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Knowledge of the distribution, abundance, and transport of bivalve larvae has 

been limited due to their small size, similar morphologies between species, and lack 

of an automated approach for identification. Most of the literature and research to 

date has focused on juvenile and adult bivalves, much less is known about the larval 

stage. The objectives of this dissertation were to fill this knowledge gap by 1) 

creating a visual guide and key that would enhance the identification of Crassostrea 

virginica (eastern oyster) larvae in Choptank River using birefringent patterns that 

appear on the shells of bivalve larvae under crossed-polarized light, 2) testing and 

improving ShellBi, a novel supervised image classification method that uses pattern 

recognition software to identify images of bivalve larvae taken under cross-polarized 

light, 3) developing a benchtop automated image acquisition system to rapidly 



capture images for use with ShellBi, and 4) applying these advances to identify 

factors that cue C. virginica vertical larval dispersal and to estimate their mortality 

rates in the field. Assessment tests of the ShellBi method indicated that error rates for 

identifying C. virginica larvae ranged from 1% to 22% when proportions of these 

larvae in a sample ranged from 2% to 90%. The automated image acquisition system 

increased image acquisition time from 2-13 hr to 46 min per sample and enabled C. 

virginica larvae to be rapidly imaged, measured, and identified with classification 

accuracies that ranged from 81-100% (mean 94% +/- 7 s.t.d.). Field collections of C. 

virginica larvae indicated that salinity appeared to be the dominant cue for vertical 

larval distributions, with > 90% of larvae < 200 μm found above a maximum salinity 

gradient of 1.2 m
-1

. Estimated instantaneous daily mortality rates of 8-16 d-old larvae 

ranged 0.37 d
-1 

to 0.58 d
-1

, with the most reliable rates being 0.37-0.38 d
-1

. These 

findings advanced understanding of the larval ecology of C. virginica. The new 

techniques can be used to enhance image acquisition for other planktonic species and 

research results can be applied to validate larval transport models of C. virginica 

which have application for locating marine protected areas. 
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Dedication 

In memory of Ryan Saba who helped with some of this work. Ryan was a great friend 

and colleague and left us with good words to live by after he passed: 

 

"This is the beginning of a new day. God has given me this day to use as I will. I can 

waste it or use it to do good. What I do today is very important because I am 

exchanging a day of my life for it. When tomorrow comes, this day will be gone 

forever leaving something in its place I have traded for it. I want it to be a gain, not a 

loss, good not evil, success not failure, In order that I shall not forget the price I paid 

for it. Success is a journey, not a destination, and the journey is The reward." 

 

(Source unknown) 
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and C,F)13-d old. Shell heights are listed in panels D-F. 

 

Fig. 1.6.  Images of M. mitchelli larvae captured under A-C) standard and D-F) 
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Fig. 1.7.  Images of M. lateralis larvae captured under A-C) standard and D-F) 
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d, and C,F)13-d old. Shell heights are listed in panels D-F.     

 

Fig. 1.8.  Images of M. leucophaeata larvae captured under A-C) standard and 

D-F) polarized light at a magnification of 7x. Larvae are A,D) 2-d, 

B,E) 6-d, and C,F)8-d old. Shell heights are listed in panels D-F.  

    

Fig. 1.9.  Images of R. cuneata larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 4-d, 

and C,F)8-d old. Shell heights are listed in panels D-F.     

 

Fig. 1.10.  Images of T. pleibeius larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 4-d, 
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Fig. 1.11  Larval identification key based on shell birefringence, size, and 

morphology.  An established library representing 1000 images of 

Osteroida, Veneroida, and Mytiloida were imaged on certain settings 
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Mytilopsis leucophaeata (DF), Rangia cuneata (RC), Tagelus plebeius 

(TG), and Ischadium recurvum (IR).Sizes of larvae range from 72-88 
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Fig. 2.2.  Classification accuracy for C. virginica using two 3-species training 

sets (C. virginica, M. lateralis, and R. cuneata) and one 4-species 

training set (C. virginica, M. lateralis, R. cuneata, and T. plebeius).  
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C for the ‘cool’ training set.  All three 

training sets were used to classify shells of C. virginica from warm 

(darker bars) and cool (lighter bars) treatments.  

 

Fig. 2.3.  Classification accuracies for shells of “unknown” C. virginica larvae 

raised in four different salinities (10.3, 14.1, 14.4, and 20.5) when 

classified with training sets composed of R. cuneata, I. recurvum and 

C. virginica larvae, the latter of which were raised in the same four 

salinities.  Numbers under each bar represent the salinity at which C. 
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unknown set (lower number). Lighter bars indicate training sets reared 
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C. virginica shells using training sets with different numbers of species 

categories (see Table 2.2 for details).  Training sets of 3-, 4-, 5-, and 6-
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images in a sample: A) probability of detection (PD), B) specificity 

(SP), C) the ratio of false positives to actual C. virginica images, and 

D) the ratio of false negatives to actual C. virginica images. For all 
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unknown larvae in different proportions. A 6-species training set (6-

spec, solid lines) was composed of six categories, each for a separate 

species: C. virginica, I. recurvum, M. lateralis, M. leucophaeata R. 

cuneata, and T. plebeius).  A second training set (order-based, dotted 

lines) contained images of these species grouped by order (clams: M. 

lateralis, M. leucophaeata, R. cuneata, T. plebeius; oyster: C. 

virginica, mussel: I. recurvum). These training sets were used to 

classify three different groups of images of ”unknown” larvae: 1) C. 

virginica, T. plebeius, and M. lateralis (CV, TG, ML), 2) C. virginica, 

T. plebieus, and I. recurvum (CV, TG, IR), and 3) C. virginica, R. 

cuneata, and M. lateralis (CV, RC, ML). Each group contained 
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Fig. 2.6.  Classification confidence intervals for the 6-species (no fill with solid 

gray line) and order-based (gray shading with dashed gray line) 

training sets. Confidence intervals were constructed around the correct 

percentage of C. virginica classified in a sample (solid line with 

triangles) using the highest number of false positives and false 

negatives from tests summarized in Fig. 5. False positives were added 

to the correct number of C. virginica images to construct the top lines 

and false negatives were subtracted from the correct number of C. 

virginica images to construct the bottom lines.  The closer the gray 

lines are to the black line, the smaller the classification error, which 

ranged from 5-21% for the 6-species training set and from 1-22% for 
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Fig. 3.1.  Automated imaging acquisition system composed of 1) Infinity 2-3C 

digital microscope camera with metal braces on each side, 2) Semprex 

automated stage motor, 3) Semprex automated stage with Sedgwick 

Rafter slide in well plate holder, 4) stage motor controller hub,  5) 

Omax inverted polarizing microscope with metal braces on each side 

of base, 6) four metal braces (two on each side), and 7) aluminum 

baseplate clamped to benchtop. 

 

Fig. 3.2.  Percent classification accuracy of 9-d- old C. virginica larvae (upper 

panel) and concurrent color channel intensity measurements (bottom 

panel) taken  over a span of 100 days. Each data point for 

classification accuracy was the result of classifying 50 images of 9-d-

old C. virginica using a three species training set (C. virginica, I. 

recurvum, and R. cuneata). The color channel intensity values were 

calculated using five blanks captured from the automated stage and 

were compared to the acceptable range (hatched regions) (see 

procedures section). Arrows indicate the time when color channel 

intensity values dropped below the acceptable range due to a 

microscope light bulb malfunction, and when percent classification 

accuracies also dropped (from an average of 98 to 70%). 
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Fig. 3.3.  The number of shells of bivalve larvae in A) samples containing 

laboratory specimens (n = 23), and B) field samples (n = 30) which 

were detected by the automated ROI detection software (y-axis) versus 

those counted by a trained technician (x-axis). The line indicates a 1:1 

ratio between counts of bivalve shells by trained technicians and the 

automated  ROI detection software. Both the laboratory specimens and 

field samples contained species of oyster, clams, and mussel larvae. 

 

Fig. 3.4.  Images 1-5 contain four- and nine-d-old larvae of C. virginica and 

correspond to the camera settings 1-5 (details in Table 3.3) which were 

used for tests reported in Table 3.4. Setting differences were created 

by altering attributes in the camera software Infinity Analyze. 

 

Fig. 3.5.  Images from A) a field sample and B) laboratory-reared bivalves 

which were imaged at 7 x magnification. The field sample contained 

small birefringent materials or other birefringent organisms like 

pteropods which made it difficult to automate cropping of ROIs. 

 

Fig. 4.1.  Locations of the stations during the fixed station (labeled “One” and 

“Two” squares) and mapping (circles) cruises in the Choptank River, a 

tributary of Chesapeake Bay. The mapping cruise and fixed station 

cruises were conducted on July 5, 2012 and July 12-15, 2012, 

respectively. Shaded contours indicated depth (m).  

 

Fig. 4.2.  Example images of three size classes of C. virginica larvae under 

polarized light which correspond to the size classes chosen for 

analysis: A) < 106 µm, B) 106-200 µm, and C) ≥ 200 µm). The 

number indicates the shell height (shortest axis for the smallest size 

class and longest axis for the larger two size classes). 

 

Fig. 4.3.  Length-age regression line based on known shell heights and ages for 

larvae reared in laboratory conditions that were A) representative of 

temperatures and salinities during July, 2012 when field collections 

occurred and B) cooler conditions. The regression equation fit to all 

data in panel A (solid line in center) was used to estimate larval age for 

field-collected specimens. The two other regression lines on panel A 

were used to estimate age under both maximum (top dotted line) and 

minimum (lower dotted line) growth conditions. Panel B contains a 

regression line suitable for cooler (22
o
C) temperatures which were not 

observed in the field during this research program. 

 

Fig. 4.4.   Physical conditions near surface (left panels) and near bottom (right 

panels) during the mapping cruise on July 5th, 2012: A,B) salinity, 

C,D) temperature, E,F) dissolved oxygen (DO), and G,H) chlorophyll 

a concentrations. 
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Fig. 4.5.   Abundances of C. virginica larvae (no m
-2

, color contours) with shell 

heights of A) < 106 µm, B) 106-200 µm, and C) ≥ 200 µm during the 

mapping cruise on July 5, 2012. Stations locations are indicated by 

black diamonds. Contour lines of surface salinity in intervals of one 

are also depicted.  

 

Fig. 4.6.  Color contour plots of temperature (
o
C) with the salinity gradient 

(black line), dissolved oxygen (mg l
-1

), total suspended solids (mg l
-1

), 

and chlorophyll-
-1

) with salinity contour lines (black) taken at 

station One of the fixed station cruise (July 10-12, 2015). CTD casts 

(indicated by tick marks top of panel A) were conducted every 1.5 

hours for 45 hours. Salinity contour lines are in intervals of 1.  

 

Fig. 4.7.  Along-channel current velocities (m s
-1

) measured by an Acoustic 

Doppler Current Profiler at station A) One and B) Two of the fixed 

station cruise. Red indicates flooding tides from Chesapeake Bay into 

the Choptank River, while blue indicates ebbing water flowing 

downstream. 

 

Fig. 4.8.  Temperature (
o
C), salinity and concentration (no. m

-3
) of C. virginica 

larvae (colored circles, see legend in panel A) at Station One July 12-

14, 2012. Panels correspond to larvae with shell heights of A) < 106 

µm, B) 106-200 µm, C) ≥ 200 µm, and D) all larvae.  

 

Fig. 4.9.  The average displacement of water (km) at fixed station One over the 

A) initial tidal cycle of 24.72 hours and B) the ending tidal cycle of 

24.48 hours. Calculations were based on along-channel current 

velocities that were averaged within 1-m. Negative values correspond 

to movement up estuary while positive corresponds to movement 

down estuary. 

 

Fig. 4.10.  Concentrations of C. virginica larvae with shell heights A) < 106 µm, 

B) 106-200 µm, and C) ≥ 200 µm collected at station One during the  

fixed station cruise on July 10-12, 2012. The targeted midpoint depth 

of sample collection (black dots), maximum salinity gradient (solid 

line), and the 2 mg l
-1

 oxycline (dotted line) are also depicted. Note 

that larvae with shell heights ≥ 200 µm (panel C) were plotted with a 

different color scale due to their lower concentrations. 

 

Fig. 4.11.  Color contour plots of temperature (
o
C) with the salinity gradient 

(black line), dissolved oxygen (mg l
-1

), total suspended solids (mg l
-1

), 

and chlorophyll a 
-1

) with salinity contour lines (black) taken at 

station Two of the fixed station cruise (July 12-14, 2015). CTD casts 

(indicated by tick marks top of panel A) were conducted every 1.5 

hours for 45 hours. Salinity contour lines are in intervals of 1. 
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Fig. 4.12.  Temperature (
o
C), salinity and concentration (no. m

-3
) of C. virginica 

larvae (colored circles, see legend in panel A) at fixed station Two on 

July 12-14, 2012. Panels correspond to larvae with shell heights of A) 

< 106 µm, B) 106-200 µm, C) ≥ 200 µm, and D) all larvae.  

 

Fig. 4.13.  The average displacement of water (km) at fixed station Two over the 

A) initial tidal cycle of 24.60 hours and B) ending tidal cycle of 24.74 

hours. Calculations were based on along-channel current velocities 

that were averaged within 1-m. Negative values correspond to 

movement up estuary while positive corresponds to movement down 

estuary. 

 

Fig. 4.14.  Concentrations of C. virginica larvae with shell heights A) < 106 µm, 

B) 106-200 µm, and C) ≥ 200 µm collected at station Two during the 

fixed station cruise on July 12-14, 2012. The targeted midpoint depth 

of sample collection (black dots), maximum salinity gradient (solid 

line), and the 2 mg l
-1

 oxycline (dotted line) are also depicted. Note 

that larvae with shell heights ≥ 200 µm (panel C) were plotted with a 

different color scale due to their lower concentrations. 

 

Fig. 4.15.  The proportion of C. virginica larvae with shell heights A) < 106 µm 

and B) 106-200 µm, C) > 200 µm that were found above the salinity 

gradient (m
-1

) during the fixed station cruise at both station One and 

Two. The salinity gradient was defined as the largest change in salinity 

during each CTD cast. The leftmost vertical line (solid) indicates a 

gradient of 1.0 above which 90% of all larvae were found. The 

rightmost vertical line (dashed) indicates an MSG of 3.1, above which 

100% of all larvae were found. The color of the symbol corresponds to 

the abundance of larvae per CTD cast (no. m
-2

).  

 

Fig. 4.16.  The instantaneous daily mortality rates (d
-1

) plotted for the mapping 

cruise and Stations One and Two of the fixed station cruises under A) 

minimum, B) all data, and C) maximum estimated growth rates (see 

Figure 3A and Table 5). Black diamonds represent mortality 

calculations made using the vertical life table (VLT) approach and 

open squares represent values for the catch curve (CC) approach. The 

whiskers are the 95% confidence intervals calculated using the catch 

curve approach.  

 

Fig. 5.1.  Nine-day-old C. virginica larvae stored for one month in low (4.0) pH 

conditions (upper panel) and higher (8.0) pH (lower panel). 

Dissolution had an effect on the birefringence patterns in the lower pH.   
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Chapter 1: Shedding light on bivalves of the Choptank River: 

how polarized light can enhance identification 

 

Abstract 

Understanding the population dynamics and complete life cycle of bivalves is 

important for effectively manage them. Most of the literature and research to date has 

focused on juvenile and adult bivalves, much less is known about larvae. The larval 

stage of the bivalve life cycle has been difficult to study due to the lack of a rapid 

automated approach for identifying species. However, a new technique, called 

ShellBi, has emerged that utilizes color patterns on the larval shell under polarized 

light to identify bivalve larvae. The objective of this chapter was to review the 

scientific basis for ShellBi and to apply it to bivalve larvae in Choptank River with 

the goal of distinguishing C. virginica from seven other species that spawn at the 

same time. A digital camera and polarized light microscope were used to capture 

images of the shells of bivalve larvae under standard and cross-polarized light.  

Images of C. virginica were distinguishable from other species based on these 

patterns, especially at later stages of development. These images could serve as a 

visual guide to identify C. virginica collected from the Choptank River and other 

tributaries with similar species in Chesapeake Bay.    
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Introduction 

Bivalves have a complex life cycle with a pelagic larval stage (Kennedy 

1996). Their population dynamics are based on birth, mortality, immigration, and 

emigration (Gotelli 2001). Larval ecology is crucial for understanding population 

dynamics because immigration, emigration, and mortality occur during the larval 

stage (Kennedy 1996). Many species of bivalves are ecologically and economically 

important yet little is known about their larval stage due to challenges in 

identification (Garland and Zimmer 2002). Using crossed polarized light is a new 

method that has potential for identifying bivalve larvae to species. It utilizes the color 

patterns from the shells of bivalve larvae emitted under polarized light (Tiwari and 

Gallager 2003). The goal of this chapter is to apply this new approach to eight species 

of bivalve larvae that spawn during summer in the Choptank River with the goal of 

distinguishing the larvae of Crassostrea virginica, the eastern oyster, from the other 

species whose larvae are in the plankton at the same time. 

Development and shell formation in bivalve larvae 

Although the larval stage is not the same for all bivalve species, it is usually 

occurs within several weeks (Gosling 2003). The bivalve larval stage is part of a 

complex life cycle. Bivalves’ reproductive cycle involves growth, ripening of 

gametes, spawning and gonad redevelopment (Gosling 2003). They reproduce 

sexually and eggs and sperm combine and develop into larvae. It is during the larval 

stage when the shell begins to form (Kennedy 1996, Gosling 2003).  

Bivalves progress through several stages of development including 

prodissoconch I, prodissoconch II, and dissoconch stages (Carriker 1996). All shell 
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development stages occur during the planktonic larval stages (prodissoconch I/II) 

except the dissoconch stage, which occurs after settlement (Carriker et al 1996).  

Bivalve larvae mineralize their shells. The biological definition of mineralization is 

the process through which an organic substance becomes impregnated by inorganic 

substances (IUPAC 2012). Larval shells are made mostly of aragonite rather than the 

less soluble calcite that makes up the shells of adult bivalves (Carriker 1996). It has 

been proposed that aragonite is harder than calcite and has greater strength as a 

structural material and is less prone to breakage by cleavage making it a better choice 

for life in the plankton (Carriker 1996). Shell mineralization occurs in an organic 

aragonite matrix formed in the shell field (Carriker 1996). The matrix that forms 

constitutes a brick-wall patterned biocomposite of bio-mineralized aragonite platelets 

surrounded by organic matter known as nacre (Checa et al. 2006). It is arranged in 

terraces that grow simultaneously (Schmidt 1924, Wada 1972). Within the terraces 

are three crystallographic axes of crystals (called a-,b-, and c-axis) with the c-axis 

perpendicular to the nacre surface and the other two axes parallel to the local growth 

direction of the shell margin (Wada 1972).   

The mineralization of a bivalve larvae shell first takes place during the late 

stages of embryonic shell development. Mineralization of the larval shell occurs in 

the shell field (Carriker et al 1996). The shell field is an area of ectodermal cells in 

the dorsal region of a developing embryo that secretes the embroyonic shell 

(Carrkiker 1996). The first appearance of the shell field occurs in early 

embryogenesis (Moor 1983) when the shell field invaginates to form a “shell field 

invagination” (Eyster 1983). At this moment organic shell material is secreted by the 
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cells of the shell field externally and the epithelial cells in the shell field spread over 

the embryonic surface prior to mineralization (Carriker et al 1996). More recent 

studies conducted on adult C. virginica shells have shown that granulocytic 

hemocytes could be directly involved in shell crystal production in addition to the 

previously described process of extracellular shell field invagination (Mount et al. 

2004). However, it is not known if this process begins at the larval stage. It is thought 

that there is only a single shell field invagination in bivalves, but the intricate process 

is still not fully understood (Carriker 1996, Mount et al. 2004). After the initial 

mineralization the larvae are often called trocophores and the new mineralized shell is 

homogenous and composed mostly of calcium carbonate (Eyster 1986). 

Mineralization marks the end of the embryonic stage and the beginning of the 

prodissoconch I stage which for several species lasts between 24-30 hours at summer 

temperatures (Andrews 1979).  Mineralization in two species, Mercenaria 

mercenaria and Crassostrea gigas, was found to begin with a precursor of aqueous 

calcium carbonate after three days, followed by a crystalline aragonitic phase (Weiss 

et al. 2002). Aragonite is a form of calcium carbonate with a different crystal 

structure (Chang 1996). Weiss et al. (2002) also postulated that other bivalve larvae 

would have the same developmental properties as the two species they studied. The 

prodissoconch I larvae in the crystalline aragonitic phase look like the letter “D” and 

are often called “D-stage larvae”. Toward the end of the prodissoconch I stage, two 

equal-length aragonite valves form (Carriker and Palmer 1979) and can be noted by 

conspicuous punctate-stellate patterns on the surface of each valve when viewed 

under scanning electronic microscopy (Carriker 1996).   
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During prodissoconch II, the next shell development stage, the left valve 

grows considerably wider than the right valve (i.e., more convex) and an umbo begins 

to form (Carriker 1996). An umbo is the rounded elevated oldest part of each valve at 

the anterior end of the bivalve (Carriker 1996). As shell secretion continues, the 

valves become heavier (Carriker 1996). By the end of prodissoconch II, oyster larvae 

may be over 150 μm long and both abductor muscles are nearly equal in size 

(Carriker 1996). At this point some bivalve species exhibit growth striate that are 

visible in bands between aragonite layers (Millar 1968, Siddall 1980).   

The Prodisoconch II stage ends with the formation of an actively crawling 

foot as the organism begins searching for a settling place (Nelson 1924, Carriker 

1986, Carriker 1996). The settling behavior of several bivalves has been studied and 

some respond to chemical and biological cues that stimulate settlement (Carriker 

1996, Kennedy 1996).The planktonic larval development ends after settlement and 

the homogenous aragonitic prodissoconch I and II shell secretion changes from 

aragonite to calcite to begin the adult dissoconch stage (Carriker and Palmer 1979). 

Larval shells under polarized light 

Polarized light as a tool for microscopy has been used in geology for 200 

years (Carlton 2011). However, recent advances have made polarized light 

microscopy useful in biology to identify bivalve larvae because of the aragonite 

(crystalline) composition of bivalve larval shells (Gallager and Tiwari 2008, United 

States Patent #7415136). The shells of bivalve larvae contain anisotropic crystals with 

different orientations and are birefringent. Birefringent materials (e.g., calcite, mica, 

cellophane) have two different indices of refraction, i.e., light passes through in two 
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directions. When placed between crossed polarizers, birefringent materials produce 

interference colors (colors that differ from those under normal light) (Murphy et al. 

2013). The crystalline shells of bivalve larvae are birefringent and form rainbow-like 

interference colors that are easily discernable in plankton samples (Fig. 1.1). 

Visualizing patterns formed by the crystal structures under polarized light was 

first conducted in the early 1900s on a river mussel species in Germany (Schmidt 

1924). The optical orientation of the crystals contained in the nacre of each species 

appears distinct (Tiwari and Gallager 2003). It is extremely difficult, at best, to 

visualize the crystal patterns or infer orientation under standard microscopy (Fig. 

1.1A). However, as described by Tiwari and Gallager (2003), under cross-polarized 

light, the light that is not in the plane of the polarizer refracts off the shell in a fashion 

affected by its crystal orientation and a dark cross of light extinction becomes visible 

in the plane of the two polarization plates (Fig. 1.1B). With the addition of a full 

wave compensation plate (or λ plate), distinct colored interference patterns are 

produced as the polarized light refracts off the crystals (Fig. 1.1C). The patterns, 

investigated, are species-specific because the protein compliment of the shell matrix 

and the axial rotation of the crystals differ between species of bivalves (Tiwari and 

Gallager 2003). Thus the way that the crystals are laid down during shell formation 

differs, and the resulting patterns are distinct, between species. Some of these patterns 

can be discerned by eye or by using pattern recognition software to identify larvae to 

species (Thompson et al. 2012). This objective of this chapter was to capture 

birefringent images of different size classes of bivalve larvae that spawn the same 

time as C. virginica in the Choptank River, a sub-estuary of Chesapeake Bay. 
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Bivalves of the Choptank River 

Although there are more than eight species of bivalves in the Choptank River, 

this research focuses on those that spawn the same time as C. virginica. One other 

species of clam Gemma gemma also reproduces at the same time as C. virginica but 

this species is not found in the plankton because it broods its young and they emerge 

as juveniles (Sellmer 1967). Therefore Gemma gemma is not included in this guide. 

The species that spawn and have larvae in the plankton the same time as C. virginica 

are:  Ischadium recurvum (Chanley 1970), Guekensia demissa (Borrero 1987), 

Macoma mitchelli (Blundon and Kennedy 1982), Mytilopsis leucophaeata (Kennedy 

2011a), Mulinia lateralis (Calabrese 1969), Rangia cuneata (Sunberg and Kennedy 

1993), and Tagelus plebeius (Chanley and Castagna (1971). The following section 

reviews each species life history and larval ecology. Table 1.1 provides a summary of 

spawning conditions, larval salinity tolerances, and pelagic larval durations for these 

species.   

C. virginica (Gmelin 1791), eastern oyster. The eastern oyster can reach up to 

360 mm in shell length (Galtsoff 1964). The adult salinity tolerance varies from 5 to 

40 although optimal ranges can vary by geographic location (Galtsoff 1964). They 

range from the Western Atlantic to the Gulf of St. Lawrence to Brazil and Argentina 

and have been introduced to the West Coast of the U. S. (Carriker and Gaffney 1996). 

When water temperatures reach 25 
o
C in the lower Chesapeake Bay, C. virginica 

spawn and the larvae produced may be present in the water column for up to 2-3 

weeks (Shumway et al. 1996). Optimal temperatures and salinity for the larvae may 

vary by geographic location. Larvae from Long Island Sound grow well in 
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temperatures of 17.5 
o
C and salinities of 15–27 (Davis and Calabrese 1964). 

However, spat sets have been observed in salinities as low as 1.4 and tolerance of 

larvae may vary by geographic location (Shumway et al. 1996). Native C. virginica 

populations are economically important as a food source for humans (Rothschild et 

al. 1994, Mackenzie 2007) and ecologically (Wells 1961, Rodney and Paynter 2006, 

Fulford et al. 2010) important by providing habitat and food for other organisms 

(Rodney and Paynter 2006) and by filtering the algae from the water column (Newell 

2004). Populations are declining in many parts of the world (Beck et al. 2011). In 

Chesapeake Bay the abundance of current C. virginica populations are less than one 

percent of historical levels (Wilberg et al. 2011).  

I. recurvum (Rafinesque, 1820), hooked mussel. These mussels can reach 60 

mm (Lipcius and Burke 2006). The range of I. recurvum stretches from Cape Cod 

through the Gulf of Mexico and the West Indies (Allen 1962). Their larvae have 

salinity and temperature requirements similar to C. virginica (salinities 6-20 and 

temperatures 25-30). This species is often found on oyster reefs in the Chesapeake 

Bay (Allen 1962, Shaw 1965, Chanley 1970). Settlement has been observed in 

Choptank River from April through December (Shaw 1965). Although little is known 

about their pelagic larval duration it took 14 days to rear our laboratory specimen. 

The hooked mussel is usually found on oyster bars and can affect the growth habits of 

oysters (Lipcius and Burke 2006). These mussels also provide food for surf scoters 

Melanitta perspicillata in Chesapeake Bay (Berlin 2008). 

G. demissa (Dillwyn 1817), ribbed or marsh mussel. These mussels have a 

lifespan of around 15 years and reach 100 mm in length (Brousseau 1984). Their 
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geographical range is from the Gulf of Maine to Florida although the species was also 

introduced in San Francisco Bay (Franz 2001). There is usually one annual spawning 

event between June and September depending upon the region (Borrero 1987). The 

larvae are in the water, including in Chesapeake Bay, from early summer to the 

beginning of fall (Borrero 1987). Information on G. demissa larvae is scarce but 

planktonic larval duration can take 6–21 days and larvae can grow at 27 
o
C and 

salinities between 12-22 (obs. from Rutgers Hatchery unpublished data). Baker and 

Mann (2003) observed later-stage pediveliger larvae of the marsh mussel in surface 

waters during non-stratified conditions in one tributary of Chesapeake Bay. 

Populations of G. demissa are important because they affect the nutrient dynamics of 

marshes and estuaries (Jordan and Valiela 1982). Kuenzler (1961) found that the 

mussels can remove a third of the particulate phosphorus from suspension and deposit 

it on the mud surface. They can also alter the structure of microbiota (Kemp et al. 

1990). Sometimes G. demissa can form dense aggregates altering the physical 

structure of the marsh and stimulating the growth of Spartina alterniflora (Bertness 

and Grosholz 1985). These mussels are also food sources for diamondback terrapins 

(Whitelaw and Zajac 2002) and are one of the few bivalves able to forage on small-

sized bacterioplankton (Newell and Kambeck 1995).  

M. mitchelli (Dall 1895) , Matagora macoma clam. This small clam reaches 

16 mm in length (Blundon and Kennedy 1982). The exact geographic range of these 

clams is not known but there are occurrences of M. mitchelli in samples collected in 

the Atlantic and Gulf Coasts of the United States (e.g. Parker 1959, Tenor 1972, 

Redding 1975). They have a salinity range of 5-18 (Kennedy 1989). They are thought 
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to spawn between spring and fall but juveniles have been observed throughout the 

year (Blundon and Kennedy 1982). Their larval development time is 6-7 days and the 

larvae will grow at temperatures around 23 °C and salinity of 18 (Kennedy et al. 

1989).  The ecological role of this species is not well known although it was 

considered as a potential bio-indicator of pollution in the Neuse River Estuary 

(Waller 1996).   

M. lateralis (Say 1822), coot clam or surf clam. This clam can be found in the 

upper 5 cm of the sediment of Chesapeake Bay and may reach up to 18 mm in length 

(Blundon and Kennedy 1982). It is found from Malpeque Bay Canada to northeastern 

Mexico and in the West Indies (Calabrese 1969).  It can tolerate salinities ranging 

between 1.4 - 75.1 (Breuer 1957). The optimum salinity for both developing embryos 

and survival of larvae is 25-27.5 at 25 
o
C (Calabrese 1969).  Temperature has the 

greatest influence on the duration of the larval stage and growth is “satisfactory” at 

temperatures from 22.5-27.5 
o
C and salinities from 20-35 (Calabrese 1969). Larval 

swimming is affected by salinity and larvae (of all stages) concentrated at the salinity 

discontinuity according to laboratory studies (Mann et al. 1991).  Although this clam 

is not important commercially, its short generation time and high fecundity make it a 

perfect candidate for studies of pollution effects (Calabrese and Rhodes 1974). 

Waterfowl of the Chesapeake Bay also eat M. lateralis (Berlin 2008, Harmon 1962).  

M. leucophaeata (Conrad 1831), dark false mussel. This mussel can reach 

25.2 mm in length (Kennedy 2011a), although typical populations range between 15-

20 mm (Sidall 1980). Although M. leucophaeata are native to the east coast of North 

America (Kennedy 2011a), they have been introduced in South America and Europe 
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(Kennedy 2011b). The species has a salinity range of 0.8-20.9 and temperature range 

of 15-27 °C (Verween et al. 2007). The adults spawn between summer and fall 

(Verween et al. 2005). The planktonic larval duration for M. leucophaeata is between 

6-11 days depending on temperature and salinity (Verween et al. 2007). Larvae can 

survive in temperatures of 10-30 °C and salinities of 0-25 although their optimal 

growth conditions are 22 °C with salinity near 15 (Verween et al. 2007). Dark false 

mussels filter algae from the water column and provide food for fish species (e.g., 

pinfish (Lagodon rhomboids) and sheepshead (Archosargus probatocephalus)) and 

blue crabs (Callinectes sapidus) (Odum and Herald 1972). Perry et al. (2007) found 

these mussels in the gullet and gizzard of ducks shot on the Chester River in 

Maryland indicating their importance as a prey item for waterfowl.  

R. cuneata (Sowerby, 1831) , Atlantic rangia. Atlantic rangia clams are 

suspension feeding bivalves that can reach over 70 mm in shell height (Chanley 

1965).  They are found from the upper Chesapeake Bay to areas in the Gulf of 

Mexico that have salinities less than 15 (Hopkins et al. 1973, Cain 1975). 

Gametogenesis begins in this species at water temperatures exceeding 15 
o
C and 

salinities less than 15 (Hopkins and Andrews 1970). Planktonic larval duration for R. 

cuneata is about one week before settlement and the larvae size range for pediveligers 

is between 160 and 300 µm (Sundberg and Kennedy 1992). Larval swimming is 

affected by salinity and larvae (of all stages) concentrated at the salinity discontinuity 

according to laboratory studies (Mann et al. 1991). The clam larvae can develop 

successfully at temperatures of 23-26 
o
C and salinities of 8-10 (Sundberg and 

Kennedy 1992). Although this species is not commercially harvested it is a non-
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selective filter-feeder turning plant detritus and phytoplankton into clam biomass that 

animals can eat (Darnell 1958).  In some areas of the country, mainly Texas, their 

shells are economically valuable (Hopkins and Andrews 1970).  

T. plebeius (Lightfoot 1786), stout or razor clam. Razor clams can reach up to 

75 mm (NMR 2013). These clams are an infaunal species ranging from Cape Cod to 

Argentina (Gosner 1979, Vazquez et al. 2006).  They are common in salinities of 10–

30 but can tolerate salinities below 10 (Chanley & Castagna 1971). Their gonads are 

mature from June through December but most spawning occurs in late August and 

September (Chanley and Castagna 1971). Larvae of T. plebeius have a length of 90 to 

170 µm and complete their development at a smaller size than many other veliger 

bivalve larvae (Chanley and Castagna 1971).  The pelagic larval duration is usually 

between 8-13 days (Chanley and Castagna 1971). Larvae of T. plebeius have been 

successfully reared at temperatures of 22-25 
o
C and salinities of 11-30 (Chanley and 

Castagna 1971, Table 1.1). This clam is becoming increasingly important 

commercially for use as bait in commercial crab and eel traps (Dungan et al. 2002).  

They are also food sources for diamondback terrapins (Whitelaw and Zajac 2002) and 

most likely other species in the Bay.  

These eight species of larvae have diverse size ranges, pelagic larval 

durations, and ecological roles within the Choptank River.  However, a rapid way to 

identify these larvae is needed. Furthermore, a full understanding of what cues 

swimming behavior or affects mortality is not known. Yet, this information is 

important for understanding larval transport and population connectivity, which in 

turn are important for advancing knowledge of the population dynamics of these 
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important commercial and ecological shellfish. Using image analysis with polarized 

light can help fill this knowledge gap by allowing for improved identification and 

enumeration of bivalve larvae.  The objective of this chapter is to document the color 

patterns of eight species of bivalve larvae in the Choptank River under polarized light 

and to create a visual identification guide for distinguishing C. virginica using these 

patterns.   

 

Methods 

To create a visual guide and key for identifying bivalve larvae under polarized 

light, adult bivalves were spawned and their larvae reared. Images of the larvae at 

different stages of growth were captured under polarized light for all species. Finally, 

a visual guide and a key were created that could help distinguish C. virginica from the 

other species.  

Spawning and rearing 

Eight bivalve species that are found in Choptank River were spawned, their 

larvae were reared and images of their shells were taken (Table 1.1, Fig. 1.3-1.10). 

The adult bivalves that were collected from the Choptank River and reared in the 

laboratory consisted of: I. recurvum (hooked mussel), M. lateralis (dwarf surf clam), 

M. leucophaeata (dark false mussel), M. mitchelli (Matagora macoma clam), 

R.cuneata (Atlantic rangia clam), and T. plebeius (razor clam). Larvae of C. virginica 

(eastern oyster) were obtained from the Horn Point Hatchery and G. demissa (marsh 

mussel) were obtained from the Rutgers Cape Shore Laboratory. Spawning (using 
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temperature fluctuation) and rearing procedures were consistent with summer 

conditions in Choptank River and were explained in detail (see Goodwin et al. 2014 

(Chapter 2)) for all species with the exception G. demissa. The G. demissa larvae 

were reared in conditions similar to Delaware Bay at a temperature of 24.9 
o
C at a 

salinity of 22.5 and fed Isochrysis galbana, Pavlova lutheri, and Chaetoceros 

calcitrans. 

Imaging 

Images used for this guide were captured under standard microscopy and with 

cross polarized light with a full wave (λ) compensation plate.  Specimens of three age 

groups (2-3d) from each species were imaged to discern the differences in 

birefringence patterns over larval development (D-stage, early Prodissoconch II, and 

late Prodissoconch II) All bivalve larvae were imaged using an Omax M837PL 

trinocular inverted polarizing microscope. The microscope was equipped with an 

automatic stage and had a 5x ocular with an objective lens of 20x. The magnification 

was calculated to be 7x. An Infinity model 2-3C eight megapixel digital microscope 

camera was used to image both polarized light and standard light images. The 

software program used to capture images with the camera was Lumenera Infinity 

Analyze Software version 3.1. The camera software settings used to capture images 

used in this guide were: exposure (151.0), gain (10.6), gamma (0.82), light source 

setting (fluorescent), saturation (1.31), brightness (4), contrast (4), red (1.0), blue 

(1.0), green (1.0), averaging (1), and subsampling (1). Settings for Birefringent 

images and standard light images were both captured under these settings. First, larval 

shells were broken apart and tissue digested by immersing them in a 40% bleach and 
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buffered (Sodium Borate) DI water (see Chapter 3 for more details). Then, clean 

shells were pipetted in buffered (Sodium Borate) DI water onto a Sedgewick-Rafter 

slide.  Birefringent images were captured using cross polarized light with a full wave 

(λ) compensation plate. Once an image of the shell of a bivalve larvae was captured, 

the polarizer was removed and the (λ) plate removed. A standard green glass filter 

was then placed over the light source and another image was captured under standard 

microscopy conditions.  

A key was created from an image library that was taken with an automated 

image acquisition system (Chapter 3), using the same procedures mentioned above 

except for different software settings of the camera: exposure (151.0), gain (15.2), 

gamma (0.82), light source setting (fluorescent), saturation (1.31), brightness (4), 

contrast (4), red (1.0), blue (1.0), green (1.0), averaging (1), and subsampling (1). 

This online library represents 1000 images of Osteroida, Veneroida, and Mytiloida 

that spawn during summer in Choptank River (species listed above) for a total of 

3000 images. 

  

Results 

Images that were captured under polarized light of larvae had similar color 

patterns at the taxonomic level of order:  oysters (C. virginica (Fig. 1.3A-F)), mussels 

(I. recurvum (Fig. 1.4A-F) and G. demissa (Fig 1.5A-F)), and clams ((M. mitchelli 

(Fig 1.6A-F), M. lateralis (Fig. 1.7A-F), M. leucophaeata (Fig. 1.8A-F), R. cuneata 

(Fig. 1.9A-F), and T. plebeius (Fig. 1.10A-F)).  A unique pattern of yellow coloration 

at the posterior and anterior edges of the D-stage shell (Fig. 1.3D) helped distinguish 
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C. virginica from clams and mussels at the D-stage. Patterns of mussels and clams at 

the D-stages vary but were harder to distinguish (panel D on Fig. 1.4, and 1.6-1.10) 

due to similar colors and patterns.  

The taxonomic groups were more clearly distinguishable at the prodissoconch 

II level. The C. virginica (Fig. 1.3E,F) and mussel species (panels E,F on Fig. 1.4-5) 

had a more yellow in their shell patterns than clams. Prodissoconch II mussels had the 

brightest patterns of yellow on their shells (Fig. 1.4E,F).  The dark banding patterns 

of the oyster C. virignica and the mussel I. recurvum were similar (Fig. 1.3F, 1.4F) 

but the species were distinguishable because the mussel had a more circular shell with 

a less pronounced umbo. The birefringent images of clam species had a majority of 

red and blue coloration (panels E,F on Fig. 1.6-1.9) with little yellow  making it 

difficult to distinguish between clam species, but useful for distinguishing them from 

mussels and C. virginica.  One exception is later stage larvae of T. plebeius (Fig. 

1.10E,F) which had some yellow coloration but still less than 20% of the shell. The 

more circular shape of T. plebeius helped distinguish these images from C. virginica 

and mussels (Fig. 1.10).  

An identification key was created to help distinguish C. virginica larvae apart 

from other species that spawn the same time as C. virginica (Fig. 11.1). The key 

identifies larvae based on stage (e.g. D-stage, umbo). Larger C. virginica larvae were 

easier to distinguish because of their color (yellow and orange) and shape 

(pronounced umbo). Smaller C. virginica D-stage larvae were distinguishable 

because they were generally dull in color compared to other D-stage larvae. This key 

was made to use with a set of images called  COM1000 that is available online 
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(http://northweb.hpl.umces.edu/TRANSPORT/home.htm) and was used as a training 

set for computer-assisted classification of bivalve larvae (see Chapter 3). 

    

Discussion 

These images of birefringent larval shells at different stages in their 

development could be used as a visual identification guide for bivalve larvae in the 

Choptank River. Previous work has been conducted that utilizes pattern recognition 

software (ShellBi) to identify bivalve larvae using birefringent patterns under 

polarized light (Gallager 2008, Thompson et al. 2012, Goodwin et al. 2014). An 

automated image acquisition system coupled with ShellBi could rapidly and 

accurately measure and classify larvae (see Chapter 3) and cost ~$17,000 plus an 

additional $16,000 for the ShellBi software. However, this visual guide (coupled with 

a digital library of multiple images for each species/stage) could be used for 

identification with a polarized microscope and digital camera for substantially less 

($3,600). 

 The patterns in interference colors on the shells of bivalve larvae under 

polarized light were sensitive to camera settings and some settings may be better than 

others at distinguishing different species (see Chapter 3). The settings used in these 

images were optimized to distinguish C. virginica larvae. However, if another target 

species was being identified, different settings may perform better.  For example, 

under these settings, it was difficult to distinguish clam species from each other (M. 

mitchelli, M. lateralis, M. leucophaeata, and R. cuneata), but altering the software 

http://northweb.hpl.umces.edu/TRANSPORT/home.htm
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settings of the camera could bring out species-specific differences among them. A 

key (Fig. 1.11) was created to help identify oyster larvae. However, this key was 

created to target C. virginica and was best used with an established reference image 

library under the same camera settings as described in this study. 

The objective of this chapter was to create a guide that could be used to 

visually identify C. virginica.  It is important to identify C. virginica larvae so that 

more information can be gathered on this important life stage that governs transport 

and connectivity of populations (Kennedy 1996, Cowen and Sponagle 2009). The 

ultimate goal of this dissertation was to enhance our understanding of processes that 

affect the vertical and horizontal distribution and the mortality of C. virginica larvae. 

First, tests of the ShellBi software were conducted to determine its performance when 

distinguishing C. virginica larvae from the other seven species of bivalve larvae that 

spawn in the Choptank River at the same time as C. virginica (Chapter Two). Second, 

an automated image acquisition system was developed for use with ShellBi and tested 

to determine classification accuracies for identifying C. virginica from the other 

seven species (Chapter Three). Finally, ShellBi and the automated image acquisition 

system were applied to field samples from the Choptank River to characterize the 

distribution of C. virginica larvae in relation to physical and biological parameters, to 

infer their swimming behavior, and to calculate larval mortality rates (Chapter 4). By 

testing the ShellBi technology (Chapter 2), automating image capture (Chapter 3), 

and applying these advancements to field samples (Chapter 4), this research will help 

provide fundamental knowledge on the ecology of C. virginica which will support 

management of this species. 
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Tables and figures 

 

Table 1.1. Spawning conditions for seven species of bivalves that are found in the 

mesohaline region of the Choptank River. All species except for C. virginica and G. 

demissa were successfully spawned and reared in laboratory conditions of ~23 
o
C and 

salinities between 11-13. The larval development times for all bivalves was observed 

in the laboratory for all species except C. virginica (HPL hatchery) and G. demissa 

(Rutgers hatchery). 

 

 

Scientific 

name 

 

Spawning 

temperature 
 

o
C 

Larval 

salinity 

tolerance 

Larval 

development 

time in lab 

(days) 

Spawning 

time 

Crassostrea 

virginica 

28-30
 

(Shumway et 

al. 1996) 

5-27 

(Shumway et 

al. 1996) 

 

16 

Summer to fall 

(Kennedy 

1996) 

Macoma 

mitchelli 

26-30 

(Kennedy et 

al. 1989) 

5–18 (Kennedy 

et al. 1989) 7  

Year round 

(Blundon and 

Kennedy 1982) 

Mytilopsis 

leucophaeat

a 

30
 
(Kennedy 

2011b) 

0.5-18 

(Kennedy 

2011b) 

 

13 

Summer to fall 

(Kennedy 

2011a) 

Mulinia 

lateralis 

28-30
 

(Calabrese and 

Rhodes 1974) 

7.5-37.5  

(Calabrese and 

Rhodes 1974) 

 

13 

May-Oct 

(Calabrese 

1969) 

Rangia 

cuneata 

30
 
(Sundberg 

and Kennedy 

1992) 

<15 (Sundberg 

and Kennedy 

1992) 

 

8 

Late spring to 

early fall 

(Sundberg and 

Kennedy 1993) 

Tagelus 

plebeius 

30-32
 

(Chanley  and 

Castagna 

1971) 

10-30 

(Chanley and 

Castagna 

1971) 

 

13 

June-Nov 

(Chanley and 

Castagna 

1971) 

Guekensia 

demissa 

27 (Rutgers 

hatchery 

unpub) 

12 -22.5 

(Rutgers 

hatchery 

unpub) 

 

7-21 Early summer 

to fall (Borrero 

1987) 

Ischadium 

recurvum 

25-30 

(Chanley 

1970) 

20 (Chanley 

1970) 

 

14 

June-Nov 

(Chanley 

1970) 
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A)       B) 

 

Fig. 1.1. Three images of field samples under A) regular light and B) cross polarized 

light with a full wave compensation (λ) plate. Bivalve larvae from panel B can be 

distinguished to the species level using pattern recognition software 
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A)            B)         C) 

 

 

 

 

 

 

 

 

 

Fig. 1.2. Two 11 day old C. virginica captured at 20x magnification under a) standard 

light, b) polarized light, and c) polarized light with a full wave (λ) compensation 

plate. 

 

 

 

Fig. 1.3. Images of C. virginica larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 6-d, and C,F)12-d 

old. Shell heights are listed in panels D-F.  
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Fig. 1.4. Images of I. recurvum larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 3-d, B,E) 7-d, and C,F)13-d 

old. Shell heights are listed in panels D-F. 

 

          

Fig. 1.5. Images of G. demissa larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 3-d, B,E) 6-d, and C,F)13-d 

old. Shell heights are listed in panels D-F. 
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Fig. 1.6. Images of M. mitchelli larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 8-d, and C,F)10-d 

old. Shell heights are listed in panels D-F.   

 

 

Fig. 1.7. Images of M. lateralis larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 4-d, B,E) 10-d, and C,F)13-d 

old. Shell heights are listed in panels D-F.     
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Fig. 1.8. Images of M. leucophaeata larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 6-d, and C,F)8-d 

old. Shell heights are listed in panels D-F.     

 

 

 

 

Fig. 1.9. Images of R. cuneata larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 4-d, and C,F)8-d 

old. Shell heights are listed in panels D-F.     
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Fig. 1.10. Images of T. pleibeius larvae captured under A-C) standard and D-F) 

polarized light at a magnification of 7x. Larvae are A,D) 2-d, B,E) 4-d, and C,F) 8-d 

old. Shell heights are listed in panels D-F.     
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Is the larva D-stage? No 

T. plebieus 

R. cuneata 

M. mitchelli 

Veneroida 

M. leucophaeata 

M. lateralis 

Yes 

Do images appear 

darker than other D-

stage images, some 

green-blue on 

edges?  Order: Veneroida or 

Mytiloida  

Order: Ostreoida 

Is there more than 20% 

yellow/orange on shell? 
No 

Yes 
No 

Yes 

Is shell larger than 

200 µm and oval 

shaped with visible 

umbo? 

No 

Is the shell 

rounded rather 

than oval? 

Ostreoida 

Yes 

Yes No 

Mytiloida Ostreoida 
C. virginica 

I. recurvum 

G. demissa 

C. virginica 

C. virginica 

64µm 

64µm 

G. demissa I. recurvum 

M. leucophaeata 

T. plebieus 

M. lateralis M. mitchelli 

R. cuneata 

72µm 

84µm 

84µm 

 

Fig. 1.11 Larval identification key based on shell birefringence, size, and 

morphology.  Size bars correspond with images underneath them. 
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Chapter 2: Evaluating and improving a semi-automated image 

analysis technique for identifying bivalve larvae
1
 

 

Abstract 

Knowledge of the distribution, abundance, and transport of bivalve larvae is 

limited due to their small size, similar morphologies between species, and lack of an 

automated approach for identification. The objective of this research is to evaluate 

and improve the accuracy of ShellBi, a novel supervised image classification method 

that uses birefringence patterns on the shells of bivalve larvae under polarized light to 

identify species. The performance of the ShellBi method was tested by rearing 

Crassostrea virginica (eastern oyster) larvae at different temperatures (21.3 and 27.5 

o
C) and salinities (10.3, 14.1, 14.4, and 20.5). Differences in rearing temperatures 

resulted in differences in classification accuracy, as did large variations in salinity 

(≥10 units). Classification accuracies increased from 67-88% to 97-99% when 

training sets included images of larvae reared in conditions similar to those of the 

larvae being classified. Additional tests indicate that misclassification rates ranged 

from 0 to 13% for false positives and from 0 to 22% for false negatives, depending on 

the proportion of oyster larvae in the sample. Results suggest that this technique could 

be applied to field samples with high accuracy as long as the images that are used to 

make classifications include larvae that were reared in conditions that are similar to 

those in situ. In addition, these findings demonstrate that the ShellBi method can be 

                                                 
1
 Published: Goodwin, J.D., E.W. North, and C.M. Thompson. 2014. Evaluating and 

improving a semi-automated image analysis technique for identifying bivalve larvae. 

Limnology and Oceanography Methods 12:548-562. 
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used to measure and identify bivalve larvae in a different system than the one for 

which it was developed, suggesting that the method has broad applicability in marine 

and estuarine systems. 

 

Introduction 

Understanding dispersal pathways and connectivity is important for effective 

fisheries management strategies (Fogarty and Botsford 2007). The larval stage of 

bivalves is the least understood aspect of their life history, but it is important to 

understand because it is the stage during which dispersal takes place, which in turn 

influences population connectivity and gene flow (Kennedy et al. 1996, Pineda et al. 

2007, Dame 2012, Munroe et al. 2012). Species identification is important for 

understanding dispersal and its effect on the population connectivity of bivalves 

because larvae of different species can exhibit variations in behavior that may result 

in large divergences in transport (Shanks and Brink 2005, North et al. 2008). 

However, studies of bivalve larvae are difficult to conduct because of identification 

challenges, small sizes of individuals, high mortality rates, and spatial patchiness 

(Boicourt 1988, Garland and Zimmer 2002). 

Many identification techniques of bivalve larvae are too time consuming or 

expensive to apply when conducting sampling on a large scale. Accordingly, specific 

pros and cons of identification techniques of bivalve larvae are reviewed in Garland 

and Zimmer (2002), Hendriks et al. (2005), and Thompson et al. (2012a). 

Identification can involve time-consuming methods that rely on morphological 

differences (Loosanoff et al. 1966, Chanley and Andrews 1971, Lutz et al. 1982).  
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More rapid molecular techniques include multiplex PCR (Hare et al. 2000), 

quantitative PCR (Wight et al. 2009) and fluorescent in situ hybridization with DNA 

probes (Henzler et al. 2010). Although quantitative PCR can provide some insight 

into the quantity of bivalve larvae, it does not provide information on the sizes of 

those larvae. Furthermore, these methods can have high costs and limitations on 

sample volume.  

An alternative method for rapid identification is ShellBi. ShellBi can be an 

accurate, cost effective, and rapid approach for identifying and measuring bivalve 

larval shells once the initial effort to prepare this technique for use in a new system is 

complete. ShellBi is a semi-automated image-processing approach that uses 

birefringence patterns on the shells of larvae that appear when subjected to polarized 

light (Twari and Gallager 2003a, 2003b, Gallager and Tiwari 2008, United States 

Patent #7415136, Thompson et al. 2012a). Under polarized light, color and texture-

based features are extracted from digital images of the larval shells by pattern 

recognition software. The algorithm used in this work, a Support Vector Machine 

(SVM), generates decision boundaries that maximize differences between labeled 

categories (training images) and then applies the decision boundaries to classify new 

observations into those categories. For the ShellBi method, the categories are defined 

as groups of images of larval shells from known bivalve species (called ‘training 

sets’) and the observations are images of shells that need to be identified (called 

‘unknown sets’). In short, the classifier (the SVM) uses color and texture-based 

features from the training set images to identify images of larval shells in the 

unknown set (Twari and Gallager 2003a, 2003b,Thompson et al. 2012a).  
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Thompson et al. (2012a) validated the ShellBi method with DNA and visual 

classification methods and improved it showing 98% identification accuracy for four 

hatchery-reared species Argopecten irradians (bay scallop), Crassostrea virginica 

(eastern oyster), Mercenaria mercenaria (quahog), and Mya arenaria (soft-shell 

clam). However, the species featured in their hatchery-reared training sets represented 

a simplified sample relative to field-caught larvae and larvae in-situ may have had 

different growth rates due to environmental heterogeneities (Thompson et al. 2012a). 

Therefore, although obtained accuracies are high for identifying larvae reared in the 

hatchery, the effect of different growth conditions on shell formation between larvae 

reared in the hatchery and in the field may cause drops in accuracy. Therefore, 

improvements to the ShellBi method are needed when applied to field samples. 

The overall objective of this research was to evaluate the use of the ShellBi 

method for identifying C. virginica bivalve larvae in the Choptank River, a tributary 

of Chesapeake Bay in Maryland. Initially ShellBi was tested using bivalve species 

native to Cape Cod, Massachusetts and found in Waquoit Bay (Tiwari and Gallager 

2003b, Thompson et al. 2012a). The bivalve species and physical characteristics of 

the mesohaline Choptank River differ from Waquoit Bay.  Salinities near the surface 

of the Choptank River during the spawning season of oysters (May-October) are 0 to 

14 and temperatures range from 17 to 27 
o
C (MDNR 2012). In contrast, Waquoit Bay 

water temperatures during May-October are 13 to 26 
o
C and salinities range from 28 

to 32 (Thompson et al. 2012b). In addition to the overall objective of testing the 

ShellBi technique in a different system, the three specific objectives that guided this 

research were to:  1) determine the influence of growth conditions on classification 
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accuracy, 2) evaluate the influence of training set composition on classification 

accuracy, and 3) estimate misclassification rates of this method when applied to 

distinguish C. virginica larvae from other bivalve species found in the Choptank 

River. 

 

Materials and procedures 

Six bivalve species that are found in the Choptank River were spawned, their 

larvae were reared, and images of their shells were used to create training sets (Fig. 

2.1). In addition, C. virginica larvae were reared in different growth conditions and 

imaged. A series of classification tests were conducted with the training sets and C. 

virginica images. Methods for spawning, rearing, imaging, and classifying larvae are 

described in this section. 

Spawning and rearing bivalve larvae from the Choptank River 

Six species of bivalve larvae were reared to obtain images for training sets: C. 

virginica (the target organism) and five other species that are abundant in the 

plankton along the mesohaline portion of Chesapeake Bay (Table 2.1). Adult 

specimens of the five species, Ischadium recurvum (hooked mussel), Mulinia 

lateralis (dwarf surf clam), Mytilopsis leucophaeata (dark false mussel), Rangia 

cuneata (Atlantic rangia) and Tagelus plebeius (razor clam) were collected from 

Choptank River field sites and brought to lab for spawning in 2009, 2010, 2011, and 

2012. Some specimens of M. lateralis also were collected from the Corsica River (a 

tributary of Chesapeake Bay that is north of the Choptank River). Temperature 
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fluctuation and strip spawning techniques were used to induce spawning (Chanley 

1970, Kennedy et al. 1989). Larvae were raised at room temperature 23.0
 
+/- 0.5 

o
C 

(n=30) (here and henceforth numbers after ‘+/-‘ are the standard deviation) and fed 

fresh Isochrysis galbana and Thalassiosira pseodonana (for D-stage and veliger 

larvae) and Tetraselmis chui (for pediveliger larvae). A subset of larvae was 

preserved in 80% ethanol buffered with sodium borate every two days from 

prodissoconch 1 through pediveliger stages so that different age/size classes for each 

species could be incorporated into training sets. The fixative was buffered to a target 

pH of 8.0 in order to inhibit dissolution of larval shells (Thompson, pers. obs.).  

In 2009, 2010, and 2011, multiple ages of C. virginica larvae (2-, 4-, 6-, 8-, 

10-, 12-, 14- and 16-days old) were obtained from the Horn Point Oyster Hatchery 

where they had been reared at an average temperature of 25.9 +/- 1.5 
o
C (n=30) and 

average salinity of 10.3 +/- 0.9 (n=30). These hatchery-reared C. virginica larvae 

were fed Isochrysis galbana and Thalassiosira pseodonana as D-stage larvae. For 

veliger stages, Chaetoceros mulleri was added. Pediveligers were fed Tetraselmis 

chui plus Chaetoceros mulleri. Algal concentrations averaged 5.7 x 10
4
 cells ml

-1 
over 

the duration of the larval stages for hatchery-reared larvae. Larvae of C. virginica 

from 2009 were preserved in 80% ethanol buffered with sodium borate (Thompson et 

al. 2012a), larvae from 2010 and 2011 were preserved in 4% formalin buffered with 

sodium borate because larval shells stored in buffered ethanol began to crack after 2 

years (Thompson and Goodwin, pers. obs.). The preservative used to store larvae 

(formalin vs. ethanol) did not interfere with the ability of ShellBi to classify bivalve 

larvae (Table S2.1).   
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In 2011, 1-day old D-stage C. virginica larvae were obtained from the 

hatchery and were reared at a mean temperature of 22.3 +/- 0.4
 o
C (n=30) and mean 

salinity of 11.5 +/- 0.3 (n=30).  Larvae were fed live cultures of Isochrysis galbana 

and Thalassiosira pseodonana (fed to D-stage and veliger larvae) and Tetraselmis 

chui (fed to pediveliger larvae) at an average concentration of 5.7 x 10
4
 cells ml

-1
.  

Subsets of larvae were preserved in 4% formalin buffered with sodium borate every 

two days up to day 20.    

Rearing C. virginica larvae in different growth conditions 

Larvae of C. virginica were reared at different temperatures, salinities, and 

food concentrations (parameters known to affect growth (Kennedy et al. 1996)) to 

investigate how different growth conditions affect the classification accuracy of the 

ShellBi method.  

Newly spawned C. virginica were obtained from Horn Point Oyster Hatchery 

and placed in 3-L glass rearing chambers within two temperature-controlled rooms. 

Water was collected from three sites within the Choptank River system (Tred Avon 

River, Harris Creek, and Choptank River at the Horn Point dock), and an external site 

(Chincoteague Bay) on the eastern shore of Maryland. Water was filtered to 1 µm in 

the field using a battery-operated pump (JABSCO model 50840-0012) and 

polypropylene cartridge system. Prior to rearing the larvae, salinity was adjusted to 

provide a range of salinities that reflect conditions in-situ in Chesapeake Bay. Salinity 

of the water collected at the Horn Point dock was raised to 10.3 and waters from the 

Tred Avon and Harris Creek were raised to 14.1 and 14.4, respectively, using Crystal 

Sea Marinemix (Marine Enterprises, Inc.). The salinity of the Chincoteague Bay 
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water was lowered to 20.5 using deionized (DI) water. Before starting this 

experiment, the water was filtered to 1 µm a second time.  

The average water temperatures in the temperature-controlled rooms were 

21.3 +/- 1.0
 o
C (n=48) and 27.5 +/- 0.6 

o
C (n=67). Each room contained 8 rearing 

chambers that held four salinity treatments (10.3 +/- 0.7 (n=58), 14.1 +/- 0.7 (n=63), 

14.4 +/- 0.6 (n=53), and 20.5 +/-1.0 (n=44)) using two chambers and two levels of 

food concentrations (high and low) within each salinity treatment. The concentration 

of algae fed to the larvae was based on the concentration of larvae in the containers 

(Helm et al. 2004), with low food treatments fed half the concentrations of the high 

food treatments. The ratio of larvae to algae in the high food treatments was on 

average 1:1.6x10
4
, with the objective that the larvae would be fed to satiation. The 

average concentration of algae in the high and low food treatments were 9.2x10
4
 cells 

ml
-1

 and 7.9x10
3
 cells ml

-1
, respectively. Algae were obtained from the Horn Point 

Oyster Hatchery and were composed of live cultures of Isochrysis galbana and 

Thalassiosira pseodonana (fed to D-stage and veliger larvae) and Tetraselmis chui 

(fed to pediveliger larvae). Subsets of larvae were preserved in 4% formalin buffered 

with sodium borate every 2, 4, 6, 8, 12 and 14 days in the warm chambers. In the cool 

conditions larvae took longer to develop to the pediveliger stage and were preserved 

every two days up to day 20. 

Image acquisition for training and unknown sets 

Images of all larval shells were taken by an Infinity 2.3C digital 8 megapixel 

camera mounted on a custom-built compound microscope fitted with a polarization 

filter and full wave compensation plate (λ). Larvae were first soaked in 40% bleach 
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and 60% DI water buffered with sodium borate (hereafter referred to as buffered DI 

water) for a period of 15 minutes to remove tissue and break apart the valves of the 

shells. The larval shells were then sieved and rinsed with buffered DI water onto a 

Sedgewick Rafter slide. Digital images of individual shells were taken under 50x 

magnification at a resolution of 96 dpi. The microscope stage was moved manually or 

with a joystick attached to an automated stage to image one shell after another. 

Images were captured with shells at random orientations. A 12V 100W incandescent 

microscope bulb was used as a light source. Lumenera Analyze software (version 

5.0.3 Lumenera Corporation) was used in conjunction with the digital camera to 

capture JPEG images. Settings on the software were adjusted so that they matched 

background color and cross polarization pattern as suggested in Thompson et al. 

(2012a) and kept constant between images. Major background color differences 

occurred throughout the day when a metal bracket was used for the full wave 

compensation plate which was near the light source of the microscope. Because these 

differences affected classification accuracies (results not shown), a plastic housing 

was used for the wave compensation plate to prevent background color drift.    

To create a species category within a training set, 250 images of individual 

shells were selected for each species so that the images spanned the range of stages 

and sizes of the larvae (prodissoconch-1 through pediveliger). Thompson et al. 

(2012a) found that at least 200 images should be used in a training set. Training sets 

were composed of different numbers of species. For example, a 6-species training set 

included 250 images of C. virginica, I. recurvum, M. lateralis, M. leucophaeata, R. 

cuneata and T. plebeius for a total of 1,500 images. All training sets were balanced: 
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each species category had an equal quantity of images (250) with similar age 

representations of bivalve larvae.  

Images of C. virginica shells from the experiment were used as unknown sets. 

The same imaging procedures that were used for the training sets were also used for 

C. virginica larvae reared in the growth experiment. There were 3,288 images of 

larvae captured from the experiment. Those images were used to represent warm and 

cool conditions as well as four different salinity treatments.  

Images were pre-processed prior to classification so that each larval shell, a 

region of interest (ROI), was defined and distinguished from its background 

(Thompson et al. 2012a) using MATLAB (version R2009a, Mathworks Inc.) and its 

image Processing Toolbox (version 6.3, Mathworks Inc.). The pre-processing (i.e., 

cropping) was performed using an automated ROI masking routine in MATLAB 

(Thompson et al. 2012a).  

Image classification and analysis  

Image classification was accomplished by extracting features from training 

sets, cross validating the training sets, extracting features from unknown images, and 

using the training features to classify unknown images (Thompson et al. 2012a).  All 

images were processed using the Bivalve Larval Identification (BivLID) software 

implemented in MATLAB by C. Thompson based on algorithms used in Tiwari and 

Gallager (2003b) and Thompson et al. (2012a). Training set feature extraction and 

cross-validation were conducted before the classification of unknown images. The 

feature extraction process calculated 1,104 Gabor texture features and 9 color-angle 

features for each image. A Principle Component Analysis (PCA) was then conducted 
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using the Gabor texture features and color angles to isolate the 25 Gabor features that 

encompassed the most variability in the training set and to remove redundancy and 

noise (Zhao et al. 2010, Thompson et al. 2012a). After extracting and transforming 

features from the training set and unknown images, a Support Vector Machine (SVM) 

in BivLID was used for cross-validation and classification (Cawley 2000, 

http://theoval.cmp.uea.ac.uk/svm/toolbox/).  

A leave-one-out cross validation procedure (LOO, Fukunaga and Hummels 

1989) was run to assess performance of the training sets. This procedure left out one 

image from the training set, used features from the remaining images to classify the 

left-out image, and repeated this for all images to calculate cross validation accuracy 

for each category. Classification tests were also conducted. To classify an image, the 

SVM mapped the same features from the unknown image to the decision boundaries 

created with the training set using a one-to-one approach for each category (Lou et al. 

2003). An “other” category was created so unknown images would not be classified 

as false positives, i.e. forced into a training set category to which they were not 

closely related (Davis et al. 2004).  The output of the program indicates how many 

unknown images were classified into each training set category and the “other” 

category.   

Larval shells were measured and statistical tests were performed to compare 

shell heights. To accomplish this, a script was created in MATLAB (version R2009b, 

Mathworks Inc.) to measure the maximum axis of a masked ROI of a larval shell as a 

measure of shell height. Non parametric statistical tests were conducted because shell 

heights in all treatments were not normally distributed (Shapiro-Wilk, α = 0.05, p 
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<0.01). Shell heights of C. virginica in the high and low food treatments were paired 

by salinity and temperature treatments for an even comparison (Sokal and Rohlf 

1987). Median shell heights were not significantly different between larvae reared in 

high (95.9 m, n=177) and low (91.0 m, n=177) food treatments (Wilcoxon rank 

sum = 32750, Z = 1.39, p<0.17, n=354). Therefore images from high and low food 

treatments were pooled within each salinity and temperature treatment in further 

analyses. To determine if there was a difference in median shell heights between 

warm and cool treatments, a Wilcoxon rank sum test was employed with data pooled 

across salinity treatments. A Kruskal-Wallis one-way analysis of variance by ranks 

was used to test for differences in median shell heights between salinity treatments. 

After conducting the Kruskal-Wallis test, intergroup comparisons between salinity 

treatments were made using Mann-Whitley U tests. A Bonferroni adjustment was 

used to reduce type I error so that the p-value for significance was set to 0.008 (Bland 

and Altman 1995). The number of larvae reared in warm and cool conditions was 

similarly represented across salinity treatments and therefore did not bias larval 

growth across salinity treatments for these tests. All statistical tests were performed 

using MATLAB (version R2012a, Mathworks Inc.). 

 

Assessment 

Tests were conducted to evaluate the influence of growth conditions on the 

classification accuracy of the ShellBi method, to determine the influence of training 

set composition on classification accuracy, and to estimate misclassification rates. A 

leave-one-out (Fukunaga and Hummels 1989) cross validation resulted in high cross 
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validation classification accuracies (>90.8%) for all training sets except for a 6-

species training set (74.7%) (Table S2.2). 

The influence of growth conditions on classification accuracy 

The effect of temperature on classification accuracy of a hatchery composed 

training set was tested using two training sets that contained C. virginica reared in 

warm conditions (a 3-species training set composed of 250 images each of C. 

virginica, M. lateralis, and R. cuneata and a 4-species training set that also included 

250 images of T. plebeius). For both training sets, C. virginica larvae were reared in 

the hatchery at an average temperature of 25.9 +/- 1.5 
o
C (n=30). The other species 

were reared in our laboratory at room temperature 23.0 +/- 0.5
 o
C (n=30). The 

training sets contained images of larvae at similar age ranges (2-14 days old).   

The 3- and 4-species training sets were used to conduct four classification 

tests in which the training sets remained the same and the “unknown” images of C. 

virginica shells from the experiment were varied. The two test sets were comprised of 

images of larvae reared in 1) the warm (27.5 +/-1.0 
o
C, n=67) treatment, 2) and the 

cool (21.3 +/- 1.0 
o
C, n=48) treatment. Each of these unknown sets included images 

of larval shells grown at all salinity levels and age ranges between 2-20 days old. The 

temperatures at which larvae were reared significantly influenced growth of the two 

treatments: larvae reared in cooler treatments had shorter median shell heights (77.0 

μm, n=365) than those reared in warm conditions (88.8 μm, n=365) (Wilcoxon rank 

sum: 97903, Z=-12.7, p<0.01, n=730). The median shell height of larvae from the 

warm treatment was shorter, but not significantly, than the median shell height of the 

hatchery-reared C. virginica larvae in the training sets (114 μm, n=916) (Wilcoxon 
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rank sum: 107222, Z=-0.88, p=0.39). On average, the accuracy of ShellBi for 

identifying C. virginica reared in the warm treatment was ~20% higher than the 

accuracy for identifying C. virginica reared in the cool treatment using 3-species and 

4-species training sets (Fig. 2.2). In other words, the classification accuracy for C. 

virginica was highest when the temperature at which larvae in the unknown set were 

reared was similar to that of the training sets. 

An additional analysis was conducted to test the effect of rearing temperature 

on classification accuracy using another training set composed of larvae reared in 

cool conditions.  In this case, the training set was composed 250 images of each 

species reared in similar cool temperature conditions, C. virginica (22.3 +/- 1.2 
o
C, 

n=58), and Rangia cuneata and Mulinea lateralis (23.0 +/- 0.5
 o
C, n=30). This 

training set was used to classify C. virginica larvae from two treatments 1) warm 

(27.5 
o
C, n = 1,624) and 2) cool (21.3 

o
C, n=1,664). The accuracy for identifying 

larvae from the cool treatment was 25% higher (91.0%) than the classification 

accuracy for larvae from warm treatment (66.0%) (Fig. 2.2). Because shell heights 

differed between larvae grown in warm and cool conditions and because of the strong 

influence of temperature on classification accuracies, it is concluded that differences 

in temperature-dependent growth conditions between training sets and unknown sets 

influence the classification accuracy of the ShellBi method.    

In addition to temperature, the effect of salinity on classification accuracy was 

tested using 3-species training sets composed of C. virginica, R. cuneata and I. 

recurvum. The C. virginica used in the training sets and for the unknown sets were 

reared in the experiment at four salinities (10.3, 14.1, 14.4 and 20.5) and were pooled 
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across temperatures. The images of C. virginica reared at the four salinities were used 

to create four different 3-species training sets. In addition to 250 images of C. 

virginica, each training set also had 250 images of R. cuneata and I. recurvum (reared 

in a salinity of 11.3). Each of the four training sets were then used to classify four 

unknown sets of 250 different C. virginica images from each of the three other 

salinity treatments. For example, the training set with C. virginica larvae raised in 

salinity of 10.3 was used to classify larvae from the three other treatments (14.1, 14.4, 

and 20.5). A total of 12 tests were conducted. High classification accuracies (>95%) 

occurred when training sets with larvae from low salinity treatments (10.3, 14.1, and 

14.4) were used to identify “unknown” C. virginica larvae reared in the same low 

salinity treatments (Fig. 2.3). Accuracy dropped by 10% when these training sets 

were used to classify larvae raised in the higher salinity treatment (20.5) (Fig. 2.3). 

Training sets with larvae raised in the high salinity treatment (20.5) classified 

“unknown” larvae from the three lower salinity treatments with >95% accuracy. 

Shell height increased with increasing salinity. Median shell heights in 

treatments (n=250 for each treatment) with salinities of 10.3, 14.1, 14.4 and 20.5 were 

76.1 μm, 80.0 μm, 83.9 μm, and 98.3 μm, respectively. Shell heights were 

significantly different between the four treatments (Kruskal-Wallis test, df=999, 

p<0.01).  Post-hoc pairwise comparisons were made using Mann-Whitney U tests.  

Salinity treatments were significantly different (p<0.008, df=499), except for salinity 

treatments 14.1 and 14.4 (p=0.13, df = 499).  Based on this and the results of the 

classification tests above, it is concluded that large (10 unit) differences in salinity-
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dependent growth conditions between training sets and unknown sets influence the 

classification accuracy of ShellBi.    

The influence of training set composition on classification accuracy 

Three tests were conducted to determine if the composition of images in a 

training set influenced classification accuracy. (1) The first examined how changing 

the larval stage (D-stage versus veliger) within the C. virginica portion of the training 

set altered classification accuracy. (2) The second test was designed to identify how 

the number of categories in a training set influenced classification accuracy. (3) A 

third test was conducted to determine if increasing variation of growth conditions of 

larvae in the C. virginica portion of the training set affected classification accuracy. 

 (1) Larval images were broken down into two groups 1) D-stage larvae 

(comprised of larvae between 2-3 days old), and 2) veliger larvae (comprised of 

larvae between 6-20 days old). Two training sets composed of C. virginica, M. 

lateralis and T. plebeius were created. All training sets contained the same images of 

M. lateralis and T. plebeius. Images in the C. virginica category were varied to form 

the two training sets that were comprised of 1) images of D-stage larvae raised in the 

hatchery, and 2) images of veliger larvae raised in the hatchery. These training sets 

were used to classify unknown sets that were comprised of C. virginica images of 1) 

D-stage larvae from the hatchery, 2) D-stage larvae from the experiment, 3) veliger 

larvae from the hatchery, and 4) veliger larvae from the experiment. Results indicate 

that training sets containing images of D-stage C. virginica larvae classified 

“unknown” D-stage and “unknown” C. virginica veliger images with high accuracies 

(>98%). Training sets comprised of images of C. virginica veliger larvae and used to 
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classify “unknown” D-stage C. virginica images had low accuracies (<29%). Based 

on these results, it is concluded that a training set should contain images of both D-

stage and veliger larvae. 

(2) Classification tests were conducted using training sets with various 

numbers of categories and the same set of unknown larvae. Images of C. virginica, I. 

recurvum, T. plebeius, R. cuneata, M. lateralis and M. leucophaeata larvae were used 

to create nine 3-species training sets, seven 4-species training sets, five 5-species 

training sets and one 6-species training set. These training sets were used to classify 

one unknown set comprised of C. virginica larvae from the warm and cool treatments 

of the experiment (n=998). Results comparing the number of categories in a training 

set indicated that mean accuracies were 82% for 3-species categories (n=9), 75% for 

4-species categories (n=7), 70% for 5-species categories (n=5), and 67% for 6-species 

categories (n=1) (Table 2.2). When the number of training set categories increased 

from 3 to 6, the accuracy of ShellBi dropped on average by 17% (Fig. 2.4). Within 

the 3-, 4-, and 5-species category training sets, classification accuracies varied by as 

much as 30% depending on which species combinations were used for each training 

set (Table 2.2). When the 6 species training set was grouped into a 3-category training 

set based on taxonomic order [1: Ostreoida, oysters (C. virginica), 2: Veneroida, 

clams (M. lateralis, M. leucophaeata, R. cuneata, T. plebeius), 3: Mytiloida, mussels 

(I. recurvum)], classification accuracy improved compared to the 6-species training 

set, from 66.8% to 87.8%. Therefore the number of categories in a training set and the 

species composition within them are important factors that affect the classification 

accuracy of C. virginica using the ShellBi approach.  
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(3) Four training sets composed of C. virginica, M. lateralis and T. plebeius 

(250 images for each species) were created. All training sets contained the same (250) 

images of M. lateralis and T. plebeius. Images in the C. virginica category were 

varied to form the four different training sets, which were comprised of images of 

larvae raised:  1) in the hatchery in 2009, 2) in the hatchery in 2009 and 2010, 3) in 

the hatchery in 2009, 2010, and 2011, and 4) in the hatchery in 2009, 2010, and 2011 

and images of C. virginica larvae from the warm and cool treatments of the 

experiment (Tables S2.2 and S2.3). The mean temperature and salinity at which the 

larvae were raised in each training set were 1) 25.4 
o
C +/- 1.6 and 10.6 +/- 0.4 (n=30), 

2) 26.6 
o
C +/- 2.3 and 11.2 +/- 0.4 (n=60), 3) 25.9 

o
C +/- 1.1 and 9.1 +/- 0.2 (n=90), 

and 4) 25.3
 o
C +/- 2.3 and 13.2 +/- 0.4 (n=153), respectively. These training sets were 

used to classify the same unknown set which was composed of images of C. virginica 

from the warm and cool treatments of the experiment (n=424). Results indicate that as 

the variation in growth conditions increased within the C. virginica portion of the 

training set, classification accuracies increased from 76.7% to 98.5% (Table 2.3). In a 

second test, a 6-species training set and the 3-category training set based on 

taxonomic order (Ostreoida, Veneroida, Mytiloida) were used, with some (n=100) of 

the C. virginica images replaced with those from the warm and cool treatments. 

These training sets were employed to classify the same unknown set used in the test 

in the previous experiment, which was composed of other images of C. virginica 

from the warm and cool treatment of the experiment (n=424). When larvae from the 

experiment were added to the C. virginica portion of the training set, classification 

accuracy with the 6-category training set improved from 66.8% to 97.1%. 
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Classification accuracies with the 3-category training set were slightly higher than 

those with the 6-category training set, improving from 87.8% to 98.3% when images 

of larvae from the experiment were included in the training set. Based on these 

findings, it is recommended that the images of larvae used to create training sets be 

representative of the growth conditions of larvae in need of identification, especially 

in terms of temperature and salinity. 

Estimating misclassification rates 

Classification tests were performed to determine how well the ShellBi method 

could identify the target species C. virginica given various proportions in a sample. 

Two training sets were used: a 6-species training set composed of 250 images each of 

C. virginica, M. lateralis, T. plebeius, R. cuneata, M. leucophaeata, and I. recurvum 

larvae, and a 3-category order-based training set, using the same 6 species categorized 

by taxonomic order [1: Ostreoida, oysters (C. virginica), 2: Veneroida, clams (M. 

lateralis, M. leucophaeata, R. cuneata, T. plebeius), 3: Mytiloida, mussels (I. 

recurvum)].  Both training sets contained images of larvae from warm and cool 

treatments of the experiment to ensure wide variation in growth conditions within the 

training sets (Tables S2.2, S2.3). Three different groups of unknown sets were 

classified: 1) C. virginica, T. plebeius, and M. lateralis, 2) C. virginica, T. plebeius, 

and I. recurvum, and 3) C. virginica, R. cuneata, and M. lateralis. Each group 

contained 7 sets of 100 images of “unknown” larvae in which the percentage of 

images of C. virginica varied (2, 10, 25, 33, 50, 75, and 90%), with the remaining 

percentages comprised of equal number of images of two other species. Indices of 

classifier performance were calculated based on the actual number of C. virginica 
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images and on true positives, false positives, and false negatives for C. virginica. A 

true positive occurs when an image of C. virginica is classified as C. virginica. A 

false positive occurs when an image of a species other than C. virginica is classified 

as C. virginica. A false negative occurs when an image of C. virginica is 

misclassified as any other species. Probability of detection (i.e. the probability that 

the classifier will identify images correctly, PD  = true positive counts / (true positive 

counts + false negative counts) (Hu and Davis 2006)), specificity (i.e. the probability 

that the classifier’s prediction is correct for each category, SP = true positive counts / 

(true positive counts + false positive counts) (Baldi and Brunak 2001)), and the ratios 

of false positives and false negatives to the actual number of C. virginica images (e.g. 

if a sample had 2 images of C. virginica and 4 images of mussels were classified as 

C. virginica, then the false positive ratio would be 4:2 or 2.0) were calculated. All 

indices of classifier performance (PD, SP, false positive and false negative ratios) were 

calculated for the 3-category and 6-species training sets which were applied to each 

of the unknown groups.  

Use of the order-based training set resulted in a similar number of 

misclassifications as the 6-species training set, except when the proportion of images 

of C. virginica in a sample was very low (Fig. 2.5). The probability of detection (PD) 

was generally equal or higher for classifications by the order-based training set than 

for the 6-species training set except when the proportion of images of C. virginica 

comprised 2% of the sample (Fig. 5A). Specificity increased for both training sets as 

the proportion of images of C. virginica in a sample increased, with the 6-species 

training set performing slightly better when the number of C. virginica was high (Fig. 
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2.5B).  False negative ratios did not exceed 0.33 except for the order-based training 

set when it was used to classify low percentages of C. virginica (2%) (Fig. 2.5C).  

The ratio of false positives to actual numbers was higher with the order-based training 

set when there were relatively few images of C. virginica in a sample (Fig. 2.5D), but 

this corresponded to a low number of misclassified images (3-8).  These metrics show 

that higher proportions of C. virginica in a sample will result in greater classification 

accuracy, particularly with the order-based training set. 

The highest number of false positive and false negative misclassifications 

from each training set was used to construct confidence intervals that depict the 

misclassifications that can be expected for different proportions of C. virginica in a 

sample (Fig. 2.6).  The actual C. virginica images present plus the highest number of 

false positives was used to construct the upper line of the interval and the actual C. 

virginica minus the highest number of false negatives was used to construct the lower 

line of the interval. The confidence interval for the 6-species training set varied from 

<5% error at low percentages (2% C. virginica larvae) to <21% error at higher 

percentages (90% C. virginica larvae). The higher misclassifications at higher 

percentages are a result of more C. virginica being classified as other bivalves (i.e., 

false negatives) (Fig. 2.6).  The confidence interval for the 3-category order-based 

training set varied from <1% error at low percentages (2% C. virginica larvae) to 

<22% error at medium percentages (33% C. virginica larvae) to <11% at the highest 

percentages (90% C. virginica larvae). The highest error for the 3-category order-

based training set is a combined effect of increased false positives and false negatives 

in the middle ranges (33% C. virginica). Based on these results, it is expected that 
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misclassification rates will be within 5 to 21% for the 6-species training set and 

within 1 to 22% for the 3-category order-based training set depending on the 

proportion of C. virginica in a given sample. 

 

Discussion 

Our evaluation shows that the ShellBi technique can be applied with success 

to distinguish C. virginica larvae from the larvae of other bivalve species that are 

found in the Choptank River, indicating that this approach has application to different 

species and systems than the one in which it was developed (Waquoit Bay). Results 

indicate that 1) classification accuracies can increase by as much as 30% when 

training sets include images of larvae grown in conditions similar to those that are 

being classified, 2) accuracies can increase by 69% when larvae of different stages 

(both D-stage and veligers) are included in training sets, and 3) average accuracies are 

15% higher when the number of categories within a training set is three compared to 

six. Although the first two points are novel and specific to this method, the third point 

has been shown in other image processing methods that are used to identify plankton 

(Davis et al. 2004, Grosjean et al. 2004). Finally, misclassification rates were 

estimated for our target species C. virginica, which suggest that this technique can be 

applied with error rates from 1-22% when proportions of the target organisms in the 

sample range from 2 to 90% (Fig. 2.6). Results indicate that further methods 

development aimed at reducing false positive and negative classification rates is a 

priority. 
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 Differences in growth conditions based on salinity and temperature influenced 

median shell heights as well as the accuracy of classifying C. virginica. Higher 

temperatures and salinities correspond to faster growth in C. virginica (Kennedy et al. 

1996) and influence growth in other bivalve larvae (Chanley 1970, Sundberg and 

Kennedy 1992). Shell heights of C. virginica in warm treatments were larger than 

those in cool treatments, but were shorter than those of hatchery-reared larvae grown 

at similar warm temperatures. This could be due to the lower assortment of algae fed 

to the experimental treatments compared to the diet of hatchery C. virginica 

(Langdon and Newell 1996). Regardless of the cause of variation, our results indicate 

that using images in training sets of larvae that were grown in similar conditions as 

the unknown sets resulted in higher classification accuracies. This suggests that 

differences in growth conditions may influence the formation of the shells of bivalve 

larvae, and hence alter birefringence patterns and classification accuracies. However, 

potential changes in shell structure and birefringence patterns under different growth 

conditions warrants further investigation.  

The number of categories in a training set and the composition of species in a 

training set altered the classification accuracy of C. virginica. As the number of 

training set categories increased from 3 to 6, the average accuracy dropped by ~15%, 

which is consistent with previous studies (Davis et al. 2004, Grosjean et al. 2004, 

Thompson et al. 2012a). A training set in which 6 species were grouped into 3 

categories based on taxonomic order increased classification accuracy of C. virginica 

from 66.8 to 87.8%. These findings suggest that ShellBi would perform well in 

systems with low numbers of bivalve species in the plankton at any given time (e.g., a 
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system in which 3 species spawn during spring) or in systems where non-target 

species can be aggregated into a few (≤ 3) categories.  

The composition of the training set was also important. When used to identify 

the same unknown set, a training set composed of C. virginica, R. cuneata, and T. 

plebeius had 69.5% accuracy, while one of C. virginica, M. leucophaeata, and I. 

recurvum had 99.8% accuracy (Table 2.2). This may be explained, to some degree, 

because smaller C. virginica appear to have similar colors as later stage T. plebeius 

(Fig. 2.1). This suggests that some species of bivalves at different stages may have 

birefringence patterns that are similar, resulting in lower classification accuracies, 

while others have patterns that are more distinct, resulting in higher classification 

accuracies. Although further investigation is needed to determine how shell patterns 

compare between species throughout development and influence classification 

accuracies, grouping similar species into a small number of categories can help 

improve classification accuracies and could be optimized through a machine learning 

technique (Fernandes et al. 2009).   

The confidence range for misclassifications that can be expected for different 

proportions of C. virginica in a sample may be a conservative estimate. The training 

sets used in this study were balanced (contain equal numbers of images in each 

species category) and the SVM classifier assumes that the unknown set contains equal 

representations of each category (Provost 2000, Lin et al. 2002), but the proportion of 

C. virginica in our unknown sets was varied.  Adjusting the cost function (C 

parameter) of an SVM can help avoid false positives (Sun et al. 2007) and could 

result in narrower confidence intervals. Future directions to improve ShellBi include 
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adjusting the cost function given different percentages of target species (C. virginica) 

in a sample.  

Although the initial set up of ShellBi requires time and effort, ShellBi is the 

fastest way to both identify and measure different species of bivalve larvae to date 

once training sets are established. Microscope techniques require a significant time 

investment while many molecular techniques require time and expense to set up 

primer or antibody designs or to sequence adult DNA (Garland and Zimmer 2002, 

Hendriks et al. 2005). When compared with multiplex PCR, ShellBi is less expensive 

and time consuming for bivalve larvae because individual larvae do not have to be 

isolated (Thompson et al. 2012a). Although quantitative PCR can provide some 

insight into the quantity of bivalve larvae, it does not provide information on the sizes 

of those larvae, which ShellBi does. Another promising technique is fluorescence in 

situ hybridization with DNA probes (Henzler et al. 2010), but the costs are currently 

prohibitive for large sampling efforts. 

Results of this study suggest that ShellBi has broad applicability for the study 

of size-specific changes in the distribution and abundance of bivalve larvae in 

estuarine and marine systems.  ShellBi has been used successfully to identify larvae 

in Waquoit Bay (Thompson et al. 2012b) and is being used to help enhance current 

understanding of C.virginica larval dispersal and connectivity in the Choptank River 

(Goodwin, unpublished data). This technique could be applied to other ecologically 

and economically important bivalves, both in the laboratory with samples collected 

from sediment-laden estuaries or in flow-through systems for underway identification 

of early stage bivalves in marine waters (the tissues of early-stage larvae do not 
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impede resolving birefringent patterns allowing flow-through imaging under field 

conditions) (S. Gallager, pers. comm.). Furthermore, ShellBi may provide insight into 

the dynamics of other calcareous organisms with shells that show birefringent 

patterns under polarized light (e.g., pteropods, Goodwin, pers. observation). Finally, 

because this image-based approach has the potential to be fully automated, it has 

promise to radically expand our knowledge of the dynamics of bivalve larvae via in 

situ monitoring platforms and gliders.    

 

Comments and recommendations 

Based on the experiments carried out in this study, several improvements are 

recommended for future applications and research. The first is to establish training 

sets with several ages of bivalve larvae reared in a range of environmental conditions 

similar to the system of study. In addition, we recommend the use of the fewest 

number of categories in a training set as possible. We found that a 3-category training 

set based on taxonomic order was slightly more accurate at classifying oyster larvae 

than a 6-category training set in which each category represented a separate species. It 

is possible that the species grouped by order (e.g., clam larvae) could be distinguished 

with a second classification test using categories that correspond to species (e.g., R. 

cuneata, T. plebeius, M. lateralis, M. leucophaeata).  

Another recommendation is to ensure that the microscope and camera image 

capture settings are configured so that the background color in all images is uniform 

for both training and unknown sets. Thompson et al. (2012a) found that training sets 

created with different microscope settings were not compatible.  We found that major 
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background color differences could negatively affect classification accuracies (results 

not shown), but that minor background color differences (see Fig. 2.1) for tests 

conducted in this manuscript did not result in in poor classification accuracies. To 

avoid major background color variations, we recommend against using metal brackets 

for polarizers or full wave compensation plates when they are near the light source of 

the microscope. Changes in temperature due to heating by the light source can lead to 

large differences in the background color of images when using metal housings. A 

non-metal or plastic housing for a polarizer or wave compensation plate near the light 

source offers more stable conditions that provide similar background colors between 

images. 

The next step for improving the ShellBi method is to increase the speed of 

image acquisition, ROI extraction, and classification. For the tests presented here, the 

microscope stage was moved manually or with a joystick attached to an automated 

stage before an image was taken. A person can image about 100 larval shells per hour 

with this approach.  Currently, efforts toward automation have been made using an 

automated camera and stage system that will automatically image an entire slide in 46 

minutes (regardless of the number of shells per slide). With this system, 50% of the 

larvae in a field sample are being imaged in 46 minutes (half of two slides) which is 

faster and more likely to detect rare species than manual identification which most 

often relies on subsamples much smaller than half of the sample.  In addition, efforts 

are underway to automate post processing of the bivalve images with automatic ROI 

detection, ROI cropping, and classification steps, with care taken to assess and 

minimize errors that can be introduced by subsampling and automation of image 
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analysis (Bachiller et al. 2012). As these enhancements improve how we apply the 

ShellBi method, so will our ability to rapidly process samples and to conduct field 

studies with greater spatial and temporal resolution, thereby increasing our 

understanding of the occurrence and patterns in the presence of bivalve larvae in the 

field. 
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Tables and Figures 

Table 2.1. Spawning conditions for six species of bivalves that are found in the 

mesohaline region of the Choptank River. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific 

name 

 

Temperature Salinity Season 

Ischadium 

recurvum 

25-30 
 o
C (Chanley 

1970) 20 (Chanley 1970) June-Nov (Chanley 1970) 

Rangia 

cuneata 

30
 o
C (Sundberg and 

Kennedy 1992) <15 (Sundberg and 

Kennedy 1992) 

late spring to early fall 

(Sundberg and Kennedy 

1993) 

Mytilopsis 

leucophaeat

a 

30
 o
C (Kennedy 

2011b) 0.5-18 (Kennedy 

2011b) 

Summer to fall (Kennedy 

2011a) 

Tagelus 

plebeius 

30-32
 o
C (Chanley  

and Castagna 1971) 

10-30 (Chanley 

and Castagna 

1971) 

June-Nov (Chanley and 

Castagna 1971) 

Mulinia 

lateralis 

28-30
 o
C (Calabrese 

and Rhodes 1974) 

20-30  (Calabrese 

and Rhodes 1974) May-Oct (Calabrese 1969) 

Crassostrea 

virginica 

28-30
 o
C (Kennedy 

et al. 1996) 

12-27 (Kennedy et 

al. 1996) 

Summer to fall (Kennedy 

1996) 
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Table 2.2. Percent classification accuracy of unknown C. virginica larvae from 

experiments (n = 3,288) using training sets with different numbers and compositions 

of species. Training sets of 3-, 4-, 5-, and 6-species categories were comprised of C. 

virginica (CV), R. cuneata (RC), T. plebeius (TG), I. recurvum (IR), M. lateralis 

(ML), and/or M. leucophaeata (DF). 250 images were used for each category.  

*Denotes that images of C. virginica larvae grown in different temperature and 

salinity treatments were added to the C. virginica training set category (Table S3).  

Training set  

Percent 

classification 

accuracy  

Number of 

images in 

training set 

CV, RC, TG 69.5 750 

CV, RC, IR 72.1 750 

CV, ML, IR 82.1 750 

CV, DF, RC 72.1 750 

CV, DF, IR 99.8 750 

CV, DF, TG 96.9 750 

CV, IR, TG 97.1 750 

CV, TG, ML 79.5 750 

CV, ML, RC 71.8 750 

CV, RC, TG, ML 66.7 1000 

CV, RC, IR, ML 69.1 1000 

CV, RC, IR, DF 72.2 1000 

CV, DF, TG, IR 96.9 1000 

CV, RC, DF, ML 69.2 1000 

CV, DF, TG, ML 79.7 1000 

CV, RC, TG, IR 69.5 1000 

CV, RC, IR, TG, ML 66.6 1250 

CV, RC, IR, TG, DF 69.6 1250 

CV, RC, IR, ML, DF 69.3 1250 

CV, RC, TG, ML, DF 66.8 1250 

CV, IR, TG, ML, DF 79.6 1250 

CV, RC, IR, TG, ML, DF 66.8 1500 

CV*,RC, IR, TG, ML, DF 97.1 1500 

order-based: (CV), (IR), (RC, TG, ML, DF) 87.8 750  

order-based: (CV*), (IR), (RC, TG, ML, DF) 98.3 750 
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Table 2.3. Percent classification  accuracy using four training sets to identify 

“unknown” C. virginica larvae that were raised in the experiment. The training sets 

were composed images of M. lateralis, T. plebeius and C. virginica, the latter of 

which were varied to incorporate larvae grown in different conditions: 1) in the 

hatchery in 2009 (CV-2009), 2) in the hatchery in 2009 and 2010 (CV-2009-2010), 3) 

in the hatchery in 2009, 2010, and 2011 (CV-2009-2010-2011) and 4) in the hatchery 

in 2009, 2010, and 2011, and in the temperature-controlled experiment (CV-2009-

2010-2011-exp).  

 

 

 

 

Training Set Percent accuracy 

CV-2009 76.7 

CV-2009-2010 76.8 

CV-2009-2010-2011 84.7 

CV-2009-2010-2011-exp 98.5 
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Fig. 2.2. Images under polarized light of the shells of six species of bivalve larvae 

used in the analysis ranging from early-stage veliger (top row, 2-4 days old) to late 

stage veliger (bottom row, 8-14 days old). Species pictured are Mulinia lateralis 

(ML), Crassostrea virginica (CV), Mytilopsis leucophaeata (DF), Rangia cuneata 

(RC), Tagelus plebeius (TG), and Ischadium recurvum (IR).Sizes of larvae range 

from 72-88 μm (top row), 95-155 μm (middle row), and 157-246 μm (bottom row).  
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Fig. 2.2. Classification accuracy for C. virginica using two 3-species training sets (C. 

virginica, M. lateralis, and R. cuneata) and one 4-species training set (C. virginica, 

M. lateralis, R. cuneata, and T. plebeius).  Images of shells of C. virginica were 

reared at 25.9 
o
C for ‘warm’ training sets and at 23.3 

o
C for the ‘cool’ training set.  

All three training sets were used to classify shells of C. virginica from warm (darker 

bars) and cool (lighter bars) treatments.  
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Fig. 2.3. Classification accuracies for shells of “unknown” C. virginica larvae raised 

in four different salinities (10.3, 14.1, 14.4, and 20.5) when classified with training 

sets composed of R. cuneata, I. recurvum and C. virginica larvae, the latter of which 

were raised in the same four salinities.  Numbers under each bar represent the salinity 

at which C. virginica were reared in the training set (upper number) and in the 

unknown set (lower number). Lighter bars indicate training sets reared at the first 

three lower salinities used to classify the high salinity treatment (20.5).  
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Fig. 2.4. Percent classification accuracy of ShellBi when classifying images of C. 

virginica shells using training sets with different numbers of species categories (see 

Table 2.2 for details).  Training sets of 3-, 4-, 5-, and 6-species categories were 

comprised of hatchery-reared C. virginica, and the following species reared in the 

laboratory: I. recurvum, M. lateralis, M. leucophaeata, T. plebeius, and R. cuneata. .  

Diamonds represent training sets, each with a different set of species comprising the 

categories in the training set. 
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Fig. 2.5. Misclassification metrics versus the proportion of C. virginia (CV) images in 

a sample: A) probability of detection (PD), B) specificity (SP), C) the ratio of false 

positives to actual C. virginica images, and D) the ratio of false negatives to actual C. 

virginica images. For all panels, two training sets were used to classify three groups 

of unknown larvae in different proportions. A 6-species training set (6-spec, solid 

lines) was composed of six categories, each for a separate species: C. virginica, I. 

recurvum, M. lateralis, M. leucophaeata R. cuneata, and T. plebeius).  A second 

training set (order-based, dotted lines) contained images of these species grouped by 

order (clams: M. lateralis, M. leucophaeata, R. cuneata, T. plebeius; oyster: C. 

virginica, mussel: I. recurvum). These training sets were used to classify three 

different groups of images of ”unknown” larvae: 1) C. virginica, T. plebeius, and M. 

lateralis (CV, TG, ML), 2) C. virginica, T. plebieus, and I. recurvum (CV, TG, IR), 

and 3) C. virginica, R. cuneata, and M. lateralis (CV, RC, ML). Each group 

contained “unknown” sets of images in which the percentage of C. virginica in the set 

ranged from 2 to 90%.  
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Fig. 2.6. Classification confidence intervals for the 6-species (no fill with solid gray 

line) and order-based (gray shading with dashed gray line) training sets. Confidence 

intervals were constructed around the correct percentage of C. virginica classified in a 

sample (solid line with triangles) using the highest number of false positives and false 

negatives from tests summarized in Fig. 5. False positives were added to the correct 

number of C. virginica images to construct the top lines and false negatives were 

subtracted from the correct number of C. virginica images to construct the bottom 

lines.  The closer the gray lines are to the black line, the smaller the classification 

error, which ranged from 5-21% for the 6-species training set and from 1-22% for the 

3-category order-based training set. 
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Supplementary tables 

Table S2.1.  Results of classification tests designed to determine if fixative type 

(ethanol vs. formalin) influenced the classification accuracy of the ShellBi method. 

All fixatives for training sets and ‘unknowns’ were buffered with sodium borate. 

Training sets were composed of 250 images of the following species: Crassostrea 

virginica, Ischadium recurvum, Mytilopsis leucophaeata and Rangia cuneata. Images 

of larvae in the training sets that were stored in either ethanol or formalin were used 

to classify images of M. leucophaeata that had been stored in either ethanol or 

formalin. Treatments denoted “ethanol & formalin” are composed of 100 images of 

M. leucophaeata that were stored in ethanol and 100 images of M. leucophaeata that 

were stored in formalin. The M. leucophaeata larvae were taken from the same cohort 

and stored in formalin or ethanol for an equal amount of time (11 months).  All 

training sets had classification accuracies >95%.  Slightly lower accuracies were 

reported when training sets included images of shells stored in formalin (95-96%) 

compared to those stored in ethanol (97-98%). Based on the high classification 

accuracies for shells stored in both types of fixatives, it is concluded that the fixative 

used does not interfere with the ability of ShellBi to classify larvae. 

Test 

Number 

Fixative of training 

set 

Fixative of unknown 

set 

Percent 

classification 

accuracy 

1 ethanol ethanol 98.1 

2 ethanol formalin 95.2 

3 ethanol ethanol & formalin 97.3 

4 formalin ethanol 98.3 

5 formalin formalin 95.8 

6 formalin ethanol & formalin 96.1 

7 ethanol & formalin ethanol 97.1 

8 ethanol & formalin formalin 94.9 

9 ethanol & formalin ethanol & formalin 96.7 
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Table S2.2. Leave one-out (LOO) cross validation accuracy of training sets for 

classifying C. virginica.  The first column lists the analysis in which the training set 

was applied.  The second column gives the two letter code of each species used in the 

training set (CV: Crassostrea virginica, RC: Rangia cuneata, ML: Mulinia lateralis, 

TG: Tagelus plebeius, IR: Ischadium recurvum, and DF: Mytilopsis leucophaeata). 

The third column lists the number of images in each training set. The fourth column 

gives the LOO percent accuracy for classifying C. virginica. *Denotes that images of 

C. virginica larvae grown in different temperature and salinity treatments were added 

to the C. virginica training set category (Table S2.3). 

Analysis Training set 

Number of 

images 

 

Percent cross 

validation 

accuracy 

    

Temperature    

26.4 (hatchery 3-species) CV, RC, ML 750 98.1 

26.4 (hatchery 4-species) CV, RC, ML, TG 1000 98.9 

 22.3 (cool Exp) CV, RC, ML 750 97.1 

    

Salinity      

10.3 CV, IR, RC 750 98.8 

14.1 CV, IR, RC 750 99.6 

14.3 CV, IR, RC 750 99.6 

20.5 CV, IR, RC 750 99.2 

       

Variation in growth 

conditions   

 

  

RC, ML, CV-2009 CV, RC, ML 750 99.6 

RC, ML, CV-2009-2010 CV, RC, ML 750 98.5 

RC, ML, CV-2009-2010-

2011 CV, RC, ML 

750 

98.1 

RC,ML,CV-2009-2010-

2011-exp CV, RC, ML 

750 

96.7 

       

Larval stage      

Veliger CV, ML, TG 750 99.0 

D-stage CV, ML, TG 750 96.4 

       

Training set 

composition   

 

  

3-species CV, RC, TG 750 95.6 

3-species CV, IR, RC 750 95.7 

3-species CV, ML, IR 750 92.4 

3-species CV, DF, RC 750 98.8 

3-species CV, DF, IR 750 95.6 
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3-species CV, DF, TG 750 97.2 

3-species CV, IR, TG 750 94.8 

3-species CV, TG, ML 750 95.2 

3-species CV, ML, RC 750 98.1 

4-species CV, RC, TG, ML 1000 92.4 

4-species CV, RC, IR, ML 1000 92.4 

4-species CV, RC, IR, DF 1000 94.0 

4-species CV, DF, TG, IR 1000 94.0 

4-species CV, RC, DF, ML 1000 97.2 

4-species CV, DF, TG, ML 1000 94.0 

4-species CV, RC, TG, IR 1000 94.0 

5-species 

CV, RC, IR, TG, 

ML 

1250 

90.8 

5-species 

CV, RC, IR, TG, 

DF 

1250 

92.8 

5-species 

CV, RC, IR, ML, 

DF 

1250 

91.6 

5-species 

CV, RC, TG, ML, 

DF 

1250 

95.6 

5-species 

CV, IR, TG, ML, 

DF 

1250 

90.8 

6-species 

CV, RC, IR, TG, 

ML, DF 

1500 

74.7 

6-species 

CV*, RC, IR, TG, 

ML, DF 

1500 

92.1 

3-category order-based 

(clams, oysters, mussels) 

(CV), (IR), (RC, 

ML, DF,TG) 

 

750 90.7 

3-category order-based 

(clams, oysters, mussels) 

(CV*), (IR), (RC, 

ML, DF,TG) 

 

750 98.9 
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Table S2.3. The number of images of C. virginica larvae that grown in different 

temperature and salinity treatments which were added to the C. virginica training set 

category denoted by CV* in Tables 2.2 and S2.2. Mean, standard deviation, and 

sample size for temperature and salinity measurements are reported.  

Source Temperature Salinity  
Number 

of images 

Experimental chamber  27.9 +/- 0.7 (n=12)   10.3 +/- 0.7 (n=25) 8 

Experimental chamber 27.7 +/- 0.6 (n=17)    14.1 +/- 0.6 (n=32)  27 

Experimental chamber 27.5 +/- 0.6 (n=15)    14.4 +/- 0.7 (n=30)  12 

Experimental chamber 27.6 +/- 0.6 (n=20)     20.5 +/- 1.0 (n=50)  20 

Experimental chamber 21.1 +/- 1.0 (n=13)   10.3 +/- 0.7 (n=25) 19 

Experimental chamber 20.9 +/- 1.0 (n=15)   14.1 +/- 0.6 (n=32)  34 

Experimental chamber  21.4 +/- 1.0 (n=15)   14.4 +/- 0.7 (n=30)  6 

Experimental chamber 22.7 +/- 1.0 (n=16)   20.5 +/- 1.0 (n=50)  19 

Hatchery 25.9 +/- 1.0 (n=30)   10.3 +/- 0.9 (n=30) 105 

TOTAL 
 

   250 
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Chapter 3: Improving a semi-automated classification technique 

for bivalve larvae: automated image acquisition and measures of 

quality control  
 

Abstract 

Bivalve larvae are small (50-400 m) and difficult to identify using standard 

microscopy, thus limiting inferences from samples collected in the field. With the 

advent of ShellBi, an image analysis technique, accurate identification of bivalve 

larvae is now possible but rapid image acquisition and processing remains a 

challenge. The objectives of this research were to 1) develop a benchtop automated 

image acquisition system for use with ShellBi, 2) evaluate the system, and 3) create a 

protocol that would maintain high classification accuracies for bivalve larvae. These 

improvements decreased image acquisition time from 2-13 hr to 46 min per slide. 

This system was used to capture images of three species of bivalve larvae at three 

magnifications (7x, 21x, and 41x). Classification accuracies were highest, and image 

acquisition time was shortest (46 min), at the lowest (7x) magnification. Quality 

control tests indicated that classification accuracies were sensitive to camera and light 

source settings and that measuring changes in light source and color channel 

intensities over time was an important part of quality control during routine 

operations. Validation experiments indicated that under proper settings, automated 

image acquisition coupled with ShellBi could rapidly classify C. virginica larvae with 

high accuracies (80-93%). Results suggest that this automated image acquisition 

system coupled with ShellBi can be used to rapidly image plankton samples and 

classify bivalve larvae allowing for expanded capability to understand bivalve larval 
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ecology in the field. Additionally, the automated system has application for rapidly 

imaging other planktonic organisms at high magnification.  

 

Introduction 

Populations of ecologically and commercially important shellfish have a 

transient planktonic larval stage and sessile juvenile and adult phases (Kennedy 

1996). However, little is known about the planktonic stage of larvae although it 

influences the recruitment patterns of a population (Gaines and Roughgarden 1985, 

Kennedy 1996). Discerning patterns in abundance and changes in distributions of 

planktonic bivalve larvae requires a large number of samples over space and time 

(Steele 1989, Wiens 1989). Recently, semi-automated plankton imaging techniques 

have been developed to expand the spatial and temporal scales of sampling (Grosjean 

et al. 2004, Benfield et al. 2007, Macleod et al. 2010, Thompson et al. 2012), with 

both in situ (e.g., Video Plankton Recorder (Davis et al. 1996), ISIIS (Cowen and 

Guigand 2008)) and benchtop (e.g., Zooscan (Gorsky et al. 2010) approaches. 

However, these techniques do not identify bivalve larvae to the species level. One 

semi-automated imaging technique called ShellBi uses machine learning to identify 

images of bivalve larvae taken under polarized light (Twari & Gallager 2003, 

Thompson et al. 2012, Goodwin et al. 2014). However, the acquisition of those 

images is still completed manually and can take up to 12 hours per sample 

(Thompson et al. 2012, Goodwin et al. 2014). Therefore, a more rapid benchtop 

approach for image acquisition of bivalve larvae is needed to decrease processing 

time for samples collected from turbid waters like estuaries where flow-through in 
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situ technologies are not effective. The objective of this research was to develop and 

test such an approach.  

 Traditional methods of identifying bivalve larvae focus on hinge structures or 

other morphological cues (Chanley and Andrews 1971, Lutz et al. 1982). These 

methods often require experts, intensive labor, and are subject to a degree of 

individual subjectivity (Garland and Zimmer 2002). More recent genetic-based 

methods include polymerase chain reaction (PCR) (Hare et al. 2000, Garland and 

Zimmer 2002, Larsen et al. 2005). However, these methods are still susceptible to 

misclassification and are often time consuming or expensive (Laresn et al. 2005, 

Thompson et al. 2012). Furthermore, many genetic-based methods must meet the 

challenge of designing primers to discriminate between sequences at the species level 

while retaining insensitivity to polymorphism (which creates false negative results) 

within the target species (Hare et al. 2000). Another recent genetic-based method 

utilizes fluorescence in situ hybridization (FISH), but this method is still susceptible 

to problems encountered when using DNA probes (Henzler et al. 2010). More pros 

and cons of bivalve identification methods are reviewed in Garland and Zimmer 

(2002) and Hendricks et al. (2005).  

A more recently developed method for identifying bivalve larvae is ShellBi. 

ShellBi utilizes the color and texture-based features extracted from digital images of 

bivalve larvae taken under polarized light (Gallager and Tiwari 2008). This method 

uses an image library, or training set, to classify ‘unknown’ images (for more detail 

see Thompson et al. 2012). The images of the bivalve larvae are classified using 

pattern recognition software (Gallager and Tiwari 2008). ShellBi was validated by 
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applying DNA and visual classification methods to bivalve species in Cape Cod, 

yielding high (98%) classification accuracies for hatchery reared larvae but lower 

accuracies (68-88%) for field samples (Thompson et al. 2012). Further testing of 

ShellBi showed that identification accuracies increased from 67-88% to 97-99% 

when training sets included larvae reared under similar environmental conditions as 

the larvae being classified (Goodwin et al. 2014).  Goodwin et al. (2014) also 

demonstrated that ShellBi was effective for distinguishing different species of 

bivalves than those that Thompson et al. (2012) tested, suggesting that this method 

has broad applicability in estuarine and marine systems.  

Although ShellBi offers a quantitative way to identify and measure bivalve 

larvae, image acquisition speed has been limited to ~100 images h
-1

 (Goodwin et al. 

2014) while capturing images of larvae under a microscope by manually moving the 

stage or by using a joy-stick-assisted motorized stage. Both techniques necessitate 

substantial time investment of a trained technician especially if target organisms are 

rare and subsampling is not possible. Automating image acquisition would greatly 

enhance sample processing speed and enable greater spatial and temporal coverage 

during field surveys for bivalve larvae. In addition, increased speed of acquisition of 

high resolution images at high magnification has applications for enhancing surveys 

of other types of plankton such as copepods and fish eggs. 

Another challenge with automated image acquisition is identifying and 

cropping (selecting) regions of interest (ROI). For ShellBI, the ROI is the shell of 

bivalve larvae. Currently, cropping for ShellBi is done manually by clicking with a 

mouse around the ROI because automated ROI detection software is not effective.  



 80 

 

The main objective of this research was to create an automated image 

acquisition system which would enable faster image acquisition and improved 

cropping while maintaining a standard of quality control which enabled consistent 

and high-accuracy classification of bivalve larvae. Custom software was created that 

enabled a digital camera and automated stage to image the contents of a Sedgwick-

Rafter slide automatically, and ROI detection software was improved. The system 

was tested to determine how magnification, software settings, and other factors 

affected the classification accuracy of bivalve larvae. Quality control measures were 

developed to ensure that the image acquisition system captured images with 

consistent alignment, brightness, and color. Methods for sample preparation and 

storage were also developed. 

 

Materials and procedures 

This section describes the automated image acquisition system which was 

combined with ShellBi software to create a rapid system for identifying bivalve 

larvae. It also includes procedures which were developed to maintain image quality 

and classification accuracies and to prepare field samples for use with the automated 

imaging system. 

Hardware 

An automated image acquisition system was developed that integrated 

hardware and software components to improve image capture, image processing, and 

overall sample processing speeds for imaging bivalve larvae. The hardware consisted 
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of an automated stage, stage motor controller, digital camera, microscope, metal 

braces and a desktop computer (Fig. 3.1, Table 3.1). The automated stage, a Semprex 

KPL53 Servo motor-controlled stage, was configured with a micro-plate holder that 

fit Sedgewick-Rafter slides and an aluminum baseplate that was clamped to the 

benchtop to reduce vibration. This system was run without the use of a manual 

joystick that is available and can also control the stage. An Omax M837PL trinocular 

inverted polarizing microscope with factory stage removed was bolted to the 

aluminum baseplate. The microscope was fitted with a polarizer (slides into place 

over the light source), a condenser (which rotates), and a full wave compensation (λ) 

plate (slides into place). The microscope was fitted with an ocular of 5x and objective 

lenses of 4, 10, and 20x. The factory stage was removed and therefore the exact 

magnification could not be calculated by multiplying the ocular by the objective. 

Hence, magnification was calculated by imaging an American Optical 2-mm reticle 

and measuring a 100 µm increment on it. The image of the100 µm increment was 

converted to pixels using ImageJ software and then the camera conversion factor of 

3.45µm/pixel (specific to the camera used) was applied to calculate actual 

magnifications of 7, 21, and 41x for objective lenses 4, 10, and 20x, respectively.  

An Infinity model 2-3C eight-megapixel digital microscope camera was fitted 

onto the microscope using a digital camera extension piece (Fig. 3.1). The camera 

was further secured by two metal braces that screwed into the side of the camera and 

rested tightly at the head of the microscope. The braces were secured in place to help 

maintain camera alignment. Other metal braces were installed at each side of the base 

of the microscope so that the microscope could be secured to the aluminum baseplate 
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of the automated stage. The digital camera and automated stage motor controller were 

connected to a windows PC desktop computer.     

The Semprex KPL53 Servo motor-controlled stage was equipped with x, y, 

and z directions. The z direction is the vertical height the stage can move toward or 

away from the objective lenses. The height of the stage was adjusted manually so that 

9-day old C. virginica larvae were in focus, which resulted in younger (2-4 day) and 

older (> 14 day old) larvae not being in sharp focus. Some Sedgewick Rafter slides 

did not provide as level a surface as others when placed in the well plate holder of the 

automated stage. In order to select the best Sedgwick rafter slides, we measured the 

vertical height at which D-stage larvae were in focus at the four corners and center of 

several Sedgewick Rafter slides, and chose to use the slides with the least change in 

height across the slide for processing samples (<0.1 mm difference). We did not use 

the automatic focus in the z direction (which is available with the automated stage) 

because setting the autofocus could result in additional processing time (up to 30 s) 

per bivalve and sometimes there were > 1,000 bivalves in samples from the field.  

Software 

Custom software was developed to enable the computer to control both the 

camera and the automated stage so that images could be captured rapidly. The custom 

software called on libraries from both the automated stage software (Semprex) and 

the camera software (Software Development Kit (SDK) from Lumenera). The custom 

software was written in Microsoft Visual Basic .NET (VB.NET). Permission from 

Semprex (Lou Volk, LouV@Semprex.com) and the purchase of the Lumenera SDK 

(available from lumenera.com) was required to use the custom software. The custom 
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software made calls to both the stage controller and camera. First the custom software 

signaled the controller to move the stage to a “home” position. After the home 

position was reached, the stage was then signaled to move in a series of steps down 

the length of the Sedgwick Rafter slide and the camera was programmed to capture 

images at designated points. Between each step the program executed a pause 

(referred to as settling time) to wait for any vibrations to dampen and then the 

program called the camera to capture an image. This process was repeated until an 

entire column of the Sedgwick Rafter cell was imaged. The stage then was 

programmed to move to the next column and capture images in a similar stepwise 

fashion. This pattern was repeated until the entire area of the slide was imaged. A 

binning factor was implemented to speed up image acquisition so that a 4x4 pixel 

square on the camera sensor was summed to become 1 pixel in the final image. This 

resulted in smaller, brighter images allowing for shorter exposures and less time 

between successive image captures. The camera captured images in a raw file format 

created by the 2-3C Infinity camera and this was the format in which images were 

transferred to the computer. After imaging the Sedgewick-Rafter slide was complete, 

the raw image files on the computer were converted into BMP images using another 

custom program. This post-acquisition image processing was implemented to reduce 

the time needed to capture images and thereby speed up the image acquisition 

process. After post-processing, the images were ready to be cropped, measured, and 

classified with the ShellBi software package. 
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Procedures 

Based on tests described in the Assessment section below, recommended steps 

and procedures were created to optimize the automated image acquisition system and 

ensure quality control. These steps were 1) maintain alignment, 2) standardize 

microscope and camera settings, 3) create training set, 4) check color channel 

intensity, and 5) classify a standard. In addition, recommendations for how to prepare 

and store field samples for image acquisition were developed. 

Maintain alignment. In order to ensure that a Sedgewick Rafter slide was 

entirely imaged (and therefor all organisms on the slide would be imaged), an 

alignment protocol was established. A Sedgewick Rafter slide with grid lines was 

used. After an entire gridded Sedgwick Rafter slide was imaged (n = 1,920 images), 

the images were stitched together in a mosaic MATLAB (R2012b) software.  The 

mosaic was examined by zooming in on the grid line sections of each slide and 

checked to 1) ensure that the entire area of the Sedgewick Rafter slide was captured 

and 2) the grid lines on the slide lined up across the image. If the entire slide was not 

imaged, the ‘home’ position was reprogrammed. If the grid lines did not line up, the 

camera was rotated slightly until proper grid alignment was achieved. This alignment 

procedure was repeated until the system was aligned. We found that conducting the 

alignment protocol at least weekly was necessary while samples were being 

processed.  

Standardize microscope and camera settings. Optimal microscope and camera 

settings were determined and then remained fixed so that consistent images were 

taken for training sets and unknown specimens. For the microscope, the objective 
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lens, the light source, and the rotation of the condenser were set. The rotation of the 

condenser was set by sliding the polarizer into place, focusing on a bivalve shell 

under full light extinction, and then rotating the condenser until a black cross formed 

on the shell (see Tiwari and Gallager 2003). Once full extinction was reached, a 

lambda (λ) plate was then inserted and a magenta background became apparent (see 

Fig. 2.1). The objective lens used was 4x (see Assessment section for explanation).  

The light intensity level was controlled using a dial near the base of the microscope. 

A white line was marked on the base of the scope just above the dial position to 

ensure the dial did not move from this position. The camera settings were originally 

chosen in the Infinity Analyze software program which allowed each setting to be 

named and saved within the program. The settings were then programmed into the 

custom software where they were saved.  

Create training sets. Once optimal settings were chosen and saved, training 

sets of images of specimens of different species of bivalve larvae were created so that 

they could be used for classifying unknown specimens and for use in quality control 

of the automated image acquisition system. The training sets were created from 

laboratory reared specimen (see Assessment section for information on the specimen 

library used to create training sets). At least 200 images were used in each category of 

all training sets based on Thompson et al. (2012).   

Check color channel intensity. ShellBi depends on consistent software settings 

to maintain stable accuracies for bivalve larvae identification (Thompson et al. 2012) 

although some minor fluctuation is tolerable (see Goodwin et al. 2014). Changes in 

light intensity, specifically color channel intensity, can alter the color of light detected 
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on larval shells as well as the background color of the images. We found that color 

channel intensity fluctuated over the course of a day and over the lifespan of the light 

bulb in the Omax microscope. Therefore a protocol was developed to measure light 

intensity of individual RGB color channels (red, green, blue) from a bitmap image 

using code developed in MATLAB (R2012b). First an acceptable range in variation 

of color channel intensity was determined, and then a protocol was established to 

maintain color channel intensities within that range. Color channel intensities were 

reported as binned values out of a range of 0-255 with 0 being no light and 255 being 

maximum possible intensity. This range was unit-less and was determined by the 8-

bit bit depth of each color channel value that made up the output file (in this case a 

bitmap image).  

An ‘acceptable’ light intensity range was determined by measuring the daily 

variation in light intensity, then assessing whether that range affected ShellBi 

classification accuracies for our target organism, C. virginica. First, ‘blanks’ were 

taken by imaging the light from the light source without a Sedgewick Rafter or any 

other slide in the stage. Five of the blank images were then analyzed in MATLAB to 

calculate the color channel intensity of red, blue, green, and overall average values. 

This process was repeated hourly over the course of 6 days to determine the 

variability in color channel intensity, which ranged from 97.0-115.5, 14.0-15.83, 

19.9-23.3, and 43.7-51.6 for red, green, blue, and average color channel intensities, 

respectively. A ‘quality control’ training set was created by capturing and cropping 

images of Crassostrea virginica, Ischadium recurvum, and Rangia cuneata (n = 200 

for each species) when color channel intensity was set to the mean of the average 
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color channel intensities (49.9).  This training set was used to classify three sets of 50 

images of 9-day old C. virginca larvae which had been captured at the mean, 

maximum, and minimum of the daily range in color channel intensities and then 

cropped. Classification accuracies of C. virginica ranged from 92-100%, indicating 

that the maximum and minimum in daily color channel intensity fluctuations resulted 

in high classification accuracies and provided an acceptable range.    

Once the acceptable range in color channel intensities was determined, five 

blanks were captured and analyzed three times per day to ensure color channel 

intensity values remained within the acceptable range.  If the color channel intensities 

were not within the acceptable ranges, the intensity of the light source was adjusted 

until they were within the acceptable range or the bulb was replaced on the 

microscope.  

Repeated classification of a standard. A performance-based test was 

conducted to ensure quality control for the automated image acquisition system. 

Specifically, 50 images of 9-d-old C. virginica larvae were imaged once per week, 

cropped, and then classified using the ShellBi software with the ‘quality control’ 

training set (described above). This helped ensure that high classification accuracies 

were maintained over the months that field samples were being imaged.   

Preparing field samples for image acquisition. New protocols were developed 

for preparing field samples for imaging bivalve larvae by reducing the number of 

other organisms and small sediment particles present in the sample and by removing 

tissue of the larvae which inhibits detection of birefringent patterns in veliger and 

pediveliger larvae.  Samples collected from the Choptank River were stored in 200 ml 
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jars with 4% formalin seawater solution buffered with sodium borate. Under a fume 

hood, a sample was poured through a 350 µm sieve into a 300 ml beaker to remove 

larger particles. The sample in the beaker was poured through a 44 µm sieve. The 44 

µm sieve was rinsed using 40% bleach and 60% Deionized (DI) water buffered with 

sodium borate into a centrifuge tube. The sample was left for 20 minutes to digest 

tissue and break apart valve hinges and then poured through another 44 µm sieve. The 

sample was then rinsed from the sieve into a 15 ml centrifuge tube using buffered DI 

water (buffered with sodium borate) and left for five minutes to settle (the time it took 

for the smallest shells to sink to the bottom). The supernatant was carefully pipetted 

off until a 2 ml sample volume was left in the tube. The supernatant was discarded 

after observing that no bivalve larvae were present (n = 270). The remaining sample 

was mixed and resuspended within the 2 ml of solution by pipetting the sample up 

and down 3-4 times within the centrifuge tube (in an up and down fashion avoiding 

circular motion). Then a 1-ml aliquot was pipetted from the centrifuge tube and 

placed (from left to right) onto the center of a Sedgewick Rafter slide (non-gridded). 

A coverslip was carefully placed on top of the Sedgwick Rafter slide and the slide 

was then placed in a well plate holder on the automated stage. The remaining 1-ml 

aliquot was pipetted onto another Sedgewick Rafter slide in the same manner.  

Subsamples of the two aliquots were conducted by imaging half of the 

Sedgwick Rafter slide (lengthwise). Tests performed indicated that the first 1-ml 

aliquot pipetted onto the Sedgewick Rafter slide had unequal numbers of larvae 

compared with the second aliquot, but that there was no statistically significant 

difference in the number of bivalve shells on the left compared to the right half of 
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each slide (Students t-test, p = 0.37, n = 60). Therefore, half of each slide with the 

first and second 1-ml aliquots was imaged. By imaging half of each slide in 23 min 

(including start up time), 50% of the sample was imaged. Note that the count of 

larvae in a plankton sample would be calculated as two times the number of ROIs (to 

take into account the 50% subsampling) divided by two (to take into account the fact 

that each larva had two shells).  

Images of known specimens that were reared to create training sets underwent 

the same procedure, except that sieving was not necessary and full slides (rather than 

50%) were imaged. 

Sample storage. Sample storage considerations are important for this method. 

Although Goodwin et al. (2014) found no difference in classification accuracy using 

ShellBi when samples were preserved in buffered 95% ethanol or buffered 4% 

formaldehyde, buffered 4% formaldehyde solution should be used for long term 

storage > 2 yrs because shells of bivalve larvae stored in buffered 95% ethanol 

cracked after two years (Goodwin, Thompson pers. obs.). To prepare samples for 

long term storage, the samples should be preserved with 4% formaldehyde buffered 

to a pH of 8.0-8.1with sodium borate (pH 10.1). The pH of the samples should be 

monitored over time. O’Meara et al. (2013) found that birefringence is lost on veliger 

mussel (Dreissena bugensis) larvae if they are not stored in basic (pH 7.0-9.0) 

conditions. However, larval shells can dissolve when sample pH drops below 8.0 

(Goodwin, pers. obs). Therefore, pH should be tested one or two days after sample 

collection, after the first week, after the first month and then quarterly thereafter. If 
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pH drops near or below 8.0, buffer should be added to bring pH back up to the 8.0-8.1 

ranges, then retested a few days to a week later to ensure that the pH remains stable.  

 

Assessment 

Tests were conducted to evaluate the automated image acquisition system and 

improvements to the ShellBi software in order to attain optimum classification 

accuracies. Specifically, magnification and image resolution, color channel intensity, 

ROI detection, and camera software settings were assessed. Finally, two blind 

validation experiments were conducted to test classification accuracies of the 

automated image acquisition system.  

An image library of the shells of bivalve larvae was used in these tests. Eight 

bivalve species that are found in Choptank River were spawned, their larvae were 

reared and images of their shells were used for all tests. The adult bivalves that were 

collected from the Choptank River and reared in the laboratory consisted of: 

Ischadium recurvum (hooked mussel), Mulinia lateralis (dwarf surf clam), Mytilopsis 

leucophaeata (dark false mussel), Macoma mitchelli (matagora macoma clam), 

Rangia cuneata (Atlantic rangia clam), and Tagelus plebeius (razor clam). Larvae of 

Crassostrea virginica (eastern oyster) were obtained from the Horn Point Hatchery 

and Guekensia demissa (marsh mussel) were obtained from the Rutgers Cape Shore 

Laboratory. Spawning and rearing procedures were consistent with summer 

conditions in Choptank River and were explained in detail (see Goodwin et al. 2014) 

for all species with the exception G. demissa. The G. demissa larvae were reared in 
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conditions similar to Delaware Bay at a temperature of 24.9 
o
C at a salinity of 22.5 

and fed Isochrysis galbana, Pavlova lutheri, and Chaetoceros calcitrans. 

Magnification and image resolution tests 

The objectives of the magnification and image resolution tests were 1) to 

choose the lowest magnification that resulted in high classification accuracies and the 

fastest image acquisition time, and 2) to determine how changes in image resolution 

within the ShellBi software influenced classification accuracies. Previous research 

with the ShellBi technique was conducted at a magnification of 50x (Thompson et al. 

2012, Goodwin et al. 2014). To test a range of magnifications, the automated stage 

and software was used to image bivalve larvae on a Sedgewick Rafter slide at three 

different magnifications: 7, 21, and 41x. It took 46, 120, and 160 minutes to image a 

slide at magnifications of 7, 21, and 41x, respectively. Images of bivalve larvae were 

captured at each magnification using consistent hardware and software components, 

except that objective lenses (4, 10, and 20x) were changed to create the different 

magnifications.  

Training sets composed of 200 images of four species of bivalve larvae (C. 

virginica, I. recurvum, R. cuneata, and M. leucophaeata) (n = 800 total images) were 

created and used to classify ‘unknown’ images of each species (n = 25 for each 

species). These training sets were created for each magnification and images of the 

‘unknown’ specimens were also captured at each magnification.  

In addition to testing the effect of magnification on classification accuracy, the 

influence of image resolution within the ShellBi software was also determined. In the 

research performed by Goodwin et al. (2014), the software did not reduce the 
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resolution of images. The resolution of images taken at different magnifications was 

reduced by 40, 20 and 0% and classification tests were performed to determine the 

influence of image resolution on classification accuracies. 

Classification accuracies of images captured at different magnifications and 

with different image resolutions ranged from 88-100%. Classification accuracy for 

images taken under magnification settings of 7x were highest for all four species (98-

100%) regardless of the reduction setting used (Table 3.2). There were no differences 

in classification accuracy when image resolution was reduced at a magnification of 7x 

and little difference in accuracies (< 1%) when image resolution was reduced at 

magnifications of 21x or 41x. Based on the results of these classification tests, it was 

concluded that the low magnification setting of 7x yielded highest accuracies and 

fastest sample imaging time (46 min) and that reducing image resolution in the 

software had a little effect on classification accuracy.  

Color channel intensity 

Over a period of 100 days, color channel intensities were measured and 

monitored and a standard set of 50 images of 9-day old C. virginica larvae were 

classified (Fig. 3.2) as part of the protocol for maintaining high classification 

accuracies (described in the Materials and Procedures section). Classification 

accuracies were consistent (98-100%) until the color channel intensity for red, green, 

and blue dropped. The intensity drop was due to a faulty light bulb which led to lower 

classification accuracy (70%) of the standard unknown set. The light bulb was 

replaced and color channel intensity was restored to acceptable levels, as indicated by 

classification tests (98-100%) (Fig. 3.2). Based on these observations, color channel 
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intensity influences the classification accuracy of ShellBi and should therefore be 

monitored daily to be maintained within an acceptable range.  

ROI detection 

Tests were conducted to assess the ability of the updated ROI detection 

software to automate the post processing of images. Samples (n = 23) that included 

oysters (C. virginica), mussels (G. demissa, I. recurvum), and clams (M. mitchelli, M. 

lateralis, M. leucophaeata, R. cuneata, T. plebeius) were imaged with the automated 

image acquisition system. The larvae that were imaged ranged in ages (2-16 days) 

and lengths (44-330 µm). Images with birefringence were sorted into folders using 

the automated sorting software. Trained technicians counted the bivalve shells in the 

folders, after which the automated ROI detection software was used to enumerate the 

number of ROIs in the images. The same procedure was repeated with 30 samples 

(200 l
-1

) that had been collected from the Choptank River in July of 2012. These 

samples included clam, mussel and oyster larvae of various sizes.   

When applied to clean samples with specimens that had been reared in the 

laboratory or hatchery, the counts of bivalve larvae generated by the automated ROI 

detection software compared favorably with those of trained technicians, except at 

very high numbers of bivalve larvae (> 800) but did not compare favorably for field 

samples (Fig. 3.3).  The automated ROI detection software performed better on 

laboratory reared specimen than it did on the field-collected samples (Fig. 3.3). For 

field samples, the automated ROI detection software systematically underestimated 

the number of bivalve larvae compared to trained technicians (Fig. 3.3). Based on 

these results, we conclude that this software has use in laboratory and hatchery 
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applications but field samples should be manually cropped until further improvements 

in the software are made.  

Camera software setting performance 

Tests were conducted with the automated image acquisition system to 

determine the influence of camera software settings on the performance of ShellBi. 

Five different camera settings (labeled 1-5) were created by altering specific 

attributes in the Infinity Analyze software program (Table 3.3). Varying the attributes 

created different backgrounds in the images (Fig. 3.4). All settings and attributes were 

identical except for the exposure, gain, light source setting, saturation, brightness, 

contrast, and hue. Five three-species training sets composed of 200 images each of C. 

virginica, I. recurvum, and R. cuneata were created with images taken under the five 

settings using the automated image acquisition system. A larger training set (labeled 

“All (1-5)”) was constructed as a compilation of the five different training sets 

(n=3,000 images).  

The six training sets were used to classify 150 images of “unknown” C. 

virginica, I. recurvum, and R. cuneata (50 images of each species) which were taken 

under each of the five settings, for a total of 30 tests of ShellBi classification accuracy 

(Table 3.4). Classification accuracies for unknown C. virginica, I. recurvum, and R. 

cuneata ranged from 4 to 100% and differed between species and between camera 

settings (Table 3.4 A-D). In general, the highest accuracies (82-100%) occurred when 

the settings of the training sets and those of the ‘unknown’ sets were the same (Fig. 

3.4, especially overall accuracies reported in panel D). The training set composed of 

images taken under all settings (All(1-5)) had classification accuracies from 85-95%. 
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These tests indicate that using the same settings for training sets and the unknown 

images yielded high overall classification accuracies and that different settings may 

be optimal for different species.  

Validation experiments 

Two validation experiments were conducted to assess the accuracy of both the 

ShellBi software and trained technicians to classify images of shells of bivalve larvae 

which had been captured using the automated image acquisition system.  

Three training sets were constructed with the automated imaging acquisition 

system and used to classify shells of bivalve larvae with ShellBi in both validation 

experiments. These training sets were composed of images of eight species of bivalve 

larvae found in the Choptank River grouped into three categories (oysters: C. 

virginica; mussels: I. recurvum, G. demissa; clams: M. leucophaeata, M. lateralis, M. 

mitchelli, R. cuneata, and T. plebeius). Each category included images of larvae of 

different ages. One training set, called COM1000, had 1,000 images per category 

(Table S3.1) and was taken with camera settings 2 (Table 3.3).  A second training set 

(COM700) was composed of images using setting 1 (Table 3.3). Furthermore, 

COM700 contained fewer total images of bivalves (700 images per category), fewer 

images of M. lateralis and T. plebeius and no images of G. demissa. However, 

different ages and species were all represented as equally as possible (Table S3.1). 

The third training set (COM1700) was simply a combination of COM700 and 

COM1000, so that each category had 1,700 images.  

Each validation experiment consisted of 18 separate tests of the ability of 

trained technicians and ShellBi to identify images of C. virginica from those of other 
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bivalves. The 18 tests were each composed of 100 ‘unknown’ images (n = 1,800 total 

unknown images).  Unknown images for validation One were taken under the same 

settings as the training set COM1000. Unknown images for validation Two were 

taken under the same settings as COM700. For each experiment, a lab member (who 

did not undertake classifications) created 18 folders which contained 100 images of 

different ages of C. virginica, I. recurvum, G. demissa, M. leucophaeata, M. lateralis, 

M. mitchelli, R. cuneata, and T. plebeius. Care was taken to vary the number of 

images of species and ages (sizes) to simulate differences that might be found in field 

samples (e.g., the number of C. virginica in folders ranged from zero to 44). For 

validation test Two, there were no G. demissa images and fewer M. lateralis and T. 

plebeius because specimens were not available (Table S3.1). The original folders that 

contained the species name and age were stored on a password protected secure 

server. For the validation experiments, a copy of the 18 folders was created and all 

images were renamed so that the identity and ages of the bivalves would not be 

known by the trained technicians who undertook the classifications.   

Two trained technicians used the training sets COM1000 (for experiment one) 

and COM700 (for experiment two) as visual keys to assist with identifying the 

images of bivalve larvae within the 18 folders for each experiment. They sorted 

images of oysters into separate folders. Misclassification was assessed by matching 

each of these images to those in the original folders stored on the server to determine 

if each image was C. virginica and noting if any C. virginica images were not 

correctly identified (i.e., only true positives were counted). 
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In addition, images in each of the 18 folders were classified using ShellBi and 

each of the three training sets. Misclassifications for ShellBi were calculated using a 

script written in MATLAB that calculated true positives (in this case C. virginica 

larvae that were properly classified).  

Trained technicians were able to classify images of C. virginica larvae with 

high accuracies (> 92% on average for both validation experiments) (Table 3.5). In 

contrast, classification of images of C. virginica with ShellBi ranged from averages of 

60 to 94% for both experiments. ShellBi had highest accuracies (80 to 93% on 

average) when training sets contained images of larvae that were taken under the 

same settings as those of the “unknown” images.  Accuracies dropped (60-74% on 

average) when training sets were used to classify “unknown images” that had been 

taken under different settings (Table 3.5). Based on these tests, we conclude that the 

automated image acquisition system can capture images which can be classified with 

high accuracy by a trained technician. In addition, this system can be used with 

ShellBi to successfully classify images with high speed and accuracies > 85% on 

average for C. virginica larvae from the Choptank River of Chesapeake Bay, as long 

as camera settings used to create training sets and unknown images correspond. We 

recommend that trained technicians check and correct ShellBi classifications, thereby 

ensuring high accuracies while taking advantage of the rapid image classification by 

the ShellBi software.  
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Discussion 

Our goal was to create an automated image acquisition system and improve 

ShellBi software (Thompson et al. 2012, Goodwin et al. 2014) to rapidly and 

accurately identify and measure larvae of a target bivalve species (C. virginica). 

Results indicate that automated image acquisition system at 7x magnification was 

able to image an entire Sedgewick Rafter slide in 46 min.  In addition, the ShellBi 

software distinguished C. virginica larvae that were imaged with the system with high 

accuracies (>85% on average) which could be improved to >92% on average if a 

trained technician were to check and correct the computer-based classifications. The 

increase in sample processing time was faster than previous efforts where manual 

image acquisition was needed to pre-process images for ShellBi (Goodwin et al. 

2014).  

 Our research showed that higher accuracies and faster processing times could 

be achieved with lower (7x) magnifications. Previous research with the ShellBi 

technique was conducted at magnifications of 50x (Thompson et al. 2012, Goodwin 

et al. 2014).   The higher accuracy when using lower magnification could be because 

the Support Vector Machine that the ShellBi software uses to distinguish between 

species works better with less information because details in texture features and 

color angles are smoothed out at lower resolutions. Further testing may reveal that 

magnifications lower than 7x could be equally accurate, although there may be a 

point at which lower magnifications would have too little information to distinguish 

larvae, especially for small D-stage larvae.    
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The automated ROI detection performed well for laboratory-reared samples 

but poorly for field samples (Fig. 3.3). This was mostly due to other birefringent 

material in the samples from the eutrophic Choptank River (Fig. 3.5). This material 

confounded the edge detection and ROI extraction process. Performance may be 

better in oligotrophic waters if there are less birefringent particles there. Further 

improvements in the software may enable more accurate ROI detection and 

automated cropping. Newer ROI detection methods are constantly being developed 

for many applications in the medical field (Chun-Chu and Shyr-Shen 2015, Molder et 

al. 2015, Vishrutha and Ravishankar 2015). Improvements could help ROI extraction 

for ShellBi and should be evaluated in future studies. However, without any further 

advances, our automated ROI detection software could be used “as is” in laboratory 

or hatchery conditions for bivalve larvae counts in a rapid manner.  

Bachiller et al. (2012) recommended an internal control mechanism to check 

the quality of the procedure used for counting and classifying zooplankton (or bivalve 

larvae in this case) given all of the rapid development of imaged-based methods.  We 

set up an internal control method by establishing a standard set of 9-d-old C. virginica 

larvae to be classified weekly by a previously established training set (Fig. 3.2). This 

system proved to be very useful to gauge hardware consistency with a performance 

based metric (classification). In addition, alignment protocols were established to 

ensure accurate counts of bivalve larvae.  

 Camera settings were an important determinant of classification accuracy for 

this method. Training sets used to classify unknown sets imaged under the same 

camera setting were more accurate than training sets used to image unknowns under 
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different settings (Table 3.4). The training sets taken under each of the five settings 

resulted in high classification accuracies of the unknown groups imaged under the 

corresponding five settings, despite differences between settings (Fig. 3.4), which 

suggests that the ShellBi technique is robust even when camera settings vary. The 

tests also indicate that different settings may be optimal at identifying different 

species (Table 4A-C). Therefore, we recommend that settings should be tested for 

target species so that optimal classification performance can be achieved.   

Thompson et al. (2012) have shown that the ShellBi technique may be more 

accurate than quantitative PCR and much faster than traditional light microscopy 

techniques (Carriker 1996) although the latter may still be the most accurate way to 

identify bivalve larvae to date. The initial set up of ShellBi requires the establishment 

of known training sets composed of larvae that were reared in similar conditions to 

the larvae being sampled and identified from the field which can be labor intensive 

(Thompson et al. 2012, Goodwin et al. 2014). After a specimen library is established, 

capturing images with our automated image acquisition system and classifying them 

with ShellBi software is the fastest way to identify and measure C. virginica in the 

Choptank River to date.  

 

Comments and recommendation 

We recommend that protocols be established for maintaining classification 

accuracy over time, which include: 1) systematic sample preparation, 2) repeated 

checks of the alignment of the camera and stage, 3) monitoring of color channel light 

intensity, and 4) repeated classification of a standard.  
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In keeping with previous assessments of this method (Thompson et al. 2012, 

Goodwin et al. 2014), we recommend that unknown larvae be imaged using the same 

microscope and camera settings as those for the training sets. We also recommend 

that validation studies (similar to those in this manuscript) be conducted when using 

this technique in different systems and with different species of interest. The 

validation experiments showed that C. virginica larvae could be identified with 

accuracies >85% on average for the ShellBi software and >92% on average for the 

trained technicians. Therefore, as suggested in Goodwin et al. (2014), the speed of the 

ShellBi classification technique could be augmented by the high accuracies of a 

trained technician if a technician checks and corrects the images classified by ShellBi. 

Because the ShellBi software sorts images into folders for each category of the 

training set, a trained technician can quickly scan the images to determine if any are 

out of place.   

 Future directions for ShellBi involve using a random forest algorithm and 

online training sets for faster identification (Gallager, pers comm.).  In addition, the 

automated image acquisition system is being tested for imaging copepods (North and 

J. Pierson, pers. comm.) and the technique could be used to image pteropods as well 

(Goodwin, pers. obs.). ShellBi (for organisms that exhibit birefringence) and the 

automated image acquisition system (for plankton in general) could advance our 

understanding of eutrophic and coastal systems around the world by allowing rapid 

image acquisition and classification of species that require magnification for 

identification. 

 



 102 

 

Literature cited 

 

Bachiller, E., J.A. Fernandes, and X. Irigoien. 2012. Improving semi automated 

zooplankton classification using an internal control and different imaging 

devices. Limnol. Oceanogr. Methods. 10:1-9. [doi:10. 4319/ lom. 2012. 10. 1]. 

Benfield, M.C., P. Grosjean, P.F. Culverhouse, X. Irigoien, M.E. Sieracki, A. Lopez-

Urrutia, H.G. Dam, Q. Hu, C.S. Davis, A. Hansen, C.H. Pilskaln, E.M. 

Riseman, H. Schultz, P.E. Utgoff, and G. Gorsky. 2007. RAPID: Research on 

Automated Plankton Identification. Oceanogr. 20(2):172–187. 

http://dx.doi.org/10.5670/oceanog.2007.63. 

Carriker, M.R. 1996. The Shell and Ligament, In V.S. Kennedy, R.E. Newell, and A. 

F. Eble (eds.), The Eastern oyster Crassostrea virginica. Maryland Sea Grant. p. 

75-159. 

Chanley, P., and J.D. Andrews. 1971. Aids for identification of bivalve larvae of 

Virginia. Malacol.11:45–119. 

Cowan, R.K., and Guigand, C.M. 2008. In situ ichthyoplankton imaging system 

(ISIIS): system design and preliminary results. Limnol. Oceangr. Methods. 

6:126-132. 

Davis C.S., S.M. Gallager, M. Marra, and W.K. Stewart. 1996. Rapid visualization of 

plankton abundance and taxonomic composition using the Video Plankton 

Recorder. Deep Sea Res. Part II. 43(7-8):1947-1970.  

Gaines, S., and J. Roughgarden. 1985. Larval settlement rate: A leading determinant 

of structure in an ecological community of the marine intertidal zone. Proc. 

Natl. Acad. Sci. USA. Ecology. 82:3707-3711. 

Gallager, S., and S. Tiwari. 2008. Optical method and system for rapid identification 

of multiple refractive index materials using multiscale texture and color 

invariants. United States Patent 7,415,136. Washington, DC: U.S. 

Garland, E.D., and C.A. Zimmer. 2002. Techniques for the identification of bivalve 

larvae. Mar. Ecol. Prog. Ser. 225:299-310 [doi:10. 3354/ meps225299]. 

Goodwin, J.D., E.W. North, and C.M. Thompson. 2014. Evaluating and improving a 

semi-automated image analysis technique for identifying bivalve larvae. 

Limnol. Oceanogr. Methods 12:548-562. 

Gorsky, G., M.D. Ohman, M. Picheral, S. Gasparini, L. Stemmann, J. Romagnan, A. 

Caweood, S. Pesant, C. Garcia-Comas, and F. Prejge. 2010. Digital zooplankton 

image analysis using the ZooScan integrated system. J. of Plank. Res. 

32(3):285-303. 

Grosjean, P., M. Picheral, C. Warembourg, and G. Gorsky. 2004. Enumeration, 

measurement, and identification of new zooplankton samples using the 

ZOOSCAN digital imaging system. J. Mar. Sci. 61:518-525. 

Hare, M.P., S.R. Palumbi, and C.A. Butman. 2000. Single-step species identification 

of bivalve larvae using multiplex polymerase chain reaction. Mar. Biol. 

137:953-961 [doi:10.1007/ s002270000402]. 

Hendriks, I.E., L.A. Van Duren, and P. M. J. Herman. 2005. Image analysis 

techniques: a tool for the identification of bivalve larvae? J. Sea Res. 54:151-

162. [doi:10. 1016/ j. seares.2005. 03. 001]. 

http://dx.doi.org/10.5670/oceanog.2007.63


 103 

 

Henzler, C.M., E.A. Hoaglund, and S.D. Gaines. 2010. FISHCS—a rapid method for 

counting and sorting species of marine zooplankton. Mar. Ecol. Prog. Ser. 

410:1-11 [doi:10.3354/ meps08654]. 

Kennedy, V.S. 1996. In: V.S. Kennedy, R.E. Newell, and A.F. Eble (eds.), The 

eastern oyster Crassostrea virginica. Maryland Sea Grant p. 371-421. 

Larsen, J.B., M.E. Frischer, L.J. Rasmussen, and B.W. Hansen. 2005. Single-step 

nested multiplex PCR to differentiate between various bivalve larvae. Mar. Biol. 

146:1119-1129. [doi:10.1007/s00227-004-1524-2] 

Lutz R, J. Goodsell, M. Castagna, S. Chapman, R. Newell, H. Hidu, R. Mann, D. 

Jablonski, V. Kennedy, S. Siddall, R. Goldberg, H. Beattie, C. Falmagne, A. 

Chestnut, A. Partridge. 1982. A Preliminary observation on the usefulness of 

hinge structure for identification of bivalve larvae. J. Shell. Res. 2:65–70. 

MacLeod, N., M. Benfield, and P. Culverhouse. 2010. Time to automate 

identification. Nature, 467:154-155. 

Molder, A., S. Drury, N. Costen, G. M. Hartshorne and S. Czanner. 2015. 

Semiautomated analysis of embryoscope images: Using localized variance of 

image intensity to detect embryo developmental stages. Cytometery. 

87A(2):119-128. 

O’Meara, S., D. Holser, S. Brenimer, and S.F. Pucherelli. 2013.  Effect of pH, ethanol 

concentration, and temperature on detection of quagga mussel (Dreissena 

bugensis) birefringence. Manag. of Biol. Invas. 4(2):135-138. 

Steele, J.H. 1989. The ocean ‘landscape’. Landscape Ecol. 3:185-192. 

Tiwari, S., and Gallager, S. 2003. Machine learning and multiscale methods in the 

identification of bivalve larvae. Proceedings of the Ninth IEEE International 

Conference on Computer Vision, Nice, France, October 14-17, 2003. [doi:10. 

1109/]. 

Thompson, C.M., S.M. Gallager, and M. Hare. 2012. Semi-automated analysis for the 

identification of bivalve larvae from a Cape Cod estuary. Limnol. Oceanogr. 

Methods. 10:538-554 [doi:10. 4319/ lom. 2012. 10. 538]. 

Vishrutha, V., and M. Ravishankar. 2015. Early detection and classification of breast 

cancer. Proc. of 3
rd

 international conference of Frontiers of Intelligence 

Computing: Theory and Applications. 327:413-419. 10.1007/978-3-319-11933-

5_45. 

Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecol. 3:385-397. 

Zetsche, E. M., A.E. Mallahi, F. Dubois, C. Yourassowsky, J.C. Kromkamp, and F 

J. Meysman. 2014. Imaging-in-Flow: Digital holographic microscopy as a novel tool 

to detect and classify nanoplankton organisms. Limnol. Oceanogr. Methods. 12:757-

775. 

 

 



 104 

 

Tables and Figures 

Table 3.1. The components, company, model and price (United States dollar) of the 

automated image acquisition system in 2012. The automated stage and Semprex 

software is available with several options and the price here includes all components 

needed to run the stage in the x, y, and z planes. ShellBi software is sold separately 

and is available from Scott Gallager at Woods Hole Oceanographic Institute.  

Component Company Model Price 

Digital camera with 

software Lumenera/Infinity 2-3C $2,300 

Automated stage with 

software Semprex 

Need stage 

model 

number with 

AMICron  

 

3.2 software $11,663.9 

 

ShellBi software 

 

   Trinocular polarizing 

microscope microscope.net M837PL $1,299.99 

 

SDK Lumenera software Lumenara/Infinity SDK 2011 $695 

 

Desktop computer Dell 

Optiplex 

7010 $917.73 

 

Sedgwick Rafter 

gridded/ungridded Cole-Parmer 

1801-

A10/G20 

$135/48 

each 

    

Total     $17,059.62 
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Table 3.2. The percent classification accuracy for four ‘unknown’ bivalve species 

when images in training and ‘unknown’ sets were captured under different 

microscope magnifications and when image resolution was reduced prior to 

classification. Each training set was composed of 200 images of shells of Crassostrea  

virginica (CV), Ischadium  recurvum (IR), Rangia cuneata (RC), and Mytilopsis 

leucophaeata (DF)) for a total of 800 images. The training sets were then used to 

classify 25 images of shells of CV, IR, RC, and DF as ‘unknowns’. For each test, the 

training set images and ‘unknown’ images were captured under the same 

magnification and software reduction setting. The different magnifications were 

applied by changing the objective lenses on the hardware. Image resolution was 

reduced within the ShellBi software.   

 

       

   Percent accuracy 

Test 

Percent 

reduction in 

image resolution 

(software)  

Magnification 

(hardware)  CV DF IR RC 

1 40 7 x 98 98 100 100 

2 40 21 x 97 95 99 100 

3 40 41 x 94 88 98 96 

4 20 7 x 98 98 100 100 

5 20 21 x 96 95 99 100 

6 20 41 x 94 88 99 96 

7 0 7 x 98 98 100 100 

8 0 21 x 97 96 99 100 

9 0 41 x 94 89 98 95 
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Table 3.3. Software configurations of five different settings for the digital camera. 

The five settings 1-5 were created by changing attributes in Infinity Analyze software 

including exposure, gain, gamma, light source, saturation, brightness, contrast and the 

red and green hues.  Note: the actual light source was kept constant but the setting 

choice for “Light source” in the software program was adjusted. The configuration of 

blue light (1.0), averaging (1), subsampling (1), interval (1 s), and duration (10 s) 

were held constant across settings. 
Setting name Exposure Gain Gamma Light source Saturation Brightness Contrast Red Green

1 151.0 10.6 0.82 fluorescent 1.31 4 4 1.0 1.0

2 151.0 15.2 0.82 fluorescent 1.31 4 4 1.0 1.0

3 89.1 21.4 0.82 Incandescent 1.00 0 0 1.0 1.0

4 84.5 15.2 0.82 Incandescent 1.31 4 4 1.3 1.3

5 270.8 4.4 1.4 fluorescent 1.00 5 28 1.0 1.0  
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Table 3.4.   Classification accuracies for images of shells of A) C. virginica, B) I. 

recurvum, C) R. cuneata, and D) all three bivalves classified under five different 

camera settings (1-5). Training sets (rows) were used to classify ‘unknown’ sets 

(columns). Each group was imaged under different camera settings (1-5, details in 

Table 3). The sixth training set, “All1-5”, was composed of images captured at all 

five settings.     

  Unknown set 

A) C. virginca 

Training 

set  1 2 3 4 5 

  1 92 94 84 88 26 

  2 84 94 66 66 94 

  3 88 82 96 96 42 

  4 4 80 52 84 18 

  5 4 92 32 16 94 

  All(1-5) 96 88 96 88 88 

              

B) I. recruvum   1 2 3 4 5 

  1 90 82 90 72 88 

  2 70 88 82 80 88 

  3 84 74 90 74 84 

  4 98 54 54 94 60 

  5 98 66 90 44 82 

  All(1-5) 88 84 86 84 84 

              

C) R. cuneata   1 2 3 4 5 

  1 100 98 100 2 92 

  2 48 98 78 0 12 

  3 90 96 96 4 76 

  4 0 0 0 100 6 

  5 40 94 50 38 100 

  All(1-5) 100 84 100 84 84 

              

D) All species   1 2 3 4 5 

  1 94 91 91 54 69 

  2 67 93 75 49 65 

  3 87 84 94 58 67 

  4 34 45 35 93 28 

  5 47 84 57 33 92 

  All(1-5) 95 85 94 85 85 
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Table 3.5.   Classification accuracies for images of shells of C. virginica from two 

validation experiments. Each validation experiment contained multiple tests that were 

designed to compare classification accuracies by trained technicians with the ShellBi 

classification software. In each test, 100 images of shells of one-seven species of 

bivalve larvae, with varying numbers of C. virginica shells, were classified. For the 

tests of the ShellBi software, three different training sets (COM700, COM1000, and 

COM1700) were used which contained images captured under different microscope 

settings. The image capture settings for COM1000 matched the settings at which the 

‘unknown’ images in experiment One were captured. The image capture settings for 

COM700 matched those of the ‘unknown’ images in experiment Two (corresponding 

to setting 1 in Table 3.3 and Fig. 3.4). The COM1700 training set was composed of 

images from both COM700 and COM1000.   A ‘.’ indicates that no C. virginica 

larvae were present. ‘Cumulative accuracy’ was calculated as the total number of true 

positive classifications for C. virginica divided by the total number of C. virginica 

images in all tests combined, multiplied by 100.   

A) Validation! experiment One

Images of

Test C. virginica Goodwin Wingate COM700 COM1000

1 41 98 98 46 93

2 1 100 100 0 0

3 0 . . . .

4 8 100 38 75 75

5 20 100 90 65 95

6 0 . . . .

7 16 100 100 38 94

8 19 100 100 74 95

9 5 100 80 80 80

10 0 . . . .

11 16 100 100 100 88

12 26 88 96 88 96

13 7 100 100 100 86

14 10 100 100 80 100

15 5 100 100 100 80

16 0 . . . .

17 19 100 84 95 95

18 7 100 100 100 100

mean 99 92 74 84

std 3 16 28 24

cumulative accuracy 98 94 73 92

Images of

Test C. virginica Goodwin Wingate COM700 COM1000

1 15 100 100 93 60

2 44 100 75 84 86

3 5 40 80 100 80

4 26 100 100 88 96

5 5 100 100 100 60

6 0 . . . .

7 15 100 100 100 47

8 37 86 100 100 84

9 13 100 100 100 77

10 15 100 100 93 93

11 35 100 100 86 60

12 19 100 100 95 47

13 4 100 100 100 25

14 16 100 100 81 69

Trained technician ShellBi software

B) Validation experiment Two

Trained technician ShellBi software
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Fig. 3.1. Automated imaging acquisition system composed of 1) Infinity 2-3C digital 

microscope camera with metal braces on each side, 2) Semprex automated stage 

motor, 3) Semprex automated stage with Sedgwick Rafter slide in well plate holder, 

4) stage motor controller hub,  5) Omax inverted polarizing microscope with metal 

braces on each side of base, 6) four metal braces (two on each side), and 7) aluminum 

baseplate clamped to benchtop. 
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Fig. 3.2. Percent classification accuracy of 9-d- old C. virginica larvae (upper panel) 

and concurrent color channel intensity measurements (bottom panel) taken over a 

span of 100 days. Each data point for classification accuracy was the result of 

classifying 50 images of 9-d-old C. virginica using a three species training set (C. 

virginica, I. recurvum, and R. cuneata). The color channel intensity values were 

calculated using five blanks captured from the automated stage and were compared to 

the acceptable range (hatched regions) (see Procedures section). Arrows indicate the 

time when color channel intensity values dropped below the acceptable range due to a 

microscope light bulb malfunction, and when percent classification accuracies also 

dropped (from an average of 98 to 70%). 
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Fig. 3.3. The number of shells of bivalve larvae in A) samples containing laboratory 

specimens (n = 23), and B) field samples (n = 30) which were detected by the 

automated ROI detection software (y-axis) versus those counted by a trained 

technician (x-axis). The line indicates a 1:1 ratio between counts of bivalve shells by 

trained technicians and the automated  ROI detection software. Both the laboratory 

specimens and field samples contained species of oyster, clams, and mussel larvae. 
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Fig. 3.4. Images 1-5 contain four- and nine-d-old larvae of C. virginica and 

correspond to the camera settings 1-5 (details in Table 3.3) which were used for tests 

reported in Table 3.4. Setting differences were created by altering attributes in the 

camera software Infinity Analyze.
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Fig. 3.5. Images from A) a field sample and B) laboratory-reared bivalves which were 

imaged at 7 x magnification. The field sample contained small birefringent materials 

or other birefringent organisms like pteropods which made it difficult to automate 

cropping of ROIs. 
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Supplementary material 

 

Table S.3.1. Information on the taxonomy and ages of the 8 species of bivalve larvae 

whose images were used to construct training sets for the validation experiments. The 

age groups represented were evenly distributed (a closely as possible) so that the total 

number of images for each species would contain an even representation of all ages. 

Each training set had three categories (Ostreoida (oysters), Mytiloida (mussels), and 

Veneroida (clams)which contained equal numbers of images. The two training sets 

(COM1000, COM7000) were bothed created using setting one (Table 3.3). However, 

color channel intensities for COM1000 were not measured and were different than 

those for COM7000.  

 

COM1000 Training Set COM700 Training Set

order family genus species ages total ages total

Ostreoida Ostreidae Crassostrea virginica 2, 4, 9, 12, 14, 16 1000 2, 4, 9, 12, 14, 16 1000

Mytiloida Mytilidae Ischadium recurvum 4, 6, 7, 14 500 4, 6, 7, 14 1000

Mytiloida Mytilidae Geukensia demissa 8, 10, 13 500 N/A 0

Veneroida Tellinoidea Macoma mitchelli 4, 6, 8, 10 200 4,8 200

Veneroida Mactridae Mulinia lateralis 2, 6, 8, 10, 13 200 2 ,8, 10,13 200

Veneroida Dreissenidae Mytilopsis leucophaeata 2, 4, 6, 8, 10 200 2, 4, 6, 8, 10 200

Veneroida Mactridae Rangia cuneata 2, 4, 6, 8 200 2,4,8 200

Veneroida Solecurtidae Tagelus plebeius 1, 3, 8, 13 200 3, 8, 13 200  
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3.S.2. Results from the two validation tests using three ShellBi training sets 

(COM1000, COM700, and COM1700) and two humans (Goodwin and Wingate to 

manually classify images of C. virginica of various ages and quantities within 18 

folders. Each folder had 100 images of different haphazardly picked bivalve larvae 

chosen from table S.3.1. Tables A and C show the actual number of C. virginica 

images “actual CV” in each of the 18 folders as well as how many were classified by 

ShellBi, Goodwin, and Wingate.  Tables B and D show the classification accuracy 

(percent correctly classified). Blank values mean there were no C. virginica in those 

particular folders.  

 
A) validation test one (actual number of  C. virginica vs. classified C. virginica) B) Classificaiton accuracies for C. virginica 

                          

folder 

actual 

CV COM1000 Goodwin Wingate COM700 COM1700   folder COM1000 Goodwin Wingate COM700 

1 41 38 40 40 19 39   1 93 98 98 46 

2 1 0 1 1 0 1   2 0 100 100 0 

3 0 0 0 0 0 0   3         

4 8 6 8 3 6 6   4 75 100 38 75 

5 20 19 20 18 13 18   5 95 100 90 65 

6 0 0 0 0 0 0   6         

7 16 15 16 16 6 15   7 94 100 100 38 

8 19 18 19 19 14 18   8 95 100 100 74 

9 5 4 5 4 4 4   9 80 100 80 80 

10 0 0 0 0 0 0   10         

11 16 14 16 16 16 16   11 88 100 100 100 

12 26 25 23 25 23 25   12 96 88 96 88 

13 7 6 7 7 7 7   13 86 100 100 100 

14 10 10 10 10 8 9   14 100 100 100 80 

15 5 4 5 5 5 5   15 80 100 100 100 

16 0 0 0 0 0 0   16         

17 19 18 19 16 18 18   17 95 100 84 95 

18 7 7 7 7 7 6   18 100 100 100 100 

                          

                          

                          

                          

C) validation test two (actual C. virginica vs. classified C. virginica)   D) Classificaiton accuracies for C. virginica 

                          

                          

folder 

actual 

CV COM1000 Goodwin Wingate COM700 COM1700   folder COM1000 Goodwin Wingate COM700 

1 15 14 15 15 9 9   1 93 100 100 60 

2 44 37 44 33 38 35   2 84 100 75 86 

3 5 5 2 4 4 5   3 100 40 80 80 

4 26 23 26 26 25 23   4 88 100 100 96 

5 5 5 5 5 3 5   5 100 100 100 60 

6 0 0 0 0 0 0   6         

7 15 15 15 15 7 13   7 100 100 100 47 

8 37 37 32 37 31 33   8 100 86 100 84 

9 13 13 13 13 10 12   9 100 100 100 77 

10 15 14 15 15 14 14   10 93 100 100 93 

11 35 30 35 35 21 26   11 86 100 100 60 

12 19 18 19 19 9 15   12 95 100 100 47 

13 4 4 4 4 1 2   13 100 100 100 25 

14 16 13 16 16 11 15   14 81 100 100 69 

15 10 10 10 10 2 5   15 100 100 100 20 

16 4 4 4 4 2 4   16 100 100 100 50 

17 25 23 25 25 9 15   17 92 100 100 36 

18 20 17 20 20 5 14   18 85 100 100 25 

  

 

 



 116 

 

 

Chapter 4: Identifying factors that influence vertical 

distributions of C. virginica larvae and estimating their mortality 

 

Abstract 

The eastern oyster Crassostrea virginica disperses solely during the larval 

stage when swimming behavior influences transport and mortality affects population 

dynamics. Yet, obtaining information on swimming behavior and mortality has been 

hindered by the difficulty in distinguishing C. virginica larvae from other bivalves. 

The objective of this study was to apply ShellBi, a new approach for identifying 

bivalve larvae, to infer factors that cue C. virginica larval swimming behavior and 

estimate their mortality rates. A combination of mapping and fixed station sampling 

strategies were employed in the Choptank River, a subestuary of Chesapeake Bay, to 

collect C. virginica larvae which were identified and measured using ShellBi. A 

length-to-age relationship based on hatchery data and laboratory experiments was 

applied to estimate mortality rates for 8-16 d-old larvae collected in the field. 

Analysis of field samples suggest that C. virginica vertical distributions were 

influenced by the halocline, because> 90% of larvae that were < 200 μm in shell 

height were found above a salinity gradient of 1.2  m
-1

. Estimated instantaneous daily 

mortality rates of 8-16 d-old larvae ranged 0.37 d
-1 

to 0.58 d
-1

, with the most reliable 

rates being 0.37-0.38 d
-1 

when most assumptions of the analysis were met. These 

results advance understanding of the larval ecology of C. virginica by providing 
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quantitative estimates of mortality and by inferring physical conditions that cue larval 

behavior. 

Introduction 

The eastern oyster Crassostrea virginica (Gmelin 1791) is an important 

commercial (Stevenson 1894) and ecological (Newell 1988, Kennedy 1996) species 

that is in decline worldwide (Beck et al. 2011). Specifically, in Chesapeake Bay, 

populations are estimated to be less than 1% of historic levels (Wilberg et al. 2011). 

Improved knowledge of factors that affect the larval stage is essential for 

understanding the relationship between reproductive output and population growth 

(Botsford et al. 1998). Unfortunately, due to the lack of a rapid identification and 

measuring technique, identifying and measuring large numbers of C. virginica larvae 

has been difficult. This has resulted in the larval stage of C. virginica being the least 

understood aspect of its life history. Yet, this stage is important to understand because 

it influences population connectivity and gene flow (Pineda et al. 2007, Dame 2012). 

The goal of this research is to expand knowledge of two aspects of the early life of C. 

virginica larvae: to identify factors that influence the vertical distribution of C. 

virginica larvae, and thereby infer swimming behavior and to estimate their mortality 

rates.   

Swimming behavior and vertical distributions 

The combination of both physical processes (e.g., currents and wind) and 

swimming behavior has been suggested as the primary explanation for advection 

and/or retention of invertebrate larvae in estuarine and coastal systems (Boicourt 
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1982, Wood and Hargis 1971, Andrews 1983, Mann 1988, Shanks and Brink 2005). 

For example, Shanks and Brink (2005) showed that the physical effect of upwelling 

and downwelling on larval vertical distributions varied for particular species in the 

same area and was not a result of passive behavior. North et al. (2008) showed that 

different swimming behavior between two oysters (C. virginica and Crassostrea 

ariakensis) resulted in different simulated dispersal distances and connectivity 

patterns in Chesapeake Bay. Various stages of C. virginica larvae were observed to 

have different distributions based on tidal phase and stratification (Carriker 1951, 

Kennedy 1996). Kim et al. (2010) found that although biological movement increased 

larval retention in some areas, it caused little changed in the overall patterns of larval 

transport which they suggested was due to destratification of the shallow Mobile Bay 

system. Puckett et al. (2014) reported that physical forces, like wind, were the 

dominant influence on transport in shallow coastal areas near North Carolina (Puckett 

et al. 2014). The relative contribution of behavior may depend on the depth of the 

estuary, role of wind mixing and the existence of two-layer circulation.  

Although the actual swimming behavior of C. virginica larvae has not been 

observed in the field, many studies have inferred swimming behavior based 

laboratory studies and on the vertical distributions of larvae found in the field. The 

life cycle of C. virginica begins with externally fertilized eggs that form gametes and 

after 5-6 hours a girdle of cilia form and the larvae swim upward (Galtsoff 1964). 

There is an ontogenetic migration where smaller (early-stage) larvae are found in the 

upper water column and older (late-stage) larvae are found near the bottom (Carriker 

1951, Andrews 1983). As the larvae develops, both the swimming and sinking speeds 
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increase (Galtsoff 1964). Although horizontal currents are too great for larvae to 

swim against, they can still swim vertically (Hidu and Haskin 1978, Mann 1986). 

Specifically, smaller (75 µm) larvae can swim at a rate of 0.01 cm s
-1

 up the water 

column and large (300 µm) C. virginica larvae can swim at 0.08-0.31 cm s
-1

 (Hidu 

and Haskin 1978, Mann and Rainer 1990). If the larvae cease to swim however, the 

sinking speed of smaller larvae is 0.02 cm s
-1

 and 0.08 cm s
-1

 for the larger larvae 

(Hidu and Haskin 1978). These smaller and larger stage larvae could sink between 7-

18 m in 6 hours if they are dead or not swimming. Therefore it is likely that larvae 

found in the upper part of the water column are actively swimming.  

 To understand the factors that influence the vertical distribution of C. 

virginica larvae, and thereby infer swimming behavior, both field and laboratory 

studies have been conducted. Salinity appeared to be the dominant factor that cued 

swimming behavior (Nelson 1927, Wood and Hargis 1971, Carriker 1951). Younger 

stage larvae were frequently found above the halocline in stratified conditions during 

periods of low wind and mixing (Nelson 1927, Nelson and Perkins 1931), which 

supported the hypothesis that those larvae were active swimmers when cued by a 

salinity gradient. Wood and Hargis (1971) found that the highest numbers of C. 

virginica larvae were found when salinity increased in the accompanying flood tide, 

they concluded that larvae were responding actively to salinity cues because they 

behaved differently than observed passive inert particles of similar buoyancy. 

Laboratory studies have also shown that in the presence of a halocline, C. virginica 

larvae changed behavior and swam upward (Hidu and Haskin 1978). However, the 

laboratory-induced halocline may not be reflective of those experienced in the field 
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and additional observations are needed to determine how larvae of different stages 

respond to salinity gradients in situ. 

Although salinity has been observed as a dominant cue for C. virginica larval 

swimming behavior, the effect of dissolved oxygen (D.O.) on the vertical 

distributions of C. virginica larvae is not well known. Hypoxia occurs in Chesapeake 

Bay during summer (Officer et al. 1984) when C. virginica spawn (Kennedy and 

Krantz 1982, Kennedy 1986). Mann and Rainer (1990) showed that the swimming 

rate of larvae decreased with lower levels of oxygen. The tolerance of C. virginica 

larvae to low oxygen levels increases with developmental stage and body size 

(Widdows et al. 1989). Widdows et al. (1989) showed that median mortality times in 

anoxic conditions (created by bubbling N2 gas) were 11, 51, and 150 hours for C. 

virginica larvae of length 82 μm, 312 μm, and newly settled spat, respectively. It is 

not clear whether D.O. cues C. virginica swimming behavior in the field.   

Although previous research has provided information on the factors that could 

influence C. virginica vertical distributions, many of the field studies lacked 

identification and measuring techniques that would allow for large numbers of 

bivalve larvae to be enumerated, identified, and measured. Therefore more 

information is needed, especially field observations, to identify whether salinity, 

D.O., and other physical and biological conditions influence larval swimming 

behavior. One of the goals of this research program was to observe what factors 

appear to influence the vertical distributions of C. virginica larval and thereby infer 

what cues their swimming behavior. 
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Mortality 

Understanding the mortality in pelagic early life stages of marine organisms 

has been a major goal in marine and fisheries ecology (Houde 2002). Mortality 

estimates for planktonic larvae are difficult to obtain because larvae are small and 

concentrations are patchy (Vaughn and Allen 2010). Yet, understanding larval 

mortality is important because it can influence population dynamics (Fassler et al. 

2011). The estuarine environment presents unpredictable risks to planktonic 

organisms including C. virginica larvae. Predation (Nelson 1925, Burrell and Von 

Engel 1976, Steinberg and Kennedy 1979), food quality, salinity, temperature (Davis 

1958, Davis and Calabrese 1964), and even the condition of the gametes from the 

previous generation (Loosanoff 1965) can influence larval mortality. However, larval 

mortality calculations for bivalves are scarce. Instantaneous daily mortality rates were 

calculated, from field data, to be 0.10 to 0.32 d
-1

 for several species of bivalves 

(Pedersen et al. 2008). Rumrill (1990) calculated an average rate of 0.22 d
-1

 based on 

several marine invertebrate larvae. Furthermore, there are very few estimates of larval 

mortality calculated in the field for C. virginica. Drinnan and Stallworthy (1979) 

estimated that C. virginica larvae mortality rates ranged between between 0.05 - 0.30 

d
-1

 in Bidford River, Canada. However, the mortality rates of C. virginica larvae have 

not been estimated in Chesapeake Bay. Because mortality can fluctuate over space 

and time (Aksnes and Ohman 1996, Pedersen 2008, Tapia and Pineda 2007), multiple 

estimates are needed to better understand the factors that control mortality of C. 

virginica larvae in the plankton. 
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There are multiple approaches for calculating mortality rates in the plankton. 

Mortality rates for some invertebrate can be calculated using stage-specific estimates, 

such as the vertical life table (VLT) approach (Aksnes and Ohman 1996). 

Traditionally this method has used a snapshot of an organism’s stage ratios (e.g. 

copepodite stage compared to adult copepods). Tapia and Pineda (2007) used this 

approach across horizontal sampling sites to estimate instantaneous rates of mortality 

for barnacle species. The VLT approach has several assumptions including the 

assumptions that recruitment to the stage, stage duration, and mortality for a stage is 

constant (Aksnes and Ohman 1996). The method is useful when at least 10 samples 

have been collected, when horizontal techniques are likely to fail due to advective 

influence, or when there is a lack of adequate time-series (i.e. tracking a particular 

cohort through time and space).  

Another method to calculate mortality rates is the catch curve approach that 

applies age instead of stage to estimate mortality. Like the VLT approach, the catch 

curve approach focuses on a snap shot of the population in time. However, the catch 

curve approach uses age frequency to calculate mortality based on the slope of the 

natural-log-frequency-at-age (Ricker 1975). This method has the assumption that all 

of the age classes in the calculation are ‘equally catchable’ by the gear used. It also 

assumes that mortality is constant across ages and that recruitment for each observed 

age is constant (Chapman and Robson 1960). The catch curve approach offers an 

estimate of uncertainty from the standard error of the slope of the natural-log-

frequency plot.  
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Quantifying mortality rates and improving knowledge of the physical factors 

that influence vertical distributions of C. virginica larvae will improve our 

fundamental understanding of the early life of this species. The main objectives of 

this research were to: 1) investigate how salinity, temperature, dissolved oxygen, total 

suspended solids (TSS), chlorophyll a, and current velocities influence the vertical 

distribution of C. virginica larvae in the Choptank River, 2) infer factors that may cue 

oyster larval behavior, and 3) calculate mortality rates for C. virginica larvae. These 

objectives were addressed with a field sampling campaign that included a mapping 

and fixed station cruise during which the horizontal and vertical distributions of 

oyster larvae were determined in relation to physical and biological factors.  

 

Methods 

Data were collected from the Choptank River, a subestuary of Chesapeake 

Bay, at several locations during one ‘mapping’ cruise and one ‘fixed station’ cruise 

(Fig. 4.1). The mapping cruise was conducted on the 8-m R/V Terrapin and consisted 

of 15 stations from the mouth of the river to the low salinity (< 5) region.  Stations 

were all sampled in a 12 hour period on July 5, 2012. The fixed station cruise was 

conducted on the 46-m R/V Hugh R. Sharp and consisted of two stations that were 

occupied from July 10-14, 2012.  

Mapping cruise 

The mapping cruise was conducted on July 5, 2012 to determine the 

horizontal and vertical distribution of oyster larvae in relation to physical and 
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biological factors, and to provide spatial context for the fixed station cruise which 

occurred 5 d later. Fifteen stations across the Choptank River were occupied. The 

timing of the cruise was chosen to focus effort on the peak period of C. virginica 

larval spawning in this region (Kennedy and Krantz 1982, Kennedy 1986). During the 

cruise, station locations (Fig. 4.1) were selected to map bivalve larvae in Choptank 

River from the mouth to a station upstream with low salinity (~5). The R/V Terrapin 

was equipped with a CTD and pump system to measure water properties and collect 

plankton samples. Sensors on the CTD measured temperature, conductivity, pressure, 

fluorometery, dissolved oxygen, optical backscatter and photosynthetically active 

radiation. The CTD was deployed to measure water properties on the down-cast. In 

addition, hoses attached to the CTD frame were used to pump water that was filtered 

through a plankton net (64-μm net mesh) to collect bivalve larvae. Collections were 

made above and below the highest salinity gradient that was observed in plots 

generated during the initial CTD downcast at each of the 15 stations. At each station 

~ 200 l of seawater was pumped with two sets of hoses and pumps from below and 

above the highest observed salinity difference by slowly moving the CTD up through 

the water column continuously. The actual amount of water pumped varied slightly 

from 200 l and was measured with digital flowmeters (Great Plains Industries model 

RG45-B). The actual volume of water pumped was used to calculate concentrations 

of C. virginica larvae for each sample. A total of 30 samples were collected and fixed 

in 4% buffered formalin (the formalin was buffered by adding sodium borate until pH 

was ≥ 8.0). Water samples were collected to measure chlorophyll a pigments (using a 
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syringe/filter apparatus) to calibrate the fluorometer and to measure total suspended 

solids (TSS) to calibrate the optical backscatter sensor.  

 

Fixed station cruise 

One four-day-long ‘fixed station’ cruise aboard the 45-m R/V Hugh R. Sharp 

was conducted on July 10-14, 2012 to enhance understanding of physical and 

biological factors that influenced the vertical distributions of C. virginica. A time 

series of plankton collections were made at two stations while the ship was at anchor. 

The water column was highly stratified at one station (station One) and was more 

mixed at the other station (station Two) (Fig. 4.1). CTD casts and larval collections 

were conducted every 1.5 hours at each station. On the CTD downcast, measurements 

of water properties were conducted and included salinity, temperature, depth, D.O., 

turbidity, and fluorescence. On the CTD up-cast, a bellows pump was used to pump ~ 

200 l of seawater per sample. Seawater was pumped through a 64-µm net contained 

in a 55 gallon drum that was half-filled with seawater to minimize damage to the 

plankton. Plankton samples were collected from five (station One) or four (station 

Two) 1.5-m targeted depth intervals by pumping water below, through, and above the 

mid-point depth interval. The targeted mid-point depths were 0.9, 2.7, 4.5, 6.3, and 

8.1 m at station One and 0.6, 2.3, 4.0, 5.7, and 7.4 m at station Two. The flow rate of 

the bellows pump was measured regularly and was used with the duration of each 

sample collection to calculate the volume filtered for each sample. A total of 307 

samples were collected and fixed in 4% buffered (sodium borate) formalin.  
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Current velocity was measured at both stations of the fixed station cruise. An 

RDI Workhorse Sentinel 1200 KHz with mode 12 (high ping rate) Acoustic Doppler 

Profiler (ADCP) was moored at each station. The ADCP was deployed on an upward 

looking bottom landing frame with the ADCP mounted 0.5 m above the seabed and 

placed within 0.4 - 0.6 km of the ship.  

Plankton sample processing 

All plankton samples were returned to the laboratory and processed using a 

semi-automated image analysis technique that was optimized to identify and measure 

C. virginica larvae (Goodwin et al. 2014, Chapter 3). Each sample was poured 

through a 333 μm filter, bleached for 20 minutes to remove tissue and break apart 

shells, and then rinsed with distilled water buffered with sodium borate and placed on 

two Sedgewick Rafter slides. Each Sedgewick Rafter slide was placed on an 

automated image acquisition system that was comprised of an automated stage, a 

polarized microscope, a digital camera, and custom software that automatically 

captured images of half of one slide in 23 min (Chapter 3). Imaging half of each slide 

resulted in a 50% sub-sample of the shells. Because each bivalve has two shells, the 

number of shells imaged approximated the number of bivalves in the sample. After 

the images of bivalve larvae were captured and masked (Chapter 3), the larvae that 

were C. virginica were identified to species using the ShellBi software with an 

estimated accuracy of 80-93% (Chapter 3).  

All images were used to estimate the shell height of larvae. For D-stage 

larvae, the minor axis (shortest distance across the shell) was the best approximation 

of their true shell height whereas the major axis (the longest distance across the shell) 
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best represented the shell height of later stage larvae. To determine the major axis 

size of D-stage larvae, 300 images of C. virginica D-stage larvae were selected 

haphazardly from field samples of the mapping and fixed stations. The longest axis 

was measured and a mean of 106 µm was determined to be the average major axis 

length of D-stage larvae. Therefore, the minor axis length was used as an estimate of 

shell height for all larvae with a major axis length < 106 µm (i.e., all larvae < 106 

were assumed to be D-stage). The major axis length was used as an estimate of shell 

height for larvae > 106 µm. 

Data analysis 

Interpolated maps of physical factors and C. virginica larvae abundances (no 

m
-2

) in three size classes (< 106, 106-200, and ≥ 200 µm) were created with data from 

the mapping cruise. The three size classes were chosen because of their distinct 

morphology and shell patterns under polarized light (Fig. 4.2). It is likely that the ≥ 

200 µm size class included both late stage veliger and pediveliger larvae. Abundances 

of larvae (no. m
-2

) were calculated by multiplying the concentration of larvae (no. m
-

3
) by the sample depth interval (m). 

Contour plots of the time series of vertical distributions of physical factors and 

C. virginica larval concentrations (no m
-3

) for the three size classes (< 106, 106-200, 

and ≥ 200 µm) were generated for station One and Two of the fixed station cruise. All 

contour plots for mapping and fixed station cruises were created using Golden 

Software Surfer (v. 10.0). The gridding method was kriging with assumed isotropy. 

The grid-line geometry was no finer than half the distance between measurements in 

the X (time) or Y (depth) directions. Because the CTD casts were between 0.5-2.0 m 
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shallower than the bottom, the data were not interpolated below the depth of the CTD 

cast. 

 The data collected during the downcasts of the CTDs were processed in 0.25 

m depth intervals using SeaBird software (v. 7.13). The maximum salinity gradient 

(the most rapid change in salinity over depth) was calculated for each CTD cast of the 

fixed station cruise. The maximum salinity gradient (m
-1

) was calculated by 

determining the location where the largest change in salinity occurred in the water 

column during each cast, then dividing that change in salinity by the depth from one 

salinity measurement to the next. The 2 mg l
-1

 oxycline was calculated by linear 

interpolation between D.O. measurements. 

The ADCP data was processed by Steven Suttles and rotated to derive along-

channel current velocity profiles. The average along channel current velocity in each 

1 m bin was calculated for two blocks of time that corresponded to approximately one 

tidal period at both station One and station Two. At station One, the duration of the 

averaging interval was 24.72 hrs at the beginning of the station occupation and 24.48 

hrs near the end. For station Two, the duration of the averaging interval was 24.60 hrs 

at the beginning and 24.74 hrs near the end. The average current velocity during each 

of these tidal periods was multiplied by the number of seconds in the averaging 

interval to estimate the average displacement (km) of water. 

Statistical analysis 

Nonparametric analyses were conducted on data from the mapping and fixed 

station cruises. Potential associations between C. virginica larvae of different size 

classes and depth, current velocities, temperature, salinity, D.O., TSS, chlorophyll, 
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and current velocities during the mapping and fixed station cruises were investigated 

using a correlation analysis (JMP pro v. 11).  Spearman rank-order correlation 

coefficients were calculated. A Kruskal Wallis test was conducted (JMP pro v. 11) to 

test whether the mean concentration larvae above and below the maximum salinity 

gradient were significantly different during the fixed station cruises (data from station 

One and Two were pooled). A nonparametric test was necessary because 

concentrations were not normally distributed even after transformation. The analysis 

was conducted for each size class of larvae < 106, 106-200, ≥ 200 µm. 

Calculating mortality estimates for larval stages of C. virginica 

Mortality calculations were conducted using the VLT and catch curve 

approaches. Before these methods were applied, the age of each larva was estimated. 

An age-length relationship was determined from larvae reared in hatchery and 

laboratory conditions (26.3-27.7 
o
C, and salinity of 9.0-12.1) that closely matched 

those in the Choptank River when the larvae were sampled. At least 30 larvae were 

measured in each of the following age classes: 2, 4, 8, 12, 14, and 16 days. Hatchery 

observations indicated that larvae were “eyed” and ready to settle after 16 days in 

these conditions. The natural log of the larval age (days) vs. length (µm) was plotted 

and a linear regression line was fit to the data (Fig. 4.3A). The regression equation 

was rearranged to solve for age in order to estimate the age of C. virginica larvae 

caught in the field based on length measurements. The length (µm) of each larvae 

measured in the field was converted to age using equation (1) where A is age in days 

and L is length (shell height) in µm:  
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                                           Equation 1 

 

 

An additional regression line (Fig. 4.3B) was created that included 

measurements of larvae that were reared in cooler conditions (temperature ranges 

22.0 – 22.3 
o
C and salinities 9.0-21). This line could be used to estimate ages for a 

different range of sampling conditions not observed in this study.  

Mortality estimates were calculated for 8 to 16 d-old larvae, a time window 

which was based on the sizes of larvae that were effectively caught by the plankton 

nets and would have been expected to be present in the plankton. To ensure that all 

larvae in the analysis were collected effectively, the analysis was limited to 8-16 d old 

larvae. Larvae calculated as 8 d-old larvae under Equation 1 (~121µm shell height) 

were likely collected effectively because their minor axis was sufficiently larger than 

the diagonal across the 64 m net mesh. Larger larvae over 16-d-old were assumed to 

be settled because the conditions of salinity and temperature, known to affect 

settlement (Medcof 1939, Stallworthy 1979, Loosanoff and Davis 1963), were similar 

between hatchery and field conditions and 16-d-old larvae were observed to be 

“eyed” in samples from the hatchery. .  

Once the age of each larva was calculated, a vertical life table approach was 

used to calculate mortality based on Aksnes and Ohman (1996). The iterative 

equation designed for copepod mortality calculations was applied to the age groups of 

8 and 16 d for C. virginica larvae (Asknes and Ohman 1997): 
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  Equation 2 

    

 

 

where di = instantaneous death rate for stage i and ai = stage duration for stage i 

(which was 8 d). The ratio of observed stages (age 8 and age 16 d larvae in this case) 

was fi =ni/ni+1 where ni is the number of individuals in development stage i. The 

calculation for this iterative equation was conducted using MATLAB (v. 2012b) after 

Pierson et al. (2007). Mortality rates using all stations of the mapping cruise as well 

as stations One and Two of the fixed sampling cruise were calculated. 

Mortality estimates also were made using the catch curve approach. A 

regression line was fit to the frequencies of the natural log of daily age groups (8-16 

d) and the slope of the curve was used to estimate the instantaneous daily mortality 

rate (Ricker 1975).  The standard error of the slope provided an estimate of 

uncertainty. This calculation was completed with data from the mapping cruise, from 

station One, and from station Two in order to calculate mortality rates for each of 

these locations and times.  

Sensitivity analysis. A sensitivity analysis was conducted to better understand 

how the procedure for estimating larval age from length measurements could 

influence calculated mortality rates. Hypothetical “maximum” and “minimum” 

growth equations were constructed using larvae reared in hatchery and laboratory 

conditions. Instead of using all data (as in the analysis described above), regression 

equations were constructed with the maximum and minimum length values within 
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each age class (dashed lines in Fig. 4.3A). The ages calculated from these regression 

equations were then used to estimate mortality rates based on hypothetical “high” and 

“low” growth scenarios.  

 

Results 

The overall average concentration of oyster larvae in Choptank River for all 

cruises and samples combined was 1,292 larvae m
-3

, which is 10 times less than 

historical concentrations from the early 1900s (13,307 larvae  m
-3 

) (Nelson 1913) 

(Table 4.1). Maximum concentrations of larvae during mapping and fixed station 

cruises ranged from 89 to 9190 m
-3

 (Table 4.2). Larvae sampled during the mapping 

cruise were collected five days prior to station One of the fixed station cruise and 

seven days prior to larvae from station Two. It is possible that the same cohort of 

larvae < 106 µm sampled during the mapping cruise also could have been sampled as 

larger individuals during the fixed station cruise. 

Mapping cruise 

During July 2012, river flow into the Chesapeake Bay was lower than average 

(USGS station 01570500, http://waterdata.usgs.gov/usa/nwis/uv?site_no=01570500 ) 

but surface salinity and temperatures in the Choptank were within the long term mean 

(MDNR, station ET5.2, www.eyesonthebay). The average surface salinity and 

temperature for July 2012 in the Choptank River were 11.54 +/- 0.16 s.t.d. and 27.8 

+/- 0.01 s.t.d. 
o
C respectively (MDNR, station ET5.2, www.eyesonthebay). During 

the mapping cruise, observed surface salinity ranged from 8.1 - 14.7 and temperature 
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ranged from 25.5 - 30.8 
o
C (Fig. 4.4) which were within the long term average for 

that time period in the Choptank (MDNR, station ET5.2, www.eyesonthebay). 

Contour plots of physical factors for the mapping cruise show that salinity was 12 

near the mouth and decreased upstream (Fig. 4.4A,B). Temperatures were about 1 
o
C 

cooler on the bottom than at the surface (Fig. 4.4C,D). Hypoxic water was present 

near the mouth of the Choptank at the bottom but hypoxia was not observed within 

the river (Fig. 4.4E,F). Chlorophyll a increased upriver and was higher in surface 

waters (Fig. 4.4G,H). 

 Concentrations and abundances of larvae in the Choptank River varied by size 

class and location (Fig. 4.5). Smaller size classes (< 106 µm) of larvae had 

concentrations ranging 0-8,005 larvae m
-3 

and abundances ranging from 0-48,274 

larvae m
-2

. These smaller larvae were most abundant near Broad Creek (Fig. 

4.1,4.5A) with lower abundances in the middle of the river (Fig. 4.5A). The 106-200 

µm sized larvae had concentrations ranging from 0-8,380 larvae m
-3 

and
 
abundances 

ranging from 0-60,622 larvae m
-2

. These larvae were most abundant mid-river (Fig. 

4.5B). The larger (≥ 200 µm) larvae were rare compared to the other size classes and 

had concentrations and abundances that ranged from 0-795 larvae m
-3 

and 0-5,168 

larvae m
-2

, respectively.  Higher abundances of larvae ≥ 200 µm were observed near 

the mouth of Harris Creek (Fig. 4.5C). There were no significant correlations between 

larval abundances and depth, temperature, salinity, density, D.O., TSS, or 

Chlorophyll a for samples collected during the mapping cruise (Table 4.3). The 

smallest size class < 106 µm had significant correlations with the 106-200 µm size 

class but not the largest > 200 µm size class (Table 4.4). These results indicate that C. 
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virginica spawning had taken place in multiple areas prior to sampling and that 

smaller larvae were more abundant than larger larvae. 

Fixed station cruises 

Station One. Station One was characterized by cooler, saltier, hypoxic, turbid 

water during flood tide, by warmer fresher water during ebb tide, and by high 

stratification, especially during flood tides (Fig. 4.6A-C, and Fig. 4.7A). Temperature 

and salinity ranged from 25.2 - 29.2 
o
C and 12.5 - 17, respectively (Fig. 4.8). As 

found during the mapping cruise near the mouth of the river on July 5 (Fig. 4.4F), 

hypoxic water was present on July 12 at station One where it was found during both 

tidal cycles and occurred within 4-5 m of the surface during flood tide (Fig. 4.6B). 

Chlorophyll a peaked in surface and bottom waters (Fig. 4.6D). The maximum along 

channel current velocity was 0.45 m s
-1

 during ebb tide and 0.35 m s
-1 

during flood 

tide (Fig. 4.7A). The average displacement of water was between 5-7 km out of the 

estuary in the surface layers and between 3-4 km up-estuary in the lower layers 

during each of the ~24 hour tidal periods (Fig. 4.9). 

 Larval concentrations at station One varied by size class. The maximum 

concentration for size classes < 106, 106-200, and ≥ 200 µm were 4,745, 3,867, and 

89 m
-3

, respectively (Table 4.2). Concentrations of larvae of all stages were highest 

during ebb tides at station One (Fig. 4.10). Earlier stage (< 106, 106-200 µm) larvae 

were observed in greater concentrations than later stage (≥ 200 µm) larvae (Table 

4.2). Larvae of all size classes at station One were positively correlated with depth, 

temperature, D.O., and Chlorophyll a, and negatively correlated with salinity and TSS 

(Table 4.3). Salinity had the highest correlation with concentrations of larvae in each 
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size class (r = 0.66, 0,53, 0.50 for 106, 106-200, and ≥ 200 µm size classes, 

respectively) (Table 4.3). In addition, larval size classes were significantly correlated 

with one another (Table 4.4).  

Station Two. Station Two had fairly well mixed conditions across tidal cycles 

with lower salinity, temperature, and D.O. gradients than station One (Fig. 4.11A-C). 

The ranges of temperature and salinity were 27.2 - 28.8 
o
C and 12.4 - 14.4, 

respectively (Fig. 4.12). Hypoxic water was present throughout tidal cycles in the 

deeper (below 5 m) part of the water column (Fig. 4.11B). Concentrations of TSS 

were higher in deeper water below the 13 isohaline (Fig. 4.11C) and chlorophyll a 

was abundant above and below the 13 isohaline (Fig. 4.11D). The maximum along 

channel current velocity was 0.34 m s
-1

 during ebb tide and 0.22 m s
-1

 during flood 

tide (Fig. 4.7B). The average displacement of water in both the upper and lower 

layers was < 1.5 km during each of the ~24 tidal periods (Fig. 4.13). 

Larval concentrations varied by size class and were present throughout both 

ebb and flood tides. The maximum concentration for size classes < 106, 106-200, and 

≥ 200 µm were 6,460, 3,780, and 180 m
-3

, respectively (Table 4.2). Larvae were 

present during both flood and ebb tide (Fig. 4.14). The larvae also were present across 

the range of temperatures and salinities measured at station Two (Fig. 4.12). Smaller 

(< 106, 106-200 µm) larvae were observed in greater concentrations than larger 

larvae (≥ 200 µm). Larval concentrations were positively correlated with depth, 

temperature, and D.O. and negatively correlated with salinity, and TSS (Table 4.3). 

Larvae < 200 µm had the highest correlations with salinity and 1arvae ≥ 200 µm had 
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the highest correlation with D.O (Table 4.3). All concentrations of the three different 

size classes of larvae were significantly correlated with each other (Table 4.4).   

Maximum salinity gradient and C. virginica vertical distributions 

Most larvae < 200 µm were observed above the maximum salinity gradient 

during all CTD casts (Fig. 4.10A,B, 4.14A,B). At station One where stratification was 

relatively high, maximum salinity gradients ranged between 0.1 and 6.9 m
-1

 with only 

4 out of 29 CTD casts having maximum salinity gradients < 1.1 m
-1

. The majority of 

larvae were found above the maximum salinity gradient: 95, 93, and 89% percent of 

larval concentrations were above the maximum salinity gradient for the 106, 106-200, 

and > 200 µm size classes, respectively. Station Two had much lower maximum 

salinity gradients (0.1 - 1.5 m
-1

) and the percent of larval concentrations above the 

maximum salinity gradient was 93, 85, and 74% for the 106, 106-200, and > 200 µm 

size classes, respectively.  

Median concentrations of all size classes of larvae were significantly higher 

above the maximum salinity gradient.  The median concentration of larvae < 106 µm 

above the maximum salinity gradient (1017 m
-3

 +/- 2220 s.t.d.) was significantly 

higher than the median concentration below it (48 m
-3

 +/- 203 s.t.d.) when data from 

both station One and Two were pooled (Kruskal Wallis, p = 0.0001, Z = -8.26, α = 

0.05, n = 59). The median concentration of larvae 106-200 µm above the maximum 

salinity gradient (510 m
-3

 +/- 1136 s.t.d.) was significantly higher than the median 

concentration below it (30 m
-3

 +/- 161 s.t.d.) when data from both station One and 

Two were pooled (Kruskal Wallis, p = 0.0001, Z = -7.85, α = 0.05, n = 59). The 

median concentration of larvae ≥ 200 µm above the maximum salinity gradient (30 
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m
-3

 +/- 25 s.t.d.) was significantly higher than the median concentration below it (0 

m
-3

 +/-11.5 s.t.d.) when data from both station One and Two were pooled (Kruskal-

Wallis, p = 0.0001, Z = -7.16, α = 0.05, n = 59). Based on these observations, the 

majority of larvae from all size classes appear to remain above salinity gradients > 1.2 

m
-1

, except larger larvae which were found deeper in the water column when salinity 

gradients < 1.2 m
-1

 were observed. 

Four locations in time and space had salinity gradients that exceeded 3.1 m
-1

 

and had D.O. levels < 2 mg l
-1

 at the same depth. One hundred percent of larvae of all 

size classes were found above these depths (Fig. 4.15A-C), suggesting that D.O., in 

addition to salinity, may influence the vertical distributions of larvae.  

Mortality rates 

Mortality rates of larvae 8-16 d-old varied for each cruise and for each method 

used to calculate them. Using the VLT approach, instantaneous daily mortality rates 

were estimated to be 0.48, 0.51, and 0.37 d
-1

 for the mapping cruise, station One, and 

station Two, respectively (Table 4.5). The instantaneous daily mortality rates and 

confidence intervals derived with the catch curve approach were 0.50 (95% CI 0.37-

0.63), 0.58 (95% CI 0.45-0.71), and 0.38 (95% CI 0.28-0.48) d
-1

 for the mapping 

cruise, station One, and station Two, respectively (Table 4.5). The VLT estimates fell 

within the 95% confidence interval of the continuous catch curve estimates for all 

cruises (Figure 16B). In other words, both methods used to calculate mortality rates 

were not statistically different. In summary, the instantaneous daily mortality rates for 

C. virginica larvae between 8-16 days old in Choptank River were estimated to be 

0.37-0.58 d
-1

. 
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The sensitivity analysis which was conducted to examine the effect of age-

length estimates on mortality rates indicated that the rates calculated using the 

“minimum” growth equation (0.15-0.23 d
-1

) were substantially different, 

approximately 50% lower, than those predicted with all data (0.37-0.58 d
-1

), whereas 

rates calculated with the “maximum” growth equation (0.44-0.63 d
-1

) were slightly 

higher than those calculated with all data (Table 4.5, Fig. 4.16). Estimated daily 

mortality using the VLT approach under both the ‘minimum’ and maximum’ growth 

scenarios were within the 95% CI interval of the catch curve approach for all cruises 

and differed by no more than 0.07 d
-1 

from the catch curve
 
estimate. When a different 

time window was chosen, 10-16 d-old larvae (all ‘catchable’ under the minimum 

growth conditions), the “minimum” growth equation yielded higher mortality rates 

for the mapping, and stations One and Two using the VLT (0.31, 0.18, and 0.28 d
-1

, 

respectively) and catch curve (0.52, 0.42, and 0.32 d
-1

 respectively) approaches.  

Therefore, this sensitivity analysis suggests that both the data used to estimate the age 

of larvae in the field as well as the time window used to estimate mortality rates could 

strongly influence mortality rate calculations. Furthermore, these results show that 

both the VLT and catch curve approaches offer similar estimates of C. virginica 

larval mortality.   

 

Discussion 

The overall concentration of larvae in the Choptank River found in this study 

was ten times lower than those in Barnegat Bay during the early 1900s  (Nelson 1913, 

Nelson 1927) and ~5 times lower than some concentrations reported in the James 
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River and the Choptank River during the 1980s (Andrews 1983, Seliger 1982) (Table 

4.1). Despite the uncertainty in estimates due to differences in sampling gear and 

identification techniques, these studies still show the general downward trend of 

larval concentrations over time. This downward trend in larvae is most likely a result 

of the downward trend in the recruitment of C. virginica since 1940 in the Maryland 

portion of the Chesapeake Bay (Kimmel and Newell 2007). This study shows that, 

despite the depressed abundances of C. virginica currently in Chesapeake Bay, 

enough larvae were present in the Choptank River during this study to advance 

understanding of larval ecology of C. virginica.  

This study also indicates that there could be different source locations and/or 

transport patterns for C. virginica larvae in Choptank River based on the high 

abundances of larvae < 200 µm in two separate areas of the river (Fig 5A-C). The 

presence of larvae in July is consistent with previous spawning at these locations in 

previous years (Kennedy and Krantz 1982, Kennedy 1986). The high abundance of 

all stages of larvae in the northwest (Fig. 4.5A-C) may indicate that multiple 

spawning events could have occurred several days to a few weeks prior to sampling.  

Swimming behavior and vertical distributions 

The location of the maximum salinity gradient appeared to influence the 

vertical distributions of C. virginica. The majority of larvae in all size classes were 

found above the maximum salinity gradient at station One (89 to 95%) and at station 

Two (74 to 93%). Fewer larvae ≥ 200 µm were found above the maximum salinity 

gradient than larvae < 200 µm, which supports the observations that late stage 
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veligers and pediveligers depth distributions tend to shift toward bottom (Carriker 

1951, Andrews 1983). Higher percentages of larvae were found above the salinity 

gradient at station One compared to station Two, perhaps the result of higher salinity 

gradients at station One compared with those at station Two. These observations 

support previous findings (Nelson 1913, Carriker 1951, Hidu and Haskin 1978) that 

indicated that salinity appears to be a dominant driver of vertical distributions of C. 

virginica larvae. 

In addition to salinity, advection of different water masses also may have 

influenced the vertical distribution of C. virginica larvae. Station One was 

characterized by hypoxic water with higher salt content during flood tide with very 

low concentrations of larvae (< 833 m
-3

) compared to more oxygenated ebb tides that 

contained high concentrations of larvae at the same depths (> 6730  m
-3

) (Fig 6, 10). 

The influx of salty hypoxic water during each flood tide at station One may provide 

evidence that an upwelling event had occurred. Intrusions of hypoxic water into the 

Choptank River can occur due to upwelling from the mainstem of the Bay (Sanford et 

al. 1990). This could explain the sharper gradients and lower numbers of larger ≥ 200 

µm larvae below the maximum salinity gradient compared with station Two. It also 

could explain why the majority of all sizes of larvae were only present during ebb 

tide.  

Dissolved oxygen also may have influenced the vertical distribution of C. 

virginica larvae. Although most larvae were found above the salinity gradient at 

stations One and Two (Fig. 4.10,4.14), some larvae ≥ 200 µm larvae were found 

below it at station Two (Fig. 4.14C). Most of these larvae were not present in hypoxic 
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waters (Fig. 4.6B, 4.14C), indicating that these larvae may have avoided hypoxia. At 

station One, salinity gradients > 3.1 m
-1

 and the 2 mg l
-1

 oxycline were located at the 

same time and depth (n=4). Although 100% of all larvae were found above this depth 

during these casts (Fig 4.15A-C), there was not enough information to discern 

whether salinity or hypoxia may have cued upward swimming behavior, or whether 

the absence of larvae in deep waters was simply the result of advection of hypoxic 

water with no larvae in it. Nevertheless, results provide some support for the idea that 

hypoxia could cue upward swimming of C. virginica larvae, but further studies would 

be needed to better characterize the response of C. virginica larvae to hypoxic 

conditions in the field. 

In summary, larvae observed in the upper part of the water column were likely 

there as a result of their swimming behavior that could have been stimulated by both 

salinity gradients and oxygen levels. Distributions of larvae at station One were likely 

a result of both swimming and advective forces which reinforces the idea that both 

physical factors and biological factors play a role in the vertical distributions of C. 

virginica larvae (Carriker 1951, Andrews 1983, Arnold et al. 2005, North et al. 2008, 

Kim et al. 2010, Puckett et al. 2014).  

Mortality 

Mortality rates differed between cruises. The vertical life table approach 

yielded instantaneous daily mortality rates that were similar to the catch curve 

approach for all growth scenarios and cruises (Table 4.5, Fig. 4.16A-C). Rates 

calculated with all growth data (Equation 1) are consistent with the upper ranges of 

previous studies for C. virginica larvae (0.05-0.30 d
-1

) (Drinnan and Stalworthy 



 142 

 

1979). Mortality estimates using the VLT approach were within the 95% confidence 

intervals of the catch curve approach (Fig. 4.16). Therefore, the VLT and catch curve 

approaches generate similar values that are not statistically different. 

The mortality estimates were based on the observed growth of larvae that 

were reared in salinity and temperature conditions similar to those sampled in the 

field (Fig. 4.3A) which was important because temperature and salinity have an 

important influence on larval growth (Davis and Calabrese 1964). However, other 

factors like food (e.g., species of algae ingested) and synergistic effects of 

temperature and salinity can also influence growth (Lough 1975, Davis and Calabrese 

1964). Results of the sensitivity analysis to examine the influence of length-age 

regressions on mortality estimates indicate that mortality rates can differ by as much 

as 0.45 d
-1

 when different length-age regressions are used. However, the mortality 

estimates calculated under the minimum growth scenario account for most of this 

difference as mortality estimates were less than 0.10 d
-1

 between estimates based on 

the maximum growth conditions and growth predicted with all data. The large 

difference between mortality rates based on the “minimum” growth equation and the 

“all data” and “maximum” growth equations likely was due to the fact that the 

minimum size of larvae caught by the gear was estimated to be 121 µm which 

translated to 6, 8, and 10 d-old larvae under minimum, all data, and maximum growth 

regressions (Fig. 4.3A). Larvae considered 6 d-old under the minimum growth 

scenario were excluded from the analysis because they were not within the 8-16 d 

window, causing lower estimates for both the catch curve and VLT approaches. The 

estimates are still useful because they offer a comparison between the VLT and catch 
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curve approaches using the same data although they may not reflect mortality 

accurately.  

Advection may have influenced mortality calculations by transporting 

different larval stages in different directions. Specifically, mortality estimates at 

station One likely violated assumptions of equal sampling for all larval stages within 

a cohort. The along channel current velocities in shallower water (< 5 m), (where 

smaller larvae were found) were moving in a different direction than larvae in lower 

layers (where larger larvae were found). Furthermore, the net displacement of water 

over a tidal cycle was on the order of several kilometers which was larger than the 

patch sizes observed five days previously during the mapping cruise (Fig. 4.5). Thus 

the larvae collected at station One may not have been from the same larval patch or 

cohort.  

The net flow of water at Station Two was in the same direction (up-estuary) in 

the upper and lower layers of the water column. The net displacement was less than 

1.5 km which was smaller than observed patch sizes from the mapping cruise (Fig. 

4.5). Therefore, mortality estimates at Station Two may be more accurate. The 

advection effects are less likely to influence mapping cruise mortality estimates 

because stations were sampled on the same day over the entire system. However, it is 

likely that the mapping cruise was reflective of multiple cohorts (Fig. 4.5) that would 

violate assumptions. Based on these observations, Station Two instantaneous daily 

mortality estimates are likely the most accurate and ranged from 0.37-0.38 d
-1

.   

In conclusion, results of this study support the idea that the swimming 

behavior of C. virginica larvae is influenced by salinity gradients and possibly by low 
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oxygen, and provides a quantitative estimate of the strength of the salinity gradient 

that may cue larval swimming (> 1.2 m
-1

).  In addition, the mortality rates, calculated 

for the first time for oyster larvae in Chesapeake Bay, help provide fundamental 

knowledge of the ecology of C. virginica larvae and could be used in future studies 

aimed at understanding their population dynamics and transport. 

 

 

 

 

 

 

 

 



 145 

 

Literature cited 

Aksnes, D.L. and M.D. Ohman. 1996. A vertical life table approach to zooplankton 

mortality estimation. Limnol. Oceanogr. 41(7):1461-1469. 

Andrews, J.D. 1983. Transport of bivalve larvae in James River, Virginia. J. Shell. 

Res. 3:29-49. 

Beck, M.W., R.D. Brumbaugh, L. Airoldi, A. Carranza, L.D. Coen, C. Crawford, O. 

Defeo, G.J. Edgar, B. Hancock, M. Kay, H. Lenihan, M.W. Luckenbach, C.L. 

Toropova, G. Zhang & X. Guo. 2011. Oyster reefs at risk and recommendations 

for conservation, restoration, and management. Bioscience, 61:107–116.  

Boicourt, W.C. 1982. Estuarine larval retention mechanisms on two scales. In: 

Kennedy (ed), Estuarine Comparisons. Academic Press, New York, pp 445-458. 

Botsford, L.W., J.C. Castilla, C.H. Peterson. 1997. The management of fisheries and 

marine ecosystems. Science. 277:509-515. 

Burrell, V.G. and W.A. Van Englel. 1976. Predation by and distribution of a 

ctenophore, Mnemiopsis leidyi A. Agassiz, in the York Estuary. Estuar. Coast. 

Mar. Sci. 4:235-242. 

Carriker, M.R. 1951. Ecological observations on the distribution of oyster larvae in 

New Jersey estuaries. Ecol. Monogr. 21:19-38. 

Chapman, D.G., and D.S. Robson. 1960. The analysis of a catch curve. Biometrics 

16(3):354-368.  

Dame, R.F. 2012. Population processes, In: P. Petrailia, and H. Linna (eds.) Ecology 

of marine bivalves an ecosystem approach, 2nd ed. CRC Press Taylor Frances 

Group. pp. 75-103.  

Drinnan, R.E. and Stallworthy. 1979. Oyster larval populations and assessment of 

spatfall, Bidford River, P.E.I. 1961. Fish. Mar. Serv. Tech. Report. No 792. 

Davis, H.C. and A. Calabrese 1964. Combined effects of temperature and salinity on 

development of eggs and growth of larvae of M. mercenaria and C. virginica. 

Fish. Bull. 63:643-655. 

Fassler, S.M., M.R. Payne, T. Brunel and M. Dickey-Collas. 2011. Does larval 

mortality influence population dynamics? An analysis of North Sea herring 

(Clupea harengus) time series. Fish. Oceanogr. 20(6):530-543. 

Galtsoff, P.S. 1964. The American oyster, Crassostrea virginica (Gmelin) Fishery 

Bull. Fish Wildl. Serv. U.S. 64:1-480. 

Goodwin, J.D., E.W. North and C.M. Thompson. 2014. Evaluating and improving a 

semi-automated image analysis technique for identifying bivalve larvae. 

Limnol. Oceanogr. Meth. 12:548-562. 

Hidu, H. and H. Haskin. 1978. Swimming speeds of oyster larvae Crassostrea 

virginica in different salinities and temperatures. Estuaries. 1(4):252-255. 

Houde, E.D. 2002. Mortality. In: Werner, R.G. and Fuiman, L.A. (Eds), Fishery 

Science. The Unique contributions of early life stages. Blackwell Publishing, 

Oxford, pp.64-87. 

Kennedy, V.S. 1996. Biology of larvae and spat. In: V.S. Kennedy, I.E. Newell, and 

E.F. Eble (eds). The eastern oyster Crassostrea virginica xChapter 10. 

Maryland Sea Grant pp. 371-421. 



 146 

 

Kennedy, V.S. 1986. Expected seasonal presence of Crassostrea virginica (Gmelin) 

larval populations, emphasizing Chesapeake Bay. Amer. Malacol. Bull. Spec. 

Edit. 3:25-29. 

Kennedy, V.S., and L.B. Krantz. 1982. Comparative gametogenic and spawning 

patterns of the oyster Crassostrea virginica (Gmelin) in central Chesapeake 

Bay. J. Shellfish Res. 9:133-140. 

Kim, C.-K., K. Park, S. P. Powers, W.M. Graham and K.M. Bayha. 2010. Oyster 

larval transport in coastal Alabama: Dominance of physical transport over 

biological behavior in a shallow estuary.J. Geophys. Res.,115, C10019, 

doi:10.1029/2010JC006115. 

Kimmel, D.G., and R.I.E. Newell. 2007. The influence of climate variation on eastern 

oyster (Crassostrea virginica) juvenile abundance in Chesapeake Bay. Limnol. 

Oceanogr. 52(3):959-965. 

Loosanoff, V.L. 1965. The American or eastern oyster. United States Dept. of the 

Interior Circular 205:1-36. 

Loosanoff, ,V.L. and H.C. Davis 1963. Rearing of bivalve molluscs. Adv. Mar. Biol. 

1:1-136. 

Mann, R. 1988. Distribution of bivalve larvae at a frontal system in the James River, 

Virginia. Mar. Ecol. Prog. Ser. 50:29-44. 

Mann, R. 1988. Distribution of bivalve larvae at a frontal system in the James River, 

Virginia, Mar. Ecol. Prog. Ser., 50,29–44. 

Mann, R., and J.S. Rainer. 1990. Effect of decreasing oxygen tension on swimming 

rate of Crassostrea virginica (Gmelin, 1791) larvae. J. Shell. Res. 9:323-327. 

Medcof, J.C. 1939. Larval life of the oyster (Ostrea virginica) in Bideford River. J. 

Fish. Res. Board Can. 4:287-301. 

Nelson, T.C. 1911. Report of the biologist. Oyster culture studies in 1910. In: Ann. 

Rep. Agric. Exp. Sta. New Brunswick New Jersey. 1926. pp. 103-113. 

Nelson, T.C. 1913. Report of the biologist. Observations of natural propogation data 

of 1912. Pages 281-345 in Ann. Rep. N.J. Agric. Exp. Sta. for 1912, New 

Brunswick, N.J. 

Nelson, T.C. 1925. On the occurrence and food habits of ctenophores in New Jersey 

inland coastal waters. Biol. Bull. 48:92-111. 

Nelson, T.C. 1927. Report of the department of biology. In: Ann. Rep. Agric. Exp. 

Sta. New Brunswick New Jersey. 1926. pgs103-113. 

Nelson, T.C. and E.B. Perkins. 1931. Annual report of the department of biology, 

July 1, 1929-June 30, 1930. N. J. Agrric. Exp. Stn. Bull. 522:3-47. 

Newell, R.I.E. 1988. Ecological Changes in Chesapeake Bay: Are they the result of 

the American oyster, Crassostrea virginica?, p. 536-546. In: M.P. Lynch and 

E.C. Krome (eds), Understanding the estuary: Advances in Chesapeake Bay 

research. Chesapeake Research Consortium, Gloucester Point, Virginia. 

North, E.W., Z. Schlag, R.R. Hood, M. Li, L. Zhong, T. Gross, and V.S. Kennedy. 

2008. Vertical swimming behavior influences the dispersal of simulated oyster 

larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake 

Bay. Mar. Ecol. Prog. Ser. 359:99-115. 



 147 

 

Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton. 

1984. Chesapeake Bay anoxia: Origin, development, and significance. Science 

223:22-27. 

Pedersen T.M., J.L.S. Hansen, A.B. Josefson, B.W. Hansen. 2008. Mortality through 

ontogeny of soft-bottom marine invertebrates with planktonic larvae. J. Mar. 

Syst. 73:185-207. 

Pierson, J.J., Frost, B.W., and A.W. Leising. 2007. The lost generation of Calanus 

pacificus: Is the diatom effect responsible? Limnol. Oceanogr. 52(5):2089-2098. 

Pineda, J., J.A. Hare, S. Sponaugle. 2007. Larval dispersal and transport in the coastal 

ocean and consequences for population connectivity. Oceanogr. 20, 22–39. 

Puckett, B.J., D.B. Eggleston, P.C. Kerr and R.A. Luettich Jr. 2014. Larval dispersal 

and population connectivity among a network of marine reserves. Fish. 

Ocenogr. 23(4):342-361. 

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish 

populations. Fish. Res. Bd. Canada Bull. 191. 

Rumrill, S.S. 1990. Natural mortality of marine invertebrate larvae. Ophelia 32:163-

198. 

Sanford, L.P., K.G. Sellner, and D.L. Breitburg. 1990. Covariability of dissolved 

oxygen with physical processes in the summertime Chesapeake Bay. J. of Mar. 

Res. 48:567-590. 

Seliger, H.H. Boggs, J.A. Rivkin, R.B. Biggley, W.H. Aspden, K.R.H. 1982. The 

transport of oyster larvae in an estuary. Mar. Biol. 71:57-72. 

Shanks, A.L. and L. Brink. 2005. Upwelling, downwelling, and cross-shelf transport 

of bivalve larvae: test of a hypothesis. Mar. Ecol. Prog. Ser. 302:1-12. 

Steinberg, P.D., and V.S. Kennedy. 1979. Predation upon Crassostrea virginica 

(Gmelin) larvae by two invertebrate species common to Chesapeake Bay oyster 

bars. The Veliger 22(1):78-84. 

Stevenson, C.H. 1894.The oyster industry in Maryland. U.S. Fish Commission 

Bulletin for 1892 12: 205-297.  

Tapia F.J., J. Pineda. 2007. Stage-specific distribution of barnacle larvae in nearshore 

waters: potential for limited dispersal and high mortality rates. Mar. Ecol. Prog. 

Ser. 342:177-90. 

Vaughn, D. and Allen, J.D. 2010. The peril of the plankton. Integr. Comp. Biol. 

50(4):552-570. 

Widdows, J., R.I.E. Newell and R. Mann. 1989. Effects of hypoxia and anoxia on 

survival, energy metabolism, and feeding of oyster larvae (Crassostrea 

virginica, Gmelin). Biol. Bull. 177:154-166. 

Wilberg, M.J., M.E. Livings, J.S. Barkman, B.T. Morris, and J.M. Robinson. 2011. 

Overfishing, disease, habitat loss, and potential extirpation of the oysters in 

upper Chesapeake Bay. Mar. Ecol. Prog. Ser. 436:131-144. 

Wood, L. and W.J. Hargis, Jr. 1971. In: D.J. Crisp (eds.). Transport of bivalve larvae 

in a tidal estuary. Fourth European marine biology symposium. Cambridge 

University Press, New York. pp. 29-44. 



 148 

 

Tables and Figures 

Table 4.1. Summary of previous field efforts focused on C. virginica larvae. The 

study, location, gear, mesh size, number of samples, and total volume of water 

filtered are all reported. The concentrations are the estimated number of larvae 

collected in studies divided by the total volume sampled for each study * Denotes 

studies that only measured late stage larvae.  

 

Study Location Mesh size capture mechanism

No. of  

samples

Total volume 

filtered  (l)

Concentration of 

larvae (no. m
-3

) Sub sample size

Nelson (1911) Barnegat Bay, NJ, USA

Lautenschlager 

paper pump 212 318 26,170 20%

Nelson (1913) Barnegat Bay, NJ USA

Lautenschlager 

paper pump 1026 1,539 13,307 20%

Carriker (1951)

Barneget and Great Bays 

NJ, USA

18 XXX silk 

bolting cloth pump 248 2,480 5,880 no

Drinnan and Stalworthy 

(1958)

Bidford River Prince 

Edward Island, Canada

No. 18 plankton 

net pump/transects 114 44,436 26,200 1%

Wood & Hargis (1971) James River VA, USA

No. 18 plankton 

net pump 24 2,400 242 10%

Andrews (1983) James River VA, USA

No. 20 plankton 

net pump 90 9,000 4,500 10%

Seliger et al. (1982)*

Choptank River, MD, 

USA 44 µm pump 64 6,400 7,400 33%

Mann (1988)* James River VA, USA 80 um pump 23 18,230 500 no

Kim et al. (2010) Mobile Bay AL, USA 35 µm pump 20 200 22,300 25%

This study (2015)

Choptank River, MD, 

USA 64 µm pump 316 64,124 1,292 50%
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Table 4.2. The minimum, maximum, mean, and standard deviation of the mean 

concentration (m
-3

) of larvae from samples collected on the A) mapping cruise and on 

the  fixed station cruise at stations B) One, and C) Two for three size classes of C. 

virginica larvae (< 106, 106-200, and ≥ 200 µm). 

 

Minimum m
-3

Maximum m
-3

Mean  s.t.d.

A. Mapping

< 106 µm 0 9,195 490 773

106-200 µm 0 8,380 545 675

≥ 200 µm 0 795 11 14

B. One

< 106 µm 0 4,745 615 1,043

106-200 µm 0 3,867 657 734

≥ 200 µm 0 89 32 39

C. Two

< 106 µm 0 6,460 279 346

106-200 µm 0 3,780 153 190

≥ 200 µm 0 185 10 26  
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Table 4.3. The results of a correlation analysis for concentrations of C. virginica 

larvae (no. m
-3

) and physical parameters at stations One and Two of the fixed station 

cruise. The same analysis was conducted for the abundances of larvae (m
-2

) for the 

mapping cruise. Physical parameters were measured with a CTD and averaged within 

the depth intervals of the plankton samples (D.O. = dissolved oxygen, TSS = total 

suspended solids, Chl-a = Chlorophyll a). Significant correlations are listed in the 

table (* = P < 0.01, ** = P < 0.01, *** = P <0.001,  n.s. = not significant. ‘n/a’ 

indicated that no physical information was available).  

Station Size (µm) Depth (m) Temperature (
o
C) Salinity D.O. (mg l

-1
) TSS (µm l

-1
) Chl-a   (µm l

-1
) Current (m s

-1
)

One < 106 - 0.55*** 0.62*** - 0.66*** 0.62*** -0.44** 0.39*** n.s. 

One 106-200 - 0.57*** 0.54*** -0.53*** 0.53*** -0.40** 0.28** n.s.

One ≥ 200 - 0.40 *** 0.28** -0.52*** 0.50*** -0.51*** 0.29*** n.s

 

Two < 106 - 0.52*** 0.54*** -0.61*** 0.48*** -0.41*** n.s n.s

Two 106-200 - 0.56*** 0.53*** -0.56*** 0.50*** -0.40** n.s n.s

Two ≥ 200 - 0.22** 0.24** -0.21** 0.25** - 0.17** n.s. n.s.

Mapping < 106 n.s. n.s. n.s. n.s. n.s. n.s. n/a

Mapping 106-200 n.s. n.s. n.s. n.s. n.s. n.s. n/a

Mapping ≥ 200 n.s. n.s. n.s. n.s. n.s. n.s. n/a  
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Table 4.4. Results of correlation analysis between three size classes < 106, 106-200, 

and > 200 µm of C. virginica larvae during the mapping cruise (m
-2

) and at stations 

One and Two of the fixed station cruise (no. m
-3

). (* = P < 0.01, ** = P < 0.01, *** = 

P <0.001,  n.s. = not significant). 

Station Size (µm) < 106 µm (m
-3

) 106-200 µm (m
-3

) ≥ 200 µm (m
-3

)

One < 106 µ 1.00 0.79*** 0.425***

One 106-200 0.79*** 1.00 0.51***

One ≥ 200 0.43*** 0.51*** 1.00

Two < 106 1.00 0.85*** n.s

Two 106-200 0.85*** 1.00 0.37***

Two ≥ 200 n.s. 0.37*** 1.00

Mapping < 106 1.00 0.87*** n.s.

Mapping 106-200 0.87*** 1.00 0.70***

Mapping ≥ 200 n.s. 0.70*** 1.00
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Table 4.5. Instantaneous mortality rates (d
-1

) of 8-16 d old C. virginica larvae during 

the mapping cruise and fixed stations One and Two using all length-age data. 

Mortality rates were calculated with the vertical life table (VLT) and catch curve 

(CC) approaches, the latter of which provided 95% confidence intervals (95% CI). A 

sensitivity analysis was conducted to examine the effect of age-length estimates on 

mortality rates were estimated using different regression equations of age (A) versus 

length (L, shell height in µm) that were calculated assuming average, maximum and 

minimum growth conditions.  
Mapping One Two

Length-age-data Regression equation VLT CC 95% CI VLT CC 95% CI VLT CC 95% CI

All data A = 0.075L + 4.2 0.48 0.50 (0.37-0.63) 0.51 0.58 (0.45-0.71) 0.37 0.38 (0.28-0.48)

Minimum A = 0.077L + 4.0 0.19 0.23 (0.09-0.33) 0.18 0.19 (0.00-0.40) 0.15 0.16 (0.06-0.26)

Maximum A = 0.077L + 4.3 0.44 0.45 (0.35-0.55) 0.60 0.63 (0.53-0.73) 0.47 0.45 (0.35-0.55) 
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Fig. 4.1. Locations of the stations during the fixed station (labeled “One” and “Two” 

squares) and mapping (circles) cruises in the Choptank River, a tributary of 

Chesapeake Bay. The mapping cruise and fixed station cruises were conducted on 

July 5, 2012 and July 12-15, 2012, respectively. Shaded contours indicated depth (m).  

 

 

 

 

 



 154 

 

 
 

 

 

Fig. 4.2. Example images of three size classes of C. virginica larvae under polarized 

light which correspond to the size classes chosen for analysis: A) < 106 µm, B) 106-

200 µm, and C) ≥ 200 µm). The number indicates the shell height (shortest axis for 

the smallest size class and longest axis for the larger two size classes). 
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Fig. 4.3. Length-age regression line based on known shell heights and ages for larvae 

reared in laboratory conditions that were A) representative of temperatures and 

salinities during July, 2012 when field collections occurred and B) cooler conditions. 

The regression equation fit to all data in panel A (solid line in center) was used to 

estimate larval age for field-collected specimens. The two other regression lines on 

panel A were used to estimate age under both maximum (top dotted line) and 

minimum (lower dotted line) growth conditions. Panel B contains a regression line 

suitable for cooler (22
o
C) temperatures which were not observed in the field during 

this research program.
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Fig. 4.4.  Physical conditions near surface (left panels) and near bottom (right panels) 

during the mapping cruise on July 5th, 2012: A,B) salinity, C,D) temperature, E,F) 

dissolved oxygen (DO), and G,H) chlorophyll a concentrations. 
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Fig. 4.5.  Abundances of C. virginica larvae (no m
-2

, color contours) with shell 

heights of A) < 106 µm, B) 106-200 µm, and C) ≥ 200 µm during the mapping cruise 

on July 5, 2012. Stations locations are indicated by black diamonds. Contour lines of 

surface salinity in intervals of one are also depicted.  
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Fig. 4.6. Color contour plots of temperature (
o
C) with the salinity gradient (black 

line), dissolved oxygen (mg l
-1

), total suspended solids (mg l
-1

), and chlorophyll-a (g 

l
-1

) with salinity contour lines (black) taken at station One of the fixed station cruise 

(July 10-12, 2015). CTD casts (indicated by tick marks top of panel A) were 

conducted every 1.5 hours for 45 hours. Salinity contour lines are in intervals of 1.  
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Fig. 4.7. Along-channel current velocities (m s
-1

) measured by an Acoustic Doppler 

Current Profiler at station A) One and B) Two of the fixed station cruise. Red 

indicates flooding tides from Chesapeake Bay into the Choptank River, while blue 

indicates ebbing water flowing downstream. 
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Fig. 4.8. Temperature (
o
C), salinity and concentration (no. m

-3
) of C. virginica larvae 

(colored circles, see legend in panel A) at Station One July 12-14, 2012. Panels 

correspond to larvae with shell heights of A) < 106 µm, B) 106-200 µm, C) ≥ 200 

µm, and D) all larvae.  
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Fig. 4.9. The average displacement of water (km) at fixed station One over the A) 

initial tidal cycle of 24.72 hours and B) the ending tidal cycle of 24.48 hours. 

Calculations were based on along-channel current velocities that were averaged 

within 1-m. Negative values correspond to movement up estuary while positive 

corresponds to movement down estuary. 
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Fig. 4.10. Concentrations of C. virginica larvae with shell heights A) < 106 µm, B) 

106-200 µm, and C) ≥ 200 µm collected at station One during the  fixed station cruise 

on July 10-12, 2012. The targeted midpoint depth of sample collection (black dots), 

maximum salinity gradient (solid line), and the 2 mg l
-1

 oxycline (dotted line) are also 

depicted. Note that larvae with shell heights ≥ 200 µm (panel C) were plotted with a 

different color scale due to their lower concentrations. 
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Fig. 4.11. Color contour plots of temperature (
o
C) with the salinity gradient (black 

line), dissolved oxygen (mg l
-1

), total suspended solids (mg l
-1

), and chlorophyll a (g 

l
-1

) with salinity contour lines (black) taken at station Two of the fixed station cruise 

(July 12-14, 2015). CTD casts (indicated by tick marks top of panel A) were 

conducted every 1.5 hours for 45 hours. Salinity contour lines are in intervals of 1. 
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Fig. 4.12. Temperature (
o
C), salinity and concentration (no. m

-3
) of C. virginica larvae 

(colored circles, see legend in panel A) at fixed station Two on July 12-14, 2012. 

Panels correspond to larvae with shell heights of A) < 106 µm, B) 106-200 µm, C) ≥ 

200 µm, and D) all larvae.  
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Fig. 4.13. The average displacement of water (km) at fixed station Two over the A) 

initial tidal cycle of 24.60 hours and B) ending tidal cycle of 24.74 hours. 

Calculations were based on along-channel current velocities that were averaged 

within 1-m. Negative values correspond to movement up estuary while positive 

corresponds to movement down estuary. 
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Fig. 4.14. Concentrations of C. virginica larvae with shell heights A) < 106 µm, B) 

106-200 µm, and C) ≥ 200 µm collected at station Two during the fixed station cruise 

on July 12-14, 2012. The targeted midpoint depth of sample collection (black dots), 

maximum salinity gradient (solid line), and the 2 mg l
-1

 oxycline (dotted line) are also 

depicted. Note that larvae with shell heights ≥ 200 µm (panel C) were plotted with a 

different color scale due to their lower concentrations. 
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Fig. 4.15. The proportion of C. virginica larvae with shell heights A) < 106 µm and 

B) 106-200 µm, C) > 200 µm that were found above the salinity gradient (m
-1

) during 

the fixed station cruise at both station One and Two. The salinity gradient was 

defined as the largest change in salinity during each CTD cast. The leftmost vertical 

line (solid) indicates a gradient of 1.0 above which 90% of all larvae were found. The 

rightmost vertical line (dashed) indicates an MSG of 3.1, above which 100% of all 

larvae were found. The color of the symbol corresponds to the abundance of larvae 

per CTD cast (no. m
-2

).  
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Fig. 4.16. The instantaneous daily mortality rates (d

-1
) plotted for the mapping cruise 

and Stations One and Two of the fixed station cruises under A) minimum, B) all data, 

and C) maximum estimated growth rates (see Figure 3A and Table 5). Black 

diamonds represent mortality calculations made using the vertical life table (VLT) 

approach and open squares represent values for the catch curve (CC) approach. The 

whiskers are the 95% confidence intervals calculated using the catch curve approach.  
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Chapter 5:  Synthesis 

 

The work of this dissertation helped to fill knowledge gaps by 1) creating a 

visual guide and key that enhanced the identification of Crassostrea virginica 

(eastern oyster) larvae in the Choptank River, 2) testing and improving ShellBi, a 

novel supervised image classification method that uses pattern recognition software to 

identify images of bivalve larvae taken under cross-polarized light, 3) developing a 

benchtop automated image acquisition system to rapidly capture images for use with 

ShellBi, and 4) applying these advances to identify factors that influence the vertical 

distribution of C. virginica larvae and to estimate their mortality rates in the field.  

 

Summary 

  

Highly accurate techniques for the identification of bivalve larvae exist (Lutz 

et al. 1982) but are time consuming. More rapid molecular techniques (Hare et al. 

2000, Wight et al. 2009, Henzler et al. 2010, Sanchez et al. 2014) also provide some 

insight into the identity and quantity of bivalve larvae. However, this research offers a 

rapid identification technique that identifies, quantifies, and measures the sizes of 

larvae.  

 This research indicates that the use of cross-polarized light can enhance 

detection of bivalve larvae in samples, increase speed of identification, and maintain 
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high accuracies. The birefringent shells of bivalves are much easier to see under 

cross-polarized light making identification much easier when looking at them through 

the microscope. In addition, the ShellBi software applied and advanced in this 

research provides classification accuracies ranging 81-100% for a targeted species (C. 

virginica).  

 Automated image acquisition, like the system developed as part of this 

research program, has the potential to greatly advance understanding of the larval 

ecology of bivalves. Although we have been studying the larval stage of C. virginica 

for over three centuries, previous research has been limited due to the lack of 

automated and rapid identification. The development of automated imaging system 

was essential for imaging field samples. Field samples were imaged over a 46-day 

period but without this technology, it could have taken over 350 days. This 

technology could allow increased sampling sizes and processing times for future 

studies aimed at understanding factors that influence the distribution and abundance 

of bivalve larvae.   

 Results from field collections reported in Chapter 4 can be used to enhance 

models of larval transport and better understand population dynamics. Specifically, 

the transient larval stage of bivalves is important to understand because it influences 

population connectivity and gene flow (Pineda et al. 2007; Dame 2012). The 

swimming behavior of larvae in particle tracking models that incorporate 

hydrodynamics is extremely important (e.g. North et al. 2008), and this research 

indicates that a salinity gradient of 1.2 m
-1

 should be used to cue stimulated vertical 

swimming behavior.  Furthermore, the mortality estimates could be used in 
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fundamental models aimed to understand the basic ecology of C. virginica 

populations.  

Future research 

This research program helped develop an accurate rapid way to identify oyster 

larvae but improvements and the potential to develop it for other targeted bivalves or 

organisms exists. Accuracies could be improved with further software developments 

(e.g. using random Forrest in the program “R” (Liaw and Wiener 2002), instead of a 

Support Vector machine in MATLAB software) or experimenting with different 

camera and light source settings (e.g. Chapter 3). The automated cropping program 

developed in Chapter 3 could be utilized for hatchery applications in its current state 

or improved for better accuracy with field samples. 

Although the research conducted in this dissertation has helped advance the 

field of bivalve larval identification and the understanding of their ecology, more 

studies are needed to fully understand the complexities of the larval stage of these 

organisms. The ShellBi software coupled with the automated image acquisition 

system (for plankton in general) could have a substantial impact on our understanding 

of eutrophic and coastal systems around the world by allowing for rapid image 

acquisition and classification of species that require magnification for identification. 

Future applications of ShellBi could be used to identify other organisms (e.g. 

pteropods) as well as bivalves in other systems. In addition, ShellBi could help detect 

dissolution of calcium carbonate shells of marine plankton. Studies are needed to 

determine if ShellBi could be used to detect dissolution due to pH changes for certain 

species. Preliminary studies conducted in lab show that the birefringence patterns of 
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C. virginica larvae are affected by low levels of pH (Fig. 5.1). Shells of 9-d old C. 

virginica larvae stored at low pH (4.0) for 1 month experienced dissolution which 

affected their birefringence patterns compared to larvae that were stored in pH of 8 or 

higher. The automated image acquisition system has application for rapidly imaging 

other planktonic organisms at high magnification and should be tested on other 

organisms (e.g. copepods, pteropods and other plankton). More effort is needed to 

automate post processing of the bivalve images in situ to improve automatic ROI 

detection.  

This research suggests the swimming behavior of C. virginica larvae is 

influenced by salinity gradients and possibly by low oxygen, and provides a 

quantitative estimate of the strength of the salinity gradient that cues larval swimming 

(> 1.2 m
-1

).  However, future studies are needed in the field that can tease out how C. 

virginica larvae respond to low oxygen levels. Furthermore, multiple mapping cruises 

should be conducted to identify spawning areas and source populations, dispersal, and 

transport of bivalve larvae.  

The mortality rates calculated help provide fundamental knowledge of the 

ecology of C. virginica larvae and could be used in future studies aimed at 

understanding their population dynamics and transport. Fisheries catch curve and 

vertical life table mortality estimations were used for the first time to estimate 

mortality for C. virginica (or any bivalve) larvae. Future studies are needed to 

enumerate C. virginica larvae < 106m shell height, so that mortality rate 

calculations could be made for larvae < 8 d old. Furthermore, future studies are 
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needed to test the variability of growth conditions of C. virginica larvae in the field 

because growth conditions can influence mortality rate calculations.   

 

 This research program had a large focus on the development of technology 

that could be used to support long-term monitoring programs for bivalve larvae. 

Monthly monitoring of larvae could provide improved knowledge of spawning trends 

in various systems and aid in enhanced understanding of the factors that cause inter-

annual fluctuations in recruitment.  In addition, these tools could also be used to track 

changes in larval concentrations near projects aimed at restoring adult populations.   
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Figure 

 

 

Fig. 5.1. Nine-day-old C. virginica larvae stored for one month in low (4.0) pH 

conditions (upper panel) and higher (8.0) pH (lower panel). Dissolution had an effect 

on the birefringence patterns in the lower pH.   
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