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Biological information can be explored at many different levels, with the most

basic information encoded in patterns within the DNA sequence. Through molec-

ular level processes, these patterns are capable of controlling the states of genes,

resulting in a complex network of interactions between genes. Key features of bio-

logical systems can be determined by evaluating properties of this gene regulatory

network. More specifically, a network-based approach helps us to understand how

the collective behavior of genes corresponds to patterns in genetic function.

We combine Chromatin-Immunoprecipitation microarray (ChIP-chip) data with

genomic sequence data to determine how DNA sequence works to recruit various

proteins. We quantify this information using a value termed “nmer-association.”

“Nmer-association” measures how strongly individual DNA sequences are associated

with a protein in a given ChIP-chip experiment. We also develop the “split-motif”

algorithm to study the underlying structural properties of DNA sequence indepen-

dent of wet-lab data. The “split-motif” algorithm finds pairs of DNA motifs which



preferentially localize relative to one another. These pairs are primarily composed

of known transcription factor binding sites and their co-occurrence is indicative of

higher-order structure. This kind of structure has largely been missed in standard

motif-finding algorithms despite emerging evidence of the importance of complex

regulation.

In both simple and complex regulation, two genes that are connected in a

regulatory fashion are likely to have shared functions. The Gene Ontology (GO)

provides biologists with a controlled terminology with which to describe how genes

are associated with function and how those functional terms are related to each

other. We introduce a method for processing functional information in GO to pro-

duce a gene network. We find that the edges in this network are correlated with

known regulatory interactions and that the strength of the functional relationship

between two genes can be used as an indicator of how informationally important

that link is in the regulatory network. We also investigate the network structure

of gene-term annotations found in GO and use these associations to establish an

alternate natural way to group the functional terms. These groups of terms are

drastically different from the hierarchical structure established by the Gene Ontol-

ogy and provide an alternative framework with which to describe and predict the

functions of experimentally identified groups of genes.
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Chapter 1

Introduction

1.1 Complex Structure in Biological Systems

A fundamental question in biology is how the activities of thousands of differ-

ent genes are coordinated in a living cell to carry out various biological processes.

Each gene is controlled by other genes, which in turn are regulated by yet other

genes, forming a complex, inter-connected gene regulatory network. This complex

process of regulation can be understood at many different levels, from the individ-

ual mechanisms which control a gene to how that regulatory information travels on

a genetic network. The recognition of these complex problems has lead to a new

interdisciplinary field in biology known as “systems biology.” This field represents

a collaboration between formally disparate disciplines, including biology, computer

science, mathematics, statistics and physics. This thesis demonstrates a physics

perspective in the analysis of information contained in different levels of biological

regulation.

1.1.1 The function of DNA sequence in biological regulation

Genes are regions of DNA which contain the information necessary for the

cell to make a protein. Whether a gene is active, meaning whether that protein is

made, is controlled by regions of DNA, called promoters, often physically located at
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the beginning of the genes. Promoters are very short relative to the length of the

genome and even compared to the typical length of a gene. Activation of a gene

occurs when a set of regulatory proteins, called transcription factors (TFs) interact

with each other and the promoter of that gene. In general, the set of TFs needed

for activation is unique for each gene. (For more background information and a

detailed description of this process see Appendix A.)

One of the primary approaches to uncovering the mechanisms by which a

gene is dynamically controlled is by hunting for patterns in the DNA sequence of

promoters which have the potential to interact with TFs. This is done both by

analyzing laboratory data concerning TFs and also by hunting for DNA sequence

patterns in promoters. The length of DNA needed to interact with a transcription

factor is physically much smaller than both the size of a transcription factor and

the length of a typical promoter. This means that promoter regions often contain a

series of short informational patterns which together can interact with several TFs

simultaneously.

Determining the critical information in promoters which distinguishes them

from other areas of the genome is a current area of investigation. Another important

question is how this information is used to control the behavior of genes. Both wet-

lab and computational techniques are critical in understanding genetic control by

transcriptional factors because they each address half of this question. Namely,

laboratory data addresses the issue of how the information in a DNA sequence

can control the behavior of a gene, whereas computational methods which hunt

for statistically over-represented patterns give a sense of how this information is

2



localized or unique to promoters.

1.1.1.1 Interpretation of in vivo data

Basic approach: One common way to discover transcription factor binding

patterns is through the use of in vivo high-throughput data such as chromatin-

immunoprecipitation (ChIP-chip). ChIP-chip measures the binding affinity of a

transcription factor to regions of DNA. This binding affinity is measured by compar-

ing the amount of DNA bound to a chosen transcription factor in a cell population

to the sum total of all the DNA in those cells.

Current limitations: Since this binding affinity averages over a population

sample, the relationship of these values and what is going on in an individual cell is

unclear. In addition, the resolution of ChIP-chip is about fourty times larger than

the actual size of the transcription factor binding patterns. Therefore, one common

approach in interrogating ChIP-chip data is to select regions of DNA with an affinity

value above a particular threshold and perform statistical evaluation of the DNA

patterns within these regions. This approach excludes the information contained in

the ChIP-chip binding affinity value.

Improvements: We will present an alternate way to identify DNA sequences

associated with the binding of a transcription factor to DNA. This method fully uti-

lizes the binding affinity values produced by a ChIP-chip experiment by integrating

them into the DNA sequence analysis.
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1.1.1.2 Sequence pattern analysis

Basic approach: In recent years, many computational methods have been

developed to detect de novo TF sequence motifs. There is a host of freely available

motif-finding software which takes DNA sequences as an input and hunts for common

elements among those sequences. These methods utilize statistical techniques such

as the Gibbs sampler [47], expectation-maximization algorithm [48] and information

content [38][79].

Current limitations: As with any statistical analysis, these algorithms are

sensitive to the null-hypothesis, or the chosen DNA sequence background, and the

the biological significance of the discovered motifs is uncertain without additional

wet-lab verification. In addition, a major limitation of many of these algorithms is

that there is no standard way to determine whether several similar-looking identified

sequence elements represent unique DNA binding sites or if they are a degenerate

sampling of the same binding site. Finally, the majority of these algorithms are

tuned to find shorter, continuous patterns in the DNA even though genetic control

is known to be a complex dynamical process relying on the simultaneous involvement

of many transcription factors, suggesting there should also be longer-range structure

in the DNA sequences.

Improvements: We develop an algorithm which attempts to address many of

the limitations of current de novo motif finding algorithms. This algorithm combines

concepts from statistics and graph theory to group DNA sequences and is especially

tuned to find complex longer-range structures.
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1.1.2 The Relationship betweeen genes and biological functions

1.1.2.1 Networks: a higher-order interpretation of genetic regulation

Since the late 1990s physicists and applied mathematicians have been im-

pacting the field of biology through the application of network theory to biological

systems [85][4]. Network analysis provides a systems-level framework to understand

dynamical interactions between genes. These analyses have had a profound effect

on our understanding of genetic regulation.

Studying the structure of biological networks has provided new insights into

biological functions. The density and degree distribution of regulatory networks

have been shown to be indicative of the robustness of the network against aberrant

mutations [1][49]. Other structural elements, such as network motifs have been

shown to be an important element in many biological networks and may be involved

in common, elementary biological functions [74][91]. In addition, many networks

are known to have community structure, meaning that there are clusters of nodes in

the graph within which there are many edges but between which there are few edges

[34]. In regulatory networks such a community may be associated with particular

pathways or genetic functions, allowing us to assign biological meaning to the global

structure of the network [63].

1.1.2.2 Evaluating and improving gene regulatory networks

Basic Approach: In recent years there has been much excitement about

the development of gene regulatory networks and the insight they give into the

5



organization of genetic pathways. Reconstruction algorithms have been developed

which use data such as mRNA expression to evaluate the potential for a regulatory

link between pairs of genes [94][55][28]. A handful of algorithms also integrate

other various types of information into their reconstruction to further improve the

reliability of the produced regulatory network [44][50].

Current Limitations: Despite the development of these reconstruction al-

gorithms, only small number of biological organisms have fully-developed gene reg-

ulatory networks. There is often a large amount of noise in the results of recon-

struction algorithms, limiting their usefulness in biological applications. Attempts

to reconstruct regulatory networks using high-throughput mRNA expression data

have been increasingly successful, but the quality of these biological networks still

needs improvement. By working under the hypothesis that genes which are involved

in many of the same biological functions are likely to be connected in a regulatory

network, some reconstruction algorithms have tried to integrate functional infor-

mation [50][44]. However, there has been little discussion on what the functional

similarity of two genes means in a regulatory network context.

Improvements: We explain how to use functional annotation data from the

Gene Ontology to give additional biological meaning to links in regulatory networks.

This information can also be used to improve network reconstruction.
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1.1.2.3 Relationships between biological functions in the Gene On-

tology

Current Approach: The Gene Ontology (GO) provides biologists with a

controlled terminology with which to describe how genes are associated with func-

tion and how those functional terms are related to each other [2]. The terms in the

Gene Ontology are organized in the form of a directed acyclic graph (DAG), deter-

mined independent of any species information, and has three independent branches:

Molecular Function, Biological Process, and Cellular Component. Terms may have

multiple parents as well as multiple children but can only belong to one of the three

main ontologies. The relationships between terms are normally determined by a

collection of individuals in the scientific community and thus reflect a human inter-

pretation of how to classify biological functions, rather than any experimental or

computational method [84].

Current Limitations: Because of the DAG structure there are no defined

connections between terms assigned to different ontologies, even though there are

known biological cases in which a term in one branch is related to a term in another

branch. Within an individual ontology, the DAG structure limits the connections

between biological functions to those which have a hierarchical relationship. How-

ever, it is probable that many terms within the same ontology are related biologically

even though they do not have parent/child relationship.

Improvements: We use gene-term annotations found in GO to investigate

the relationships between functional terms. Our method allows for the discovery of
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functional relationships outside of the established DAG structure.

1.2 More Detailed Overview of Projects

In this thesis I will present work done in two very important branches in the

field in systems biology: DNA sequence analysis and network theory. Chapters

2 and 3 will describe two distinct approaches to interrogate DNA sequence data.

One approach utilizes in vivo data in order to give meaning to DNA sequence

(Chapter 2) while the other is purely computational and focuses on the higher-

order structure of the regulatory regions of DNA (Chapter 3). Chapters 4 and 5

involve an investigation of the graph structure of the Gene Ontology. They explore

how the information encoded in this graph can be used to interpret gene regulatory

networks (Chapter 4) and to better understand the relationships between biological

functions (Chapter 5).

1.2.1 Chapter 2: Analyzing ChIP-chip data in the context of DNA

sequence

In Chapter 2 we propose a measure that quantifies the binding affinity of spe-

cific DNA sequences to a protein utilizing ChIP-chip data. The study focuses largely

on data involving RNA Polymerase II (RNAP). RNAP binds to the promoters of

housekeeping genes across all cell-types. Housekeeping genes are genes that are typ-

ically needed for maintenance of the cell and their promoters are known to often

contain CpG Islands, or regions of DNA where the CG dinucleotide occurs with
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much greater relative frequency than elsewhere in the genome. However, little de-

tail is known about the specific DNA sequences which compose CpG Islands which

may potentiate RNAP binding.

“Nmer-association-with-RNAP” captures the strength of an n-base-pair long

DNA sequence’s association with promoters bound by RNAP. This measure reveals

that virtually all sequences enriched in promoters with high RNAP binding values

contain a CpG dinucleotide. Of CpG-containing 8mers, those with the highest

association values are primarily variants of six CpG-containing TFBS known to

preferentially localize in the proximal promoter. The frequency of these six DNA

motifs can predict housekeeping promoters as accurately as the presence of a CpG

Island, suggesting that they are the structural elements critical for CpG Island

function.

An extension of this analysis which investigates the binding affinity of other

proteins in the context of epigenetics is contained in Appendix B.

The work presented in this chapter was done in collaboration with the lab of

Dr. Charles Vinson at the National Cancer Institute at the National Institute of

Health and was published in BMC Genomics in 2008 under the title “All and only

CpG containing sequences are enriched in promoters abundantly bound by RNA

polymerase II in multiple tissues.” The ChIP-chip experiments were performed by

Julian Rosenberg and the data analysis was done in close collaboration with Andrey

Shlyakhtenko.
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1.2.2 Chapter 3: Analyzing DNA sequence for long-range regulatory

patterns

In Chapter 3 we develop a de novo DNA motif-finding algorithm which centers

around the concept of the “split-nmer,” by which we mean an n + k base-pair

DNA sequence with k base-pairs of degenerate DNA (A, C, G or T) surrounded

on both ends by n/2 fixed bases. For this study n = 8. Split-8mers share many

of the statistical frequency properties of 8mers, but allow us to find longer and

discontinuous DNA motifs.

The algorithm is illustrated using promoter data from Drosophila melanogaster.

It is able to correctly identify the majority of canonical promoter DNA binding mo-

tifs, including TATA, INR, DPE, DRE, E-Box and others. In addition it identifies

many pairs of DNA binding motifs which have preferential spacing. This includes

DMv5-DMv4, NDM2-NDM2, INR-DPE, TATA-INR, DRE-DRE and more. In ad-

dition, we find many novel promoter elements. These elements tend to localize in

the proximal promoter and are found to be involved in developmental biological

function, suggesting that these motifs play a cooperative role in the more complex

regulation of non-housekeeping genes.

The work presented in this chapter was done in close collaboration with Peter

C. FitzGerald of the National Cancer Institute at the National Institute of Health.
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1.2.3 Chapter 4: Using function to analyze regulatory networks

In Chapter 4 we explore the use of the Gene Ontology in projecting and inter-

preting gene regulatory networks. Although it is probable that shared function is

correlated with the likelihood that two genes are connected in a regulatory fashion,

because of the complex structure of the GO DAG, determining how to calculate this

functional similarity is non-trivial.

Regulatory information [31] combined with annotation data for E.coli indicates

that the presence of many shared lowest-level annotations in the Gene Ontology is

a good predictor of a regulatory link between two genes. Furthermore, this shared

functional annotation is highly correlated with a link’s importance to information

flow in the established regulatory network. The links predicted using GO anno-

tations are different from those predicted by calculating mutual information from

expression. By combining the predictions from the two approaches the accuracy of

the reconstructed network can be improved.

The work presented in this chapter was done under the guidance of Michelle

Girvan and Edward Ott of the Physics Department at the University of Maryland.

1.2.4 Chapter 5: Determining the functional properties of groups of

genes

In Chapter 5 we use annotations within the Gene Ontology to investigate

whether there exists an alternate logical organization of terms that is different from

the DAG. Although there has been some work done on discovering connections
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between terms which are not in the DAG [59][77], to our knowledge, there has never

been a comprehensive study which investigates whether the structure as a whole is

the only legitimate way to classify biological functions.

We used human annotation data to connect functional terms based on shared

gene annotations. The communities of functional terms which we found are very

different from the branches of the DAG. Cancer signatures are statistically enriched

in the found communities of terms, indicating that these communities can provide

an alternate natural framework with which to investigate the genetic function of

groups of genes. In addition, the classification of terms into communities results in

very different partitions in different species, suggesting that these communities may

represent a species-specific manner by which to classify biological function.

We also investigated how weighting plays a role in the discovered term com-

munities. This is discussed in Appendix C.

The work presented in this chapter was done under the guidance of Michelle

Girvan and Edward Ott of the Physics Department at the University of Maryland.
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Chapter 2

CpG containing sequences are enriched in promoters bound by RNA

polymerase II

Using Chip-chip experimental data from three mouse tissues - liver, heart

ventricles, and primary keratinocytes - we determined that 94% of promoters have

similar RNAP binding, ranging from well-bound to poorly-bound in all tissues. We

combined this data with genomic sequence data in order to evaluate the DNA se-

quences enriched in the promoters of housekeeping genes. We quantified the associa-

tion of 8-base-pair long sequences with RNAP binding in multiple tissues through a

value we term “nmer-association.” A histogram of these values results in a bimodal

distribution. Combining this enrichment score with localization information we dis-

covered that variants of six known CpG-containing TFBS can predict housekeeping

promoters as accurately as the presence of a CpG Island, suggesting that they are

the structural elements critical for CpG island function.

2.1 Introduction

The promoter region of genes is typically divided into two regions: the core

or basal promoter region and the proximal promoter. The core promoter region

stretches from around -50 bp to +20 bp and is the location in the promoter where the

pre-initiation complex forms and the general transcriptional machinery assembles,
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including RNA polymerase II (RNAP). The proximal promoter extends from -200

bp to the transcriptional start site (TSS) and contains transcription factor binding

sites (TFBS) that are critical for the recruitment of RNA polymerase II (RNAP)

to DNA [76][57][37]. In mammalian genomes, the CpG dinucleotide occurs at 20%

of the expected frequency [81] and is typically methylated both in cell cuture and

animal tissues [10][9]. The exception is in CpG islands. CpG islands are defined

as regions in the DNA at least 200 bp long where C+G comprise more than 50%

of the nucleotides and CpG dinucleotides occur at greater than 60% the expected

frequency (this represents roughly 8 or more CpGs in 200 bp) [32]. The presence

of CpG islands is associated with gene regulatory regions [43] and in the promoters

of genes generally correlates with binding by RNA polymerase II (RNAP) [43].

Promoters of housekeeping genes are constitutively bound by RNAP in all tissues

while regulated promoters, either tissue specific or inducible, are selectively bound

by RNAP in only certain tissue(s) or contexts respectively [76].

Three advances allow us to interrogate the genome-wide properties of promot-

ers. First is the availability of complete genomic sequences. Second is the deter-

mination of full-length cDNAs that can identify the TSS and proximal promoter

[16]. Third is the determination of the chromatin architecture of the genome by the

identification of hypersensitive sites [72][23] or the location of particular proteins or

their modified forms using chromatin immunoprecipitation followed by microarray

analysis (ChIP-chip) [69]. Although ChIP-chip experiments have identified the lo-

cation of RNAP and components of the preinitiation complex in particular tissues

[43][5], these experiments have not been done systematically over a range of tissues.
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We show that CpG containing DNA sequences are associated with RNAP

binding to the same promoter in multiple tissues. Many DNA sequences are more

abundant near the TSS than elsewhere [30][8][56][90] and the six most abundant CpG

containing sequences that are localized in proximal promoters are known TFBS and

can predict RNAP binding to housekeeping promoters with similar accuracy as the

presence of CpG islands.

2.2 Results

2.2.1 Binding of RNAP and H3K9me2 to mouse promoters in ker-

atinocytes, liver, and heart ventricles

To gain insight into the DNA sequence properties of housekeeping promoters,

we analyzed RNAP binding to promoters in three mouse tissues: primary skin ker-

atinocytes, liver, and heart ventricles. Using ChIP-chip experiments [89], we deter-

mined the genomic localization of initiating (hypo-phosphorylated) RNAP [66][73]

in all three tissues (Figure 2.1 A-C). DNA from the RNAP ChIP analysis was

amplified and hybridized to Nimblegen mouse promoter microarrays containing 15

probes spanning from -1,000 bp to +500 bp.1 Signal intensities were averaged for

each promoter to produce a number representing binding at each promoter. This

produced a graded binding of RNAP to promoter regions as has been previously

observed [43][5][35]. We limited the following analysis of DNA sequence properties

to the set of 14,790 promoters that contains neither similar/duplicated sequences

1ChIP-chip experiments performed by Julian Rosenberg
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Figure 2.1: A-C) RNAP binding to 14,790 promoters from ChIP-chip data in differ-
ent mouse tissues with each spot representing a single promoter. A) keratinocytes
versus heart ventricles (R = +0.76). B) keratinocytes versus liver (R = +0.73).
C) heart ventricle versus liver (R = +0.76). D-F) RNAP binding to the 13,861
promoters with similar RNAP binding values in heart, liver and keratinocytes.

nor a poorly annotated transcriptional start site (TSS).

We then identified promoters that had similar RNAP binding values in all

three tissues by excluding genes where RNAP binding between any pair of tissues

was significantly different. In order to better compare data sets we performed a

data transformation using the two-dimensional rotation matrix. For every pair of

experiments, A and B “rotated binding values” were determined by operating on
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the original binding values:

∣∣∣∣∣∣∣∣
brotatedA

brotatedB

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
cos θ sin θ

− sin θ cos θ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
bA

bB

∣∣∣∣∣∣∣∣ ,

where θ is the angle by which we rotated the coordinates in the two-dimensional

plane and b is the binding value of a protein to a promoter. We rotated each pair

of data so that the best-fit line (using least-squares) was the 45-degree line. We

forced the best-fit to the origin by subtracting the value of the vertical-intercept of

the best-fit line from the vertical data before the rotation. We did this iteratively

for every pair of experiments.

In order to assure that the rotation was robust and not heavily influenced

by outliers in the data set, we temporarily removed data more than one standard

deviation from the original best fit line. If the best-fit line of the transposed data

still maintained its 45-degree angle within some small error range, we concluded

the data was successfully rotated. If not, then we repeated the procedure using

the new rotated values and only those points within one standard deviation of the

best-fit line to determine the new rotation angle and intercept adjustment. This

was repeated until the best-fit line did not significantly alter with the removal of

data points more than one standard deviation from 45 degree line.

Promoters whose rotated binding values were more than two standard devia-

tions off of the 45-degree best-fit line (as determined above) through any of the three

pair of data (liver-heart, liver-keratinocytes, and heart-keratinocytes), were consid-
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ered “tissue-specific” (not commonly bound). Of our original set of 14,790 promot-

ers, 929 were not commonly bound by RNAP in all three tissues, leaving 13,861

promoters which were commonly bound in all three tissues. 356 promoters which

were more than two standard deviations above the best-fit line in liver as compared

to heart and keratinotyes were termed “liver-specific-promoters,” and similarly, 131

promoters were identified as “heart-specific-promoters,” and 47 were identified as

“keratinocyte-specific promoters.” 395 promoters had high RNAP binding in two

of the three tissues.

The remaining 13,861 promoters (94%) have similar RNAP binding in all

three tissues, some being well bound by RNAP and others having little RNAP at

the promoter (Figure 2.1 D-F). For each of these 13,861 promoters, termed common

RNAP promoters, the rotated binding values from the three tissues were averaged,

producing a single number representing RNAP binding to a promoter across the

three tissues.

To investigate the DNA sequence properties of the 13,861 common promoters

(-1,000 bp to +500 bp) and determine potential transcription factor binding sites

(TFBS) that are responsible for RNAP binding we analyzed the occurrences of 8

bp-long DNA sequences (8mers) in common RNAP promoters. 8mers were chosen

because their length is similar to that of known TFBS. 8mers were counted on the

sense and anti-sense strands because, with the exception of TATA [29], 8mers are not

restricted to a single strand. Of all 32,896 8mers (38% contain CpG) we extensively

characterized the 12,208 most abundant 8mers of which only 20% contained a CpG

highlighting that the CpG dinucleotide is underrepresented even in promoter regions
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[30].

2.2.2 All 8mers enriched in promoters well bound by RNAP in mul-

tiple tissues contain a CpG dinucleotide

To measure 8mer enrichment in promoters commonly bound by RNAP, we

calculated the term “8mer-association-with-RNAP” for all 8mers. For a particular

8mer, this quantity (b8) is the average RNAP binding to promoters that contain

that 8mer, normalized by the average RNAP binding to all common promoters (b̄p).

b8 =

∑
p

bpδ8p

b̄p
∑
p

δ8p
,

where p is the promoter in question. δ8p is equal to one if the 8mer occurs in the

promoter sequence and zero otherwise.

A histogram of these values has a bimodal distribution. 20% of 8mers are

associated with high RNAP binding to common RNAP promoters (Figure 2.2 A).

This result suggests that the graded binding of RNAP to promoters is caused by a

combination of 8mers, some of which favor RNAP binding and others which do not.

The region of the promoter (-1,000 bp to +500 bp) critical for the observed bimodal

distribution extends from -600 bp to +400 bp (Figure 2.2). Strikingly, nearly all

the 8mers that are associated with RNAP binding contain the CpG dinucleotide

while virtually none of the remaining 8mers contain a CpG. In contrast to the CpG

dinucleotide, the other dinucleotides did not exclusively occur in either part of the
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Figure 2.2: A) Histogram of the 8mer-association-with-RNAP between -1,000 bp
and +500 bp for abundant 8mers in the 13,861 common RNAP promoters. 8mers
that contain a CpG are colored in black. B-L) Histogram of the 8mer-association-
with-RNAP in 200 bp increments from -1,200 bp to +1,000 bp. 8mers that contain
a CpG are colored in black.

bimodal distribution (Figure 2.3).

To evaluate if other types of promoters have a different enrichment of 8mers,

we examined the transcriptionally inactive genes marked by a post-translationally

modified form of histone 3, H3K9me2 (lysine 9 containing a dimethyl group) [62][51].

In keratinocytes, ChIP-chip identification of H3K9me2 genomic localization nega-

tively correlated with RNAP (correlation coefficient, R = -0.50) (Figure 2.4 A).

The 8mer-association-with-H3K9me2 also had a bimodal distribution with the CpG
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Figure 2.3: Histogram of the 8mer-association-with-RNAP between -1,000 bp and
+500 bp for abundant 8mers with 8mers containing each of the 10 dinucleotides
noted in black.
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containing 8mers associating the least with H3K9me2 binding (Figure 3B). As antic-

ipated (comparing Figure 2.2 A and Figure 2.4 B), practically all the 8mers most

associated with common RNAP binding also are least associated with H3K9me2

binding (Figure 2.4 C).

The 8mers without a CpG were also plotted separately to highlight the few

8mers that are the exception to the general conclusion that only CpG containing se-

quences are associated with RNAP binding to a promoters (Figure 2.4 D). The most

notable exception is the GACCAATC 8mer, a CCAAT sequence that is enriched in

housekeeping promoters.

Previous work indicated that ∼50% of human promoters bound by RNAP con-

tain the INR and DPE consensus sequences between -200 bp and +200 bp [43]. To

see if these non-CpG-containing sequences were also exceptions to our general con-

clusion, we calculated the association-with-RNAP and association-with-H3K9me2

for TATA, INR and DPE in the set of promoters with similar RNAP binding values

in the three tissues we have examined. This was accomplished by averaging the

binding values of those promoters that contained the consensus sequence at the ex-

pected position [57]. In mouse, the consensus TATA is uniquely positioned in only

1.8% of promoters and has a very high association-with-H3K9me2 binding to pro-

moters. The INR was uniquely positioned in only 9% of promoters and is associated

with H3K9me2 bound promoters. DPE is not uniquely positioned in promoters,

but occurs in 19% of promoters at the expected location and is also associated with

H3K9me2 binding (Figure 2.4 C). This suggests that TATA, INR and the DPE

are not important for RNAP binding to promoters in multiple tissues. Presumably
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Figure 2.4: A) Binding of RNAP vs. H3K9me2 (R = -0.50) in mouse tissue culture
keratinocytes. B) 8mer-association-with-H3K9me2 for 12,208 abundant 8mers, cal-
culated for 14,790 promoters between -1,000 bp and +500 bp; CpG containing 8mers
are colored in black. C-D) 8mer-association-with-RNAP vs. 8mer-association-with-
H3K9me2. C) All 8mers. The association-with-RNAP and the association-with-
H3K9me2 for the core promoter elements at their unique position in promoters is
presented for TATA (TATAWAAR), INR (YYANWYY) and DPE (RGWYV). D)
8mers without a CpG.
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Figure 2.5: A) A measure of non-random distribution termed a Clustering Factor
(CF) is plotted in the most populated bin for 8mers with at least 20 members in the
most populated 20 bp bin (abundant 8mers). Note the dots between -100 bp and the
TSS with large CF values representing 8mers that are more abundant near the TSS
than elsewhere. B) A probability term P for the 8mers in (A). A P-value of 24 means
that the distribution of the 8mer has a less than 10−24 chance of being random. C)
Non-random distribution of 8mers (Clustering Factor) vs. 8mer-association-with-
RNAP for abundant 8mers.

these sequences are important for tissue-specific gene expression.

2.2.3 Non-random distribution of 8mers in promoters

If the 8mers that associate with RNAP binding are TFBS, they may be local-

ized in the proximal promoter as has been observed in human [30][8] and Drosophila

promoters [29]. We thus determined the “Clustering Factor” (CF, a measure of non-

random distribution between -1,000 bp and +500 bp) [30][29] for abundant 8mers

in promoters, and compared it to 8mer-association-with-RNAP. Some 8mers were

preferentially localized near the TSS (Figure 2.5 A-B). The 8mers most associated

with promoters commonly bound by RNAP had a high CF (Figure 2.5 C). However,

there was also a class of 8mers with high CFs but low 8mer-association-with-RNAP

values that may represent TFBS involved in regulated gene expression.

The 120 8mers with the statistically highest CF (Figure 2.5 B) that localize
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Motif Sequence 8mer-association-with-RNAP

BoxA TCTCGCGA 1.30
NRF-1 GCGVTGCG 1.24
ETS VCCGGAARY 1.21
CRE TGACGTCA 1.19
SP-1 CCCCGCCC 1.14

E-Box YCACGTGA 1.10
CCAAT RRCCAATSR 1.04

KLF CCCCTCCC 1.04
TATA TATAAAD 0.96
CRE-T TGATGTCA 0.90

Table 2.1: Association of the ten localized motifs with RNAP binding.

upstream of the TSS could be manually grouped into ten consensus motifs that

are known TFBS: ETS, NRF-1, E-Box, BoxA, CRE, SP1, KLF, CCAAT, TATA,

and CRE-T, six of which contain a CpG dinucleotide (ETS, NRF-1, E-Box, BoxA,

CRE, and SP1). A similar analysis has identified that these ten motifs localize to

the proximal promoter in human promoters [30]. To see if these TFBS play some

specific role in RNAP binding, we calculated the association-with-RNAP for the

consensus sequences of these TFBS (Table 2.1). As expected, the CpG-containing

TFBS have high association values for RNAP binding. ETS, NRF-1, and BoxA

correlate the best with RNAP binding to promoters in multiple tissues.

2.2.4 CpG Islands can be defined by two or more of the six CpG

containing TFBS.

Previous work has suggested that housekeeping genes can be defined by the

presence of a CpG Island in the promoter region [32], but the DNA sequences
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properties of CpG Islands has not been described. We evaluated if the presence of

the six CpG consensus motifs in proximal promoters (-200 bp to the TSS) predicts

RNAP binding to promoters commonly bound by RNAP and compared these results

with the occurrence of a CpG Island between -200 bp to the TSS (Figure 2.6 A). The

results demonstrate that the presence of any two of these motifs recapitulates the

discrimination based on the presence of a CpG Island in regards to RNAP binding to

common promoters. In order to compare these two measures, we grouped promoters

into ten equal size groups with increased RNAP binding. 80% of promoters in the

group best bound by RNAP contain a CpG Island and a similar number contain

two or more of the six motifs (Figure 2.6 A). Similarly, only 5% of promoters

with the lowest RNAP binding values are CpG Islands, and only about 5% have

two or more motifs (Figure 2.6 A). The presence of three or more of these motifs

produced a lower positive hit rate in the best bound group (48%) but occurred in

only 1% of promoters not bound by RNAP. Therefore, our analysis suggests that

CpG Islands have predictive value in defining housekeeping genes because of the

presence of these six TFBS motifs. These six motifs do not account for all CpGs in

CpG Islands. Some of the other CpGs are known TFBS but the function of the rest

remains unclear. They could be sequences that persist because they are protected

from methylation and ultimate destruction or they could be involved in the higher-

level regulatory processes that have been proposed for CpG Islands [42]. In contrast

to promoters well bound by RNAP in multiple tissues, only 20% of tissue specific

proximal promoters are CpG Islands and similarly only 20% contain two or more of

these six motifs. This indicates that these six motifs correlate with promoters that
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Figure 2.6: A) Fraction of promoters that contain particular sequences between -200
bp and TSS: 1) CpG Island, 2) two or more of six CpG containing motifs (SP1: CC-
CGCC, CCGCCC, CGCCCC; ETS: CCGGAA, GCGGAA; NRF-1:CGCATGCG,
CGCGTGCG, CGCCTGCG; BoxA: TCTCGCG, CTCGCGA; CRE: ACGTCA; E-
Box: CACGTG), 3) three or more of the six motifs. B) Fraction of promoters that
contain particular motifs: top 20% of common RNAP promoters (Const), liver spe-
cific (LS), heart ventricle specific (HS), and keratinocyte specific (KS) promoters.
Average RNAP binding for each class is presented.

are bound by RNAP in multiple tissues and not tissue specific promoters (Figure

2.6 B).

2.3 Conclusions

We identified promoters that are bound similarly by RNAP in multiple tissues

and determined the association between the presence of 8mers in these promoters

and the extent of RNAP binding to the promoter. Looking at RNAP binding to

housekeeping promoters, we observed a bimodal distribution: only 8mers with the

CpG dinucleotide are in the class of sequences most associated with RNAP binding

and only 8mers without a CpG are in the class least associated with RNAP binding.
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An implication of this observation is that knowing if a TFBS contains a CpG reveals

aspects of its biological function. If the TFBS contains a CpG, it is involved in

constitutive gene expression and if the TFBS does not contain a CpG, it is involved

in regulated gene expression. This insight will help identify potential functions for

transcription factors when their TFBS is identified. Additionally, if a transcription

factor shows degeneracy in its TFBS [7][67], binding to a CpG sequence and a similar

sequence without a CpG, it suggests that this transcription factor is involved in

both constitutive and regulated gene expression. This is observed for the CRE and

CRE-T sequences, two sequences that are localized in the proximal promoter and

differ by a single base: CRE contains a CpG (TGACGTCA) while CRE-T does

not (TGATGTCA). The CREB protein binds both sequences well (data not shown)

but the two sequences correlate very differently with RNAP binding suggesting that

the CREB transcription factor can regulate either constitutive gene expression by

binding the CRE sequence or regulated gene expression by binding the CRE-T

sequence.

In vertebrates CpG dinucleotides are rare and usually are methylated on the

cytosine but do occur at close to the expected frequency in clusters called CpG

Islands where the CpGs remain unmethylated [42][11]. These CpG Islands often

occur in promoters of housekeeping genes [32][43]. We show that the presence of two

or more of any of the six CpG containing TFBS (SP1, ETS, NRF-1, CRE, E-Box,

and BoxA) in the proximal promoter can predict RNAP binding to housekeeping

promoters as accurately as the presence of a CpG Island in the proximal promoter.

Methylation of the CpG in the TFBS has been found to inhibit the DNA binding
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for five of the six TFBS that are abundant and localize in proximal promoters

suggesting this may be a general result for CpG containing TFBS. Methylation

dependent inhibition of transcription factor binding to DNA has two implications.

First, the transcription factors that are critical for the activation of housekeeping

genes solve the problem of finding their TFBS in the genome by only binding to

unmethylated TFBS. Since most CpGs in the genome are methylated, the only

places these transcription factors can bind are in the unmethylated CpG Islands

in promoters. Second, the pathological methylation of CpG dinucleotides in CpG

Islands, as occurs in many cancers [42], would prevent these abundant transcription

factors from binding their TFBS thus causing the promoters to become inactive.

This could be a critical initial step that subsequently allows CpG methyl binding

proteins to bind to methylated CpGs and actively repress a promoter [12].

2.4 Further Discussion

In this analysis we primary investigated two proteins, RNAP and H3K9me2,

which have broad-based sequence affinities. However, most transcription factors,

including some of the ones mentioned as part of the typical RNAP complex, have

much more specific DNA-binding preferences. These DNA-binding preferences could

quickly be computationally assessed with the 8mer-association calculation. As op-

posed to the bimodals observed for RNAP and H3K9me2, in the case where a TF

has a very specific sequence preference, we would expect a fairly Guassian distri-

bution of 8mer-association with the sequences to which the TF binds as outliers
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relative to this distribution.

Although in CpG Islands and the promoters of house-keeping genes is it be-

lieved that the CpG dinucleotide is typically unmethylated, in other promoters and

other regions of the genome CpGs are believed to be mostly methylated and gene

expression regulated in part by epigenetic mechanisms. One shortcoming of the

8mer-association calculation is an implicit assumption that a unique DNA sequence

should function similarly independent of its location in the promoter or genome.

However, if in one promoter a DNA sequence contains a methylated CpG and in

another that DNA sequence is unmethylated, this one sequence may behave very

differently. Furthermore, it is believed that the function of DNA sequence may vary

with its position relative to the TSS.

For a follow-up analysis which addresses some of the epigenetic properties in

DNA sequence analysis for several different transcription factors, see Appendix B.
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Chapter 3

A novel motif-discovery method for finding co-occurring or

discontinuous DNA motifs

Although many de novo DNA motif-finding algorithms do a good job of de-

termining individual transcription factor binding sites (TFBS), they generally are

not suited for the discovery of longer range structure that result from multiple DNA

interactions with the transcriptional complex. Here we propose a novel motif-finding

algorithm which systematically determines all enriched pairs of DNA sequence mo-

tifs and begins to address the issues of longer range DNA structure and complex

regulation. By using “split” DNA motifs, our algorithm can not only find known

regulatory motifs, but in a very simple manner, discover if any sets of motifs pref-

erentially localize relative to one another.

The algorithm is illustrated using promoter data from Drosophila melanogaster.

We are not only able to correctly identify the majority of known binding motifs,

including TATA, INR, DPE, DRE and E-Box, but we also find many pairs of

DNA motifs which have preferential spacing. Some examples include DMv5-DMv4,

NDM2-NDM2, INR-DPE, TATA-INR, and DRE-DRE. Although several of these

pairs have previously been reported to preferentially co-occur, the existence and/or

amount of any preferential spacing between these pairs has not been reported. In

addition to known elements, we also identified several novel promoters elements,
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some which occur individually and others which preferentially localize relative to

a known TFBS. These findings suggest that the split-motif algorithm is a power-

ful tool useful for finding novel promoter elements and for identifying long-range

structure in promoters.

3.1 Background and Motivation

Gene regulation is controlled, at least in part, by a region of DNA sequence

called the core promoter, located upstream of the transcriptional start site (TSS)

of each gene. The regulatory involvement of distal regulatory regions of DNA,

enhancers, is also increasingly being recognized but their exact properties are still

incompletely understood. The core promoter typically contains the majority of DNA

binding sites necessary for regulatory proteins such as transcription factors (TF) to

bind to the DNA and initiate (or prevent) transcription of a gene. The functionality

of these DNA binding sites has been shown to correlate with their position relative

to the TSS [83] and is also likely to correlate with their position relative to other

binding sites [14].

In recent years, many computational methods have been developed to detect

de novo TF sequence motifs [41]. Representatives of these methods are CONSEN-

SUS [79][38], EM-based algorithms [48], Gibbs sampler [47], “AlignACE” [70], and

“BioProspector” [52]. In addition, there is a host of freely available motif-finding

software which takes DNA sequences as an input and hunts for common elements

among those sequences. Some of the most popular ones include MEME [3], Al-
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legro [36], Clover [75], Weeder [64] and FIRE [27]. Some of these programs can

also incorporate in vivo data, such as ChIP-chip and microarray values, into their

motif-finding algorithms.

The majority of these algorithms are tuned to find discrete transcription fac-

tor binding sites (TFBS) which span 5-20 base-pairs (bp). However, there is a

substantial body of evidence emerging which indicates that sets of DNA motifs play

a biological role in transcription factor binding and gene expression [14][68]. Even

so, the issue of complex regulation, the case in which multiple DNA sequence motifs

act in concert to regulate gene expression, has yet to be systematically studied. To

address this issue we developed an algorithm which systematically searches for all

pairs of DNA sequence motifs as well as provides a novel method by which to search

for single de novo TF binding motifs.

One potential weakness of novel motif finding algorithms is the inability to

correctly determine whether several similar-looking identified sequence elements rep-

resent unique DNA binding sites or if they are a degenerate sampling of the same

binding site. In order to overcome this we centered our algorithm around the co-

occurence of DNA sequences. We worked under the hypothesis that two sequence

elements which occur together many times in a given sequence set represent two

samples of the same DNA binding site, whereas two sequence elements which do

not often co-occur are representative of unique binding sites, even if they have a

high sequence similarity. Our algorithm, utilizing the concept of a split-motif is

demonstrated using a set of 9,494 Drosophila promoters.
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Figure 3.1: Overview of the Split-nmer Algorithm

3.2 Methods: Determining the DNA motifs over-represented in an

input set of sequences using a split-motif algorithm

The split-motif algorithm (Figure 3.1) systematically calculates the statistical

probability of the co-occurrence for pairs of 4mer-Nk-4mer, or split-8mers, given an

input set of DNA sequence. Pairs of split-8mers whose co-occurrence is statistically

higher than expectation are then linked together in a correlation network and con-

sensus motifs for the resulting groups are determined. Biological function can be

ascribed to these motifs by identifying which genes in the input data set contributed

most strongly to the motifs and analyzing those genes’ biological role in the cell.
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3.2.1 Split-nmers

Our method centers around the concept of a “split-nmer” by which we mean a

k+ n letter word, where the n/2 base-pairs on either end of the word are held fixed

and k base-pairs in the center of the word are allowed to be completely degenerate.

In this paper we will focus on split-8mers, containing a variable number of degenerate

spacer base-pairs surrounded by four unique and fixed bases on either end of the

sequence. We chose to focus on split-8mers because the four bases on either end of

the sequence should contain enough information to capture the core of many TFBS.

Also, the occurrence of the split-8mers should be similar to that of continuous 8mers

and be high enough to have statistical viability.

One way to represent a split-8mer is in the form XNkY , where X is the first

four-letter word, Y is the second four-letter word, and Nk represents k base-pairs of

completely degenerate DNA (A, C, G or T). It is interesting to note that for some

pairs of X and Y , k can take on a negative value as low as −n/2, or in the case

of split-8mers, −4, representing the occurrence of sequences which are less than n

base-pairs in length. For example, the split-8mer TGACN−2 ACGT would actually

represent the six-letter word TGACGT. k can therefore vary from kmin = −n/2 to

kmax, the maximum value of k investigated, representing all split-nmer words with a

mimimum length of n/2 and a maximum length of kmax+n, or from 4 to kmax+8 in

the case of split-8mers. These words are either completely unique, as in the case of

k ≤ 0, or have exactly n = 8 letters fixed. In our following analysis we set kmax = 55

as this limit captures the majority of information in our input promoter set.
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3.2.2 Determining statistically significant pairs of split-8mers

We determined the statistical probability of the co-occurrence of every pair

of split-8mers using the hypergeometric probability distribution. This was done by

counting the number of sequences in which the first split-8mer occurred (N1), the

number of sequences in which the second split-8mer occurred (N2) as well as the

number of sequences in which both halves of the two split-8mers occur within a

K bp window of one another (N12). We imposed the window constraint to better

assure that we only counted co-occurrences of two split-8mers which are likely to be

biologically relevant because of their physical proximity to one another.

After determining the co-occurrence count N12 we modified the value by sub-

tracting E(N12), a measure of how many co-occurrences of the two split-8mers one

might expect by chance given their sequence similarity.

N ′12 = N12 − E(N12), E(N12) = max[N1, N2]× (0.25)n
′−b,

where N ′12 is the modified co-occurrence, n′ is the minimum number of letters held

fixed in the two split-nmers (n′ = n = 8 for split-8mers unless k < 0) and b is

the number of shared base-pairs. This modification to N12 is crucial to prevent

the counting of co-occurrences due only to sequence similarity. As an example,

the two split-8mers TGACN10 TGAC and TGACN11 GACT could be aligned to

share seven base-pairs in common. This alignment would result in the sequence

TGACN10 TGACT, which is only one base-pair different from either of the two

original split-8mers. The expected occurrence of the aligned sequence is therefore
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equal the occurrence of one of the split-8mers multiplied by the probability that

that split-8mer will be expanded by the additional base-pair.

For simplicity, we took the split-nmer with the maximum occurrence to be the

one expanded. We reasoned that taking the maximal value of N1 and N2 would

“punish” N12 more and thus, even if we lost some true positives, would be more

robust against producing false positives. For computational ease we also assumed

the probability of extending any sequence by one nucleotide is equal to 25%. Since

25% is an approximation, we will use our final p-values for ordering by significance

rather than a well-defined probability.

Once we determine N ′12, N1, N2 and the total number of input sequences (T ),

we can use the hypergeometric probabilty distribution to determine the probability

of obtaining N ′12 or more co-occurrences of the two split-8mers by chance:

p =

min[N1,N2]∑
Nv=N ′

12

N1

Nv


 T −N1

N2 −Nv


 T

N2


.

We will be taking P = −log10(p) as the p-value in the following discussion.

3.2.3 Determining significant DNA motifs represented in the input

data set
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After calculating the p-value, (P ), for every pair of split-8mers we proceeded

to group together those split-8mers whose pair-wise co-occurrence is statistically

significant. This was done by taking all pairs of split-8mers whose p-value is above

a particular threshold, using those pairs to construct a correlation network and then

identifying communities, or groups of sequences, in the correlation network. We

chose our p-value cutoff in such as way as to maximize the number of informative

modules in the correlation network. We did this by choosing the p-value cutoff which

minimizes the percentage of identified split-8mers found in the largest connected

component. This optimization forces the information in the correlation network

to be spread amoung many smaller modules. Once the groups of DNA sequences

are determined, the sequences within each group can be aligned to produce DNA

sequence motifs representing the collection of split-8mers found within the group.

Figure 3.2: Idealized 6mer-
Nk-6mer as it would look in
a correlation network

At this point it is beneficial to consider how an

idealized split-motif would be represented in the cor-

relation network. As an example, take a perfect 6mer

DNA motif which is preferentially localized with re-

spect to another 6mer DNA motif and whose se-

quence make-up is completely unique, meaning that

no part of either 6mer is preferentially localized rel-

ative to some other DNA sequence. In this case we

would expect all split-8mers represented within the split-motif to statistically co-

occur and be connected to each other in our correlation network, and to not be

connected to any other split-8mer in the correlation network. This is visualized in
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Figure 3.2. Three 4mers are contained within the first 6mer and three 4mers are

contained in the second 6mer, leading to three times three or nine total split-8mers

represented in this 6mer-Nk-6mer. Some various nmer-Nk-mner combinations are

shown in Table 3.2.3.

3.2.4 Ascribing biological function to the identified DNA motifs

n

m

4 5 6 7 8

4 1 2 3 4 5

5 4 6 8 10

6 9 12 15

7 16 20

8 25

Table 3.1: Number of split-8mers
in a cluster representing an nmer-
Nk-mner split-motif. These val-
ues are equal to (n− 3)(m− 3).

Once motifs enriched in a set of sequences

are identified it is important to revisit the in-

put sequence set and determine the origin of the

final motifs within this set. To address these is-

sues we determine which of the input sequences

most stronger contributed to forming each clus-

ter in our correlation network. Each edge in the

correlation network represents a subset of the in-

put sequences, namely, those input sequences in

which the two split-8mers forming the edge both

occur. Therefore, by determing these subsets for all edges within a cluster, we can

determine how many times each input sequence contributed to the formation of that

cluster. Once the input sequences which contributed to a split-motif community are

determined, the biological properties associated with those input sequences can be

assessed.
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3.3 Results: split-motifs in Drosophila promoters

Using 9,494 Drosophila promoters, we calculated the p-value (P ) for every pair

of split-8mers which had a modified co-occurrence of at least 10. We then identified

the connected components with at least nine members for various p-value cutoffs

and determined the optimal cutoff (see Section 3.2.3). For our input set, this cutoff

was 28, however, any cutoff above 15 would give similar results.

At this cutoff we identified seventy-two connected components (Figure 3.3).

The members of each component were aligned and represented by a single DNA

motif. Of these seventy-two identified motifs, approximately half are shorter “con-

tinuous” DNA motifs, and the other half are longer “discontinuous” motifs. The

majority of the continuous DNA motifs are known TFBS and the discontinuous

motifs are primarily composed of two known TFBS located at different spacings rel-

ative to one another. There is also a handful of identified longer continuous motifs

which are composed of two shorter known TFBS that are separated by 0bp or are

slightly over-lapping. Five continious and discontinuous motifs as well as two longer

continuous motifs from the largest components are shown in Table 3.2.

3.3.1 Continuous Motifs

Many of the identified continuous motifs are known promoter elements for

Drosophila and include TATA, INR, DPE, DRE, E-Box and others. However, we

also identified six novel elements. We determined which of our input sequences con-

tained 6 or more split-8mer pairs from each connected component and defined these
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Figure 3.3: A visual representation of the correlation network for Drosophila (sta-
tistical cut-off value of 28). Each point represents a split-8mer and lines represent a
pair of split-8mers whose co-occurrence is statistically significant. Notice how well
the diagram falls into idividual connected-components. Each connected component
represents a set of split-8mers which can be combined to create a particular DNA
motif significant for Drosophila.
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Figure 3.4: The frequency distribution of four of the novel elements discovered
by the split-motif algorithm. The fact that these elements peak in the proximal
promoter lends support to the idea that these elements are real, biologically relevant
components of Drosophila promoters.

input sequences as influential in the formation of that component. 207 of our in-

put promoters are associated with one or more of the identified novel elements and

none of the other identified known regulatory DNA motifs, indicating that there

is a set of promoters which may be regulated by these DNA motifs. These genes

are over-represented in developmental GO categories such as “appendage develop-

ment”, “nervous system development”, “cytoskeletal protein binding” and “tubulin

binding.”

We also investigated the localization properties of these six novel elements

and found that four of them peaked in the proximal promoter (Figure 3.4). Motif

localization in the proximal promoter has previously been shown to be indicative of

DNA sequence function [30][29], lending further support that these discovered motifs

are biologically important. None of the motifs are especially abundant, which may

be one reason why they have not been discovered by other traditional motif-finding

algorithms.

Despite the fact that the split-motif algorithm is specifically tuned to find

longer and split DNA sequences, it does surprisingly well at finding shorter contin-
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Component Corresponding
Name Motif Size Genes

DMv4 256 2289

DRE 255 3098

E-Box 90 1019

DMv2 61 381

DMv1 50 430

DMv5-DMv4 104 684

INR-DPE 45 445

TATA-INR 33 295

INR-DPE1 30 253

DRE-DRE 30 235

DRE-DRE 51 293

NDM2-NDM2 51 201

Table 3.2: Examples of motifs identified by the split-motif algorithm. Information
is shown for some of the largest identified components.

uous motifs. There were very few known Drosophila TFBS which we did not find.

One TFBS which did not surface in our analysis is the 7bp-long NDM3. One poten-

tial reason this TFBS was missed was that it shares sequence properties with the

TATA motif. Since split-8mers only appear once on our correlation network, they

will not ever be grouped with two distinct TFBS. The core of NDM3, AAAG, has

similar properties to TATA. However, TATA is the more prominent motif, so the

split-8mers were identified as elements of TATA, perhaps leading to the exclusion

of NDM3.
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3.3.2 Discontinuous Motifs

The split-motif algorithm is especially tuned to discover pairs of TFBS that

localize relative to one another. As anticipated, after running the algorithm on

Drosophila promoters, we found many such pairs. The spacing of the found split-

motifs was sometimes in excess of 30bp, indicating true long-range structure in these

promoters.

Previous studies have shown that some pairs of TFBS preferentially co-occur

by utilizing the position weight matrices (PWMs) of known TFBS and calculating

whether any pair of these PWMs occur together greater than expectation. However,

these studies have never suggested whether or not there is also a preferential spacing

between these motifs, something that could be relevant at a molecular binding level.

Secondly, since these studies have utilized the PWMs of known TFBS they have

never searched for novel elements. It is possible that a protein complex binds to a

long discontinuous DNA motif, each half of which only rarely occurs independently

and thus may not be found by traditional means. Because we investigated all split-

8mers, our results are not in any way biased toward known TFBS and the algorithm

has the potential to discover novel “split” sequence elements.

Some pairs we found that are known to co-localize include DMv4 and DMv5,

TATA and INR, and INR and DPE. Even though these are “known” pairs, the

spacings between each set has never been identified. However, with the “split-

nmer” algorithm that information is built-in. For example, for DMv4 and DMv5 we

now know, from the split-motif algorithm, that DMv5 preceeds DMv4 at exactly a

44



distance of 25 (from the “TGGT” to the “GGTC”).

In addition to their preference to co-localize, the preferred position of TATA,

INR and DPE relative to the transcriptional start site in a promoter is known down

to a base-pair precision. These two facts only imply, but do not prove, that the

co-localization and the preferential placement are simultaneous. The split-motif

algorithm, however, does prove the connection between co-occurrence and prefer-

ential spacing. For INR and DPE/DPE1 this spacing is 27 (from “CAGT” to

“CGGT”/“CGGA”). For TATA and INR we found two separate preferred spacings

(from the start of “TATA” to the start of “CAGT”): 32 and 33. The canonical

33 spacing correlated with a larger connected component whose edges were more

significant. Their were minor differences between the two discovered split-motifs,

suggesting that this change in separation may affect how the transcription factors

bind to each half of the split-motif.

We also found other pairs of TFBS which had not been previously identified

to co-localize, including some novel elements. For example, our algorithm revealed

that the DRE and E-box preferentially localize relative each other with a spacing of

25 (from “TCGA” to “AGCT”). The order of these two elements is interchangeable

since both motifs approximate palindromes. Both INR and DRE were found to

preferentially localize relative to several novel elements. These novel elements are

all relatively short (6bp or less), which may be one potential reason they have not

been identified as promoter elements in the past. The elements which preferentially

localize relative to INR also preferentially localize in the proximal promoter (Figure

3.5). This makes sense since the INR is very well localized in the promoter.
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Figure 3.5: The frequency distribution for two sequences found to preferentially
localize relative to the INR. These sequences also localize in the proximal promoter.

One of the most interesting pairs of TBFS discovered by the split-motif al-

gorithm was that of DRE-DRE. Pairs of DREs accounted for just over a third of

our discovered components and had a spacing length which varied from nearly-

overlapping to 35. One potential weakness of the split-motif algorithm is that it

utilizes a fixed spacing in the split-8mers when calculating the p-values used to

create the correlation network. This might prevent the algorithm from discovering

pairs of TFBS which like to co-localize but which are not preferentially localized

relative to one another. However, this was not the case for pairs of DREs. Rather

than missing the pair, the split-motif algorithm instead found the pair at many

spacings, showing that the two halves preferentially co-occur within 35 base-pairs

of each other but do not preferentially localize relative to one another within this

separation.
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3.4 Discussion

The novel feature of the split-motif technique is that rather than looking for

the co-occurrences of two distinct, known, TFBS, represeted as PWMs, we have

looked for the occurrence of a single long motif whose central region is highly degen-

erate. This allows us to find novel pairs of elements in a computationally efficient

manner. Furthermore, since the algorithm joins together many shorter sequences

to form a longer motif rather than merely hunting for longer sequences, the results

are statistically much more reliable as they are the accumulation of many samplings

coming together rather than a single sampling. Because of this we can confidently

find motifs which as a whole occur relatively few times but whose individual com-

ponents all statistically co-occur above the DNA sequence background.

One potential drawback to the algorithm is that it depends on the spacing

between the individual “motifs” being fairly consistent in the majority of the oc-

currences of the split-motif. If two TFBS co-occur but do not co-localize it will be

more difficult for our algorithm to link these TFBS. However, as long as the pair

co-occurs more often than the background of the individual split-8mers making it

up, then the algorithm should be able to find it, as in the case of pairs of DREs.

Since many proteins are fairly well conserved across species, it has been hy-

pothesized that one fundamental difference between species is not in their genetic

make-up so much as in how their genes are regulated. Because of this, the properties

of promoters are very different in different species. As a consequence, just because

the split-motif algorithm was able to discover novel elements in Drosophila does not
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mean it should work in other organisms. Many motif-finding algorithms work well on

prokaryotic organisms only to fail when applied to eukaryotes [54]. However, since

the split-motif algorithm is specifically designed to uncover instances of complex

regulation, something which becomes more abundant in more complex organisms,

it is the authors’ hope that it will actually perform better across species than many

current novel motif-finding algorithms which focus on single and short TFBS.

3.5 Conclusion

Using the split-motif algorithm, we found both novel, continuous TFBS, and

also many pairs of TFBS which preferentially localize relative to each another. We

looked at the localization of these novel elements and found that many of them also

cluster in the proximal promoter, a trait that has been shown to be correlated with

a DNA sequence’s function. The algorithm’s strength is in that it can systemati-

cally search for both continuous and discontinuous, or pairs of, DNA sequences and

provides a simple way in which to group the discovered elements, a feature lacking

in many novel motif-discovery algorithms. It is also able to find these longer and

discontinuous motifs with greater statistical confidence. Finally, it assigns a spe-

cific spacing between pairs of discovered motifs, something which has never been

done before. This preferential spacing may be able to give profound insights how

complexes of proteins bind to promoter DNA and act in concert to control gene

expression.
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3.7 Methods

3.7.1 Treatment of the input sequences prior to analysis

Drosophila promoter sequences for all identified mRNA coding genes were

downloaded using the UCSC Genome browser. We ignored annotations for alternate

splice sites (“long NMs”). We also removed genes with questionable annotations

(genes whose transcriptional start site was annotated within 30bp of its coding start

site) and genes whose annotated TSS was too close to the end of the chromosome

to contain a full promoter region, defined as from -1000 to +500 around TSS. In

order to prevent unintentional sequence duplication, for the remaining genes we also

determined the location of transcriptional start sites along the chromosomes and if

any pair of genes had an annotated transcriptional start site within 500bp of one

another, the latter promoter region was removed from our analysis. This left us with

9,494 Drosophila promoters. In this analysis we focused on the proximal promoter,

using regions of DNA sequence from -250 to +50 around the TSS. We masked these
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sequences using both the standard UCSC repeat masker and a low-complexity filter.

For the low complexity filter we used the “dust” program and set the sequence length

variable equal to 11.

3.7.2 Quickly finding the location of all split-8mers

In order to quickly find the location of split-8mers in an input data set we used

the open-source command-line program, TACG, originally designed for restriction

enzyme analysis. We began by determining the locations of all 4bp DNA sequences

in our input sequences. We then used those locations to construct information

regarding the locations of each split-8mer.

3.7.3 Visualization of correlation networks

Visualization of our correlation networks was done using the neato program

within the Graphviz suite (www.graphviz.org). The color defines the connected

components or communities of split-8mers and the length of each edge correlates

with the p-value associated with that pair of split-8mers, with the shorter edges

representing more significant p-values. We only show links in the correlation network

that belong to components containing at least a sixteen members.

3.7.4 Sequence alignment

Pairwise and multiple sequence alignments were done using ClustalW. Since

our pairs of split-8mers most likely represent overlapping sequences, we set the gap
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parameter to 100 to prevent any gaps from opening in aligning the sequences. Once

the sequences were aligned, their PWMs were visualized using weblogo by Berkeley.

We included the small sample correction option since many times the ends of the

aligned sequences are only represented by one or two samples out of the entire set.

3.7.5 Functional enrichment analysis

To perform our functional enrichment analysis we used the web-based program

DAVID and it’s stand-alone counterpart, EASE.
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Chapter 4

Understanding and Improving Gene Network Reconstruction using

Functional Relationships between Genes

If one gene regulates another, those two genes are likely to be involved in many

of the same biological functions. With this in mind, we propose a method to create

a gene interaction network entirely based on functional annotations within the Gene

Ontology (GO). We apply our method to E. Coli and find that the strength of links

in our ontology-based network is highly correlated with the existence of known regu-

latory interactions published in RegulonDB. Further, we observe that these strengths

are indicative of the importance of links in the known regulatory network’s struc-

ture. Our ontology-based network is almost as predictive as methods that use gene

expression data to calculate mutual information between genes (in particular, we

compare our approach to the widely cited context-likelihood-of-relatedness (CLR)

algorithm). In addition, the ontology-based approach identifies a different subset

of regulatory interactions compared to the mutual information approach. We show

that combining predictions from the ontology-based network with those predicted by

other reconstruction algorithms leads to a significant improvement in the accuracy

of the reconstructed network.
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4.1 Introduction

The Gene Ontology (GO) [2] provides a controlled setting in which biologists

can annotate genes with their functional properties. Since its inception, GO has

been applied in various ways, including functional analysis of sets of genes [40] and

further annotation prediction [45].

By linking genes based on shared functional annotations, it is possible to con-

struct a gene network with links representing the functional similarity between pairs

of genes. However, determining exactly how to calculate this “functional similarity”

is non-trivial. We propose a natural weighting scheme under which the “functional

similarity” of two genes is correlated with their likelihood to appear as a regulatory

interaction in experimental networks. We believe that this model could be used

to help produce approximate gene networks for species that do not have a well es-

tablished gene regulatory network from experiments. In addition, constructing the

ontology-based network allows us to interpret the functional role that inferred links

might play in the true regulatory network.

In order to evaluate the predictive power of our approach, we compare our

ontology-based network with regulatory networks predicted by application to gene

expression data of the well-established, context-likelihood-of-relatedness (CLR) net-

work reconstruction algorithm [28]. The CLR algorithm produces a gene interac-

tion network by calculating the mutual information between gene expression data

for genes pairs, and by using this in a criterion for judging whether a network link

exists between any given pair of genes. We show that our ontology-based network
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predicts a biologically distinct subset of regulatory interactions from CLR. This

suggests that combining predictions from the ontology-based network with those

predicted by gene-expression based reconstruction algorithms might enhance one’s

ability to reconstruct regulatory networks. By tests using the experimentally deter-

mined RegulonDB transcription network for E.coli, we verify that this is indeed the

case. An outline of this process is shown schematically in Figure 4.1.

In addition to demonstrating that the strength of the links in our ontology-

based network is correlated with the existence of a regulatory link, we also find that

links which reflect strong connections in our ontology-based network are likely to be

structurally important in terms of information flow in the true regulatory network.

We will focus on E.coli, since it has been used extensively in training network

reconstruction algorithms, and there is a high quality experimental E.coli gene net-

work published by RegulonDB [31].

4.2 Background

4.2.1 Annotation properties of the Gene Ontology

The Gene Ontology takes the form of directed acyclic graph (DAG) with three

independent branches: “Molecular Function,” “Biological Process,” and “Cellular

Component.” Within each of these branches, genes are annotated to “terms” rep-

resenting their physical and functional roles in the cell. Terms are organized hier-

archically. E.g., a term broadly describing a class of functions may be the “parent”

of several “child” terms associated with functions in the broad class of the parent
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Figure 4.1: Outline of the process. We use Gene Ontology annotations to create
a projected gene network (Gp). We then compare this projected network to the
experimentally verified network, GE, published by RegulonDB, to determine which
biological regulations our projected network best recapitulates. We also compare Gp
and GE to the gene network, GCLR predicted by the CLR reconstruction algorithm.
We find that our projected network predicts a different subset of regulatory inter-
actions than the network reconstructed from gene expression data using the CLR
algorithm. We propose combining the results of the ontology-based approach with
the gene-expression/mutual-information approach in order to obtain an improved
network reconstruction, Gp+CLR.
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term, and these child terms may be the parents of still more specific terms. Because

the gene ontology is a DAG, child terms can have more than one parent term. Gene

annotations are transitive up the DAG, meaning an annotation to a child term im-

plies annotations to all the parent terms of that child [84]. As a consequence, all

genes will contain an annotation to one or more of the three main branches of the

DAG.

In order to construct our ontology-based gene interaction network, we used

pairs of gene-term annotations downloaded from the Gene Ontology website (ge-

neontology.org) to first construct a bipartite gene-term network, represented as an

nT × nG adjacency matrix, where nT is the total number of terms and nG is the

number of genes listed in the annotation file. In this matrix a value of one indicates

a known connection between the corresponding gene and term, and a value of zero

indicates that the gene is not associated with that term. We will denote the nT ×nG

adjacency matrix of this bipartite graph by B and its nG × nT transpose by B′.

Many terms are only associated with a small handful of genes, while some

terms are associated with many genes. A histogram of the “degree” of terms in

E.coli (i.e., the number of genes annotated to each term) reveals a roughly power-

law relationship (Figure 4.2). Although there are several different phenomena

that could result in a term having a large number of genes annotated to it, in the

majority of cases a large number of annotations merely indicates that the functional

term is very general and is at the top levels of the DAG. We will exploit this fact

when determining the strengths of the functional links between genes in our gene

network.
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Figure 4.2: Cumulative degree distribution for terms considering all gene-term an-
notations and just those in each individual ontology.

Each of the three main ontologies also has unique properties. For example,

although the “Cellular Component” ontology contains the fewest total terms, and

its terms also on average have the highest degree. Therefore, if we use the degree

of terms to weight down links between genes, we can expect that our final weights

will, on average, have the smallest contribution from “Cellular Component” and

the largest contribution from “Molecular Function.” This will be discussed in more

detail in Section 4.4.2.

4.2.2 Expression-based regulatory network reconstruction

There are several popular approaches which utilize high-throughput gene ex-

pression data to reverse engineer a regulatory network and create what is known as

a relevance network [15]. Many relevance network approaches calculate the corre-
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lation or mutual information of the expression profiles for pairs of genes, then link

gene pairs with high correlation or mutual information values to build a regulatory

network. Recent developments in these computational algorithms have made con-

structing large and complex networks more feasible and are reaching a point where

networks for many systems can be fully computed on a normal desktop computer

[55]. However, despite major advances and evidence of their ability to lend biologi-

cal insight [6], the quality and completeness of these biological networks still needs

improvement. Comparisons between networks generated using these algorithms and

known regulatory networks, such as the one put forth for E.coli by RegulonDB [31],

shows only about a 60% ability to predict true regulatory interactions [28], and this

is only for a specific subset of all known regulatory interactions.

Some of the most successful algorithms for generating gene regulatory networks

involve the information theory concept of mutual information (MI) [94][55][28]. MI

describes the statistical dependence between two variables. However, unlike tradi-

tional correlation coefficients, MI does not assume a linear relationship and has been

used to successfully detect regulatory interactions which would have been missed us-

ing a linear correlation metric. The MI between genes a and b is:

MI(a, b) =

∫
log

p(α, β)

p(α)p(β)
dαdβ, (4.1)

where α and β denote the expression levels of genes a and b, and p(α, β), p(α)

and p(β) are joint and marginal probability densities of these expression levels.

In practice, several different measurements (αi, βi) are obtained, possibly under
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different perturbing conditions, and used to obtain estimates of MI(a, b).

We wish to investigate how the results of a reconstruction approach using

the publicly curated functional data in GO compares to results of techniques using

gene expression data such as the ones described above. As an example, we will

compare our ontology network to the network produced using the context-likelihood-

of-relatedness (CLR) algorithm for E.coli. CLR calculates the MI between each pair

of genes. It then performs a background correction step in order to eliminate false

correlations by calculating a “Z-score” defined as:

Z(a, b) =

√(
MI(a, b)− µa

σa

)2

+

(
MI(a, b)− µb

σb

)2

, (4.2)

where µx and σx are the average and standard deviation of the MI values associated

with gene x, respectively. If the Z-score value is above a chosen threshold, a network

link is judged to connect genes a and b. We explore whether functional relationships

are reflected in networks reconstructed by the CLR algorithm and whether the types

of interactions captured by the ontology-based network are fundamentally different

from the types captured by the CLR network.

4.3 Approach: Gene Networks based on Gene Ontology

From the adjacency matrix B of our bipartite graph we can generate an adja-

cency matrix Ĝ specifying a projected network relating genes annotated in the Gene

Ontology:
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Ĝ = B′B, Ĝij =
∑
p

BipB
′
pj. (4.3)

In this projection the value of Ĝij is equal to the total number of functional anno-

tations which are shared between genes i and j. However, as previously discussed,

some terms such as “Molecular Function” are quite general and associated with

many genes, while others are only associated with very few genes. It would, there-

fore, seem inappropriate to weight links between genes i and j simply by the number

of their co-associations with terms (as done in the above definition of Ĝij). E.g., one

might want to count associations through terms that have many gene annotations

less strongly those associations that occur through more specific terms (like “beta-

catenin binding,” which has only a handful of gene annotations). One common

practice employed to address this issue is to ignore the highest level of the DAG

[50]. However, we choose instead to compensate for the variation in the quantity of

term annotations by introducing a diagonal weighting matrix which is based on the

degree of terms in B:

w
(α)
ij =

δij( nT∑
p=1

Bpi

)α , (4.4)

where δij = 1 if i = j and is zero otherwise. Using the matrix w(α), we modify

the strength of our gene connections as given in Equation 4.3 to obtain a new gene

conntection matrix Ĝ(α) given by:
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Ĝ(α) = B′w(α)B, Ĝ
(α)
ij =

∑
p

B′ipBpj

(
∑
l

Bpl)
α
. (4.5)

where α can be thought of as a weighting parameter such that larger α more strongly

suppresses the weights of terms (index p in Equation 4.5) that have connections to

many different genes (index l in Equation 4.5). Note that for α = 0, the weighting

matrix, w(α) reduces to the identity matrix (i.e., uniform weighting of terms), and

Ĝ(0) = Ĝ. Another issue is that, if two genes are annotated to the same term, those

two genes will also both be annotated to all the parents of that term. However, these

annotations are redundant. Therefore, to compensate for this we further modify our

projected gene-gene adjacency matrix of Equation 4.5, as follows:

G
(α)
ij =

∑
p

B′ipBpj

(
∑
l

Bpl)
α
δipj, (4.6)

where δipj has been introduced to compensate for the above-described redundancy

of annotation. There are two choices for δipj which we employ.

(i) Lowest-Level-Annotation choice: One option is to take only lowest-level

annotations in the Gene Ontology, which are, by their nature, non-redundant. In

this case δipj will equal 1 if gene i and gene j both have a lowest-level annotation

to term p, and zero otherwise. One potential weakness of this method is that only

genes which share a lowest-level annotation will be linked, and thus our network

may be relatively sparse.

(ii) Lowest-Common-Ancestor choice: Another viable alternative is to consider
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all lowest-common annotations between pairs of genes, meaning that if two genes

are both annotated to the same term, consider that common annotation, but none

of the annotations to the parents of that term. In this case δipj will equal 1 if term

p is a lowest-common-ancestor of gene i and gene j, and zero otherwise.

Figure 4.3 and its caption illustrate these two choices for δipj. We note that

use of G(α) in place of Ĝ turns out to be crucial in out network construction, and

we will investigate how varying the weighting parameter, α, affects the predictive

power of our method. For ease of notation we will henceforth drop the subscript,

(α), on G(α). That is, we use G to denote G(α).

Since the Gene Ontology has three distinct branches, we will also investigate

the effects of considering the individual ontologies of each of these branches as op-

posed to the entire gene ontology. Therefore, we will have four versions of G: (i)

the reconstruction considering all gene-term annotations (GAll), (ii) considering only

gene-term annotations where the term is part of the “Biological Process” ontology

(GBP ), (iii) considering only gene-term annotations where the term is part of the

“Molecular Function” ontology (GMF ), and (iv) considering only gene-term anota-

tions where the term is part of the “Cellular Component” ontology (GCC). Because

G in Equation 4.6 is defined as a sum over terms (i.e., the index p in Equation 4.6),

GAll = GBP +GMF +GCC .
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Figure 4.3: An illustration of the difference between the lowest-common-ancestors
choice of δipj and the lowest-level-annotations choice of δipj. If gene (1) and gene
(2) are annotated to terms F, H, I, and J, as illustrated, they will share annotations
to terms A, B, C, D and E. However, the shared annotation to terms A, B, C and
D are redundant in that they are a consequence of the shared annotations to terms
E, F and H. E, F, and H are the “lowest-common-ancestors” of genes (1) and (2),
since the shared annotation between gene (1) and (2) through these terms cannot be
attributed to a shared annotation at a lower level of the hierarchy. In the “lowest-
level-annotation” weighting scheme we take this one step further and only consider
annotations between two genes which are not a consequence of annotations lower
in the Gene Ontology DAG. In the illustrated example, this would be analogous to
only considering annotations to terms F and H, and not E.
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4.4 Results

4.4.1 The effects of weighting G

There are several limiting cases for α. For α = 0 the weighting matrix reduces

to the identity matrix and the calculation is the same as it would have been had

we not considered any weighting. In this case the values of G will be the number of

terms shared between two genes (G = Ĝ). For large α the weights of G are such that

those genes connected through many low degree terms have the highest weight and

those connected through only one high degree term have the lowest weight. Low-

degree terms (i.e., terms with few gene annotations) are normally lower in the DAG

hierarchy and in general represent more specific biological functions. Therefore, by

giving the greatest weight to links between genes which share annotations to many

low-degree terms, our weights should correspond to a measure of how much specific

biological function is in common between the two genes.

To determine the consequences of different weighting parameter values, we

compared our projected network for E.coli for various values of α to the estab-

lished regulatory network published by RegulonDB. RegulonDB provides a high-

quality TF-gene interaction network which contains 1987 genes and 5717 regula-

tory links. Of these 1987 RegulonDB-listed genes, 1729 also appear in the GO

annotation files, and of the 5717 RegulonDB-listed links, 1408 also appear in our

lowest-level-annotation projected gene network, and 4815 also appear in our lowest-

common-ancestor projected gene network. We believe that this provides sufficient

shared information for us to usefully compare our projected gene networks with the
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Figure 4.4: A comparison of the two proposed weighting schemes and the effects of
the weighting parameter α on the predictive power of the projected networks.

experimentally-derived RegulonDB gene network.

Figure 4.4 shows a comparison of the predictive power of the lowest-level-

annotation and the lowest-common-ancestor weighting schemes as a function of the

weighting parameter α. As expected, for both weighting schemes the results for

high α reach a steady value. Although the network is much sparser, the weighted

values using only lowest-level annotations are more predictive of true regulatory

interactions than those calculated using all lowest-common-ancestors. Note that for

those edges which appear in both weighting schemes, the only differece in weight

is the addition of shared annotations which are lowest-common-ancestors but not

lowest-level-annotations. Additional edges which do not appear in the lowest-level-
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annotation weighting scheme are links between genes which do not share a single

lowest-level-annotation. Note that the lowest-common-ancestor annotations, even

when through very specific, low-level terms, are apt to produce false positives and

reduce the predictive power of the edges.

We now discuss the issue of whether a link between genes in the ontology-based

network implies that one gene regulates another or that they are both regulated by

a third gene. When we consider lowest-level annotations, we are only considering

pairs of genes which are known to both perform the same specific function. On the

other hand, when considering lowest-common-ancestor annotations, we allow the

link between two genes to be strengthened if those genes perform many similar, but

less specific functions. In the limit of large α this weighting converges to the inverse

of the degree of the highest degree term linking the two genes, independent of how

specific that function is to the behavior of each of the individual genes. Therefore,

it is reasonable to suppose that lowest-level-annotations are more likely to represent

direct interactions between pairs of genes, whereas functions which are the lowest-

common-ancestor of two genes may represent more indirect interactions. This is

consistent with the enhanced performance of the lowest-level-annotation model over

the lowest-common-ancestor model. Because of this enhanced performance, we will

show results only for the lowest-level-annotation model in the following sections.
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4.4.2 The role of the three ontologies in the weighting of the projected

gene network

In addition to applying our approach to the entire GO hierarchy, we also used

it (with the lowest-level-annotation weighting scheme) to determine separate gene

interaction networks for each of the three main branches of the GO hierarchy. As

expected, the total weight contribution to the edges in the composite ontology-

based network is reflective of the degree-distribution of the terms within each of the

three individual ontologies (see Section 4.2.1). 35% of the total edge weight came

from “Biological Process,” 54% from “Molecular Function,” and 11% from “Cellular

Component.”

It is informative to look at how each of the three main ontologies contributes

to individual edges within our network. Each edge can be broken into the weight

contributed from each of the three main ontologies, and the percentage of each of

these ontology’s contribution to that edge’s weight can be calculated. Three-quarters

of the edges in our projected network have weights determined by annotations in

only one of the three ontologies, 11% from only “Biological Process,” 38% from only

“Molecular Function,” and 26% from only “Cellular Component.” Of the remaining

25% of the edges, 9% have their largest contribution from “Biological Process,” 13%

have their largest contribution from “Molecular Function” and only 3% have their

largest contribution from “Cellular Component.”

Although a smaller percentage of edges have weights dominated by the “Bi-

ological Process” ontology compared to the other two ontologies, these edges are
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highly over-represented in the top weighted edges in our projected network. For

those edges whose contribution is from “Biological Process” alone, 92% appear in

the top 10,000 weighted edges. For edges whose weight is most influenced by “Bio-

logical Process,” 95% appear in the top 10,000 edges. In fact, over half of the top

weight edges are dominated by annotations from the “Biological Process” ontology.

4.4.3 Comparison to other network reconstructions

In order to determine the usefulness of our projected gene network compared to

other common network reconstruction approaches, we compared our projected gene

network to the one determined by the CLR reconstruction algorithm [28]. The full

Z-score matrix provided by CLR contains information for 4345 genes, 3523 of which

are also considered in our projected network, and 5.6 million interactions (∼53% of

all possible interactions). In comparison, our projected network contains information

for 3734 genes and 2.1 million interactions (∼30% of all possible interactions). 3959

interactions from RegulonDB have a Z-score and/or an edge weight.

A little over half (1.2 million) of the edges in our projected gene network have

corresponding Z-score values determined by CLR. For these edges we determined

the rank order of our annotation edge weights and the rank order of the Z-score

value. We further identified which of theses edges are also listed as true regulatory

interactions by RegulonDB and have illustrated the results in Figure 4.5. Although

edges with both high Z-score and high edge weight are most likely to be in Regu-

lonDB, there are very few edges predicted by CLR which are not also predicted by
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our method. Furthermore, edges with high edge-weight are more likely to be in Reg-

ulonDB even if they have low Z-Scores. Edges which do not have a Z-Score assigned

to them by CLR but have a predicted annotation weight show a similar trend. Con-

versely, for edges with a Z-score but no predicted annotation weight, the Z-score,

although predictive, has a higher false-negative rate compared to edges with low

annotation weights. This may indicate that edges with no weight are due to a lack

of information in the Gene Ontology. Comparing the functional edge weight with

the CLR Z-Score illustrates how these two different approaches are likely measuring

different biological information.

4.4.4 Properties of high annotation weight edges

At this point, is unclear how the weights of edges in our ontology-based network

reflect biological information. Clearly, on some level, they represent the functional

relatedness between two genes, but what does this property actually mean for the

function of the gene regulatory network of an organism? To address this question,

we access how information flow changes in the established regulatory network when

high annotation weight edges are removed. To systematically explore the connection

between annotation weight and information flow, we remove known regulatory links

from the experimental regulatory network one at a time and evaluate the change

in information flow. In order to measure the change in information flow in the

regulatory network we determine the new shortest path between pairs of genes upon

the removal of their regulatory link. Edges whose removal causes little difference in
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Figure 4.5: Comparison of edge prediction by weighting in our Projected Gene
Network versus the Z-Score Gene Network predicted by the CLR algorithm. We
ordered the edges which appear in both networks both by their increasing weight
and by their Z-Score. We then visually represented which of these edges were also
in RegulonDB. This was done by dividing the weight/Z-score plain into 400 (20x20)
equal squares with a length and height of approximately 6,000 edges and then deter-
mining the percentages of edges in each square which are also in RegulonDB. This
percentage is represented as a color in the square. Edges which have only a Z-score
in CLR, or only a weight in our projected network, were ordered separately and
their predictive ability is illustrated as color-bars along their corresponding axes.
These color-bars were created by dividing the ordered edges into equal-sized bins
of approximately 6,000 edges (for consistency with the 2-dimensional data), and
calculating the percentage of edges in each bin which are also in RegulonDB. This
percentage is represented as a color-strip in the color-bar.
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the length of shortest path between the genes that it connects can be thought of as

redundant, since the two genes are still closely connected in the regulatory network

and the edge removal only has minimal effect on the network flow. On the other

hand, edges whose removal causes the regulatory path between the two connected

genes to increase substantially, or even dissapear, are informationally important in

the regulatory network.

In order to display whether high annotation weight edges tend to be either

redundant or essential to information flow, we ordered the edges in RegulonDB

according to their weight in the projected gene network and then calculated the

harmonic mean of the new shortest path for edges at or above each indexed value.

The results are striking. Those edges with the highest weight are highly important

to information flow (Figure 4.6). If we instead rank edges in RegulonDB based on

their Z-score in the CLR algorithm, there is only a slight preference for essential

edges to have high Z-scores.

This result is curious since one might suspect that genes which share many

low-level annotations may be in locally dense regions of the regulatory network

and hence exhibit redundancy. On the other hand, the fact that functionally similar

genes compose the links which are more important for information flow may actually

be indicative of these multiple regulatory pathways flowing through that pair of

genes. These pathways may connect communities of genes which are independently

involved in only a subset of functions, but which at times must be combined to

perform higher-order biological tasks.
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Figure 4.6: A plot of the harmonic mean of the new shortest path in the published
regulatory network from RegulonDB as a function of either the edge weight in our
projected network or the Z-score in the CLR network. Edges with high weights
in our projected network appear to be important for information flow through the
published regulatory network. On the other hand, edges with high Z-score, although
more informationally important than average, do not have so clear a signature. Note
that edges in RegulonDB which do not appear in our projected gene network were
given a weight of zero for index ordering purposes. Similarly edges in RegulonDB
which do not appear in the CLR Z-score matrix were given a Z-score of zero for
index ordering purposes. As a consequence, only edges indexed below 1400 for
our projected network and edges indexed below 3535 for the CLR network have
weight/Z-score value in their corresponding gene network.
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4.4.5 Combining GO to improve reconstruction

In order to determine the predictive power of their algorithm for identifying

links involving transcription factors, Faith et. al. used a “putative set” of edges

in their network, which included any edges connected to a particular set of 328

transcription factors. Within this set of edges their algorithm’s performance was

dramatically enhanced. In order to better compare the predictive power of our

projected gene network with the CLR algorithm, we took the same set of 328 tran-

scription factors identified by Faith et. al. and looked at the subset of edges in

our ontology-based gene network that were connected to one of those transcription

factors.

In contrast to a comparison including all edges, for which the predictive power

of the weights in our ontology-based gene network is equivalent to the predictive

power of the Z-score (Figure 4.7(a)), in a comparison that considers the putative

set of edges, CLR performs significantly better for the very top indexed edges, but

quickly becomes only a mild improvement over our projected network, with only a

few percentage increase over our projected network once more than the top 1000

edges are considered (Figure 4.7(b)).

Since CLR and our projected network are identifying a unique subset of edges

and both are performing with approximately the same accuracy, we are able to

combine them in order to take advantage of the strengths of both algorithms. As

a simple model, we consider the same fraction of top edges in both CLR and our

projected gene network and determined what percentage of this combined set was
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also in RegulonDB. When the size of the combined set reaches more than around

500 edges, this combined model outperform the predictive power of either individual

algorithm. We observe a substantial improvement when at least 2000 edges are

included by this method (Figure 4.7).

Previous groups have mentioned the power of combining various algorithms

to improve network reconstruction [44][50][93]. In this case, the Gene Ontology

provides a unique addition to the set of predicted edges since those added are known

to be functionally related and, furthermore, as we demonstrated above, they are

now also know to be links essential to the flow of information within the regulatory

network.

4.5 Discussion

Although using the Gene Ontology to create a gene relatory network has many

limitations compared to other techniques using other data, the method we describe

here is cheap, computationally simple and takes advantage of a large amount of

data which has already been accumulated. Whereas algorithms such as CLR tend

to focus on one type of biological data, the Gene Ontology contains data from many

types of experiments. Furthermore, because it is a publicly accessible collection of

data, errors in annotation are likely to be caught and corrected as members of the

community use the ontologies for their wide variety of applications.

One of the main weaknesses of using the Gene Ontology to interpret biological

data is that there may be subjective biases in its construction. The DAG structure in
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(a) Predictive Power of All Edges

(b) Predictive Power in the Putative Set

Figure 4.7: The predictive power of the weights of the projected gene network vs.
the Z-score of the CLR algorithm considering both (A) all edges in RegulonDB and
(B) the putative set of edges as defined by Faith et. al. Also noted on the images
is the predictive power of a combination of the algorithms which considers an equal
number of top edges from both algorithms and determines the predictive power of
that combined set.
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particular, although clearly a reasonable way to classify functional terms, can make

it tedious to interpret the meaning of shared annotations between a single pair of

genes. Many shared annotations between two genes may be indicative that their

functional similarity can easily be classified as a subset of many other functions in

a human interpretation of how all functions are related, rather than how important

or specific that functional similarity is. Although we believe that our method avoids

this issue by eliminating redundant annotations and eventually considering only

lowest-level annotations, information may be lost through this elimination.

One advantage of using the Gene Ontology to predict a regulatory network is

that biological meaning can more easily be assigned to a predicted interaction via the

functional terms used in creating and weighting that interaction. This information

in itself is little more than another way to parse data in the Gene Ontology in order

to assign a measure of functional similarity between pairs of genes, something that

certainly could be done many different ways. However, the fact that the strength

of the functional similarity between two genes is correlated with the likelihood for

those genes to appear in a regulatory network and, furthermore, is predictive of that

link’s importance in information flow through the regulatory network, gives much

wider range implications on the Gene Ontology’s use in not only constructing, but

evaluating, regulatory networks.
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4.6 Conclusion

By using the Gene Ontology to access the interaction between pairs of genes,

we are able to give functional meaning to links in a known regulatory network.

Although it was previously unclear how to compare the functional similarity of two

genes, we demonstrate that, at least within a regulatory network context, lowest-

level annotations contain the most information regarding regulatory potential. Even

if this similarity is somehow a consequence of human bias in annotation (e.g., it is

witnessed that two genes are related in a regulatory fashion therefore they are given

a common annotation), it does not explain why genes with the highest weights in our

projected network are also the most important for information flow in an established

experimental regulatory network. In the future, it will be interesting to test if this

striking feature continues to manifest itself in experimental regulatory networks of

other species as they become available at increasing quality.

We show that the combination of our functional network reconstruction tech-

nique with a gene-expression-MI reconstruction algorithm out-performs the predic-

tive ability of either method alone. Since the predictive abilities of most current

reconstruction algorithms are relatively limited, this type of hybrid combined tech-

nique appears promising. We believe that using functional data as one input can

not only improve network reconstruction, but can also give real biological meaning

to the links within this reconstruction. In particular, we hypothesize that links with

high functional similarity should be more important to information flow. Finally,

using the Gene Ontology in the context of a regulatory network can have applica-

77



tions to therapeutic techniques. E.g., therapies could be developed which target

genes and interactions located in part of the reconstructed network that appear to

be associated with biological functions deemed to be relevant to desired therapeutic

effects.
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Chapter 5

Building an Alternate Gene Classification Scheme from Network

Structure within the Gene Ontology

The Gene Ontology (GO) provides biologists with a controlled terminology

that describes how genes are associated with function and how those functional terms

are related to each other. These term-term relationships take the form of a directed

acyclic graph (DAG). However, we propose that the graph structure of gene-term

annotations found in GO can be used to establish an alternate natural way to group

the functional terms which is different from the hierarchical structure established in

the DAG. Grouping terms by this alternate scheme provides a new framework with

which to describe and predict the functions of experimentally identified groups of

genes. In this chapter, we show that gene signatures for cancer that are enriched

with respect to branches of the DAG are also enriched with respect to the groups

of terms identified through our alternate approach.

5.1 Introduction

Although the gene ontology [2][78] has been around for just over a decade,

there has only been minimal investigation on how biological functions might be

related to each other outside of the established DAG structure, and the majority of

this has focused on discovering individual links, especially between ontologies [45],
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rather than investigating whether the structure as a whole is the only legitimate

way to classify biological functions. We propose an alternate viable way in which to

classify functional terms which is dissimilar to the GO hierarchy. This classification

scheme relies on the network structure of gene-term annotations rather than pre-

established functional relationships and thus represent a completely different type

of biological classification.

We begin our study by investigating the annotation properties of the gene

ontology as these play a key role in evaluating and using the underlying network

structure (Figure 5.1). In the approach section, we describe the method we use

to transform the annotation information into term-term relationships in order to

create species-specific networks. In the results section we use community structure

finding algorithms to partition these term-term networks into communities of terms.

We compare the partitions identified to the structure of the GO hierarchy and show

that there are strong differences between these two ways of organizing functional

terms.

Hence, we propose that our found communities of terms may provide an al-

ternate natural framework with which to use annotations of the gene ontology. In

order to verify the biological validity of these term communities, we evaluated the

enrichment of cancer signatures in our communities as well as in branches of the

hierarchical DAG classification system. We found that cancer signatures were en-

riched in both our discovered term communities and branches of the GO DAG. We

therefore suggest that by linking GO terms based on shared genes, we can create

an alternate, biological meaningful, network representation of the functional terms
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Figure 5.1: Outline of the process. We use Gene Ontology annotations to form a
gene-term network. From this network, we can create a projected term-term net-
work. We then partition the term-term network into communities. Simultaneously
we will determine communities of terms which represent branches of the Gene On-
tology hierarchy. Because the hierarchy takes the form of a DAG, terms can appear
in different branches, but we create a discrete partitioning. We compare this discrete
partitioning to the one created from our projected term-term network and determine
how similar our communities are to the GO hierarchy. Finally, we identify the genes
which are annotated to terms in each community, and compare these sets of genes
to known cancer signatures to determine the biological viability of our projected
communities compared to “known” communities in the DAG.

in GO that is distinct from the established hierarchy.

In this study we will primarily focus on Human annotations so that we can

easily access the biological validity of our analysis by evaluating term enrichment

in various established cancer signatures. The methods developed in Human can

then be used to generate and compare term networks for several additional species,

including E.Coli, Yeast, Dicty, C.elegan, Arabidopsis, Drosophila, Mouse, and Rat.

We will compare the communities of terms for each species to evaluate whether a

species-independent term-classification scheme is viable or if term relationships vary

over evolutionary history.
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5.2 Background: Annotation Properties of the Gene Ontology

5.2.1 GO as a bipartite graph

In the past bipartite graphs have been used to predict and classify biological

information [92]. In order to construct our term-term network, we first had to con-

struct a gene-term bipartite graph. This was done from downloaded annotation files

that list gene-term pairs (see Section 5.7). The bipartite graph can be mathemat-

ically represented as an nT × nG adjacency matrix, where nT is the total number

of terms and nG is the number of genes listed in the annotation file. In this matrix

a value of one would indicate a known connection between the corresponding gene

and term, and a value of zero would indicate that the gene is not associated with

that term. We will represent the nT × nG bipartite graph adjacency matrix as B

and its nG × nT transpose as B′.

Many terms are only associated with a handful of genes, however, some terms

are associated with many genes. Summing over the rows of B gives the degree of

terms (the number of genes annotated to a term) in the bipartite graph. Summing

over the columns of B gives the degree of genes (the number of terms to which that

gene is annotated) in the bipartite graph. A histogram of the degree of terms in

Human reveals a roughly heavy-tailed relationship (Figure 5.2(a)), with a handful

of terms containing a large number of annotations and many terms containing only

a small number of gene annotations.

Several different phenomena may cause a term to have a large number of genes

annotated to it. There may be many genes which perform that function or the
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function may be especially interesting or easy to study. However, in the majority of

cases a large number of annotations indicates that a functional term is very general

(as in the case of the top levels of the DAG). We will be exploiting this fact when

constructing term-term networks based on annotations in the Gene Ontology.

Compared to the term degree distribution, the degree distribution of genes

is flat over several orders of magnitude (Figure 5.2(b)). The degree of a gene is

generally indicative of how much specific information is known about that gene and

is generally correlated with how many low level annotations the gene has rather

than the placement of these annotations in the DAG structure.

5.2.2 The three main ontologies

The Gene Ontology is a directed acyclic graph (DAG) which has three inde-

pendent branches: “Biological Process,” “Molecular Function,” and “Cellular Com-

ponent.” Terms may have multiple parents and multiple children but can only

belong to one of the three main ontologies [84]. Because of this there are no defined

connections between terms assigned to different ontologies. Nonetheless, there are

biological cases in which a term in one branch is related to a term in another branch.

It is also probable that many terms within the same ontology are related even though

they are not connected in the DAG. We wish to address two main questions. Firstly,

whether the established DAG structure is the only natural way in which to classify

these functional terms and secondly, if such an alternate classification exists, how

could it be used to evalute biologically related sets of genes.
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Figure 5.2: Cumulative degree distribution for (A) terms and (B) genes considering
all gene-term annotations and just those in each individual ontology.
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The three ontologies themselves have unique graph properties. The number

of terms, number of annotations, and the average number of annotations made to

each term varies across the ontologies. “Biological Process” is the largest ontology,

containing both the most number of functional terms and total gene annotations.

Although “Cellular Component” has the fewest number of functional terms and

number of annotations, on average, it has the highest number of average annotations

per term.

We investigate the effects of considering each of the three individual ontologies

separately as opposed to examining the entire gene ontology as a whole. This is

done by first projecting the bipartite network of each individual branch to a term-

term network for that branch. Then we will consider gene-term annotations for

all branches and compare the resulting term-term network to the ones derived for

isolated branches.

5.3 Approach: Projecting Term Networks based on Gene Ontology

Varying the weights in the gene-term bipartite graph can significantly alter the

communities of terms that are identified. An appropriate weighting method is crucial

for properly characterizing the graph structure of the Gene Ontology bipartite graph,

and hence identifying biologically relevant communities of terms. A comprehensive

discussion of various weighting schemes and the consequences of those weightings is

discussed in Appendix C.

From our bipartite graph (B) we could immediately create a projected term
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network by joining together any pair of terms which share common genes. However,

this approach would lose a large amount of information. For example, connections

between terms with a high degree would be very abundant merely because they are

more probable and not because they are more informational. Furthermore, terms

with a high degree are for the most part more general, and giving them more weight

in our projected network may disguise the most biologically informative community

structure. Previously, others have compensated for the disparity in term significance

by ignoring the highest levels of the GO DAG [50][39]. However, we instead choose to

correct for the skewed term degree distribution by constructing a diagonal weighting

matrix, with off-diagonal elements equal to zero and diagonal elements equal to:

wjj =
1

nT∑
i=1

Bij

,

or simply one over the degree of the term in the bipartite graph. Using w, we can

project a term-network, T , whose edges are modified by this weighting matrix:

T = wBB′w′, Tij =

∑
k

BikB
′
kj∑

n

Bin

∑
m

B′mj
.

In this network the weights of T have a maximum value of one when the same single

gene is annotated to both term i and term j and a minimum value of zero when

none of the genes annotated to term i are annotated to term j. The use of this

weighting matrix biases the weights of network edges to those between low degree
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terms and therefore the lower branches of the DAG.

5.4 Results: An Alternate “Natural” Grouping of GO Terms

5.4.1 Comparison with the DAG

Our first goal is to determine if there is any community structure in T , meaning

are there clusters of terms in T within which there are many or high-weight edges,

but between which there are only few or low-weight edges. One way to measure the

strength of community structure is through a quantity known as modularity (Q)

defined as:

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(ci, cj),

where δ is the Kronecker delta function, ci is the community of node i, ki is the degree

of node i, A is the adjacency matrix, a matrix with values of representing the weight

between nodes i and j, and m is the total weight of the edges in the network [60].

This value approaches one for a large amount of community structure, but values

greater than about 0.3 are generally accepted as indicative of moderate community

structure [61].

To determine the community structure of T we used a weighted version of

the Fast Community Structure algorithm [18] implemented in R and determined

the communities of terms at maximum modularity. We found a high degree of

community structure, with modularity values exceeding 0.55 (Table 5.1). There

were also a fairly large number of communities found at these modularity values,
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Communities Found Max Modularity Similarity to GO

Biological Process 49 0.59 0.03

Molecular Function 82 0.88 0.05

Cellular Component 39 0.80 0.05

All Annotations 53 0.60 0.03

Table 5.1: The community structure properties for T projected in both the combined
and individual three ontologies as well as the similarity of the found community
structure to a dicretized partitioning of the GO DAG.

indicating that there are indeed many individual modules of terms which share gene

annotations.

To quantify the similarity between our found communities and the Gene Ontol-

ogy hierarchy, we compared the communities of T defined at maximum modularity

to branches of the Gene Ontology DAG defined based on second tier terms, by which

we mean GO terms whose only parent term is one of the three main ontologies. We

compared partitionings using an information theory measurement [24] which varies

between 0 and 1:

I(A,B) =

−2

cA∑
i=1

cB∑
j=1

log
NijN

Ni.N.j

cA∑
i=1

Ni. log
Ni.

N
+

cB∑
j=1

Nj. log
N.j

N

,

where N is a confusion matrix, constructed such that each element Nij corresponds

to the number of nodes in community i in one partitioning which are in community

j in another partitioning. Ni. and N.j are the sum over the rows and columns of

N , respectively. I(A,B) = 0 represents completely dissimilar partitionings, and
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I(A,B) = 1 represents identical partitionings.

Because this measurement requires discreet communities, and branches of the

GO hierachy are allowed to be overlapping because of the DAG structure, we devel-

oped a discrete term partitioning for the branches in GO, where child terms which

belonged to more than one second-tier parent were placed in a community with the

parent closest to the child in the DAG structure (see 5.7). Although this is clearly

an approximation of the community structure of the DAG, it should be adequate

to determine if our found communities are similar or different from the branches of

the hierarchy.

With this measure we found that our term communities were very dissimilar

from the GO DAG. In order to verify that this dissimilarity was not a consequence

of our partitioning of the DAG into discreet communities, we visually illustrated

the communities on several branches of the DAG (Figure 5.3). Some similarities

can be seen but also many differences between our found communities and the

GO DAG. Only a few terms within each branch are identified as belonging to the

same community, but the majority of the branches are fractured into many different

communities.
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(a) GO:0060968 - “regulation of gene silenc-
ing”

(b) GO:0050658 - “RNA transport”

Figure 5.3: Communities of terms identified in our projected term network high-
lighted as a color on the (A) “regulation of gene silencing” and (B) “RNA transport”
branches of the GO DAG. Related terms generally belong to the same community
as determined by community-detection algorithms. However, even at these lower
levels of the DAG, terms within a specific branch of the hierarchy do not necessarily
belong to the same community.

5.4.2 Using the term communities to evaluate and predict genetic

function

5.4.2.1 Evaluating genes associated with term communities

Of course, just because we have found an alternate way to classify gene on-

tology terms using gene-term annotations it does not imply that this classification

will be useful for understanding and interpretting real biological data. However,

since the classification schemes relied upon the association of genes with functions,

it is reasonable to believe that these communities of terms have biological meaning.

To verify whether this alternate classification of terms could be useful in predict-

ing genetic function we calculated the enrichment of gene signatures for cancer in
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branches of the gene ontology hierarchy as well as in our communities of terms. For

our defined cancer signatures we used the cancer neighborhood and cancer module

gene sets published by the Broad Institute [80].

Since a parent term carries all the annotations of its child terms, in order to

determine the set of genes to use in evaluating the statistical enrichment of the parent

function in another group of genes, all one needs to do is to select the annotations

in GO to that parent term and all its children, namely, to identify the set of genes

annotated to all the terms within that branch of the hierarchy. Therefore, one might

suggest that in order to evaluate our term communities we should first identify the

set of genes annotated to all the terms within a community. However, this way of

determining gene-associations to our term communities is flawed. For example, any

term community which contains one of the top three ontologies will be associated

with all the genes which are annotated to terms within that ontology, even if the

term community itself is very small and only contains a small subset of terms.

To address this issue, we propose an alternate evaluation method for comparing

gene enrichment in communities of terms and branches of the hierarchy which takes

advantage of what our communities of terms represent and in the case of the GO

hierarchy should approximate the gene annotations currently used. First, imagine

how a branch of the DAG would be represented on our network. In the network

each branch is a collection of terms connected by edges. Each edge can represent

a collection of genes which are common between those two terms. Taking the set

of genes which are on any of the edges in this portion of the network results in the

set of genes which are annotated to the terms on the branch - excepting the ones
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only annotated to the parent term. This is a reasonable exclusion, since the depth

of a gene’s annotation is related to the confidence of that annotation. In a similar

manner we can take the subnetwork of one of our term communities, and identify

the set of genes on any of the edges of the subnetwork.

Once we have our sets of genes, we can compare these sets to the set of genes

in a gene signature using the same statistical mathematics as is typically applied in

many GO analysis software, i.e. hypergeometric probabiliy/Fisher’s exact test. For

the branches the results should approximate those which are typically produced,

except in the case where many annotations to the parent term would normally drive

the final results.

5.4.2.2 Enrichment in cancer signatures

After identifying the genes represented in our term communities and the GO

branches via the method described, we calculated the probability of overlap between

these genes and defined cancer signatures using the hypergeometric probability:

p =

min[N1,N2]∑
Nv=N ′

12

N1

Nv


 T −N1

N2 −Nv


 T

N2


,

where p is the calculated p-value, T is the total number of genes with GO annotations

within the ontology in question, and N1, N2 and N12 refer to the number of genes
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Figure 5.4: A heat map showing the statistical enrichment of cancer signatures in
sets of terms. Only signatures with at least 300 members and sets of terms which
have statistical correlation with several of these defined signatures are shown. Gene
signatures are enriched in both our defined communities of GO terms and branches
of the GO DAG. The results of this subset are similar to results for the all signatures
and sets of terms investigated.

in a signature, the number of genes in a branch/term community and the number

overlapping between those two sets, respectively.

Both GO branches and our communities show a statistical enrichment in cancer

signatures, lending biological validity to our term communities. Figure 5.4 shows a

heat map of the p-values for a sample of signatures, communities and branches. For

simplicity we only chose to show data for signatures with at least 300 members and

communites and branches which have a significant p-value in several of these larger

signatures.
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Both term communities and GO branches are statistically enriched in cancer

signatures. On the whole, these cancer signatures show similar levels of enrich-

ment in the term communites and GO branches. The patterns of enrichment are

not similar for communities compared to branches, suggesting that these two sets

capture different biological information. For example, only a few gene sets are en-

riched in Community 2, however, these gene sets show at most very mild statistical

enrichment in the other communities or GO categories.

5.4.3 Species-specific term-networks

Even though the Gene Ontology is designed to establish a species-independent

terminology, the communities of terms in the term-networks for various species

aren’t necessarily the same. Our term networks represent a partitioning of the Gene

Ontology in a species-specific manner. In order to determine if our projected term

networks are highly species-dependent we compared the partitioning of terms across

several species including E.coli, Yeast, Dicty, C.elegan, Arabidopsis, Drosophila,

Mouse, Rat, and Human.

The species-specific term communities are only moderately different from each

other with most similarity values varying between 0.1 and 0.3. The “Cellular Com-

ponent” ontology communities are the most similar across the species. This is most

likely a consequence of the relatively small size of the ontology, and the fact that

the average degree of the terms in this ontology is high compared to the other two

ontologies. These two features combine to create a smaller network with generally
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(a) Biological Process (b) Molecular Function

(c) Cellular Component (d) All Annotations

Sim
ilarity (I)

Figure 5.5: Similarity between partitions of terms for different species for (A) “Bio-
logical Process” annotations, (B) “Molecular Function” annotations, (C) “Cellular
Component” annotations, and (D) using all annotations. There is only limited
similarity between the paritionings between the different species suggesting that
the way biological functions group together in a genetic-framework may be species-
dependent.
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lower weights between pairs of terms. The “Biological Process” ontology is the

most dissimilar between species. It is biologically consistent that the components

needed to make a cell should be more similar across species than the organization

of biological processes. Of the three ontologies, “Biological Process” also had the

highest number of gene annotations, leading to a much denser and more specific

organization of terms.

There is also more dissimilarity between mammalian species than between

the other organisms analyzed. This is interesting as it could be a consequence of

evolutionary diversity playing a more dominant role in the organization of biological

function in complex organisms. In constrast, the organization of terms in the only

non-animal organism studied, Arabidopsis, is more similar to the other species than

these species were to each other. This may be due to the fact that this species has

more genes listed in the annotation files than the others investigated.

5.5 Discussion

The graph structure of the Gene Ontology has never been exploited in a man-

ner that reveals organization of biological function that is unique from the published

hierarchical classification. Our method of classifying functional terms produced par-

titionings which were very different from the Gene Ontology DAG. This implies that

our scheme for partitioning the terms represents a natural way in which to form func-

tional modules that rely on genetic behavior. Furthermore, the suggested method

takes advantage of a large amount of data from a variety of sources and should
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create a classification scheme that is biased only on the type of data reported rather

than the organization of human conceptions.

Although our approach creates a natural partitioning of biological function,

the biological meaning of the communities of functional terms remains unclear. On a

mathematical level these communities should represent sets of very specific biological

functions which are generally performed by the same collection of genes. However,

labelling and understanding the biological meaning behind these communities is a

topic of interest that will require further investigation. As opposed to the DAG,

our communities represent a discrete partitioning of the functional terms. However,

fuzzy communities could be detected in the term-term network using methods for

finding overlapping communities [63]. In addition, hierarchical structure could be

identified from the term-term network [19][20]. We leave these two directions for

future work.

5.6 Conclusion

By using functional annotation data within the Gene Ontology we were able to

construct an alternate, natural, and biologically-relevant way in which to categorize

cellular functions. This categorization is structurally and conceptually distinct from

the GO DAG and allows for functional relationships between terms which do not

share a parent/child relationship. Since we built our communities based on the

specificity of the information shared between terms, they have the potential to be

incredibly useful in understanding the collective behavoir of genes, especially at a
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species-specific level.

5.7 Notes

5.7.1 Using annotation files to construct the bipartite graph

The annotation files used in this analysis are provided by the Gene Ontology

Consortium and are freely available from the Gene Ontology website (www.geneontology.org).

These files only list “lowest order” term-gene associations, meaning that if a gene

and term are associated, that gene is also presumed to be associated with all the

parent-terms of the listed term. If two annotations along the same branch appear, it

is assumed that the “higher” annotation is correct whereas there is some uncertainty

in the lower annotation. In constructing our bipartite graph we took the “higher” or

more confident annotations listed and used them to constuct the set of all possible

gene-term annotations, propagating up the DAG along both “is-a” and “part-of”

relationships.

5.7.2 Partitioning the DAG

When comparing the partition of our term-term networks to the GO DAG

we began by separating the DAG into its the three main ontologies: “Biological

Process,” “Cellular Component” and “Molecular Function.” When looking at the

next lower level partition of the GO DAG we partitioned the DAG into groups

based on those terms whose only parent term was one of the three main ontologies.

Since not all terms in the GO annotation uniquely belong to one of these second-

98



tier terms, we developed a discrete partitioning method in which we calculated the

shortest paths, or the geodesics, between each child term and all 2nd-tier parents

terms. Children were put into a community with the parent with whom they had a

shorest geodesic. If the child had the same geodesic to more than one parent, the

assigned community was randomly chosen from that set of parents.
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Appendix A

Background Biology and Experimental Methods

A.1 The Genome

Every living organism on this planet, from the simplest bacterium to the most

advanced human being, contains the primary instructions for its existence in a four

letter code. This four letter code is found in the deoxyribonucleic acid, or the

DNA, contained in the organism’s cells. In most organisms, the four components

that make up DNA are Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).

These four “bases” link together via hydrogren bonds to form “base-pairs” (bp) with

Adenine always across from Thymine, and Cytosine always across from Guanine.

These base-pairs connect to each other along a phosphate backbone, resulting in

a long molecular chain encoding biological information. Because of its biochemical

properties, this chain tends to twist into a double-helix structure. This twisting has

an approximate period of ten base-pairs (3.3 nm) and produces two “grooves.” The

major groove is the larger of the two and is approximately 2.2 nm wide. The minor

groove is approximately 1.2 nm wide.

The Genome refers to all the genes in an organism. Mammalian genomes have

between twenty and twenty-five thousand genes. A gene is a region of DNA which

contains the instructions to make a protein. These proteins perform many diverse

duties. Some proteins are responsible for activities within the cell, and others are
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involved in continued gene regulation. Some proteins are molecules used to turn

genes on and off. For example, RNA Polymerase II (RNAP) is the primary protein

responsible for transcription, the process by which genetic information is extracted

for use elsewhere in the cell.

A.2 Regulation of Gene Expression

Gene regulation refers to the mechanisms through which gene expression levels

are controlled. Recent developments have strongly suggested that regulation is a

complex dynamical process with highly integrated feedback and control mechanisms

that result in diverse expression patterns [25].

A.2.1 Promoters and regulation by transcription factors

Many genes are known to be at least in part regulated by regions of DNA

sequence called promoters, located upstream of the transcriptional start site (TSS).

The TSS is the location along the DNA where transcription of a gene begins. The full

promoter region of a gene can extend upwards of 1000 bp before the TSS of a gene,

however, the proximal promoter, extending only 200 bp before the TSS, typically

contains the majority of DNA binding sites necessary for regulatory proteins such as

transcription factors (TF), to bind to the DNA and initiate (or prevent) transcription

of that gene.

One common class of proteins is that of basic leucine zipper (bZip) transcrip-

tion factors. Examples include CREB and C/EBP. bZip transcription factors con-
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Figure A.1: An illustration of how the basic DNA-binding region of a bZip tran-
scription factor protein binds into the major groove of DNA.

tain two α-helixes (coiled structures formed of amino acids) which dimerize, or join

together, via a hydrophobic leucine zipper, and a basic DNA-binding region which

interacts with the major groove of DNA through hydrogen bonding (Figure A.1).1

If the two α-helixes in the bZip are the same, the bZip is a homodimer; if they are

different, the bZip is a heterodimer. Homodimers are unique in that they generally

bind palindromic regions of DNA, with each half of the palidrome interacting with

one of the two α-helixes. This is the case with CREB and C/EBP whose canonical

binding sites are the palindromes TGACGTCA and TTCCGGAA respectively.

Although they are physically much larger, on the order of tens of nano-meters,

TFs typically bind to DNA sites that are between 5 and 10 bp in length (2-3 nm).

By binding both to each other and to the DNA, transcription factors form what are

1Image adapted from “The Science Creative Quarterly.”
(www.scq.ubc.ca/decoding icelands dna/)
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known as transcriptional complexes over the core promoter region of a gene. These

complexes generally stretch from around -50 bp to +20bp around the TSS and may

recruit or include RNA Polymerase II, the enzyme which catalyzes the transcription

of DNA.

A.2.2 Epigenetic regulation

Epigenetics refers to the regulation of gene expression by mechanisms other

than the DNA sequence. Epigenetic mechanisms include histone modifications,

DNA methylation, and nucleosome positioning.

In mammalian genomes, such as human or mice, the DNA in a single cell is

about three billion base-pairs long, which if laid out straight would be approximately

one meter in length. However, DNA in the cell is normally found tightly coiled into

structures known as chromatin. Approximately 147 bp of DNA wraps 1.67 times

around groups of eight histones, a type of protein, to form nucleosomes [53]. A

segment of 20-60 bp of “linker” DNA joins these nucleosomes together it what looks

like “beads on a string,” which can then pack closely together, forming a tight

structure.

Because every cell in an organism shares the same DNA, or base-pair genetic

code, this structure is one way by which gene expression can be controlled differ-

ently in individual tissues. Nucleosome occupancy serves as a formidable barrier

to the binding of TFs and other regulatory proteins to DNA and represses gene

expression [46]. However, the expression of genes can be controlled on an epigenetic
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level by histone modifications and DNA methylation. When a histone undergoes

modification, the way DNA is wrapped around that histone changes, facilitating or

impeding gene translation and therefore gene expression.

A.2.3 CpG Islands

When occurring adjacent to a Guanine, the Cytosine nucleotide in genomic

DNA can be covalently methylated by adding a methyl group. This modification

lies in the major groove of DNA. Methylation of the CpG (Cytosine-phosphate-

Guanine) is generally thought to be associated with gene repression and it has been

shown that aberrant methylation plays a significant role in a number of diseases

including cancer.

In mammalian genomes, the CpG dinucleotide is rare, occuring at only 20% of

the expected frequency [81] and is typically methylated [10][9]. The exception is in

CpG Islands (CGI). CpG Islands are defined as regions in the DNA at least 200 bp

long where C+G comprise more than 50% of the nucleotides and CpG dinucleotides

occur at greater than 60% the expected frequency [32]:

fC + fG > 0.5

fCG/(fC ∗ fG) > 0.6

CpG Islands often occur in regulatory regions of the DNA such as promoters and

their occurrence is known to correlate with the recruitment of RNAP and gene
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activation [43], especially in constitutively active “housekeeping” genes which are

bound by RNAP in multiple tissues.

A.3 Methods for Interogating Biological Systems: Chromatin Im-

munoprecipitation (ChIP-chip)

Chromatin Immunoprecipitation microarray assays (ChIP-chip) make it possi-

ble to screen for binding of a protein to promoter sites on a genome-wide basis. The

procedure is in vivo since it interrogates the properties of living cells. An illustrated

overview of the process is provided in Figure A.2.2

A.3.1 Chromatin-Immunoprecipitation

Chromatin immunoprecipitation (ChIP) is an experimental procedure used

in order to determine the DNA bound by a protein on a genome-wide level. The

process begins by crosslinking, or taking live cells and adding formaldehyde in order

to attach the proteins currently in the cell to the nearest DNA. In the majority of

cases, this affixes a protein to the DNA to which it is bound. DNA is then extracted

from the sample and it is sonicated to break it into fragments on the order of 200-

1000 bp. Some of these fragments will have protein bound to them and others will

not. Once the DNA is broken into fragments the sample is separated into two, half

of which will be used as a “signal” to evaluate the DNA bound by a particular

protein and the other half as a “background” control sample of the DNA in the cell

2Image created using cells modified from http://www.cellapplications.com/animal-cells-rat-
cells.php and petri dish from http://pgrsource.com/pgr store/agora.cgi?6482349.15011&product=Labware
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Figure A.2: A visual summary of the ChIP-chip protocol.

106



population.

Antibodies are gobulin proteins which recognize and bind to specific proteins

in the cell. Antibodies attached to beads which specifically recognize the protein

of interest are added to the “signal” sample. The DNA sequences which are bound

by the protein of interest are then extracted by selecting the DNA attached to the

beads in the sample. Protease is then used to digest the protein in both the signal

and background samples, leaving only the DNA. Once the protein is removed from

the samples, the signal sample is amplified, or enlarged, via PCR to approximately

the same size as the background sample.

A.3.2 Microarray technology and analysis

For ChIP-chip, the chromatin immunoprecipitation procedure is followed by

microarray, or “chip” technology. Both the “signal” and “control” samples are de-

natured to create single-stranded DNA and different colored fluorescent dyes are

attached to the DNA in the two samples. Each sample is then added to a microar-

ray which contains complimentary single-stranded DNA. If DNA from the samples

matches that on the microarray, then the sample DNA will bind at that location on

the microarray. Once this process is complete, the microarray is scanned to deter-

mine the relative amount of DNA from the two samples bound at each spot on the

microarray. This information is then mapped back to the genome.

The microarray is typically laid out in a grid format, with each square or

“well” containing a dense collection of the same single-stranded segment of DNA,
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called an oligo or probe, on the order of 50-100 bp in length. These segments of

DNA are a selection from the regions of the genome which are under investigation,

for example, the promoter regions of genes. Current microarrays can contain up

to two million probes allowing for a fairly dense coverage of selected regions of the

genome.
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Appendix B

Consequences of CpG methylation of CRE-like sequences

B.1 Overview

Methylation of the CpG dinucleotide in promoters is typically associated with

gene inactivation because it both recruits repressor proteins and inhibits the DNA

binding of activating transcription factors. However, recent data indicate that some

methylated promoters are transcriptionally active. A ChIP-chip promoter analysis

of primary new-born keratinocytes from mouse skin indicates that C/EBPα binds

methylated promoters containing CRE-like sequences. These results identify a new

role for the methylated CpG, creation of a transcription factor binding site (TFBS)

that is critical for initiation of tissue specific gene activation. This change in TF

binding specificity with methylation suggests a switch with C/EBPα initiating acti-

vation of tissue specific methylated promoters and their subsequent demethylation

inducing CREB binding and maintenance of gene activity in long lived differentiated

cells.

B.2 Background

In vertebrate genomes, the CpG dinucleotide is rare and occurs most often

in the promoters of constitutively active housekeeping genes where it is found in
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clusters called CpG Islands [11][32][82]. In the early embryo, the CpG dinucleotide

is unmethylated. During the blastula stage the cytosine becomes methylated in non-

housekeeping genes but the promoters of housekeeping genes remain unmethylated

[9]. Promoters with methylated CpGs are typically silent and are bound by methyl

binding proteins (MBP) which have been implicated in promoter repression [12].

Furthermore, CpG methylation prevents DNA binding of many transcription factors

(TFs) including SP1 [71], CREB [88], ETS [71][33], NRF-1 [71][17], Myc|Max [65],

and AP2 [21]. These TFs typically bind housekeeping promoters suggesting that in

housekeeping genes unmethylated CpGs are critical for TF binding [71] and aberrant

CpG methylation of housekeeping genes, as occurs in many cancers [42], could inhibit

transcription by directly inhibiting TF binding. There are reports of enhancers of

tissue specific genes that become demethylated when transcriptionally active [13]

lending support to the suggestion that CpG methylation is a general repressive

epigenetic mark in vertebrate genomes [12].

The suggestion that CpG methylation and transcription are mutually exclusive

has been cast in doubt with recent global analyses that have identified promoters

that are both methylated and transcriptionally active [26][87]. Furthermore, one

study showed that the CpG methylation pattern is not as dynamic as previously

thought [26] and another revealed that it is mainly regions outside of promoters

that become demethylated upon cellular differentiation [58]. For example, only 20%

of lung specific transcripts have a 5 ’ UTR that becomes demethylated upon tissue

specific expression [22], implying that some promoters are likely methylated and

active.
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B.3 Results

B.3.1 Promoters fall into two distinct classes

These results led us to investigate whether instead of being only a transcrip-

tionally repressive mark, CpG methylation might facilitate transcription factor (TF)

binding to DNA in certain instances. We therefore investigated the effect of CpG

methylation on transcription factor binding in differentiating primary new-born

mouse keratinocytes. The CpG methylation status of promoters, including tissue

specific promoters, was determined using methylated DNA immunoprecipitation

(MeDIP) [86]. Plotting the amount of methyl CpG at a promoter versus the num-

ber of CpGs in the promoter region (-1,000 bps to +500 bps) produces two groups

of promoters (Figure B.1 A). One group (∼9,000 members) has fewer CpGs with a

steady increase in methylation as the number of CpGs increases; presumably these

promoters are completely methylated [26]. The second group of promoters of sim-

ilar size (∼10,000 members) has a larger number of CpGs but fewer methyl CpGs

suggesting they are either partially or completely unmethylated. These results are

consistent with what is observed in human primary fibroblasts [87]. A heat map

of RNAP binding in undifferentiated keratinocytes indicates that RNAP binds pri-

marily unmethylated promoters; in the top 40% of promoters bound by RNAP, over

95% are unmethylated (Figure B.1 B).

We determined the methylation status of each promoter based on whether or

not that promoter appeared in the top diagonal cloud (methylated) or the bottom

circular cloud (unmethylated) in the Number of CpGs vs. MeDIP graph. The line
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Figure B.1: Plotting MeDIP values vs. the number of CpGs in promoters reveals
two distinct classes of promoters.(A) Methyl-CpG dinucleotide abundance in undif-
ferentiated keratinocytes vs. the number of CpG dinucleotides in a promoter (-1,000
bps and +500 bps). Two distinct groups of promoters are distinguishable. A line
drawn between these groups identifies 8,863 methylated promoters and 11,465 un-
methylated and partially methylated promoters. (B) Heat map of RNAP binding
in undifferentiated keratinocytes on plot of MeDIP vs. CpG dinucleotide number in
a promoter.

dividing the two clouds was determined as follows: First, a line was fit through the

top cloud based on where the density in that cloud peaked. This line was then used

to transform the methylation data through a rotation:

x′ =
mx− y√
1 +m2

,

where x′ is the transformed methylation data, (x, y) are the original coordinates

of the (methylation, Number of CpG) point, and m is the slope of the fit line.

The transformed data was plotted as a histogram and Gaussians were fit to each

of the two resulting peaks. The intersection of these two Gaussians was calcu-

lated. Promoters with transformed values above the intersection were considered
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Figure B.2: Localization of B) CREB, C) C/EBPβ, and D) C/EBPα to promoters
in primary keratinocytes plotted as a heat map on methyl-CpG promoter content
determined by MeDIP vs. CpG dinucleotide number in the promoter (-1,000 bp to
+500 bp). CREB preferentially binds to promoters that are unmethylated, while
C/EBP preferentially binds to promoters that are methylated.

non-methylated and those below were considered methylated. For keratinocytes,

this method identified 8,863 methylated promoters.

B.3.2 Effect of methylation on TF binding

To determine whether a methylation dependent difference in DNA binding

specificity occurs in vivo, we used ChIP-chip experiments in keratinocytes to deter-

mine the promoter localization for CREB, C/EBPβ, and C/EBPα in the genome.

CREB binds unmethylated promoters, C/EBPβ binds both unmethylated and methy-

lated promoters while C/EBPα binds to similar promoters as C/EBPβ but also

binds some additional methylated promoters (Figure B.2).

Although this shows in a global way that C/EBPα binds to methylated pro-

moters and that RNAP and CREB binds to unmethylated promoters, we wish to

address in more detail which individual sequences each of these transcription fac-

tors binds. In order to do this we calculated the 8mer-association-with-C/EBPα
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and 8mer-association-with-CREB.

For a particular 8-mer, this quantity (b8) is the average binding of the tran-

scription factor to promoters that contain that 8-mer, normalized by the average

binding to all common promoters (b̄p).

b8 =

∑
p

bpδ8p

b̄p
∑
p

δ8p
,

where p is the promoter in question. δ8p is equal to one if the 8-mer occurs in the

promoter sequence and zero otherwise. To obtain distinct values for methylated and

unmethylated CpG-containing 8mers, all the CpGs in promoters in the methylated

group were considered methylated and therefore distinct from the CpGs in promoters

in the unmethylated group. This was done by transforming all the CpGs in the

methylated promoters to mCpGs before doing the association calculation.

CREB, as expected, is generally associated with unmethylated 8mers, while

C/EBPα is generally associated with methylated 8mers (Figure B.3). The canonical

binding sites for CREB (TGACGTCA) and C/EBPα are highly enriched in their

respective TF experiment. One interesting feature is that only the unmethylated

version of the canonical CREB binding site (TGACGTCA) is enriched in promoters

bound by CREB, whereas both the unmethylated and unmethylated versions of the

canonical C/EBPα binding site (TTGCGCAA) are enriched in promoters bound by

C/EBPα. This suggests that the C/EBPα protein can bind to DNA irrespective of

the methylation status of the DNA.
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Figure B.3: A plot of the 8mer-Association-with-C/EBPα versus the 8mer-
Association-with-CREB showing methylated and unmethylated sequences sepa-
rately. The 8mers most associated with C/EBPα generally contain a methylated-
CpG (mCpG) while the 8mers most associated with CREB generally contain
unmethylated CpGs. Also marked are the canonical binding sites for CREB
(TGACGTCA) and C/EBPα (TTGCGCAA). Only the unmethylated CRE-binding
site is enriched in promoters bound by CREB, however, both the methylated and
unmethylated versions of the C/EBPα binding site are enriched in promoters bound
by C/EBPα.
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This change in TF binding specificity with methylation suggests a switch with

C/EBPα initiating activation of tissue specific methylated promoters as is observed

in short term keratinocyte cultures and their subsequent demethylation inducing

CREB binding and maintenance of gene activity in long lived differentiated cells as

is observed in both liver and heart tissue.

B.4 Conclusion

In summary, we show that a methylated CpG dinucleotide in DNA sequences

can act as a TFBS for the C/EBPα transcription factor. This potential for methy-

lation of CpG to create a TFBS for TFs that activate gene expression augments its

more familiar role in the repression of gene expression. Consistent with the idea that

CpG methylation creates a TFBS for C/EBPα that is essential for the activation of

some tissue specific genes, demethylation of the genome facilitates the conversion of

fibroblasts into stem cells that are unable to differentiate [58].

B.5 Methods

B.5.1 Determining the Promoter Set

We limited our promoter analysis to those 24,844 promoters not located on

the X or Y chromosome. 3,940 promoters were further eliminated that either had

unknown DNA segments larger than 150 bp or which contained large regions of DNA

sequence (≥150 bp) which were identical to regions in 10 or more other promoters.

For the remaining set, if several promoters all shared large regions of DNA sequence
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in common (more than 7 unique 150 bp segments) we averaged their binding values

and assigned this average to the earliest appearing promoter, leaving us with a final

promoter set of 20,328 promoters.

B.5.2 3-dimensional representations of biological data

Binding heat maps were created by identifying promoters within an elliptical

region around a point on a graph and coloring that point based on the resulting me-

dian binding of those promoters. The center of each elliptical region was determined

by incremental steps in both the X and Y directions. Data was only calculated and

plotted for elliptical regions which contained ten or more promoters.
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Appendix C

Ways to Weight the Projected Term Network

In addition to the weighting scheme proposed in Chapter 5, there are several

alternate ways to weight our projected term network (T ) which one might believe

would better recapitulate the structure of the Gene Ontology DAG. Two of these

ways are outlined in this section along with a brief discussion of their similarity to

the GO DAG.

C.1 Two Alternate Ways to Weight T

C.1.1 Weighting by shared annotations

From our bipartite graph (B) we could immediately generate a projected net-

work relating the ontology terms (T shrd):

T shrd = BB′, T shrd
ij =

∑
k

BikB
′
kj.

Term-term connections in this projected network would have a weight equal to the

number of shared genes between the two terms. This method is analogous to the

one outlined in [39]. However, as previously discussed, some terms have many gene

annotations. Under this scheme two terms that both have many genes annotated to

them could easily have a high weight even if that overlap is what one might expect
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by chance.

C.1.2 Normalized by minimum degree

One could also consider weighting each term-term connection by the maximum

number of gene annotations those two terms could share, or the minimum degree of

the two terms. In that case the values of Tij would take on the values:

Tmin
ij =

∑
k

BikB
′
kj

min[
∑
n

Bin

∑
m

B′mj]
.

In this scenario the values of Tij would take on a maximal value of one when all of

the annotations to one term are shared with the other term, and a minimal value

of zero when no gene annotations are shared between the two terms. This means

that every child term will have a maximally weighted edge between it and all of its

parent terms and vice versus. This alternate weighting should bias the resultant

network to form modules similar to the branches of the hierarchy.

C.1.3 Normalized by the product of degree

For reference, in chapter 5 we chose to compensate for the skewed term degree

distribution by introducing a diagonal weighting matrix, with off-diagonal elements
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equal to zero and diagonal elements equal to:

wjj =
1

nT∑
i=1

Bij

,

or simply one over the degree of the term in the bipartite graph. T was then:

T prod = wBB′w′, T prod
ij =

∑
k

BikB
′
kj∑

n

Bin

∑
m

B′mj
.

This is equivalent to dividing the number of gene annotations shared between term

i and j by the product of their degree.

C.2 Consequences of weighting

Because gene annotations in GO propagate up the hierarchy, when there is a

link between two terms in the hierarchy, there is by default a link between those

terms in our projected network. In fact, in our projected networks there is always

a link between a term and every one of its parent and child terms. Because of this,

one might suspect that terms should always fall into communities very similar to

the defined DAG structure. Even though the only parameter we vary in our three

weighting schemes is how much significance should be given to each edge, this can

actually play a very large role in the final discovered term communities.

There are several issues which could lead to the dissimilarity between commu-

nities of terms in T and branches of the hierarchy. Firstly, when a gene is annotated
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to two terms in separate branches of the hierarchy, then those two terms not only

gain a link between them, but a link is added between all the parents of those two

terms, leading to many connections between terms in disparate parts of the hier-

archy. The effect these links play in grouping the terms into communities can be

controlled by how we choose to weight our links.

An initial suggestion may be to weight links between terms such that if two

terms share many genes in common, as is expected if one is the parent/child of the

other, then that link gains more weight. This is our “shared” weighting scheme.

However, the number of shared genes between two terms is not the best indicator

that those terms are on the same branch of the hierarchy. For example, say term A,

with 3 annotations, is the child of term B with 10 annotations. The number of genes

shared between term A and B is, due to the nature of the hierarchy, 3. However,

if term C, from a different branch of the hierarchy has 100 annotations, 6 of which

are shared with B, then the link between B and C will have a weight of 6 and be

twice as strong as the link between A and B, potentially leading to B and C being

placed in the same community rather than A and B.

However, we can modify our weighting to take into account the degree of

terms. We would like two terms which share only a few annotations but that each

only have few annotations to have a stronger connection than two terms which

share many annotations but that also each have many annotations. Weighting by

the minimum degree will force all weightings between terms within the same branch

of the DAG to be equal to one. Cross-branch edges can vary between 0, when there

are no shared annotations, to 1, when all annotations from the minimum degree
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term are shared with the maximal degree term. As an example, take again terms

A, B and C, where A, with 3 annotations, is a child of B, with 10 annotations,

and C, with 100 annotations, is from a different branch of the hierarchy. Under

our “minimum degree” weighting scheme, because A is a child of B, they share

the maximum number of possible annotations in common, and thus the weight

of their link in our term network would be one, namely, it would be the number

of shared annotations (3), divided by the maximum possible shared annotations,

min([10, 3]) = 3. On the other hand, the link between B and C would have a weight

of only 0.6, or, the number of shared annotations (6), divided by the maximum

possible, 10. This weighting scheme should bias our found communities toward

branches of the hierarchy, independent of the number of annotations within those

branches.

Chapter 5 described a weighting scheme which weighted links by the product

of the two term degrees. The product weighting scheme should bias edge weights

toward edges between terms in the lower branches of the DAG, or those terms with

few gene annotations. If a term has a high degree, then we may expect many shared

annotations between that term and other terms in the DAG due to chance. This

weighting scheme differs from the above by purposefully given weights between a

term with a high degree and other terms a lower weighting such that even if two

terms share the maximum possible number of annotations, if one of those two terms

has a high degree, the link between the two may be relatively low. Links between

two terms will at most have a weight of one over the maximum degree of the two

terms. This value can vary from a maximum value of one, when two terms each have
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Shared Normalized Normalized
Annotations by Minimum by Product

Biological Process 0.185793 (3) 0.2009138 (6) 0.5864669 (49)

Molecular Function 0.3053261 (7) 0.3981552 (6) 0.8797853 (82)

Cellular Component 0.1459397 (3) 0.2422619 (3) 0.8029135 (39)

All Annotations 0.1720733 (3) 0.2070969 (11) 0.5997856 (53)

Table C.1: Maximum modularity of network as determined by the Fast Greedy
Community Structure detection algorithm as well as the number of communities
found at that modularity. Modularity can vary between 0 and 1. The product of
degree weighting scheme creates a much more modular network than the other two
schemes as well as many more communities of terms.

exactly the same single annotation, to zero, when the two terms share no common

annotations.

C.3 Comparison of Weighting Schemes to the DAG

We determined the community structure at maximum modularity for each

weighting scheme using the fast-greedy community structure algorithm [18]. For

the individual ontologies, in the case of weighting by annotations and normalizing

by minimum degree, there is only a little community structure apparent in T . The

maximum modularity values fall between approximately 0.1 and 0.4 and only a few

communities are found at these modularity values. However, when we weight by

the product of the term degrees, there is much more community structure. The

maximum modularity values are much higher as are the number of found commu-

nities (see Table C.1). Results are similar if we take all gene-term annotations to

determine T instead of only those within a single ontology.
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(a) Biological Process (b) Molecular Func-
tion

(c) Cellular Compo-
nent

(d) All Annotations

Figure C.1: Similarity between partitions using GO and different weighting schemes
for (A) “Biological Process” annotations, (B) “Molecular Function” annotations,
(C) “Cellular Component” annotations, and (D) using all annotations. Although
there is some similarity between the three weighting schemes, and especially between
weighting by shared annotations (org) and normalized my minimum degree (min),
there is little similarity between the communities found under any weighting scheme
and the gene ontology branches.

None of our three potential weighting schemes produce communities of terms

which are similar to the branches of the GO hierarchy (Figure C.1). Although when

weighting by the degree of terms, the similarity to the GO hierarchy is slightly higher,

the value is so low it is difficult to tell whether this slight improvement over the two

weighting schemes is believable. Even though the shared and minimum weighting

scheme found far fewer communities, these communities are still very different from

the branches of the DAG (Figure C.2). On the other hand, when compared to each

other, the three weighting schemes produce communities which, although not very

similar, still have some degree of similarity. This suggests that the structure within

T is fairly robust and evident even when the strength of the connections in T is

altered to try to favor the GO hierarchy.
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