× π}+

{
0.4× 0.7×

[
F (1)

1 + r

]10
}

(3.6)

where π is the percentage of overhead and pro�ts and r is the average yield

of investments. The �rst bracketed terms are expected losses as described in

DRHH. The second term in brackets is overhead, pro�t, and other expenses.

Denenberg reported costs in 1972 that totaled 58% of premiums; this implies

that π is 42%. The last term is the expected discounted value of refunds. Recall

that 70% of the premium is eligible for return. This is discounted at the market

rate9 and is multiplied by the probability of safe operations for 10 years (F (1)10),

where F (1) is the yearly probability of no signi�cant accident.

Results for this model are displayed in the second column of Table 3.1. Cal-

ibration values are unchanged from the DRHH model. The rate of return r

is set to 0.07, and the markup rate π is set to 0.42. The probability density

is not plotted, but its shape is similar to the DRHH distribution. This model

projects subsidies of $0.028m per reactor year under the original terms of PAA

and $0.003m per reactor year after the 1988 amendments. For regulations in ef-

fect in 2002, the subsidy was somewhat higher ($0.005m), but again the value fell

slightly under the 2003 PAA extension. Note that these projections are slightly

lower than those of the corrected DRHH model and that all values are in 1985

dollars.

The implied likelihood of an accident is 2.5% per reactor year. While implied

risk is two-thirds lower than implied by the DRHH model, it still is well above

9Denenberg assumes a market rate of return of 7%; we do the same.
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other risk assessments. We can derive a lower bound for this risk, from the

perspective of insurers, corresponding to Equation 3.5:

0.4 =

160∫
1

L× f (L) dL+ 160

∞∫
160

f (L) dL+ 0.4× π + 0.4× 0.7×
[
1− θ

1 + r

]10

<

160∫
1

160× f (L) dL+ 160×
∞∫

160

f (L) dL+ 0.4× π + 0.4× 0.7×
[
1− θ

1 + r

]10

= 160× θ + 0.4× π + 0.4× 0.7×
[
1− θ

1 + r

]10

⇒ 0.00057 < θ. (3.7)

Equation 3.7 is solved for θ ≡P(1 ≤ L); one real, positive root exists. This char-

acterization of insurance markets, when evaluated at the given rates of return

and markup, implies that insurers perceive at least a 0.0565% chance per re-

actor year of incurring losses.10 This lower bound is very close to Denenberg's

perceived risk estimate of 0.059%, even though our methodology is more elab-

orate. However, our model must be modi�ed if we are to obtain a probability

distribution that approaches this lower bound. Of course, this lower bound for

perceived risk levels still may be far from true levels of perceived and actual risk,

but arguably it is more reasonable than levels implied by the models above.

Suppose we alter the model to allow explicit calibration of the probability of

10When evaluated with r = 0.07 and π = 0.42, the lower bound is 0.0565%. When π = 0.60,

it is 0.0111%, and when π = 0.20, it is 0.1120%. Hence, the lower bound is sensitive to the

choice of these values.
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an accident. This value θ ≡P(1 ≤ L) can be employed in the following way:

0.4 =


160∫
1

L× f (L) dL+ 160

∞∫
160

f (L) dL

+ {0.4× π}

+

{
0.4× 0.7× [1− θ]10

[1 + r]10

}

0.0000008 =

∞∫
10000

f (L) dL (3.8)

where the density function f(L) is constructed from a Bernoulli density function

with parameter θ ≡P(1 ≤ L) and a three-parameter log-logistic density function

with a threshold parameter equal to one:

f (L) =


θ × e−(a+b×ln(L−1))

(1 + e−(a+b×ln(L−1)))2
× b

(L− 1)
: 1 ≤ L

1− θ : 0 ≤ L ≤ 1

. (3.9)

In this model, accidents occur with probability θ; given such an accident,

losses are distributed according to the log-logistic function. Note that we are

constrained in calibrating θ by the lower bound established in Equation 3.7.

This lower bound is not theoretical only; numerical routines also begin to fail

as θ approaches the limit. Hence, we could employ the Denenberg estimate of

0.059%, but we are unable to employ the NRC estimate for core melt (0.03%).

Unfortunately, the results are rather sensitive to the choice of θ, but implied

subsidies seem to remain relatively small even as θ approaches the bound.

Results for this model are displayed in the fourth column of Table 3.1. Again,

calibration values are unchanged from the DRHH model, the rate of return is

7%, and markup is 42%. The probability of an accident is 0.057%, which is

slightly above the lower bound derived above. The probability density between

$1m and $10,000m is plotted in Figure 3.1. Note that earlier models distribute
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much probability mass in the neighborhood above $1m, indicating that the prob-

ability of �minor� accidents is relatively high, and that probability density then

falls monotonically as damages increase. Denenberg suggests that the actual

distribution instead is bimodal, with a mass concentration at low damage lev-

els and another at much higher levels. Our model calibrates a high probability

mass for losses under $1m. A second mode is evident in Figure 3.1 (the �rst

is not shown) at approximately $250m. Estimated subsidies are signi�cantly

higher than those of previous calculations in this paper: $0.239m before the

1988 amendments, $0.003m following the changes, and about $0.012m in 2003.

Estimates for policies after 1988 changed relatively little with the speci�cation

changes, but estimated subsidies under the original policies now are over 9 times

greater. Note, however, that the mode and subsidy estimates depend heavily on

the calibrated point mass at zero. Perhaps the value employed is appropriate,

but we are unable to calculate results for lower perceived accident probabilities

because of the limitations of the theory as shown in Equation 3.7. Hence, while

some qualitative properties of this model seem superior, certain doubts remain

even if we accept its many other assumptions.

A signi�cant criticism of the DR model was its calibration of worst-case dam-

ages ($10,000m). The employed statistic included only o�site property damage

and, in particular, omitted damage to health and loss of life. Denenberg cites

an Atomic Energy Commission study, conducted in the early 1960's, that esti-

mates damage (in current dollars) at $40,500m.11 Suppose that we arbitrarily

11This �gure includes $17.0 billion for property damage, $13.5 billion for deaths, and $10.0

billion for injuries. The estimate accounts for 45,000 deaths, with lifetime earnings per person

of $300,000. It also accounts for 100,000 severe injuries, with a cost of $100,000 per worker.
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set the magnitude of damage in the worst case to $500,000m in 1985 dollars but

keep the NRC probability estimate of 8.0E-7. While this calibration is ad hoc,

the corresponding results should indicate the sensitivity of the estimates to cal-

ibrated damages. Of course, the results also depend heavily on the many other

assumptions.

Estimates are shown in the third column of Table 3.1 for our �rst alterna-

tive model with an accident probability of 0.08% per reactor year. Estimated

subsidies were about $1.158m per reactor year before 1988 and averaged about

$0.960m after the amendments. Note that these values are lower than those

reported by HH even though their (erroneous) calculations covered losses only

to $10,000m. Hence, this model (given its calibrated values) suggests that im-

plicit subsidies are signi�cant but not enormous, and they are smaller than those

predicted earlier for less severe scenarios.

Estimates are shown in the �fth column of Table 3.1 for the second alternative

model with an accident probability of 0.057% per reactor year and assumed

worst-case damages of $500,000m. This model implies subsidies of about $5.110m

per reactor year before 1988 and about $3.357m in 2003. The density function

for this model is depicted in Figure 3.2. We see that the second mode for this

distribution is approximately $400m, where the �rst mode of course is between

0 and 1.

Tests for the DRHH model and the �rst alternative model were repeated

using the Pareto distribution.12 For all calibrations listed in this paper, the

It does not account for diseases that develop years later, and it does not include dislocation

costs for evacuation of the contaminated area. The study was performed by the Brookhaven

National Laboratory for the Atomic Energy Commission.

12The Pareto PDF and CDF are f (L) = a × ba/ (L + b)a+1
and F (L) = 1 − ba/ (L + b)a

,
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results were similar to those using the log-logistic distribution. Tests also were

conducted with lower and higher markup rates (π in Equations 3.6 and 3.8).

Expected losses and implicit subsidies fall as the assumed markup rate increases.

However, even for markup rates of 20% (results shown here employ Denenberg's

report of 42%) and the high damage assumption (where worst-case damages are

$500,000m) implicit subsidies are similar to those reported by HH.

3.4 Conclusion

What, then, can we conclude about the magnitude of implicit subsidies provided

by PAA? First, we acknowledge the signi�cant limitations of the model noted

by previous authors. Rothwell [49] notes that results depend heavily on 1) the

assumed distribution function and 2) on the assumed worst-case magnitude and

probability. Heyes [26] doubts the ability of private insurers to assess accurately

their expected losses. Further, he doubts the ability of any such method to reveal

the truth accurately: �For use in informing policy, results from studies such as

these should be heavily salted.� Estimation of current subsidy levels based on

the implied 1985 distribution requires the additional dubious assumption that

the cost distribution has not shifted. That is, we assume that safety has not

improved with operator experience nor has safety diminished with reactor age.

Hence, we must exercise caution in the use of these results lest they mislead us.

While keeping such limitations in mind, we can conclude that the method-

ology proposed by DRHH and the alternatives suggested here imply implicit

subsidies far lower than reported earlier. The results, together with the assump-

respectively.
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tion of perfect insurance markets, imply that PAA should make little di�erence

since projected expected losses above PAA are small. Of course, insurance mar-

kets may not be perfect and may not o�er complete coverage regardless of the

probability distribution. Hence, construction of new plants in coming years may

depend heavily on recent extensions to PAA.

Useful extensions of this work should incorporate the data reported in the

1998 NRC report [30]. This document summarizes the types of insurance of-

fered the nuclear industry and o�ers details of PAA. Published in the document

are aggregate annual premiums refunded to operators. Also published is a his-

tory of claims under PAA and corresponding payments. Some of the reported

payments result from policies not considered here. Information on remaining

policies should be reconciled with our stylized picture of the industry as related

to risk and insurance coverage, and in particular the probability of claims against

insurance companies.
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3.5 Appendix

Table 3.1: Results

DRHH

Model

Alt.

Model 1

Alt.

Model 1:

Hi Dam-

ages

Alt.

Model 2

Alt.

Model 2:

Hi Dam-

ages

Calibration:

Insurance Coverage

$160m $160m $160m $160m $160m

Disaster Cost $10,000m $10,000m $500,000m $10,000m $500,000m

Disaster Probability 8.0E-7 8.0E-7 8.0E-7 8.0E-7 8.0E-7

Accident Probability 0.06839 0.02535 0.00768 0.00057 0.00057

Results: Parameter a 2.61167 3.64933 4.86102 -15.97674 -10.61556

Parameter b 1.24067 1.12801 0.69939 2.44772 1.30944

Expected Losses $0.337m $0.166m $1.313m $0.516m $5.417m

Subsidy Pre1988 $0.033m 0.028m $1.158m $0.239m 5.110m

Subsidy Post1988 $0.003m $0.003m $0.959m $0.003m $3.242m

Subsidy 2002 $0.005m $0.005m $0.963m $0.014m $3.416m

Subsidy 2003 $0.005m $0.004m $0.956m $0.012m $3.357m

The rate of return r is 0.07 and markup π is 0.42. Dollar �gures are in millions

of 1985 dollars. Expected losses are total expected losses, including all insured

and uninsured losses. Industry liability caps are $560m, $6,018m ($9,300m in

2002 dollars), and $6,418m ($10,100m in 2003 dollars) for pre1988, post1988,

2002, and 2003, respectively. Prices are de�ated with the PCE de�ator.
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Figure 3.1: Density Functions

Figure 3.2: Density Functions�Hi Damages
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• In Figure 3.1, the corrected DRHH loss function is plotted to the left (solid

line), and the cost function for Equation 3.9 is plotted to the right (dashed

line). The x-axis is in millions of 1985 dollars.

• In Figure 3.2, the cost function was constructed with worst-case damages

of $500,000m. The x-axis covers values between $1m and $1,000,000m in

1985 dollars.
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Chapter 4

A Dynamic Programming Approach

This chapter extends greatly our models of regulation and industry economics.

We earlier developed the primary features of our stylized world of nuclear power

economics by building a static model and using comparative statics to analyze

its properties. In reality, of course, dynamics matter in ways that cannot be

represented well in a static model. We thus extend our earlier work by adding

simple dynamics to our basic static model that will prove su�cient to reveal op-

timal paths of output, investment, and regulation, and to support more detailed

dynamic models in the next chapter.

Many dynamic features do not appear in this chapter. We incorporate some

of the omitted features in the following chapter, where we build a numerical

version of the dynamic model. The purpose of this chapter instead is to push

our analytical model farther in the direction of dynamics. This proves di�cult

even with our reasonably simple models, and we resort to numerical methods for

some of our results.

We employ our model in the calculation of the value to the nuclear power

industry of liability limits. We derive measures of the amount the industry would
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be willing to pay in order to preserve those protections. This extends our work

on the subject in Chapter 2 in order to account for the �ow of implicit subsidies

over time and to account for evolving behavior of �rms and regulators.

4.1 Introduction

This work develops dynamic models of the political economy of the nuclear power

industry, extending our earlier work with static models. The primary motivations

of nuclear power operators and of nuclear industry regulators are considered.

Optimal rules are computed to govern behavior of each agent over the life of the

industry. These rules take into account the e�ects of the agents' own actions on

the behavior of others. It is assumed that operators' primary motivations are to

maximize pro�ts. Operators' choices include whether to operate and how much

to invest in maintenance and safety enhancements. Regulators seek to ensure

adequate electricity supplies while minimizing costs and expected damage from

nuclear accidents. We consider four cases. First, we consider the case in which

regulators are benevolent social planners who can guide the economy to the �rst-

best solution. Next, we consider the cases in which regulators employ either

regulatory standards for safety enhancements or liability levels for damages.

Finally, we consider the case in which regulators govern with both instruments.

The model is employed to construct measures of subsidies created by adoption of

limited liability levels. These measures are compared to others in the literature.

The models in this chapter are based on our extensions of Shavell's work [57].

In that paper, he derives optimal regulatory policies when �rms face liability.

However, there are several signi�cant discrepancies between his model and the
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nuclear power industry. This chapter extends our e�orts to eliminate some, but

not all, such discrepancies.

In the event of an accident causing damages to third parties, we assume that

�rms strictly are held liable for all damages. This assumption, while admittedly

is too strong, is based on terms of the Price-Anderson Act. This policy speci�es

minimal levels of insurance that each nuclear power plant operator must carry. It

also sets terms for industry self-insurance in addition to the commercial insurance

coverage. Operators are exempt from liability for damages in excess of the

amount speci�ed in the policy. We assume that operators cannot escape liability

for the reason described in the 2003 MIT study [6, p. 81]: "The compensation

provision of both the �rst and second layers of insurance are `no fault' and not

subject to civil liability litigation."

Output matters here. Firms' output decisions are binary: they produce at full

capacity if the expected present value of pro�ts is non-negative, and otherwise

the �rms close. Hence, output does not decline continuously with regulation. In

the aggregate, however, output is a decreasing function of regulation. If expected

damages are too great, then regulators can force the industry to close. Similarly,

if liability or regulation becomes too great, then �rms will decide to exit the

market. In either case, the bene�ts of greater safety come at the expense of

economic well-being.

This model has multiple periods. The solution is found using �nite-horizon

dynamic programming techniques, although in�nite-horizon techniques also could

be applied. We argue that �nite-horizon modeling is appropriate for the Amer-

ican nuclear industry, since plants were engineered to operate about 60 years

and all existing plants operate under 40 or 60-year licenses, and it is not certain
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whether a second generation of plants will be politically or economically feasible

in the foreseeable future.

We apply the results of this model in two ways. First, we derive the present

value to the industry of liability protections. This is the amount of money that

the �rm would be willing to pay in order to maintain liability protections. In

contrast to earlier attempts to quantify these implicit subsidies, we take into ac-

count the value of future bene�ts in addition to current bene�ts, and we consider

in our calculations the net e�ect of all regulation rather than to focus solely on

liability protections. This yields a more accurate picture of the e�ects of regu-

lation on pro�ts, behavior, and safety. Finally, we discuss the application and

extension of this work to cover political matters a�ecting regulation and industry

economics.

4.1.1 Layout of this paper

This chapter develops a model of nuclear power plant operations and indus-

try regulation. First, the model is described, with timings, objective functions

for operators and regulators, and derivation of optimal dynamic decision rules.

Where it is not possible to derive a complete set of analytical solutions, the

results are supplemented with numerical solutions. The key application of the

model is the derivation of measures of implicit subsidies created by enforcement

of limited liability levels, and we �nd the present value of these bene�ts. We also

describe techniques of political economy that can extend our work to capture

important elements of the industry not captured in our basic model. Finally,

limitations are noted and possible extensions are suggested.
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4.2 The Model

4.2.1 Timing

This model has two primary groups of players, nuclear industry regulators and

power plant operators, who move sequentially in a dynamic game-theoretic

framework. Regulators seek to maximize social welfare, and the �rms' problem

is to maximize pro�ts while satisfying the demands of regulators. It is assumed

that a continuum of markets exists, with one nuclear facility per market. No

attempt is made to explain the existence of power plants, and prices and de-

mand for electricity are exogenous. Firms are identical, except for the amount

of damage that they cause if an accident occurs. We consider a �nite number of

time periods. When the maximum lifespan has been reached, assuming that the

�rm survives, the �rm incurs any shutdown costs and closes permanently.

At time zero, the level of demand is announced; we assume that this level

is �xed throughout time. In the beginning of each period, starting in Period 1,

regulators determine the optimal level of liability to impose on the nuclear power

industry, and the level is announced. Given this announcement, power plant op-

erators decide an optimal level of investment in safety-enhancing maintenance

and similar expenditures. If production yields a higher expected present value

than the cost of decommissioning, then �rms produce electricity, collect the rev-

enue, and pay operating and investment expenses. Accidents occur at the end of

each period with an endogenously determined probability. These accidents cause

damage to third parties, for which regulators may hold plant operators liable. If

the expected present value of the �rm is less than the cost of decommissioning,

then operators make no investments and close their plants immediately. If the
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�rm remains in operation at the end of its maximum allowed lifespan, the plant

incurs decommissioning costs and closes permanently.

Exposure to liability with corresponding spending on safety, or spending to

meet regulatory requirements, reduces pro�ts. We assume that aggregate output

may fall with pro�ts, as unpro�table �rms exit the market, so that greater

safety comes at the expense of output. The model has a continuum of �rms that

either produce or shut down, depending on whether pro�ts are non-negative. We

assume that regulators care about both output and safety, and are cognizant of

the e�ects on output of their own actions. Essentially, we assume a continuum

of identical markets, where prices are exogenous. Hence, regulators consider

separately consumers' utility in each market. In each, either �rms produce at

full capacity and consumers receive utility from the product, or �rms close and

consumers receive a level of utility from zero consumption.

The de�nition of regulation is narrow, such that policies specify minimal

standards for investment in safety-enhancing goods and services. We consider

regimes with various combinations of regulation and liability, and we compare

social welfare for each.

4.2.2 De�nitions

The continuum of (nearly) identical �rms are indexed by the level of potential

damage, h. In fact, h is the only distinguishing characteristic of the �rms. We

assume that h is an exact amount. This magnitude of potential damage, known

only to the �rm, is such that h ∈ [a, b] where 0 < a < b <∞. Regulators do not

know potential damages for individual �rms, but they do know the distribution

of damages f(h), which is nonzero on and only on [a, b]. We use a probability
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distribution f(h) only for convenience, in that it integrates to one and we can

use familiar techniques from statistics. More general speci�cations of f(h) could

integrate to any positive value, as it simply speci�es the number or measure of

�rms with potential damages h. Industry capacity and potential output is Q.

We assume that all plants have the same capacity. We assume that electricity

prices, less unit production costs, are identically equal to one, so that net revenue

also equals Q. Firms may invest in goods and services, indexed by x such

that 0 ≤ x, to lessen the probability of an accident. The probability of an

accident p(x), given the level of investment x, is identical for each �rm and

depends only on investment. The �rst derivative of the probability function is

negative and the second derivative is positive. (See Dubin and Rothwell [17]

for a similar speci�cation.) We assume that p does not change with plant age,

thus abstracting from the physical deterioration that tends to leave plants less

reliable, and we assume no cumulative e�ects for investment levels.

Regulators seek to maximize social welfare. A component of the social wel-

fare function is U . For industry output q, where q ∈ {0, Q}, U(q) = q + u(q).

Hence utility U is a quasilinear utility function, and is determined by the sum

of industry net revenue and the bene�t to consumers u(q) of consuming q. The

numeraire in this utility function is industry revenue. The balance of the social

welfare function is in the same units (dollars). Investment and potential dam-

ages comprise the balance, as described below. Hence, regulators care about

the utility consumers obtain from consumption, industry pro�ts, and potential

damages in excess of �rms' liability.

Time is indexed by t, beginning with t = 1. The maximum possible lifespan

is T . If �rms operate in Period T , then they must close in Period T + 1. We
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assume that the model parameters are time-invariant; that is, demand, prices,

maximum liability, the functions p(.) and f(.), the utility functions, and the

values of h and Q for each �rm do not vary over time. The endogenous terms of

course may vary, including investment, regulation, output, and social welfare.

A matter not pursued fully are the e�ects of attrition, through accidents,

voluntary closure, or forced regulatory shut down, on the capacity of the industry.

Note that given a continuum of �rms, any positive accident probability will make

disasters inevitable each period. In reality, accidents are rare. We thus deviate

slightly from rational expectations. We assume that the accident probability

p is an ex ante measure each period, but no accidents actually occur. In this

way, �rms and regulators take into account the possibility of accidents when

making decisions, but our model does not imply an unreasonably high number

of accidents. This matter deserves further attention in future work.

4.2.3 Industry Regulators

Industry regulators seek to balance the need for adequate electricity supplies and

the need for safety from nuclear accidents. If there is excess demand without

operation of nuclear plants, then neither desire can be satis�ed fully without

sacri�cing the other. We model these con�icting desires with a welfare function

such that regulators seek 1) to maximize output to satisfy consumers' demand

and 2) to minimize expected losses from accidents.

We consider various regulatory regimes with various combinations of regula-

tion and liability. Hence, regulators have at most one instrument for governing

the industry. They choose a minimum level of investment for operators. Whether

liability is imposed, and if so the level of liability, is outside the control of the
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regulators.

We consider only cases in which operators bear either zero liability or liability

up to the value of the �rm. We do not consider the possibility that regulators

will compensate �rms for losses, nor do we consider punitive damages.

Similarly, we do not consider the possibility that regulators or consumers will

compensate �rms for higher levels of investment, in the sort of exchange proposed

by Coase. The model could be extended to include such possibilities, but such

exchanges have not been observed and thus such possibilities are ignored.

4.2.4 Social Planners

The social planners' problem, in which they seek to maximize social welfare in

each market, is to choose each period between closing permanently the plant in

that market or to run the plant with a given level of investment. If the plant is

decommissioned in Period t, where t ∈ {1, T}, then social welfare is

ζCloset = U(0) +
ζCloset+1

1 + r
= U(0)

1− ( 1
1+r

)T+2−t

1− 1
1+r

All plants must close by Period T + 1, so we have

ζT+1(hi) = U(0)

In all preceding periods, assuming that plant i was not previously decommis-

sioned, social welfare can be represented as welfare given zero production and

consumption plus the di�erence between welfare with potentially positive pro-

duction1 and welfare with zero production. We label the di�erence in social

1We use the adjective �potentially� because social planners will not allow production if

expected social welfare is negative. Hence, even if the plant was not shut down in an earlier
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welfare between potentially positive and zero production in Period t as Difft,

and claim that it is

Difft(h) = max


0,

max
xt≥0

U(Q)− U(0)− xt − p (xt)h+ 1−p(xt)
1+r

Difft+1(h)


where x is investment in safety enhancements and p (x) is the probability of an

accident. Hence, the di�erence in welfare is the welfare di�erence in Period t plus

the probability-weighted value of receiving discounted future di�erences. Note

that DiffT+1(h) = 0 for all surviving plants. Immediately below, we show that

this is the correct speci�cation of such di�erences.

The social planners' problem in Period t and market i is

ζt(hi) = max


U(0) +

ζClosei,t+1 (h)

1+r
,

max
xi,t≥0

U(Q)− xt − p (xt)
[
hi −

ζCloset+1 (hi)

1+r

]
+ 1−p(xt)

1+r
ζt+1(hi)

 (4.1)

= ζCloset + max


0,

max
xt≥0

U(Q)− U(0)− xt − p (xt)hi +
1−p(xt)

1+r
Difft+1(hi)


= ζCloset +Difft(hi)

for control of plant i with potential losses hi. We assume that social planners

know hi. Social planners thus know more than the simple regulators considered

later, for the regulators know only the distribution f(h). The planner must

decide whether to close permanently the plant or to run the plant in the current

period. If the plant is closed, then social welfare in the corresponding market is

period so that production may take place, production will be zero if social welfare is negative.

For this reason, Difft ≥ 0.
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U(0). If the plant operates after investing xi, then expected damages are p(xi)hi,

and social welfare in the corresponding market is U(Q) − xi,t − p(xi,t)hi, plus

discounted future welfare.

Again, we see that social welfare may be represented as the sum of utility

for zero production and the di�erence in utility between positive and zero pro-

duction. Expected future utility is discounted at rate 1/ (1 + r), where r is the

interest rate. This rate is chosen for simplicity, so that utility and pro�ts are

discounted at the same rate. With probability p(xi,t), an accident will occur

in market i in period t, and the corresponding plant operator will be liable for

damages hi. The market will receive the discounted value of the �nite stream

of zero consumption. No accident will occur with probability 1− p(xi,t). In this

case, the �rm moves to the next period and faces a similar optimization problem,

until the maximum age of T is reached.

The optimal policy rules for investment may be found by di�erentiating the

social welfare function with respect to investment2:

1 = −p′(x)
[
hi +

Difft+1(hi)

1 + r

]
(4.2)

For simplicity, we ignore the constraints that are required to ensure that x ≥ 0,

so that maintenance expenditures are irreversible for all probability functions

p; this assumption is not restrictive so long as p is su�ciently steep for low

investment. Obviously, investment in period T + 1 will be zero. In all other

periods, we see that

2Note that the SOC holds: δζt(hi)
2

δ2x = −p′′(x)
[
hi + Difft+1(hi)

1+r

]
< 0

106



xSPt (hi) = (p′)
−1

(
−1

hi +
Difft+1(hi)

1+r

)

where p′−1 is the inverse of the derivative of the probability function. Exami-

nation of this function shows that investment increases with potential damages

and with potential future relative bene�ts of production.

To determine the evolution of the level of social welfare, we can focus atten-

tion on the evolution of our variable Difft. De�ne ∆ as the time di�erence in

Diff , and denote pt ≡ p (xt):

∆t−1 ≡ Difft−1 −Difft

= − (xt−1 − xt)− [pt−1 − pt]h

+

[
1− pt−1

1 + r
[Difft −Difft+1]− [pt−1 − pt]Difft+1

]
= − (xt−1 − xt)− [pt−1 − pt]h

+

[
1− pt−1

1 + r
∆t − [pt−1 − pt]Difft+1

]
Diff cannot ever be negative. Note that DiffT+1 = 0. Note also that if

DiffT = 0, then Difft = 0 for all t ∈ [1, T ]. Suppose instead that DiffT > 0.

Then

∆T−1 = − (xT−1 − xT )− (pT−1 − pT )h+
1− pT−1

1 + r
DiffT

If DiffT > 0, then with investment at level xT , utility is su�ciently high that

production is optimal. Note that xT−1 = xT is a feasible solution for investment

in period T − 1. At this rate,

∆T−1 =
1− p (xT )

1 + r
DiffT > 0
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so that the present value of social welfare is greater in period T−1 than in period

T . Optimization of investment rules indicates that xT−1 will di�er from xT only

if the change enhances utility. Hence, we conclude that DiffT−1 > DiffT >

DiffT+1 = 0 for all h, so long as DiffT (h) > 0. In period T − 2, a feasible level

of investment again is xT−2 = xT . In this case,

∆T−2 =
1− p (xT−2)

1 + r
[DiffT−1 −DiffT ] > 0

By similar reasoning, we can show that Diffτ (h) is decreasing in τ ∈ [1, T ] if

DiffT (h) > 0. By incorporating this result in the optimal investment rule, we

see that optimal investment also decreases in τ ∈ [1, T ] if DiffT (h) > 0.

We can employ results from the static version of this model by noting that the

static version is very similar to the dynamic model in Period T . Conditions that

make production preferable and possible in the static model make production

feasible and desirable in Period T of this model. The results above extend the

arguments to Periods t < T in the dynamic model.

Clearly, social welfare declines with potential damages. Hence, social plan-

ners may �nd it optimal to allow plants with little risk to operate (that is, plants

with h close to a), but plants with high risk close (that is, plants with h close to

b). We can de�ne a level of potential damages h̃t such that social planners are

indi�erent between closing and operating the plant:

{
h̃SPt : argminhDifft(h) = 0, a ≤ h̃SPt ≤ b

}
We limit the range of h̃SPt such that h̃SPt ∈ [a, b]. Note that h̃SPτ = h̃SPT for all

τ ∈ [1, T ]. Expected utility from operations of plant i is non-increasing over

time. If ever it is optimal to close a plant before period T + 1, then it is optimal
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to close the plant in period 1. Hence, the rule for whether to operate a plant

may be determined by considering the decision in period T . Because of this

result, we can use the analysis from the preceding static model to learn about

h̃SP (at least the signs of the derivatives, but perhaps not the levels). Plants

with h < h̃SP close in the �rst period, and remaining plants operate:

Outputt,i =

 0 : h̃SP < hi

Q : hi ≤ h̃SP

=

 0 : h > argminh {Difft(h) = 0}

Q : o.w.

We con�rm that social welfare strictly decreases with potential damages,

assuming that it is optimal to produce, so long as the �rst derivative of the

probability function p is negative and the second is positive:

δζspt (h)

δh
=

 0 : QSP
t = 0

−p(xSPt ) + 1−p(xt)
1+r

δDifft+1(h)
δh

: QSP
t > 0

With the optimal rules derived above, aggregate social welfare in period t is

ζSPt = ζCloset +

∫ b

a

max

{
0, U(Q)− U(0)− xSPt − pSPt h+

1− pSPt
1 + r

Difft+1

}
f(h)dh

= ζCloset +

∫ h̃SP

a

{
U(Q)− U(0)− xSPt − pSPt h+

1− pSPt
1 + r

Difft+1

}
f(h)dh

= ζCloset +

∫ h̃SP

a

Difft(h)f(h)dh

Aggregate output in each period is∫ h̃SP

a

Qf (h) dh = Q× F
(
h̃SP

)
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where F (g) =
∫ g
a
f (h) dh for g ∈ [a, b] is the measure of plants that operate.

In summary, we see that aggregate output is constant over time, barring

attrition through accidents. Optimal investment and social welfare are non-

increasing over time.

4.2.5 Liability Only

We next consider a market in which private �rms are permitted to operate

without regulatory oversight, but they do face liability. We assume that the

maximum level of liability y is given, and may be assumed to be the level of

assets or the value of the �rm. Alternatively, it may be set to any arbitrary

level. In this analysis, we assume that y ∈ (0, b]. By de�ning y to be the value

of the �rm, we assume that standard bankruptcy rules apply.

For reasons given in the introduction, we assume that �rms are held liable

for damages with probability 1. We do not allow the possibility that �rms will

escape responsibility for damages.

Operators

Power plant operators seek to maximize expected pro�ts in each period. They

do so �rst by determining each period an optimal level of investment in safety

improvements and maintenance, given their level of liability and the present

expected value of continued operations. If expected pro�ts are greater than de-

commissioning costs, given the optimal investment level, then operators choose

to produce. The per-period level of potential output is given by the level of

installed capital, Q. Electricity prices less unit production costs are assumed

positive and are normalized to one, and so for positive production levels, Q is
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the level of output and revenue less operating costs. If pro�ts (revenue less op-

erating and investment costs less expected liability claims plus the present value

of expected future pro�ts) are less than decommissioning costs, the plants close

immediately and incur shutdown costs. In this version of the model, shutdown

costs are assumed zero, so that

ΠClose
t = 0

for all t ∈ [1, T + 1]. Plants must close by period T + 1.

The pro�t maximization problem in period t for �rm i with potential damages

hi is speci�ed as

ΠL
t (hi) = max


0,

max
xt≥0

Q− xt − pt min {hi, y}+ 1−pt
1+r

Πt+1(hi)

 (4.3)

To simplify notation, we denote pt ≡ p (xt (hi)). If the �rm does not produce,

then the �rm permanently exits the market with zero pro�ts. If the plant does

produce, then the �rm earns net revenue Q, less investment xt and expected

liability p(x) min{h, y}. The �rm also receives expected discounted pro�ts from

future periods.

There is no capital investment in this model, and there is no load following.

Hence, the �rms' output decision is whether to invest and to produce Q units

of electricity in the present period or whether to close permanently. We assume

that no output is lost when operators invest. Of course, output likely is lost

as the result of investment, adding costs in addition to the direct expenditures.

The assumption is made solely to simplify the model.
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Optimal investment is determined by di�erentiating Equation 4.3 with re-

spect to investment:3

δΠL
t (h)

δx
= −1− δp(xt)

δx

[
min {h, y}+

Πt+1(h)

1 + r

]
= 0 (4.4)

For simplicity, we ignore the constraints that are required to ensure that x ≥ 0,

so that maintenance expenditures are irreversible for all probability functions

p; this assumption is not restrictive so long as p is su�ciently steep for low

investment. After simplifying, we have the investment rule as a function of

potential damages:

xLt (h) = (p′)
−1

(
−1

min {h, y}+ Πt+1(h)
1+r

)
(4.5)

We see that the optimal investment rule under liability is similar to that under

social planning, so long as �rms bear full liability. The di�erence is that the

term (u (Q)− u (0)) / (1 + r) appears in the denominator of the social planning

rule, so that xLt < xSPt even for �rms that bear full liability. We see also that

pro�ts are non-increasing in potential damages:

δΠL
t

δh
=

 0 : y ≤ h

−p(xLt ) +
1−p(xLt )

1+r

∂ΠLt+1

∂h
: h < y

Using the same reasoning as in the social planning case, we can show that

expected discounted pro�ts are non-increasing in the age of the plant. The

optimal investment rule thus indicates that investment is non-increasing with

age.

3Note also that the SOC holds:
δΠL

2
t

δ2x = −p′′(xt)
[
min {h, y}+ Πt+1(h)

1+r

]
< 0 for h < y.
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We can determine points h̃Lt , for each period t ∈ [1, T ], such that �rms are

indi�erent between operating and closing.

{
h̃Lt : ΠL

t (h) = 0, a ≤ h̃L ≤ b
}

We �nd a result similar to that for social planning: the indi�erence point does not

change over time, so that h̃Lt = h̃LT for all periods t ∈ {1, T}. This may be seen

easily by �rst �nding the value h̃LT . At this damage level, pro�ts in T are zero, and

so the a�ected �rms' optimization problems in period T − 1 are identical to the

optimization problems in period T . This implies that xLT−1

(
h̃LT−1

)
= xLT

(
h̃LT

)
,

and so ΠL
T−1

(
h̃LT

)
= ΠL

T

(
h̃LT

)
= 0. The value h̃LT thus satis�es our conditions

for h̃LT−1, and so we conclude that h̃LT−1 = h̃LT . Similar reasoning extends the

argument to all t ∈ [1, T ].

Firms with h ≤ h̃L produce, and remaining �rms close:

Outputi =

 Q : hi ≤ h̃L

0 : h̃L < hi

=

 Q : 0 < Πt(hi)

0 : Πt(hi) ≤ 0

Because h̃L is constant over time, unpro�table �rms close in the �rst period.

If no accidents occur, aggregate output will not change over time. Given the

in�nite number of �rms in our model, though, we expect
∫ h̃L
a

p (xt (h)) f (h) dh

accidents to occur in period t, and it would be extraordinarily unlikely for no

accidents to occur. We thus suppose that p is an ex ante measure, but that no

accidents occur.

We see that investment increases with potential damages, so long as liability

covers those damages:
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δxLt
δh

=
δ ((p′)−1(h))

δh

δ
(

−1
min{h,y}

)
δh

≥ 0

Regulators

Social welfare may be found as under social planning, but now taking the �rms'

optimal policy functions as given:

ζLt =

∫ h̃L

a

{
U(Q)− xLt − pt

[
h−

ζCloseT+1

1 + r

]
+

1− pt
1 + r

ζLt+1(h)

}
f(h)dh

+[1− F (h̃L)]× ζCloset

Aggregate output is ∫ h̃L

a

Qf (h) dh = Q× F
(
h̃L
)

In summary, we see that under liability only, aggregate output is constant

over time, while investment and pro�ts are non-increasing. For all �rms that

operate, xLt < xSPt , so expected damages are greater and social welfare is lower

under liability than under social planning unless all �rms close in both cases.

4.2.6 Regulation Only

We next consider the case in which �rms operate without liability, but regulators

impose minimal standards for investment in each period. Ignoring the possibility

of direct subsidies, this scenario presents an upper bound for liability limits,

measured as the bene�ts presented to �rms by limiting their liability levels.
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Operators

The �rms' pro�t functions are speci�ed as

ΠR
t (hi) = max

{
0,max

st≤x

{
Q− x+

1− p(x)

1 + r
Πt+1

}}
Given zero liability, �rms �nd it optimal to invest only to improve the likelihood

of receiving pro�ts in the future, but they must satisfy current investment re-

quirements. In the last period, when future pro�ts surely are zero, �rms prefer

to invest nothing. Generally, �rms invest either the regulated amount st or the

optimal level under liability only with y = 0:

xRt = max

st, (p′)−1

 −1(
Πt+1(hi)

1+r

)


so long as the expected present value of pro�ts is non-negative. For s greater

than the sum of current and discounted future revenue, �rms close. Otherwise,

they operate. Hence, the output rule is:

Outputt,i =


0 : st > Q+

1− p(xRt )

1 + r
Πt+1

Q : st ≤ Q+
1− p(xRt )

1 + r
Πt+1

Either all �rms operate, or all �rms close.

Regulators

Regulators take into account the e�ects of their policies on the decisions made

by plant operators. Hence, in e�ect they choose whether output will be zero

or positive. The regulators' optimization problem can be written as the sum of

social welfare with zero aggregate output, plus the di�erence in welfare between
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positive and zero production for markets in which plants produce. We will derive

the di�erence for the market facing potential damages h, but for now we claim

it to be:

Difft(h) = max

 0,

U(Q)− U(0)− st − p (st)h+ 1−p(st))
1+r

Difft+1(h)


Social welfare for markets in which plants are closed can be written as

ζCloset = U(0) +
ζCloset+1

1 + r
= U(0)

1− ( 1
1+r

)T+2−t

1− 1
1+r

Hence, we claim that social welfare for individual markets may be written as

ζRt (h) = ζCloset +Difft(h)

assuming that plants invest no more than the required amount.

To leave the industry viable, it must be that given policy st, Π ≥ 0. By

solving this pro�t-function condition for s, we have the upper bound s̄t de�ned

as s = argmins {Π = 0}. We also know that �rms will invest no less than xLt ,

given y = 0, so there is no reason to consider lesser policies. We thus have the

lower bound st, de�ned as st ≥ (p′)−1

(
−1

Πt+1)

1+r

)
. In the aggregate, social welfare

is speci�ed as
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ζR = max


ζCloset ,

max
st≤st≤s̄t

∫ b
a

 U(Q)− s− pt

[
h− ζCloseT+1

1+r

]
+1−pt

1+r
ζt+1

 f(h)dh

 (4.6)

= ζCloset + max



0,

max
st≤st≤s̄t


U(Q)− U(0)− st

+
∫ b
a

 −pth

+1−pt
1+r

[
ζt+1 − ζCloseT+1

]
 f(h)dh




= ζCloset + max

st≤st≤s̄t
Difft (E (h))

where pt ≡ p (st). The constraints ensure that regulation leaves the industry

viable. We need not consider regulatory levels below the investment levels the

industry �nds optimal, and we need not consider regulatory levels above that

which drives output to zero. Note that the speci�ed lower bound is not de�ned in

period T , and thus should be replaced with zero in that period. More generally,

in any case in which Πt+1 = 0, then the constraint becomes 0 ≤ st ≤ Π−1(0).

We omit such details in the equation for simplicity.

We see that the regulator must set a single minimal standard for investment

expenditures for all �rms. The regulator cannot impose regulations tailored to

individual �rms because we assume that h is known only by the �rms themselves.

In the last line of the optimization problem, we see that the regulators' problem is

identical to the social planners' problem for the average �rm, with one exception.

The exception is that the regulation s must be less than the present value of the

�rm so that operations for the average �rm are pro�table. If both regulators and

social planners �nd it optimal for the average �rm to operate, but regulators �nd

the constraint binding, then it may be optimal for them to set higher standards
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but also to subsidize production, so that �rms remain pro�table. However, we

do not consider production subsidies in this paper.

The optimal level of regulation may be found by di�erentiating the social

welfare function given by Equation 4.6:4

δζRt
δst

= −1− δp

δs

[
E (h) +

Difft+1 (E (h))

1 + r

]
≤ 0 (4.7)

⇒ sRt = min


Q+

1−p(sRt )

1+r
Πt+1,

(p′)−1

(
−1

E(h)+
Difft+1(E(h))

1+r

)


We see that either regulation is set to the optimal level of investment for the

average �rm under social planning, or investment exhausts pro�ts. Note that

E (h)+Difft+1(E(h))
1+r

> Πt+1 (E (h)), so the lower bound on regulation never binds.

We can determine the evolution of optimal regulatory levels by comparing

the values of Diff over time. Let ∆t be the di�erence between Difft−1 and

Difft:

∆t−1 ≡ Difft−1 −Difft

= − [st−1 − st]− [p (st−1)− p (st)]h

+

[
1− p (st−1)

1 + r
∆t − [p (st−1)− p (st)]

Difft+1

1 + r

]
Note that DiffT+1 = 0. Assume that DiffT > 0. Then

∆T−1 = − [sT−1 − sT ]− [p (sT−1)− p (sT )]h+
1− p (sT−1)

1 + r
DiffT

Note that for DiffT > 0, sT led to su�ciently high utility that it was optimal to

allow �rms to operate. Note that sT−1 = sT is a feasible solution for regulation

4Note that the SOC holds: δζR
2

δ2s = −p′′(s)
[
E (h)− Difft+1(E(h))

1+r

]
< 0s
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in period T − 1. At this rate,

∆T−1 =
1− p (sT )

1 + r
DiffT > 0

Optimization of regulatory policies indicates that sT−1 will di�er from sT only

if the change enhances utility. Hence, we conclude that DiffT−1 > DiffT >

DiffT+1 = 0 for all h. Note also that in period T−2, a feasible level of regulation

is sT−2 = sT . In this case,

∆T−2 =
1− p (sT−2)

1 + r
[DiffT−1 −DiffT ] > 0

By similar reasoning, we can show that Diffτ (h) is decreasing in τ ∈ [1, T ] if

DiffT (h) > 0. By incorporating this result in the optimal regulation rule, we

see also that regulation is decreasing in τ ∈ [1, T ] if DiffT (h) > 0.

It is easy to see that if the constraint ever binds, then it always will bind.

Consider period T . If the constraint binds, then sT = Q < (p′−1) (−1/E (h)).

However, optimal regulation never will be lower, and so the constraint also must

bind in all preceding periods. Because pro�ts are zero in period T , the �rms'

optimization problem is identical in period T − 1. By continuing this reasoning,

we can extend the argument to period 1.

We can calculate the aggregate level of social welfare under optimal regula-

tion:

ζRt =

∫ b

a

max

 ζCloset ,

U(Q)− U(0)− xRt − pRt

[
h− ζCloset+1

1+r

]
+

1−pRt
1+r

ζRt+1

 f(h)dh

= ζCloset +Difft (E(h))

In summary, aggregate output is constant under regulation apart from losses
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to accidents, and the values of the �rms are non-increasing. Regulation also is

non-increasing, as is the social bene�t of continued operations.

4.2.7 Liability and Regulation

The �nal regulatory regime that we consider includes both regulation and lia-

bility. As we will see, full analytical results are di�cult or impossible to obtain.

We instead shall rely on a combination of analytical and numerical solutions to

our model.

Operators

Operators again seek to maximize pro�ts, given their level of liability. Their

choices concerning investment are constrained by the lower limit set by regula-

tors. Firms either �nd regulation binding, and thus invest at level st, or they

do not �nd the policy binding and so invest as if there were no regulation. In

the latter case, �rms invest according to the rule derived in Section 4.2.5. If

these levels are greater than the mandated level, then the �rms set their invest-

ment levels accordingly. Otherwise, the �rms set their investment levels to the

regulatory standard. Next, the �rms determine whether, given their investment

levels, operations are expected pro�table; that is, if the expected present values

of operations are greater than exit costs. If so, those �rms invest, produce, col-

lect revenue, pay any damage claims up to the level of liability, and continue to

the next period if no accidents occur. If �rms determine that operations are not

expected to be pro�table, then those �rm exit with zero pro�ts.

We specify the pro�t function in period t ∈ [1, T ]:
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ΠLR
t (hi) = max


0,

max0≤xQ−max {st, x} − p (max {st, x}) min {hi, y}

+1−p(max{st,x})
1+r

ΠLR
t+1(hi)


By �nding the �rst-order condition, assuming for now that regulation does not

bind, we have

δΠLR
t (hi)

δx
= −1− δp(x)

δx

[
min {hi, y}+

ΠLR
t+1(hi)

1 + r

]
= 0 (4.8)

Assuming that the irreversibility condition does not bind, we can compute the

corresponding investment rule.

xLRt (hi) = max

st, (p′)−1

 −1

min {hi, y}+
ΠLRt+1(hi)

1+r

 (4.9)

= xLt (hi) for {sτ ≤ xLτ (hi)∀t < τ ≤ T} (4.10)

We claim that for non-binding regulatory levels both now and in all future

periods, the �rms' investment problems are identical to the case in which there is

no regulation. However, this claim requires that regulation will not bind in future

periods. Otherwise, the present value of pro�ts will be a�ected, and so while the

investment rule remains identical to the liability-only case, the investment level

will be lower. It remains to be shown that if regulation does not bind for a �rm

in period t, then regulation will not bind in future periods.

As we saw earlier, we may �nd a point h̃t
LR

(s) for which �rms with this level

of potential damages are indi�erent between operating and closing. Now, the

indi�erence point depends on the level of regulation s. The point may be found

as:
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h̃tLR(s) :
Q = max

{
s, xLRt (h)

}
+ p

(
max

{
s, xLRt (h)

})
min {h, y}

−1−p(max{s,xLRt (h)})
1+r

ΠLR
t+1(h)

 (4.11)

although we constrain values of h̃LRt (s) to the interval [a, b].

To solve the regulators' optimization problem, we must determine how h̃LRt (s)

changes with the level of regulation s. To determine this, we use the implicit

function theorem. First, de�ne

Ct(h, s) ≡ Q−max
{
s, xLRt (h)

}
− p

(
max

{
s, xLRt (h)

})
min {h, y}

+
1− p

(
max

{
s, xLRt (h)

})
1 + r

ΠLR
t+1(h)

= 0

as the combination {h, s} that yields zero pro�ts in period t. By di�erentiating

C with respect to h and s, we �nd

δCt(h,s)
δh

=

 −p
(
max

{
st, x

L
t (h)

})
+

1−p(max{st,xLt (h)})
1+r

δΠLRt+1(h)

∂h
) : h < y

0 : y ≤ h

δCt(h,s)
δs

=

 −1− p′(s)
(
min {h, y}+

ΠLRt+1(h)

1+r

)
: xL ≤ s

0 : s < xL

With these equations, we can compute the derivative of h̃t
LR

(s) with respect to

s in period t:
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δh̃LRt (s)

δs
= −

δCt(h,s)
δs

δCt(h,s)
δh

=


−

−1−p′(s)
„
h̃LRt (s)+

ΠLRt+1(h̃LRt (s))

1+r

«
−p(s)+ 1−p(s)

1+r

δΠLRt+1(h̃LRt (s))

∂h

: h < y, xL ≤ s

0 : o.w.

(4.12)

Hence, we see that h̃LRt (s) is non-increasing in regulation. We claim that this is

so by noting that ∂C/∂s is zero for s = xLRt (h̃LRt (s)), according to the �rst order

condition for pro�t maximization. For regulation to bind, it must be true that

xLt (h̃LRt (s)) < s, and so ∂C/∂s must be less than zero.

Output is determined according to pro�tability of operations. Production for

�rm i may be determined by comparing hi to h̃
LR(s):

Outputi =

 0 : h̃LRt (st) < hi

Q : h̃LRt (st) ≥ hi

Aggregate output is ∫ h̃LRt (s)

a

Qf(h)dh = Q× F (h̃LRt (s))

Regulators

Regulators choose a minimal standard for investment in order to maximize social

welfare as before. This time, we consider three sets of parameters.

1. h̃L ≤ a

First, we assume that technology and the market is such that it is privately

optimal for all �rms to close, even if regulators set the minimal standard

to its lowest level (s = 0). In this case, given the maximum liability level

123



y, the only possibility for regulators to foster output is through subsidies;

however, we do not consider output subsidies. In this case, we obtain the

same solution as in the liability-only case, and social welfare with zero

output is

ζLRt = ζCloset
= U(0)

1− ( 1
1+r

)T+2−t

1− 1
1+r

(4.13)

2. a < h̃LR(s) ≤ h(s)

In this scenario, at least some �rms �nd it pro�table to operate despite

liability, but regulation is su�ciently high so that all �rms that operate

�nd regulation binding. We de�ne the di�erence at time t between the

social welfare of continued operations and ceasing production in markets

facing h:

Difft(h) = max

0,


U(Q)− U(0)− st

−pth+ 1−pt
1+r

Difft+1


 (4.14)

We will derive below lower and upper bounds s and s̄, respectively. We

use this term to de�ne the regulators' objective function:

ζLRt = max



ζCloset ,

max
s≤s≤s̄

∫ h̃LRt (s)

a


U(Q)− st

−pt
[
h− ζCloset+1

1+r

]
+1−pt

1+r
ζt+1

 f(h)dh


(4.15)

= ζCloset + max
s≤s≤s̄

∫ h̃LRt (s)

a

Difft(h)f (h) dh

= ζCloset + max
s≤s≤s̄

F
(
h̃LRt (s)

)
×Difft

(
E
(
h|h < h̃LRt (sLR)

))
Regulators choose between forcing the market to close and allowing prof-

itable operations. Regulations are constrained. First, let us de�ne ht(s) ≡
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(
xLRt

)−1
(s) as the point of indi�erence for �rms between s and xLRt . Then

any solution to the problem above must satisfy the following constraint:

h̃LRt (s) ≤ ht(s)

⇒ xLRt (h̃LRt (s)) ≤ xLRt (ht(s))

= xLRt ((xLRt )−1(s))

= s

Regulation must be su�ciently high that all �rms that �nd operations

pro�table also �nd regulation binding. At the same time, we assume that

regulation is su�ciently low that at least some �rms �nd operations prof-

itable:

a < h̃LRt (s) ⇒ xLRt (a) < xLR(h̃LRt (s))

Together, these conditions provide lower and upper bounds for regulation

in our optimization problem.

3. a ≤ ht(s) < h̃t
LR

(s)

Finally, we consider the case in which at least some �rms operate, and at

least some do not �nd regulation binding. We �rst de�ne the di�erence in

social welfare between zero and full production in markets with potential

damages h:

Difft(h) = max


0,

U(Q)− U(0)−max{xLRt , s} − p
(
max{xLRt , s}

)
h

+ 1−p(max{xLRt ,s})
1+r

Difft+1(h)


We will derive below lower and upper bounds s and s̄, respectively. We

next specify the aggregate social welfare function and show the validity of
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the equation above:

ζLR
t

= max



ζCloset ,

maxs≤s≤s̄
∫ h̃LRt (s)

a


U(Q)−max

{
xLRt , s

}
−p
(
max

{
xLRt , s

}) [
h− ζCloseT+1

1+r

]
+

1−p(max{xLRt ,s})
1+r

ζt+1

 f(h)dh


= ζCloset

+ max



0,

maxs≤s≤s̄
∫ h̃LRt (s)

a


U(Q)− U(0)−max

{
xLRt , s

}
−p
(
max

{
xLRt , s

})
h

+
1−p(max{xLRt ,s})

1+r

[
ζt+1 − ζCloseT+1

]
 f(h)dh


= ζCloset + max

s≤s≤s̄

∫ h̃LRt (s)

a

Difft(h)f(h)dh

= ζCloset + max
s≤s≤s̄

∫ ht(s)

a

Difft(h)f (h) dh

+

∫ h̃LRt (s)

ht(s)

Difft(h)f (h) dh

As before, regulators choose between forcing markets to close and allowing

operations. If any �rms �nd regulation binding, it will be the those with

lowest h. To �nd social welfare, regulators add together the bene�ts of

production for �rms investing at the regulated level, plus the bene�ts of

�rms investing higher levels, plus the bene�ts of zero production in markets

in which �rms close. Policy choices are constrained on the lower end by

the lowest voluntary level of investment; we do not consider subsidies, and
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there is no need to consider s ∈
[
0, xLRt (a)

)
. We set an upper bound as:

ht(s) < h̃LRt (s)

⇒ xLRt (ht(s)) = xLRt ((xLRt )−1(s))

= s

< xLRt (h̃t(s))

At least some �rms �nd it pro�table to operate while investing above man-

dated levels. We de�ne the point of indi�erence between s and xLR as

ht(s) ≡
(
xLRt

)−1
(s)

We can �nd solutions to the objective functions above. First, we solve for the

case in which regulation binds for all operating �rms (Case 2). By di�erentiating

the di�erence function with respect to s, we see that

δDiffLRt (h)

δs
= −1− p′(st)

[
h+ DiffLRt+1(h)

1+r

]
If we assume that the constraints do not bind, then we can employ this result in

the �rst-order condition for social welfare:

δζLRt
δs

=

∫ h̃t
LR

(s)

a

δDiffLRt (h)

δst
f(h)dh+

δh̃LRt
δs

DiffLRt (h̃(s))f
(
h̃(s)

)
=

∫ h̃t
LR

(s)

a

{
−1− p′(st)

[
h+ DiffLRt+1(h)

1+r

]}
f(h)dh

+
δh̃LRt
δs

f
(
h̃LRt (s)

)
DiffLRt (h̃(s))

= 0

Hence, we see that at the optimum (assuming an interior solution), the cost of

additional investment, plus the bene�ts of lower expected damages and poten-

tially lost future pro�ts, less the net bene�ts of production from �rms that exit
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the market sum to zero. If the optimum is a corner solution, then sLRt will result

in zero pro�ts for �rms with potential damages h ≥ y.

If we suppose that
∫ h̃LRt (st)

a
f(h)dh > 0, as it will be if this case is relevant,

then we can simplify the �rst order conditions for the second case, and we have

∫ h̃LRt (s)

a

f(h)dh > 0 (4.16)

⇒ 1 = −p′t
[
E
(
h|h < h̃LRt (sLRt )

)
+ DiffLRt+1(E(h|h<h̃LRt (sLRt )))

1+r

]

+
δh̃LRt (sLRt )

δs

f
(
h̃LRt (sLRt )

)
F
(
h̃LRt (sLRt )

)DiffLRt (
h̃LRt (sLRt )

)
≤ −p′t

[
E
(
h|h < h̃LRt (sLRt )

)
+ DiffLRt+1(E(h|h<h̃LRt (sLRt )))

1+r

]
Because ∂h̃LRt (s)/∂s ≤ 0, we know that

1 ≤ −p′t
[
E(h|h < h̃LRt (sLRt ) + DiffLRt+1(E(h|h<h̃(sLRt )))

1+r

]
Thus, we have

sLRt ≤ xLt

(
E(h|h < h̃LRt (sLRt ))

)
If all �rms �nd operations pro�table despite facing liability, then this policy

rule is identical to that in the case of regulation only. Given the pro�tability

constraint on regulation, and denoting the solution to Equation 4.16 as s∗t , we

have

sLRt = min

 Q− p
(
sLRt
)
h̃t
LR

(sLRt ) +
1−p(sLRt )

1+r
ΠLR
t+1(h̃t

LR
(sLRt )),

s∗t


The solution sLRt for this case then is determined as the solution of three

equations: sLRt is determined by the �rst-order condition (although additional
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attention must be paid to the constraints), h̃LRt is determined by Equation 4.11,

and the derivative of h̃LRt is given by Equation 4.12.

In similar fashion, we �nd the optimal level of regulation for the third case

�rst by di�erentiating the function Difft with respect to regulation:

δDiffLRt
δst

= −1− p′(st)

[
h+ DiffLRt+1(h)

1+r

]
We employ this result in the �rst-order condition for social welfare, assuming

that there is an interior solution:

δζLRt
δst

=

∫ h(s)

a

δDiffLRt
δst

f(h)dh

=

∫ h(s)

a

{
−1− p′(st)

[
h+ DiffLRt+1(h)

1+r

]}
f(h)dh

= 0

If any �rms �nd regulation binding, then the following condition holds:

∫ ht(s)

a

f(h)dh > 0 (4.17)

⇒ 1 = −p′t


∫ ht(s)
a

[
h+ DiffLRt+1(h)

1+r

]
f(h)dh∫ ht(s)

a
f(h)dh


= −p′t

[
E
(
h|h < ht(s

LR
t )
)

+ DiffLRt+1(E(h|h<ht(sLRt )))

1+r

]
⇒ sLRt = xSPt

(
E
(
h|h < h(sLRt )

))
Note, however, that a = ht(s) in the static case, so that regulation failed to

bind for any �rm. If the same is true for the dynamic case, then the solution is

sLRt = xSPt (a).

We conclude that when both regulatory and liability instruments are available

to industry regulators, they �rst must solve the equations above to determine
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optimal regulatory policies in each case. They then must choose the case yielding

the greatest expected welfare given the optimal regulatory policies. We thus

specify the level of social welfare in time t ∈ [1, T ] as

ζLRt = max



ζCloset ,∫ h̃(sLR)

a

{
U(Q)− sLR − p

(
sLR
)
h
}
f(h)dh

+[1− F (h̃(sLR))]× U(0),∫ h(sLR)

a

{
U(Q)− sLR − p

(
sLR
)
h
}
f(h)dh

+
∫ h̃L
h(sLR)

{
U(Q)− xLR(h)− p

(
xLR(h)

)
h
}
f(h)dh

+[1− F (h̃L)]× U(0)


Numerical Results

Finding general analytical solutions in the case of both liability and regulation

is quite di�cult. Instead, we report here some numerical results. Such results

are limited by nature, and depend on additional assumptions.

First, we assume arbitrarily that the distribution f (h) is uniform over h, with

a = 1000 and b = 5000. Second, we specify accident probabilities as p (x) ≡ χx,

and χ is set to about 0.759. Note that this function satis�es our requirements

noted earlier. Utility is speci�ed as u (Q) = 100 × ln (Q+ 1) and u (0) = 0.

Remaining parameters are Q = 100 and r = 0.07. Maximum liability is set to

y = 4, 500 and y = 1, 010 for low and high liability cases, respectively. Finally,

the maximum lifespan is set to T = 40.

Results are shown in Figure 4.1, assuming that y = 1, 010. The �gure in

the upper-left displays the level of regulation assuming that regulation binds for

all �rms (the higher level) and that regulation binds for only some �rms (the

lower graph). For the given assumptions, the optimum is that regulation binds
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for all. Note that under the alternative, in which regulation binds for only some

�rms, the optimal level of regulation is identical to the private investment level

xLRt (a); we proved a similar rule in the static case.

The upper-right �gure displays pro�ts, at 5-period intervals, for �rms with

damages h. Recall that the optimum is for all �rms to invest the same amount

in each period. The slight downward slope in each graph is because potential

damages increase with h, even though the probability of facing such liability is

unchanged. Pro�ts, as reported here, actually are the present values of the �rms.

The present values decline over time, so the uppermost graph is the present value

at t = 1, and the lowest graph is the result at t = 40.

The lower-left �gure displays aggregate utility assuming that regulation binds

for all �rms (the higher graph) and that regulation binds for only some �rms

(the lower graph). Under the speci�ed parameters, there is little di�erence, and

so the graphs nearly coincide. Note that social welfare appears to converge when

there are many remaining time periods.

Finally, the lower-right �gure displays aggregate output and aggregate prof-

its over time. Note that aggregate output does not change, assuming that no

accidents occur. Note also that pro�ts appear to converge when the potential

lifespan of the �rm is long.

Two more sets of graphs are displayed in Figures 4.2 and 4.3. Both �g-

ures compare results for the regulation-only case to results for both liability and

regulation. Figure 4.2 displays results for y = 4, 500. Note that for periods

t ∈ [1, 25], the optimal level of regulation is such that all �rms �nd it binding.

Perhaps surprisingly, it becomes optimal to lower the level of regulation in re-

maining periods, so that all �rms decide for themselves how much to invest. This
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Figure 4.1: Model Solutions

seems surprising, since �rms have little incentive to invest when time horizons

are short. Remember, however, that potential damages are low relative to net

revenue and social welfare. Recall from Figure 4.1 that the di�erence in welfare

is small in this case, regardless of whether regulation binds for some or for all

�rms. A corresponding jump in investment may be seen in the lower-right �gure.

A corresponding set of graphs may be seen in Figure 4.3, given the assumption

that y = 1, 010.

4.3 Implicit Subsidies

While typically we de�ne liability y as the value of the �rm, making the model

conform to standard bankruptcy rules, it could equally well be de�ned otherwise.

In the U.S., liability is established under the Price-Anderson Act. This generally

means that liability is less than the value of the �rms operating nuclear power
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Figure 4.2: Solutions: High Liability

Figure 4.3: Solutions: Low Liability
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plants.

Prior to 1988, these levels were set in nominal terms and were adjusted in-

frequently. Since then, the levels are set in real terms and adjust automatically

for general in�ation. Still, the liability levels are not linked directly to poten-

tial accident costs. One obvious reason for this is the di�culty of establishing

the distribution of accident costs, or even to establish an upper bound for these

costs. Making cost estimation still more di�cult are the great regional di�er-

ences among plants. Some plants are located in rural settings with relatively

low values for surrounding properties, while others are in urban settings with

tremendous real estate values. However, commercial insurance companies do

assess potential damages for each plant. Factors they consider are the size of the

plant, population and property values in the surrounding area, and the prob-

ability of an accident at the plant (Dubin and Rothwell [17, 16]). Dubin and

Rothwell [17] fail to �nd that power plants in highly-populated areas respond

more quickly to opportunities to improve safety. This may indicate that Price-

Anderson protections give too little incentive for operators to minimize risk.

The assumptions in our model regarding potential damages are not satisfac-

tory. A troubling assumption is that operators have complete knowledge of h but

that regulators know only the distribution. In reality, it seems that regulators

should have an estimate of h that at least approaches the accuracy of the �rm's

assessment. A better assumption would be that �rms have private knowledge of

the probability of an accident p, which may be di�erent for each �rm. Another

troubling assumption is that the potential damage for each �rm is a single value.

In reality, there is a distribution of potential damages for each plant (Dubin and

Rothwell [16], Heyes and Heyes [29]). We might de�ne hi to be the expected
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value of potential damages for �rm i, and f(h) becomes the distribution of mean

values across �rms. In this case, all �rms might bene�t from liability limits,

even if their mean damage assessment falls below the limit. We will continue to

ignore such problems in the following analysis.

The de�nition of the value of the �rm becomes troublesome when we consider

the possibility of catastrophic accidents. Consider the possibility that all assets

of a �rm are devoted to a single plant. Suppose that the plant is destroyed in an

accident. Whether the value of the �rm had been de�ned as the present value

of pro�ts or as the value of the �rm's capital (see Rothwell [50] for a comparison

of the net present value of pro�ts to resale plant prices), the value of the �rm

is destroyed. For liability laws to be credible and thus to a�ect investment, the

�rm must hold other assets or insurance. This problem is less pressing with

young �rms, because the appeal of future pro�ts make �rms more inclined to

avoid accidents today and so, at least if we ignore technological problems for

young plants, economic incentives make accidents less likely. However, accident

probabilities may rise with age in any �nite-horizon model, for expected future

pro�ts diminish over time. Regardless of the likelihood, accidents are possible

at any age, and whether the �rm a�ected would have the means to bear liability

remains an important question. Liability-sharing clauses of the Price-Anderson

Act partially address the problem.

We could extend our model by allowing regulators to choose a level of liability

ŷ ∈ [0, y] to maximize social welfare. In such a model, it is possible that changes

in other parameters, as described in the sections above, have been modest, and

that the optimal liability level would not have changed much. If so, then it is

possible that such a model would be consistent with reality. However, it seems
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unlikely that regulators choose the liability level to maximize a simple welfare

function as presented in this model. Recent di�culties with renewing the Price-

Anderson Act, for example, show that political pressures a�ect signi�cantly the

establishment of policies. We will return to the subject of politics in the section

below.

In our model, we assume that maximum liability is speci�ed exogenously,

and is not under the control of the regulator. If we de�ne y as the value of the

�rm, which is the maximum liability level under standard bankruptcy law, then

we already have analyzed the relevant extremes: the regulation-only case sets

liability to zero, and the regulation and liability case sets liability to the full

value of the �rm. If we de�ne ŷ ∈ (0, y) as the actual level of liability, then

we might use the results above to analyze the current regulatory framework. A

comparison of results for y and ŷ would begin to address the arguments that

Price-Anderson should be abandoned. We begin such comparisons below, where

we construct measures of the bene�ts to �rms for setting ŷ below the full value

of the �rm. The work follows our work with the static version of this model, and

our results extend our �ndings to the dynamic case.

The bene�t to plant owners of liability caps ŷ < y can be computed using

the operators' pro�t functions. We must remember that existence of private

bene�ts do not mean necessarily that social welfare su�ers, at least given our

speci�cation of the welfare function. Despite its negative connotation among

industry critics, we nevertheless adopt the common phrase "implicit subsidies"

to describe the di�erence in pro�ts for the two regimes.

We can compute the value of subsidies for a given �rm i by comparing pro�ts

under two regulatory regimes; we omit the subscript i to simplify the notation.
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We compute implicit subsidies generally as

St = Π̂t − Πt

where pro�ts are denoted Π̂ and Π given liability levels ŷ and y, respectively.

By making additional assumptions, we can decompose subsidies. In the follow-

ing equation, we assume that production takes place under both regimes, and

we consider the case in which regulation fails to bind for any �rm; other as-

sumptions easily can be analyzed with the same framework. We consider two

alternative liability rates ŷ and y, where ŷ < y < h so that xLRt (ŷ) < xLRt (y) and

p
(
xLRt (ŷ)

)
> p

(
xLRt (y)

)
. The value of operations is Π̂t and Πt under policies ŷ

and y, respectively. The value of subsidies is

St = Π̂t − Πt (4.18)

=

{
Q− xLRt (ŷ)− p̂tŷ +

1− p̂t
1 + r

Π̂t+1

}
−
{
Q− xLRt (y)− pty +

1− pt
1 + r

Πt+1

}
= [xLRt (y)− xLRt (ŷ)] + p̂t [y − ŷ] + [pt − p̂t] y

+
1− p̂t
1 + r

St+1 +
Πt+1

1 + r
[pt − p̂t]

We see then that operators save by spending less on investment goods. Less

investment means that the probability of an accident will be higher, but the

lower liability level makes the net e�ect on pro�ts ambiguous. If we are to

compute the present value of implicit subsidies, then to this per-period level we

add the probability of receiving discounted future subsidies, less the di�erence

in expected future pro�ts caused by higher accident probabilities.

Most other attempts to estimate the bene�ts of liability caps consider only

the second term in the equation above, and only the per-period implicit subsidies
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are reported. They assume that y = h, ignoring standard bankruptcy rules, and

that xL(ŷ) = xL(y). Hence, authors like Dubin and Rothwell [16] essentially

estimate subsidies as p
(
xL(ŷ)

)
× (h− ŷ).

Most debate compares current liability levels, where ŷ clearly is less than h,

at least in the worst case, with an alternative regime where operators bear full

liability (i.e. y = h). Such arguments in reality concern whether it is optimal

to allow operations, as it commonly is assumed that no plant would operate if

forced to shoulder full liability. However, if there is a ỹ such that ŷ < ỹ < h, and

if ỹ is the liability level that leaves �rms indi�erent between decommissioning

and operating, then private bene�ts are not greater under a ỹ regime than under

a regime with full liability h. If we maintain the assumption that exit costs are

zero, then Π̃ = 0. To calculate subsidies, we replace Π in the equation above

with Π̃

St = Π̂t − Π̃t (4.19)

= Π̂t − 0

= Π̂t

Note that we obtain the same result for any y > ỹ, so that subsidies do not in-

crease without bound as potential damages h > ỹ increase. The present value of

implicit subsidies are equal to the present value of reported pro�ts less expected

liability.

Suppose the full value of a �rm is y = 4, 500, and the enforced maximum

liability for the �rm is ŷ = 1, 010. We can compute implicit subsidies for this �rm

by computing the di�erence in the pro�t levels reported above. Note that because

of the peculiar shift in optimal policies reported in Figure 4.2, the reported
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Figure 4.4: Implicit Subsidies

implicit subsidies also will appear peculiar. A contour plot of subsidies is shown

in Figure 4.4. Note that implicit subsidies are negative for �rms with very

low potential damages. These �rms actually would prefer higher (though not

binding) liability limits with corresponding shifts in regulation. Hence, the value

of liability limits to �rms is not always so straightforward to compute as many

expect.

We do not mean to suggest that calculation of implicit subsidies ever will be

easy. Even calculation of the present value of the �rm requires some knowledge

of accident probabilities, which have proven very di�cult to calculate.

Given the years of �ghting leading up to the 2005 extension of the Price-

Anderson Act, it is clear that the industry strongly values the policy and that

critics strongly oppose it. Many critics assume that the industry would disappear

without protections. Given calculation of the present value of implicit subsidies,

we could gain an idea of the amount that the industry would pay that would
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leave them indi�erent between having or forsaking Price-Anderson. If the cost

would leave �rms bankrupt, then their critics at least partly are right. If not,

then perhaps the bene�t is not so great as critics claim. In either case, we should

consider not only the e�ects of Price-Anderson on the value of the �rms, but also

we should consider the e�ects of both liability and regulation on safety, and we

should consider the overall e�ect of nuclear power operations on social welfare.

4.4 Political Economy

The 1979 accident at the Three Mile Island (TMI) nuclear power plant made

the possibility of a serious accident real to most Americans. While this accident

turned out to be relatively minor, and little or no o� site damage was caused by

escaping radiation, the 1986 accident at Chernobyl truly was catastrophic. Such

events led some to adjust upward their assessment of the probability of accidents

that would cause harm to third parties, which is represented in this model as

an increase in p. (See, for example, Zimmerman [63] and Price [43, p. 58].) In

addition, many reassessed their preferences and their willingness to tolerate the

risk of nuclear accidents. Suppose that the estimate of expected damages p (h)h,

or more generally the aversion to damages, is scaled upward by parameter α to

become αp (h)h. If operators' assessment of their own potential losses increase,

then they willingly increase investment or exit the market. If regulators become

more averse to losses, then they may mandate stricter regulations.

The public developed greater concern for safety and relatively less concern for

economic well-being following the accidents in the 1970s and 1980s. Consequent

pressure on politicians may have caused regulators' preferences to shift similarly.
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Such changes may be modeled simply as in the preceding section on decreasing

demand.

Alternatively, we can de�ne the parameter α to represent political preferences

or public tolerance of nuclear power risks. α < 0 indicates a public comprised of

thrill-seekers, and α = 0 indicates an indi�erent population. Increasing positive

values of α indicate growing aversion to potential harm. For α→∞, consumers

reject nuclear power regardless of potential bene�ts. If we assume α > 0, which

seems reasonable, then we might ask, what determines the magnitude of the

preference parameter. In our model in which each market and each group of

consumers are identical, we might assume the parameter exogenous and perform

comparative-statics analysis. A slightly more interesting approach would be to

assume a range of randomly-distributed preferences. The distribution would be

analogous to the real-world distribution of ideological and political persuasions

concerning the corporate world, consumer safety, and the natural environment.

Perhaps still more interesting and important cases could be analyzed by ex-

tending our model to incorporate dynamics for the level of α.With such a model,

tolerance for risk and perception of risk could be based on past performance of

plants; of course, this particular application also would require other extensions

to our model. If the public had imperfect information concerning the risk posed

by the plant in their own market, and if past performance o�ered a signal of

the true risk, then preferences might lean against nuclear operations (high α)

following poor performance or misbehavior, and the public might be tolerant

of operations (low α) following periods of good performance. Regulators would

have political interests leading them to care about the public's perception of risk

in addition to economic well-being and their own risk assessments.
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Increasing aversion makes it less likely that plants will be allowed to operate,

which generally is consistent with the events of the late 1970s and 1980s. The

perception of risk appears to have increased following the TMI accident, although

there is evidence that it was trending upward throughout the 1970s. In the

following years, many plants were closed, investment expenditures increased,

and pro�ts fell. However, Zimmerman [63] argues that existing power plants

lost little value as a result of TMI once the uncertainty immediately following

the accident was resolved. The primary impact of that accident was felt by those

building new plants.

Whether the behavior of the public and of regulators is consistent and can be

modeled remains an open question. It widely is accepted that regulations were

tightened in the late 1970s, and that regulations became tighter still following the

TMI accident. In this same period, public opposition to nuclear power became

a formidable threat to the industry. Since then, public opposition has dwindled

and perhaps regulation has become burdensome. On the other hand, perhaps

operators simply improved their behavior and thus simply are avoiding wrath.

Clearly, we need to extend our work to consider political factors, but this model

provides a good start as we seek to disentangle these factors.

4.5 Conclusion

We constructed a model of liability-bearing �rms and regulators and applied it

to the nuclear power industry. We considered pro�t maximization as the pri-

mary motivation for �rms, and they seek to enhance pro�ts by deciding whether

to operate and how much to invest willingly in safety enhancements. We mod-

142



eled regulators as welfare maximizers that set minimal standards for safety en-

hancements and accident avoidance measures, which ultimately may determine

whether the industry remains viable.

Our solutions for the optimal investment policies indicate that �rms have too

little incentive to invest, so that investment levels and safety fall short of the �rst-

best solution. This in principle seems to provide some justi�cation for imposition

of safety standards, for social welfare otherwise is shown to be lower than it could

be. On the other hand, the realities of limited policy instruments make optimal

regulatory policies less clear. In simulations of our model, we �nd support for

results analogous to static model implications: in some cases, it in fact is better

to set low regulations and simply to let liability guide investment. We do not

claim that this case applies to the nuclear power industry. Rather, our model is

useful to guide future empirical studies, as well as to provide illumination on a

variety of theoretical matters.

We applied our model to derive the present value of implicit subsidies from a

model of �rms and regulators. This work takes a broader view of the e�ects on

�rms of liability limits. We criticize other e�orts to identify and quantify implicit

subsidies as taking too narrow a view of regulatory e�ects. Instead, we take into

account the e�ects of liability limits on behavior, and we take into account the

e�ects of regulation. The result yields the full value of liability limits to �rms,

which should guide future e�orts to quantify implicit subsidies and should inform

both defendants and critics of Price-Anderson policies.
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Chapter 5

A Numerical Model of Nuclear Power

Plant Operations

In this chapter, we generalize the dynamic programming model of regulation and

the �rm developed in the last chapter by adding details and by relaxing some of

the restrictive assumptions that were made for sake of simplicity. We combine

features of our earlier models of the nuclear power industry and its regulation.

We add considerable detail for individual plants. In doing so, we set the stage

for the second part of this dissertation. In that second part, we focus directly on

the power plants themselves and on the operation of the plants. This is a key

chapter, for it ties together nearly every part of the dissertation.

Our model adds many important factors of the nuclear power industry that

were left out of previous analytical exercises for sake of feasibility. We add

an insurance industry in response to the Price-Anderson clause requiring partial

coverage. We specify the level of insurance premiums based on potential damages

and the endogenous accident probabilities. We include the potential premium

refunds that are speci�ed in the insurance policies. Also included is the liability

sharing among all �rms required by Price-Anderson.
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The model of the �rm now includes revenue, operating costs, and decommis-

sioning costs. The output decision now is continuous. Revenue is the product

of output and electricity prices, where prices are stochastic and exogenous. Pa-

rameters are calibrated or estimated using available data.

We employ the model in two applications. We consider the e�ects of elec-

tricity price growth on the value of �rms and on their decisions. We �nd that

the value of the �rm predictably falls as price growth rates decline as they did in

the mid1980s. We also consider the e�ects of license extensions that allow older

�rms to continue operations. We �nd that the value of all �rms increase with

such extensions, which �rst were o�ered to the industry in the late 1990s.

We thus add signi�cantly to the set of key industry features incorporated

in our model, and calibration enhances its realism. The results shed light on

the industry in ways that few other models o�er, and our work in this chapter

provides important guidance for remaining chapters.

In a chapter appendix, we develop a means by which we greatly increase the

computational speed and simplify the code of our numerical model. The method-

ology is useful generally, but we provide an application to show its particular

usefulness in �nding solutions to calibrated dynamic programming models. We

o�er evaluations that demonstrate reasonable numerical accuracy and describe

ways that the method may be generalized and extended.

5.1 Introduction

When the U.S. government was considering the creation of a private nuclear

power industry, they realized that the enormous risks associated with operating
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a nuclear facility meant that liability would need to be limited in order to ensure

viability of the industry. In 1957, the government enacted the Price-Anderson

Act which provides liability caps for o� site damages. The stated objectives

of this policy were 1) to protect the public by ensuring prompt compensation

after an accident and 2) to foster the development of the nuclear power industry

(Dubin and Rothwell [16]).

Price-Anderson requires that operators purchase private insurance coverage.

In 1984, operators paid an average of $0.4m per year (Brownstein [11]) for cov-

erage of o�site damages between $1m and $160m.1 The insurance companies

cover all o�site damages for totals between $1m and $160m, and they cover

the �rst $160m of damage for worse accidents. If plants operate without o�site

losses for 10 years, then they are eligible for a 70% refund of paid premiums

(Denenberg [15]).2

Price-Anderson requires that plant owners equally share liability for damages

in excess of private insurance coverage and below an imposed liability cap. Cal-

culation of expected losses above the liability cap, less the amount of industry

liability, yields an implicit subsidy per reactor year to power plant operators.

Implicit subsidies are the insurance premiums operators are spared for coverage

above the liability cap.

Such liability caps eliminated the need for plant operators to protect them-

selves from possible losses for damages in excess of the liability limit, thus limiting

the need to purchase liability insurance. Many argue that by enabling operators

to avoid these additional insurance premiums, regulators provide an implicit sub-

1Required coverage rose to $300m by 2003, in current dollars (NEST-DOE [7]).

2See [30] for a listing of annual aggregate refunds.
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sidy to the industry. While estimates for the value of these subsidies are fairly

small (Dubin and Rothwell [16], Heyes and Heyes [28, 29], and Denenberg [15]

(note that problems exist in the calculations of Dubin and Rothwell and Heyes

and Heyes)), many still argue that the industry would not survive without them.

Unfortunately, these estimates are di�cult to compute, and little faith should

be put in most published estimates (Heyes [26]).

Such protections o�ered by the government proved insu�cient to maintain

a healthy nuclear power industry. The 1970's and 1980's proved di�cult for

the electricity sector. Average annual electricity demand growth exceeded seven

percent in the decade or more prior to 1973. Growth rates then fell abruptly

to less than three percent. (See, for example, Price [43, p. 107].) Rothwell

and Eastman [51] report that from 1979 to 1981, the realized or allowed rate of

return was less than the cost of capital for U.S. electric utilities. The need for

ever more base load capacity became much less pressing in the 1970s, and the

shift in electricity price growth forced increases in e�ciency for plants to remain

viable. Nelson and Peck [39] show that the reality of weakening demand set in

slowly, and that the industry consistently over-estimated future demand growth

from the mid1970s to the mid1980s. Price also notes that the industry was slow

to react to signs of deteriorating economic conditions.

Many consider the 1979 accident at the Three Mile Island (TMI) plant to

be the primary cause of the deterioration of the nuclear power industry. How-

ever, there are numerous causes, including falling demand due to increased price

growth, slowing income growth, and higher price elasticities (see Nelson and

Peck [39]); higher costs (see the EIA report [2]); and greater regulatory hur-

dles. In fact, the backlog of new orders fell and plants under construction were
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abandoned even before the TMI accident (Ellis and Zimmerman [18]). Hence,

all of these factors should be incorporated in any model claiming to portray the

economics of the nuclear power industry. Unfortunately, most models focus only

on one, or perhaps a few, such factors. Given the growing interest in resuming

construction of nuclear power plants (University of Chicago [8] and MIT [6]),

it is important that we improve our understanding of the political economy of

nuclear power.

This paper combines a simpli�ed version of the Rust-Rothwell model of nu-

clear power plant operations [56, 55] with our dynamic model of operations and

investment under risk [57]. Power plant operators are assumed to be pro�t max-

imizers. They are assumed to be without market power, and thus they observe

prices but cannot in�uence them. Each period, operators choose either to op-

erate or to decommission permanently their plant. If they choose to operate,

then they choose a level of investment and a level of capacity utilization. Invest-

ment is de�ned as maintenance and other irreversible expenditures that lower

the probability of an accident. If an accident occurs, then an amount of damage

known ex ante by plant operators will occur. Operators are liable either for the

full amount of damage or an announced �nite amount, which ever is less. The

capacity of each plant is �xed upon construction. Costs are convex in invest-

ment and output. The time horizon is �nite. The model is solved with dynamic

programming techniques.

The solution for the model reports the optimal levels of investment and out-

put based on the age of each plant, the levels of liability faced by each plant, and

electricity prices. Optimal levels of investment and output balance the desire to

maximize pro�ts by increasing output with the need to limit costs and expected
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damage payments.

We apply the model in two ways. First, we consider the e�ects of a structural

shift in prices. Such a shift occurred in U.S. electricity markets in the mid1980s.

Second, we consider the e�ects on plants of 20-year extensions to their operating

licenses. Such extensions were o�ered beginning in the late 1990s.

We conclude with development and application of a method to speed calcula-

tion of the integral of the approximation of a function f (x), where x is normally

distributed. We apply the method to numerical dynamic programming prob-

lems. The method is employed in this chapter to increase the speed of �nding

model solutions, with the added bene�t of simplifying our model code.

5.1.1 Layout of this paper

This paper develops a model of nuclear power plant operations. First, the model

is described, with timings (i.e., the order of events each period), descriptions of

insurance companies and policies, objective functions for the operators, and in-

dustry details. We then derive optimal operating and investment policies for the

�rms. We further describe insurance companies and specify insurance premium

calculations. We describe consumers and calculation of social welfare. Next,

calibrate the model with available data, and we generate and report numerical

solutions and simulations. We then apply the model in two ways. First, we eval-

uate the e�ect on pro�ts and behavior of a shift in the structure of electricity

prices. Second, we evaluate the response to an increase in the allowed maximum

lifetimes of �rms. Following the chapter conclusion, an appendix describes a

numerical methodology developed for and employed in solving and simulating

our model.
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5.2 The Model

5.2.1 The Temporal Structure

This model has one primary group of players, nuclear power plant operators, who

operate in a dynamic framework. The �rms' objectives are to maximize pro�ts.

It is assumed that a continuum of markets exists, with one nuclear facility per

market. No attempt is made to explain the existence of power plants, and

prices and demand for electricity are exogenous. Firms are identical, except for

the amount of damage that they cause if an accident occurs. We consider a

�nite number of time periods. When the maximum lifespan has been reached,

assuming that the �rm survives, the �rm incurs any shutdown costs and closes

permanently.

The model also has two secondary groups of agents. First, there is a pri-

vate insurance company that issues policies, collects premiums, and pays the

company's share of damages. Second, there is one or more consumer in each

market. These consumers obtain utility through the consumption of electricity.

These same consumers bear losses in the event of an accident in cases where the

damage exceeds the liability cap.

At time zero, the level of demand is announced; we assume that this level is

�xed throughout time and that demand is perfectly inelastic.3 We assume that

demand at least is as high as potential output, so that each �rm can produce at

3More generally, there may be other generating technologies, e.g. natural gas, that absorb

demand �uctuations. Nuclear plants service some or all base load demand, which we assume

is perfectly stable. In the absence of nuclear power production, consumption is normalized to

zero, though in reality a portion of demand may be met through other generating technologies.
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full capacity and sell the amount at the given market price. Prices are modeled

as dynamic log-normal autoregressive processes. Before operations begin, a max-

imum level of liability is imposed on the nuclear power industry, and the level is

announced. Given this announcement, each period power plant operators decide

an optimal level of investment in safety-enhancing maintenance and similar ex-

penditures. If production yields a higher expected present value than the cost of

decommissioning, then �rms invest, produce electricity at the optimal utilization

rate, collect the revenue, and pay operating and investment expenses. Accidents

occur at the end of each period with an endogenously determined probability.

These accidents cause damage to third parties, for which regulators may hold

plant operators liable. If the expected present value of the �rm is less than the

cost of decommissioning, then operators make no investments and close their

plants immediately. If the �rm remains in operation at the end of its maximum

lifespan, the plant incurs decommissioning costs and closes permanently.

We also incorporate features of the Price-Anderson Act. First, in each period

in which a plant operates, an insurance premium is paid before operations begin.

In the event of an accident, the insurance company pays its share of damages at

the end of the period. Second, liability in excess of insurance coverage is shared

among all operating �rms. The shares are assessed and paid at the end of each

period.

Exposure to liability with corresponding spending on safety reduces pro�ts.

Installation of investment goods makes the production process more di�cult, so

that output costs are greater with higher investment spending. The model has

a continuum of �rms that either produce at an optimal utilization rate or shut

down permanently, depending on whether the expected present value of pro�ts
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are greater than decommissioning costs. Essentially, we assume a continuum of

identical markets, where prices are exogenous. Each market possesses one �rm

that either produces goods and delivers them to consumers in the same market

who receive utility from consumption of the products, or the �rm closes and

consumers receive a level of utility from zero consumption.

5.2.2 De�nitions

The continuum of (nearly) identical �rms is indexed by the level of potential

damage, h, that each �rm may cause by operating. In fact, h is the only distin-

guishing characteristic of the �rms. We assume that h is an exact amount. This

magnitude of potential damage, known only to the �rm, is such that h ∈ [a, b]

where 0 < a < b < ∞. The publicly-known distribution of damages across

�rms is f(h), which is nonzero on and only on [a, b]. We use a probability dis-

tribution f(h) only for convenience, in that it integrates to one and we can use

familiar techniques from statistics. More general speci�cations of f(h) could

integrate to any positive value, as it simply speci�es the number or measure of

�rms with potential damages h. Firms face liability either for the full level of

damages or for a maximum level of damages y, whichever is less. We assume

that all plants have the same capacity. Capacity for each plant is Q. Because

the measure of plants in the industry is 1, industry capacity and potential out-

put also is Q. This may be seen by integrating over capacity for each plant:∫ b
a
Qf (h) dh = Q

∫ b
a
f (h) dh = Q. The level of output for a given plant oper-

ating at a given capacity utilization rate is denoted q, so that the utilization

rate is q/Q ∈ [0, 1]. We also denote aggregate output as q, where in this case

q (P ) =
∫ b
a
q (P, h) f (h) dh, and where q (P, h) denotes the optimal plant-level
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output quantity for given levels of prices and potential damages. The level of

expected discounted pro�ts is denoted Π (h, P ) for individual �rms and Π (P )

for the industry aggregate.

We assume that the logarithms of electricity prices P are normally dis-

tributed; we denote the logarithm as p̂. Production and investment costs are

denoted C (x, q). This function is convex in investment and output. Firms may

invest in goods and services, indexed by x such that 0 ≤ x, to lessen the prob-

ability of an accident. The probability of an accident p(x), given the level of

investment x, is identical for each �rm and depends only on investment. The

�rst derivative of the probability function is negative and the second derivative is

positive. (See Dubin and Rothwell [17] for a similar speci�cation.) If an accident

occurs, then �rms are liable for the amount h or the liability cap y, whichever

is less. Firms also must clean up on-site damages.

A component of the social welfare function is U . For industry output q,

where q ∈ [0, Q], U(q) = Pq − C (x, q) + u(q). Hence utility U is a quasilinear

utility function, and is determined by the sum of industry revenue less operating

and investment costs plus the bene�t to consumers u(q) of consuming q. The

numeraire in this utility function is industry revenue less operating and invest-

ment costs. The balance of the social welfare function is potential damages and

is in the same units (dollars) as is the numeraire. If a �rm exits the market, then

the corresponding market receives the present value of the utility stream, given

zero output and consumption. Hence, social welfare depends on consumption,

industry pro�ts, and potential damages in excess of �rms' liability.

Time is indexed by t, beginning with t = 1. The maximum possible lifespan

is T . If �rms operate in Period T , then they must close in Period T + 1 and
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pay decommissioning costs. We assume that all plants begin life at the same

time, so that all operating plants are of the same age. While we could generalize

this speci�cation, it seems a reasonable simpli�cation since the U.S. essentially

has a single generation of commercial nuclear power plants. We assume that

the model parameters are time-invariant; that is, demand, price parameters,

maximum liability, the functions p(.) and f (·), the utility functions, and the

values of h and Q for each �rm do not vary over time. The endogenous terms

of course may vary, including investment and output, as does the exogenous

evolution of prices.

5.2.3 The Firms

We consider markets in which private �rms are permitted to operate without

regulatory oversight, but they do face liability. We assume that the maximum

level of liability y is given, and is assumed to be set to less than the level of assets

or the value of the �rm and that that y ∈ (0, b]. Alternatively, it could be set

to any arbitrary level such that standard bankruptcy rules apply. Instead, we

impose terms of the Price-Anderson Act liability protections. As we will see, the

values of the �rms change over time, and so it seems that perhaps y also should

change over time. We do not consider this in the model, nor do we consider

optimal values for y.

Power plant operators seek to maximize expected pro�ts in each period. They

do so �rst by determining each period optimal levels of output and investment

in safety improvements and maintenance, given their levels of liability, product

prices, and the present expected value of continued operations. If expected

pro�ts are greater than decommissioning costs, given the optimal investment
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levels and utilization rates, then operators choose to produce. The per-period

level of output is denoted q and is given by the level of installed capital, Q,

times the capacity utilization rate. For simplicity, we assume that electricity

prices P = exp (p̂) follow a log-normal autoregressive process

p̂t = γ + ρp̂t−1 + εt

where ε ∼ N (0, σ2). Production and investment costs are given by a convex

function. We choose a simple quadratic form to illustrate the problem:

C (x, q) = α1q + α2q
2 + α3x+ α4x

2 + α5qx

Per-period gross pro�ts thus are Pq−C (x, q). If the values of the �rms are less

than decommissioning costs, the plants close immediately and incur shutdown

costs. In this version of the model, shutdown costs are time invariant, so that

ΠClose
t = Decommissioning

for all t ∈ [1, T + 1]. Plants must close by period T + 1.

The Price-Anderson Act requires that operators purchase insurance for spec-

i�ed amounts of o�-site damages. In the event of an accident, the insurance

covers the �rst portion of damages. If no accident occurs for 10 years, then the

Price-Anderson Act speci�es that plant owners are eligible for a refund of up to

70% of their insurance premiums. We specify Refundt (Pt, hi) as the amount of

refunds received in Period t by plants with hi. Refundτ = 0 for τ = 1, . . . , 10. In

subsequent periods, operators receive Refundt = Premiumt−10×0.70 in periods

in which they operate. If instead the plant closes, then we assume that refunds

are distributed over the following years. We denote the present value of these

refunds as PDVt (Refund) =
∑t+9

τ=t

{(
1

1+r

)τ−t
Premiumτ−10

}
.
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Price-Anderson also requires that plants share risk through industry self-

insurance. This self-insurance covers damages above the level of insurance cov-

erage and below the liability cap. All plants equally are liable for shares of these

damages. The measure of �rms bearing liability in Period t is
∫ h̃t(Pt)
a

ft (h) dh,

where ft (h) is the distribution of plants that have chosen to operate and have sur-

vived until Period t. We assume that plants with potential damages h ≤ h̃t (Pt)

will operate, and remaining plants close voluntarily. The amount of liability

born by each plant that remains in operation is

SharedLiabilityt (Pt) (5.1)

=
R h̃t(Pt)
max{a,Coverage} p(xt(Pt,h))[min{h,y}−Coveraget(Pt,h)]ft(h)dhR h̃t(Pt)

a ft(h)dh

The amount of expected damages for which the industry is liable, after private

insurance covers damages up to Coveraget (Pt, h), is seen in the numerator. This

amount is shared by all plants that operate; the measure of operating �rms is

shown in the denominator. Note that the level of shared liability depends only on

time and the price level. In this model with its in�nite number of �rms, the mea-

sure of plants experiencing accidents each periods is
∫ h̃t(Pt)
a

p (xt (Pt, h)) ft (h) dh.

Even with a constant value for h̃t, the measure of operating plants thus will fall

over time since some will experience accidents. However, we will ignore this de-

tail and assume that the distribution f is independent of time. Since our model

is a stylized version of an industry with a �nite number of �rms, and since acci-

dents are very rare, we hope that this simpli�cation does not impose excessive

harm to our results.

The pro�t maximization problem in Period t for �rm i with potential damages
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hi is speci�ed as

ΠL
t (Pt, hi) = max



 −Decommissioning

+PDVt (Refund)

 ,

maxqt,xt≥0



Ptqt − C (xt, qt)− p (xt)× Cleanup

+1−p(xt)
1+r

EΠt+1 (Pt+1, hi)

−Premiumt (Pt) +Refundt (Pt)

−SharedLiability (Pt)




(5.2)

If the expected discounted value of the �rm is less than the exit costs plus refunds,

then the �rm permanently exits the market with zero pro�ts. If the plant does

produce, then the �rm earns revenue P × q, less operating and investment costs

C (x, q), less expected onsite damages p (x)×Cleanup, plus expected discounted

pro�ts from future periods. The �rm pays an insurance premium Premium,

accepts refunds Refund, and bears a share of industry liability SharedLiability.

Expectations of future pro�ts EΠ are computed by integrating over prices

EΠ (P ′, h) ≡
∞∫

−∞

Π (P ′, h)φ(P ′|P )dP ′

where φ (P ′ | P ) is the density function for future prices given the current price

level. We discuss computation of these expectations in the appendix.

Assuming an interior solution and taking as predetermined the functions

Premium, Refund, and SharedLiability, the solutions for investment and out-

put may be found by calculating the gradient of Equation 5.2

δΠL
t (Pt, h)

δx
= −δC (x, q)

δx
− δp(xt)

δx

[
Cleanup+ EΠt+1(Pt+1,h)

1+r

]
= 0

δΠL
t (Pt, h)

δq
= Pt −

δC (x, q)

δq
= 0
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and elements of the Hessian are

δ2ΠL
t (Pt, h)

δx2
= −δ

2C (x, q)

δx2
− δ2p(xt)

δx2

[
Cleanup+ EΠt+1(Pt+1,h)

1+r

]
δ2ΠL

t (Pt, h)

δq2
= −δ

2C (x, q)

δq2

δ2ΠL
t (Pt, h)

δxδq
= −δ

2C (x, q)

δxδq

The gradient indicates that under optimal policies the marginal cost of an ad-

ditional unit of investment will equal the marginal reduction in expected cleanup

costs and marginal increase in expected pro�ts. Marginal costs include both pur-

chase costs of investment goods and services and lost or more costly production.

The second term of the gradient indicates that the marginal revenue will equal

marginal costs. For simplicity of notation, we ignore the constraints that are

required to ensure that x ≥ 0, so that maintenance expenditures are irreversible

for all probability functions p; imposition of this assumption is not restrictive so

long as p is su�ciently steep for low investment. Also, we ignore the constraint

that q ≥ 0.

Note that the level of pro�ts does not depend on potential damages h unless

insurance premiums and refunds depend on potential damages. This is true

because of liability sharing, and because �rms do not take into account their

own contribution to the level of shared liability. If premiums do not depend on

h, then investment decisions will be independent of h. All �rms will invest the

same amounts, and these levels will depend only on the age of the �rms and the

current electricity price.

If we assume that the Hessian is diagonal, so that δ2Π/δxδq = 0, then we
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have the investment rule as a function of potential damages:

xLt (Pt, h) = (p′)
−1

(
− δC(x,q)

δx

Cleanup+ EΠt+1(Pt,h)
1+r

)

where (p′)−1 is the inverse of the derivative of the probability function. Exam-

ination of this function shows that investment increases with potential onsite

damages and with potential future relative bene�ts of production. If we main-

tain the assumption that the Hessian is diagonal, then the output decision rule

is

qt (Pt) = (C ′)
−1

(Pt)

where (C ′)−1 is the inverse of the derivative of the cost function with respect to

output. Solutions for cases in which the Hessian is not diagonal and cases in

which the constraints might bind may require numerical computation.

We can determine points h̃Lt (Pt), for each period t ∈ [1, T ], such that �rms

are indi�erent between operating and permanently decommissioning:

{
h̃Lt (Pt) : ΠL

t (Pt, h) = 0, a ≤ h̃L ≤ b
}

Firms with h ≤ h̃L produce, and remaining �rms close. Aggregate output is∫ h̃L(Pt)

a

qt (Pt, h) f (h) dh

5.2.4 The Insurance Company

This model includes a single insurance company that issues insurance policies,

collects premiums, and pays a share of o�-site damages. Because we know little

about the rates and policies of real-world insurers of the nuclear power industry,

we will assume that insurers know the distribution of �rms f (h), but insurers
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do not know the level of potential damages for individual �rms. This is at odds

somewhat with reality; see the NRC [30] document for details.

Insurance premiums are the sum of expected losses, overhead and pro�t, and

the expected discounted value of refunds. We assume that the total amount

of premiums collected equals the total amount of damage claims against the

insurance company plus costs and pro�ts. We solve such an equation for the

premium, given the electricity price:

Premium (Pt)

=

CoverageR
a

h×p(xt(Pτ ,h))f(h)dh+Coverage
bR

Coverage

p(xt(Pτ ,h))f(h)dh

R b
a

8<:1−π−
0.7

(1 + r)10
Q10
τ=t

R ∞
−∞(1−p(xτ (Pτ ,h))φ(Pτ |Pt)dP

9=;f(h)dh

where π is the premium share going to overhead and pro�ts and r is the average

yield of investments. The numerator calculates expected damage payments made

by the insurance company in the current period. The denominator is the integral

of one minus the markup rate minus the discounted level of expected premium

refunds. Seventy percent of the premium is refunded following 10 years of safe

operations. This amount is discounted at the constant rate r. The probability

of 10 consecutive years of safe operations is calculated, given the expected level

of future investment which in turn depends on expected electricity prices. The

markup π × Premium is overhead, pro�t, and other expenses.

Because insurers know only the distribution of potential damages, they can-

not issue premiums based on the level of potential damages for individual �rms.

For this reason, refunds in this model also do not depend on h.
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5.2.5 The Consumers and Social Welfare

There are an in�nite number of consumers, as each of the in�nite number of

markets has at least one consumer. Each consumer �nds electricity consumption

desirable. We assume that the group of consumers in each market is identical;

in particular, we assume that they have identical preferences.

The utility of zero aggregate consumption in a given market is denoted U (0).

In this case, zero need not denote zero consumption, but simply that consumers

will not enjoy the fruits of production by the producers in this model. In the

case of electricity markets, we consider only electricity produced by nuclear power

plants and normalize to zero the production of coal-�red, gas-�red, and other

power plants. We assume that nuclear plants produce base-load power, and that

it is the other plants that absorb demand �uctuations stemming from variations

in price. The present value of a �ow of utility from zero consumption from

Period t to Period T + 1 is

ζCloset = U(0) +
ζCloset+1

1 + r
= U(0)

1− ( 1
1+r

)T+2−t

1− 1
1+r

For markets in which plants have been decommissioned, this is the present value

of social welfare in Period t. For simplicity, we set the discount factor according

to the interest rate. All plants must close by Period T + 1, so we have

ζT+1(hi) = ζCloseT+1 = U(0)

Social welfare over all markets may be found for a given price level by taking
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the �rms' optimal policy functions as given:

ζLt (Pt) =

∫ h̃L(Pt)

a



u(qt (Pt, h)) + Πt (Pt, h)

−p
(
xLt (Pt, h)

)
max {h− y, 0}

+p
(
xLt (Pt, h)

) ζCloseT+1

1+r

+
1−p(xLt (Pt,h))

1+r
EζLt+1 (Pt+1, h)


f(h)dh

+ [1− F (h̃L (Pt))]× ζCloset

where F (g) =
∫ g
a
f (h) dh for g ∈ [a, b] is the measure of plants that operate. The

�rst term on the right-hand side computes the present value of social welfare in

markets with operating plants. Social welfare in each of these markets is the sum

of consumers' utility and plant pro�ts, less expected damages that are not borne

by the �rm and its insurance coverage, plus the expected social value of zero

consumption, plus the expected present value of future operations. The second

term on the right-hand side is the sum of social welfare in markets without

operating plants. Expectations of future social welfare Eζ are computed by

integrating over utility

Eζ (P ′, h) ≡
∞∫

−∞

ζ (P ′, h)φ(P ′|p)dP ′

To compute this integral, we proceed as with the computation of expected pro�ts

that is described in the appendix.

5.3 Numerical Results

General analytical results are di�cult or impossible to calculate for this model,

so we evaluate it numerically. We �rst must specify the functions and parameters

that were not speci�ed above.
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5.3.1 Calibration

Insurance premiums are set to $400,000 per reactor per period in 1984 dollars

(see Brownstein [11]). We thus ignore variation in premiums based on risk as-

sessments, the population and property values in the areas surrounding plants,

and other such factors.4 We assume that all refunds are 70% of the $400,000

premiums, or $280,000; see [30] for a listing of aggregate refunds.

Insurance coverage in 1984 was $160 million. Shared liability is determined

according to Equation 5.1.

The range of potential damages h is [$1m, $10, 000m], and this range is dis-

cretized into 101 equal segments. The liability cap is set to y = $660m.5 For

simplicity, we assume that f (h) is the uniform distribution.6 Note that we mis-

use the data, since these values represent the range of potential damages for each

plant. In our model, each plant poses damages h, which is a scalar rather than

a distribution for particular plants.

We speci�ed above an autoregressive log-normal process for electricity prices.

We �rst set the parameters γ = −0.51, ρ = 0.83, and standard deviation σ =

0.05, which correspond to relative electricity prices between 1973 and 1985.7 In

the second run, we set the parameters to γ = −0.40, ρ = 0.89, and standard

deviation σ = 0.02, which correspond to relative electricity prices from 1986 to

4See, for example, the review of Price-Anderson [30].

5These parameters correspond to those in Dubin and Rothwell [16].

6Dubin and Rothwell [16] assumed a log-logistic distribution, although their distribution

was de�ned di�erently.

7Prices are from the EIA, are in dollars per kilowatt-hour, and are relative to the GDP

implicit price de�ator in 1984 prices.
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2004. We assume that 50% of the sale price is assigned to power generation

and the remaining unit revenue share goes to transmission and other expenses.

The truncation points for the log-normal distribution are -5.0 and -1.0. Nineteen

Chebychev interpolation nodes are chosen for the approximation and integration

of the value function.

As was shown above, we assume that the cost function is a second-order

polynomial. Costs per kilowatt of capacity are:

49.4− 7.59q + 0.001q2 + 2.08x+ 0.000002x2 − 0.00004qx

Cost data was taken from the EIA [2]. Total costs are total non-fuel oper-

ating costs per kilowatt of capacity and have been converted to 1984 prices.

Investment expenditures also have been converted to 1984 prices using the GDP

implicit price de�ator. Output and capacity data were taken from the EIA web-

site. Potential output is taken to be the level of capacity in 1984, which was

69.7 gigawatts, times the number of hours in a year, so that potential output

approximately is 610.6 billion KWh. A linear regression was used to calculate

parameters. Constraints were imposed to ensure that the cost function is convex.

It is assumed that operating costs are under-reported by 30%, and so the results

of this equation are in�ated accordingly8. Other expenses, such as fuel costs, are

not considered.

The maximum number of periods T initially is 40. This corresponds to the

number of years that plants initially were licensed to operate. We solve the model

a second time to consider implications of possible 20-year license extensions.9

8See EIA [2] for details.

9See Rust and Rothwell [56] for similar analysis.
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We set decommissioning costs to $400m and onsite cleanup following an ac-

cident to $1b.10 The interest rate is r = 0.07. Preferences are speci�ed as

u (q) = 610.6 log (q + 1), so that u (0) = 0. The probability of an accident is

p (x) = χx, where χ is chosen so that p ≈ 0.005 at 1984 investment levels.

Basic Results

The �rst two �gures, Figures 5.1 and 5.2, display parts of the solutions given the

parameterizations listed above.

The graph in the upper left corner of the Figure 5.1 displays the level of in-

vestment in Period 1 across potential damages. The level of investment is shown

for various price levels, with higher prices leading to higher investment levels.

Note that investment does not depend on the level of potential damages. This

is so because of liability sharing and because we assumed a constant insurance

premium despite di�ering potential damage assessments.

The graph in the upper right corner of the �gure displays the expected present

discounted value of �rms in Period 1 across potential damages. Present values

are displayed for various price levels. The present values rise with prices. Note

that the values of the �rms do not depend on potential damages for the same

reasons listed above.

The graph in the lower left displays the aggregate level of social welfare across

time. At each point in time, social welfare is displayed for the same set of price

levels. Note that social welfare falls over time and increases with prices. Social

welfare increases with prices because �rms receive higher pro�ts and because

10This is the amount cited by Dubin and Rothwell [17] for cleaning up after the Three Mile

Island accident in 1979.
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Figure 5.1: Dynamic Programming Solutions

we assumed that demand is perfectly inelastic. A more realistic social welfare

function would not increase so rapidly with prices, and the positive relationship

might actually be counter-factual. With this parameter set, there appears to be

little variation in social welfare as the price varies.

The �nal graph, in the lower right corner, displays aggregate output over

time. For this set of parameters, and at the price levels that are graphed, either

all plants close or all plants produce in all periods, depending on electricity

prices.

Figure 5.2 displays the aggregate present value of �rms over time. In each

period, the present values are calculated at the same set of price levels. We see

that the values of �rms fall over time and increases with electricity prices.
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Figure 5.2: Aggregate Present Values
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Figure 5.3: Interpolation of Expected Pro�ts

In Figure 5.3, we see expected pro�ts in Period 1 across electricity prices for

plants with the lowest level of potential damages. The Chebychev approximation

of pro�ts is displayed, along with a �nite set of approximation points. Note that

despite the non-linearity imposed by the decommissioning rule, in which plants

close when the expected present value of the �rm falls below decommissioning

costs plus refunds, a continuous Chebychev approximation of pro�ts seems ap-

propriate. In contrast, linear splines approximations prove far superior for the

investment and output functions because of more extreme nonlinearities. The

latter two approximations are necessary for simulations, while the pro�t function

approximation is needed both to solve and to simulate the model. Chebychev

interpolation also is used for simulating social welfare levels.
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Figure 5.4: Simulated Prices

5.3.2 Simulations

The solutions described above were employed to simulate the behavior of a �rm.

First, the exogenous price series was simulated, with the price in period 0 ini-

tialized to its steady-state level (p̂ = γ/ (1− ρ)). In this case, we calibrated the

price equation using post1986 electricity rates. The resulting simulated series is

shown in Figure 5.4.

Figure 5.5 displays investment, the present value of the �rm, social welfare in

the corresponding market, and output. Note that while �nite-horizon dynamic

programming solutions inherently are nonstationary, investment indeed trends

lower but output levels are not trended.
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Figure 5.5: Dynamic Programming Simulations
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Table 5.1: Correlation Coe�cient

Output Investment Prices

Output 1.00 -0.09 0.16

Investment -0.09 1.00 0.66

Prices 0.16 0.66 1.00

To better understand the properties of the model, and because the data

is not trended strongly, we compute the correlation coe�cients among output,

investment, and prices. These are displayed in Table 5.1. Note that output

and investment have a negative correlation, while both output and investment

have a positive correlations with prices. We must remember, however, that these

statistics are based on a small sample. Simulation of additional data and with

alternative parameter speci�cations could yield signi�cantly di�erent results.

5.4 Applications

We employ the model in two applications. First, we consider the e�ects of a

structural shift in the price parameters. The U.S. electricity sector experienced

such a shift in the mid1980s. Second, we consider the e�ects on plants that

are allowed 20-year extensions to their operating licenses. U.S. regulators began

o�ering such extensions in the late 1990s.

5.4.1 Structural Shifts in Prices

Electricity price growth, relative to the GDP price de�ator, may be seen in Fig-

ure 5.6. Note that price growth consistently was positive in the period from
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Figure 5.6: Electricity Prices

about 1973 to 1985. In about 1985, relative price growth became consistently

negative. We estimated parameters for the price equation for the two periods;

these parameters are listed in the Calibration section above. Various struc-

tural stability tests support the graphical evidence for a structural break in the

mid1980s. The steady price growth of the 1970s and early 1980s ended, and a

long period of gradual decline began.

Rust and Rothwell [55] constructed a detailed model of nuclear power plants.

They employed the model in an attempt to detect optimal changes in the oper-

ations of power plants due to regulatory reform following the 1979 accident at

Three Mile Island. A key simplifying assumption in their model is that electricity
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prices are constant.

Their model showed that 90% of the present value of operations disappeared

in the mid1980s. Much of this was explained by higher operating and mainte-

nance costs, in part due to stricter regulations, increased decommissioning costs,

and stricter regulation of prices. Rust and Rothwell also detect an increased

likelihood of �prudent� behavior in the era of greater oversight and lower pro�ts.

Finally, they observe that plants extended their average times between refueling

from 12 to 18 months. Rust and Rothwell conclude that these changes primarily

were due to shifts in regulation.

Our model described above is rather abstract, and so despite its calibration

using real-world data it is of limited use in performing quantitative analysis. We

might hope, however, that the qualitative results seem plausible. We begin by

comparing results for 10-year-old plants. This corresponds to a plant that began

life in 1975 and was observed in 1985. We use relative price levels of $0.0498 per

KWh, which is close to the 1985 relative electricity price with a 1984 base year.

First, we solve the model using price parameters estimated with 1974-1985

data. We note the solutions at Period 10. We again solve the model, this time

using price parameters estimated with 1986-2004 data, and again we observe

solutions at Period 10. The di�erences in plant values roughly correspond to

changes a plant might have realized in 1985.

The present value of a 10-year-old plant observing relative prices of $0.0498

with the high-growth price structure is $5,766.0 million. The same plant under

the low-growth price structure is valued at $5,710.9 million. The reduction is

slight, about 0.96% compared to the 90% result of Rust and Rothwell. On the

other hand, the change is in the direction we would expect. Investment declines
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from $4.569 million to $4.564 million. This may be at odds with the increased

�prudence� detected by Rust and Rothwell.

We conclude then that some of the changes noted by Rust and Rothwell might

be due to demand side shifts and not exclusively to regulatory reforms. Our an-

nual model cannot capture the refueling details that require a high-frequency

model like that of Rust and Rothwell. Our model does explain some of the re-

duction in pro�ts that they discovered. We allowed only demand-side changes,

and we did not consider any changes in operating costs, liability levels, or insur-

ance premiums. While in our model the e�ects of structural shifts are slight, they

lead us to suggest that the model of Rust and Rothwell may su�er from their

constant-price assumption, and as a result their claimed e�ects of regulatory

reform might be overstated.

5.4.2 Operating License Extensions

Rust and Rothwell [56] build a detailed model of nuclear power plant operations.

They apply the model in an investigation of the e�ects of proposed 20-year

extensions to original 40-year operating licenses. They �nd that the 20-year

extensions roughly double the present value of operations.

We replicate the analysis by again modeling a plant that began operations in

1975. This time, we compare the plant values in 1995 under the 40-year licenses

with plant values under 60-year licenses. We set the model price to $0.0358 per

KWh, which is close to the actual 1995 relative price. We employ price equation

parameters estimated with data from 1986 to 2004.

Under 40-year operating licenses and the noted price, the present value of

operations is $4,858.4 million. Under 60-year licenses, the same plant is worth
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$6,111.0 million. While this 25.8% increase is less than the doubling of plant

values reported by Rust and Rothwell, the increase also is large and is in the

same direction as their �ndings. Optimal investment increases from $4.49 million

to $4.59 million.

We conclude that while the Rust-Rothwell model would improve through

relaxation of the constant-price assumption, the change likely would not alter

many of their qualitative results.

5.5 Conclusions

We constructed and applied a numerical model of the nuclear power industry.

This model provides detail on a number of important features of the American

nuclear power industry. Few other works in the literature o�er such industry

details.

We calculated optimal investment and pro�ts, together with social welfare,

for the American markets. We speci�ed details for the insurance market for

nuclear liability insurance set up under Price-Anderson policies. Details in-

clude speci�cation of insurance premiums, premium refunds, and shared liabil-

ity. Firms choose investment and capacity utilization levels given current and

expected electricity prices, and also they decide when to decommission their

plants. They face decommissioning costs, and they face onsite cleanup costs

should an accident occur. Output and investment costs are convex.

We �nd that investment does not vary with the level of damages that �rms

pose to the public. This is so because of the shared liability speci�cations of

Price-Anderson, and because at least in our model insurance premiums do not
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vary with potential damages. While our model remains somewhat abstract, and

we thus should interpret its results carefully, this suggests that we should consider

carefully whether the shared liability clauses yield unintended consequences. On

the other hand, it is possible that regulators recognize this problem and tailor

their investment requirements accordingly.

We tested our model to determine e�ects of changes in price structures like

those occurring in the 1980s. The model responded predictably, with a fall in

�rm values corresponding to a reduction in the growth rate of electricity prices.

However, the reduction in �rm values was very small. This suggests that some,

but perhaps very few, of the industry changes noted by Rust and Rothwell may

be explained by demand-side changes.

Finally, we tested the response of the model to operating license extensions.

The model responded strongly, with a dramatic jump in �rm values. This sup-

ports the �ndings of Rust and Rothwell.

This model would bene�t from many improvements and extensions. For

example, we easily could extend the analysis to consider the e�ects of capacity

uprates; that is, the e�ects of infrequent discrete increases in potential plant

capacities Q. Such changes have become common in the nuclear industry over

the past decade. Also, it would be desirable to make electricity prices dependent

on output decisions within the nuclear industry. This especially is desirable in

the aggregate, since nuclear power presently contributes roughly 20% of U.S.

production.

Other possibilities include the allowance of di�erences across plants for p(x),

and to make f(h) a distribution of potential damages for each plant. (See Dubin

and Rothwell [17] for a similar speci�cation.) This could improve the plausibil-
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ity of assumptions regarding private versus public information. Liability limits

would a�ect all plants in all cases. We also might suppose that accident prob-

abilities depend on the utilization rate, so that risk is greater when the plants

are run at full capacity.

Rothwell [47] notes the relationship between safety and plant performance.

That is, plants with high accident probabilities generally are more troublesome

and expensive to operate. Hence, operators have incentives to maintain their

plants in order to maximize output and minimize repair costs, even if they face

no liability. Dubin and Rothwell [17] �nd that operators of less-reliable plants

moved more quickly to invest in safety equipment. They also report that relia-

bility generally falls with the age of the plant, suggesting that older plants have

higher accident probabilities. This correlation between reliability and accident

probabilities likely will prove important in any future quantitative analysis and

in more detailed theoretical work. Still, we might expect our qualitative results

to survive.
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5.6 Appendix

5.6.1 Introduction

We have a set of functions of unknown speci�cations that we have approximated

by Chebychev polynomial interpolation. We need to calculate the expected value

of these functions given various sets of distribution parameters, assuming that

the function argument x is normally distributed. The interpolation is performed

over a �nite range [a, b], and thus the normal distribution must be truncated

at the same end points. The objective is to �nd an analytical solution for the

expected value of f (x) given its Chebychev approximation and the truncated

normal distribution such that x ∈ [a, b].

First, we will set up the problem by de�ning the probability distribution

and the expected value of f (x), and we describe the Chebychev approximation

technique. Second, we will show that the expected value of f (x) over [a,b] is a

linear combination of the Chebychev coe�cients that de�ne the approximation

of f (x). The weights in this linear combination in turn are linear combinations of

moment integrals of x over domain [a, b], where weights in the latter combination

are coe�cients of the Chebychev polynomials. Third, we will de�ne an e�cient

means of computing the moment integrals of x ∼ N (µ, σ2) over interval [a, b] by

showing that they are linear combinations of moment integrals for z ∼ N (0, 1)

when z is integrated over the interval
[
a−µ
σ
, b−µ

σ

]
. Fourth, we will de�ne a practi-

cal algorithm for computing the expected value of f (x) for x ∼ N (µ, σ2). Fifth,

we will apply this methodology to the calculation of the expected value function

in a dynamic programming problem with one continuous state variable. Finally,

we report test results of this method for various functions.
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These techniques can be extended to other distributions and interpolation

techniques, and they likely can be extended fairly easily to encompass multivari-

ate distributions. The work of describing the error properties for this approx-

imation method, apart from the numerical results reported in the last section,

remains to be done.

5.6.2 De�nition of the Problem

The Probability Distribution

First, let us specify the distribution. Let Φ̃ (x) denote the truncation of the

normal cumulative distribution function Φ (x). Then

Φ̃ (x) =
Φ (x)− Φ (a)

Φ (b)− Φ (a)
,

for a ≤ x ≤ b, and

φ̃ (x) ≡ ∂Φ̃ (x)

∂x
=

∂Φ(x)
∂x

Φ (b)− Φ (a)
≡ φ (x)

Φ (b)− Φ (a)
,

where φ̃ is the truncated normal PD and φ is the normal PDF, and

b∫
a

φ̃ (x) ∂x =

∞∫
−∞

φ (x) ∂x−
a∫

−∞
φ (x) ∂x−

∞∫
b

φ (x) ∂x

Φ (b)− Φ (a)

=

b∫
−∞

φ (x) ∂x−
a∫

−∞
φ (x) ∂x

Φ (b)− Φ (a)
= 1.

The expected value of f(x) over the [a, b] interval given the truncated density

function is

b∫
a

φ̃ (x) f (x) ∂x =

b∫
−∞

φ (x) f (x) ∂x−
a∫

−∞
φ (x) f (x) ∂x

Φ (b)− Φ (a)
. (5.3)
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The Function Approximation

In this appendix, we assume that the function approximation employs Chebychev

polynomials, but the techniques developed here can be applied to many sets of

polynomials. The Chebychev approximation is made by �nding a coe�cient

vector c that solves the linear system B × c = f (x) ⇒ c = B−1 × f (x), where

B is n × n and c, x, and f(x) are n × 1. xj is the j
th Chebychev interpolation

node, where

xj = cos

(
π
(
j + 1

2

)
n

)
, j = 0, . . . , n− 1.

Chebychev interpolation nodes are speci�ed on the [−1, 1] interval, but any �nite

domain [a, b] can be mapped into [−1, 1] by x̃ = 2x−a
b−a − 1; hence, we shall ignore

this point throughout this paper. B is the basis matrix where elements Bi,j

is the ith Chebychev polynomial evaluated at the jth Chebychev interpolation

node. Chebychev polynomials are speci�ed in trigonometric form as Ti (x) =

cos (i× arccos (x)) or by the equivalent recursion

T0 (x) = 1

T1 (x) = x

. . .

Ti (x) = 2xTi−1 (x)− Ti−2 (x) .
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De�ne TC as the lower-triangular matrix of Chebychev polynomial coe�cients,

in which all elements are zero except

TC0,0 = 1

TC1,1 = 1

TCi,j = −TCi−2,j, i > 1, j = 0

TCi,j = 2TCi−1,j−1 − TCi−2,j, i > 1, j > 0

for increasing i, j. Then we can write the Chebychev polynomials as T = TC×−→x ,

where the vector−→x has element−→x i = xi for i = 0, . . . , n−1. Given the coe�cient

vector c, the approximate value of f (x) for x ∈ [a, b] may be found by evaluating

the �rst n Chebychev polynomials at x and then evaluating f (x) ≈ c′ × T (x)

or equivalently by forming −→x and then evaluating f (x) ≈ c′ × TC ×−→x .

5.6.3 The Expected Value of f (x)

Suppose that x is stochastic. For most of this paper, we will assume that x

has the truncated normally distribution N (µ, σ) over the domain [a, b], but the

contents of this section apply to any distribution for which the �rst n−1 moments

exist. Then the expected value of f (x) can be estimated as

b∫
a

φ̃ (x) f (x) ∂x ≈
b∫

a

φ̃ (x) [c′ × T (x)] ∂x (5.4)

=

b∫
−∞

φ (x) [c′ × T (x)] ∂x−
a∫

−∞
φ (x) [c′ × T (x)] ∂x

Φ (b)− Φ (a)
.

Recall that T is a vector of polynomials. Hence, if closed-form solutions

exist for the inde�nite integrals of moments 0 through n− 1, then we easily can
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compute the numerator of Equation 5.4. Closed-form solutions do not exist for

the normal distribution. Nevertheless, we will ignore the problem in this section.

In the following section, we will describe ways to mitigate the problem.

Let us start with the second integral in the numerator of Equation 5.4; eval-

uation of the �rst is done in exactly the same manner. We can write the integral

as

a∫
−∞

φ (x) [c′ × T (x)] ∂x =

a∫
−∞

φ (x) [c′0 × T0 (x)] ∂x+

a∫
−∞

φ (x) [c′1 × T1 (x)] ∂x+

. . .+

a∫
−∞

φ (x)
[
c′n−1 × Tn−1 (x)

]
∂x

for an nth-order Chebychev approximation of f (x). For n = 5, the approximate

integral is

a∫
−∞

φ (x) [c′ × T (x)] ∂x = c0

a∫
−∞

φ (x) [1] ∂x+ c1

a∫
−∞

φ (x) [x] ∂x+ c2

a∫
−∞

φ (x)
[
2x2 − 1

]
∂x

+ c3

a∫
−∞

φ (x)
[
4x3 − 3x

]
∂x+ c4

a∫
−∞

φ (x)
[
8x4 − 8x2 + 1

]
∂x

= [c0 − c2 + c4]

a∫
−∞

φ (x) ∂x+ [c1 − 3c3]

a∫
−∞

φ (x)x∂x

+ [2c2 − 8c4]

a∫
−∞

φ (x)x2∂x+ 4c3

a∫
−∞

φ (x)x3∂x+ 8c4

a∫
−∞

φ (x)x4∂x

De�ne ∆Φ as the n× 1 vector with elements

∆Φj =

b∫
a

xjφ (x) ∂x, j = 0, . . . , n− 1

Again, let TC be the lower-triangular matrix of Chebychev polynomial coef-
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�cients and let vector −→x have elements −→x i = xi. Then

b∫
−∞

φ (x)
[
c′ × TC ×−→x

]
∂x−

a∫
−∞

φ (x)
[
c′ × TC ×−→x

]
∂x (5.5)

= c′ × TC ×
b∫

a

φ (x)−→x ∂x = c′ × TC ×∆Φ.

If we employ this result in the numerator of Equation 5.4, then we see that

the expected value of f (x) over [a, b] is a linear combination of the Chebychev

coe�cients that de�ne the approximation of f (x). The weights in this linear

combination in turn are linear combinations of moment integrals of x over domain

[a, b], where weights in the latter combination are coe�cients of the Chebychev

polynomials. We can write the approximate integral as

b∫
a

φ̃ (x) f (x) ∂x ≈ c′ ×W , (5.6)

where vector W = TC×∆Φ
∆Φ0

.

5.6.4 E�cient Computation of Moment Integrals

If the inde�nite integrals exist for the moments of x, then calculation of W in

Equation 5.6 is straightforward, and thus estimation of E [f (x)] also is straight-

forward. We develop here a method for e�ciently computing Equation 5.6 for

the normal distribution, which has no closed-form inde�nite moment integrals.

The problem is to �nd an e�cient means of computing ∆Φ =
∫ b
a
φ (x)−→x ∂x,

where φ is the normal density function.

Note that if x ∼ N (µ, σ2), then z ≡ x−µ
σ
∼ N (0, 1) has the standard normal

distribution. Let φSTD denote the standard normal PDF. Let ∆ΦSTD denote the
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vector of moments integrals of z, where

∆ΦSTD
j =

b−µ
σ∫

a−µ
σ

zjφSTD (z) ∂z, j = 0, . . . , n− 1.

Our objective is to �nd a relationship between ∆ΦSTD and ∆Φ. We begin by

examining the �rst several moment integrals of x and z. The CDF of the two

are related:

y∫
−∞

φ (x) ∂x =

y∫
−∞

φSTD
(
x− µ

σ

)
∂x =

y−µ
σ∫

−∞

φSTD (z) ∂z.

According to the Fundamental Theorem of Calculus, the di�erence of two such

equations yields

∆Φ0 =

b∫
a

φ (x) ∂x =

b−µ
σ∫

a−µ
σ

φSTD (z) ∂z = ∆ΦSTD
0 .

A similar relationship exists for the �rst moment integrals:

y∫
−∞

φ (x)x∂x = σ

y∫
−∞

φSTD
(
x− µ

σ

)(
x− µ

σ

)
∂x+ µ

y∫
−∞

φSTD
(
x− µ

σ

)
∂x

= σ

y−µ
σ∫

−∞

φSTD (z) z∂z + µ

y−µ
σ∫

−∞

φSTD (z) ∂z.

Again, the di�erence of two such equations yields

∆Φ1 =

b∫
a

φ (x)x∂x = σ

b−µ
σ∫

a−µ
σ

φSTD (z) z∂z+µ

b−µ
σ∫

a−µ
σ

φSTD (z) ∂z = σ∆ΦSTD
1 +µ∆ΦSTD

0 .
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In similar fashion,the relationship for the second moment integrals can be found:

∆Φ2 =

b∫
a

φ (x)x2∂x = σ2

b∫
a

φSTD
(
x− µ

σ

)(
x− µ

σ

)2

∂x

+ 2µ

b∫
a

φSTD
(
x− µ

σ

)
x∂x− µ2

b∫
a

φSTD
(
x− µ

σ

)
∂x

= σ2

b−µ
σ∫

a−µ
σ

φSTD (z) z2∂z + 2µ

b∫
a

φSTD
(
x− µ

σ

)
x∂x− µ2

b−µ
σ∫

a−µ
σ

φSTD (z) ∂z

= σ2∆ΦSTD
2 + 2µ∆Φ1 − µ2∆ΦSTD

0

= σ2∆ΦSTD
2 + 2µ

[
σ∆ΦSTD

1 + µ∆ΦSTD
0

]
− µ2∆ΦSTD

0

= σ2∆ΦSTD
2 + 2σµ∆ΦSTD

1 + µ2∆ΦSTD
0 .

A pattern already has become evident that will allow us easily to relate ∆Φ

to ∆ΦSTD. The relationship can be written as

∆Φj =

j∑
k=0

j!

(j − k)!k!
σj−kµk∆ΦSTD

j−k .

De�ne matrix L as the lower triangular matrix with rows identical to the rows

of Pascal's triangle. De�ne the lower triangular matrices Σ and M as

Σ =



σ0 0 0 . . .

σ0 σ1 0

σ0 σ1 σ2

. . . . . .


, M =



µ0 0 0 . . .

µ1 µ0 0

µ2 µ1 µ0

. . . . . .


,

and de�ne ~ as the operator that multiplies two r× s matrices such that Ai,j =

Bi,j × Ci,j. Then

∆Φ = [L~ Σ ~M ]×∆ΦSTD.
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Again, closed-form solutions do not exist for ∆ΦSTD. Suppose we formed a

Chebychev approximation∫
φ (z) zi∂z ≈

[
CSTD
i

]′ × TC ×−→z ,i = 0, . . . , n− 1

where TC again is the lower triangular matrix of Chebychev polynomial coe�-

cients, where CSTD
i are the approximation coe�cients for the ith moment integral

of z, and where element j of vector −→z is zj for j = 0, . . . , n− 1. If the column i

of matrix CSTD is CSTD
i , then∫

φ (z)−→z ∂z ≈
[
CSTD

]′ × TC ×−→z .

Recall that ∆ΦSTD is the di�erence of two integrals that di�er only in their

upper limit of integration. Then for vector ∆−→z with elements ∆−→z i =
(
b−µ
σ

)i −(
a−µ
σ

)i
, i = 0, . . . , N − 1,

∆ΦSTD ≈
[
CSTD

]′ × TC ×∆−→z .

The order of approximation N for ∆ΦSTD need not be the same as n, the

order of approximation for f (x). In the equation above, ∆ΦSTD is n× 1, TC is

N ×N , CSTD is N × n, and −→z is N × 1.

Finally, we have the approximation of ∆Φ

∆Φ ≈ [L~ Σ ~M ]×
[
CSTD

]′ × TC ×∆−→z .

Given an approximation domain [a, b] that coincides with the limits of inte-

gration for E [f (x)], and given the orders of interpolation n for f (x) and N for

the moment integrals of the standard normal variable z, then we have a simple

approximation for ∆Φ in which only elements Σ, M , and ∆−→z may vary. In

fact, Σ changes only if σ changes, M changes only with changes in µ, and ∆−→z
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changes with both σ and µ. If we de�ne matrix Z =
[
CSTD

]′ × TC , then the

above equation can be written simply as

∆Φ ≈ [L~ Σ ~M ]× Z ×∆−→z . (5.7)

5.6.5 Estimation of E [f (x)] for x ∼ N (µ, σ)

We �nally have the tools required to e�ciently estimateE [f (x)] for x ∼ N (µ, σ2).

Combine Equations 5.4, 5.5 and 5.7 as follows:

b∫
a

φ̃ (x) f (x) ∂x ≈ c′ × TC × [L~ Σ ~M ]× Z ×∆−→z
Φ (b)− Φ (a)

.

Recall that Φ (x) = ΦSTD
(
x−µ
σ

)
. Note that the denominator is Φ (b) − Φ (a) =

ΦSTD
(
b−µ
σ

)
−ΦSTD

(
a−µ
σ

)
= ∆ΦSTD

0 ≈
[
CSTD

0

]′×TC ×∆−→z . If Z0,• denotes the

�rst row of Z, then we have �nally

b∫
a

φ̃ (x) f (x) ∂x ≈ c′ × TC × [L~ Σ ~M ]× Z ×∆−→z
Z0,• ×∆−→z

. (5.8)

Let vector W represent the fraction in Equation 5.8. Note that for a given

domain [a, b], given orders of interpolation n and N , and given distribution

parameters µ and σ, W is speci�ed completely, so that it does not depend at all

on f (x). Given W , then, calculation of E [f (x)] requires only the inner product

of Chebychev approximation coe�cients c and W . If function approximations

for f (x) and g (x) di�er only in their coe�cient vectors, then W is identical for

both. Given W , evaluation of the expectations requires simply the computation

of two inner products. For �nite sets of values {µ} and {σ}, we can compute a

corresponding �nite set of vectors {W}. Given {W}, expectations of the set of

function {f} can be calculated easily given that E [x] ∈ {µ} and +
√
V ar (x) ∈

{σ}, where the domain of f is [a, b] for all f ∈ {f}.
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5.6.6 A Dynamic Programming Application

Suppose that we are simulating the operation of a �rm using dynamic program-

ming techniques. Each period, the operator of the �rm sees the state of his �rm

and then optimally chooses an action a from the set of possible actions A. We

believe that a will be chosen to maximize the expected present discounted value

of the �rm. Besides the action a, suppose the only relevant condition in�uencing

the value of the �rm is the product price; we denote the logarithm of the price as

p. Suppose that p is independent of the �rm's operations, and that the dynamics

of p are summarized adequately as

pt+1 = βpt + σεt+1,

where ε ∼ N (0, 1). If a (p) ∈ A are the optimally chosen actions, then the value

of the �rm is de�ned as

V (pt) = πt (a (pt)) +
1

1 + r
EVt+1 (pt+1) , (5.9)

where r is the interest rate and π represents pro�ts in the current period given

at.

Suppose a closed-form representation of V does not exist. Then we might

�nd an approximation Vt (p) ≈ c′t×TC×−→p , where −→p i = pi for all p ∈ [a, b]. The

di�culty in evaluation of Equation 5.9 is the computation of EV . Fortunately,

we can use the methodology developed above to assist us. We will proceed by

relating each part of EV to corresponding parts of earlier equations.

First, we assume that the relevant domain of prices is
[
ea, eb

]
. We choose or-

ders of approximation n for our function approximation andN for approximation

of the standard normal moment integrals.
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Second, let pt be a �nite set of points spanning the interval [a, b]. The normal

vector pt+1 has elements corresponding to variable x in preceding sections. For

given autoregression parameters β and σ, pt+1 has mean βpt and variance σ
2×in,

where in is an n× 1 vector of ones. From these sets of distribution parameters,

a set of vectors {W} can be constructed according to Equation 5.8.

Third, we begin to solve the model by recursively evaluating Equation 5.9.

For �nal period τ , EVτ+1 = 0. Hence, Vτ = πτ . Given πτ , for which a is

chosen optimally, we can �nd approximation coe�cients cτ such that Vτ (pj) =

πτ (a (pj)) ≈ c′τ × TC ×−→pj , where [−→pj ]i = (pj)
i and where pj is the j

th element of

pτ . Next, we proceed to period τ − 1. This time, EV is not zero, assuming πτ

is not zero. EVτ is de�ned as

b∫
a

φ̃ (pτ |pτ−1)V (pτ ) ∂p =

b∫
a

φSTD
(
pτ−βpτ−1

σ

)
ΦSTD

(
b−βpτ−1

σ

)
− ΦSTD

(
a−βpτ−1

σ

)V (pτ ) ∂p.

If we replace the function V with its approximations, then we have

b∫
a

φ̃ (pτ |pτ−1,i)V (pτ ) ∂p ≈ c′τ×TC×
b∫

a

φSTD
(
pτ−βpτ−1

σ

)
×−→pi

ΦSTD
(
b−βpτ−1

σ

)
− ΦSTD

(
a−βpτ−1

σ

)∂p, i = 1, . . . , n.

This equation has the same form as Equation 5.4. Given calculation of {W} in

the second step, we can calculate this integral for element i of vector EVτ as

c′τ ×W {i}.

5.6.7 Evaluation

This section summarizes tests of the methodology using known functions. Ap-

proximations of known functions are made. The integrals of these function ap-

proximations, weighted by the truncated normal density function, are computed
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according to the methodology developed above. The integrals are computed us-

ing Simpson's method, which performs function interpolation of the probability-

weighted function using quadratic splines.11 Calculations are performed repeat-

edly with constant variances but allowing the mean to vary. The integrals com-

puted with the new method are compared to estimates computed with Simpson's

method.

The order of approximation for the moments of the normal distribution is 50,

and we form an approximation of the normal distribution over seven standard

deviations. The order of approximation for the function f (x) is 10. The domain

for the function, which corresponds to the non-zero interval for the truncated

normal distribution, is [0, 100]. We calculate the integrals repeatedly while al-

lowing the mean of the normal distribution to vary across the same interval.

The standard deviation is 10. The number of quadrature points for Simpson's

method is 500,001.

The approximate integrals are displayed below, along with the relative errors.

Note that the errors are relative to the results using Simpson's method, which

itself contains approximation errors. The function employed in Figure 5.7 is

f (x) = x, and the function employed in Figure 5.8 is f (x) = x2.

Note that these polynomial functions can be approximated very well using

Chebychev techniques. Chebychev approximation is less precise for functions

such as f (x) =
√
x. Hence, integration of the weighted approximation of f (x)

also is less precise. Figure 5.9 displays results.

It likely is possible to alter the spacing of the interpolation nodes to improve

11Simpson's method was chosen for ease of implementation. Other methods may be substi-

tuted without much di�culty, and they may provide a better baseline for comparison.
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Figure 5.7: Expected Values of a Linear Function
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Figure 5.8: Expected Values of a Quadratic Function
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Figure 5.9: Expected Values of a Square Root Function
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the �t of the function approximations. Typically, performance of interpola-

tion techniques improves by increasing the density of nodes in areas where the

function exhibits greatest curvature. In the case of the square root function,

approximation error likely would decrease by putting relatively more nodes near

zero, and relatively less in the upper end of the domain.

A number of generalizations of these method are possible. They include

adoption of distributions other than the normal distribution, and approxima-

tion methods other than Chebychev. Especially useful would be to extend the

technique to multiple dimensions.
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Chapter 6

Conclusion for Part 1

At the beginning of this section, we posed several questions. Should operators

of nuclear power plants continue to run their plants given the current economic

circumstances and regulatory policies? Should regulators adopt a conciliatory

stance to feed the economic desires of producers and consumers, or should they

enforce hard-line standards to lessen the risks of nuclear accidents? What are

the e�ects of liability limits on the decisions of plant operators, and what is the

economic bene�t to plant owners?

The preceding four chapters shed some light on these questions, and they

provide a framework in which to analyze other questions related to liability

limits and nuclear power. Our models in Chapter 2 illustrated basic economic

principles that suggest plant operators will have greater incentive to produce

when demand and prices are high, and when regulatory costs are low. We didn't

fully answer the question regarding whether plants should be allowed to operate.

We did, however, demonstrate the tradeo�s between economic well-being and

safety, where increasing wealth and consumption requires acceptance of risk. We

saw that liability limits indeed a�ect the pro�tability of power plant operations,
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by making them more inclined to produce and less inclined to invest, and thus

liability limits a�ect the optimal decisions of plant operators. The e�ects on

decisions aren't necessarily bad from the perspective of consumers who place

high value on consumption relative to expected losses from an accident. Such

consumers would prefer limited liability, if it is required to maintain pro�tability

for �rms, in order to obtain consumption goods. We saw that in some cases,

it may be optimal to increase pro�ts by imposing liability limits, but to force

�rms to spend the funds on safety enhancements. We extended the concept of

what constitutes implicit subsidies and we derived theoretical support for their

de�nition, but we showed that existing perceptions of implicit subsidies may

exaggerate their true levels.

In Chapter 3, we reviewed the attempts of others to de�ne and measure im-

plicit subsidies. We reveal and correct several errors in published calculations.

We further show that the class of models currently employed are inconsistent

with the stated facts. In particular, existing models imply that insurers be-

lieve that claims will be �led frequently. According to the stated facts, claims

should be �led only after serious accidents. In the following exercise, we take

the facts seriously and o�er several alternative models that eliminate this trou-

bling implication. The results suggest that implicit subsidies may be far lower

than reported. On the other hand, we show evidence that the stated facts might

be misleading, and we provide data that should be incorporated to extend our

understanding of Price-Anderson and its e�ects of the industry.

In Chapter 4, we extend the static model of Chapter 2 to a multiperiod frame-

work. We found some reason to fear that too little incentive is given to �rms

posing the greatest threat to invest in safety measures. This problem comes
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through the liability sharing clause of the Price-Anderson Act. On the other

hand, regulators already may have addressed the problem by adopting policies

and instruments capable of forcing those �rms to invest more. Also, our distri-

bution of potential harm is rather arti�cial, and all plants pose risk of great harm

to the public, and so perhaps regulators simply impose strong safety standards

for all plants. We again apply our model in the study of implicit subsidies. The

dynamic framework allows us to calculate the expected present value of current

and future subsidies, taking into account the endogenous investment problem

and its e�ect on risk. This e�ort is unique, and should guide future e�orts to

quantify the value of liability limits to the industry.

In Chapter 5, we extend the dynamic model developed in Chapter 4 by

adding a number of industry details. In particular, we add many details to

describe nuclear power plant operations, and we de�ne the insurance industry

and other means of dealing with liability established under Price-Anderson. We

calibrate and employ the model to simulate the e�ects on the industry of two

historical events. First, we simulate the sharp drop in electricity prices that

was observed in 1985. Second, we simulate the extensions of 40-year operating

licenses to 60 years that became available in the late 1990s. The model produces

satisfactory qualitative results. In the �rst case, results suggest that existing

�rm models should be extended to incorporate electricity price growth. The

second case provides qualitative and quantitative support for earlier �ndings

that license extensions add greatly to the value of �rms. Finally, we develop a

means to speed computation in numerical dynamic programming models. The

method was employed in our work to speed calculations and to simplify code.

We have presented a picture of the nuclear power industry and its regulation.
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Our analysis remains rather abstract, so that in many cases the details corre-

spond only vaguely to the actual economic agents and the environment in which

they operate. In the next section we will present a closer look at the real world

by constructing and reviewing industry data. We then will provide a detailed

look at a key agent of our earlier models, the nuclear power plant operator.
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Part II

U.S. Nuclear Power Plant

Operators
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Chapter 7

Introduction to Part II

How has the nuclear industry fared in the past 15 years? Have the factors that

contributed to the struggles of the 1970s and 1980s been mitigated? Have nuclear

power plant operators learned from earlier experiences?

In the �rst section, we looked at the overall nuclear power industry and

sought greater understanding of it by building a series of increasingly detailed

models of its primary features. In this section, we take a look at the history

of the industry by reviewing �rst data on the aggregate and regional electricity

markets and then cost and operating data for individual sites and plants. We

then turn from simple observation of the markets and operator behavior to a

model of operators in an attempt to explain their behavior and to decipher the

nature of their decisionmaking.

In Chapter 8, we review aggregate and regional electricity prices. We see

that relative prices climbed rapidly from about 1973 to the mid1980s. At that

point, relative prices began a slow decline, marked by dramatically increased

seasonal volatility. Structural stability tests con�rm graphical evidence of sig-

ni�cant changes in the price structure. Surely these changes a�ect signi�cantly
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the pro�tability of power plants and have corresponding e�ects on decisions of

operators. We attempt to con�rm these e�ects in our model of power plant

operators. Among various e�ects of these price changes that we might expect

to see re�ected in operator behavior, we list two. First, the increase in seasonal

volatility should increase the incentive to refuel, repair, and inspect plants when

demand is lowest. Thus, we expect operators to exhibit an increased tendency

to refuel in the spring and fall, and to limit down time so that they are back in

service when high price levels resume. Second, we expect the reduction in price

growth to force stricter adherence to optimal policies and cost minimization.

Other authors observed this increase in operator discipline and explained it as

a reaction to heightened regulatory standards and enforcement. Our arguments

do not negate their claims but simply o�er alternative explanations to present a

fuller picture of the industry.

In Chapter 9, we turn attention �rst to operating data. These data describe

conditions and events at individual nuclear power plants. We have a large data

set, covering nearly every commercial American plant over the past 30 years. The

story told by these data is dramatic. We see that the industry that struggled

terribly two decades ago improved greatly. Apparently, optimal methods were

learned and now are applied rigorously, aided by regulatory reforms. Average

operating spells are longer, refueling spells are shorter, and temporary shutdowns

appear less frequently. Great improvements in e�ciency and output would seem

to indicate that pro�tability should have improved.

We next turn to �nancial data in an attempt to verify these impressions.

Writers a decade ago reported what they believed to be the beginning of new

trends. Runaway cost growth in the 1980s seemed to be slowing. We extend
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the data by seven years, and it con�rms their suspicions. Operating and main-

tenance, fuel, and capital additions costs have ceased their upward climb in real

terms, and in fact unit costs seem to be falling.

Improvements on the cost side matter little if revenues weakened still more.

We �nd evidence that real electricity prices have been falling. Have improve-

ments in productivity been su�cient to keep income at healthy levels? Un-

fortunately, we lack revenue data, for while operators are required to report

costs, revenue information remains proprietary. Our attempts to construct rev-

enue data are crude, yet they tell a plausible tale. It seems that revenues have

climbed steadily, even as costs have fallen. Corresponding attempts to construct

pro�t information indicate that following ten years of losses in the 1980s and

early 1990s pro�ts are positive and rising.

Finally, in Chapter 10 we construct a model of power plant operators. The

model employs our set of monthly plant-level operating data and our monthly

price data. We attempt to capture basic properties of the fuel cycle and similar

information that determine the evolution and conditions of the plant. Given

this set of information, operators choose actions to maximize the present value

of pro�ts. While our model is similar to earlier e�orts, we o�er several important

extensions. First, we include price data to capture the e�ects on operator be-

havior of price growth. Second, we incorporate the possibility of severe accidents

and the liability faced by operators. In addition, our extended data set allows

us to understand better the nature of power plant operations in the post Three

Mile Island industry. We apply the model primarily in two ways. First, we test

the model for structural stability, given the structural shift in electricity prices.

Other authors found similar models unstable, but they assumed no electricity
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price growth. Our model suggests that the changes in behavior observed by

others resulted signi�cantly from weakening demand and other changes in elec-

tricity prices. Our second application measures the bene�t to �rms of possible

license extensions from 40 to 60 years. The U.S. Nuclear Regulatory Agency be-

gan accepting applications for these extensions in the late 1990s, and a number

of plants so far have received them. We �nd that plants should be willing to

invest signi�cantly in upgrades in order to obtain extensions, for the extensions

improve signi�cantly the value of the �rms. We also o�er historical simulations

and forecasts under various assumptions for a plant of particular interest, the

Three Mile Island nuclear power plant.

Chapter 11 concludes the dissertation.
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Chapter 8

Price and Demand Data

In the following work, we analyze the U.S. electricity markets over the past 45

years. We begin by examining aggregate electricity prices, both at monthly and

annual frequencies. We build univariate models of electricity prices and test them

for stability. We then review and model monthly regional electricity price levels.

Finally, we examine trends in annual aggregate electricity demand. In both the

price and demand data, we �nd evidence of signi�cant market instability in the

1970s and 1980s.

The analysis is intended to support structural economic modeling applica-

tions that employ the data reviewed here. We thus are interested in whether

the structural models of prices are adequate and su�ciently �exible to represent

the data. In general, we �nd that apart from occasional structural shifts, simple

models are su�cient to provide reasonable �rst-order representations of the data.
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8.1 Price Data

8.1.1 U.S. Electricity Prices

This section analyzes the properties of aggregate U.S. producer prices for elec-

tricity. We develop simple models and test for structural stability of electricity

prices. The employed aggregate data is the Producer Price Index for industrial

electricity rates. It is monthly from January, 1958 to June, 2004; is not season-

ally adjusted; and was obtained from the Bureau of Labor Statistics [59]. First,

unit root tests are performed to determine necessary transformations. Second, a

simple ARMAX model is estimated and tested for structural stability. We then

examine regional industrial electricity prices and test the adequacy of a very

simple model that will be suitable for use in a dynamic programming model.

Analysis

Industrial electricity prices were very stable throughout the late 1950s and the

1960s. This may be seen in the monthly growth rates displayed in Figure 8.1.1

They became more volatile and grew fairly rapidly through the 1970s. Growth

especially was high in 1974 and 1979�80.2 Nominal prices generally continued to

climb since then, but the trend slowed abruptly in the mid1980s. As the trend

shifted, prices developed a pronounced seasonal pattern. Davis, et al point out

that the falling relative prices were not a new trend but the resumption of the

1See Davis, et al [14], Section 2, for additional details and references on the history of

electricity prices.

2Davis, et al [14] list several reasons for the rapid price increases. They include techno-

logical problems, economic instability that made planning di�cult, high fossil fuel costs, and

heightened environmental and safety regulations.
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Figure 8.1: Producer Price Index

historical norm. They list a series of regulatory reforms passed in the late 1970s

that took e�ect over the following years as part of the reason for such changes.

Descriptive statistics for nominal industrial electricity prices are presented

in Table 8.1. Note that the statistics are for monthly growth rates; the rates

have not been annualized. We see that prices grew slowly in the late 1950s

through early 1970s, at about 0.1% per month, and that volatility was quite

low. Between 1973 and 1985, the average growth rate increased by a factor of 9,

and volatility also increased substantially. Between 1986 and 2004, growth rates

fell to slightly below the average rate in the 1960s. However, volatility increased

well beyond that seen in the 1970s. This time the nature of the volatility was
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quite di�erent. As may be seen in Figure 8.1 and as we will see later in regression

estimates, recent volatility primarily is in the form of seasonal cycles. This stands

in contrast to earlier periods in which seasonal �uctuations were dominated by

persistent changes. Table 8.1 also displays statistics for the entire sample period

and for the period following the energy crisis of 1973. The wide swings in average

growth rates seems to suggest that there may have been a structural shift in the

mid1980s, and perhaps another in 1973. This possibility will be tested in the

following sections.

Table 8.1: Descriptive Statistics for Aggregate Electricity Prices

PPI Growth Rates Mean Standard Error Observations

1959:1�1972:12 0.146% 0.0051 168

1973:1�1985:12 0.927% 0.0127 156

1986:1�2004:6 0.126% 0.0210 222

1959:1�2004:6 0.361% 0.0157 546

1973:1�2004:6 0.457% 0.0185 378

Unit Root Testing

Augmented Dickey-Fuller unit root tests, with lag lengths selected by BIC, were

used to test whether the data, in growth rates, were suitable for use in estimating

an ARIMA model. Results may be seen in Table 8.2, where (**) indicates

rejection of the unit root null hypothesis at the 1% signi�cance level for all sample

periods. These results should be viewed with scepticism given the apparently

contradictory graphical evidence noted above. Note that the BIC statistic, which

is known to be overly parsimonious in small samples, indicates inclusion of only
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Table 8.2: Unit Root Tests: Industrial Electricity Prices

1959:1�1985:12 1986:1�2004:6 1959:1�2004:6

Lag Length 1 15 15

t-Test -7.6078 ** -3.5423** -3.6351**

z-Test -117.1824** -188.1705** -42.8321**

one lag is optimal in the �rst sample; the AIC statistic indicates that 14 lags

should be employed, which perhaps is more reasonable. Because rigorous analysis

of the price series is not necessary for the present work, we will accept the results

and proceed with estimation of an ARMAX model.

ARMAX Models

Graphical analysis of autocorrelations and partial autocorrelations support the

impressions given by the unit root tests, namely that we must proceed cautiously

with the assumption that the growth rates of prices are stationary. Other tests

that are not reported here suggest that seasonal di�erencing may be appropriate.

To maintain the simplest possible models, we avoid seasonal di�erencing and

instead employ seasonal dummy variables. The following model,3 with one AR

and one moving average term in addition to seasonal dummy variables, seems to

�t the data fairly well, although certain quali�cations are necessary:

(1− L)D yt = α+
(ω0 + ω1L+ · · ·+ ωnL

n)

(1− δ1L− · · · s− δmLm)
Xt+

(1 + θ1L+ · · ·+ θqL
q)

(1− φ1L− · · · − φpLp)
ut (8.1)

3The following equation and table summarize similar text found in the RATS Reference

Manual [20].
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where:

yt is the dependent variable

ut is the series of residuals

q is the number of MA coe�cients

θq is the MA coe�cient at lag q

p is the number of AR coe�cients

φp is the AR coe�cient at lag p

α is a constant

D is the number of di�erences

Xt are exogenous variables

n is the number of lags for X

ωn is the coe�cient on X at lag n

m is the number of denominator lags for X

δm is the denominator coe�cient at lag m.

In this analysis, yt is the logarithm of the electricity producer price index,

the number of di�erences D is one, and the number of moving average terms (q)

and autoregressive terms (p) both are one. The exogenous variable vector X is

composed of monthly dummy variables; the number of lags (n) and denominator

lags (m) both are zero. Results for the model are presented in Table 8.3 for

two sub-periods and the entire data range. An ARIMA (1,1,1) with monthly

dummy variables was selected as a compromise between the three sample periods.

The model seems to �t the data fairly well in the sample period from January,

1986 to June, 2004. The R2 value is high and the Ljung-Box statistic indicates

that the residuals are white noise.4 The model �ts the data considerably less

4Greene [21] notes that some econometricians claim that the Ljung-Box statistic is not

appropriate for models with lagged dependent variables. Nevertheless, it supports the results
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well for the �rst sample period and for the entire sample. The apparent serial

correlation remaining in the residuals is disturbing. Other aspects of the results,

however, are plausible. Note, in particular, that the dummy variable parameters

are large and signi�cant in the later sample period; this is expected given the

obvious qualities of the data evident in the graphs. The dummy variables seem

to contribute little in the early sample period, in which little seasonal variation

is evident.

Because this is not a formal analysis of electricity prices, we will proceed with

the present model despite concerns about its adequacy. A standard Chow test

for structural stability yields the value F(3,518)= 167.05, which is signi�cant at

the 1% level. Though our conclusions must be quali�ed, these results support

the strong graphical evidence that a structural shift occurred in electricity prices

sometime in the mid1980s. At this point, we will forgo attempts to pin down a

precise date for the shift.

This result will be employed in the review of previous models of electricity

markets and in the design of new models. Clearly, any such model needs to

account for market instability. Dynamic programming models su�er the curse

of dimensionality, such that the addition of variables adds greatly to the compu-

tational burden. Incorporation of price variables into a dynamic programming

model thus requires a very simple forecasting equation with few stochastic terms

on the right-hand side. Simplicity is su�ciently critical that we must accept

certain short-comings that ordinarily would be troubling. We thus develop an

AR1 model of the logarithm of electricity prices with monthly dummies. The

single stochastic explanatory term satis�es our demand for simplicity. The work

of graphical analysis of the residuals using correlograms.
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presented here simply suggests the adequacy of such a model. The results are

displayed in Table 8.4. The data and predicted values are plotted in Figure 8.2.

The models appear, at �rst glance, to �t the data quite well. Closer examination

reveals persistence in the error terms. Still, given the limitations of estimating

dynamic programming models, it appears worthwhile to pursue an AR1 model

in log-levels. We will explore the matter further with panel data in the following

section.

8.1.2 Regional Electricity Prices

Regional industrial electricity price indexes are displayed in Figures 8.3 through

8.5, together with the aggregate U.S. electricity PPI. The data were obtained

from the BLS [59] and are shown in growth rates. While certainly there are

regional di�erences, a few basic features are evident across regions and in the

aggregate data. First, the fairly steep upward trend that persisted throughout

the 1970s and early 1980s slowed abruptly. Nominal prices have grown slowly

since then. Second, at about the same time that the structural shift occurred,

prices gained a prominent seasonal pattern in at least most regions.

A simple AR1 model was estimated with the regional price data in logarithms

for two periods: January, 1973 to December, 1985 and January, 1986 to Decem-

ber, 2003. No allowance was made for regional di�erences. The validity of this

assumption was tested. Regression results are displayed in Table 8.5. Analysis

of variance results for the residuals in the �rst and second sample periods are

summarized in Table 8.6.

Once again, caution is in order because of doubts about the speci�cation of

these models. With caution in mind, these results indicate that there are no
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Figure 8.2: Aggregate Price Estimation
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Figure 8.3: Regional Electricity Prices
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Figure 8.4: Regional Electricity Prices
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Figure 8.5: Regional Electricity Prices
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signi�cant �rst-order di�erences across regions evident in the regression resid-

uals. The result holds for both sample periods. The result is important if the

regression equation is to be incorporated into a dynamic programming model,

for it means that we do not need to add state variables to account for regional

distinctions. A check of second-order characteristics of the residuals indicates

that we should not be too comfortable with the model:

χ2

1973:1�1985:12 667.267**

1986:1�2003:12 747.257**

The chi-square test for equal variances indicates that there are signi�cant

di�erences in variance among the residuals. We might suspect other second-

order problems as well. In particular, signi�cant serial correlation likely persists,

as was evident in the graphical results for aggregate data.

8.2 Electricity Demand

We do not conduct extensive analysis of electricity demand. We do, however,

brie�y consider changes in the demand structure to gain a better understanding

of the industry. First, we examine data plots for total electricity output, real

Gross Domestic Product, and annual aggregate electricity prices relative to the

GDP de�ator. Summary statistics also are reported. Next, we estimate a rel-

atively simple model of electricity demand. The structural demand equation is

borrowed from Nelson and Peck [39]. Finally, we examine the regression results
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for signs of market instability.

Figure 8.6 displays annual growth rates for electricity production and real

GDP from 1949 to 2004. The graph shows that electricity output growth ex-

ceeded real GDP growth from 1949 to 1972. After 1973, output and real GDP

grew at similar rates, with lower average electricity demand growth. In both

periods, real GDP and output are highly correlated. Figure 8.7 displays growth

rates of relative prices, measured both as the overall annual electricity price

average (from EIA [19]) and as the annualized industrial electricity PPI (from

BLS [59]). Except for a period of high relative price growth in the 1970s and

early 1980s, relative electricity prices generally have been falling slightly since

1959.

The statistics reported in Table 8.8 con�rm that output growth exceeded

GDP growth before 1973 by about 3 percent per year. In 1973, output growth

fell from an average of 7 percent to 2.6 percent, while real GDP growth fell

from 4.2 percent to 3 percent. Relative price growth also increased dramatically,

from 1.6 percent to 11 percent per year. After 1985, energy markets became

considerably more stable. Electricity output growth remained largely unchanged

at 2.5 percent. Real GDP growth recovered somewhat to an average of 3.0

percent per year. Electricity price growth rates fell to about their earlier average

of 1.4 percent. Statistics also are displayed for two longer periods.

While it is di�cult to determine precise times for slowing of electricity prices

and of demand in the mid1980s, it appears that output slowed before or at about

the same time that price growth fell. Because prices were heavily regulated

until recently, perhaps the possible lag between weakening demand and price

reductions was due to sluggish response by price regulators. The high fossil
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Figure 8.6: Output and Real GDP Growth
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Figure 8.7: Relative Electricity Prices
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fuel prices of the 1970s were beginning to moderate by the mid1980s, so that

production costs dropped accordingly. Ellis and Zimmerman [18] note that many

baseload power plants that were under construction, both coal and nuclear, were

cancelled as supply exceeded demand requirements. As surplus capacity grew

to high levels, the excess capacity perhaps gave regulators su�cient ability to

e�ectively reign in price growth in the 1980s. Davis, et al [14] provide historical

details of electricity prices.

We estimate the relationship between output, prices, and GDP using the

model of Nelson and Peck [39]. We test this model for structural stability. We

do not use formal methods to determine the date of possible structural changes.

Instead, we simply adopt the 1985�1986 date employed in the tests for price

stability. The test equation is

qt = β0 + (β1/ (1− β2L)) pt + β3xt + ut

where

ut = γut−1 + et,

and where q is electricity output, p is the relative price of electricity, and where x

is real GDP. Estimation is performed using growth rates of each variable. Results

are shown in Table 8.9.

The model seems to �t the data very well in the �rst period but not so

well in the second. The Ljung-Box statistic does not reveal evidence of serial

correlation in the residuals. There is evidence of serial correlation in the results

for the full sample. The Chow test statistic is F(3,34) = 7.17, which is signi�cant

at the 1 percent level. We thus conclude that the demand structure shifted in

the mid1980s. Regression results are plotted in Figures 8.8 to 8.10.
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Figure 8.8: Demand Regression Results: Sample 1
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Figure 8.9: Demand Regression Results: Sample 2
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Figure 8.10: Demand Regression Results: Full Sample
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8.3 Conclusion

We have seen that the electricity industry has undergone dramatic changes in

the past several decades. Price growth was slow until the early 1970s, then high

until the mid1980s, and then slow again but seasonally volatile. Demand growth

was very high until 1973. Between 1973 and the late 1980s, output growth swung

widely, but on average growth was much slower than in the 1950s and 1960s.

Since 1990, output growth has been moderate and quite stable.

The analysis in this paper supports the adequacy of a crude price equation,

when we are willing to trade satisfactory second-order characteristics for sim-

plicity. It seems that a logarithmic AR1 model of regional electricity prices,

with seasonal dummies, will provide �rst-order estimates satisfactory for use in

a dynamic programming model.

We also provide evidence of a structural shift in electricity prices around

1986. Rust and Rothwell [55] constructed a dynamic programming model of nu-

clear power plants. In order to simplify the model, they assumed that electricity

price growth was zero over the estimation period. They estimated the parame-

ters of the model over two subperiods: 1975-1979 and 1984-1993. They conclude

that the model parameters signi�cantly di�er across the sample periods, so that

optimal behavior and plant values also changed signi�cantly. They assume that

much of the di�erences can be explained by changes in the regulatory environ-

ment following the 1979 accident at the Three Mile Island nuclear power plant.

The results in this chapter, however, indicate that the simplifying assumptions

in the dynamic programming model may a�ect their results. We show that price

growth certainly was not zero, and that the price structures in the Rust-Rothwell

subperiods di�er signi�cantly. These di�erences are not captured in the struc-
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ture of the Rust-Rothwell model, and so the changes in price structure likely

a�ect the parameter estimates. To what extent their results would change if

their model included non-constant prices remains to be shown in Chapter 10.
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Table 8.3: Aggregate Price Regression Results

1959:2�1985:12 1986:1�2004:6 1959:01�2004:6

Constant 0.00517* 0.00201 0.00394*

AR{1} 0.92600** 0.19637 0.33357*

MA{1} -0.70004** -0.34111 0.00077

January -0.00019 0.00275 0.00077

February 0.00232 -0.00321 -0.00011

March 0.00493* -0.00003 0.00273

April 0.00264 -0.00391 -0.00021

May 0.00007 0.01362** 0.00552*

June -0.00020 0.04060** 0.01651**

July 0.00195 0.00787* 0.00428

August 0.00108 -0.00250 -0.00042

September -0.00238 -0.00120 -0.00198

October -0.00295 -0.03772 -0.01693**

November -0.00527* -0.02820** -0.01452**

SEE 0.0087 0.0100 0.0128

Centered R2 0.315 0.786 0.348

Degrees of Freedom 309 208 532

Ljung-Box Q 61.25** 27.15 431.39**
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Table 8.4: AR1 Results for Aggregate Prices

1973:1�1985:12 1986:1�2004:6

Constant 0.03201** 0.00383

AR{1} 0.99207** 0.99381**

December 0.00714 0.02822**

January 0.01154** 0.03071**

February 0.01327** 0.02483**

March 0.02157** 0.02801**

April 0.01404** 0.02415**

May 0.01038* 0.04166**

June 0.01015* 0.06874**

July 0.01382* 0.03614**

August 0.01171** 0.02590**

September 0.00486 0.02721**

October 0.00519 -0.00930**

SEE 0.0113 0.0101

Centered R2 0.999 0.986

Degrees of Freedom 156 209
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Table 8.5: Regression Results: Regional Prices

1973:1�1985:12 1986:1�2003:

Constant 0.02218** 0.01702**

AR{1} 0.99258** 0.99264**

January 0.01510** 0.01963**

February 0.01597** 0.02075**

March 0.01368** 0.01849**

April 0.01517** 0.01929**

May 0.01284** 0.01698**

June 0.01652** 0.02685**

July 0.03562** 0.04622**

August 0.02058** 0.02499**

September 0.01429** 0.01940**

October 0.01197** 0.01663**

November -0.00631** -0.00501**

SEE 0.0281 0.0302

Centered R2 0.997 0.997

Degrees of Freedom 3093 3174
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Table 8.6: ANOVA

Sample Period Source Sum of Sq DoF Mean Sq F-Stat Signif

1/1973�12/1985 INDIV 0.002 8 0.0003 0.335 0.953

ERROR 2.435 3097 0.0008

TOTAL 2.437 3105

1/1986�12/2003 INDIV 0.001 8 0.0002 0.194 0.992

ERROR 3.005 3313 0.0009

TOTAL 3.007 3321

Table 8.8: Output and Real GDP Growth

59�72 73�85 86�04 59�04 73�04

Obs. 14 13 20 46 32

Prices Mean 1.668% 11.227% 1.435% 4.219% 5.334%

StdErr 0.02913 0.06816 0.02570 0.06106 0.06807

GDP Mean 4.203% 2.987% 3.076% 3.373% 3.010%

StErr 0.01958 0.02829 0.01245 0.02045 0.02004

Output Mean 7.103% 2.647% 2.455% 3.930% 2.541%

StdErr 0.01386 0.02165 0.02165 0.02926 0.02255
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Table 8.9: Electricity Demand

1961�1985 1986�2004 1961�2004

Constant 0.02649** 0.01168 0.01344

GDPR 0.57446** 0.39454 0.62775**

P -0.14166** -0.07661 -0.09022**

d_P{1} 0.87532** -1.09229 0.92469**

MA{1} 0.06216 0.08780 0.26467

SEE 0.011 0.023 0.21

Centered R2 0.877 0.141 0.523

Degrees of Freedom 20 14 39

Ljung-Box Q 1.549 3.110 30.022**
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Chapter 9

Operations and Financial Data

9.1 Introduction

This chapter analyzes the history the U.S. nuclear power industry as revealed in

available data. The work assembles two primary forms of data. First, monthly

operating data is constructed from 1975 through 2003. Second, cost data is col-

lected from 1961 through 2000. Available price data, which was described in the

previous chapter, is combined with annual output data to construct revenue and

pro�ts. Finally, the two data sets are combined to make possible future analysis

of the relationship between costs, plant conditions, and operators' decisions.

The monthly, plant level operating data include information on output, the

primary type of activity performed at the plant, conditions at the plant, and

whether problems occur. The annual, site level cost data include information

on operating and maintenance costs, fuel costs, and capital additions costs, in

addition to capacity and output.

Monthly output data is combined with price data and additional information

in an attempt to construct annual revenue and ultimately pro�t estimates. The
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process is di�cult and we assume the results contain signi�cant error. Still,

few if any others have published such attempts, and the results seem plausible

despite remaining problems.

Both data sets reveal clearly that while the 1980s were troubled times for the

nuclear power industry, the 1990s and recent years have seen dramatic improve-

ments. Evidence of such improvements include stable or falling unit costs, soar-

ing productivity and reliability, and climbing pro�ts. Recent activity data reveal

operators following policies, which presumably are optimal, far more strictly than

in the past. We suppose that these changes in behavior are the results of forced

re-optimization in the face of soaring costs, learning, and regulatory reform. We

will employ this operating data and revisit these questions in Chapter 10.

9.2 Operating Data

9.2.1 Introduction

The operating data comprise an unbalanced panel spanning the months from

April, 1979 to December, 2003.1 One hundred sixteen plants are represented in

the sample, with a total of 27,385 reactor-month observations. The number of

plants in the sample is plotted over time in Figure 9.1. In the latter years, all

104 of the operational American reactors are represented in the sample.

The work updates the data set constructed by Rust and Rothwell [54, 56,

55].2 Their data ended in December, 1994. The data in this set extend their

1For the next chapter, we merge this data with an earlier set to span the months from

January, 1975 to December, 2003.

2The data used to construct our data set were provided in 2006 by Geo�rey Rothwell of
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Figure 9.1: Number of Plants in Operation
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panel by 108 months. More important than this number itself is that data for

these months reveal whether trends that appeared to begin in the Rust-Rothwell

sample have continued. These apparent trends include increased output and

plant availability, improved reliability, and moderating costs.

9.2.2 Reliability and Performance

Of great concern to all, whether for environmental, public health, or economic

reasons, is the reliability of nuclear power plants. While the data in this set

reveal nothing directly about the safety of nuclear power, the likelihood of serious

accidents may be correlated with the reliability statistics that can be constructed

with these data. Our primary interests, however, are the economic implications

of reliability.

Figure 9.2 plots monthly average availability factors from 1980 to 2003. The

availability factor is the fraction of time in a month that a plant operates. Clearly,

there is a strong seasonal pattern, primarily because operators prefer to repair

and refuel in the spring and fall. Monthly averages rose from about 60% in the

1980s to about 80% by 2000.

The capacity factor, or availability factor, distribution over all periods is

displayed in Figure 9.3. Plants at 0% utilization may be closed for refueling,

repairs, because they are entering a stage of permanent decommissioning work,

or for other reasons. Nearly 25% of months are classi�ed with a capacity factor

of zero. Few months are spent at low but positive levels. The frequency grows

with the capacity factor, with roughly 60% of months spent at 100% capacity.

Figure 9.4 reports the same information by decade. Several trends are appar-

Stanford University.
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Figure 9.2: Trend in Availability Factors
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Figure 9.3: Capacity Factor Distribution
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Figure 9.4: Capacity Factors by Decade

ent. First, the amount of time that plants are not operating falls signi�cantly.

Even more signi�cant is the increase in time spent at full capacity. Time spent

at intermediate levels of production fall, as probability mass shifts toward the

endpoints.

Figure 9.5 reports the average lengths of operating and refueling spells that

end at given dates. The average number of months required to refuel plants

averaged about four to �ve months throughout the 1980s. The average declined

to two or three months by 2000. Remember, however, that repairs often are

made during refueling spells. Many repairs and retro�ts were required in the
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Figure 9.5: Length of Operating and Refueling Spells

tumultuous 1980s. Some of the observed pattern may be explained accordingly.

The �gure also displays the average length of operating spells. Just as refu-

eling spells shortened over the sample period, operating spells grew from 10 or

12 months on average to perhaps 18 months. This pattern was reported in Rust

and Rothwell [55], and we see that the pattern also held in the following nine

years.

Figure 9.6 displays the frequency distributions of refueling and operating

spells. The mode of the refueling distribution is two months, but the upper tail

maintains signi�cant probability through nine months.

The mode of the operating spell distribution is 16 months, but signi�cant

probability mass is distributed widely about the mode. Still, roughly one-third

of operating spells last 15 or 16 months. A second mode is evident at 10 months.

We examine the distribution of refueling spells by subperiods in Figure 9.7.
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Figure 9.6: Distributions of Refueling and Operating Spells

Note that the mode falls from three months in 1980-1992 to 2 months in 1993-

2003. Probability mass at the mode increases from about 40% to nearly 60%.

This may indicate that fewer repairs, retro�ts, and inspections are required in

the latter period, and it also may indicate that su�cient learning took place

by the mid1990s to allow consistently brief refueling spells. With the increased

seasonal volatility in electricity prices, we also suppose that there is increased

incentive to limit refueling to months with the lowest prices.

Figure 9.8 displays similar distributions by sub-period for operating spells.

Rust and Rothwell reported that a sample ending in 1979 revealed average op-

erating spells of 12 months. In their 1984-1993 sub-period, they report average

operating spells of 18 months. In the �rst graph in the �gure, we see that the

mode for the 1980-1992 sub-period is 15 months. In the second sub-period, from

1993-2003, the data is clustered much more tightly about the mode of 16 months.
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Figure 9.7: Refueling Spell Distributions

Figure 9.8: Distribution of Operating Spells
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Table 9.1: Spell Table

Full Sample 1980-1989 1990-1999 2000-2003

% of time operating 76.695 69.911 77.824 87.132

% of time at 0% capacity 07.982 11.597 07.582 01.841

% of time refueling 15.278 18.460 14.525 11.027

Total Reactor/Months 27385 9339 12847 4888

Table 9.1 reports the percentage of time spent operating, at zero capacity,

time refueling, and the number of observations per sub-sample. The percentage

of time spent operating climbs from 70% in the 1980s to 87% after 2000. The

time spent shut down declines from 12% in the 1980s to about 2%, and the time

spent refueling falls from 18% to 11%.

Figure 9.9 reports the e�ect of the duration of operating spells on availability

factors. In the early months of an operating spell, reliability increases to a peak

of nearly 90% after about eight months. Availability then gradually declines to

about 20% after 24 months.

Finally, we consider the probability that an operating plant will be forced

to shut down one or more times in a given month. In Figure 9.10, we see that

the probability is about 25% that a plant will be forced to shut down in the

�rst month of an operating spell. The outage rate falls to roughly 10% by the

twentieth month of operation.3

We consider the e�ects of age on average outage rates in Figure 9.11. Note

an apparent �bathtub� shape of the probability distribution. Young plants face

3Erratic patters in the data for months 20 to 25 likely are due to the small number of

observations. Plants usually are refueled before the operating spell reaches 20 months.
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Figure 9.9: E�ect of Duration on Availability Factors
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Figure 9.10: Outage Rates vs Duration
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Figure 9.11: Outage Rates vs Age

forced outage rates of perhaps 30%. The average falls roughly to 12% for plants

of age 300 months. While the statistics are less reliable for older plants, since we

have relatively few observations for them, it appears that the probability ceases

its decline by that point, and perhaps the probability of forced outages begins to

grow as plants pass 300 months. Rust and Rothwell suspected that this pattern

would be revealed, but their panel was too short to reveal it.
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9.3 Cost Data

The cost data were collected from the Federal Energy Regulatory Commission's

Form 1, �Annual Report of Major Utilities, Licensees and Others,� Schedule 402.4

The data set include three series of accounting data: operations and maintenance

costs, fuel costs, and capital additions expenditures,5 as well as annual output

�gures.

These cost data are available annually for each site with a functioning com-

mercial plant. Sites have between one and three functioning reactors. The full

data set is an unbalanced panel with 1,751 observations, covering 74 sites for the

years 1961 to 2000.

The cost data essentially are accounting data and do not necessarily corre-

spond nicely to economic concepts of the same names.6 Nonfuel operating costs

that are considered expenses are categorized as operating and maintenance costs.

Nonfuel costs that are capitalized are considered capital additions expenditures.

Categorization of these costs depends, to some degree, on the discretion of the

plant owners and of regulators. Such discretionary practices di�er across owners

and regions, thus introducing potentially nonrandom errors into our data.

The operating data described above is based on monthly data for each plant

(i.e. reactor). In order to merge the data sets, a mapping of monthly, plant-

level data to annual, site-level data was established. Unfortunately, some data

is lost due to di�erences in coverage. Observations were included in the merged

data set only if all 12 months of operating data for each plant on the site were

4The data were provided by Geo�rey Rothwell at Stanford University.

5See the EIA analysis [2] for further details.

6See the EIA cost analysis [2], Chapter 2, for more details.
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available. The resulting merged data set covers the years 1980 to 2000, with 73

sites and 1,229 observations.7

Figure 9.12 displays average plant capacity, in megawatt-hours, in our data

set and the average computed from aggregate data reported by the EIA. Our

data account for most of the capacity of a typical plant in the 1990s, but fail

to account for signi�cant capacity in the 1980s. This might indicate that our

data are at variance with that of the EIA, or it might indicate that large plants

are not represented adequately in our matched sample. Our average capacity

�gures are based on the capacity ratings assigned to plants when they opened.

To account for changes in capacity ratings over time, we add aggregate capacity

uprates to constructed capacity totals. These changes account for some, but not

all, of the di�erences in recent years. The second graph displays the number of

plants in operation. Most plants are found in our sample by 1990, but many do

not appear in our matched data set in the 1980s.

Figure 9.13 displays the number of sites in the data set with one, two, or three

plants. Note that the number of single-plant sites peaked roughly in 1991 and

then began to decline. This is explained, in part, by construction of additional

plants on existing sites. For the same reason, we see the numbers of two- and

three-unit sites growing into the mid1990s.

The �rst graph in Figure 9.14 displays aggregate capacity. While our data

accounts for most of the actual capacity starting in the early 1990s, the gap is

wider between our data and the actual total in the 1980s. We again consider the

e�ects of capacity uprates, which have become increasingly important in recent

years. The second graph displays a histogram of capacity by site. Note that a

7We have data to extend the merged set back to 1975.
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Figure 9.12: Industry Size

Figure 9.13: Number of Plants per Site
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Figure 9.14: Site Capacity

single site might be represented more than once, if a plant was added or removed

from operation.

We consider two reasons for these gaps between our capacity totals and the

actual levels. First, as noted previously, our capacity data do not account for

capacity uprates, where plants may be upgraded in order to produce more power

than was possible originally. The aggregate additional capacity was added to

our aggregate capacity data and is displayed in the �rst graphs of Figures 9.12

and 9.14. However, the additional capacity does little to bridge the gap.

A more important explanation is that the matching process typically leads

to the elimination of data near the beginning and end of reactors' lives. Many

reactors began or ended operation in the 1980s, and fewer opened and closed in

the 1990s. This likely accounts for much of the di�erences.
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Figure 9.15: Industry Output

Similar characteristics are evident in our aggregate output data when com-

pared to EIA �gures. These data are compared in Figure 9.15. We account for

most industry output only after 1990. On the other hand, our capacity utiliza-

tion data (measured as potential output to actual output) closely matches the

EIA data; this may be seen in the second graph. Figure 9.16 displays average

output per megawatt (MW) of capacity, and it also displays the minimum and

maximum across plants of output per MW.

Clearly, there are di�erences between our aggregates and the totals reported

elsewhere. It remains to be established, however, whether our data are rep-

resentative of the industry or whether other problems remain. The following

three sections present operations and maintenance costs, fuel costs, and capital

additions expenditures.
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Figure 9.16: Output Distribution

9.3.1 Operating and Maintenance Costs

Average operating and maintenance costs per kilowatt of capacity are displayed

in Figure 9.17. Real costs are very similar to those reported by the EIA in

1995. Costs grew rapidly in the 1980s and into the early 1990s. Since then,

costs have leveled in nominal terms and have fallen in real terms. The EIA [2]

reports e�orts by the NRC to improve e�ciency in order to maintain its safety

standards but at lower costs. In addition to learning by power plant operators,

such e�orts may explain the slowing and eventual reversal of cost growth.

Figure 9.18 displays average real operating and maintenance costs per kilo-

watt (KW) of plant capacity. In addition, it shows the minimum and max-

imum costs across sites per KW of capacity. Note that the best-performing

sites had moderate cost growth. The worst-performing plants experienced rapid
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Figure 9.17: Operating and Maintenance Costs

cost growth through the early 1990s, but it appears that costs have been falling

through the mid1990s.

The EIA [2] claims that reported operating and maintenance expenditures

miss about 30% of actual costs. These additional costs include insurance pre-

miums, regulatory fees, and some labor costs. This will be important when we

attempt to construct pro�ts. According to our understanding of the EIA docu-

ment, however, the data do include costs of replacement power when the plant

is not operating. The same document cites a report that about 67% of opera-

tions and maintenance expenditures are labor costs, and the balance is spent on

materials. Nearly half of employees at a typical plant perform maintenance and

support duties. Hence, much of the reported operations and maintenance costs

may be attributed to labor.
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Figure 9.18: OM Cost Distribution

All cost data reported here have been de�ated with the GDP de�ator with a

base year of 2000. Cost data reported by the EIA were in 1993 prices and were

de�ated with a GDP de�ator estimated in 1994 or 1995. While the methodology

is crude, we employed the base 2000 de�ator to in�ate the EIA real data to

nominal terms, and then to construct real �gures in 2000 prices. Clearly, it

would be better to use a vintage 1995 GDP de�ator to construct nominal values,

but use of a single de�ator su�ces to provide a comparison of our data to those

reported earlier.

9.3.2 Fuel Costs

Average fuel costs per kilowatt of capacity are displayed in Figure 9.19. While

the costs climbed rapidly in the early 1980s, they gradually have fallen since.
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Figure 9.19: Fuel Costs

Figure 9.20 displays real average fuel costs per KW of capacity, together with

the reported minimum and maximum values. Note that fuel costs peaked much

earlier than operating and maintenance expenses.

Finally, note that fuel costs are capitalized. Expenditures are depreciated

over a number of years, although they are displayed here in the year of pur-

chase. Fuel rods typically remain in a plant for several refueling cycles, so that

plants receive direct bene�ts from their investments for perhaps four to �ve

years. For national accounting purposes, the Bureau of Economic Analysis [5]

employs straight-line depreciation methods in their estimates of capital stocks,

based on the standard practices of rotation and replacement of fuel rods. They

assume that the average lifetime of a fuel rod is four years, although according

to our data, average lifespans of three fuel cycles would correspond to about 54
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Figure 9.20: Fuel Cost Distribution

months, or 4.5 years. The BEA employs Winfrey curves to calculate depreci-

ation, assuming that the earliest retirement among a given cohort of fuel rods

occurs at 45 percent of the average lifespan, and that the last rods are retired

at 155 percent of the average. We duplicate an abridged version of their de-

preciation distribution in Table 9.2. While this depreciation schedule does not

necessarily correspond to the depreciation calculations appearing on the balance

sheet of the �rm, it likely gives a reasonably good approximation. Note again

that data series reported here makes no use of this information.

9.3.3 Capital Additions Costs

Average capital additions expenditures per kilowatt of capacity are displayed in

Figure 9.21. Real costs in our data set are highly correlated with those reported
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Table 9.2: Fuel Rod Depreciation

Percentage Percent of Average Life

<45 0.0

50 1.2

75 18.7

100 53.9

125 86.3

150 98.8

155 100.0

by the EIA. Such expenditures are calculated as changes in reported book value

of the plants. Because of changes in the estimates and because of sales of used

equipment,8 data in some years are negative. The EIA [2] reports two reasons

for negative values. First, the scrap value of replaced equipment may exceed the

cost of new equipment. Second and more important are the results of changes

in the plants' initial capital costs (these usually appear early in the life of the

plant) and cost disallowances. These observations have been dropped from our

data set. Little other manipulation of the data was done. While the EIA e�orts

to construct capital additions expenditures were somewhat more sophisticated,

the aggregate results are quite similar.

An unfortunate characteristic of this data9 is that all (nominal) project ex-

8According to the EIA [2], expenses added to this account are net of the salvage value

of replaced equipment. Hence, the data reported here may understate gross expenditures on

capital.

9See EIA [2, p. 4] for more details.
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Figure 9.21: Capital Additions Costs

penditures are recorded in the year of completion. Major projects pose problems

when they span multiple years, for two reasons. First, if a plant temporarily

closes in order to repair or upgrade equipment, the costs might not be recorded

until a following year. Second, in times of rapid factor price growth, the report-

ing of cumulative nominal expenses over periods with varying prices will distort

our constructed real data.

Figure 9.22 displays average real capital additions costs per KW of capacity,

together with minimum and maximum values. Note that maximum costs peaked

in the mid to late 1980s, and generally they trended lower since then. The

apparent spike near the end of the sample period needs further investigation

to determine whether it is factual or indicative of a problem with the data

development.
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Figure 9.22: Capital Additions Cost Distribution

The EIA [2] summarizes capital additions expenses as three types. First,

there are retro�ts mandated by NRC regulators. Second are the repairs required

to keep a plant in operation. Finally, capital additions expenses may be vol-

untary measures to improve performance. The EIA reports that about half of

capital additions projects were forced by regulators, and about half were nec-

essary repairs. Few were voluntary. It is likely that plants voluntarily initiated

many projects since the EIA report, however, since the NRC began a program

to allow capacity uprates after required investments and inspections.

The EIA [2] reports e�orts by the NRC to limit the number of back�ts

(mandated changes in equipment and plant design) as a likely cause for the

reduction in capital additions costs. The changes were initiated in 1988. While

costs began falling several years earlier, the trend continued following the policy
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changes.

9.4 Revenue

Unfortunately, revenue data are not reported either for individual plants or sites,

nor are revenue data reported frequently for the industry. Indeed, the means of

assigning revenue to electricity generators is di�cult to establish, for generation

is but one of several stages of production. We might conclude from the literature

that it is impossible to separate analysis of generation from transmission and

distribution,10 and perhaps we cannot consider generation by nuclear power in

isolation from other technologies. This in turn might indicate that there is

no hope of assigning revenue to nuclear power generation, since the electricity

industry is integrated both vertically and horizontally.

Instead, we rely on one of few sources of revenue information. The Census

Bureau [60, 61] began to publish revenue data for nuclear power generation in

1997; they again published data in 2002. Unfortunately, they published detailed

data only for Pennsylvania, citing con�dentiality reasons for suppressing data for

other states. The revenue data for Pennsylvania and the U.S. for 1997 and again

for the U.S. in 2002 are displayed in Table 9.3, where the data is in thousands of

current dollars. The table also displays output data, from the EIA, in millions

10Lee [32] reports that generation, transmission, and distribution are not separable stages

of production. He reports an e�ciency loss of about 4% if generation was separated from the

other processes. Nelson and Primeaux [40] cite several studies that reject vertical separability.

Hayashi, et al [24] report similar �ndings. On a related matter, Karlson [31] reports that

electricity production is not separable across purchaser types; i.e., costs for sales to residential

customers are not separable from sales to commercial or industrial customers.
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Table 9.3: Revenue Shares

Year Revenue Output Implied Price Retail Rev.Shr.

PA 1997 $2,334,445k 67,655m $0.0345 $0.0592 0.58277

USA 1997 $13,966,616k 628,644m $0.0222 $0.0453 0.49044

USA 2002 $11,908,796k 780,220m $0.0153 $0.0488 0.45527

of kilowatt-hours, along with EIA industrial retail prices in current dollars per

kilowatt-hour. Finally, the revenue shares assigned to generation are computed

and displayed. The national data imply that nuclear power generation is assigned

45-49% of sales revenue, and data for Pennsylvania11 put the number at 58%.

We began the process of computing revenue data for nuclear power plants

by obtaining monthly producer price indexes for industrial electricity purchases

for nine regions comprising the United States. We converted these indexes into

dollars per kilowatt-hour by estimating regional prices in 1990 using state rev-

enue and output data from the EIA. We constructed weighted averages of unit

revenues for the power generated by nuclear power plants. We did so by mul-

tiplying monthly, plant level output data by our constructed price series, using

price data for the relevant region. After dividing by total monthly output and

then aggregating over time, we obtain annual price estimates. Average prices

are displayed in Figure 9.23 in nominal terms and relative to the GDP de�ator.

While it would be more clear with a longer time series, note that relative prices

peaked in the mid1980s and then began a steady decline.12 We then constructed

11The electricity price �gure is from the Department of Energy and is the 1995 industrial

price.

12See, Davis, et al [14] for a discussion of this phenomenon and other history of electricity

prices.
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Figure 9.23: Prices

series for unit revenues received by power plant operators by multiplying the

retail price by the 1997 unit revenue share reported in Table 9.3. Average rev-

enue estimates for electricity generation by nuclear power plants are displayed

in Figure 9.23.

Figure 9.24 displays aggregate revenue in nominal and real levels. Both esti-

mated retail sales (assuming only industrial customers) and revenues assigned to

nuclear generation are displayed. The second �gure reports the same information

in dollars per kilowatt of capacity.

Some of the revenue growth is explained by increases in output. Such growth

in the 1980s primarily was due to additional units coming online. In the 1990s,

such growth primarily was due to increased reliability and other improvements

in capacity utilization. A second explanation for revenue growth in the early
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Figure 9.24: Revenue

1980s is price growth. This is seen most clearly in the real revenue per kilowatt

data, which grows steadily before leveling at about 1985.

Figure 9.25 displays the distribution of constructed revenue data per KW of

capacity, including the average, industry minimum, and industry maximum for

each year.

9.5 Pro�ts

By combining the revenue and cost data reported above, we estimate pro�ts for

the nuclear power industry. Certainly, this exercise at best is uncertain and we

face many di�culties. At most, we hope to get a reasonable idea of trends in

the industry.
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Figure 9.25: Revenue Distribution

Of many di�culties facing us, we mention three. First, the EIA [2] reports

that operating and maintenance costs were under-reported by about 30%; we

did not adjust them in the data reported here. Second, capital additions costs

are depreciated over many years, but they are subtracted immediately in the

following calculations. Finally, we made no attempt to account for taxes paid by

the industry, nor did we adjust prices to account for taxes paid by the customers

on electricity purchases. See the EIA study for a discussion of other problems

with the cost data.

Estimated pro�ts per kilowatt of plant capacity are reported in Figure 9.26.

While we must be cautious in our interpretation of the data, given the concerns

listed above and many others, the qualitative results seem plausible. Figure 9.27

displays the distribution of pro�ts per KW.
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Figure 9.26: Pro�ts

Figure 9.27: Pro�ts Distribution
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A review of the industry's history reveals that the industry was pro�table in

the early years. Things began to unravel in the 1970s, however. Environmen-

tal, safety, and other regulations extended construction times far beyond those

expected. Extended construction times, whether due to heightened regulation

or other reasons, became still more expensive with soaring interest rates. Even

after the plants were constructed, operating expenses proved far higher than ex-

pected. Finally, a dramatic reduction in 1973 of the growth rate of electricity

demand reduced the need for new base load generating capacity. Such woes were

compounded by the reaction to the 1979 accident in Unit 2 of the Three Mile

Island power plant and the 1986 accident at the Chernobyl power plant. These

troubles are revealed in the declining pro�ts shown in Figure 9.26. Rothwell and

Eastman [51] report that the realized rate of return was less than the cost of

capital from 1979 to 1981 for US electric utilities. Many plants closed in the

unpro�table 1980s and early 1990s, a period corresponding to negative pro�ts

according to our calculations.

While trouble continued through the early 1990s, pro�ts followed an upward

trend since the mid1980s. It seems likely that some of the increase in pro�ts per

kilowatt may be explained by the voluntary removal of unpro�table, troublesome

plants from the market. Other explanations include learning within the industry,

especially as the industry consolidated and large companies purchased multiple

plants. Regulators also learned, and they tailored their policies to achieve safety

and other standards while enabling companies to reduce costs.13

We made little attempt to analyze the e�ects of capacity uprates. Such

uprates promise additional future capacity in return for capital investment today.

13See the EIA cost analysis [2] for details and analysis.
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Many plant owners are making these investments, and future studies will be

needed to determine whether pro�ts improve accordingly.

9.6 Decommissioning Costs

Little data is available for decommissioning costs, although a number of plants

have been or are being decommissioned. A list of most commercial plants that are

being decommissioned is presented in Appendix 9.8.1. Available cost estimates

range between $190 million and $420 million. The GAO [3] reports that costs

are expected to range between $300m and $400m in today's dollars. Dubin and

Rothwell [17] cite costs of about $1b for the cleanup of the damaged Three Mile

Island Unit 2 reactor.

9.7 Conclusions

This concludes a brief review of monthly operating and annual cost and revenue

data for the U.S. nuclear power industry. We saw that industry performance

has improved dramatically. This is seen clearly as increases in the fraction of

time plants operate. We also saw that costs have fallen, in real terms, per unit

of plant capacity. The nuclear industry now appears far more pro�table than in

the 1980s.

Our data set is su�ciently broad to allow much further analysis. Unfortu-

nately, though, some problems remain. The operating data summarized here in

fact are �model� data constructed for use in a dynamic programming model.14

14See Rust and Rothwell [56] for a detailed description of the data construction process, or

see the next chapter for a shorter description of the result.
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Use of model data is not optimal for purposes of summarizing data as we did in

this chapter. Re�nement of this work likely will include replacement of model

data with �raw� data.

One of the primary problems with use of model data is that it is di�cult

to form aggregates and averages. Construction of a matched data set, where

monthly plant data is matched to annual site data, requires several aggregation

processes. At this point, though, most of the data construction work is com-

plete. Despite the di�culties noted, we are poised to begin examination of our

potentially rich matched data set.

9.8 Appendix

9.8.1 Decommissioned Reactors

The following reactors were decommissioned. Reactors that were shut down

before the beginning or after the end of our data set might not be listed.
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Site Unit Month Year Costs

Big Rock Point 8 1997

Dresden 1 8 1978

Fermi 1 11 1972

Fort St. Vrain 1989 <$189m

Haddam Neck 7 1997

Humboldt Bay 3 7 1976

Indian Point 1 10 1974

LaCrosse 4 1987

Maine Yankee 8 1997 $357m

Millstone 1 11 1997

Peach Bottom 1 10 1974

Rancho Seco 6 1989

San Onofre 1 11 1992

Three Mile Island 2 3 1979 ≈$1b

Trojan 11 1992 $198m

Vallecitos 1963

Yankee Rowe 10 1991

Zion 1 2 1997 $417m

Zion 2 9 1996 $417m

1. Data for Fort St. Vrain are from Nuclear Energy Institute, August 1, 2006

2. Data for Trojan is in 1993 dollars, and data for Maine Yankee is in 1997

dollars. Cost estimates for the Zion plants were reported as $834m for

closing both. Both are reported in a report by the GAO [3].
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3. The estimate for Three Mile Island Unit 2 was provided in Dubin and

Rothwell [17].
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Chapter 10

A Model of Plant Operations

10.1 Introduction

How do nuclear power plant operators decide when to decommission their plants?

How has their behavior been a�ected by the tumultuous regulatory changes in

the 1980s? Can we detect e�ects on behavior of liability protections?

To pursue answers to such questions, we need to construct a model of nuclear

power plant operators. This model will seek to reproduce operators' decisions

and to determine and understand the key factors upon which those decisions are

based. Nuclear plants are very expensive to build, to operate, and to repair.

Consequences of poor decisions and reckless actions can be catastrophic both

to equipment and ultimately to the surrounding community. For these reasons,

operators carefully and consistently must determine optimal operating strategies,

taking into account not only current conditions and potential short-run pro�ts

but also the e�ects of current decisions on the future state of the plant.

We begin our work with an existing model of plant operators, and we extend

this model in several directions. Our goal is not simply to add detail, for there is
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no end to the list of relevant and important technological and economic details

that might be included. Instead, we seek to link the existing models, which

specify rather autonomous �rms, to the rest of the world. In particular, we

consider the e�ects of electricity market conditions on the behavior of operators,

and we explicitly account for liability regulations imposed by industry regulators.

We do not o�er a complete model here, in which other economic agents and

regulators are a�ected by and respond to operators' behavior. In the �rst section

of this document, we developed such a model, though operators described there

were fairly primitive. Here, we o�er much greater detail on operators, but little

about their interaction with others. We have in mind that future work should

join these e�orts.

We �nd that our dynamic programming model is a useful tool to understand

and predict the behavior of nuclear power plant operators. At least when using

aggregate measures, the model is able to mimic accurately the choices made

by operators, given current conditions of the plants. Historical simulations also

suggest that our model accurately predicts the behavior of operators. We �nd

that electricity prices and expected changes in prices a�ect signi�cantly the level

of pro�ts and correspondingly the optimal plant activities.

We extend and apply the model in several ways. First, we consider the e�ects

on plant values of 20-year extensions to operating licenses. We �nd that the

values of plants increase signi�cantly with potentially longer operating horizons.

We found similar results in the application of our industry model reported in

Chapter 5. Second, we extend the model to include the possibility of catastrophic

accidents with destruction of the plants and liability for o�site damages. While

the ability of the model to �t the data changes little, the inclusion of risk and
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liability concerns does a�ect relative values of feasible choices and thus a�ects

predicted behavior. Finally, we employ the model in historical simulations and

forecasts under various assumptions.

We do not explicitly account for regulation in this model. We discuss po-

tential problems of this omission. We base the analysis on comparisons of two

models from Chapter 2. By comparing results for a model with both liabiltiy

and regulation to results for a model with only liability, we hope to learn of

potential problems with our dynamic programming work. Our analysis helps

us to understand and interpret the parameter estimates and predictions of the

present model.

We conclude with a number of possible extensions to our work. An appendix

to this document describes software developed for use in this project that can

be employed in the construction, estimation, and simulation of similar dynamic

programming models.

10.1.1 Background: The Rust-Rothwell Model

In a series of papers [54, 55, 56], Rust and Rothwell provide a summary of the

nuclear power industry and develop a model of plant operations. Their work [55]

was used to model changes in operations following the TMI accident in 1979,

and their work [56] was used to predict permanent closure of nuclear power

plants (NPP) under various NRC licensing plans. Their model accurately pre-

dicts lengthening of average operating spells (time between refueling shutdowns)

from about 12 months to about 18 months. This may re�ect changes in reg-

ulatory policy or a reevaluation of operating strategies. In the second paper,

plants are modeled under two licensing regimes. First, plants are permitted to
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operate only until the expiration of their initial 40-year operating licenses. Next,

the model is solved with 20-year extensions to each license. Their work shows

that extensions typically improve the value of operations at each plant, so that

plants owners are less inclined to exit the market prematurely given unfavorable

economic conditions and, for this reason, many should �nd it optimal to seek

the extensions.

NPPs are modeled as traditional pro�t maximizers even though they op-

erated under regulated prices until recently. This may be justi�ed by noting

their increasing inclination to minimize costs given the increasing likelihood of

cost disallowances by PUC's, falling prices of fossil fuels, and the introduction

of incentive-based regulations (Rust and Rothwell [54], EIA [2], Che and Roth-

well [12]).

Rust and Rothwell summarize the model as follows: �In each period the oper-

ator decides whether to run the reactor, to shut it down for preventative mainte-

nance or refueling, or permanently close the plant for decommissioning� [56]. At

the beginning of each period, each plant is in one of three conditions (or states

or spells): an operating spell, a refueling spell, or a major problem spell. Given

these and other conditions and the probabilities of moving from the current state

to each other state given the actions of the operator, the operator chooses the op-

tion that is most likely to maximize the plant's value. Once the expected value

of future operations falls below the cost of decommissioning, plant operators

permanently close the plants.
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10.2 Features and Contributions

Our work extends existing literature and models primarily in three areas. First,

we update existing data sets to include monthly data from 1975 to 2003. We

described this data in Chapter 9. Second, we consider the e�ects of electricity

prices on operator behavior. We believe that price trends and seasonal patterns

may have important e�ects on pro�tability and on the timing of plant procedures.

We reported our development and analysis of price data in Chapter 8. Finally,

we consider the e�ects of liability on pro�ts and behavior.

Our e�orts are designed and intended to support many other features and

extensions of the current work. These e�orts include the design of our model,

collection and construction of data, and the software designed and employed in

the construction and estimation of our model. We mention some of the intended

extensions at the end of this chapter.

10.2.1 Data Extensions

The data set developed and employed here updates the data constructed by

Rust and Rothwell [54, 56, 55].1 Their data extended from January, 1975 to

December, 1994. The data in this set extend their panel by 108 months. More

important than this number itself is that these months reveal whether trends

that appeared to begin in the Rust-Rothwell sample have continued. These

trends include increased output and plant availability, improved reliability, and

moderating cost growth.

1The data used to construct this set were provided by Geo�rey Rothwell of Stanford Uni-

versity.
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The operating data comprise an unbalanced panel spanning the months from

January, 1975 to December, 2003. One hundred sixteen plants are represented

in the sample, with a total of 31,218 reactor-month observations in the set of

data available to the model. Most, if not all, plants are represented in the data,

although observations tend to be lost near the beginning and end of reactor life.

In the latter years of the sample, all 104 of operational American reactors are

represented in the sample. In Chapter 9, we saw that performance and prof-

itability improved dramatically for the nuclear power industry since the 1980s.

We saw great improvement in plant reliability and e�ciency, so that plants op-

erate at full capacity most of the time. Average refueling times fell sharply, and

by nearly every observed measure performance has improved.

10.2.2 Stochastic Prices

Primarily because they lacked adequate accounting data, Rust and Rothwell

simpli�ed the pro�t function in their model to employ only operating history

data. Pro�t-maximizing behavior was assumed, so that pro�ts could be inferred

from available operating data. However, their study did not have any direct

observation of prices or revenue, nor observations of costs, so pro�ts were �esti-

mated� as a function of observable operating state variables, and in particular

the utilization rate of the reactor (i.e. the fraction of the potential output given

the rated generation capacity that actually was generated during the period).

The following simpli�cations were necessary in their work for identi�cation given

the data limitations. First, the present value of costs of closing a plant were nor-

malized to zero. Second, electricity prices were assumed to have zero trend,

though the possibility of seasonal variation was allowed, and the pro�t func-
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tion was divided by maximum revenues, or price times output given the choice

of 100 percent plant availability in the current month. Finally, the normalized

error term ε, which is de�ned below, was assumed to have a Type 1 extreme

value distribution. The assumption of zero price growth was defended by price

stability over the sample period and DOE projections of slow demand growth

in coming decades. The normalization also requires that plant size does not

a�ect optimal operating strategies; this assumption ignores the heterogeneity

revealed elsewhere [54, page 23]. Whether these assumptions signi�cantly limit

the ability of the model to �t the data must be tested. We examine the constant

price assumption by extending the model to allow for changing prices and then

re-estimating the parameters. The results are compared to the Rust-Rothwell

results with stationary prices.

Rust and Rothwell incorporated monthly dummy variables in their normal-

ized pro�t function. These allow for a variety of seasonal e�ects, but perhaps

most importantly they allow for seasonal price changes. Such changes especially

have been important since the mid1980s, as is shown elsewhere in our work on

electricity prices. These price cycles re�ect changes in seasonal demand, which

tends to be low in the spring and fall. These periods of excess supply allow oper-

ators to take plants o�-line for refueling and repairs. As was shown in Chapter 9,

plants typically refueled every twelve months in the 1970s and early 1980s be-

fore switching to 18-month refueling cycles. These refueling periods usually are

scheduled for the spring or fall, but may be observed at other times to corre-

spond to forced outages. We saw earlier that operators have become far more

strict in their adherence to 12 or 18-month cycles, as we observe relatively fewer

shutdowns in other months. This may be due, in part, to increased seasonal elec-
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tricity price volatility beginning in the mid1980s, as we reported earlier. Plants

now have greater incentive to operate in seasons with high prices and relatively

less incentive to operate otherwise.

Nominal electricity rates have been rising very slowly since the mid1980s,

while relative prices have been falling gradually. These facts support the zero-

trend assumption for electricity prices in the optimal lifetime study [56]. Esti-

mation was performed with data from January, 1989 to December, 1994. Both

nominal prices and relative prices were stable over the estimation range, and

price stability continued throughout at least the �rst 10 years of the forecast.

Hence, the zero price growth assumption seems justi�ed for that study.

The price data for relative and nominal prices tell a di�erent story for electric-

ity prices between 1973 and 1985. Electricity prices grew rapidly in this period

before slowing suddenly in the mid1980s.2 This suggests that the constant-price

assumption may have been troublesome in the Optimal Response study (Rust

and Rothwell [55]). The study attempted to test the behavior of power plant

operators for evidence of signi�cant changes following the 1979 accident at the

Three Mile Island (TMI) power plant. To do so, Rust and Rothwell (RR) de�ned

three periods: the preTMI period from 1975 to 1979, the transition period from

1980 to 1983, and the postTMI period from 1984 to 1993. To test for signi�-

cant changes in behavior, RR estimated the model parameters �rst with data

from the preTMI period and then again with data from the postTMI period.

They found that the two parameter sets were signi�cantly di�erent, and they

concluded that the changes in behavior were due to changes in the regulatory

2We investigated these matters in Chapter 8. We �nd evidence of a signi�cant structural

shift in electricity prices in the mid1980s.
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environment. Unfortunately, they did not take into account the e�ects on be-

havior of the sudden shift in price growth in the early to mid1980s. These price

changes might have lowered current-period pro�ts signi�cantly. If the changes in

the price structure were believed to be permanent, as they proved to be, then the

e�ect on the expected present value of future pro�ts would have been still more

dramatic. Hence, the fall in the value of plant operations, as measured by RR,

cannot be explained fully by increased stringency of regulatory policies. Instead,

some of the changes likely would have occurred without nuclear regulatory policy

changes because of structural shifts in electricity prices.

A bene�t of incorporating electricity prices in the pro�t function is that it

allows pro�ts to be de�ned in terms of dollars. Setting the units in dollars

will ease later extensions to incorporate other �nancial data. It also eases the

incorporation and calibration of other factors, such as liability under the Price-

Anderson policies. A signi�cant problem remains, however. We do not observe

plant revenue, and thus we do not know the per-unit revenue level received by

nuclear power plant operators. Instead, we observe retail electricity rates and

attempt to construct unit revenues from these observed prices and supporting

information gleaned elsewhere. This work is described in Chapter 9, though

annualized, site-level �gures were reported there. The construction methods for

our monthly site-level data follows the same process that was described there.

The extension also allows the testing of various hypotheses regarding the

e�ects of price changes. This especially may be important in forecasting plant

closure under various price projections. Perhaps the most pressing need for

relaxing the constant-price assumption is to account for changing price struc-

tures. We must return to the optimal response study to disentangle the e�ects
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of regulations from those of other economic phenomena.

10.2.3 Accounting for Physical Risk and Liability Caps

The Rust-Rothwell model does not account explicitly for the possibility of seri-

ous accidents. The risk is captured in part by the possibility of a �major problem

spell� which requires shutdown for an extended period and, given such a shut-

down, a positive probability of never returning to service. This ignores costs of

cleanup and compensation, and it ignores the e�ect of an accident at one plant

on the rest of the industry. Dubin and Rothwell [16] were �rst to calculate a

probability distribution and (local) expected costs and liability of a serious ac-

cident. Heyes and Heyes [29, 27] correct the earlier calculations and extend the

analysis to Canadian plants; the corrections are acknowledged in Rothwell [49].

Harding [23] provides additional detail and analysis. Other problems with the

original Dubin-Rothwell work are addressed in earlier chapters, along with sev-

eral extensions.

In all countries with signi�cant commercial nuclear power production, gov-

ernments have capped liability for o�site losses. In 2001, the US House of Repre-

sentatives passed an extension of the Price-Anderson Act, which currently limits

liability to $88 million per plant, capping industry liability at about $10 bil-

lion per accident; each plant may be liable for accidents at other plants, up to

the $88 million limit for each plant (Rothwell [50], Energy Outlook [4, p. 18,

21]). Such payments are required if damages exceed the mandated private in-

surance coverage of $200 million per plant. In Chapter 3, we report implicit

subsidy calculations between $5,000 and $5 million per reactor year, depend-

ing on the assumption, though signi�cant questions remain. While the cap and

278



corresponding subsidies are set at relatively low levels, the liability is nontriv-

ial, and these amounts do not include onsite damages and loss of the damaged

reactor and possibly other reactors at the site. Including the possibility of se-

rious accidents may increase the likelihood of permanent closure, increase the

likelihood of temporary closure for maintenance and repairs, and increase ex-

penditures on maintenance (Heyes and Heyes [29]). Heyes and Heyes claim that

liability caps lead to 1) ine�ciently low incentives to a) prevent accidents and

b) prevent escalation of damage given the occurrence of a serious accident, and

2) the encouragement of excess capacity.

Nearly all estimates related to accident probabilities and potential damage

assessments are di�cult to calculate, require many simplifying assumptions, and

are subject to much criticism. In addition, potential o�site damages vary widely

and depend on factors that vary across plants and time. These factors include

property values and population density in surrounding regions and weather.

Adding to the di�culty of calibrating probability and liability parameters are

the pro�t function normalizations listed above. Still, we might select several

parameter vectors and evaluate corresponding model results in an attempt to

determine the e�ect on operators' behavior of various liability and risk levels.

10.3 The Model

There are two sets of variables in the model.3 First, there are two vectors of state

variables: a vector of observed variables xt and a vector of state variables εt that

3Rust-Rothwell employed two versions of their model in [55] and [56]. We follow the ex-

tended version described in [56].
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are observed by the operators but not by the economist. Observed state variables

include electricity prices, indicators of conditions at the plant, and the age of the

plant. These variables evolve either according to deterministic rules encoded in

the model or according to stochastic processes that are estimated. Unobserved

state variables are assumed to exist in order to account for deviations in the data

between model predictions and reality. The second set of variables are choice

variables. This vector includes permanent closure, refueling, and operating at a

chosen utilization level.

After observing xt and εt, operators choose an action from vector at. Actions

are chosen to maximize the nuclear power plant's (NPP's) net present value V0

V0 (x, ε) = max
(α0,...,αT )

T∑
t=0

βtE0,t {π (αt, xt, εt) | x0 = x, εt = ε} (10.1)

where β is the discount factor (pro�ts received in the near future are preferred

to pro�ts received in the distant future). E0,t denotes expectations at time

0 of pro�ts at time t. π is the current period pro�t function which has the

representation π(a, x, ε) = µ(a, x, φ) + ε(a), where φ is a parameter vector that

must be estimated; details of this pro�t function will be given later. The state

variables xt and εt change according to Markov processes with the transition

density λ (xt+1, εt+1 | xt, εt, αt). Lifetimes T are limited by operating licenses

granted by the Nuclear Regulatory Commission (NRC), which initially were

granted for 40 years; operators now may apply for 20 year extensions. The

vector x is de�ned as xt = (rt, ft, dt), where r is the type of spell, f is an

observed signal of possible events not under the operator's control (the operator

also observes the signal ε) that indicate operating conditions for the present

period, and d indicates the present duration of the current spell. (A summary of

these variables and their evolution, taken from [56], will be presented in following
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paragraphs.) Actions are chosen from vector A that includes permanent closure

of the plant, shutting down to refuel, or operation at a capacity between, and

including, 0 and 100 percent. The current state of a plant may limit its set

of feasible actions, and regulation further may restrict the set; we address the

former but not the latter concern. The laws of motion governing states r and d

are deterministic, but the law of motion for f is probabilistic; its distribution ρ

must be estimated.

The state variable ft is a stochastic signal of conditions in the current period.

The four possible values for ft are interpreted as follows:

ft =



1 no forced outage this period

2 one or more forced outages this period

3 if r=1, enter a major problem spell

if r=2, continue refueling

if r=3, the major problem spell continues

4 a major accident occurs.

The probability distribution for f is determined by the estimation of param-

eters for a set of �ve binary logit equations g (·): 1) the probability of forced

outages during an operating spell, 2) the probability of forced outages imme-

diately following a refueling spell, 3) the probability of a major problem devel-

oping during an operating spell, 4) the probability of exiting a major problem

spell and resuming operations, and 5) the probability of exiting a refueling spell

and resuming operations. In an extended version of the model, we add to these

a calibrated probability of a major accident. The estimated probabilities are
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parameterized as

ρi (xt, at, t) =
exp {g (xt, at, t, ψi)}

1 + exp {g (xt, at, t, ψi)}

where i indexes the �ve probabilities and ψ is a parameter vector.

The state variable rt is the type of spell in the previous period. Possible

values are given as

rt =


1 if the previous period was part of a major problem spell

2 if the previous period was part of a refueling spell

3 if the previous period was part of an operating spell.

The variable evolves according to the equation

rt+1 =


1 if ft = 3 and (rt = 3 or rt = 1)

2 if (at = 2 and ft < 3 and rt = 3) or (rt = 2 and ft = 3)

3 if at > 2 and ft < 3.

The state variable dt is the length of the spell as of the previous period. The

interpretation of this variable depends on the type of spell last period:

if rt=1 dt is the length of a major problem spell

if rt=2 dt is the length of a refueling spell

if rt=3 dt is the length of an operating spell.

The variable evolves according to

dt+1 =

 dt + 1{at 6= 2 and rt 6= 3} if rt+1 = rt

1 otherwise.

Rust and Rothwell assume that electricity prices have no trend, though they

might exhibit seasonal variation. The assumption is relaxed in this paper. We

select a parsimonious autoregression equation for prices
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pt+1 = α+ αt+1 + ηpt + εt+1

where α is a constant, αt+1 is a parameter for monthly dummy variables, η is the

parameter on the lagged dependent variable, and ε is a stochastic error term.

The dependent variable p is in logarithms.

The set of feasible actions is determined by the current combination of state

variables. Depending on the current state of the plant, certain operations may

not be possible. Such choices are eliminated from consideration in the model.

The complete choice set is:

at =



1 Permanently close the plant

2 Refuel the plant

3 Temporarily shut down the plant

4 utilization between [1,25]

5 utilization between [26,50]

6 utilization between [51,75]

7 utilization between [76,99]

8 utilization = 100

The set of possible actions may be restricted further by regulators. We discuss

the possibility later in this chapter, but this model does not account explicitly

for regulatory intervention. This may prove to be problematic. Our maintained

assumption is that actions are chosen to maximize pro�ts while taking into ac-

count solely the technical and economic environment. Surely actions sometimes

are chosen to comply with regulations while technical conditions and economics
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would seem to lead to a di�erent choice.

The portion of the pro�t function µ that is composed of potentially observable

variables is de�ned as

µ(α, xt, φ) =


−φc if at = 1 (close the plant)

−cr (xt, φr) if at = 2 (refuel plant)

ptu (at)− cO (xt, at, φO) if at > 2 (operate at level at)

where φc is the present value of decommissioning costs, cr is the expected cost

of refueling, cO is the expected costs of operating at capacity a, pt is the market

price of electricity, and u is the utilization rate given the choice of availability

(0�100%). With appropriate assumptions, conditional choice probabilities for

each action, given the current state, can be inferred from the expected value

function

vt (x, a) = µ (x, a, φ) + β

∫
x′

log
∑

a′∈A(x′)

exp {vt+1 (x′, a′)}

 p (dx′ | x, a, ϕ)

(10.2)

where At is the set of feasible actions. The choice probabilities are

Pt (a|x) =
exp {vt (x, a)}∑

a′∈At(x′) exp {vt (x, a′)}
. (10.3)

The dynamic programming model is solved by backward induction using

Equation 10.2. The model �rst is solved for the �nal period where the right-

hand-side contains only µ (the remaining term is zero since there can be no

production without an operating license). The corresponding left-hand side for

the �nal period enters the equation for the previous period. The process con-

tinues until the current period is reached. Parameters in the pro�t function,

the laws of motion for state variables, and the discount rate are estimated by
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maximum likelihood techniques that seek to reproduce actual operating histories

with model simulations.

The log-likelihood function is

ln (Lθ) =
TX
t=1

MX
i=1

8>>><>>>:
ln [P (at,i | xt,m, pt,i, φ)]

+ ln [ξ (xt,i | xt−1,i, at−1,i, ψ)]

+ ln [ζ (pt,i | pt−1,i, ψ)]

9>>>=>>>;
The log-likelihood is composed of three terms. The �rst is the predicted

probability that the observed action would be chosen. The second is the

probability that the observed transition of the discrete stochastic state

variables would be realized. The �nal term is the transition density for the

evolution of the continuous price series. These terms are added across time and

across plants to form the log-likelihood.

The derivative of the log-likelihood function is

δ ln (Lθ)

δθ
=

TX
t=1

MX
i=1

8>>>>>>><>>>>>>>:

26664
δVt(at,i,xt,i,pt,i)

δθ

−
P

a′∈A(xt,i)

8<: δVt

„
a
′
t,i
,xt,i,pt,i

«
δθ

P
“
a
′
t,i | xt,i, pt,i, θ

”9=;
37775

+
δ[ξ(xt,i|xt−1,i,at−1,i,ψ)]

δθ

ξ(xt,i|x,at−1,i,ψ)
+
δ ln[ζ(pt,i|pt−1,i,ψ)]

δθ

9>>>>>>>=>>>>>>>;

10.4 Model Results

The results of Rust-Rothwell were veri�ed with their original data set with an

earlier version of this model that corresponded closely to theirs. While the

parameter estimates were not identical to theirs, they were very similar. Such

small di�erences are to be expected since the computer code developed here is

di�erent than the code for their model. Since the parameter results are similar,

we do not report our estimates for their version of the model. Instead, we report

results only for our extended versions.
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The data set was extended to December, 2003 from the Rust-Rothwell end-

ing date of December, 1994, so the full set is from January, 1975 to December,

2003. The model is estimated over three subperiods. The �rst is the period

generally preceding the TMI accident: January, 1975 to December, 1979. The

second allows a period of transition for the industry and regulators following

the TMI accident, and is intended to capture the era of relative stability follow-

ing the transition: January, 1984 to December, 2003. The third period allows

the industry still more time to adjust to the regulatory changes initiated af-

ter TMI, and thus it includes data between January, 1989 to December, 2003.

The preTMI and postTMI data sets correspond to Rust-Rothwell [55], where

they employed data from 1975-1979 and 1984-1993. The last set corresponds to

Rust-Rothwell [56], where they employed data from 1989-1994.

We employ the preTMI and postTMI samples in a test of structural stability

across a turbulent episode in the industry in which many regulations were re-

vised and introduced. Rust and Rothwell found evidence of a structural shift in

operator behavior. However, they assumed that electricity prices were constant.

We �nd evidence of a structural shift in the parameters for electricity price equa-

tions. The structural shift in prices occurred at about the same time that Rust

and Rothwell claim that shifts occurred in operating policies. We want to see

whether incorporating stochastic and structurally shifting prices allows stability

of the remaining model parameters.

We employ the �nal data set, from 1989-2003, in an extended model. This

model is employed to explore e�ects of risk to the physical plant and correspond-

ing Price-Anderson regulation of liability. We also employ these parameters in a

set of industry forecasts for optimal closure, as Rust and Rothwell [56] reported.
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Rather than the retail electricity rates themselves, we are interested in the

unit revenues earned by nuclear power plant operators for producing electricity.

We create an approximation of unit revenues by assuming that generators receive

a constant share of total revenues; the balance goes to transmission, distribution,

and other activities. We multiply industrial electricity rates by this share, and

then de�ate the results. Note that we employ two measures of factor prices. For

the sample periods 1975-1979, 1984-2003, and the combined sample, we employ

average wage rates as a proxy for factor prices. We defend this selection by noting

that a large fraction of operating costs are due to labor [2]. For remaining work,

we employ the Producer Price Index (PPI). Given relative stability of electricity

prices, the PPI, and wage rates in the 1989-2003 sample, we expect the choice

of the PPI instead of wage rates to have little e�ect on our results.

We follow Rust and Rothwell in setting the discount rate β to 0.999. This

corresponds to a real annual interest rate of 1.2%. This discount rate is small,

so that operators care a great deal about potential future pro�ts.

Estimation of such dynamic programming models is performed with the

three-stage maximum-likelihood routine developed by Rust [53]. The �rst stage

is to estimate the parameters ψ for the transition probabilities of the stochastic

state variables. This vector includes price equation parameters and parameters

for the binary logit functions used to predict the stochastic indicator variable

f . The second stage is to estimate pro�t function parameters φ, conditional on

the transition probability parameters. The third stage simultaneously estimates

both ψ and φ.
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10.4.1 First-Stage Estimation Results

In this section, we report transition probability parameters. First, we report the

price parameter estimates. The discussion is brief, since a detailed look at prices

is reported elsewhere. We then examine parameter estimates for evolution of the

discrete stochastic state variables.

Price Parameters

The estimated equation is

pt = α+ αmonth (t) + ηppt−1 + εt (10.4)

where p is the logarithm of relative prices in dollars per kilowatt-hour, α is a

drift term, and αmonth is a monthly dummy parameter. Estimates for four sample

periods are reported in Table 10.1. Note the signi�cance of the dummy variable

parameters is samples including the 1984-2003 data, while the parameter values

indicate little seasonal volatility in the 1970s. The parameters also re�ect the

shift from high average growth rates in the 1970s to slightly declining growth

since the mid1980s.

The data series are plotted in an earlier chapter. There, we estimated several

equations and considered the adequacy of Equation 10.4. We found statistical

evidence of a structural break in the mid1980s, which may be seen by observing

the parameter estimates reported in the table.

Reported adjusted R2 values are very high. This may be misleading, however,

given the nature of the employed data. Unit revenues for each plant were created

from regional electricity prices; data on nine regions were available. At most,
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Table 10.1: Price Parameters

1/1984-12/2003 12/1979 12/2003 12/2003

1/1975 -12/1979 1/1975 1/1984 1/1989

Pt−1 0.9947 (0.001)* 0.9927 (0.002)* 0.9951 (0.001)* 0.9947 (0.001)*

α -0.0166 (0.002)* -0.0298 (0.006)* -0.0147 (0.002)* -0.0143 (0.003)*

αDec -0.0031 (0.001)* 0.0049 (0.002)* -0.0049 (0.001)* -0.0007 (0.001)

αJan -0.0042 (0.001)* 0.0091 (0.002)* -0.0055 (0.001)* -0.0113 (0.001)*

αFeb -0.0060 (0.001)* 0.0098 (0.002)* -0.0074 (0.001)* -0.0048 (0.001)*

αMar -0.0067 (0.001)* 0.0111 (0.002)* -0.0084 (0.001)* -0.0110 (0.001)*

αApr 0.0077 (0.001)* 0.0065 (0.002)* 0.0077 (0.001)* 0.0097 (0.0010)*

αMay 0.0324 (0.001)* -0.0009 (0.002) 0.0353 (0.001)* 0.0349 (0.001)*

αJun 0.0052 (0.001)* 0.0123 (0.002)* 0.0045 (0.001)* 0.0011 (0.001)

αJul -0.0037 (0.001)* 0.0094 (0.002)* -0.0050 (0.001)* -0.0035 (0.001)*

αAug -0.0037 (0.001* 0.0123 (0.002)* -0.0054 (0.001)* -0.0054 (0.001)*

αSep -0.0311 (0.001)* 0.0066 (0.002)* -0.0349 (0.001)* -0.0413 (0.001)*

αOct -0.0246 (0.001)* -0.0029 (0.002 -0.0268 (0.001)* -0.0296 (0.001)*

R
2

0.989 0.993 0.989 0.987

NOBS 25900 2309 23713 18878
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we thus have nine unique price series for use with 116 plants. Statistics are

computed as if we have 116 unique price series.

Transition Probability Parameters

We next review the transition probability parameters. Five binary logit functions

are employed in the model to forecast the values of f . The parameter vector

is denoted ψ. Subscripts indicate the corresponding binary logit function, with

1) of the probability of forced outages during an operating spell, 2) rf the

probability of forced outages immediately following a refueling spell, 3) om the

probability of a major problem developing during an operating spell, 4) mo the

probability of exiting a major problem spell and resuming operations, and 5) ro

the probability of exiting a refueling spell and resuming operations. Parameter

values are reported in Table 10.3.

First, we examine the ψrf parameters. Note that the parameter for the

constant, ψrf (1), is positive for periods including the preTMI sample, and the

parameter is negative otherwise. This indicates that for all else equal, forced

outages following a refueling became less common. The parameter on reactor

ages, ψrf (t), is negative in all samples. This indicates that reactors become more

reliable as they age, at least according to this measure of reliability. Note that

we lack su�cient data for old plants, and we have not allowed a quadratic term,

to capture possibly increasing risk at old plants.

We next examine the parameters ψro. Given our assumption that the dura-

tion of refueling spells is not under the control of the operator, these parameters

indicate the likelihood of refueling completion after given lengths of time. We

include parameters for refueling lengths 1-4, and another dummy parameter for
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spells longer than four months. In addition, we include a linear trend for all

spells longer than four months. Note that we do not have su�cient data in our

small preTMI sample to estimate each parameter. While one-month refueling

spells are slightly more common in the 1989-2003 sample, they were uncommon

in all periods. Two-month refueling spells became much more common after

TMI. Note that the trend parameter ψro on long refueling spells is negative for

all samples, but that the likelihood of exiting a refueling spell falls more quickly

with duration in the 1989-2003 data set.

The parameter vector for forced outages in the midst of an operating spell,

ψof , includes terms for a constant, plant age, linear and quadratic operating

spell duration, and whether forced outages were observed in the prior period.

Note that for all else equal, forced outages were much more common in the

preTMI sample, and much less common in the 1989-2003 sample than even the

1984-2003 sample. The parameters on plant age have become smaller with later

sample periods. Perhaps we have an omitted variables problem and should add

a quadratic term, or perhaps operators are learning better operating procedures

so that age is less important. For all sample periods, the parameter on duration

is negative and the parameter on duration squared is positive. This means that

reliability initially increases during the operating spell, but then peaks and begins

to fall. However, both the increases and the subsequent declines are far less

signi�cant in the 1989-2003 period. Finally, in all samples we observe persistence;

forced outages in one month indicate a signi�cantly greater probability of outages

in the next.

We next review the parameter vector ψom that predicts the likelihood of a

major problem arising during an operating spell. Recall that we do not have
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in mind catastrophic events like the Chernobyl disaster. All else equal, major

problems were least likely to arise in the preTMI and 1989-2003 samples. Data

including the troublesome mid1980s yield higher estimates. The parameter on

plant age is not signi�cant for any sample, but it seems that (young) plants in

the preTMI sample grew unreliable more quickly than (older) plants in later

samples. Reliability fell relatively quickly over the operating spell in the preTMI

sample. If forced outages occurred in the preceding month, then major problems

are more likely to arise in the current month; note that we lack su�cient data

to estimate a parameter in the preTMI sample.

Finally, we review the parameter vector ψmo which gives the probability of

moving from a major problem spell to an operating spell. All else equal, the

probability is quite small in the (small) preTMI sample, and it is relatively

large and stable in other samples. The probability increases with duration in all

samples. Apparently, the probability was much smaller in the mid1980s than in

the preTMI period and in 1989-2003.

10.4.2 Second-Stage Estimation Results

We now examine the second set of parameters. These pro�t function parameters

are conditional on the �rst-stage estimates of the price parameters and transition

probability parameters.

In the estimates reported here, we assume that plants operate under forty-

year licenses. This is counterfactual for some plants, since the NRC speci�ed a

process for obtaining 20-year license extensions. In recent years, some operators

have applied and received these extensions. We will compare 40-year and 60-year

estimates later.
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Table 10.3: Transition Probability Parameters

1/1975-12/1979 1/1975 1/1984 1/1989

1/1984-12/2003 12/1979 12/2003 12/2003

ψrf (1) 0.1496 (0.107) 0.4693 (0.332) -0.0709 (0.138) -0.5597 (0.189)*

ψrf (t) -0.0047 (0.001)* -0.0050 (0.006) -0.0037 (0.001)* -0.0023 (0.001)*

ψro(dt = 1) -3.2027 (0.155)* -186.908 (∞) -3.2098 (0.160)* -3.0582 (0.160)*

ψro(dt = 2) -0.4795 (0.060)* -0.9752 (0.220)* -0.4046 (0.062)* -0.1130 (0.075)

ψro(dt = 3) 0.0899 (0.063) 0.3557 (0.203) 0.0474 (0.069) 0.2841 (0.097)*

ψro(dt = 4) 0.3114 (0.106)* 1.0083 (0.409)* 0.2322 (0.119)* 0.3824 (0.165)*

ψro(dt ≥ 5) 0.4374 (0.186)* 0.2806 (1.343) 0.4463 (0.182)* 0.7046 (0.267)*

ψro((dt − 4)

×(dt ≥ 5))

-0.1801 (0.051)* -0.0048 (0.812) -0.1818 (0.051)* -0.2714 (0.085)*

ψof (1) -0.5374 (0.048)* 0.1487 (0.222) -0.8475 (0.047)* -1.2881 (0.065)*

ψof (t) -0.004 (0.0001)* -0.0047 (0.002)* -0.003 (0.0002)* -0.002 (0.0002)*

ψof (dt) -0.0388 (0.010)* -0.0484 (0.050) -0.0251 (0.010)* -0.0176 (0.012)

ψof (d
2
t ) 0.0006 (0.0006) 0.0008 (0.003) 0.00002 (0.001) 0.00002 (0.001)

ψof (ft = 2) 0.5714 (0.036)* 0.4362 (0.092)* 0.5332 (0.041)* 0.4021 (0.056)*

ψom(1) -7.7606 (0.466)* -8.9300 (2.83)* -7.6875 (0.525)* -8.4049 (0.781)*

ψom(t) 0.0001 (0.002) 0.0135 (0.015) -0.0003 (0.002) 0.0020 (0.002)

ψom(dt) 0.1474 (0.027)* 0.2556 (0.201) 0.1356 (0.028)* 0.1304 (0.045)*

ψom(ft = 2) 1.5749 (0.292)* -112.070 (∞) 1.8344 (0.328)* 2.0270 (0.379)*

ψmo(1) -3.6812 (0.477)* -8.2008 (27.236) -3.7099 (0.475)* -3.6719 (0.567)*

ψmo(dt) 0.05106 (0.02)* 0.4821 (2.374) 0.0517 (0.021)* 0.0528 (0.025)*

NOBS 25900 2309 23713 18878

LL -13540 -1569 -11899 -8745
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Rust and Rothwell incorporated monthly dummy variables and other non-

parametric terms in their speci�cation of the pro�t function. We impose addi-

tional structure in our model, and we also incorporate stochastic prices. The

additional structure comes by de�ning separate revenue and cost functions, and

by allowing seasonal �uctuations only in prices. That is, pro�ts exhibit seasonal

variation only because prices tend to be higher in the summer and winter, and

so revenue tends to be higher in those periods. We assume that costs do not

exhibit seasonal variation.

Pro�t parameters

Estimation periods are identical to the transition parameter estimates above: 1)

a preTMI period from January, 1975 to December, 1979, 2) a postTMI period

from January, 1984 to December, 2003, 3) a combined period, and 4) a period

from January, 1989 to December, 2003.

Despite the di�erences in the treatment of seasonal pro�t variation, and given

the addition of stochastic prices, and although code for this model is very dif-

ferent than that used in Rust-Rothwell, estimates of pro�t function parameters

are similar to the corresponding estimates reported in Rust-Rothwell [56]. This

may indicate that their seasonal dummies primarily were capturing price �uc-

tuations. However, we did not test the signi�cance of cost function dummies in

the extended model. Instead, they were eliminated for sake of simplicity. Note

that the parameters reported in Table 10.4 are normalized cost levels, and so the

values naturally are positive.

Parameter φa=2 gives the monthly cost of refueling. Note that refueling costs

per month seem to have grown signi�cantly. If plants that are refueling get a
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signal that they are free to operate, but instead they continue to refuel, then

their monthly costs increase by φa=2,f=1. This parameter also is larger for later

samples. Given our assumption that the lengths of refueling spells are exogenous,

these indicate that plant operators have become less inclined to begin refuelling

of their plants.

There are three parameters for costs of temporary shutdowns. First, the pa-

rameters φa=3,f=3 gives the monthly cost of a major problem spell. Major prob-

lem spells seem to be about as costly in the 1989-2003 sample as in the preTMI

sample, but both are more costly than in samples that include the mid1980s.

This is a reasonable result for our revealed preference approach, since extended

closures were common following the TMI accident. This indicates, however, a

limitation of our model. We do not take account adequately of regulatory in-

tervention. Many temporary closures were due to mandated inspections and

equipment modi�cations. In such cases, the observed actions were due to reg-

ulatory mandates rather than ordinary pro�t motives. The parameter φa=3,f<3

gives the cost of failing to operate when operations are feasible, and φa=3,f=2

gives the cost of failing to operate when at least one temporary shutdown would

have been required during the month. In the �rst case, it seems that it has

become increasingly costly for plants to forgo the opportunity to produce power.

However, the costs of passing on the opportunity to produce power for only part

of a month have changed little. Note that the latter parameter could not be

estimated precisely with the preTMI sample.

Remaining parameters estimate the costs of producing power. φd,u>0 is a

trend term on the length of the operating spell. Costs may grow slightly more

quickly in later samples than in the preTMI sample so that operating spells
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tend to be shorter. Costs of operating for fractions of available time have grown

substantially and monotonically as the sample periods shift to later dates. Note

that parameter estimates are negative for the costs of producing at full capacity.

This may indicate that operators have a stronger preference for producing at full

power than is explained by our model. A possible reason is that starting and

stopping production is risky and is hard on equipment. Hence, operators prefer

production over refueling or temporary shutdowns, but they strongly prefer to

operate for full months rather than to stop and restart during the month. This

may indicate problems with our assumptions about regulation; that is, that op-

erators' decisions are limited only by technical constraints and not by regulatory

mandates. The �nal parameter, φu=1,f=2, gives the cost of operating despite a

forced outage signal. The large parameter values indicate that such possibly

irresponsible behavior is very expensive and is avoided; such behavior has grown

more costly.

We display the value functions at given price levels in Figures 10.1 and 10.2.

The �gures plot the present value of operations, �rst for electricity prices of $0.03

per kilowatt-hour and then for $0.10 per kilowatt-hour. The results are based on

estimates using the 1989-2003 sample, so that expected price growth is modest

or slightly falling. Three curves are displayed in each, and plant age is on the

horizontal axis. First, we display values for a plant that in in its �fth month of an

operating spell that received a signal that it is free to operate for another month

without problems. Second, we graph the value of a plant in its �fth month of

an operating spell that receives a signal that it is free to operate, but that it

will need to shut down at least once in the following month. Finally, we plot

the value of a plant in its �fth month of operations that receives a signal that a
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Table 10.4: Pro�t Function Parameters

1/1975-12/1979 1/1975 1/1984 1/1989

1/1984-12/2003 12/1979 12/2003 12/2003

φa=2 3.1574 (0.027)* 2.1446 (0.182)* 3.3052 (0.029)* 4.1266 (0.034)*

φa=2,f=1 3.1085 (0.242)* 2.3494 (0.953)* 3.2912 (0.268)* 3.4141 (0.350)*

φa=3,f=3 0.3220 (0.213) 0.4403 (1.575) 0.3335 (0.225) 0.4517 (0.228)*

φa=3,f<3 2.9108 (0.199)* 2.3672 (1.050)* 2.9454 (0.225)* 3.0607 (0.268)*

φa=3,f=2 3.5515 (0.407)* 3.7944 (46.26) 3.5885 (0.411)* 3.5357 (0.497)*

φd,u>0 0.0862 (0.002)* 0.0888 (0.013)* 0.0857 (0.002)* 0.0901 (0.002)*

φu∈(0,.25] 3.9344 (1.720)* 3.5409 (8.187) 3.9988 (1.918)* 4.1224 (2.633)

φu∈(.25,.50] 3.3226 (0.751)* 2.7475 (2.789) 3.4055 (0.851)* 3.4900 (0.983)*

φu∈(.50,.75] 2.4085 (0.223)* 1.9268 (0.768)* 2.4845 (0.238)* 2.5151 (0.276)*

φu∈(.75,1) 1.0996 (0.044)* 0.2553 (0.108)* 1.2289 (0.054)* 1.2946 (0.071)*

φu=1 -1.437 (0.007)* -1.005 (0.089)* -1.487 (0.008)* -1.612 (0.009)*

φu=1,f=2 5.4531 (1.20)* 3.2571 (1.060)* 6.1085 (2.682)* 6.1708 (3.257)

NOBS 25900 2309 23713 18878

LL -23753 -2147 -21551 -16747
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Figure 10.1: Firm Values at Low Prices

major problem has arisen. We see that there are signi�cant di�erences in values

between plants that run at 100% capacity in a given month and an otherwise

identical plant that runs at limited capacity. There also is a signi�cant loss of

value when major problems arise, so that operators are more likely to close their

plants permanently.

Note that the seasonal volatility of electricity prices causes a great deal of

volatility in �rm values. While the apparent e�ects on value of price average

growth rates seem small, we do observe greater plant values at higher electricity

prices.
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Figure 10.2: Firm Values at High Prices
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10.4.3 Goodness of Fit

We can get a sense of the performance of our model, and its capacity for replicat-

ing the behavior of plant operators, by comparing the frequency of each action

observed in the data to the aggregate probabilities predicted by the model. Fol-

lowing the notation of Rust and Rothwell [56], we compute the nonparametric

choice probabilities as

P̂ (a|X) =

∫
x∈X

P̂ (a|x) F̂ (dx|X) ≡ 1

N

N∑
i=1

I {ai = a, xi ∈ X}

where a is the action chosen by the operator, x is a state vector from the set

of states X in a given partition of the data set. Here, X is the entire data set.

In short, we calculate the nonparametric choice probabilities as the number of

times a particular action is chosen divided by the total number of observations.

We summarize the model's predictive accuracy as

P
(
a|X, θ̂

)
=

∫
x∈X

P̂
(
a|x, θ̂

)
F̂ (dx|X) ≡ 1

N

N∑
i=1

P
(
a|x, θ̂

)
I {xi ∈ X}

Employing the estimated parameters, we sum the model's choice probabilities for

each feasible action, given the observed combination of state variables. We divide

the sum by the total number of observations to get an estimate of the probability

that a given action will be chosen, conditional on the state variables. In this case,

we do not partition the set of state variables, so that all observations are included.

The nonparametric and parametric choice probabilities are reported in Table 10.5

for the 1989-2003 sample period. We �nd, as did Rust and Rothwell, that the

model seems to replicate very well the choice probabilities at the aggregate level.
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Table 10.5: Aggregation of Choice Probabilities

Nonparametric Parametric

Shut Down 0.0006 0.0009

Refuel 0.1368 0.1362

u = 0 0.0634 0.0639

u ∈ [1, 25) 0.0069 0.0070

u ∈ [25, 50) 0.0132 0.0133

u ∈ [50, 75) 0.0348 0.0354

u ∈ [75, 100) 0.1190 0.1206

u = 100 0.6253 0.6228

10.4.4 Structural Stability Test Results

We turn now to the question of whether the behavior of nuclear power plant

operators changed signi�cantly within our sample period from 1975 to 2003. In

their more limited model, Rust and Rothwell [55] discovered that parameter

estimates shifted signi�cantly when they split the sample. They attributed most

di�erences to optimal responses to regulatory changes following the Three Mile

Island accident in 1979.

Rust and Rothwell discovered several di�erences in their results, depending

on the sample periods. First, operators shifted from 12-month operating cy-

cles in the 1970s to 18-month cycles in later periods, on average. Second, they

estimate that over 90% of expected discounted pro�ts disappeared for reasons in-

cluding stricter safety regulations, increases in expected decommissioning costs,

and stricter standards for price setting that forced owners to bear cost increases.

Finally, they noted a decrease in the frequency of �imprudent� or reckless behav-
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ior.

In our earlier work in Chapters 5 and 8, we discovered reasons to question

whether the conclusions reached by Rust and Rothwell are valid. More precisely,

we question not their observations but rather their conclusions. We found evi-

dence of a signi�cant structural break in electricity prices that occurred in the

mid1980s. We assume that unit revenues earned by power plant operators expe-

rienced a corresponding structural shift, so that rapidly-growing price patterns

in the 1970s shifted to a gradually falling relative price trend. The simple fact

that relative prices grew rapidly in the early part of the sample period leads us

to question the assumption that prices were stable and that zero price growth

was a reasonable assumption to simplify the model. Of particular concern is the

fact that the pattern of price growth shifted at roughly the same time Rust and

Rothwell observed changes in the behavior of power plant operators. In addition,

the introduction of signi�cant seasonal volatility likely a�ects the timing of op-

erators' decisions. We thus believe that Rust and Rothwell assumed too quickly

that changes in operator behavior should be explained as optimal responses to

changes in regulation. We have no reason to doubt their reasoning, for certainly

there were many regulatory changes that did a�ect behavior. We must remem-

ber, however, that operators also respond to economic changes, including shifts

in demand and prices. We studied this problem using the industry model of

Chapter 5.

We thus attempt to reconstruct the Rust-Rothwell structural stability test [55,

p. 35] to determine whether the behavior of the �rms remained consistent over

time. This time, however, the model is extended in two important ways.4 Less

4Another di�erence is that we use the extended version of their model developed in [56].

302



important, perhaps, is that we extend the data set from 1993 to 2003. Our

sample periods thus are 1975 to 1979 and 1984 to 2003. The more important

change, and the one of particular interest, is the inclusion of stochastic and po-

tentially trended prices. The allowance of di�erent price structures will allow us

to consider whether remaining parameters, and in particular the pro�t function

parameters, change in response to regulatory reforms.

We might expect that the increase in seasonal volatility, as was noted earlier,

might explain the increased adherence to strict 12 or 18-month operating cycles,

though it does not explain the transition from 12 to 18 months. We might

suppose that the change in relative price trends, from increasing to decreasing,

might explain some of the disappearance of estimated pro�ts noted by Rust and

Rothwell and also reported here. Of course, no change in electricity prices will

explain the trends in operating costs observed in Chapter 9, so this explanation

too is incomplete. Still, it seems that prices should matter a lot, especially given

the sharp change in price growth. We test the parameter estimates for our model

in an attempt to discover whether our extended model captures adequately the

causes of operator behavior or whether there remain unexplained changes that

we too might attribute to regulatory e�ects.

We concluded already that there is a structural break in prices. We now con-

sider changes in the evolution of other state variables. We employ a likelihood-

ratio test on the hypothesis of stable pro�t function parameters. Again, this test

excludes the price equation, although results of a separate test were reported

earlier. Using results reported in Table 10.3, we �nd that

χ19 ∼ −2 lnλ = −2 ln
−1569.6− 11899.6

−13540.2
= 0.01
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The null hypothesis of structural stability for the discrete stochastic state vari-

ables cannot be rejected.

We now turn attention on pro�t function parameters. These estimates are

conditional on the �rst-stage estimates of transition function parameters. The

test utilizes results reported in Table 10.4. Given the test result

χ12 ∼ −2 lnλ = −2 ln
−2147− 21551

−23753
= 0.0046

we cannot reject the null hypothesis of structural stability.

What should we conclude about the stability of our model? First, caution is

in order. Before making bold claims about the superiority of this extended model,

the results should be subjected to further analysis. On the other hand, the test

results lend support to our arguments that the Rust-Rothwell conclusions were

misleading, and that demand-side changes explain some of the observed patterns

in operator behavior. Regulatory changes certainly did a�ect behavior within

the nuclear industry, and we should examine further the e�ects of regulation by

extending this work according to our industry modeling e�orts.

10.5 Extensions and Applications

In this section, we extend and apply the dynamic programming model. We begin

by estimating parameters for the model assuming that �rms operate with 60-

year licenses. Next, we estimate a model in which �rms face the possibility of

a serious accident with corresponding costs and liability. Finally, we apply our

earlier estimates to perform historical simulations and construct forecasts.

In addition to the basic 40-year model described above, we constructed and
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estimated two alternative models. First, we estimated a 60-year version to ac-

count for available 20-year extensions to operating licenses that �rst became

available in the 1990s. Second, we extended the basic model to include risks of

serious accidents with corresponding operator liability. Both alternatives were

estimated over the 1989-2003 sample period. Parameters are displayed in Ta-

ble 10.6. The �rst column of the table replicates the pro�t function parameter

estimates reported above for the 1989-2003 sample. The center column reports

estimates for a model with 60-year operating licenses. The �nal column reports

estimates for a 40-year model with risk and liability. Details are provided be-

low. Transition probability estimates essentially remain unchanged from those

reported earlier for the same sample, and so we do not report them again.

10.5.1 60 Year Operating Licenses

We consider possible twenty-year extensions to the original 40-year operating

licenses. The legislation to allow plants to apply for license extensions was not

passed until well after the start of the data sample in January, 1989. Further, not

all plants operating at the end of the sample in 2003 received extensions, applied

for extensions, or even stated intentions to apply. However, we might suppose

that forward-looking operators anticipated by 1989 or so that license extensions

would be o�ered in the future, and we might further assume that they formed

their operating policies accordingly. Hence, we estimate parameters for a 60-year

model using an otherwise unmodi�ed version of the model described above. We

compare the parameters to those estimated allowing only a 40-year operating

horizon. Parameters for the 40-year model are shown in the �rst column of

Table 10.6 and parameters for the 60-year model are shown in the second column.
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Table 10.6: Alternative Models

Base Model 60 Year Model Risk&Liability

1/1989 1/1989 1/1989

12/2003 12/2003 12/2003

φa=2 4.1266 (0.034)* 4.5610 (0.033)* 3.7415 (0.035)*

φa=2,f=1 3.4141 (0.350)* 3.3063 (0.328)* 3.3780 (0.343)*

φa=3,f=3 0.4517 (0.228)* 0.5455 (0.225)* 0.0534 (0.228)

φa=3,f<3 3.0607 (0.268)* 3.1162 (0.275)* 2.6619 (0.267)*

φa=3,f=2 3.5357 (0.497)* 3.4706 (0.502)* 3.5399 (0.497)*

φd,u>0 0.0901 (0.002)* 0.0987 (0.002)* 0.0903 (0.002)*

φu∈(0,.25] 4.1224 (2.633) 4.0007 (2.655) 3.7377 (2.676)

φu∈(.25,.50] 3.4900 (0.983)* 3.3547 (0.985)* 3.0962 (0.991)*

φu∈(.50,.75] 2.5151 (0.276)* 2.3839 (0.276)* 2.1136 (0.276)*

φu∈(.75,1) 1.2946 (0.071)* 1.1582 (0.071)* 0.8923 (0.071)*

φu=1 -1.612 (0.009)* -1.6918 (0.009)* -2.019 (0.009)*

φu=1,f=2 6.1708 (3.257) 6.0832 (3.081)* 6.1991 (3.334)

NOBS 18878 18878 18878

LL -16747 -16893 -16747
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This is di�erent than the approach taken by Rust and Rothwell [56]. Their

data set ended before any plants obtained license extensions. They estimated

parameters using a 40-year model, and then they solved a 60-year model using

the previous parameter estimates. Because we have a longer sample period, and

because this extended sample includes observations for plants that have obtained

extensions, we proceed di�erently.

Consider the estimates reported in Table 10.6. First, note that the parameter

estimates for the 40-year and 60-year models are very similar. However, the log-

likelihood values suggest that the 40-year assumption �ts the data slightly better

than the 60-year model. We did not test for signi�cance of the di�erences, and

we cannot make claims about the importance of these small di�erences.

The cost of refueling is slightly higher in the 60-year model, but the cost of

entering a refueling spell despite freedom to operate is lower. The monthly cost

of a major problem spell is higher, as is the cost of an unforced shut down. If

an operator chooses to close for the entire month, with the alternative being to

operate for only part of the month, then this choice is less costly than under

the 40-year horizon. The increase in costs with duration of operating spells is

virtually unchanged, as are monthly costs for operating at rates greater than

zero and less than 100 percent. The bene�t of running at 100 percent is slightly

higher, but the cost of ignoring problem signals is lower. A number of the

di�erences noted here may be explained by operators taking greater care to

maintain their plants in order that the plants may remain operable for greater

lengths of time.

We thus observe few di�erences in the estimated parameters. A possible

reason is that regulators force operators to behave conservatively, so that �rms
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operating under 40-year horizons appear to have longer-run objectives. We re-

turn to these topics later.

We display �rm values in Figure 10.3, assuming at each age plants are in the

�fth month of an operating spell and receive either a signal to operate without

problems, a signal that operations are feasible but problems will occur, or a signal

that a major problem has occurred and an extended shutdown will begin. Note

that maximum values are realized at about 350 months, in contrast to maximum

values at 225 months when 40-year licenses are enforced. Also, maximum values

are over 60 units versus the 50 units seen earlier in Figure 10.1. These di�erences

are the amounts operators with plants of a given age facing the given vector

of state variables would be willing to pay for 20-year extensions to operating

licenses.

10.5.2 Risk and Liability

Our base models do not incorporate the possibility of serious accidents like the

one at Chernobyl or even at Three Mile Island. Incorporation of such details

requires that we go beyond standard econometrics, for such events are very rare.

We wish to determine whether we can detect in the data responses by operators

to such risks and the corresponding liability faced by plant owners.

We begin the analysis of risk and liability by introducing simple features of

risk and liability to our model. We allow plants to receive a stochastic signal

indicating whether or not a signi�cant accident occurs. We calibrate the risk of

an accident to 0.008% per month, and we arbitrarily set the cost to the plant

operator of an accident at 5,000 units. This roughly is 100 times higher than the

maximum plant values of about 50 units displayed earlier in graphs. We have in
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Figure 10.3: Firm Values with 60-Year Licenses
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mind that this liability covers both onsite damages to the plant and workers and

liability for o�site damages under the Price-Anderson Act. The implementation

is rather naive, in that we distinguish only between the accident risk (zero) when

the choice is made to decommission the plant and the given risk otherwise. In

reality, risks are relatively high when the plant is in the process of being powered

down or restarted. However, we did not account for these details, although such

extensions would be simple given the necessary risk assessments. Parameters

were estimated on the 1989-2003 data set with 40-year licenses assumed; they

are reported in column three of Table 10.6.

The log-likelihood values virtually are identical for this and the base model. It

appears that the two versions �t the data equally well. Still, parameter estimates

seem signi�cantly di�erent. The cost of a refueling shutdown is lower, but the

cost of refueling when operating is possible is about the same. The cost of a

major problem spell is higher, although the parameter estimate is less precise.

The cost of remaining idle during an operating spell is somewhat lower. Costs

increase at about the same rate during an operating spell, but otherwise the cost

of operating at partial capacity generally is lower. Pro�ts at full capacity are

greater, and the cost of �imprudent� behavior is the same.

We see that such simple introductions of risk and liability are of limited

value. Far more useful would be to consider the e�ects of risk and liability on

regulation, and then to consider the e�ects of all three on the �rm. We return

to these matters below. Also useful would be to consider the variations in risk of

various activities. These likely would create greater di�erence in our parameter

estimates.
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10.5.3 Simulations and Forecasts

We employ our parameter estimates using the 1989-2003 sample, assuming 40-

year operating licenses, to simulate the history of the Three Mile Island Unit 1

nuclear power plant. We then forecast the remaining years of operation for the

plant, still assuming a 40-year license.

The historical simulation is intended to indicate the ability of the model to

predict behavior, given the condition of the plant. We thus construct our simula-

tion by observing actual state variables and then determining the corresponding

activity o�ering the greatest value. We perform the simulation from February,

1989 to November, 2003.

Historical activity data is displayed in Figure 10.4, and simulations are dis-

played in Figure 10.5. In general, it appears that the model does a good job at

predicting the optimal activity given current plant conditions.

We employ the price parameters and transition probability parameters for

other state variables, together with the pro�t function parameter estimates, to

construct a forecast for Three Mile Island from November, 2003 to January,

2014. We ran 100 forecasts, with each starting with the actual November, 2003

vector of state variables. We calculate average predicted utilization rates in each

forecast period. These predicted rates are graphed in Figure 10.6. Note that

the plant was 359 months old at the end of our data series. We assume that the

original 40-year operating license remains in place, so that the plant must close

by 480 months of age. Our model predicts that, if possible, operators will run

the plant to the end of its legal lifespan.

Suppose that in 2004, electricity prices suddenly reverted to their 1975-1979

pattern of high growth rates. Given this assumption, and maintaining the cost
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Figure 10.4: Three Mile Island Activities
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Figure 10.5: Three Mile Island Simulations
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Figure 10.6: Three Mile Island Forecast
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Figure 10.7: TMI Forecast: High Price Growth

and transition function parameters for the 1989-2003 sample, we constructed an

alternative forecast for TMI. We maintain the assumption of a 40-year operating

license. The forecast is shown in Figure 10.7.

Finally, we forecast utilization rates for TMI assuming the 1989-2003 price

pattern but with a 60-year operating license. The result is shown in Figure 10.8.

In all cases, we see that utilization rates average about 80%, and perhaps the

average declines slightly with plant age. In all cases, TMI is predicted to run

until forced to close. We observe few noticeable di�erences between forecasts

with low and high-growth price assumptions, although di�erences may be more

apparent using other measures. In the same way, few obvious di�erences exit in

the forecast assuming 60-year licenses.
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Figure 10.8: TMI Forecast: 60-Year License
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10.6 Regulatory Factors

In Chapters 2 and 4, we considered industry models in which �rms operated un-

der the supervision of regulators. We saw that in some cases in which regulators

had the authority to restrict �rms' behavior, they would choose not to do so. In

other cases, they would set policies that at least some �rms would �nd binding.

In the model of the �rm developed in this chapter, we do not account for

regulation. We do not claim that �rms operate without oversight, and neither

do we assume that �rms' decisions are unencumbered by regulatory policies.

Instead, we ignore explicit accounting for regulation solely for sake of simplicity.

We might consider the e�ects of these omissions on our model through use of

our earlier work. That is, suppose the real world was like the model with both

regulation and liability, but suppose we modeled the world with a liability-only

model. What di�erences should we expect between our results and reality? By

comparing the results of our two models from Chapter 2, we can learn of po-

tential problems with the results of the present chapter. Of course, the present

model omits explicit investment decisions, while regulation in the earlier model

took the form of restrictions on investment decisions. Also, we will perform

the comparison using results for the static model because we have more com-

plete analysis and descriptions for that version. Despite such discrepancies, the

comparison may provide useful guidance for our dynamic programming work.

Key results in the Chapter 2 liability-only case are that only �rms facing

full liability invest at the socially optimal level. Firms that receive liability

protections invest at suboptimal levels. Firms may exit the market sub-optimally

if pro�ts are too low. Liability protection may be preferable to none if consumers

value the bene�ts of higher consumption to the safety of zero production and
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if liability protections leave unpro�table operations viable. Firms' investment

decisions are not a�ected by regulators.

In Chapter 2, we considered three cases in which both regulation and liability

are applied. First, there is the possibility that regulation will be set so that it

fails to bind for any �rm. In that case, there are no observational di�erences

between the liability-only and the liability-and-regulation cases. If this re�ects

reality, then there may be no problems with the current dynamic programming

model.

In the second and third cases, regulation was set to high levels so that all �rms

found regulation binding. The primary di�erences between the cases are whether

�rms remain pro�table and whether all �rms receive liability protections. If the

second case is true, then some �rms receive protections, all �rms �nd regulation

binding, and at least some �rms are pro�table. If the third case were true,

then all �rms receive protections, all �rms �nd regulation binding, and no �rm

is pro�table. It seems that neither case is quite right, for we believe that some

�rms are pro�table but that all receive bene�t of liability protections. We believe

that both are correct in suggesting that regulation binds for all. We noted in

the applications and extensions section of Chapter 2 ways that the extreme

implications of the model might be lessened. Some of the suggested ways extend

the results for the third case, so that all �rms receive protection, all �rms �nd

regulation binding, and some �rms are pro�table. Because generally it seems the

most in line with reality of all our models, we will pursue comparisons between

this third case and the liability-only case.

In our industry models in Chapters 2 and 4, there were explicit investment

costs but no indirect output costs to investment. We considered direct and out-
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put costs to investing in Chapter 5. In this chapter, we do not consider explicit

investment decisions, nor do we include restrictions of investment on output.

Investment is lurking just below the surface, however, since most investment

typically is done when plants are refueling or operating at zero capacity. We

might assume that plants are investing when we observe either activity. In prin-

ciple, direct investment costs then would be included in estimated parameters

for those activities, and indirect costs would be given as the opportunity cost of

forgoing production at full capacity.

10.6.1 Investment

Because the activities of nuclear power plant operators are regulated heavily,

including their investment activities, then we expect to observe "suboptimal

behavior" recorded in our data, in contrast to the "optimal" behavior otherwise

recommended by our dynamic programming model. In the sense provided by

models in Chapter 2, regulators put lower bounds on investment levels, so that

�rms invest more than they would prefer. In the dynamic programming model,

this would be observed as behavior that seems overly conservative. Speci�cally,

we would see plants spending too much time refueling and operating at zero or

partial capacity.

Would our estimation technique actually measure direct investment costs?

Because �rms choose to refuel more often than predicted, the revealed prefer-

ence technique suggests relatively lower costs for those activities compared to

the alternatives. Hence, regulation restrictions are at odds with our pro�t maxi-

mization assumptions, and the relative costs of refueling and limited production

may be underestimated.
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10.6.2 Short-Run vs. Long-Run Pro�ts

Because of "excessive" observed investment levels, pro�ts would appear too low

given the predictions of the dynamic programming model. It might be argued

that regulators care more about the long run than do operators who prefer short-

run pro�ts. However, in our model operators do care about the long run, for

following the �ndings of Rust and Rothwell we calibrate a small discount factor.

Still, �rms may have too little incentive to consider the e�ects of their behavior on

consumers, thus giving regulators reason to step in. The restrictions they impose,

which presumably are intended to enhance safety, could improve expected long-

run pro�ts while diminishing pro�ts in the short run. This would be the case

if greater investment countered depreciation of the plant and enhanced safety.

Investment thus could extend the useful life of the plant and increase it reliability

as it ages. Hence, regulation could make it appear that �rms care more about the

future than in fact they do. Then short-run pro�ts would appear lower than the

model would predict, and the expected value of future pro�ts would be higher.

This might explain the Rust-Rothwell �ndings that the discount factor is very

small.

10.6.3 Exit Decisions

It is di�cult to determine the e�ect of "excessive" investment on �rms' decisions

to decommission their plants. If higher investment leaves the plants more reli-

able and safer, then serious problems should occur less frequently and expected

liability should be lower. On the other hand, lower short-run pro�ts would slow

recovery of repair costs. This would make operators more inclined to exit when

major problems arise. We thus might expect to see too many �rms exit compared
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to the predictions of our model.

In conclusion, we need to be careful as we interpret the parameter estimates

and results of our model. More work is needed to address these problems. One

possibility is to follow the lead of our industry model by incorporating the reg-

ulatory decisions. The regulations could take the form of restrictions on the set

of feasible activities. Another possibility is to incorporate the cost data into

our estimation process. This may help to reconcile the unlikely pro�t function

implications of our revealed preference approach given unobserved regulations

by forcing the estimates to match available �nancial data.

10.7 Possibilities for Future Work

10.7.1 Electricity Supply

Following Rust [52], we can employ our model to construct an aggregate supply

function. That is, we can determine the relationship between aggregate output

generated by nuclear power plants and electricity prices. Our estimation of op-

timal responses to electricity prices provides su�cient information to compute

an industry supply curve by computing average optimal output at various elec-

tricity price levels. As in Rust's work, we could compute supply curves over a

much greater price range than has been observed in the price sample. Our struc-

tural, �bottom-up� approach allows results superior to those of reduced form

estimation.
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10.7.2 Optimal Closures

Rust and Rothwell [56] constructed industry output forecasts based on optimal

closure projections. In their model, prices were constant, or at least prices had

a constant mean. Prices in our model are not stationary. We estimated price

equations both in high-growth and low-growth eras. If we assume that future

price growth corresponds to growth in one of the past eras, then we could solve

the model accordingly. We then could project optimal operator responses based

on the price forecasts.

Determination of aggregate optimal output and closures would be useful di-

rectly, and the results could be used in extended studies to provide still more

value. Direct results include aggregate output and industry capacity. Of course,

we need to incorporate information on plant sizes, together with our model's

optimal output and closure decisions.

Optimal closure is of particular importance. First, when plants close in su�-

cient numbers to signi�cantly a�ect electricity supplies, we expect a correspond-

ing a�ect on electricity prices. This endogeneity is not built into the present

model, but it could be captured in an extended model. Second, we expect very

signi�cant investment in electricity generation equipment, both to meet new de-

mand and to replace lost capacity as existing nuclear plants are decommissioned.

Results from our model thus could be used to forecast needed replacement invest-

ment. Finally, closure of nuclear plants would have environmental consequences

as well. If we suppose that nuclear capacity will be replaced with coal and nat-

ural gas plants, then closure of nuclear facilities means an increase in carbon

dioxide and other emissions. Together with a set of assumptions about replace-

ment technologies and emissions speci�cations for those technologies, our model
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could be used to predict changes in air pollution.

10.7.3 Incorporation of Financial Data

In Chapter 9, we developed sets of monthly, plant-level operating data and an-

nual, site-level �nancial data. Our unreported work includes establishment of

matches between the data sets. We intend to initiate panel data analysis of the

matched data set, and we believe that even simple regression techniques may

reveal interesting patterns and relationships in the data. While earlier versions

of both data sets were analyzed elsewhere, we know of no other attempts to

investigate the matched sets.

A potentially interesting use of the matched data is the incorporation of

�nancial data into our dynamic programming model. Currently, our model em-

ploys no �nancial data. We attempt to uncover features of the �rms' pro�t

function by examining their behavior. Theoretically, these revealed preference

techniques will lead us to the truth about the nature of pro�ts, but so far we

have no veri�cation, and we have not exploited all available data. So far, we

know of no attempts to employ both operating and �nancial data in a dynamic

programming model. However, we believe such techniques can be developed,

and our model would provide a suitable demonstration of these extensions to

the dynamic programming literature.

Cost Models

Before we begin employment of the cost data, it is useful to review other attempts

in the literature. The 1995 EIA study [2] likely provides the most comprehensive

and recent analysis of nuclear power plant costs. Available cost data, including
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the cost data used in that study, are available only in annual frequencies. Our

dynamic programming model, on the other hand, operates on monthly frequen-

cies. Assuming that the frequency problems can be resolved, work published by

the EIA may provide guidance in modeling cost minimization.

In their model [2, p. 28], four factors determine nuclear power plant operating

costs:

1. NRC regulatory activity and industry experience

2. Plant aging and utility/operator experience

3. Economic and State regulatory incentives to improve performance

4. The prices of inputs used to generate electricity from a nuclear power plant.

The present value of costs are given by a constrained minimization problem where

the objective function integrates discounted expected future costs of investment

goods, maintenance, replacement power, and other inputs. The integral equation

is minimized, though minimization is subject to two constraints: 1) capital stock

changes with new investment and the depreciation of existing capital, where

depreciation depends on maintenance expenditures and utilization rates, and 2)

electricity sales must be provided by replacement power or produced by the plant,

where production depends on capital, utilization, and other inputs. If safety and

output are modeled as joint goods, then a third constraint can be added, where

safety is a function of capital and other inputs. A DOE/EIA publication [1] and

Hewlett and McCabe [25] provide similar models in discrete time. As discussed

in the EIA 1995 update, those works show the continuous time model to be

equivalent to a dynamic discrete time model with myopic expectations; Hewlett
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and McCabe provide evidence to support the assumptions of myopia. Clearly,

this warrants further research given other evidence suggesting sophistication of

plant operators; our dynamic programming models rely on the importance of

such forward-looking behavior. Authors of the 1995 EIA study partially solve

the model described above and estimate parameters of the resulting equations

with annual data.

Writers of the 1995 EIA report noted patterns in the cost data that we re-

ported earlier. Real total nonfuel and operating costs per kilowatt grew rapidly

from the mid1970s to the mid1980s, but total costs were stable through the mid

1990's. Operating and maintenance costs per kilowatt continued to increase,

but the growth rate fell sharply in the late 1980s. Capital addition costs per

kilowatt of capacity peaked in the mid1980s and then gradually fell through the

early 1990s. At the time, they determined that declines in costs per kilowatt-

hour partly were due to modest factor price reductions but primarily were due

to increases in productivity. These trends were not homogeneous across reactor

types (pressurized or boiling water), vintages, or single versus multiple reactor

plants (Rothwell [48]). We might suppose that the bulk of recent pro�tability

improvements also are attributable to productivity gains. Perhaps in future work

we should continue to give primary attention to productivity and related techno-

logical development and output decisions, along with regulation that constrains

the range of operators' choices and thus may limit output in the short run. Still,

an ideal model would include at least an index of factor prices.
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Incorporation of License Extension Costs

In their original licenses, power plant operators typically received permission to

generate at 95 percent of designed capacity to provide a safety margin. Many

plants have applied for increases of allowed rates, which could lower costs per

kilowatt and increase industry capacity by 5730 MWe by the mid2000s (Quinn,

et al [44]). Hagen, et al [22] document estimates of 10,000 MWe, but claim

that these estimates are unattainable. Capital cost expenditures are required

for these uprates, although the costs are lower than for equivalent expansion of

capacity with competing technologies, and operating costs per kilowatt of capac-

ity also should be lower. Still, there is much uncertainty in cost estimates, and

some reactor designs have much greater potential for expanded capacity. These

investment decisions, and certainly the resulting changes to the cost structure

and to output, should not be ignored.

Our model assumes that plants' cost structures do not depend on plant size.

Of course, it would be interesting to extend the model to allow di�ering capacity

levels. Even without capacity detail, it would be interesting to investigate our

model's implications for whether capacity uprate costs would be worthwhile in-

vestments. After incorporating available �nancial data so that our model's unit

pro�t function is de�ned in terms of dollars, we could compute total plant pro�ts

before and after capacity expansion. If the di�erence is greater that expected

expansion costs, then we might conclude that such plants ultimately will choose

to expand.
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10.7.4 Investment and Learning

Signi�cant learning e�ects are realized at individual reactors, within groups of

reactors owned by single �rms, and across the industry (Rothwell [45], David

and Rothwell [35], Lester and McCabe [33], Lewis and Yildirim [34], Zimmer-

man [63], and EIA [2]). An unexplored topic is the bene�t obtained from pooling

knowledge within international �rms; the matter is relevant given the recent pur-

chase of three American reactors by British Energy, which operates 15 reactors

in the UK (although the technology employed in the UK plants is somewhat dif-

ferent than technology employed here). Rothwell summarizes the consolidation

among domestic NPP's, which may yield bene�ts of shared knowledge and other

e�ciency gains (Probability Distributions [50]; Risk of Early Retirement [48]).

Information may be shared among operators via industry organizations (e.g.

INPO �facilitates communication among nuclear utilities on issues related to

plant safety and reliability,� Lester and McCabe [33]) and by regulators. The

bene�ts of pooled experience are limited by the lack of standardization of do-

mestic NPP's (Lester and McCabe [33], and David and Rothwell [13, 35]; Roth-

well [46] discusses the related matter of the e�ect of organizational structure on

e�ciency). Rothwell suggests that �it is likely that the owners of noncompeti-

tive units will either (1) try to sell their units to or merge with more e�cient

managers rather than retire them early or (2) organize themselves into coordi-

nating management groups. . . � [48]. If our modeling e�orts of the nuclear power

industry are expanded to incorporate these possibilities, predicted closures may

fall as projected pro�tability increases. While the task of disentangling learning

from other e�ects like age, regulation, and technological change is formidable,

the papers above include a variety of methods to measure learning within and
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among NPPs.

Issues in Investment in Nuclear Capacity

Investment decisions are critical to the successful operation of NPP's. Invest-

ment is not addressed directly by our dynamic programming model, although it

is addressed in the EIA's cost model [2]. Our work on liability and regulation

includes detail on certain types of investment, including investment in main-

tenance and safety enhancements. Our summary of cost data includes three

spending categories: operations and maintenance, fuel, and capital additions

expenditures.

Given the increasing probability of new construction of NPPs, we could use

our model to compute the value of a new plant. Of course, this would mean

that we implicitly assume that new plants would be built with the same tech-

nologies as existing plants, so that the structure of their operating costs and the

evolution of their state variables would be identical to those of plants in our sam-

ple. If the present value of a new plant exceeds the expected construction and

�nancing costs, then we might conclude that new construction will take place.

New NPP's currently cost about $2000 per kilowatt, an amount substantially

greater than the $500/kW for existing plants (Rothwell [50]) and the relatively

low capital costs for coal and gas plants (Hagen, et al [22]). Other authors [6]

make the same point. Still, energy companies recently have announced plans

to build new plants, and regulators are granting permits and negotiating tax

incentives. Plants that are most likely to begin operations are new reactors at

existing sites, partially constructed plants that currently have been abandoned,

and plants that currently are shut down because of damage or unfavorable eco-
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nomic conditions (Hagen, et al [22]).

There are signi�cant learning e�ects in the construction of new plants; con-

struction experience in other countries could lead to lower costs here. Zimmer-

man [63] documents learning-by-doing e�ects and improving accuracy of cost

expectations. In past decades, costs initially were underestimated signi�cantly;

economies of scale were overestimated in the jump from small government-

sponsored demonstration projects to large commercial plants. The experience

of the French nuclear industry suggests costs can be lowered substantially with

standardization of technology, the operation of multiple reactors by single �rms,

and consolidation of regulatory authority (David and Rothwell [13]). Domestic

adoption of technologies proven elsewhere may grant bene�ts of standardization.

Chances of streamlining the regulatory process are uncertain in the current era of

market restructuring. Some bene�ts of consolidation of existing plants likely are

realized already (Rothwell [50]); whether the e�ciencies of operating multiple

existing plants will extend to e�ciencies in building new plants is not clear.

Ellis and Zimmerman [18] note that the Clean Air Act improved the ability of

NPPs to compete with fossil fuel alternatives; the e�ects of carbon taxation may

similarly make NPPs more competitive in the future. Rothwell and Eastman [51]

document periods in the late 1970s and early 1980s when the realized rate of

return and the allowed rate of return were less than the cost of capital. A num-

ber of authors have addressed similar matters regarding NPPs in restructured

markets.

Even without construction in new plants, output likely will continue to in-

crease at existing plants. Capacity factors and reliability have been increasing

for over a decade; even higher utilization rates are projected (for example, see
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the Energy Outlook [4]). Understanding of the causes of the U-shaped capacity

factors displayed in Chapter 9, where performance initially improves and then de-

clines with plant age, is important to predicting future performance. Signi�cant

e�ects on utilization include regulatory e�ects, learning-by-doing, technological

improvements, expenditures on maintenance and other improvements, and the

e�ects of economic and regulatory incentives (DOE [2]). Examination of the

record of new construction and utilization of competing technologies, especially

coal plants, may shed light on the operation of NPPs. There is some evidence

that such phenomena that �rst seem peculiar to nuclear plants in fact extend

to competing generators (see, for example, Ellis and Zimmerman [18]). For ex-

ample, low utilization in the 1980s may be the result of excess capacity caused

by a decrease in the growth of demand. The statistics also may be misleading,

since even among NPPs, �only Babcock & Wilcox (the manufacturers of TMI)

reactors experienced a signi�cant decrease in productivity after 1979,� but their

struggles pulled down the industry average productivity (Rothwell [45]).

These investment decisions, and certainly the resulting changes to the cost

structure and to output, should not be ignored.

10.8 Conclusions

We constructed and solved a forward-looking model of nuclear power plant op-

erations. Important extensions of our work relative to earlier e�orts include the

addition of price equations and incorporation of the risk of serious accidents.

More work is needed to expand our results and to con�rm them. However, ini-

tial results indicate that the mid1980s change in price structure may account for
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structural instability observed in earlier models.

Our model of power plant operators summarized key features of the fuel

cycle and other technological factors in a vector of state variables. Given the

current realization of plant conditions, and given current and expected electricity

prices, operators choose a feasible activity to carry out in the current month.

We found our model capable of reproducing observed behavior with a great deal

of accuracy.

Our work shows the importance of considering demand-side factors when

modeling nuclear power plant operations. Extensions of earlier work to incorpo-

rate electricity prices indicates that prices signi�cantly a�ect operator behavior.

Earlier work seemed to indicate that changes in regulation were responsible for

changes in plant values and in operator behavior. Our work shows that at least

some of the observed changes in fact were due to changes in the price structure.

We employ the model in the study of e�ects of license extensions o�ered to

operators in the 1990s. As we found in Chapter 5, and as earlier writers found,

the values of plants increased signi�cantly when extensions became available.

We also �nd evidence that operators take greater care of their plants in order

that they might survive to greater ages.

We incorporate details of accident risks and liability. In general, more work

is needed to incorporate estimates of risk that depend on plant activities. Still,

our simple implementation of risk and liability information shows that optimal

policies do respond to these factors.

We noted a number of possible extensions to our work. Perhaps the extension

with the greatest potential is to incorporate �nancial data to re�ne our estimates

of plant pro�ts. We already have accumulated most of the necessary data to
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support this work, as we reported in Chapter 9. We intend to focus considerable

e�ort on this extension.
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Chapter 11

Conclusions

11.1 Conclusions

We set out to build a unifying model of the nuclear power industry to make

sense of key factors in a complicated market. The work began our e�orts to

form a framework upon which future studies may be built. We established

an admittedly abstract model of the nuclear power industry in order to guide

construction of more realistic economic models. We then built models of the

industry with greater realism, guided by the lessons learned in building the

industry models and analysing their properties. Along the way, we gained a

better understanding of this industry which remains much studied but little

understood.

11.1.1 What We Did

We constructed and analyzed nuclear power industry data that reveal dramatic

changes in the industry over the past thirty years. In the 1980s, with soaring

costs, public opposition, and burdensome regulations, the future of the industry
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was in doubt. Our matched data set reveals, both in the cost data and in the

activities of individual plants, that in following decades productivity improved

dramatically while cost growth stabilized and pro�ts per unit of output increased.

While we were able to construct only crude measures of revenue and pro�ts, our

data seem to con�rm impressions given by media reports that the industry has

returned to pro�tability. Construction of pro�t estimates for the nuclear power

industry is a rare, if not unique, contribution. Still more rare is the construction

of revenue and pro�t data for each site of nuclear power operations.

We set upon the ambitious task of developing an extensible model that ini-

tially incorporates the key features and economic agents of the nuclear power

industry and ultimately can can support both additional micro and macro level

details. In this way, we hoped to support e�orts to make sense of existing liter-

ature. It is our impression that while many useful studies have been completed,

they often focused narrowly on speci�c topics. Relatively little modeling work

has been done to tie together these fragments of understanding of this compli-

cated industry.

Our models include as a key feature an element of the nuclear power industry

that typically receives little attention in the formal literature. This feature is

the limited liability protections o�ered under the Price-Anderson Act. It is

our belief that little is understood about the e�ects on the industry of this

policy. Operators clearly prize it, and legislators have extended it repeatedly

since it �rst passed in 1957. Environmentalists and consumer activists revile

it, and they suppose that the industry would collapse without such protections.

Strangely, perhaps, few studies have been published that attempt to calculate

the policy's value to the industry, or even to enhance our understanding of
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the speci�c nature of the bene�ts. We began with a fairly extensive model of

the industry, derive optimal regulation and operator behavior, and then derive

equations for implicit subsidies to the industry. The result indicates that earlier

attempts to quantify the level of subsidies failed to account for certain costs to

the industry arising directly or indirectly from liability protections. We show

the importance of considering the full set of regulations faced by the industry,

and we advise against attempting to determine costs or bene�ts to the industry

of a particular policy without considering possible indirect e�ects.

There is a large literature on the economics of nuclear power, including many

studies on the struggles of the nuclear power industry in the late 1970s and 1980s.

The struggles were observed both in the construction of power plants and in their

operation. Many explanations for the observed di�culties have been proposed,

and many of them have been tested. Summary studies also have been published

in an attempt to make sense of the many ideas. Unfortunately, few models

have been presented that are suitable to incorporate dissimilar causes of the

industry's troubles. Our models seek to support three primary explanations:

costs and other �rm-level causes, e�ects of regulation, and demand-side e�ects.

While we spent much of our time thinking about the interaction among sev-

eral economic agents, we also spent considerable time focusing on the agent of

primary concern to us. Of the countless models of nuclear power plant opera-

tors, we chose to extend existing dynamic programming models. We extended

the previous work in three ways. First, we extended the data set to determine

recent industry trends. Second, we incorporated demand-side e�ects on operator

behavior by including price equations in the model. Finally, we examined the

e�ects of the risk of catastrophic accidents on operator behavior.
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11.1.2 What We Concluded

Costs have stabilized, productivity has climbed, prices may be increasing, and

so the industry now seems more pro�table than at any time since the mid1970s.

These impressions given by the data are supported by the high interest in ex-

panding capacity of existing plants and the recent interest in building new plants,

despite remaining uncertainties of community tolerance and support of regula-

tors. The recent apparent willingness of regulators and perhaps the public to

consider expansion of the industry signi�es a great shift in attitudes toward

nuclear power. These relatively positive inclinations, together with apparent

economic pro�tability, suggest that life for nuclear power plant operators is far

better than in the 1980s.

Part of the reason that plants are able to operate pro�tably is that liability

protections remain in place. Whether critics claim correctly that these bene-

�ts contribute signi�cantly is a question still unanswered. Our work revealed

problems in earlier estimates of the magnitudes of implicit subsidies. We o�ered

alternative calculations that suggest that the amounts are lower than previously

reported, but doubt remains. Our derivations of implicit subsidy calculations

reveal that existing views of implicit subsidies are too narrow, and that more

e�ects of liability protections on plant operations must be taken into account in

order to identify and quantify bene�ts.

We conclude that earlier e�orts to build dynamic programming models of

nuclear power plant operators insu�ciently accounted for primary determinants

of operators' decisions. In particular, earlier e�orts omitted demand-side factors

that a�ect pro�tability. In addition, we saw that at least in theoretical models,

the e�ects of regulation on operators' behavior and on pro�ts can be highly
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signi�cant.

11.1.3 What Is Next?

As we began, we announced our objective. Our sights were su�ciently high so

that we could not possibly arrive at our ultimate destination by the end of the

present study. Rather, our goal was to begin well, so that at this point much

work would remain to be done, supported and prompted by our beginnings.

Did we succeed? We might address the question by considering possibilities

for future work that are inspired and supported by the work we now conclude.

We established three frameworks and employed them in our work. They

were 1) compilation and uni�cation of operating and accounting data sets for

individual plants and sites, 2) an abstract model of the nuclear power industry,

including nuclear power plant operators, industry regulators, and consumers,

and 3) a detailed model of nuclear power plant operators.

The data set developed remains largely unexploited. In particular, we made

little e�ort to investigate the relationships between the operating data and the

cost data. While earlier samples of both sets were studied elsewhere, we are

aware of no other e�orts to combine and study the full set. Many questions

might be answered by such studies, including �What is the average cost per

month of refueling?� �What is the cost of a typical extended problem spell?�

�Can we link the moderation of cost growth to changes in operators' behavior?�

A very interesting possibility is to incorporate the cost data with our dynamic

programming model. This o�ers the possibility to go beyond the revealed pref-

erence approach to pro�t function estimation. We at least would like to know

how well the pro�ts implied by our model correspond to actual accounting data.
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Our model of the nuclear power industry remains rather primitive. A number

of di�culties with the present model were presented in the text. In particular,

work to make the nature of uncertainty regarding potential damages correspond

more closely to reality would yield a model more satisfying. In particular, we

would prefer a model in which each plant faces a distribution of potential dam-

ages, so that each plant operator receives bene�ts from liability limits.

An extension of particular interest is to make investment unobservable to

regulators, perhaps following Shavell [58]. In such a model regulators monitor

investment and detect imperfectly violation of standards. Monitoring is costly,

and the level of regulation, the degree of monitoring, and the severity of punish-

ment for violations would be endogenous. This would represent much better the

real world with violation of regulatory standards, occasional detection of such

violations, and subsequent penalties.

The model can be extended inde�nitely by adding other details, such as

competing generating technologies. We then could use the model to analyze

tradeo�s between, for example, nuclear power with its inherent risk and coal

power with its carbon dioxide and other emissions.

We also would like to consider political interests related to nuclear power.

In particular, the e�ects of political interests on the regulation of nuclear power

could be studied with our model.

Our extended dynamic programming model of nuclear power plant operators

remains rather primitive, as it is devoid of many details important to the indus-

try. While the model could bene�t from incorporation of additional detail at the

microeconomic level, we believe the greatest promise may be realized by further

integrating the various modeling e�orts and data work in this paper. We noted
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in the paper that the model is constructed under the assumption that operators

are rather simple pro�t maximizers. In reality, they operate under high levels of

regulation. We thus remain skeptical of some of our pro�t function estimates,

for they seem to indicate high pro�tability for frequently-chosen actions that

more likely were required by regulators. By extending our work on regulators

and combining it with our work on power plant operators, we might improve

our model and gain additional insights regarding the operation of nuclear power

plants.

339



Chapter 12

Appendix

12.1 Software

In this appendix, we summarize very brie�y the software constructed to sup-

port the econometric dynamic programming work reported in Chapter 10. The

software was designed to be useful for construction of a variety of dynamic pro-

gramming models, and it is intended to make such work less di�cult and thus

much quicker, so that more attention may be paid to economics and less to

programming.

The approach to numerical dynamic programming follows the work of Mi-

randa and Fackler [38]. They o�er a textbook and an accompanying set of

numerical and dynamic programming tools for Matlab. Our tools instead are

written in C++. While the approach to writing code necessarily di�ers because

of the nature of the programming languages, we loosely follow their techniques to

separate the model-speci�c portions of code from remaining code. We similarly

follow their example in our approach to solving �nite-horizon and in�nite-horizon

models with possibly both discrete and continuous state variables and discrete
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choice variables.

The primary di�erence between our software and the tools of Miranda and

Fackler is that we o�er econometric analysis in addition to simply solving nu-

merical models. Our software currently allows models to be solved either with

quasi-Newton optimization methods or with derivative-free methods.

We also follow the lead of Inforum programmers at the University of Mary-

land who built and maintain the set of modeling tools for C++ known as In-

terdyme [36]. It was their intention to facilitate the construction of large-scale

interindustry models by o�ering tools to handle data construction and manage-

ment, regression estimation, and other standard procedures. By relying on these

tools, the job of setting up and debugging large economic models can be done far

more quickly and reliably. The modeling tools for C++ are supported by G7,

the Inforum program for econometrics and database construction. Typically, G7

is used to prepare data and estimate regression parameters for a model. The

model then is built using Interdyme tools and employing the databanks and re-

gression equations. Once the model is solved, G7 again is used to analyze and

report the results.

We too used G7 to collect and organize data on nuclear power plant opera-

tions. Once the databank was constructed, we used Interdyme tools linked to

our dynamic programming model to read the data. After loading the data into

objects de�ned by our own data storage classes, further data processing was per-

formed as described in the Rust-Rothwell papers. With this data in hand, the

process of solving the model and estimating its parameters could begin. While

thus far we depended on Interdyme rather little, we intend to integrate our e�orts

far more completely in the future. The greatest contribution received thus far
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from the Inforum e�orts is the speci�cation of useful objectives and techniques

in the design and implementation of modeling tools.

Future documentation will o�er a detailed guide to the design and use of our

software.
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