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Abstract

Performance on multicore processors is determined largely by on-chip cache. Computer architects

have conducted numerous studies in the past that vary core count and cache capacity as well as

problem size to understand impact on cache behavior. These studies are very costly due to the

combinatorial design spaces they must explore.

Reuse distance (RD) analysis can help architects explore multicore cache performance more ef-

ficiently. One problem, however, is multicore RD analysis requires measuring concurrent reuse

distance (CRD) profiles across thread-interleaved memory reference streams. Sensitivity to mem-

ory interleaving makes CRD profiles architecture dependent, undermining RD analysis benefits. But

for parallel programs with symmetric threads, CRD profiles vary with architecture tractably: they

change only slightly with cache capacity scaling, and shift predictably to larger CRD values with core

count scaling. This enables analysis of a large number of multicore configurations from a small set

of measured CRD profiles.

This paper investigates using RD analysis to efficiently analyze multicore cache performance for

parallel programs, making several contributions. First, we characterize how CRD profiles change

with core count and cache capacity. One of our findings is core count scaling degrades locality, but
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the degradation only impacts last-level caches (LLCs) below 16MB for our benchmarks and problem

sizes, increasing to 128MB if problem size scales by 64x. Second, we apply reference groups [1] to

predict CRD profiles across core count scaling, and evaluate prediction accuracy. Finally, we use

CRD profiles to analyze multicore cache performance. We find predicted CRD profiles can estimate

LLC MPKI within 76% of simulation for configurations without pathologic cache conflicts in 1
1200

th

the time to perform simulation of the full design space.

1 Introduction

Practically all high-performance commercial CPUs today integrate multiple cores on a single

chip. Given their ubiquity, achieving high performance on multicore processors is an important

goal. One key factor determining multicore performance is the memory system. In particular, a

crucial issue is how effectively programs can utilize the on-chip cache to mitigate off-chip memory

accesses.

Numerous studies have investigated this multicore memory bottleneck [2, 3, 4, 5, 6, 7, 8, 9]. These

studies all conduct detailed simulation that vary architecture parameters, usually core count and

cache capacity, to quantify how different designs impact memory traffic and overall performance.

A significant problem is the large number of configurations that must be simulated due to the

multi-dimensional nature of the design space. Worse yet, this multicore design space is becoming

more complex as processors scale.

Today, 4–8 state-of-the-art cores or 10s of smaller cores [10, 11] along with 10s of MBs of cache

can fit on a single die. Since Moore’s law scaling is expected to continue at historic rates for the

foreseeable future [12], multicore processors with 100s of cores and 100+ MB of cache–i.e. large-scale

chip multiprocessors (LCMPs) [3, 9]–are conceivable after only 2 or 3 generations. As processors

scale to the LCMP level, studying multicore memory behavior will become extremely challenging.

A powerful tool that can potentially help architects evaluate multicore memory systems is reuse
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distance (RD) analysis. RD analysis measures a program’s memory reuse distance histogram, or

RD profile, capturing the program-level locality that is responsible for cache performance. A key

feature of RD profiles is architecture independence: they can be acquired on one architecture, and

then used to predict performance across a large number of cache configurations without additional

simulations.

RD analysis is well established for uniprocessors [13, 14, 15, 1], but its use for multicore processors

is limited. The problem is locality in multicore processors depends not only on per-thread locality,

but also on how simultaneous threads’ memory references interleave. To apply RD analysis for

multicore processors, the concurrent reuse distance (CRD) profile [16] must be acquired across

threads’ interleaved memory reference streams. Unfortunately, memory interleaving is architecture

dependent, exhibiting sensitivity to both core count and cache capacity scaling. Hence, it may not

be possible to analyze different multicore configurations from a common CRD profile, defeating a

key benefit of RD analysis.

Despite their architecture dependence, this paper shows CRD profiles can still be very useful

for a specific but important case: parallel programs. Parallel programs usually exploit loop-level

parallelism, giving rise to symmetric threads that exhibit very similar locality characteristics (i.e.,

their RD profiles are essentially identical). Even though CRD profiles are architecture dependent,

it is possible to reason about how profiles change with architecture scaling when per-thread memory

reference streams are similar.

In particular, CRD profiles change only slightly with cache capacity scaling. While cache size

can affect performance significantly, symmetric threads tend to speedup or slow down by the same

amount as capacity is varied.1 So, inter-thread performance remains about the same, largely

preserving memory interleaving. This suggests CRD profiles acquired at one cache capacity can be

1This assumes homogeneous cores with symmetric cache hierarchies.
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used to analyze memory behavior across a range of cache capacities.

In contrast, CRD profiles change significantly with core count scaling. Adding cores creates

more memory interleaving, degrading locality and shifting portions of CRD profiles to larger CRD

values. However, for symmetric threads, this locality degradation is often systematic. In particular,

interleaved memory references at the same RD value usually shift by the same amount due to

threads’ similar reuse patterns. Hence, affected portions of CRD profiles tend to shift in a shape-

preserving fashion.

Coincidentally, a similar shape-preserving shift has been observed for RD profiles when scaling

problem size in sequential programs [1]. Moreover, previous research has shown such profile shifting

is predictable. By comparing RD profiles at different problem sizes, the shift can be gauged and

used to predict scaled RD profiles [1]. Our work shows such “profile diffing” can predict the impact

of core count scaling on CRD profiles as well. This suggests CRD profiles acquired at a small

number of core counts can (after prediction) analyze memory behavior across a large number of

machine sizes.

Our research investigates RD analysis for parallel programs on multicore processors, making

several contributions. First, we characterize how CRD profiles change with last-level cache (LLC)

capacity and core count. Our characterization considers processors with 1-256 cores and 4-128MB

LLCs. We show 99% of CRD profiles are very similar across LLC sizes, exhibiting profile window

error (PWE) (a profile similarity metric) of 20% or less. This confirms CRD profiles have low

sensitivity to LLC scaling. We also demonstrate profile shift due to core count scaling varies with

CRD. Shifting occurs for smaller CRD values, but stops beyond a certain CRD which we call Cstop.

This implies locality degradation due to core count scaling only impacts LLCs with capacity < Cstop.

For our benchmarks and problem sizes, Cstop is between 136KB–22MB. However, if problem size

scales by a factor 64x (beyond what we can simulate), Cstop can increase to 128MB.
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Second, we study CRD profile prediction across core count scaling. Specifically, we employ

reference groups [1]–a technique proposed for predicting problem scaling–and evaluate its accuracy

for predicting core count scaling. Our results show 46%, 73%, 83%, and 93% of core-count predicted

CRD profiles exhibit up to 20%, 40%, 70%, and 100% PWE, respectively. (We also tried predicting

problem scaling, and found similar prediction errors). These results show reference groups cannot

predict core count scaling perfectly. Nevertheless, a large number of profiles are still predicted with

good accuracy.

Finally, to demonstrate their utility, we use CRD profiles to analyze cache performance across

our multicore design space and input problems. We find CRD profiles are unable to effectively

predict performance in 36% of the configurations due to unanticipated cache conflicts. For the

remaining configurations, measured CRD profiles can predict the LLC MPKI to within 69% of

simulation, while predicted CRD profiles can predict MPKI to within 76% of simulation. In the

latter case, the predicted MPKI is obtained in 1
1200

th
of the time required to simulate the entire

design space.

The rest of this paper is organized as follows. Section 2 discusses CRD profiles, and Section 3

characterizes their sensitivity to architectural scaling. Then, Section 4 studies predicting core count

scaling, and evaluates prediction accuracy. Next, Section 5 applies our CRD profiles to estimate

cache performance. Finally, Sections 6 and 7 discuss related work and conclusions, respectively.

2 Concurrent Reuse Distance

Reuse distance measures the number of unique memory references performed between two ref-

erences to the same data block,2 quantifying program-level locality in an architecture-independent

fashion. RD profiles–i.e., the distribution of RD values for all memory references in a sequential

program–are useful for analyzing uniprocessor cache performance. Because caches can satisfy mem-

2Sometimes, reuse distance refers to the total memory references between two uses of a data block rather than the
unique memory references. In this paper, we adopt the latter definition which has also been called stack distance [17].
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ory references with reuse distance ≤ the cache size, CS (assuming LRU management), the number

of cache misses is simply the sum of all reference counts in a profile above the RD value for capacity

CS.

This paper investigates applying RD analysis for shared caches in multicore processors. As

illustrated in Figure 1, a typical multicore cache hierarchy integrates multiple levels of cache on

chip. Often, caches near the cores are private while caches near the off-chip interface are shared.

The LLC, which is the focus of our work, is usually shared by all cores.

RD analysis can be extended to handle shared LLCs by computing reuse distance across the

interleaved memory reference streams from all on-chip cores. This is known as the concurrent reuse

distance (CRD) [16]. Figure 2 illustrates CRD for a sequence of interleaved memory references from

two cores. In Figure 2, Core 1 references blocks A–C, and then re-references block A, while core 2

references blocks D–G. Core 1’s reuse of A has RD = 2, but its CRD, which takes into account

the interleaved references from core 2, is 5. In this case, CRD > RD because core 2’s references

are distinct from core 1’s references. The opposite can occur when cores share data. For example,

if core 2 references block A instead of block E at time 5, then core 1’s reuse of A would have CRD

= 1, so CRD < RD. Similar to RD profiles, CRD profiles present the distribution of CRD values

across all memory references in a parallel program.

As Figure 2 shows, CRD is defined for a particular memory interleaving only. If interleaving
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changes, so will the CRD profile. Unfortunately, memory interleaving is sensitive to architecture

scaling. In particular, varying LLC capacity changes per-thread execution speed. This implies no

single CRD profile can capture locality precisely across multiple LLCs. In addition, varying core

count changes the number of interleaved memory streams. Certainly, core count scaling will affect

CRD profiles significantly. The key question is given CRD profiles’ architecture dependence, can we

reason about the memory performance of different multicore configurations from a single (or small

number of) CRD profiles? The answer depends on exactly how CRD profiles vary with architecture

scaling.

3 Scaling Characterization

This section characterizes how architecture scaling impacts CRD profiles. Our study proceeds

in four parts. First, Section 3.1 describes experimental methodology. Then, Sections 3.2 and 3.3

present the LLC capacity and core count scaling analyses, respectively. Finally, Section 3.4 discusses

problem scaling.

3.1 Experimental Methodology

We use simulation to characterize the impact of varying LLC capacity and core count on CRD

profiles. We also study the impact of varying problem size. (As processors scale to the LCMP level,

they will be used to execute larger problems, so understanding problem scaling in the context of

machine scaling is crucial). Together, these scaling dimensions form the 3-D architecture-problem

space (APS) illustrated in Figure 3. We simulate all points in APS, acquiring the CRD profile at

each point, APSx,y,z. By comparing profiles across any axis, we can ascertain sensitivity along the

corresponding scaling dimension.

The multicore architecture assumed in our study is the tiled CMP [18], illustrated in Figure 4.

In a tiled CMP, each tile contains a core, a private L1 cache, an L2 cache and directory “slice,”
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Number of Tiles 1, 2, 4, 8, 16, 32, 64, 128, 256
Core Type Single issue, In-order, CPI = 1, clock speed = 2GHz
IL1/DL1 32KB/32KB, 64B block, 8-way, 1 cycle

Total L2 Cache Size 4MB, 8MB, 16MB, 32MB, 64MB, 128MB
L2 Slice 64B blocks, 32-way, 10 cycles

2-D Mesh 3 cycles per-hop, bi-directional channels, 256-bit wide links
Memory channels latency: 200-CPU cycles, bandwidth: 32GB(1-16cores) and 64GB(32-256cores)

Table 1. Simulator parameters used in the experiments.

and a switch with point-to-point interconnect for a 2-D on-chip mesh network. Tiles are replicated,

which increases all resources proportionally (e.g., cores, cache, and network). Hence, tiled CMPs

are considered scalable [19, 18]. This enables exploring CRD profiles across a large design space on

a single architectural platform.

A key part of tiled CMPs are the L2 slices. We manage the aggregate L2 slices as a single

logically shared LLC, with no replication or migration across slices. Each cache block is always

placed in the same L2 slice, known as the cache block’s “home.” We assume cache block homes are

chunk-interleaved across L2 slices according to their physical address, with chunking factor equal

to one way of an L2 slice. This simple organization permits us to study CRD profiles across a large

range of shared LLC capacities.

We modified the M5 simulator [20] to model a tiled CMP. Our simulator permits replication

at the private L1 caches, so we also added a directory-based MESI cache coherence protocol. We

assume full-map directories collocated with their associated cache blocks on the home tile. We also

modified M5’s memory sub-system to support multiple DRAM channels, each associated with a

memory controller on a special “memory tile.” In total, we simulate 4 memory tiles evenly spaced

on the north and south faces of the chip, providing an aggregate off-chip bandwidth of 32 GB/sec.

Lastly, during simulation, our simulator records the CRD profile for the pre-L1 memory reference

stream across all cores. CRD is computed at the granularity of 64 bytes, the block size for both

the L1 and L2 caches.
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Figure 4. Tiled CMP. Each tile contains a core+L1

cache, an L2 cache and directory “slice,” and an

on-chip network switch.

Figure 5. CRD profiles from the Water bench-

mark across LLC capacity at APS64,S4,z .

Table 1 lists the parameters we use. We simulate 1–256 cores and 4–128MB of total L2 cache

(LLC). The cores are very simple, each executing one instruction per cycle (in the absence of

memory stalls) in program order. However, we model the memory hierarchy accurately, including

L1 access, hops through the network, L2 slice access, and DRAM access. We also account for

queuing at the on-chip network switches as well as the memory controllers. When scaling the LLC,

we always assume the total capacity is evenly divided amongst tiles, so the size of each L2 slice is

always the total LLC size divided by the number of tiles.

Table 2 lists our benchmarks: FFT, LU, Radix, Barnes, FMM, Water, and Ocean from the

SPLASH2 suite [21], KMeans from the MineBench suite [22], and BlackScholes from the PARSEC

suite [23]. For each benchmark, we employ 4 problem sizes, S1-S4, (2nd column of Table 2). We

always execute initialization code on a single core, then turn on CRD profiling (and other statistics)

and simulate the parallel region for some number of instructions (3rd column of Table 2). For

FFT, LU, and Radix, the parallel region represents the entire program, whereas for the remaining

benchmarks, it represents 1 timestep of the algorithm.

Figure 3 is labeled with the core counts, LLC capacities, and problem sizes from Tables 1 and 2.

There are 216 configurations per benchmark in APS. Across all 9 benchmarks, there are 1,944

configurations.
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Benchmark Problem Sizes(S1/S2/S3/S4) Insts(M)(S1/S2/S3/S4) Sim Region

FFT 216/218/220/222 elements 32/139/605/2,610 whole program
LU 2562/5122/10242/20482 elements 72/577/4,620/36,990 whole program
RADIX 217/219/221/223 elements 23/90/432/1,728 whole program
Barnes 213/215/217/219 particles 614/2,908/12,796/55,222 1 timestep
FMM 213/215/217/219 particles 217/928/3,793/15,301 1 timestep
Ocean 1302/2582/5142/10262 Grid 50/200/783/2,879 1 timestep
Water 103/163/253/403 mols 115/431/1,826/9,564 1 timestep
KMeans 216/218/220/222 Objects, 16 features 492/1,970/7,880/31,499 1 timestep
BlackScholes 216/218/220/222 options 94/377/1,507/6,027 1 timestep

Table 2. Parallel benchmarks used to drive the simulations.

Figure 6. Percentage of CRD profiles whose PBE(C), PWE(C,10) , PWE(C,20), PWE(C,30), and

PWE(C,maxbin) are ≤ 1%, 1-10%, 10-20%, and > 20%.

3.2 LLC Capacity Scaling

Figure 5 shows an example of CRD profile variation across LLC capacity scaling. It plots CRD

profiles from the Water benchmark all running on 64 cores with the S4 problem size, but varies

the LLC size between 4 and 128MB (i.e., profiles at APS64,S4,z). Each CRD profile plots reference

count along the Y-axis versus CRD along the X-axis. CRD values are multiplied by 64 bytes, the

granularity for computing CRD, so the X-axis reports distance in terms of capacity. To enhance

readability, reference counts from multiple adjacent CRD values are summed into a single CRD

bin, and plotted as a single Y value. For capacities between 0 bytes and 128KB, bin size grows

logarithmically; beyond 128KB, bins are fixed at 128KB each.

As Figure 5 shows, CRD profiles change with LLC capacity, so they are indeed architecture

dependent. However, the profiles are very similar, with significant overlap. While the CRD profiles

in Figure 5 are not identical, they exhibit low sensitivity to LLC scaling. This is because LLC
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scaling speeds up or slows down symmetric threads by similar amounts, as discussed in Section 1.

So, profiles tend to remain the same.

To quantify this similarity, we compare CRD profiles across the entire APS. For each benchmark,

core count, and problem size, we compare the CRD profiles at capacities C = 4, 8, 16, 64, and

128MB (CRDC at APSx,y,C) against the CRD profile at capacity 32MB (CRD32 at APSx,y,32 in

the dotted plane of Figure 3). For each pairwise profile comparison, we compute the absolute error

between reference counts at all pairwise CRD bins (CRDC [i] and CRD32[i]), and then average the

errors from the first to last bin (maxbin). We call this the profile bin error for capacity C, PBE(C).

PBE(C) =
1

maxbin

maxbin∑

i=1

|CRDC [i] − CRD32[i]|

CRD32[i]
(1)

Across all APSx,y,z, there are 180 CRD profile comparisons per benchmark. In Figure 6, the bars

labeled “PBE” report the percentage of profiles with ≤ 1%, 1–10%, 10–20%, and > 20% PBE(C).

The rightmost “PBE” bar reports the average across all benchmarks. From our experience, a

PBE(C) of 1% implies the profiles are essentially identical while a PBE(C) of 1–20% implies the

profiles are very similar. (For comparison, profiles in Figure 5 exhibit PBE(C) = 23.2% on average).

As the average PBE bar in Figure 6 shows, 19% of the profiles exhibit PBE(C) ≤ 1%, and 73%

exhibit PBE(C) ≤ 20%.

The remaining 27% of CRD profile comparisons belong to the “> 20%” category. In most cases,

these profiles have higher PBE(C) due to benign non-systematic errors. Such errors are illustrated

by the shaded region in Figure 5: CRD profiles fluctuate above and below each other frequently,

resulting in errors at individual CRD bins. But these errors do not accumulate, so the profiles are

still very similar.

To factor out non-systematic errors, we compare the sum of reference counts (i.e., area) across

windows of W bins. We call this the profile window error for capacity C over window W , PWE(C,W).
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PWE(C,W) is computed using Equation 1 except the CRDC [i] and CRD32[i] terms are replaced by

their summing versions,
∑i+W

j=i CRDC [j] and
∑i+W

j=i CRD32[j], respectively. (To handle summing

past maxbin, we assume CRDC [j] = 0 for j > maxbin). The outer sum in Equation 1 doesn’t

change, so we still perform maxbin comparisons–i.e., the summing window slides across all CRD

bins. PWE(C,W) measures by how much the W-bin area under a CRD profile changes when the

LLC varies from 32MB to capacity C. In the limit, when W = maxbin, PWE(C,W) becomes the

cache-miss count error.

In Figure 6, the bars labeled “PWE” report the percentage of profile comparisons with ≤ 1%,

1–10%, 10–20%, and > 20% PWE(C,W) for W = 10, 20, 30, and maxbin. The rightmost set of

“PWE” bars report the average across all benchmarks. From our experience, a PWE(C,W) of 1–

20% implies the profiles are very similar. (For comparison, the 8MB LLC profile in Figure 5 exhibits

PWE(8,20) = 22.7%). As the average PWE bars in Figure 6 show, 90% of the profiles exhibit

PWE(C,20) under 20%, and 99% of the profiles exhibit PWE(C,maxbin) under 20%. These results

demonstrate the vast majority of CRD profiles exhibit low sensitivity to LLC capacity scaling.

3.3 Core Count Scaling

Unlike LLC capacity scaling, CRD profiles change significantly under core count scaling. Figure 7

shows an example. In Figure 7, we plot CRD profiles from the Barnes benchmark running on a

32MB LLC using the S4 problem size, but vary the machine size to use 1, 4, 16, 64, and 256 cores

(i.e., profiles at APSx,S4,32). The graph uses the same format as Figure 5, with an inset magnifying

the region below CRD = 8MB.

Figure 7 shows CRD profiles shift to larger CRD values with increasing core count (especially

visible in the inset). But the shifting is non-uniform: initially it is significant, then it slows down,

and eventually it stops. CRD profile shift is due to increasing memory reference interleaving.
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Figure 7. CRD profiles for Barnes on 4, 16, 64,

and 256 cores at APSx,S4,32.
Figure 8. CMC profiles for each CRD profile in

Figure 7 with Cstop, ∆Cl, and ∆M labeled.

Interleaving tends to dilate intra-thread reuse distances (see Section 2). As core count increases,

so does interleaving, causing memory references to move to larger CRD values.3 In addition to

core count, profile shifting also tends to increase with CRD value as well (up to Cstop). This is

due to the fact that larger intra-thread reuse distances are more likely to experience inter-thread

interleaving compared to smaller reuse distances, and hence, experience greater dilation. Most of

our benchmarks exhibit two shifting regions: one that shifts a little followed by another that shifts

a lot. These small- and large-shift regions are visible in Figure 7’s inset.

The reason CRD profiles eventually stop shifting is because memory interleaving is a localized

phenomenon, occurring only within parallelized loops. This limits the maximum reuse distance

dilation. More distant reuses occurring across loops do not experience increased interleaving. In-

stead, because parallelization usually does not change per-loop work much, distant inter-loop reuses

tend to maintain their RD values.

The impact of core count scaling on CRD profiles has implications for cache performance. To see

this, we compare cache-miss counts derived from the shifted profiles. As discussed in Section 3.2, the

number of cache misses incurred at capacity i in profile CRDC can be written as
∑maxbin

j=i CRDC [j].

Figure 8 plots the cache-miss count (CMC) profile, i.e. the number of cache misses at every cache

capacity up to maxbin. Five CMC profiles are plotted, one for each of the CRD profiles in Figure 7

3Interleaving can also reduce reuse distance if threads share data, but dilation is more prevalent as we find CRD
profiles almost always shift to the right whenever core count increases.
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(an inset magnifies the < 8MB CRD region). Comparing the curves in Figure 8, we see CMC

profiles exhibit similar shifting as CRD profiles. More importantly, this profile shift causes an

increase in cache misses with core count scaling. The increase is large below Cstop, and very small

(or non-existent) above Cstop. In other words, core count scaling degrades locality, but the impact

is confined to smaller CRD values. This implies LLCs smaller than Cstop will incur a significant

cache miss increase with core count scaling, but LLCs larger than Cstop will not.

Most of our benchmarks exhibit the behaviors shown in Figure 8, though the exact locality

impact differs. To compare benchmarks’ response to core count scaling, we use three parameters.

The first is Cstop. The other two are ∆Cl, the capacity spanned by the large-shift region, and ∆M ,

the miss-count increase due to shifting. These parameters are labeled in Figure 8, and measured

as follows. For every LLC and problem size in APS, we derive the CMC profiles for 1–256 cores

(i.e., the profiles at the same Y-Z coordinate in APS, as in Figure 8), and define ∆M to be the

ratio of cache-miss counts between the 256- and 1-core CMC profiles at a particular CRD value.

We consider the ∆M at a CRD well beyond Cstop (we use CRD = maxbin
2 ) where the CMC profiles

have practically merged and ∆M is close to one. We call this ∆Mmerged. Then, we identify the

CRD closest to maxbin
2 where ∆M = 1.5 ×∆Mmerged, i.e. the tail-end of the large-shift region where

very large ∆M transition to ∆Mmerge. This CRD value is Cstop. Lastly, we identify the number

of cache misses at Cstop, called Mstop (see Figure 8), and determine the CRD values where the 1-

and 256-core CMC profiles intercept Mstop. The difference between these two CRD values is ∆Cl.

Table 3 reports Cstop, ∆Cl, and ∆M for each benchmark and problem size averaged across

different LLC capacities. For ∆M , we report both the maximum and the average ∆M across

the large-shift region, ∆Mm and ∆Ma, respectively. The lower-right corner of Table 3 reports

averages across all benchmarks. Some cases could not be analyzed. Blackscholes and KMeans

exhibit extremely small working sets that fit in the L1 cache. For these benchmarks, there is no
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Benchmark Cstop ∆Cl ∆Mm / ∆Ma maxbin Benchmark Cstop ∆Cl ∆Mm / ∆Ma maxbin

FFT S1 781.4KB 761.4KB 19.4 / 4.7 4.3MB Ocean S1 707.0KB 494.5KB 13.0 / 8.8 6.5MB
S2 1.9MB 1.9MB 18.3 / 4.6 14.3MB S2 1.5MB 500.1KB 4.0 / 3.5 19.0MB
S3 4.7MB 4.7MB 13.7 / 4.2 52.3MB S3 4.7MB 615.4KB 2.2 / 2.1 64.4MB
S4 10.8MB 10.8MB 7.8 / 3.8 200.3MB S4 17.2MB 1.2MB 1.9 / 1.8 238.0MB

LU S1 135.7KB 108.2KB 48.1 / 11.9 685.1kB Water S1 228.5KB 222.4KB 70.3 / 34.1 1.3MB
S2 194.3KB 95.3KB 3.3 / 2.3 2.3MB S2 655.6KB 531.6KB 16.9 / 5.7 3.4MB
S3 309.1KB 98.1KB 2.5 / 1.7 8.3MB S3 1.7MB 1.2MB 4.4 / 2.6 11.6MB
S4 314.3KB 167.0KB 42.6 / 17.2 32.4MB S4 3.4MB 1.4MB 2.3 / 1.8 45.5MB

Radix S1 - - - 30.3MB KMeans S1 - - - 5.3MB
S2 - - - 36.3MB S2 - - - 19.5MB
S3 7.7MB 7.7MB 10.8 / 5.4 60.3MB S3 - - - 76.5MB
S4 22.0MB 21.9MB 6.9 / 3.3 156.45MB S4 - - - 304.5MB

Barnes S1 465.5KB 427.0KB 86.2 / 21.2 2.1MB Black- S1 - - - 1.6MB
S2 1.9MB 1.8MB 24.1 / 6.8 7.0MB Scholes S2 - - - 6.1MB
S3 4.2MB 4.0MB 14.2 / 5.3 26.5MB S3 - - - 24.1MB
S4 6.9MB 6.7MB 14.7 / 4.8 105.4MB S4 - - - 96.1MB

FMM S1 649.9KB 618.0KB 29.4 / 9.4 4.1MB Average S1 494.7KB 438.6KB 44.4 / 15.0 6.2MB
S2 1.4MB 1.4MB 32.4 / 6.5 12.4MB S2 1.3MB 1.0MB 16.5 / 4.9 13.3MB
S3 7.2MB 7.2MB 37.6 / 3.8 50.1MB S3 4.3MB 3.6MB 12.2 / 3.6 41.5MB
S4 9.2MB 9.1MB 34.5 / 3.0 163.1MB S4 10.0MB 7.3MB 15.8 / 5.1 149.0MB

Table 3. Cstop, ∆Cl, ∆Mm, and ∆Ma at different problem sizes for our benchmarks.

detectable large-shift region. Radix employs a large amount of per-core private data that dominates

shared data for the S1 and S2 problems, causing maxbin to increase significantly with core count

in these cases. The maxbin variation is so great that maxbin
2 is not well defined across different core

counts, again preventing our detection of a large-shift region.

For the remaining benchmarks and problem sizes in Table 3, Cstop varies between 136KB and

21.9MB. As the average bars show, Cstop is between 400KB and 10MB across different problem sizes.

These results demonstrate the locality degradation due to core count scaling in our benchmarks

and problem sizes only impacts smaller LLCs (≤ 16MB). The larger LLCs in our study are all

beyond Cstop, and hence, are largely insensitive to core count scaling’s locality impact. (We note,

however, Cstop increases with problem size in Table 3. Section 3.4 will discuss this further.)

Table 3 also shows ∆Cl is between 95KB and 21.9MB. On average, ∆Cl is 80% of Cstop, so the

shifting region below Cstop is spanned almost entirely by the large-shift region. We find the small-

shift region is very small, usually spanning the first 20KB in CMC profiles, so it never impacts LLC

performance.

Finally, the average bars in Table 3 show ∆Mm varies between 12.2 and 44.4 while ∆Ma varies
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between 3.6 and 15.0. For LLC sizes that fall within the large-shift region, ∆Cl, our results show

core count scaling can increase cache misses significantly. For example, consider the fact that

scaling core count by 256x creates a 2 orders of magnitude increase in off-chip bandwidth due to

parallelism (assuming linear bandwidth increase with core count for symmetric threads). Table 3

shows the same 256x increase in cores can potentially add another order of magnitude in cache

misses (and hence, total memory traffic) due to locality degradation.

3.4 Problem Scaling Impact

We now briefly describe problem scaling’s impact on CRD profiles (see [1] for a more detailed

treatment). Figure 9 shows an example of CRD profile variation across problem scaling. It plots

CRD profiles from the Barnes benchmark running on 16 cores and a 32MB LLC, but varies problem

size from S1–S4 (i.e., profiles at APS16,y,32). The profiles are presented in the same format as

Figures 7 and 8.

Interestingly, problem scaling has a similar effect on CRD profiles as core count scaling. As

Figure 9 shows, problem scaling also shifts CRD profiles to larger CRD values. In problem scaling,

this shifting is due to additional memory references that arise from accessing scaled data structures

(as opposed to memory interleaving in core count scaling). But problem scaling shifts larger CRD

values, with no shifting at small CRD–the exact opposite compared to core count scaling. The

reason shifting stops below a certain CRD is because frequently referenced objects that account

for small CRD (e.g., temporary variables) often do not scale with respect to input problem size.

These observations are consistent with Zhong’s results [1].

As with core count scaling, the shifting caused by problem scaling also degrades locality and

increases cache misses. While the two forms of scaling shift complementary portions of the CRD

profile, we find the shifting regions overlap. In particular, the large-shift region in core count scaling
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Figure 9. CRD profiles for Barnes using S1–

S4 on 16 cores and a 32MB LLC.
Figure 10. Detecting alignment and shifting

using reference groups.

usually shifts with problem scaling. So, as problem size increases, core count scaling will tend to

affect a wider range of LLCs.

To illustrate this, we study Cstop sensitivity to problem scaling. In Table 3, the columns la-

beled “maxbin” report the maximum CRD value for different benchmarks and problem sizes. Each

maxbin value is averaged across different core counts and LLC sizes. As Table 3 shows, maxbin

increases by roughly 4x with each problem size increment–i.e., linearly with problem size. In con-

trast, Cstop shifts at a slower rate because it occurs at smaller CRD where sensitivity to problem

scaling is less. Nevertheless, Cstop still shifts roughly as the square root of problem size. Extrapo-

lating to larger problems, we see that another 64x increase in problem size will cause Cstop to grow

to 128MB. For such larger problems (which are not unreasonably large for LCMPs), core count

scaling would impact the entire range of LLC capacities in our study.

4 Profile Prediction

Zhong et al [1] shows that profile shifting caused by problem scaling (which core count scaling

resembles) is predictable. In fact, this previous work has already proposed techniques to predict

profiles of scaled configurations from profiles acquired on smaller configurations. In this section,

we review these techniques, apply them to predict core count scaling, and evaluate the prediction

accuracy.
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4.1 Reference Groups

Zhong’s technique samples two profiles from different problem sizes to determine the amount of

shift as a function of the problem size increase. Then, they apply a scaled shift to predict profiles

for larger problem sizes. Zhong’s work assumes sequential programs, so they predict RD profiles.

However, we find their approach can predict CRD profiles for parallel programs as well.

A key issue addressed by Zhong’s technique is the non-uniformity of profile shift. As discussed in

Section 3, core count scaling shifts small CRD values more than large CRD values, and vice versa

for problem scaling. To handle variable shift across CRD values, Zhong’s technique uses reference

groups, illustrated in Figure 10. Zhong divides sampled CRD profiles into groups along the CRD

axis, each containing an equal fraction of the program’s total references. Reference groups are

aligned via association: the ith group in the first profile is aligned to the ith group in the second

profile (as Figure 10 shows).

Zhong’s technique assumes aligned reference groups “correspond” to each other across the shift,

and maintain a fixed shift rate dependence on problem scaling. This dependence can be at the least

constant–i.e., no shift with problem size–and at most linear shift with problem size.4 In addition

to constant and linear, Zhong’s technique also allows intermediate shift rates: cube root, square

root, and cube-root squared. The amount of shift between pairs of reference groups is measured,

and compared against each allowed shift rate. The one with the closest match is assigned to

the reference group. To predict CRD profiles for larger problems, each reference group is shifted

according to its shift rate and the desired problem scaling factor.

We apply Zhong’s technique to predict core count scaling as follows. For a given LLC and

problem size, we use the 2- and 4-core CRD profiles as samples to predict the CRD profiles at

the remaining core counts, 8 to 256–i.e., we predict along the X-axis in APSx,y,z. (For core count

4Group shift rate cannot be greater than linear because reuse distance cannot increase by more than the number
of unique memory locations in memory, which is proportional to problem size.
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Figure 11. Percentage of CRD profiles predicted across core c ount scaling whose PBE and PWE with

window size 10, 20, 30, and maxbin are ≤ 20%, 20-40%, 40-70%, 70-100%, and > 100%.

prediction, we do not consider the 1-core CRD profiles). We detect the inter-group shift as discussed

above, but instead of multiplying this shift rate by the problem scaling factor, we multiply by the

core count scaling factor. Lastly, while Zhong originally divided each profile into 1,000 reference

groups, we use 100,000 reference groups. We find the increased resolution provides slightly better

accuracy for core count scaling.

4.2 Prediction Accuracy

This section evaluates the accuracy of predicting CRD profiles when each scaling dimension–

either core count or problem size–is predicted separately. (Later, in Section 5, we will predict both

core count and problem scaling together). Our study considers core count scaling first. We repeat

prediction along the core count scaling dimension for every LLC capacity and problem size in APS.

Then, we compare each predicted CRD profile at APSx,y,z against the measured CRD profile at

the same APSx,y,z using the PBE and PWE metrics from Section 3.2. (Note, this is a different

use of PBE/PWE compared to Section 3.2 which employed the metrics to compare measured CRD

profiles at different APSx,y,z).

Figure 11 reports prediction error. In Figure 11, groups of bars break down for each benchmark

the number of predicted CRD profiles that exhibit ≤ 20%, 20–40%, 40–70%, 70–100%, and > 100%

error compared to their corresponding measured profiles. The “PBE” bars report breakdowns under
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the PBE metric while the “PWE-20” and “PWE-max” bars report breakdowns under the PWE

metric for window sizes 20 and maxbin, respectively. The group of bars labeled “AvgCore” report

averages across all benchmarks.

The prediction errors are significant. As the AvgCore PBE bars show, only 12% of predicted CRD

profiles exhibit ≤ 20% PBE. The other predicted profiles exhibit larger error: 22%, 38%, and 53% of

the predictions exhibit up to 40%, 70%, and 100% PBE, respectively, with the remaining predictions

exhibiting > 100% PBE. Similar to Figure 6, the PWE bars report lower error, indicating some of

the PBE cancels across windows. As the AvgCore PWE-20 bars show, 29%, 54%, 77%, and 86%

of predicted profiles exhibit up to 20%, 40%, 70%, and 100% PWE, respectively. For PWE-max,

the predicted profiles that fall within the same error ranges increases to 46%, 73%, 83%, and 93%,

respectively. But still, even PWE is significant.

Although predicted CRD profiles exhibit elevated PBE/PWE, we find a significant part of the

error is from large CRD values where the impact on RD analysis is minor. At large CRD values,

reference counts can be very small (10,000 or less) which tends to magnify PBE/PWE. At the same

time, because these reference counts are small, they never have a large impact on cache performance

analyses (e.g., CMC profiles).

To illustrate this, the PWE-20/99 and PWE-max/99 bars in Figure 11 report PWE averaged

across the leftmost CRD bins in each CRD profile accounting for 99% of the total memory references

with window size 20 and maxbin, respectively (the CRD bins accounting for the remaining 1% of

references are excluded from the average). PWE reduces noticeably when excluding large CRD

values. As the AvgCore PWE-20/99 bars in Figure 11 show, 71% and 84% of predicted profiles

exhibit ≤ 40% and ≤ 70% PWE, respectively, with window size 20. With window size maxbin,

77% and 88% of predicted profiles exhibit ≤ 40% and ≤ 70% PWE, respectively. Our results show

reference groups cannot predict core count scaling perfectly, but a large number of profiles are
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predicted with good accuracy.

In addition to evaluating core count prediction, we also evaluate predicting problem scaling (the

original use of reference groups). For a given core count and LLC capacity, we use the S1 and

S2 CRD profiles as samples to predict the CRD profiles at the S3 and S4 problem sizes–i.e., we

predict along the Y-axis in APSx,y,z. We repeat prediction along the problem scaling dimension for

every core count and LLC size, and compare each predicted CRD profile against its corresponding

measured CRD profile.

To conserve space, we only report the average results across all benchmarks, appearing in the

last group of bars labeled “AvgProb” in Figure 11. As the AvgProb PBE bars show, 17%, 19%,

30%, and 40% of predicted profiles exhibit up to 20%, 40%, 70%, and 100% PBE, respectively, with

the remaining predictions exceeding 100% PBE. Errors become smaller under the PWE metric. As

the AvgProb PWE-20 bars show, 20%, 40%, 56%, and 69% of predicted profiles exhibit up to 20%,

40%, 70%, and 100% PWE, respectively. For PWE-max, the predicted profiles that fall within

the same error ranges increases to 44%, 73%, 86%, and 93%, respectively. Finally, when excluding

small CRD values, the errors reduce even further. As the AvgProb PWE-20/99 bars show, 66%

and 74% of predicted profiles exhibit ≤ 40% and ≤ 70% PWE, respectively, for window size 20.

With window size maxbin, 92% and 98% of predicted profiles exhibit ≤ 40% and ≤ 70% PWE,

respectively.

The prediction errors for the “AvgProb” and “AvgCore” bars in Figure 11 are comparable.

Based on these results, we find reference groups are about as effective for predicting core count

scaling as they are for predicting problem scaling.

5 Performance Prediction

Having characterized and predicted CRD profiles for parallel programs, we now demonstrate

their utility. This section uses the CRD profiles from Sections 3 and 4 to predict cache performance
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in our tiled CMP. We first discuss methodology, and then present results.

5.1 Prediction Methodology

When acquiring CRD profiles, our simulations also record cache performance, in particular L2

MPKI, at every APSx,y,z. This section uses CRD profiles to predict the measured cache per-

formance. Specifically, we use the CRD profiles acquired at APSx,y,32 (i.e., the dotted plane in

Figure 3) to predict performance for the same core count and problem size (i.e., same X-Y coordi-

nate). Prediction across LLC capacity is done by examining the capacities of interest (4–128MB)

along the CRD axis in the profile at APSx,y,32.

To predict L2 MPKI at a particular APSx,y,C , we derive the CMC profile from the CRD profile

at APSx,y,32, and extract the cache-miss count at the desired capacity, C. This predicts the number

of misses assuming a fully-associative cache (i.e., capacity misses). Since our tiled CMP employs

set-associative caches, we use Qasem and Kennedy’s model [24] to account for cache conflicts. This

model takes our CRD profiles as input, and uses a binomial distribution to estimate conflict misses

for a given LLC capacity and associativity. We divide the sum of predicted conflict and capacity

misses by instruction count (IC) to derive MPKI. We assume knowledge of IC at every APSx,y,32,

and further assume IC is constant across LLC capacity.

In addition to predicting MPKI using measured CRD profiles, we also do the same with pre-

dicted CRD profiles. We consider predicting across core count alone as well as across core count

and problem size together. In the former, we use the profiles at APS2,y,32 and APS4,y,32 to predict

the remaining core counts at APSx,y,32. In the latter, we use the profiles at APS2,S1,32, APS2,S2,32,

APS4,S1,32, and APS4,S2,32 to predict the profiles at APS2,S3,32, APS2,S4,32, APS4,S3,32, and

APS4,S4,32 across the problem size dimension. Then, we use these predicted profiles to predict across

core count as already described. We also predict IC. We assume knowledge of IC at APS1,S1,32 and
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Figure 12. Ratio of measured-to-predicted L2 MPKI.

APS1,S2,32, and derive all other ICs by assuming IC doesn’t change across core count, but changes

linearly with problem size at the same rate observed from S1 to S2.

Finally, we predict L2 MPKI for the rectangular sub-space in APS excluding configurations used

for CRD profile prediction (since we simulate many of these configurations to acquire their CRD

profiles anyways). We exclude all configurations with 1, 2, and 4 cores and the S1 and S2 problems,

resulting in a sub-space with 72 configurations instead of 216. Also, for a particular CRD profile, we

do not predict L2 MPKI at capacities beyond maxbin. For such large LLCs, cold misses dominate

which our profiles cannot predict.

5.2 Performance Prediction Accuracy

Figure 12 reports the accuracy of L2 MPKI prediction. The Y-axis in Figure 12 plots accuracy

as the ratio of simulated to predicted L2 MPKI (i.e., 1.0 implies perfect prediction). When actual

L2 MPKI is near zero, this ratio blows up if predicted MPKI approaches zero. To address this, we

add a small MPKI value, 0.1, to both the simulated and predicted values before taking the ratio.

For each benchmark, Figure 12 reports 5 bars which we explain below. The rightmost group of

bars reports averages across all 9 benchmarks.

The bars labeled “Measured” in Figure 12 show accuracy when performance prediction is driven

by the measured CRD profiles in the APS sub-space. These Measured bars are always above 1.0,

indicating CRD profiles under-predict actual performance. More problematic, the under-prediction
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is huge, between 1.9–9.0x for 5 benchmarks, and between 55.6–544.2x for the other 4 benchmarks.

These huge errors are due to configurations with large core counts and small LLCs. In such

processors, LLC thrashing often occurs due to pathologic cache conflicts, which the simple conflict

model cannot predict. To show the impact of these cases, the bars labeled “Measured-64K” in

Figure 12 report accuracy without configurations using ≤ 64KB L2 slices (i.e., 256 cores with ≤

16MB LLCs, 128 cores with ≤ 8MB LLCs, and 64 cores with 4MB LLCs), and the bars labeled

“Measured-128K” report the same without configurations using ≤ 128KB L2 slices. The former

removes 22% of configurations in the APS sub-space, while the latter removes 36% of configurations.

As the average bars show, without sub-64KB slices, the under-prediction reduces from 96.0 to 8.4,

and without sub-128KB slices, the under-prediction further reduces to 1.7.

The bars labeled “CPred-128K” and “CPPred-128K” in Figure 12 show accuracy when perfor-

mance prediction is driven by the predicted CRD profiles. CPred-128K uses prediction across core

count scaling alone while CPPred-128K uses prediction across both core count and problem scaling.

These bars all exclude sub-128K L2 slices. As the average bars in Figure 12 show, predicted CRD

profiles add more error: under-prediction increases to 1.8 for both CPred-128K and CPPred-128K.

But the additional performance prediction error is only 12%, which is less than the profile predic-

tion error reported in Section 4.2. This is because the accuracy of performance prediction depends

on both CRD profiles and the cache conflict model, which tends to reduce the impact of profile

errors.

Although CRD profiles cannot predict the simulated cache performance exactly, they yield pre-

dictions in a timely fashion. The Measured, CPred-128K, and CPPred-128K bars in Figure 12 only

require 1
6

th
, 1

8

th
, and 1

8

th
of the simulations, respectively, from the APS sub-space to predict the

entire sub-space. The savings in simulation time is even greater because the omitted simulations

are for the larger core counts and problem sizes. Roughly 1
4

th
, 1

11
th

, and 1
1200

th
of the full simulation
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time, respectively, is required. These results confirm RD analysis enables efficient exploration of

multicore processor design spaces.

6 Related Work

Several researchers have recently developed RD analysis techniques for multicore processors [25,

16, 26]. Ding and Chilimbi [25] analyze multithreaded traces to extract statistics on per-thread lo-

cality, data sharing, and interleaving to drive a model for predicting locality and cache performance

on scaled systems. Their approach is more general than ours, as it can handle non-symmetric

threads. However, their trace analyses are very expensive, incurring space and time complexity

quadratic and exponential, respectively, with the number of threads. So, they cannot study large

design spaces. In contrast, we only acquire CRD profiles on small-scale multicore configurations

(no trace acquisition or analysis). Predicting scaled CRD profiles from the sampled profiles is

computationally trivial, enabling our technique to analyze LCMPs.

Jiang et al [16] propose a model for deriving CRD profiles from per-thread RD profiles. Jiang’s

model requires knowing all per-thread RD profiles a priori. It cannot explore multicore configura-

tions that it has not yet profiled, limiting its use for scaling studies (the focus of our work). One

key point they make is that for the special case of parallel programs, changes in core architecture

do not change the relative execution speed of threads, allowing CRD profiles to remain the same

across different multicore architectures. Our finding that CRD profiles exhibit low sensitivity to

LLC capacity scaling is a very similar observation.

Schuff et al [26] also investigate using CRD profiles to analyze shared caches. In addition, they

propose using per-thread RD profiles to analyze private caches, taking into consideration write-

sharing in order to predict invalidations. However, their work only applies RD analysis to LLC

capacity scaling. In contrast, we look at a much larger design space that includes core count and

problem scaling by predicting the impact these forms of scaling have on CRD profiles.
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Chandra et al [27] and Suh et al [28] have also developed locality models for multicore processors,

but they focus on multiprogrammed workloads whereas our work focuses on parallel programs. RD

analysis has also been used to analyze uniprocessor caches [13, 14, 15, 1]. Of these, our work is

most similar to Zhong et al [1]. Section 4.1 has already discussed Zhong’s approach in detail.

Finally, our work is related to all previous research on multicore design space exploration [2, 3,

4, 5, 6, 7, 8, 9]. Like them, we characterize the impact of processor scaling on memory system

performance. However, previous studies use simulation. To our knowledge, we are the first to use

RD analysis.

7 Conclusion

This paper tackles the architecture dependence of CRD profiles, showing the problem is tractable

for parallel programs. In particular, we show CRD profiles change very little with LLC capacity

scaling, so profiles acquired at one capacity can be used to accurately analyze different LLC sizes.

We also show core count scaling shifts CRD profiles to larger CRD values. Shifting occurs below

a certain CRD value, Cstop, so locality degradation only impacts LLC capacities < Cstop. Further-

more, we show shifting is predictable via profile “diffing.” This means a small set of CRD profiles

can (after prediction) analyze a large number of machine sizes. To demonstrate benefits, we use

CRD profiles to predict LLC performance across a large tiled CMP design space. We find CRD

profiles can predict LLC MPKI within 76% of simulation for configurations without pathologic

cache conflicts in 1
1200

th
the time to perform simulation of the full design space.
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