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Applications often assume that the same party owns all of the application’s re-

sources, and that these resources require the same level of privacy. This assumption

no longer holds when organizations outsource applications to a third-party cloud,

or when the application requires access to not only public content, but private con-

figuration, such as authentication and keying material. The result of this broken

assumption is that applications either must be re-written to accommodate each new

security posture, or used as-is, accepting that one party exposes private data to

another.

In this dissertation, I argue the following thesis: it is possible to run legacy

application binaries with confidentiality and integrity guarantees that reflect a multi-

party trust setting. I support this thesis through the design, implementation, and

evaluation of two distinct application-level virtualization layers that handle trust

concerns on behalf of the application: conclaves and SecureMigration. Conclaves



assume the availability of Intel SGX secure hardware enclaves and extend prior work

in developing runtimes that execute legacy applications within an enclave.

In contrast, SecureMigration does not use secure hardware, but rather com-

poses information flow control with process migration to execute a process across

multiple physical machines owned and operated by distinct principals, while shield-

ing each principal’s sensitive portion of the process from its peers.
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Chapter 1: Introduction

Software is often written with one trust model in mind but, over time, users

wish to deploy it in ways the original designers did not anticipate. For instance,

current web servers were originally designed under a monolithic trust model: who-

ever was running the server was also the owner of the content, the machine it was

running on, and the cryptographic keys it was using. Over time, these assumptions

have become invalidated, and web servers are typically deployed in a distributed

trust model: most websites today are hosted by third-party providers like content

delivery networks (CDNs) or cloud service providers [10]. The principal running the

server (the CDN) is no longer the principal that owns the content or cryptographic

keys (the website owner).

When the trust assumptions underlying a piece of software change, it leads to

one of two broad outcomes:

Option 1: Weaken trust models. First (and sadly most common), users can

adapt their trust assumptions to match those of the old software’s. For example,

web servers need access to the cryptographic keys to run, and so the majority of

website owners today give their secret keys away to their hosting providers [10]. In

essence, users trust these third parties because decades-old software did not assume

1



there would be third parties.

Option 2: Redesign and re-implement. Second, developers can adapt the

software to meet the new trust models. Keyless SSL [11] is a new protocol intro-

duced in the wake of Heartbleed [12] that allows CDN customers to maintain sole

ownership of their secret keys. During the TLS handshake, the CDN-run web server

effectively issues an RPC to a customer-run “key server,” sending it the client’s

portion of the handshake to be signed or decrypted by the secret key. This rela-

tively straightforward protocol adapted web servers to more accurate trust models,

but the cost in doing so has been extensive. It required significant changes to the

underlying web servers, as well as an extensive standardization process, including

multiple attacks identified against its initial design [13,14].

In a similar vein, developers could make the original software so highly con-

figurable that it can adapt to future deployment considerations without requiring

changes to the code itself. Sendmail is the exception that proves the rule; it supports

a highly configurable set of deployments, but required creating its own sophisticated

configuration programming language to do so [15].

In short, prior approaches have largely left us with the choice of undergoing

significant engineering efforts—which may not be feasible or possible, if source code

is not available—or simply defaulting to weaker security goals.

Recent approaches have sought to sidestep issues of distributed trust models by

moving all sensitive components into (monolithic) trusted hardware [7,16–19]. Part

of my dissertation extends this line of work to support a richer set of applications

2



without modification. However, wide-scale deployment of trusted hardware is not

yet a reality, and it is not yet clear existing designs are trustworthy [20]. Thus,

my dissertation also addresses the problem without assuming the use of trusted

hardware.

1.1 Thesis

It is possible to run legacy application binaries with confidentiality and

integrity guarantees that reflect a multi-party trust setting.

I define legacy applications as off-the-shelf binaries, in contradistinction to

source code. In this dissertation, I assume that the source code for the applications is

not available, thus precluding techniques that would modify or otherwise re-compile

the source. On occasion, I must relax this assumption slightly, and clearly state when

I do. The confidentiality and integrity guarantees mean that parties do not leak data

and cannot tamper with another’s. For this dissertation, I assume that side-channel

attacks are out of scope, with defenses against side channels being an avenue for

future work. The term multi-party trust setting means that the application (or the

deployment thereof) requires resources from multiple (distrustful) parties.

In this dissertation, I focus on the multi-party sub-problem of secure remote

computation: executing software on a remove computer owned and operated by an

untrusted party, without leaking data to that party, and without that party being

able to interfere in the software’s execution.

My work in this dissertation focuses on applying ideas from operating system
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designs that emphasize a distributed and application-specific execution environment.

These designs help to construct and enforce isolation boundaries that reflect the ap-

plication’s principals and their trust assumptions. Since the execution environment

is transparent to the application, it may be modified, partitioned, or distributed

across domains of varying trustworthiness, so as to reflect multi-party security goals.

Transparency with respect to the application lends this approach to the important

and practical property of enabling post-hoc refinements to an application’s security

and privacy guarantees, without changing the application proper.

1.2 Contributions

To support my thesis, I have designed, implemented, and evaluated two sys-

tems that serve as an execution environment for legacy applications: conclaves

(Chapter 4) and SecureMigration (Chapter 5). Conclaves assume the availability of

Intel SGX secure hardware enclaves and extend prior work in developing runtimes

that execute legacy applications within an enclave. In contrast, SecureMigration

does not use secure hardware, but rather combines ideas in information flow control

and process migration to execute a process across multiple physical machines owned

and operated by distinct principals, while shielding each principal’s sensitive portion

of the process for its peers.

This dissertation is structured as follows:

Chapter 2: Background

As a motivating and recurring example of a multi-party trust setting, I describe
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content delivery networks (CDNs) and discuss the current security implications of

CDNs. I argue that CDNs exemplify broader trust issues endemic to cloud com-

puting. I review prior work that addresses these issues, and place prior work into

context with respect to the contributions of my own work. I divide prior solutions

based on their requirement for secure hardware.

Chapter 3: Goals and Assumptions

I outline the common goals for conclaves and SecureMigration. Additionally,

I discuss the spectrum of threat models for these systems.

Chapter 4: Conclaves

Conclaves extends prior work on SGX-based library operating systems (li-

bOSes) by supporting a broader set of legacy services: namely, multi-process, shared

resource, applications. My extensions result in a distributed system reminiscent of a

microkernel, where each kernel service (for instance, a filesystem or shared memory)

runs in a separate enclave and mediates that service’s shared resources among the

application’s enclaved processes. With conclaves, the trust policy is code-centric, as

the parties specify which processes comprise the system, as well as which processes

may interact with one another.

Chapter 5: SecureMigration

SecureMigration is a form of application-level virtualization that composes

fine-grained taint tracking with process migration to dynamically partition a legacy

application across physical trust domains (physical machines). Each domain may

pin private resources (memory, files, networking) such that the process must first

migrate to that domain before computing with the private data. When a process

5



is executing in a domain, the private data of its peer domains remain confidential.

With SecureMigration, the trust policy is data-centric, as the parties specify the

initial ownership of private data.

Chapter 6: Conclusion and Future Work

I conclude by revisiting the contributions of this work. I discuss immediate

next steps and challenges for conclaves and SecureMigration, and describe future

uses cases for both. Additionally, I motivate scenarios that relate, and potentially

compose, the two systems. Finally, I take a step back from my own work and

comment on the larger challenge of decoupling applications from a specific security

posture.
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Chapter 2: Background

In this chapter, I explore the problem of executing old applications in new trust

settings by providing an overview of a common, running example, of content delivery

networks (CDNs). I describe the security implications of CDNs and describe how the

CDN use case exemplifies the more general problem of secure remote computation.

I highlight prior approaches for allowing users to delegate their computation to third

parties while at the same time shielding their sensitive data from these parties.

2.1 Content Delivery Networks

CDNs, like Akamai [21] and Cloudflare [22], are third-party services that host

their customers’ websites (and other data). Virtually all of the most popular websites

(and a very long tail of unpopular websites) use one or more CDNs to help reliably

host their content [10]. Historically, CDNs have been thought of as a massive web

cache [23], but today’s CDNs play a critical role in achieving the performance and

security that the web relies on [24].

We identify four key roles that fundamentally define today’s CDNs, and their

enabling technologies:
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Low latency to clients: The primary driving feature of CDNs is their ability to

offer low page-load times for clients visiting their customers’ websites.

How they achieve this: CDNs achieve low latencies via a massive, global network of

multi-tenant edge servers. Edge servers act primarily as reverse proxy web servers

for the CDN’s customers: to handle client requests, edge servers retrieve content

from the customers’ origin servers, and cache it so they can deliver it locally. CDNs

direct client requests to the edge servers in a way that balances load across the

servers, and that minimizes client latency—often by locating the “closest” server to

the client. There are many sophisticated means of routing clients to nearby servers,

involving IP geolocation, IP anycast, and DNS load balancing—but these specific

mechanisms are outside the scope of this dissertation.

Edge-network services like CDNs therefore derive much of their utility from

the fact that they have servers close to most clients. To this end, CDNs deploy their

own data centers, and deploy servers within other organizations’ networks, such as

college campuses, ISPs, or companies. Indeed, today’s CDNs have so many points of

presence (PoPs) that they often are within the same network as the clients visiting

their sites. To support such proximity without an inordinate number of machines,

CDNs rely on the ability to host multiple tenants (customers) on their web servers

at a time.

Manage customers’ keys: As the web moves towards HTTPS-everywhere [25],

customers increasingly rely on CDNs to store their HTTPS certificates and the cor-

responding secret keys, so that they can accept TLS connections while maintaining

8



low latency to clients.

How they achieve this: CDNs manage their customers’ keys in a variety of ways:

sometimes by having their customers upload their secret keys, but typically by

simply generating keys and obtaining certificates on their customers’ behalf [10,26].

Many CDNs combine multiple customers onto single “cruiseliner certificates” under

the same key pair—these customers are not allowed to access their own private keys,

as that would allow them to impersonate any other customer’s website on the same

cruiseliner certificate [10]. A recent protocol, Keyless SSL [11], has been proposed

to address this; we describe this in more detail in §2.4.2.

Absorb DDoS traffic: CDNs protect their customers by filtering DDoS traffic,

keeping it from reaching their customers’ networks.

How they achieve this: CDNs leverage economies of scale to obtain an incredible

amount of bandwidth and computing resources. Their customers’ networks block

most inbound traffic, except from the CDN. Thus, attackers must overcome these

huge resources in order to impact a customer’s website.

Filter targeted attacks: An often overlooked but critical feature [24] of today’s

CDNs is the ability to filter out (non-DDoS) attack traffic, such as SQL injection

and cross-site scripting attacks.

How they achieve this: Unlike with DDoS traffic, the primary challenge behind

protecting against targeted attacks is detecting them. CDNs achieve this by running

web-application firewalls (WAFs), such as ModSecurity [27]. WAFs analyze the

plaintext HTTP messages, and compare the messages against a set of rules (often
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expressed as regular expressions [28]) that indicate an attack. Edge servers only

permit benign data to pass through to the customer’s origin server.

2.1.1 Security Implications of CDNs

Simultaneously fulfilling these four roles—low latency, key management, ab-

sorbing large attacks, and blocking small attacks—inherently requires processing

client requests on edge servers. In the presence of HTTPS, however, this processing

requires edge servers to have at least each TLS connection’s session key, if not also

each customer’s private key.

It is therefore little surprise that CDNs have amassed the vast majority of

private keys on the web [10,26]. This has significant implications on the trust model

of the PKI and the web writ large: today’s CDNs could arbitrarily impersonate any

of their customers—and recall that virtually all of the most popular websites use

one or more CDNs [10].

Even if one were to assume a trustworthy CDN, the need to store sensitive key

materials on edge servers introduces significant challenges. CDNs have historically

relied on a combination of their own physical deployments and deployment within

third-party networks, such as college campuses. To protect their customers’ keys,

some CDNs refuse to deploy HTTPS content anywhere but at the data centers they

have full physical control over [24]. However, as the web moves towards HTTPS-

everywhere, this means that such CDNs can no longer make as much use out of

third-party networks. In short, without additional protections for private and session
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keys on edge servers, the move towards HTTPS-everywhere represents an existential

threat to edge-network services.

2.2 Secure Remote Computation

CDNs are just one example of the broader problem of organizations outsourc-

ing their applications or infrastructure to a third party despite exposing private data

about themselves in the process. The general problem is that of secure computa-

tion: executing software while maintaining the confidentiality of some portion of

the computation, such as its inputs or outputs. In this thesis, I specifically focus

on the subdomain of secure remote computation: executing software on a remote

computer owned and operated by an untrusted party, without leaking data to that

party, and without that party being able to interfere in the software’s execution.

For both conclaves and SecureMigration, the driving use case is a customer

outsourcing their web hosting to a CDN (or, more generically, a cloud operator).

As such, the evaluations for both systems focus on running a popular webserver

under configurations that maintain either the confidentiality or integrity of distinct

customer resources. However, the problem setup and the systems themselves readily

transfer to outsourcing other types of services, such as DNS, mail, or VPN servers,

while shielding the sensitive data of either the customer or their clients.

Next, I review prior work that addresses solutions to either the CDN-case

specifically, or secure remote computation in general.
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2.3 TEE-based Solutions

Trusted execution environments (TEEs) provide hardware protections for run-

ning small trusted portions of code with guarantees of confidentiality and integrity.

Applications can be guaranteed that code executed within the TEE was run cor-

rectly and that any secrets generated during execution remain safely within it as

well.

A wide range of TEEs are available today, with varying functionalities. In this

dissertation, I focus on Intel’s Software Guard Extensions (SGX).

2.3.1 Intel SGX

Intel’s SGX provides a new mechanism for trusted hardware and software as

an extension to the x86 instruction set [29,30]. A program called an enclave runs at

high privilege in isolation on the processor in order to provide trusted code execution,

while an untrusted application can make calls into the enclave. While these enclaves

can be statically disassembled (so the code running in the enclave is not private),

once an enclave is running, its internal state is opaque to any observer (even one

with physical access), as are any secrets generated.

Enclave memory resides in a special region of system memory called the En-

clave Page Cache (EPC). Code and data from multiple enclaves can reside within the

EPC, but each EPC page is owned by only a single enclave and this owner is the only

one allowed to access the page. An on-chip Memory Encryption Engine (MEE) [31]

encrypts and integrity protects the EPC; the MEE decrypts enclave memory when
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the memory is brought into the CPU’s cache. In current SGX-capable systems, the

EPC is 128 MiB, of which 93 MiB is usable (the rest is used to store metadata for

integrity protections).

Enclaves must be measured and signed by their creator and cannot run without

this signature, and the enclave state is checked against this measurement before

running. An enclave can also cryptographically attest to its current state, in order

to prove that it correctly executed code [32, 33]. Another feature is the ability to

cryptographically seal data to be used across multiple invocations of an enclave [33,

34]. SGX also provides such features as trusted time and monotonic counters [35,36].

However, an enclave currently has no access to networking functionality itself, so it

must rely on the untrusted application for all network interactions. In fact, enclaves

are prohibited from making any system calls, so these must be proxied through the

untrusted OS as well.

2.3.2 Running Legacy Applications on SGX

Various works use SGX as a mechanism for achieving shielded execution of

unmodified legacy applications. These works generally differ in how much of the

application’s code runs within the enclave.

At one extreme, TaLoS [17] ports the LibreSSL library to SGX so that the

application terminates TLS connections in an enclave; the rest of the application

remains outside the enclave, unchanged. At the other extreme, SCONE [18] moves

the entire C library into the enclave. Haven [19] and Graphene [16] carry this
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approach further by implementing kernel functionality in an enclave by means of

a library operating system (libOS). libOSes refactor a traditional OS kernel into

a user-land library that loads a program. The program’s C library is modified to

redirect system calls to the libOS, which in turn either services the calls internally

or calls into the untrusted OS when the host’s resources are needed. Aurora [37]

extends the libOS from the SGX enclave to System Management Mode (SMM) by

running device drivers in SMM memory.

Many applications, including a CDN’s webserver, involve multiple processes,

and of these works, only Graphene supports forking and executing new processes

within enclaves. However, Graphene’s support for shared state among multiple

enclaves, such as a read-write file system and shared memory, is limited. We discuss

these limitations in §4.1 and our extensions to Graphene in §4.2.

Other work [38] provides frameworks for developing new software that takes

advantage of SGX, whereas our interest is in supporting legacy applications.

2.3.3 Side-Channel Attacks

We must address the recent rise of side-channel attacks against SGX, includ-

ing the speculative execution attack Foreshadow [20, 39]. This attack allows for

the extraction of not only the entire SGX enclave’s memory contents but also the

attestation and sealing keys. We note that this attack would break the security

guarantees that we provide with conclaves. Intel has stated that SGX is explicitly

designed to not deal with side-channel attacks in its current state and leaves handling
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this up to enclave developers [40,41]. Regardless, Intel has released both microcode

patches and recommendations for system level code that at the current time address

Foreshadow and known related attacks [39,42,43]. There is also ongoing research to

address both speculative execution as well as other cache-based side-channel attacks

on SGX and in general [43–46]. We consider protections against such side-channel

attacks to be outside of the scope of this work and rely on these defenses.

2.4 TEE-less Solutions

2.4.1 HTTP Solutions

Several systems have proposed that the origin server digitally sign their data [23,

47] or embed cryptographic hashes directly into HTML [48, 49], which clients can

then verify. Such approaches ensure provenance, freshness, and integrity of web

assets served by a proxy—without requiring the proxy to store the origin server’s

private key. However, they do not provide for confidentiality, nor do they allow for

CDN services such as media transcoding and web application firewalls. Moreover,

they place the origin on the critical path, thereby increasing latency and making

them more susceptible to attack.

2.4.2 TLS Solutions

Other approaches allow origin servers to retain ownership of their private keys

by changing the server-side implementation of TLS. SSL Splitting [50] leverages the

fact that a TLS stream comprises data records and authentication records (MACs),
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and develops a new protocol in which the origin sends the authentication records

and the proxy merges them with the data records to form the complete TLS stream.

In essence, this implements the above HTTP solutions in TLS, and thus suffers from

the same limitations of requiring the origin server to be on the fast path.

Cloudflare’s Keyless SSL [11] takes advantage of the fact that TLS only uses

the website’s private key in a single step of the TLS handshake. Like SSL Splitting,

Keyless SSL keeps the master private key off of, and unknown to, the proxy, but

unlike SSL Splitting, Keyless SSL does not provide for content provider endorsement

of the content the proxy serves. Neither SSL Splitting nor Keyless SSL provides for

the protection of the session keys from the CDN provider.

Another line of work modifies TLS to allow for the interception of traffic by

middleboxes [51–53]. This is contrary to our desire to support legacy applications;

it is not clear how these solutions would be integrated with tools such as WAFs.

2.4.3 Program Partitioning

Program partitioning is a technique for automatically breaking a monolithic

program into multiple communicating subprograms for the purpose of separation of

privilege [54, 55]. For instance, Privtrans [54] uses developer-supplied source-level

annotations of sensitive data and code, along with static analysis and source-level

translation, to partition the source code into trusted and untrusted programs. The

fundamental difference between our work and these prior efforts is that they require

access to (and the ability to alter) the application’s source code, whereas we operate
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on binaries.

Jif/split [56] is one of the earliest language-level approaches for using program

partitioning to protect the confidentiality of data within an application compris-

ing heterogeneously trusted hosts. Jif/split extends Java with explicit program

annotations and security types that specify information flow control restrictions,

and the compiler and run-time system reject programs that violate the restrictions.

Civet [57] uses a similar approach to partition a Java program into untrusted por-

tions and trusted portions, where the trusted portions execute within an enclave.

TinMan [58] applies taint tracking (based on TaintDroid [59]) and process migra-

tion (based on Comet [60]) within the Java virtual machine itself, so as to keep

private data off of a smartphone and isolated to a trusted server. Unlike Jif/split,

TinMan is mostly transparent to the Java application, requiring modest changes to

the application’s UI for selecting handles to the private data.

While language-level approaches naturally express security according to the

semantics of the program, conclaves and SecureMigration are instead language neu-

tral. An interesting area of future work would be to combine program partitioning

with the information flow control features of SecureMigration to partition a program

along likely boundaries, using taint tracking to ensure that there is no data leakage.

2.4.4 Cryptographic Solutions

Fully homomorphic encryption (FHE) [61,62], functional encryption (FE) [63],

and secure multiparty computation (SMC) [64] offer potential building blocks for
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secure remote computation. In broad terms, FHE allows for arbitrary computations

over encrypted data, while FE and SMC are restricted to computing a plaintext

outputs from encrypted inputs. In particular, SMC allows multiple parties to coop-

eratively compute a function over their private inputs such that the output remains

private. However, each of these approaches suffers from drastic performance over-

heads, while violating my goal of supporting legacy applications.

Various techniques [65–68] focus on the special case of searchable encryption

so as to support specific uses cases, such as deep packet inspection (DPI), while still

maintaining the privacy of the data. In general, these approaches require changes of

some sort to the endpoint(s), suffer from performance overheads, and do not achieve

the rich and varied features we require to support arbitrary applications.
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Chapter 3: Goals and Assumptions

In this chapter, I enumerate the common design goals for both conclaves and

SecureMigration. I also define the threat models that each system assumes.

3.1 Goals

At a high-level, my goal is to make heterogeneous trust a concern of the ap-

plication’s runtime execution environment, rather than a concern of the application

developer. I distill my overarching goal down to three specifics requirements:

1. Preserve confidentiality of private data: The execution environment

must maintain the confidentiality of the private keys and private data sets

of each party.

2. Ensure data integrity: The execution environment must preserve the in-

tegrity of each party’s data. This requirement is moot for the honest-but-

curious threat model, but essential for the byzantine faulty model (see §3.2).

3. Require minimal changes to existing applications: The execution envi-

ronment must remain transparent to the application, and thus require few, if
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any, changes to the application. This requirement also implies that trust must

be expressible as a policy configuration.

Collectively, these requirements decouple trust from the application logic and

express trust as a policy, with the execution environment enforcing the policy.

3.2 Threat Models

Trust is an expectation that a party or application operates in its stated pur-

pose, and, in particular, does not purposefully leak private data. The goal of an

adversary is to leak the private data of another party involved in the computation.

In this thesis, I make the idealized assumption that the parties trust the appli-

cation proper, and that the application does not leak data via control flows or other

side channels. In other words, the parties know the application, but may not trust

the hosting platform. Likewise, I assume that all parties faithfully run the com-

ponents of the execution environment (with conclaves, secure hardware guarantees

this assumption; for SecureMigration, I must explicitly make this assumption).

Outside attackers are within the threat model. However, I assume that both

the application and the execution environment are non-buggy, and thus an adversary

cannot gain a thread of execution in either (the adversary may still have a thread

of execution on the application’s machine, though).

I allow myself to assume several threat models.
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3.2.1 Honest-but-curious

The weakest threat model I assume is honest-but-curious : each principal faith-

fully executes the application, as well as the components and protocols that comprise

the execution environment, but may inspect and analyze the system and its data

for the purposes of trying to recover the private data of its peers. Stated differently,

this model allows an adversary to act as a passive attacker within the system.

Honest-but-curious is the only threat model I assume for SecureMigration, as,

in the absence of secure hardware, it is difficult to guard against prevarication of the

execution environment, or tampering of the application proper. For conclaves, this

threat-model allows for faster implementations of the execution environment which

guarantee only confidentiality, but not integrity.

Admittedly, these are fairly weak assumptions, but ones which allow me to

make initial progress towards my novel goals, and which are nevertheless realistic

in many instances. For instance, my assumptions hold in cases where the same

principal controls all resources and uses either conclaves or SecureMigration for

physical isolation as a means of defense-in-depth. Moreover, an honest-but-curious

trust model is significantly more strict than the fully-trusted model of today’s CDNs

(which are often the sole owners of their customers’ secret keys [10]).

3.2.2 Byzantine faulty behavior

In this more extreme threat model, the entity hosting the hardware can deviate

arbitrarily from the protocol, alter any software running in an untrusted environ-
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ment on that hardware, and passively monitor traffic, and actively interact with the

application. Nonetheless, we assume attackers cannot violate basic assumptions of

cryptography or trusted hardware. In the context of a CDN deployment, a website

may wish to adopt this model for CDNs whom they do not trust. Likewise, CDNs

may assume this threat model when using edge-network servers that they do not

personally host or have physical control over [24].

22



Chapter 4: Conclaves

In this chapter, I present my work on the design and implementation of con-

claves. Conclaves extend prior systems for executing legacy applications in Intel

SGX enclaves to support applications that are multi-process and that share re-

sources, such as the filesystem or memory, among the processes. To support shared

resource abstractions, conclaves create a distributed execution environment, rem-

iniscent of a microkernel, where each shared resource is provided by a user-space

“kernel server” running in a an enclave, and where the enclaved application pro-

cesses transparently issue their system calls to these kernel servers. In this way, the

kernel servers mediate all access to the shared resources and ensure consistency.

Using conclaves, we1 present the design of the first truly “keyless CDN,” which

we call Phoenix. Phoenix performs all of the quintessential tasks of today’s CDNs—

hosting web servers, applying web application firewalls, performing certificate man-

agement, and more—without requiring CDNs to gain access to sensitive key mate-

rial, and without having to change legacy web applications. We present a detailed

design and implementation of Phoenix, and evaluate it on Intel SGX hardware.

Our results indicate that conclaves scale to support multi-tenant deployments with

1This work involved collaborations with Christina Garman and Dave Levin.
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modest overhead (∼2–3× for many configurations).

The rest of this chapter is organized as follows. I present the design of conclaves

and of Phoenix in §4.1, and their implementation in §4.2. I present our evaluation

in §4.3 and conclude in §4.4.

4.1 Design

At a high level, our approach is to deploy CDNs in enclaves. However, doing

so in a manner that permits multi-tenancy and support for legacy applications

is challenging. Prior work on SGX libOSes [16, 18, 19] make it possible to run

legacy applications within an SGX enclave, but all of them either lack multi-process

support completely, or only support multiple processes in a restricted environment.

Conversely, we aim to be able to support dynamic scaling up and down of web

servers, tenant configurations, and security postures.

To address these challenges, we introduce a new architectural primitive that we

call a conclave: in essence a container of enclaves. As we will show, conclaves permit

flexible deployment configurations and achieve security in multi-tenant settings. We

first describe the conclave design, and then how we compose them to build the first

“keyless CDN,” Phoenix.

4.1.1 Conclaves Design

The conclave design extends a libOS to support shared state abstractions

among multiple processes. Recall from §2.3.2 that libOSes expose traditional OS
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kernel services within an enclave, and either handle the system calls themselves or,

when necessary (e.g., to send a network packet), hand them off to the untrusted

OS. Graphene [16] supports the critical system calls fork and exec by automat-

ically spawning a brand new enclave, and performing a checkpoint-and-migration

(essentially copying the first enclave’s memory pages into the second). Graphene

further offers some support for these separate processes (enclaves) to communicate

with one another over pipes, and implements signals, semaphores, message queues,

and exit notifications as RPCs over these pipes. In other words, Graphene essen-

tially turns a traditional multi-process application into a “distributed system” of

enclaves, along with some basic plumbing to allow them to communicate with one

another.

However, two important multi-process abstractions that Graphene does not

support with confidentiality and integrity guarantees are a read-write filesystem, and

shared memory. Graphene’s sole filesystem, chrootfs, is modeled as a restricted

view of the host’s filesystem. Graphene does not support shared memory at all

(neither anonymous nor file-backed).

Conclaves extend upon this prior design by leaning into the distributed system

nature of it. We implement kernel services as kernel servers ; applications act as

clients, connecting to and issuing requests to kernel services—via pipes or TLS

network connections. The kernel servers also run atop the libOS. Our design is

effectively that of a multi-server microkernel system, similar to GNU Hurd [69] or

Mach-US [70], in which shared resource abstractions are implemented as a set of

enclaved daemons shared by all processes in the system.
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4.1.1.1 Conclave Kernel Servers

Using the NGINX web server [71] as a guide (as software representative of

a CDN edge server), we identified five key shared resources: files, shared mem-

ory, locks/semaphores, cryptographic keys, and time. For flexibility in deployment

configurations, we implement four servers to manage these resources2:

fsserver The fsserver provides a file system interface to user applications. Much

like a remote file system, the fsserver performs strict access control to restrict access

only to the relevant enclaves. We discuss how this access control is provisioned in

§4.1.2.2. NGINX uses the file system for storing cached and persistent web resources.

memserver The memserver provides an interface for creating, accessing, ma-

nipulating, and locking shared memory. NGINX uses shared memory for storing

usage statistics, metadata for the on-disk HTML caches, and state for TLS session

resumption.

keyserver The keyserver is an SGX enclave rendition of a hardware-security mod-

ule (HSM): the keyserver stores private keys and performs any private key crypto-

graphic operations. Like Keyless SSL [11], this not only maintains the confidentiality

of the private key with respect to an untrusted host, but also isolates the key to

an address space distinct from the application’s, thereby guarding against critical

memory disclosure vulnerabilities, such as Heartbleed [72].

timeserver Given that the components of a conclave must authenticate one an-

other, we need trusted time to guard against attacks that trick the conclave into

2Due to the common pattern of using locks with shared memory, the memserver manages both.
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accepting expired certificates. Unfortunately, SGX itself does not provide trusted

time. Its SDK [35] provides features [36] for retrieving coarse-grained, monotonic

time through a protected clock provided by Intel’s Converged Security and Manage-

ment Engine (CSME), but not all processors support it [73].

Instead of relying on the CSME, we simply design a remote, signed times-

tamping server. The timestamping server runs outside of an enclave, on a remote

trusted machine (e.g., at the CDN’s customer). The timeserver’s purpose is not to

provide fine-grained precision to the conclaved processes, but rather to serve as an

integrity check of the time those processes receive from the untrusted host.

In §4.2, we detail several variants of each of these kernel servers, covering various

trade-offs between performance and security. While we have found that these four

kernel servers suffice for NGINX—and, we believe, for a wide range of networked

applications—it is possible that other applications may need more. For instance,

some applications may require an enclaved network stack (as a type of TUN/TAP

device), or virtualization of the CPU to handle fairness concerns.

4.1.1.2 Conclave Images

Conclaves bundle the SGX microkernel runtime and application suite into

a deployable and executable image, reminiscent of a traditional container image.

When the conclave is executed, the first enclave process that is executed is an init

process, which executes the kernel servers and the specified application proper. From

that point, the application can fork, spin up new applications, and so on.
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4.1.2 Phoenix Design

Conclaves provide a multi-process runtime for running multi-process legacy

applications within SGX enclaves. Phoenix addresses a number of remaining ques-

tions concerning how the customer and CDN operator deploy and provision the

combined runtime and application suite.

The core problem Phoenix solves is that the runtime and application need

various assets—in particular, keying material—in order to successfully and securely

execute. These assets must be delivered in a manner that is shielded from CDN

inspection or tampering. Furthermore, as one of our goals is to not burden the

customer with running additional services, we, paradoxically, must have the CDN

manage the provisioning of these assets on behalf of the customer. Finally, Phoenix’s

design must allow for multi-tenant deployments. We address each of these in turn.

We present a high-level overview of Phoenix’s design in Figure 4.1. Its design

spans three principles: (1) the CDN customer, who must run the origin server as

they do today, as well as an agent for provisioning conclaves, (2) the core CDN

servers, which make and enforce decisions of where exactly to deploy customers’

content, and (3) the CDN edge server itself, which receives the majority of the

changes.

4.1.2.1 Bootstrapping Trust

We first address how the conclave, viewed as a distributed system, establishes

the trust of each member node, whether kernel server or application process. This
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Figure 4.1: Architectural design of Phoenix. Multiple enclaves (yellow boxes) reside
in a logical conclave (red boxes), permitting multiple processes and multi-tenant
deployments. The CDN Edge and Core servers run on untrusted hosts.

29



is a chicken-and-egg problem of establishing a secure channel between two nodes

without first provisioning these nodes with, say, private keys and certificates for

mutual authentication.

The standard approach for establishing a secure channel in an SGX setting is

to use SGX as a root of trust and enclave attestation as a form of authenticated

identity, and to merge this form of attestation into the establishment of the shared

channel secret. To that end, Phoenix follows closely from the work of Knauth

et al. [74], which integrates attestations with TLS by adding the SGX quote as an

X.509 certificate extension. This has the effect of making channel establishment and

SGX attestation occur together, atomically, with respect to the channel protocol.

Certificate validation can thus be extended to examine these new extensions.

Adding new certificate extensions, of course, is not the full story. In this

setup, the enclave generates an ephemeral key pair. SGX quotes cover the enclave

image, the enclave signer, non-measurable state, such as the enclave mode (e.g.,

debug vs. production), and, optionally, any additional data (user data) the enclave

wants to associate with itself. The trick for ensuring the atomicity of attestation

and secure channel establishment is for the enclave to specify as user data a hash

of the ephemeral public key. Since the key pair is created within the enclave, and

since only an enclave can get a valid quote, such user data binds the key pair to

the enclave. The enclave then generates a self-signed certificate for this ephemeral

public key, which includes the aforementioned extensions for the quote and Intel

Attestation Service (IAS) verification.

In our conclave setup, the attestation is a local attestation, and validation of
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the quote is based on a list of valid attestation values in the manifest. Specifically,

the manifest specifies a graph of which processes can establish secure channels with

one another.

4.1.2.2 Provisioning Server and Provisioning Agents

Having bootstrapped trust within the conclave, our next challenge is the de-

livery of sensitive assets to the conclave. Phoenix has the init process spawn a

process called the provisioning agent that communicates remotely with a provision-

ing server operated by the CDN. The provisioning agent periodically beacons to

the provisioning server, and downloads and installs any new conclave assets.

The provisioning agent and server both run in an enclave, and use essentially

the same method for secure channel establishment as what we described for channel

establishment within the conclave. The main difference is that the quote is gener-

ated and validated using SGX’s remote attestation protocol, rather than the local

attestation protocol.

At this point, we have recursed nearly to the base case; all that is needed for

end-to-end asset encryption is for the customer to post assets to the provisioning

server.

4.1.2.3 Key Management

The last thing we must address is how Phoenix enables the CDN to manage

its customers’ keys. Today, CDNs manage their customers’ keys in a handful of
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ways [10,26]; customers can generate their own keys and upload them to the CDN,

or they can delegate all key and certificate management to the CDN. When CDNs

manage their customers’ certificates, they often put multiple customers on a single

“cruise-liner certificate” [10], under a single key pair.

Phoenix supports all of these configurations by shifting them into the (en-

claved) provisioning server. When customers wish to upload their keys, they estab-

lish a secure connection from their provisioning agent to the CDN’s provisioning

server. When the CDN manages its customers’ keys, the provisioning server gener-

ates key pairs and runs Let’s Encrypt’s [75] ACME protocol [76]—from within the

enclave—to request the certificates. The provisioning server can then load this data

onto edge servers however it sees fit, by connecting to provisioning agents running

in enclaves on the edge servers (see Figure 4.1). The end result is that, unlike to-

day, the CDN will never learn the secret keys. In fact, when the CDN manages its

customers’ keys, no one learns them, as they will forever reside within one or more

enclaves.3

4.1.3 Deployment Scenarios

Phoenix’s conclave-based design permits a diverse range of deployment op-

tions to support varying threat models like those described in §3.2. There are two

dimensions for describing edge server deployments: First, a deployment can be

single-tenant or multi-tenant, based on whether there is one or more customers on

3Recall our threat model is that the CDN’s code within the conclaves is trusted and does not
leak data.
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a given edge server (physical or virtual). Second, a given customer’s deployment

can be fully-enclaved or partially-enclaved, based on whether all or just a specific

subset of components are executed in an enclave. The provisioning agent and server

design handle these use cases uniformly. Throughout the design of Phoenix, we have

described the single-tenant, fully-enclaved deployment. Below, we discuss two other

potential deployments.

Single-tenant, partially-enclaved deployments handle an honest-but-curious at-

tacker wherein the customer trusts the CDN with everything but the private key. In

this deployment, only the keyserver and provisioning agent reside in the conclave.

This configuration is similar to Keyless SSL, but without requiring modifications to

the application or TLS.

Multi-tenant deployments multiplex customers at one of three places. First,

the CDN operator can trivially place a proxy server (for example, an HAProxy [77])

on the edge server; the proxy examines the SNI field of the client request and prox-

ies to the relevant conclave. In other words, this strategy reduces to running single

tenant, fully-enclaved conclaves for many customers. Second, if the application is

conducive to multiplexing, then the CDN operator can run an instance of the ap-

plication in an enclave, with the application’s configuration reflecting the customer

partitions; each customer then runs their own conclave of kernel servers. As an ex-

ample, NGINX can run multiple virtual servers; the resources for each virtual server

are mounted on mountpoints within the application that point to each customer’s

respective kernel servers. Finally, the kernel servers themselves can multiplex the

resources of several customers. These represent different trade-offs: more multi-
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plexing can increase the attack surface, but requires less resources to achieve high

performance (SGX can incur significant overhead in switching between enclaves on

a given CPU).

4.2 Implementation

We implement conclaves and Phoenix as extensions to the open-source Graphene

SGX libOS [16]. In this section, we present details of this implementation. We have

made our code and data publicly available so that others can continue to build off

this work.4

4.2.1 Kernel Servers

We implement the fsserver, memserver, and keyserver as single-threaded, single-

process, event-driven servers that communicate with the application’s Graphene in-

stances over a TLS-encrypted stream channel. In the case of a TCP channel, we

disable Nagle’s algorithm due to the request-response nature of the RPCs. The

timeserver uses a datagram channel. Each server is independent.

fsserver For our file server, nextfs, we extend lwext4’s [78] userspace implemen-

tation of an ext2 filesystem into a networked server. nextfs uses an untrusted host

file as the backing store, similar to a block device. We develop three variants of

this device to accommodate different security postures, and a fourth for comparison

purposes.

• bd-std stores data blocks in plaintext, without integrity guarantees. This serves

4Our code may be found at https://phoenix.cs.umd.edu.
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as a baseline in our evaluation.

• bd-crypt encrypts each block using AES-256 in XTS mode, the de facto standard

for full-disk encryption [79, 80]. We base each block’s initialization vector on the

block’s ID. This, too, lacks integrity guarantees, and is thus suitable only for an

honest-but-curious attacker.

• bd-vericrypt adds integrity guarantees to bd-crypt, thus providing authenticated

encryption. It does so by maintaining a Merkle tree over the blocks: a leaf of the

tree is an HMAC of the associated (encrypted) block, and an internal node the

HMAC of its two children. To keep the memory needs of the enclave small, bd-

vericrypt consults a serialized representation of the tree in a separate file, rather

than use an in-memory representation. The root of the Merkle tree exists both

on the file and in enclave memory; the HMAC key exists only in enclave memory.

As an optimization for reducing reads and writes to the Merkle tree file, bd-

vericrypt maintains an in-enclave LRU-cache of the tree nodes. bd-vericrypt is

the appropriate choice in a Byzantine threat model.

memserver We implement shared memory as filesystems that implement a re-

duced set of the filesystem API5: open, close, mmap, and advlock (advlock handles

both advisory locking and unlocking). In our shared memory filesystems, files are

called memory files, and either represent a pure, content-less lock, or a lock with

an associated shared memory segment. Memory files are non-persistent: they are

created on the first open and destroyed when no process holds a descriptor to the

5Graphene does not have a unified filesystem and memory subsystem, and thus munmap is not
currently available as a filesystem operation.
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file and no process has the associated memory segment mapped.

We implement three versions of shared memory. Each stores a canonical replica

of the shared memory at a known location (either a particular server or file). Upon

locking a file, the client “downloads” the canonical replica and updates its internal

memory maps. On unlock, the client copies its replica to the canonical.

• sm-vericrypt-basic uses an enclaved server to keep the canonical memory files

in an in-enclave red-black tree.

• sm-vericrypt implements a memory file as two untrusted host files: a mandatory

lock file, and an optional segment file. When a client opens a memory file, the

sm-vericrypt server creates the lock file on the untrusted host, and the Graphene

client maps (MAP FILE|MAP SHARED) the lock file into untrusted memory. The

client then constructs a ticketlock structure over this untrusted shared memory.

Since the untrusted host may manipulate the ticketlock’s turn value, a shadowed,

trusted turn number is maintained by the enclaved sm-vericrypt server. After

the client has acquired the lock, the client makes an RPC to the server to verify

the turn number. The server thus acts as a trusted monitor of the untrusted

monotonic counter.

If a client mmaps the memory file, the server creates the associated segment file on

the untrusted host. When the client subsequently locks the file, the client makes

a lock RPC to server, which returns the keying and MAC tag information for the

segment. The client copies the untrusted memory segment into the enclave, and

uses AES-256-GCM to decrypt and authenticate the data. When a client unlocks

the file, the client generates a new IV, copies an encrypted version of its in-enclave
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memory segment into the untrusted segment file, and makes an unlock RPC to

the server, passing along the new IV and MAC tag.

• sm-crypt assumes the untrusted host does not tamper with data. As such,

sm-crypt uses AES-256-CTR instead of AES-256-GCM, and does not need an

enclaved server to monitor the integrity of the ticketlock and IV.

keyserver We implement the keyserver as two components: the keyserver proper,

and an OpenSSL engine (“Engine” in Figure 4.1) that the application loads as a

shared library; the engine proxies private key operations to the keyserver. Unlike

the fsserver and memserver clients, the key client operates at the application layer,

outside of Graphene.

OpenSSL’s engine API requires the caller (in our case, NGINX) to provide an

RSA object, which contains the secret key. To avoid having to expose the key, we

modified OpenSSL to populate RSA objects with dummy keys that instead serve as

identifiers that the keyserver uses to look up the real keys it stores securely.

To reduce the number of connections and avoid a dependency on the mem-

server for lock files, our engine maintains the property that all keys for the same

keyserver, within the same process, share a single connection. This requires that

the engine detect forking by the application, which we achieve by also associating

process IDs with the RSA objects.

timeserver We modify the Graphene system call handlers for getttimeofday,

time, and clock gettime to optionally proxy application calls to a remote, trusted,

timestamp signing server. The use of such a timeserver, and the related parameters,
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such as the timeserver’s public key, are specified by the Graphene user (here, the

content provider), and hard-coded into Graphene’s configuration. As a freshness

guarantee, each request includes a new, random nonce, generated by the Graphene

system call handlers. The timeserver, in turn, returns an RSA signature over a

message consisting of the current time concatenated with this nonce.

Our timeserver approach resembles Google’s roughtime protocol [81]; future

work would fully port the roughtime protocol to Graphene to reduce the need for

a trusted timeserver by instead tolerating some fraction of misbehaving servers.

Note, however, that, in the SGX setting, both our approach and roughtime are best

efforts; an untrusted host that identifies the traffic between the Graphene client and

timeserver could, for instance, “slow down” time by delaying the responses.

4.2.2 Graphene Modifications

We have modified Graphene to add missing functionality and increase perfor-

mance.

Exitless System Calls For potential performance gains, we merge Graphene’s

exitless system call patch [82]. The patch is an optimization, similar to the solution

proposed elsewhere [18, 83, 84], that enables enclaves to issue system calls without

first making an expensive enclave exit and associated context switch to the untrusted

host process.

For every SGX thread, the exitless implementation spawns an untrusted (out-

side of the enclave) RPC thread that issues system calls on behalf of the SGX thread.
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The RPC and SGX threads share a FIFO ring buffer for communicating system call

arguments and results. To issue a system call, the SGX thread enqueues the system

call request, and waits on a spinlock for the RPC thread’s response. To conserve

CPU resources, SGX threads only spin on the spinlock a set number of times (by

default, 4096 spins) before falling back to sleeping on a futex (the futex call is a

normal ocall).

BearSSL We integrate the BearSSL library [85] into Graphene to provide the

TLS connections between the Graphene clients and kernel servers, and to verify the

timeserver’s response. The library is well-suited to a kernel environment, as it avoids

dynamic memory allocations, and has minimal dependencies on the underlying C

library. For performance, we use BearSSL’s implementations based on x86’s AES-

NI, PCL MUL, and SSE extensions, which helped to expose stack mis-alignment

bugs in Graphene.

File Locking System Calls Graphene does not currently support file locking.

As our memservers required this feature, we added an advlock (advisory lock)

file system operation; applications invoke the operation through a reduced set of

locking/unlocking flags to the fcntl system call.

4.2.3 NGINX Modifications

Shared Memory Patch NGINX uses shared memory to coordinate state among

the worker processes that service HTTP(S) requests. On most systems, it uses mmap

to create shared, anonymous mappings. NGINX encapsulates each mapping as a
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named zone. For allocating in shared memory, NGINX overlays a slab pool over the

zone’s shared memory.

To coordinate concurrent allocations and frees on the pool, as well as modifica-

tions to the user data structures allocated from the pool, each pool has an associated

mutex. On systems with atomic operations, the mutex is implemented as a spinlock

over a word of the shared memory, optionally falling back to a POSIX semaphore for

long, blocking lock operations. On systems without atomic operations, the mutex

is implemented as a lock file.

To have NGINX follow the semantics of our shared memory design, we create

a small patch (∼300 lines) that changes the creation of shared memory and the

associated mutex. In particular, we implement shared memory by having mmap map

a path obtained by concatenating the filesystem root with the zone name. To force

the use of a lock file, we disable atomics. NGINX’s lock file path is the name of the

zone concatenated with a prefix that may be specified in the NGINX configuration

file (nginx.conf), thus allowing us to easily have the lock file be the very same file

that is mapped.

Request Lifecycle When NGINX operates as a caching server, it runs four

processes by default: (1) a master process that initializes the server and responds to

software signals, (2) a configurable number of worker processes that service HTTPS

requests, (3) a cache manager, and (4) a cache loader.

Figure 4.2 shows the lifecycle of an NGINX worker process serving an HTTPS

request, and the resultant RPCs to the enclaved kernel servers. Note that each
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Figure 4.2: An NGINX worker servicing an HTTPS request for cached content, and
the resultant kernel server RPCs.

request requires two critical sections involving the metadata. Also, NGINX reads

the cached content using the pread system call, which Graphene’s virtual file sys-

tem (VFS) layer implements as a sequence of seeks and a read to the underlying

filesystem.

4.3 Evaluation

We evaluate the performance of NGINX 1.14.1 running within a Phoenix Con-

clave. We seek to understand (1) the performance costs of the various aspects of the

conclave design and implementation, (2) how performance scales with multi-tenancy,
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and (3) the performance impact of a WAF.

We perform our tests on the Intel NUC Skull Canyon NUC6i7KYK Kit with

6th generation Intel Core i7-6770HQ Processor (2.6 GHz) and 32 GiB of RAM. The

processor consists of four hyperthreaded cores and has a 6 MiB cache.

We use ApacheBench to repeatedly fetch a file 10,000 times over non-persistent

HTTPS connections (each request involves a new TCP and TLS handshake) from

among 128 concurrent clients.6 We run ApacheBench on a second NUC device con-

nected to the conclave’s NUC via a Gigabit Ethernet switch. For the benchmarks,

the origin server is another instance of NGINX running on the conclave’s NUC.

We examine three conclave configurations: (1) Linux-keyless : NGINX run-

ning on normal Linux and using a keyserver, (2) Graphene-crypt : NGINX running

on Graphene and using a bd-crypt fsserver, sm-crypt for shared memory, and the

keyserver, and (3) Graphene-vericrypt : NGINX running on Graphene and using a

bd-vericrypt fsserver, sm-vericrypt for shared memory, and a keyserver. These cor-

respond to a Keyless SSL analog, a conclave deployment for data confidentiality,

and a conclave deployment for both data confidentiality and integrity, respectively.

We compare these conclaves to the status quo of NGINX running on standard Linux

(simply denoted as Linux ). We omit using the timeserver.

For each benchmark that uses the nextfs fileserver, we use a 128 MiB disk

image. As a baseline, we configure NGINX to use a small shared memory zone of

16 KiB to hold the web cache metadata (enough for 125 cache keys). §4.3.2 presents

a sensitivity analysis on the size of the shared memory zone.

6That is, the command ab -n 10000 -c 128
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4.3.1 Standard ocalls vs. exitless

To determine the optimal ocall method for our application, we first compare

the performance of standard vs. exitless versions of Graphene-crypt. We present

HTTPS throughput and latency results for each version as part of Figure 4.3.

Surprisingly, the exitless version performs worse across the board. Although

both perform similarly with a single NGINX worker, the standard ocall version

exhibits expected performance gains as new workers are added, whereas exitless

generally worsens with additional workers. In a conclave environment, increased

contention on the kernel servers, as well as contention among the SGX and RPC-

queue threads, magnify the RPC latency overheads, which in turn causes exitless to

exit the spinlock and make a futex ocall.

Based on these results, we use standard ocalls in all instances of Graphene

(both on the Graphene-hosted NGINX processes, and the kernel servers) for the

remainder of the macro-benchmarks.7

4.3.2 Single-Tenant

Figure 4.3 shows request latency and throughput results for the four configura-

tions. Due to the RSA private key operation in the TLS handshake, Linux becomes

CPU-bound at four workers (our test machine has four physical cores) and satu-

rates the Ethernet link for tests with a 100 KiB payload and more than one NGINX

worker. Linux-keyless shows that the concurrency of the keyserver levels off with

7§4.3.5 shows that exitless performs better than standard ocalls for low-latency calls, but de-
grades for high-latency calls.
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Segment Size 16 KiB 100 KiB 1 MiB 10 MiB

# Cache Keys 125 781 8,000 80,000
Throughput 437.76 320.36 133.25 9.71

Latency 292.40 399.54 960.58 13,184.09

Table 4.1: Effect of increasing the size of NGINX’s shared memory segment for cache
metadata. We use Graphene-crypt with one NGINX worker, and fetch a 1 KiB file.
Throughput is the mean requests served per second; latency is the client-perceived
latency (ms).

two workers, and thus that the two NGINX worker configuration of Linux-keyless is

an upper-bound on the performance we can hope to achieve with the other conclave

configurations. Linux with two or more workers beats all conclave configurations.

Table 4.1 shows a sensitivity analysis on the shared memory zone size for

NGINX’s cache metadata, using Graphene-crypt. Performance diminishes dispro-

portionately faster than the increases in memory sizes, and request latency exceeds

1 sec past 1 MiB.
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Figure 4.3: Throughput and latency for single-tenant configurations. The legend in-
dicates the number of NGINX worker processes. We include the standard deviation
of the latencies as error bars.
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4.3.3 Scaling to Multi-tenants

We evaluate two approaches to multi-tenancy: (1) shared nothing, in which

each customer runs their own conclave, including an enclaved instance of NGINX,

and (2) shared NGINX, where each customer runs their own enclaved kernel servers,

but share an enclaved version of NGINX: the NGINX configuration file multiplexes

the customer resources. Specifically, the NGINX configuration file defines a virtual

server for each customer; each virtual server’s cache directory, shared memory zone

for the cache metadata, and TLS private key point to separate instances of the

fsserver, memserver, and keyserver, respectively. We compare these approaches to

the status quo of running a single NGINX instance with a virtual server for each

customer. We run each NGINX instance with four worker processes (in the shared

nothing case, this means each tenant receives four workers processes; in the shared

NGINX and Linux case, the tenants are multiplexed on four total workers). We

direct ApacheBench tests concurrently against each tenant.

Figure 4.4 compares the mean latency and aggregate throughput of these three

deployments, scaling the number of tenants from one up to six. After an initial dip

at two tenants, Linux is able to increase throughput with modest increases to request

latency; shared NGINX Graphene-crypt maintains a more-or-less constant overall

throughput at the cost of increasing latencies, while the shared nothing configuration

is unable to maintain throughput past two tenants.

For the conclave deployments, we also measure the number of SGX paging

events using the kprobe-based technique from Weichbrodt et al. [86, 87]. For both
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the shared-nothing and shared-NGINX deployments of Graphene-crypt, these events

remain under 10,000 up to four tenants; at six tenants, the shared NGINX deploy-

ment incurs on average 10,507 SGX paging events, whereas shared nothing incurs a

staggering 4.35 million as the working sets of 48 enclaved processes contend for the

limited 93 MiB of EPC memory.
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4.3.4 Web Application Firewall

Finally, we evaluate the cost of running the ModSecurity web application fire-

wall (WAF) in tandem with NGINX. Each of our ModSecurity rules examines the

request’s query string for a unique, blacklisted substring. We increase the number of

rules and observe the effect on the server’s HTTPS request throughput and latency

in Figure 4.5 for normal Linux and Graphene-crypt, both running as standalone,

non-caching, servers. We see that just enabling ModSecurity results in a 5% decrease

in throughput for Linux, and 16% decrease for Graphene-crypt. At 1000 rules, the

relative costs for Linux and Graphene-crypt converge, as the throughput of each is

2/3 of that when ModSecurity is off, and latency is 1.5× slower. At 10,000 rules

these relative costs increase substantially, to just 14% of the throughput and 7× the

latency compared to when ModSecurity is disabled.
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4.3.5 Micro-benchmarks

We now evaluate the various subcomponents of a Phoenix conclave to pro-

vide a more fine-grained explanation of our performance results. For each micro-

benchmark, we compare the performance of the component running in three en-

vironments: outside an enclave (non-SGX), inside an enclave with normal system

calls (SGX), and inside an enclave with exitless system calls (exitless). Each micro-

benchmark tool runs on the same machine as the component we are testing.

4.3.5.1 Remote Procedure Calls

To understand the cost of the RPC mechanism used by the kernel servers,

absent from any additional server or client-specific processing, we design an exper-

iment 8 where a client issues an RPC to download a payload 100,000 times, and

compute the mean time for the RPC to complete. We vary the payload size from

0-bytes to 1 MiB.

Figure 4.6 shows that, in general, SGX incurs a much higher latency overhead

than exitless but that this gap narrows as the payload size increases, and that at

1 MiB payloads, exitless actually performs worse than normal ocalls.

Higher payload sizes result in greater latencies for the underlying system call;

if this latency exceeds the spinlock duration, the spinlock falls back to sleeping on

the futex, effectively having spun in vain. For payload sizes of 0 through 100 KiB,

8For an apples-to-apples comparison between SGX and non-SGX environments, we benchmark
at the application layer. This differs slightly from conclaves, where the kernel servers are also
implemented at the application level, but the fsserver and memserver clients are subsystems of
Graphene.
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exitless falls back to the futex less than 30 times for both the server and client; in

contrast, for the 1 MiB case, nearly every RPC uses the futex (on average, 91,285

times for the server, and 97,881 for the client).
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Figure 4.6: RPC latency versus payload size. The numbers above the bars are
overheads compared to non-SGX.
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4.3.5.2 Kernel Servers

fsserver We use fio [88] to measure the performance of sequential reads to a

16 MiB file hosted on a nextfs server, over 10 seconds; each read transfers 4096

bytes of data. fio runs inside an enclave, uses exitless system calls, and invokes

read operations from a single thread.

Figure 4.7 shows the read latencies for each variant of the filesystem. Com-

pared to bd-std, bd-crypt adds relatively small overheads, whereas bd-vericrypt

shows nearly an order of magnitude slow down due to the Merkle tree lookups,

dependent on the size of the tree’s in-enclave LRU cache.

Figure 4.8 shows the associated throughput. For comparison, the enclaved ver-

sions of bd-crypt and bd-vericrypt have 20× and 97× less throughput, respectively,

than Linux’s standard ext4 filesystem (954 MiB/s, on our test machine).
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Figure 4.9: Mean wall clock time (µs) to process a critical section.

memserver Figure 4.9 shows the mean time for a process to evaluate a critical

section (a lock and unlock operation pair) over shared memory provided by the

memserver, based on 10,000 runs. We also vary the size of the memory segment to

observe its effect on the run time.

We make two observations. First, since mmap allocates in page sizes (4096-

bytes), the measurements for a 1 KiB and 10 KiB shared memory region are nearly

identical; otherwise, the execution times scale linearly in accordance with the mem-

ory size. Second, starting at 100 KiB, the sm-vericrypt and sm-crypt implemen-

tations, which represent the canonical memory replica as an encrypted host file,

show an order-of-magnitude improvement over sm-vericrypt-basic, which uses EPC

memory to store the canonical replica and transfers the replica over interprocess

communication.
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OpenSSL keyserver
non-SGX non-SGX SGX exitless

860.92 933.42 965.32 932.60
(1.08×) (1.12×) (1.08×)

Table 4.2: Mean wall clock time (µs) to compute an RSA-2048 signature using
default OpenSSL (left) and the keyserver. The last row is overhead compared to
OpenSSL.

keyserver To evaluate the keyserver’s performance, we use the openssl speed

command to measure the time to compute an RSA-2048 signature. For all tests,

the openssl speed command runs outside of an enclave, and measures the number

of signatures achieved in 10 seconds.

We present the results in Table 4.2. The keyserver itself uses OpenSSL’s

default RSA implementation; compared to the RPC micro-benchmarks in Figure 4.6,

we again see that the raw time overheads are consistent with the RPC latencies.
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host time timeserver
non-SGX SGX exitless SGX exitless

0.026 3.467 0.757 1,175.622 1,375.607
(133×) (29×) (45,216×) (52,908×)

Table 4.3: Mean wall clock time (µs) to execute gettimeofday. Left: retrieving
time from host; Right: retrieving from (unenclaved) timeserver. The SGX and
exitless designations refer to the application’s environment. The last row is overhead
compared to non-SGX.

timeserver We evaluate the timeserver by measuring the elapsed time to invoke

gettimeofday one million times in a tight loop, and then compute the mean for a

single invocation.

In Table 4.3, we list the mean time for an invocation of gettimeofday in Linux

(non-SGX), and in Graphene, using both the host time and the timeserver. Note

that non-SGX calls to gettimeofday are nearly free due to vDSO.9

The difference between the exitless and normal ocalls is roughly the round-trip

cost of exiting and returning to an enclave; this is consistent with prior work [83,84,

86] that puts this cost at 8000 cycles (3.077 µs on our test machine). The timeserver

cost is dominated by the signature computation; exitless calls to the timeserver

actually hurt performance, as, due to the signature latency, the Graphene client

fails to receive a response during the spinlock, and falls back to the more expensive

futex sleep operation for every RPC.

9A system call implementation that uses a shared memory mapping between the kernel and
application, rather than a user-to-kernel context switch.
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4.4 Conclusion

We have presented Phoenix, the first “keyless CDN” that supports the quintessen-

tial features of today’s CDNs. To support multi-process, multi-tenant, legacy appli-

cations, we introduced a new architectural primitive that we call conclaves (contain-

ers of enclaves). With an implementation and evaluation on Intel SGX hardware,

we showed that conclaves scale to support multi-tenant deployments with modest

overhead.

Optimizations and Recommendations While Phoenix is able to achieve sur-

prisingly good performance, further potential optimizations remain, including of

SGX. The multi-tenancy results in Figure 4.4 show that EPC size limits become a

constraint in environments with multiple enclaved applications. Conclaves alleviate

this to some extent, as the kernel servers may be run on devices separate from the

application, but splitting the application itself (e.g., the NGINX workers) across

machines is less tractable. Future versions of SGX should therefore investigate ways

of increasing the EPC size. The cache size sensitivity results in Table 4.1 show that

distributed shared memory is a challenging performance problem. Future versions of

SGX should investigate features for mapping EPC pages among multiple enclaves.

While prior work has treated exitless calls as a panacea, §4.3.5 shows that they

should be a per-system call policy to reflect the application’s workload.

Of course, Phoenix is by no means a drop-in replacement for today’s CDNs, who

have specially optimized web servers and support a much wider range of features,
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such as video transcoding and image optimization. Rather, our results should be

viewed as a proof of concept and a glimmer of hope: it is not necessary for CDNs to

have direct access to their customers’ keys to achieve performance or apply WAFs.

We view Phoenix—and especially conclaves—as a first step towards this vision.
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Chapter 5: SecureMigration

In this chapter, I present my work on the design and implementation of Se-

cureMigration.

We1 introduce a new approach to adapting old software to new trust mod-

els, without having to rewrite (or even read) an application’s code, and without

trusted hardware. Our central insight is that supporting new policies that separate

privileged data access across multiple principals does not require changes to what

is executed, only where it is executed. For instance, in Keyless SSL [11], the same

exact cryptographic operations take place as in traditional, monolithic web servers,

only at a server run by the customer who owns the secret key.

In our system, SecureMigration, users (not the application developers) specify

which resources (files, network accesses, etc.) should be accessible by which hosts.

Our system monitors access to all system calls and, when the program tries to

access a resource only available to a different machine, it migrates the process to

that machine. Of course, sensitive information may “leak” into memory; we employ

taint tracking, treating each sensitive resource as a source of taint, and binding

all tainted memory bytes to the machines who can access the corresponding taint

1This work involved collaborations with James Larisch, Deepak Garg, and Dave Levin.
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source.

We abstract from the process the precise host on which it is executing such

that the process can transparently migrate to and execute on multiple physical hosts

during its lifetime. From the process’s viewpoint, it executes on a single, logical host.

In reality, the process migrates to different hosts when it needs to access resources

that are bound to that host.

We wish to be able to support a wide range of policies that restrict resource

(data, network resources, etc.) access to specific sets of machines (“domains”).

Moreover, we wish for these policies to remain high-level in the sense that they

should operate over resources users can understand (e.g., specific files) rather than

require deep knowledge about the software itself.

We have implemented this abstraction, and use it to apply distributed trust

models to the NGINX [71] web server that it was never designed to support. For

instance, we show that we can achieve Keyless SSL essentially “for free” by simply

specifying that the CDN’s host should handle all global network connections and

the customer’s host should be the sole owner of the secret key.

The rest of this chapter is organized as follows: I describe a design that achieves

the abstraction in §5.1 and its implementation in §5.2. In §5.3, I evaluate our im-

plementation by applying it to legacy NGINX, a popular web server, under multiple

distinct deployments that NGINX was not originally designed to support. I conclude

in §5.4.
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5.1 Design

5.1.1 Example Use Case

To exemplify the above goals, we return to our running example of a web server

being run at a semi-trusted CDN. Rather than resort to extensive re-designs [11]

or trusted hardware [7], we envision a use case in which the CDN and the website

owner agree on the following policy:

• The CDN handles all incoming network connections.

• The CDN also maintains proprietary access control and firewall rules.

• The website owner is the only one allowed to access its secret key.

Working with this policy, the CDN begins running a legacy web server, config-

ured to use the CDN’s access control policies and the website’s secret key (all spec-

ified by filenames in the web server’s configuration). During startup, the web server

eventually seeks to access the file containing the secret key. Our system mediates all

file accesses (in fact, all system calls) and checks them against the policy to see if it

can be done on the current active machine (at the CDN). Realizing it cannot, our

system checkpoints the program and migrates its execution to the website owner’s

machine. Once there, it resumes execution, accesses the local file, and treats it as

a source of taint. Eventually, the process migrates back to the CDN, transferring

all memory except those tainted (and thus pinned) at the website owner’s machine.

To help prevent taint from causing migrations to thrash between machines, or the
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process to deadlock altogether, our system allows for the declassification of taint.

Later, while handling an incoming TLS handshake at the CDN’s machine, the

web server seeks to access tainted memory containing the secret key. Our system

monitors all memory accesses, realizes the required memory is not allowed to be

local, and thus checkpoints, migrates, and restores the process at the website owner’s

machine. From there, it performs the required cryptographic operation and migrates

back to the CDN’s machine to send its response to the client.

This high-level sketch of a use case shows the potential of secure process mi-

gration: by merely expressing a high-level policy over specific network and file re-

sources, it allows users to change the security properties of unmodified applications

in ways the original designers did not envision. In the following sections, we will

show that we are able to achieve this in practice with unmodified NGINX. Although

it comes with significant performance overheads and many opportunities for future

optimization, we believe it represents an important first step towards being able to

significantly alter programs’ security goals.

5.1.2 Virtualization Layer

The design of SecureMigration takes the form of a distributed, application vir-

tual machine: the process runs atop a virtualization layer that interposes on machine

instructions, memory accesses, and system calls, with this layer being replicated at

each trust domain, which for our purposes is a physical machine owned and oper-

ated by a distinct principal. The process itself has a single address space and single,
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logical root filesystem; the virtualization layer at each domain ensures that the pri-

vate resources are physically inaccessible to the other domains before migrating the

process to a peer domain.

The virtualization layer relies on dynamic binary instrumentation (DBI)—

a technique for monitoring and possibly altering the execution of a process at

instruction-level granularity, without requiring access to its source code or modi-

fication to its runtime. We can think of a DBI system as an application virtual

machine that interprets machine code while offering instrumentation capabilities

to analyze and alter the process’s architectural state. The components of a DBI

system are laid out in the same address space where the program execution takes

place, with the program’s execution interleaved with the analysis. Many DBI sys-

tems additionally take steps to isolate the analysis from the application, such as by

switching to an alternate stack before executing the analysis.

5.1.3 Taint tracking

In SecureMigration, the DBI system tracks the flow of information within a

domain such that if the process executes a computation with a private resource, then

the system marks as private any other resources of the domain that were involved in

the computation. This technique is commonly called information flow tracking, or,

more colloquially, taint tracking. For instance, if a domain marks a file as private,

and the process reads that file, then SecureMigration marks the memory buffer

into which that file is read as private to the domain; if that buffer is then copied

63



to a destination buffer elsewhere in memory, then SecureMigration likewise marks

the destination buffer as private. Taint tracking is transparent to the application

process, as the application observes the same addresses and same values as it would

in an uninstrumented execution. SecureMigration takes as input a policy file that

lists the initial private resources (such as paths and network addresses), as well as

the domain that can access the resource.

To make progress, SecureMigration also needs a mechanism for untainting

data. A classic example is that, in a cryptographic signing operation, the signing key

may be tainted (indicating that it belongs to a specific domain), but the key’s taint

should not propagate to the signature, which is public. As such, SecureMigration

applies taint tracking at both the instruction-level, and, where needed to override the

instruction-level behavior, at the function-level. This implies that SecureMigration

can locate the symbols for such functions.

5.1.4 Migration

When SecureMigration detects that the active domain—the domain where the

process is currently executing—tries to access a resource (file, memory, networking)

that is tainted to a peer domain, SecureMigration checkpoints and stops the process.

Checkpointing entails serializing the process’s state, such as the values of its registers

and its memory address space, as well as kernel-maintained state, such as the file

descriptor table and UNIX credentials. As the DBI system is co-resident with the

process, the DBI system is likewise included in the checkpoint. SecureMigration
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Resource policy
resource                  owner        taint-src?
<fs>*          A     no 
<networking>*  A     no 
/srv/waf.rules A     yes 
/srv/key.pem   B     yes

CRIU

Spry

Process Control Block

Virtual File System

Domain A (active) Domain B 

UNIX 
domain socket

TCP connection

Spin
Application

real 
page

shadow 
page

real registers

shadow registers

Intel Pin

System 
calls

UNIX 
domain socket

Checkpoint
and restore

RPCs
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Process Control Block

Image transfers,
process notifications

waf.rules
key.pem

Checkpoint
and restore

RPCs
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UNIX 
domain socket

Virtual File System

Stashed Memory

Figure 5.1: High-level implementation of SecureMigration. Each domain runs an
instance of Spry and CRIU. CRIU dumps the application process (which includes
the co-resident Spin and Intel Pin framework) and Spry transfers the dump images
to the peer domain, which again invokes CRIU to reconstitute the process.

transfers the checkpoint images to the peer domain, which reconstitutes the process

from the images.

5.2 Implementation

Our implementation consists of three components: (1) a DBI tool, Spin, that

“hosts” and executes the original application, (2) a local proxy, Spry, that coor-

dinates migration and services system calls on Spin’s behalf, and (3) the CRIU

(Checkpoint and Restore In Userspace) [89] Linux utility that Spry employs for
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taking a snapshot of a running process and later restoring the process from that

snapshot. In SecureMigration, each domain is a physical machine, and each domain

runs an instance of Spry, which in turn may service multiple instances of Spin. As

CRIU requires root privileges, each domain runs CRIU as a daemonized service,

hence separating privileges within SecureMigration. The resultant distributed sys-

tem, diagrammed in Figure 5.1, is thus comprised of these three components, as well

as the communication protocols between Spin and Spry, between Spry and CRIU,

and between the peer instances of Spry. We have made our code publicly available

so that others can continue to build off this work.2

Before we describe each part of the system, we note that two pragmatic de-

cisions largely determine our implementation. Our first decision is to use CRIU

unmodified, rather than adapt it to our use case. The main challenge with stock

CRIU, however, is that it requires a process’s resources, such as the files and network

addresses, on the restoring machine to match those of the machine on which CRIU

checkpointed the process, and will fail to restore if they do not. The whole point of

SecureMigration, of course, is to partition a process’s resources across multiple ma-

chines. This results in our decision to move system call invocation from the process

to Spry, with Spin interposing on each system call: if the system call references a

resource (as by name or file descriptor), Spin issues an RPC to Spry to invoke the

system call on the process’s behalf, and return the results; otherwise, Spin passes

the system call through to the kernel.

System call forwarding from Spin to Spry allows Spry to maintain all kernel-

2Our code may be found at https://github.com/smherwig/securemigration.
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level file descriptors, and to return to Spin a virtual descriptor (Spry maintains for

the process the mapping from virtual to real descriptor). This achieves the invariant

that, other than the local socket connection between Spin and Spry (and, optionally,

descriptors attached to the terminal), the process does not reference any kernel-level

file descriptors, thereby eschewing potential conflicts during CRIU’s filesystem and

networking consistency checks.

Our second, related decision, is to use a simple model for distributed resource

management: namely, file resources are pinned to their owning domain; files do

not migrate between domains and are not replicated across domains. In contrast

to files, we transfer the complete memory image of a process when migrating. A

different implementation could alter these choices at the expense of a more complex

implementation for Spry, and of modifications to CRIU to support a distributed

shared memory protocol with respect to the checkpointed memory images.

5.2.1 Spin

We build our DBI tool, Spin, using the Intel Pin framework [90]. Intel Pin

provides a rich API for instrumenting instructions, interposing on system calls, and

hooking application-level symbols. Spin has two primary functions: (1) perform

taint tracking of private data within the process’s address space, thereby tracking a

domain’s memory ownership and, (2) forward many system calls (including all calls

that reference a resource, as by pathname, socket address, or file descriptor) to the

local Spry daemon.
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Taint tracking. Spin’s taint tracking logic is inspired by libdft [91]. Like libdft,

Spin tracks data flow by instrumenting instructions that may propagate or clear

taint, and extends libdft to support 64-bit mode, as well as MMX, SSE, and SSE2

instructions. To reduce the development burden with respect to taint tracking (Intel

x86 64 has over 1500 mnemonics, each of which may comprise dozens of machine in-

structions based on the operand types), Spin instruments the cpuid instruction and

replaces it with an emulated version that responds to processor feature queries by

returning that the SSE3, SSE4, AVX, AES, and PCLMUL extensions are unavail-

able. Although this does not guarantee that such instructions are never executed,

in practice, binaries first query the cpuid before invoking a function that uses these

extensions. We insert the taint analysis before the execution of each instrumented

instruction due to various restrictions that Intel Pin places on post-execution analy-

sis. Like libdft, and as with most taint tracking tools, Spin does not handle control

flow taint, does not assume the dereferenced memory for a tainted pointer is tainted,

and does not track the taint of control registers, such as RFLAGS.

Spin tracks taint at byte-granularity (tracking larger units, e.g., registers or

pages, makes it impossible to detect when that larger unit transitions from tainted

to untainted). Taint values are likewise one-byte in size, and store the identity value

for the domain that claims the corresponding byte. A byte either belongs to one

domain or is shared among all domains (indicated by taint value 0). Identity values

are the powers of two representable by a byte, for a maximum of eight domains—

simply OR-ing a set of shadow bytes and testing against 0 or a power of two is

enough to determine whether multiple domains have taint on the set.
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Spin records the taint values for each byte of the CPU’s registers in a per-

thread virtual CPU that has shadow registers for the general purpose registers,

MMX registers, and XMM registers. For main memory, Spin records taint in a con-

ventional four-level page-table structure (a radix tree) that allocates a shadow page

for each real page. To keep the shadow page tables in-sync with the application’s

true pages, Spin hooks the return of the mmap, munmap, and brk system calls, and

adds or removes pages from shadow memory accordingly. As some mappings (as

for the stack) exist prior to Spin transferring control to the application, Spin also

pre-populates the shadow page tables based on the process’s mapping information

as retrieved from /proc. For diagnostic purposes, Spin also maintains the virtual

memory area (VMA) metadata corresponding to the shadowed pages.

Register and memory ownership. In Spin, ownership of register memory

and main memory is byte-level, and thus mimics the taint tracking. This is in

contrast to alternative approaches that use a larger granularity of ownership, such

as granting a domain ownership of all register memory if any register byte is tainted,

or an entire page of memory whenever the domain has tainted any byte on that

page. In general, expressing ownership at larger granularities potentially improves

performance by allowing for less costly ownership checks, but at the expense of a

greater risk for ownership deadlock and false sharing. Our early experiences running

test applications on SecureMigration with register-set and page-level granularity

revealed that both phenomena were an issue.

For instance, with a register-set ownership, we found that it was not uncom-
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mon for a process to need to migrate while having one or more registers tainted

to the active domain. Likewise, for page-level ownership, a frequent problem we

encountered is that domain B would taint page i, and then migrate to A to make a

system call; however, one of the arguments for the system call resided untainted on

page i—this is a form of deadlock. Due to such experiences, Spin applies fine-grained

memory ownership.

Checking memory access. Since Spin expresses ownership of the registers

and main memory at byte-level, Spin’s instrumentation inspects each instruction

to determine the operand count, the registers used, and for each operand, its type

(memory, register, immediate, or address generator—a special operand type used by

the lea instruction), size, and access mode (read, write, or read-write). Additionally,

for memory and address generator operands, Spin records any registers used as a

base or index (in mov qword ptr [rsi+rax*8], rdx, the registers rsi and rax,

respectively)—such registers require read-access.

Spin maintains a tree of all unique instructions encountered in the process,

indexed by the instruction’s bytecode, and where the node value contains the afore-

mentioned details regarding the instruction and its operands. During instrumen-

tation, Spin first searches the tree for the instruction; if not found, Spin inspects

the instruction and adds a new node to the tree. Spin then inserts a call to an

access-check analysis routine before the real instruction (and before any taint anal-

ysis routines) for any instruction that reads from a register or memory. Additionally,

Spin checks whether the instruction is an idiom for clearing a register (such as xor
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rax, rax) and does not insert an access check for such instructions.

The access-check routine queries the taint for every operand that is read or

read-write (for a memory operand, the access routines receive as an argument the

memory’s virtual address). The access routines do not query the taint for operands

that are strictly written, since the instruction will overwrite the real value of the

operand, and our corresponding taint analysis will either clear the taint or set it

to a new domain. If any byte of a readable operand is tainted to a peer, then the

process must migrate; the instruction—and Spin’s corresponding analysis routines—

are restarted on the destination domain.

The access-checks also detect taint deadlock scenarios: specifically, a single

operand with bytes tainted to two domains, or distinct readable operands tainted

to different domains. If the access-check detects taint deadlock, then Spin aborts

the program and logs a summary of all tainted registers and pages.

Clearing abandoned taint. Spin uses two techniques for clearing abandoned

taint in main memory—that is, taint on a byte that the process will not again

read before a write. While these techniques are not strictly necessary given our

ownership semantics, they facilitate measuring the extent of the address space that

is truly tainted.

The first technique removes abandoned taint from the stack. A näıve approach

would simply instrument ret to clear (that is, zero both the shadow and real mem-

ory) from the current value of the stack pointer, RSP, down to the bottom of the

stack. However, as the stack VMA may be large (on our system, it is initialized
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to 33 pages), and mostly unused, and since ret is a common instruction; such an

approach is wasteful. Thus, Spin instead tracks a conservative measure of the lowest

value of RSP by instrumenting three instructions commonly used to decrement the

stack pointer: push, sub, and lea. Spin’s instrumentation for ret retrieves the cur-

rent value of RSP, and instead clears from RSP down to the lowest-tracked RSP value.

Spin then sets the lowest-tracked value to RSP− 8 (to account for ret’s implicit pop

of the return address residing on the stack into the program counter, RIP).

Spin’s second technique removes abandoned taint from the heap by shadowing

libc’s memory allocator. To that end, Spin hooks the call and return of the malloc-

/calloc/free/realloc family of C library functions, and maintains a tree, where

each node is an extant allocation (represented as a tuple of the allocation’s starting

address and size). On free (and some calls to realloc that serve to free memory),

Spin searches the tree by the allocation’s starting address, and, if found, zeroes the

real and shadow memory for that allocation. Additionally, as Spin already hooks

the brk system call for the purpose of determining the size and location of the heap

VMA, Spin also detects when brk shrinks the heap, and likewise clears the trimmed

portion.

To remove abandoned taint from the registers, Spin further instruments ret to

zero the shadow and real registers for any registers that are, as per the SysV AMD64

ABI [92], not preserved across a function call (the so-called caller-saved registers)

and not designated as registers that can hold the function’s return value; this is the

vast majority of registers. However, to safely apply this technique, the code must

not have been compiled with GCC’s -fipa-ra option (interprocedural analysis for
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register allocation—enabled as part of the -O2 optimization level), which allows the

compiler to disobey ABI conventions to optimize register allocation. Thus, Spin

has a configuration option where a user can list the images within the process that

were compiled without this option; the instrumentation for ret inspects the return

address on the stack; if the return address (and thus the caller) is within the memory

spanned for such a loaded image, the instrumentation can safely clear the clobbered,

non-return value registers.

Function-level taint analysis. Aside from techniques for removing abandoned

taint, there are legitimate cases where taint analysis at the instruction-level does

not obey the desired operational taint semantics, and for which Spin must explicitly

intercede. For example, consider a case where the private data is a private TLS key,

and the key is encoded as PEM—that is, Base64 encoded. A common implemen-

tation for a Base64 decoder is to use a lookup table indexed by the Base64 ASCII

character, and which evaluates to the corresponding binary. Within Spin, the PEM

file is a taint source and the ASCII character is therefore tainted; moreover, the

pointer represented by the lookup table base and ASCII character index is likewise

tainted; however, the lookup value (the dereferenced memory) is not tainted. In

other words, decoding the PEM file launders the taint such that the in-memory,

binary representation of the TLS key is not tainted; this is clearly undesired.

The reverse situation is also possible. For instance, assume that the TLS key

is properly tainted and that the process uses the key to produce a signature; the

signature is public and should therefore be untainted, but the instruction-level taint
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analysis may very well taint the signature when computing its value with the private

key.

To address this, Spin includes a hardcoded list of function symbols within

commonly used libraries (for our prototype this includes only libc and OpenSSL)

which require explicit tainting or untainting of their outputs. Spin includes wrapper

implementations of these functions which inspect the taint of the input arguments,

call the original function, and then explicitly set or clear taint on the output val-

ues. Spin receives notification from Intel Pin whenever an image from the list of

libraries—for which it needs to wrap functions—is loaded.

System call interposition. Recall that CRIU requires that the files and net-

work interfaces of the restoring machine match those of the checkpointing machine;

otherwise restoration fails. Our approach is therefore to move the file descriptors

outside of the checkpointed process, and into the Spry proxy; the process deals only

with the virtual descriptors that Spry returns, and forwards all calls that reference

a pathname, network address, or file descriptor to Spry so that Spry can invoke the

system call and perform the virtual-to-real file descriptor translation.

To that end, Spin hooks all system calls. For each system call, Spin either

passes the call through to the local kernel without modification, or, for system calls

that reference a file or network resource, forwards the call to Spry. If the active

domain owns the resource, Spry issues the call locally on behalf of the application

and returns the results; otherwise Spry migrates the process to the owning domain.

Spin also performs taint analysis for all system call results by tainting a read buffer
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that Spry indicates is from a taint source (proxied system calls), or by removing

taint from an untainted output buffer (proxied and non-proxied system calls).

Spin connects to Spry over a UNIX-domain socket. On connection, Spry

queries the application’s credentials (PID, UID, and GID) via the SO PEERCRED

socket option, and then uses these credentials to retrieve additional process state,

such as the process’s umask and working directory, from /proc. As such, Spry has

sufficient information to issue the system calls in the context of the process making

the request.

5.2.2 Spry

Each domain runs an instance of the Spry daemon. Spry’s primary responsi-

bilities are to handle system invocation on behalf of the application processes, and

to interact with the local CRIU service and the peer Spry instances for the purpose

of migrating a process.

Resource policy. Each instance of Spry takes as input a configuration file

that specifies the initial partitioning of the file and network resources across the

domains—the domains must agree on this initial division. For file pathnames, the

configuration simply lists the path (allowing restricted globbing patterns), the own-

ing domain, and a set of flags that indicate whether the file is a taint source, and the

action to take when a peer domain attempts to access the file. SecureMigration only

implements one action—migrating the process to the owning domain and restart-

ing the system call upon process restoration—but one could imagine additional,
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optimized actions such as remote system calls to the owner peer.

For networking, the resource policy specifies the IP addresses to which each

domain may bind or connect, as well as a similar set of flags that indicate whether

data received from the peer end should be marked as tainted, and the action to

take when a peer domain attempts to perform a system call on the resultant socket

descriptor. For some connections (for instance, those to a localhost DNS resolver) it

may be desirable to allow any domain to claim the resource. Thus, the configuration

allows a special owner of OWNER ON CREATION.

Exit notification. On each domain that the process has executed, that domain’s

Spry maintains a process control block (PCB) for that process. The PCB references

various process resources, such as the process’s file descriptors that are opened

on that domain, as well as the stashed private memory. Thus, when the process

terminates, the active domain’s Spry must notify the peer Sprys of the termination

so that they can release their respective resources. In our closed-world system, where

all of the domains are specified at system startup, we accomplish the distributed

cleanup by simply having the active domain broadcast to all peers that the process

has terminated. From an implementation viewpoint, Spin hooks the exit system call

family to notify Spry that the application is terminating.

System calls referencing multiple resource. The vast majority of system calls

reference a single resource, and thus, when Spry services a system call RPC request

from Spin, Spry need only determine the owner of that resource. Nevertheless, a

small set of commonly used system calls (select, poll, epoll3) act upon a set of

3epoll is slightly different in that the set of resources is specified via a helper system call,
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resources.

For these multiplexed system calls, if the active domain owns all fd arguments,

then Spry services the call normally. If all fd arguments have the same owner, which

is not the active domain, then the process migrates to the owning domain. If the

fds have a mix owners, then the active domain emulates the system call by sending

a polling message to each peer Spry for the fds that the peer owns. (We note that

Spry’s implementation of this emulation is currently incomplete and is not used in

any of our evaluations.)

5.2.3 Migration

A process migrates on one of two conditions: (1) Spin detects that the ap-

plication attempted to access another domain’s private memory or registers, or (2)

Spry detects that the application attempted a system call with an argument that

references a resource that belongs to another domain. Each type of access fault

requires a similar set of actions. At a high-level, Spin and Spry cooperatively cloak

the domain’s private memory, Spin and Spry close their connection to one another,

and Spry invokes CRIU to checkpoint and then kill the local copy of the application.

Note that Spin, which is co-resident in the process’s address space, is also dumped

as part of the checkpoint, and reconstituted on restore. The source instance of Spry

must then transfer the checkpoint images to the destination domain’s Spry, and the

destination’s Spry invoke CRIU to restore the images.

Migration conditions. Spin’s access-check analysis routines detect if the active

epoll ctl, but the general idea remains the same.
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domain is trying to read peer memory. On such a condition, the access-check routine

arranges for the instruction to be restarted, and then commences the migration

protocol with Spry.

Similarly, during a system call, Spry checks the system call arguments against

the resource policy. For system calls that explicitly reference a name (such as open

or bind), Spry can directly match the name again each resource policy rule. For file

descriptors, Spry queries its shadowed virtual file system to resolve the descriptor

to its name (that is, to a pathname or socket address), and then matches the name

against the resource policy. If the match indicates that a peer owns the resource,

then Spry returns a special error value of EMIGRATE, along with the owning domain’s

ID; on receiving EMIGRATE, Spin arranges for the system call to be restarted, and

then commences the migration protocol with Spry.

Spin-to-Spry migration protocol. Regardless of whether a memory access

or system call causes migration, Spin always initiates the migration by making a

migration start request to Spry that includes the ID of the domain whose resource

the application is trying to access. This allows Spry to verify that the peer domain

exists and is connected, and to update the state of the process. Next, Spin cloaks any

registers or main memory that the active domain owns. Cloaking entails stashing

the real values with Spry, and then overwriting the real values with junk. In our

implementation, for every page on which the active domain has taint, Spin stashes

with Spry the real page and the corresponding shadow page (the shadow page serves

as a mask for the bytes that the domain actually owns). Similarly, Spin stashes the
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real contents of all general purpose, MMX, and XMM registers, along with their

corresponding virtual CPU shadow registers. After Spin has finished swapping-out

the sensitive memory, it sends Spry a migration end message to indicate that it is

now ready to be checkpointed.

There are two important points with respect to the checkpoint. First, CRIU

will not checkpoint a single end of an established local IPC connection, and thus

at least one side (Spin or Spry) must close their end of the connection prior to the

checkpoint. Second, to prevent race conditions, the checkpoint itself must logically

occur at a stable, defined point in the process’s execution.

To that end, the pre-checkpoint protocol proceeds as follows: Spin closes its

connection with Spry and then invokes nanosleep to sleep for a long period. When

Spry receives the migration end message, it closes its connection with Spin, ensures

that the process is in a sleep state (as by inspecting /proc), and then invokes CRIU

dump. When CRIU dump seizes the process with ptrace, CRIU sends the process a

STOP signal, and dumps the process at its current state. Per POSIX specification,

nanosleep returns early when interrupted by a signal (here the STOP signal); thus

on restore, execution commences with the nanosleep call returning because of the

interrupt.

With execution restored on the destination domain, Spin next connects to the

destination’s instance of Spry, and exchange a series of messages to swap-in any

private data that the tool had previously stashed with that instance of Spry. Since

execution on a previous domain could have cleared or overwritten the now active

domain’s taint, swapping-in entails ANDing the stashed shadow memory with the
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current shadow memory; any resultant bytes that are the active domain’s ID are

still tainted to the active domain, and Spin overwrites these bytes with the stashed

real memory. At this point, Spin returns execution to application at the restarted

instruction.

Spry-to-Spry migration protocol. After dumping the process, the source and

destination Spry engage in a small protocol to transfer the checkpoint images. The

source first makes a migration request, which includes the PID of the process;

this is followed by any state that the source maintains for the process—namely the

shadowed virtual filesystem, including the virtual-to-real file descriptor mappings.

If the process has never before executed on the destination, the destination creates

a fledgling process control block (PCB) for the process; otherwise the destination

retrieves the existing PCB; in either case the PCB is updated with the the virtual

filesystem information. The destination ultimately responds to the migration -

request with the directory where the source should upload the CRIU dump images.

The source then securely copies these images to the destination; when the image

transfer is complete, the source sends an images uploaded notification, and the

destination then invokes CRIU restore.

Multi-thread and multi-process support. SecureMigration handles multi-

threaded processes, but requires that all threads within a process migrate together.

This restriction stems from the fact that CRIU checkpoints at the granularity of the

process tree.

To handle concurrent migration conditions, during Spin’s initialization, Spin
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spawns an internal thread—the Intel Pin term for a thread that does not run appli-

cation code—that sleeps, waiting for a migration condition. The application threads

(which run both the analysis code and the original program’s code, interleaved), en-

queue migration requests and set a migration condition variable. When the internal

thread wakes on the condition, it stops all application threads. Intel Pin ensures

that threads are stopped in between traces, and, in particular, that they are not

stopped in the middle of analysis functions or instrumentation callbacks. Once all

threads have stopped, the internal thread performs a taint deadlock check across the

threads to ensure that the aggregate readable arguments of each stopped instruction

would not result in a deadlock. Additionally, Spin checks that, if there is more than

one enqueued migration request, that these requests are for the same peer domain.

After these checks, Spin initiates the migration protocol with Spry.

Spin does not yet support multi-process applications because (1) CRIU dumps

at process tree granularity and (2) the handling of shared memory would require a

distributed shared memory protocol. We leave solutions to such challenges—such

as virtualizing the process tree by emulating fork—to future work.

5.3 Evaluation

We evaluate SecureMigration using four configurations of the NGINX 1.18 4

webserver, each highlighting a broad use case. As SecureMigration does not yet

4For configuring NGINX, we use the command ./configure

--with-http ssl module --with-http dav module --add-module=../njs/nginx

--add-module=../nginx-http-auth-digest-1.0.0 --add-module=../naxsi-1.3/naxsi-src.
This results in compilation commands that use NGINX’s standard gcc flags of -O -W -Wall

-Wpointer-arith -Wno-unused-paramter -Werror -g.
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support fork and exec, each configuration runs NGINX as a single process that

uses epoll to manage concurrent requests. Each use case involves two domains,

A and B, where A owns the majority of the webserver’s resources (including all

communication with the clients), and B owns some private data (a taint source)

that it isolates from A. We also evaluate variations where both parties have tainted

resources.

By exploring these use cases, we seek to answer two fundamental questions.

First, how well does SecureMigration perform versus normal, uninstrumented NGINX,

and what portion of the overhead does Intel Pin, CRIU, and the split Spin and Spry

design contribute. To remove the variability of network latencies for migration, we

run all evaluations with domains A and B residing on the same machine, and where

the communication and image transfers between the peer Sprys is over TCP sockets

bound to localhost.

Second, how “closely” does SecureMigration mimic the behavior of an ideal-

ized, distributed version of NGINX that has been modified to use RPCs to encap-

sulate access to the private resources, instead of process migration. Rather than

modify NGINX for this purpose, we approach this question indirectly by analyzing

the migration patterns, and measuring the taint propagation and code coverage of

the process while executing on B. To that end, Spin instruments the call and

ret instructions to maintain a shadow call stack, relying on Intel Pin’s support for

debugging symbols to resolve the call’s target address to the function’s name.

Our evaluation machine is a standard desktop with an 8th Generation Intel

Core i3-8100T CPU at 3.10GHz, with 8GiB of memory, and running Lubuntu 18.04
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with the Linux 4.15 kernel. SecureMigration uses Intel Pin 3.17 and CRIU 3.15.

5.3.1 Use cases

We first describe the setup for each use case, as well as any function-level taint

analysis required to either preserve taint on private resources or remove taint from

a public output. We then evaluate the use cases jointly in §5.3.2.

#1: Isolate TLS private key. Our first use case is an analog to Keyless-

SSL. In this setup, a CDN operator runs NGINX on an edge server, and serves the

customer’s website. Rather than give the operator the website’s TLS private key,

the customer instead wants to retain exclusive, physical custody of the key.

NGINX accesses the private key at two places: first, when loading the PEM-

encoded key file from disk as part of reading the NGINX configuration file, and

during the TLS handshake that precedes each HTTPS request. As we are us-

ing the ECDE-RSA-AES256-GCM-SHA384 cipher suite, NGINX specifically ac-

cesses the in-memory private key between the initial ClientHello and the server’s

ServerHello to produce a digital signature to return to the client. To correct for

the laundering of the private key file’s initial taint during PEM decoding, we wrap

the EVP DecodeUpdate family of OpenSSL functions so as to propagate any taint on

the input arguments to the output. To correct for the tainted private key tainting

the digital signature, we wrap the EVP DigestUpdate family of functions to remove

any taint on the output signature.

In our initial experiments with this use case, we discovered that taint also
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propagates to some ancillary data that OpenSSL uses for analyzing memory usage

and leaks, as well as to the SHA384 context that OpenSSL uses to hash all handshake

messages (the server sends this hash as part of the ServerFinished message, which

signals the end of the TLS handshake). While still functionally correct, the result

was that the process would thrash between the two domains, migrating to B for

calls to CRYPTO malloc and friends, and returning back to A for the socket-related

system calls. Additionally, the process would migrate to B to note only construct

the ServerHello message, but also the ServerFinished. To correct this behavior,

within Spin we wrap and replace the CRYPTO malloc family functions to call directly

into their libc counterparts. Additionally, we add declassification to the high-level

EVP Digest family of hash functions, as well as the specific hash implementations,

such as SHA384 Update and SHA384 Final.

# 2: Isolate TLS session resumption ticket key. As an optimization for re-

establishing prior connections, RFC 5077 [93] allows the TLS handshake to option-

ally return to the client a ticket—the session state (including the TLS session key),

encrypted with a secret, symmetric key on the server called the ticket key. When

resuming a connection, the client can present this ticket as part of the ClientHello

message; the webserver decrypts the ticket and resumes the session. However, if

an attacker obtains the ticket key, they can recover the session key for any ticket

encrypted by that key, and thus decrypt any traffic for such sessions, regardless of

whether the TLS cipher suite supports forward secrecy. Our second use case as-

sumes that a single principal owns all of the webserver’s resources: the webserver
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services traffic on Internet-facing machine A, and the ticket key is isolated to non-

Internet-facing machine B.

For ticket-based session resumption, NGINX reads the ticket key from disk

into memory during the webserver’s initialization and adds a reference to the key

to the SSL context (SSL CTX). The ticket key is 80-bytes, where the first 16 bytes

are the key’s name, the next 32 are the encryption key, and the last 32 are the

HMAC key. While NGINX sets AES-256-CBC and SHA256 as the ticket’s cipher

and hash functions, respectively, OpenSSL calls these methods through the higher

level EVP EncryptUpdate, EVP DecryptUpdate, and HMAC Update family of func-

tions. Thus, in Spin, we wrap these functions to provide explicit, function-level

taint analysis that removes any leakage of the ticket key’s taint into either the en-

crypted or decrypted ticket.

#3: Isolate scripts for custom request handling. NGINX allows an ad-

ministrator to extend the server’s request handling with custom JavaScript; such

scripts can implement an array of features, such as providing access controls and se-

curity checks, manipulating response headers, or filtering the HTTP message body.

Internally, NGINX implements its own, bespoke JavaScript interpreter, called njs.

The njs interpreter executes the JavaScript code during distinct phases of request

handling—in other words, NGINX uses njs as a middleware, rather than an av-

enue for creating an application server. Upon each request, njs initializes a new

JavaScript VM and an associated memory pool. During VM execution, memory

allocations for JavaScript objects draw from the pool; upon request completion,
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NGINX releases the pool and frees the VM.

For this use case, we again assume that a CDN operator runs NGINX on

an edge server, and serves the customer’s website. However, we assume that the

NGINX configuration references the customer’s private JavaScript file as part of

the request handling. While the JavaScript could perform custom access or firewall

controls that reference the customer’s sensitive data, for our evaluation purposes, we

instead mock such logic by having the JavaScript simply return a hardcoded HTTP

response body. In other words, the script is a taint source, but the script’s output

must be declassified as non-sensitive.

NGINX exports to the JavaScript environment various native functions that

a script may call; the actual C implementations of these functions may use the

njs C-API to retrieve values from the VM. For our use case, we deal with the

return native method of a response object, whose implementation is the C function

ngx http js ext return. Within this C function, we apply function-level taint

analysis to declassify the outputs of the ngx js integer and ngx js string C-API

functions, which the C function uses to retrieve return’s arguments for the HTTP

status code and response body, respectively.

#4: Isolate WebDAV content and authentication. In our final use case,

we assume that NGINX runs on a third-party cloud host, and that a content owner

uses NGINX to serve both public, static content as well as provide a WebDAV [94]

interface for allowing authenticated clients to access and modify sensitive content.

In this use case, NGINX uses HTTP digest access authentication [95] to confirm
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the clients’ identity. The central idea of digest authentication is that the webserver

returns a challenge to the client that includes a nonce when the client attempts

to access a protected resource. The client then computes a hash (HA1) over their

username and password, a separate hash (HA2) over details of the URI access, and

a final response hash over the concatenation of HA1, the nonce, and HA2. The

client then reissues the original request, adding their username and response hash

as an HTTP header. As the webserver has a flat password file (conventionally named

htdigest) that maps the username to the HA1 value, and since the webserver knows

the nonce and the URI, the webserver can verify that the client-presented response

matches the expected hash.

We assume that the cloud host stores the public content, but that the content

owner wants to mediate authentication of clients and modification of the sensitive

content, and thus wants for these operations to occur on their own machine. In

particular, the content owner wants to guard against the cloud host impersonating

as an authenticated client. To that end, the content owner pins the htdigest file to

their machine, and marks this file as a taint source; the sensitive content is likewise

pinned to their machine, but not marked as a taint source, since the cloud host can

view such content as part of servicing an HTTP GET request.

Variation: Bilateral taint. While all of the use cases thus far have only domain

B specifying a taint source, we also explore variations where both A and B have

tainted data. For these variations, we again assume that A owns the majority of

the webserver’s resources and communicates with the web clients, but that A also
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uses a proprietary set of web application firewall (WAF) rules, which A specifies as

a taint source. For our WAF, we use the popular NAXSI [96] (NGINX Anti XSS

& SQL Injection) module, which allows an administrator to specify rich filters for

blocking malicious web traffic.

5.3.2 Analysis

We now analyze SecureMigration’s performance and behavior. For the TLS-

key, njs-script, and authenticated WebDAV evaluations, we use curl to make the

HTTPS requests. As curl does not support TLS tickets, for the ticket-key eval-

uations, we instead issue HTTPS requests using OpenSSL’s s client tool. Each

underlying HTTP request and response message is less than 1 KiB.

Overheads. We first investigate the overheads of SecureMigration for each use

case as compared to running NGINX in a normal, uninstrumented fashion. To iso-

late the overheads of each component of SecureMigration, we run SecureMigration

in five different configurations. The first configuration, Pin, tests the fixed overhead

of using Intel Pin in a noop-fashion; here Spin disables taint tracking and passes all

system calls through to the kernel; Spry is not used and there is no migration. The

second configuration, Taint-Tracking, tests the overhead of taint tracking: instru-

mentation is not added for memory access checks, Spry is still not used, and there

is no migration. Although taint tracking is enabled, there is no taint in the system.

The third configuration, Access-Checks adds the memory access checks. The fourth

configuration, 1-domain, uses both Spin and Spry, but does not migrate. Spin per-
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forms taint tracking and makes system calls to Spry, and Spry indicates whether the

system call responses are tainted. This is the first configuration where the process is

tainted. The final configuration, 2-domains, executes the complete SecureMigration

system, with the process migrating between the two domains A and B.

Figure 5.2 indicates the performance overheads for each use case under each

configuration. Each bar represents the latency for a single GET request (averaged

over 20 separate, sequential requests) and normalized against the average latency

of a request for normal, uninstrumented NGINX. For the ticket-key example, all

requests have the client present a previously downloaded ticket. When computing

the average, we disregard the first request; this request is noticeably longer (roughly

3× slower) as Intel Pin must instrument new instructions; for subsequent requests,

Intel Pin directly JITs from its code cache of previously instrumented instructions.

From Figure 5.2, we observe that there is a roughly 1.6× overhead by just using

Intel Pin. We also observe that the reduced code complexity for session resumption

lessens the overheads compared to the other use cases.

Upon adding taint tracking, we notice a roughly 525× overhead. In terms of

latency, this means that a request for the tls-key example goes from taking 7.3ms

in the uninstrumented case, to 3.87s. Upon adding in the memory access checks,

the overheads approach 600×, with requests taking nearly 4.4s. The 1-domain

configuration has overheads that are just slightly higher than the Access-Checks

configuration: while there is some overhead in making RPCs for the system calls

(each request results in less than 30 system calls), the more dominant factor is that

our taint setting and clearing logic depend on whether the memory page already
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Figure 5.2: Average latency for an HTTPS request from a single client, normalized
against an uninstrumented NGINX. Note the log-scale y-axis. For each use case,
we benchmark SecureMigration by progressively enabling features: Pin (Intel Pin
with a noop instrumentation), Taint-Tracking (taint tracking), Access-Checks (taint
tracking, memory checks) 1-domain (full Spin & Spry, but without migration), and
2-domains (Spin & Spry, migrating NGINX between two domains).

has taint on it.

Finally, migration usually doubles the total latency, with the latency for the

tls-key example reaching 8.6s. Note that, for the tls-key case, the average time for a

CRIU dump is 0.190s, and for a restore 0.107s. In other words, the vast majority of

the request overhead is in transferring the checkpoint images (which total 342 MiB)

once from domain A to B, and then again from B back to A. For the tls-case, each

one-way transfer takes roughly 1.759s; normalized to the average uninstrumented

NGINX request latency, this represents an additional 240× of overhead.
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Migration patterns. In Figure 5.3 we examine the process migrations for each

use case during the webserver’s initialization, and then over four sequential HTTPS

requests. For the ticket-key example, the requests alternate between the client start-

ing a new TLS session and resuming the prior session. For the auth-webdav example,

the sequence of HTTPS operations is: creating a directory (MKCOL), creating a file in

that directory (PUT), renaming the file (MOVE), and then deleting the file (DELETE).

Additionally, we examine the waf/tls-key and waf/njs-script examples, whereby do-

main A runs a WAF module and taints the WAF rules, and domain B taints the

TLS key and njs script, respectively.

The dashed vertical lines in Figure 5.3’s subplots indicate NGINX’s receipt of

the client message that immediately precedes when the server accesses domain B’s

tainted resources. For tls-key, the vertical lines are the ClientHello. For ticket-

key, the vertical lines are the ClientKeyExchange when starting a new session and

the ClientHello when resuming a session. For the njs-script subplot, the vertical

lines mark receipt of the HTTP GET request; NGINX will subsequently access the

private njs script to compose the HTTP response. Finally, for auth-webdav, the

lines mark the client’s second HTTP request for a given URL (the client’s first

request receives the server’s nonce; the second request includes the HTTP header

with the client’s authentication).

During server initialization, the tls-key and ticket-key example make one ex-

pected round-trip to load their respective key into memory. In contrast, the njs-

script makes three round-trip migrations to load the script: the first round-trip to

load the script; the second to call lstat on the script to form the list of module
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paths, and the third due to an execution of mov r10, qword ptr [rsp], where the

source memory operand was gratuitously tainted.

For the four client requests, we see that that the migrations for all examples

occur at the expected HTTPS phase. At a functional-level, the migrations also

occur within the expected routines. For instance, the ticket-key session resumption

migrations occur in the ngx ssl session ticket callback function, and the njs-

script the migrations occur within the the njs vmcode interpreter function—the

JavaScript interpreter’s entry point. We note that the auth-digest PUT request (the

second client request) results in two migrations to B: the first reads the htdigest

file (during which the uploaded file is written to a temporary file); next the process

migrates back to A to send the HTTPS response; finally the process migrates back

to B to delete the temporary file as part of the request’s cleanup.

The migration patterns for waf/njs-script is identical to the njs-script exam-

ple; the additional overhead of the WAF module shifts the time series right. The

waf/tls-key migration pattern only differs from the tls-key example during server

initialization. Instead of migrating once to B to load the private key PEM file, the

waf/tls-key example migrates four times; each migration to B is for a step in loading

the private key (calls to openat, fstat, close for reading the key, and a final call to

a subfunction of SSL CTX use PrivateKey for decoding the key); each migration to

A is due to A having tainted part of the stack, with B attempting to pop a tainted

value.

For the four requests of Figure 5.3, Table 5.1 additionally indicates the average

time the process spends in each domain (as well as migrating) for a single request,
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and the percentage of the request that is spent in each domain. For all examples,

the time spent executing on B is less than 10% of the total requests time; this is

important, as in most of the use cases, B represents the cloud customer, rather

than the cloud provider. The time spent executing on B is naturally higher during

the tls-key example since the private key operation dominates the total time for

the request. Table 5.1 additionally motivates the case for optimizing migration, as

roughly 40% of the time spent servicing a request is for migration.
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Figure 5.3: The migration pattern and process execution times on each domain over
the course of four HTTPS requests. The dashed vertical lines indicate NGINX’s
receipt of the client message that immediately precedes accessing B’s tainted re-
source. The dashed plots in the tls-key and njs-script subplots are the waf/tls-key
and waf/njs-script examples, respectively. For these use cases, domain A runs a
WAF module and taints the WAF rules.

tA tB tmigration

tls-key 2.506 (21.0%) 5.242 (43.8%) 4.208 (35.2%)
ticket-key 5.394 (54.7%) 0.235 (2.4%) 4.230 (42.9%)
njs-script 6.383 (49.4%) 1.207 (9.4%) 5.316 (41.2%)

auth-webdav 6.180 (52.3%) 0.412 (3.5%) 5.228 (44.2%)

Table 5.1: The time in seconds that the process spends on domain A (tA), B (tB)
and in migration (tmigration) for a single request, averaged over the four HTTPS
requests of Figure 5.3 (excludes server initialization). The numbers in parentheses
are the percentage of the entire request.
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Taint propagation. We ask whether the total number of tainted bytes in the

process remains stable, as a concern with taint tracking is that over-tainting may lead

to the entire process address space becoming tainted. To that end, we instrument

the ret instruction to log the number of bytes tainted to each domain. In Figure 5.4,

we plot the number of bytes tainted to domain B over the course of the webserver’s

initialization, and then for 20 sequential HTTPS requests (we initially set the total

to the size of taint source, even before the process loads the tainted file). To give

an idea of the dispersion of taint, we also plot on the opposite y-axis the number of

pages on which B has tainted a byte. As expected, the amount of taint increases

when loading the resource and servicing a request (the spikes in the plot) before

returning to a stable band.

Table 5.2 additionally shows the initial taint, max taint, and average taint

at the start of the request (NGINX’s call to the accept4 system call) for the four

examples, as well as the two WAF variants. Generally speaking, the max taint can

be upwards of 7× the initial taint size, whereas the number of bytes tainted at the

start of a request is 2–3× the initial taint size.
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Figure 5.4: Total data tainted to domain B over the course of the webserver’s
initialization and twenty HTTPS requests. The dashed lines are the number of
pages tainted (the y2-axis).

Domain Tinit Tmax T reqstart

tls-key B 1704 12,324 (7.2×) 3560 (2.1×)

waf/tls-key A 6333 23,982 (3.8×) 20,671 (3.3×)
B 1704 12,294 (7.2×) 3560 (2.1×)

ticket-key B 80 604 (7.6×) 106 (1.3×)

njs-script B 85 230 (2.7×) 200 (2.4×)

waf/njs-script A 6333 23,723 (3.7×) 20,273 (3.2×)
B 85 230 (2.7×) 191 (2.2×)

auth-webdav B 47 209 (4.4×) 92 (2.0×)

Table 5.2: The size in bytes of a domain’s initial taint source (Tinit), the maximum
number of bytes tainted to the domain (Tmax), and the average bytes tainted to the
domain (T reqstart) at the start of a request, for the requests of Figure 5.4.

Whence bad performance? Our extensive evaluation shows that the overheads

are extensive: over 1000× that of normal, uninstrumented NGINX. However, look-

ing at the break-down of the amount of time spent in each component of our system
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paints an optimistic path forward.

Nearly half of the overhead is from migration, which is dominated by the time

CRIU takes to transfer large checkpoint images. This is not fundamental to our

system. When migrating for a quick operation like performing a digital signature,

we typically only need a small fraction of memory pages to migrate, not the entire

image, and then migrate back. CRIU could and should be extended to support a

distributed shared memory protocol, whereby a domain transfers only the process’s

working set of memory, and then transfers the other required pages via remote page

faults. This one change alone would decrease our overheads by about half.

The overheads for instrumentation are dominated by the taint tracking logic,

rather than the byte-granular memory access checks. The reason for this is likely

two-fold. First, for each new trace, Spin must perform a complex case analysis

on each instruction to determine which taint tracking function to insert, even if

the process has already previously seen the instruction. This is different from the

access-check instrumentation, which memoizes its case analysis. Second, setting

taint in shadow memory is more costly than retrieving taint. For safety, setting

taint uses a two-pass algorithm that first checks that the memory range is valid

(that is, that the real access would not generate a page fault in the application),

and then determines whether a page transitions from tainted to untainted (or vice

versa), so as to facilitate swapping private memory with Spry during migrations.

Both the taint tracking instrumentation and the shadow memory implementation

are prime for optimization. More generally, the shadow memory page table walks

are completely unoptimized, and would likely benefit from a software analog to a
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translation lookaside buffer (TLB).

There are several more exploratory directions for performance improvement.

For instance, we mention in §5.2.1 that taint tracking at larger granularities, such as

page-level, would obviate the access-check instrumentation, since Spin could instead

rely on kernel-level page protections (i.e., a sigsegv+mprotect approach). Such an

approach, however, has the downside of increasing the risk for taint deadlock and

false sharing. An interesting idea would be to dynamically switch between page-

level and byte-level granularities based on the process’s state. Finally, to reduce the

costs of dumps, Spin could replace libC’s allocator so as to maintain a persistent

heap [97],

In summary, although our performance numbers may fail to impress, they

are largely attributable to optimizations that are feasible but beyond the scope

of this dissertation. Recall, however, that a central goal of this dissertation is to

demonstrate the possibility of turning a legacy monolithic application into a secure

distributed one, and in that regard, our evaluation demonstrates success.

5.4 Conclusion

In this chapter, we have taken a first step towards turning legacy, monolithic

programs into secure distributed systems without modifications to the software.

Combining several existing building blocks (taint tracking and process migration),

we constructed a new abstraction that moves processes to the data they need, and

leaves data at the principals trusted to house it. In other words, we have shown that
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we can achieve new security properties not by changing what a program executes,

but where it executes throughout its lifetime.

Our evaluation shows that this is possible, but that there is still significant

room for future work. With regards to performance, we have identified two critical

areas for improvement: faster taint tracking (which would benefit many applica-

tions) and lighter-weight process migration. Another important area of future work

involves what happens when a process must perform an operation on two pieces of

data, each bound to a separate domain. In our current implementation, this would

deadlock, but we believe there may be a path forward even then, by employing

secure multiparty computation.
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Chapter 6: Conclusion and Future Work

In this thesis, I demonstrated that it is possible to run legacy application

binaries with confidentiality and integrity guarantees that reflect a multi-party trust

setting. My approach to running old software in new trust settings was to develop

application-level virtualization layers to handle the trust concerns on behalf of the

application, with the user specifying the trust policy to the virtualization layer. Both

conclaves and SecureMigration are in the tradition of exokernel/libOS design [98,99],

whereby the application is bundled with a custom execution environment, with

conclaves implementing the execution environment as a microkernel within secure

hardware enclaves, and SecureMigration as a distributed shim operating system.

6.1 Immediate steps

Before discussing the grander challenges that remain, I note several immediate

engineering steps for both systems. Ultimately, applying these systems to a more

diverse set of applications, beyond web servers, (such as DNS servers, mail servers,

machine learning, join computations of randomness, databases, and remote shells)

should drive these features.
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6.1.1 Conclaves

For conclaves, immediate tasks include supporting a larger portion of the

POSIX and Linux kernel interface, hardening the system against side-channel at-

tacks (including adding oblivious filesystems [100]), and improving the performance

of the shared memory implementation. Additionally, from a usability standpoint,

the creation, configuration, and attestation of conclaves would benefit from more

mature tooling.

6.1.2 SecureMigration

For SecureMigration, an interesting avenue of research is optimizing migration,

as currently a significant portion of the process’s time is spent migrating between

domains. Such work may entail extending CRIU with a distributed shared mem-

ory (DSM) protocol, such that a domain only transfers the working set of memory

pages during migration, and then lazily transfers the remaining pages via remote

page faults. Additionally, Spin may benefit from implementing a custom memory

allocator that maintains a persistent heap [97]; such an approach may reduce the

overhead of each dump operation by amortizing the cost of dumping memory over

the process’s execution. Other optimizations may explore ways to avoid migration

altogether, such as through the implementation of more sophisticated resource man-

agement (as by replicating non-sensitive files across domains), or forwarding system

calls that reference non-sensitive resources across domains, rather than migrating

for such calls.
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Further research efforts could explore supporting multi-process applications,

and allowing processes and threads to simultaneously run on the different domains.

Some use cases may require more complex taint semantics, such as allowing for

domain groups, with taint shared among the group members. Part and parcel with

this feature would be provisions for sending taint across a network or persisting taint

in the filesystem.

6.2 Grander challenges

While the aforementioned engineering efforts are by no means trivial, deeper

lines of research should focus not merely on supporting more applications, but rather

application settings that reflect a diverse set of trust assumptions. To that end, I

next describe a number of infelicities that arise when applying my two systems (and,

in particular, conclaves) to distributed and mobile settings.

6.2.1 Distributed, federated, systems

One line of research is how to use conclaves—or, more generally, secure hard-

ware enclaves—in environments that are inherently distributed: that is, environ-

ments that involve the cooperation of multiple processes run by distrusting princi-

pals, where the client(s) does not have knowledge of all of the processes and prin-

cipals that comprise the system. Such systems are sometimes called federated to

emphasize that the system is distributed across multiple principals.

Note that Phoenix is an idealized notion of such a distributed system: I as-
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sumed the customer knows the exact build of the webserver and that the webserver

is non-buggy (and thus does not leak secrets). Additionally, in Phoenix, I assume

the webserver only handles connections from the web clients and the customer’s

origin server.

In a real world scenario, all of these assumptions are invalidated: the customer

would not have knowledge of (and thus be unable to audit) the CDN’s software stack.

The CDN’s software stack would contain numerous bugs [101, 102]. Moreover, the

CDN would frequently update and modify the software stack (perhaps daily), with

the stack comprising a sophisticated hierarchy of caches and backend services, rather

than a standalone webserver.

These assumptions break down not only for a real-world web server deploy-

ment, but for nearly all major Internet services. For instance, with DNS, a noble

privacy goal is make the domain name system oblivious with respect to a client’s

query, such that only the client observes the plaintext of both the DNS request

and response. The solution of “just place each DNS server in a conclave” and use

DNS-over-TLS [103] or DNS-over-HTTPS [104] as the transport mechanism is not

quite sufficient to ensure the servers do not learn the client’s query. Rather, the

client needs proof that the path the query took was always shielded by secure hard-

ware, and by TLS connections that terminate in an enclaved process. (Note that

end-to-end shielding for other applications, such as email or messaging, where only

the sender and recipient observe the plaintext message, requires a similar set of

guarantees over their respective application-level servers.)

Unfortunately, providing such a guarantee represents serious usability issues:
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returning to the DNS example, it is unreasonable for the client to know every DNS

server implementation, and every build thereof. In other words, even if the client

received an attestation from each resolver on the query’s path, the client has no

way to verify that the attestation is over a trustworthy piece of software, barring

some trusted third party periodically publishing a list of all known trustworthy

DNS resolver builds. This is an untenable combinatoric problem, as the server’s

attestation will change each time the DNS software is recompiled, the configuration

changed, or a supporting shared library upgraded.

To tame this combinatoric (and usability) problem, an alternative approach

is to assume a small number of enclave-based trusted execution environments, and

for the client to verify attestations over properties of these environments, rather

than over a specific application running within this environment. The idea is not

novel, as some prior work, notably Ryoan [105], explores this very design, albeit

in a restricted setting. Under such a design, the client receives an attestation that

the execution runtime enforces strong guarantees of not leaking data, even for an

application that (intentionally or inadvertently) may export the data.

Such designs provide a natural setting for composing conclaves with the taint

tracking component of SecureMigration. Namely, the execution environment not

only shields the user’s data within a secure hardware enclave, but the execution

environment instruments the application so as to ensure the user’s data remains

sandboxed within the enclave.
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6.2.2 Mobile

For both conclaves and SecureMigration, the predominate use case was a cus-

tomer using a third party to run a webserver, with the customer maintaining the

confidentiality of some resource, such as the website’s private key. For mobile appli-

cations, the situation is somewhat reversed, with the customer owning the machine

(the smartphone) but running third-party applications that use the customer’s data.

The customer wants strong guarantees on what data is shared with the third party.

As many apps have a cloud storage component, the user wants to ensure that the

content (such as photos or messages) they upload to the cloud is not observable by

the app company. Additionally, the app itself may require strong guarantees that

it is actually interacting with a human user.

The first set of problems is essentially a special form of sandboxing, and there

exists some prior work [59,106] in applying information flow control to smartphone

apps. The taint tracking techniques of SecureMigration may be appropriate in

this setting as well, though it is unclear if the app-specific entities and data flow

constraints are immediately expressible.

The second set of problems reprises the same sorts of issues as with the dis-

tributed and federated systems—the app user would like to interact with the opaque

cloud-side portion of the app for content storage or processing purposes, but with-

out revealing their actual content. In contrast to the DNS use case, and as an even

more extreme version of the email use case, the app may entail a complex policy for

the allowable ways in which the user’s content may be shared, rather than a binary
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policy of “do not leak.”

Finally, as in the case of a mobile banking app that accepts a user’s pin, the

banking app may want a guarantee that the human user entered the pin, and that

some malicious software has not stolen the pin and is attempting a withdrawal. For

such a use case, running the banking app within an enclave is not sufficient, as the

app needs to further attest to the pin’s provenance from the physical input device.

To that end, an interesting future avenue may involve composing conclaves with

work in secured IO [107,108].

6.3 Decoupling security from applications

Both conclaves and SecureMigration represent an approach to software design

where security concerns are decoupled from the application logic and placed under

the responsibility of the execution environment. This position of applying security

solutions to an application post-hoc stands in stark contrast to the oft-repeated

refrain of building security in from day one.

It is not my intent to defend one position over the other: in the end, both

approaches have value and are needed. Rather, with this thesis, I hope to have

demonstrated that some security concerns are impossible to predict at the time of

development, as software tends to be used in ways that the developer could never

have imagined. Moreover, as I demonstrated with the various evaluations, the sheer

number of software configurations required to span the set of all security postures

may make “building security in” prohibitive even when the requirements are known
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a priori. For instance, SecureMigration expresses not only Keyless SSL, but also

a variety of other nonexistent—but potentially useful—protocols, such as “Keyless

Ticket Key,” “Scriptless JavaScript,” and “HTDigest-less Authentication”—each of

which may require significant development effort if pursued as separate features.

An obvious set of open-ended questions is: how far can we take this idea of

applying security policies after the fact, and, how should we develop software now

to make it more amenable to security refinements later.

For the former question, we already employ diverse kernel and compiler-level

techniques to provide “seat belts” and “guardrails” for applications, such as ASLR,

system call filters, stack canaries, and control flow integrity guards. Conclaves and

SecureMigration differ from these techniques by moving the constraints from low-

level process constructs to application-level entities, such as files and principals.

Can we move the needle further? Should protocols like TLS be removed from

applications and moved to the execution environment? Can, and should, private

browsing be enforced at the execution environment level, rather than exposed as an

application feature? Can protocols for differential privacy [109] be applied as a form

of information flow control within the execution environment, rather than within

a database engine? Can dynamic binary instrumentation (DBI) be composed with

either fully homomorphic encryption (FHE) or secure multi-party (SMC) program,

such that the DBI system dynamically translates the legacy program to an equivalent

FHE or SMC one?

To assist these efforts, is it enough to merely develop software in modular

(and thus, decoupled) fashion, so as to facilitate instrumentation? Do we need a
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new generation of developer tools, to, for instance, measure information flows and

data leakage as part of the development process?

I wish the best of luck to the future researchers that take on these challenging

problems.
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Performance Analysis Tool for Intel SGX Enclaves. In Proceedings of the 19th
International Middleware Conference, Middleware ’18, 2018.

[87] Intel Corporation. Linux SGX Kernel Driver. https://github.com/intel/

linux-sgx-driver.

[88] Jens Axboe. Fio 3.13. git:git.kernel.dk/fio.git.

115

https://github.com/ayeks/SGX-hardware
https://github.com/ayeks/SGX-hardware
https://letsencrypt.org/
https://www.haproxy.org/
https://github.com/gkostka/lwext4
https://roughtime.googlesource.com/roughtime/+/HEAD/PROTOCOL.md
https://roughtime.googlesource.com/roughtime/+/HEAD/PROTOCOL.md
https://github.com/dimakuv/graphene/tree/exitless
https://github.com/dimakuv/graphene/tree/exitless
https://bearssl.org/
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
git:git.kernel.dk/fio.git


[89] Linux Checkpoint/Restore In Userspace. http://criu.org.

[90] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN’s Conference on Programming Language Design and Imple-
mentation (PLDI), 2005.

[91] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. libdft: Practical dynamic data flow tracking for commodity sys-
tems. In ACM International Conference on Virtual Execution Environments
(VEE), 2012.
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