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Chapter 1 Introduction 

Analysis of results obtained from time dependent, turbulent, computational 

fluid dynamics (CFO) simulations of two different configurations of an inline rotor­

stator mixer of the IKA type are reported. Simulations were pe1formed with the 

FLUENT™ code in conjunction with a sliding mesh technique and two-dimensional 

approximation. This work also contains a brief comparison of simulation results with 

fixed frame and angle correlated Laser Doppler Anemometry (LOA) data for mean 

velocities and turbulent kinetic energies. 

1.1 Background: Rotor-Stator Mixers in the Process Industry 

Rotor-stator mixers are high-intensity, high-shear mixing devices that are 

widely used in the consumer products industry to make lotions, toothpastes, and 

cremes. They are also used in many other industries for wet grinding, pigment 

suspension, food processing, and other formulations where dispersion, shearing, 

breakup, emulsification, or very fast mixing is required. 

A rotor-stator mixer may be of the inline or continuous variety in which an 

input mixture is continuously fed in and an output stream is continuously siphoned off 

at the same rate. In this case, the device is simply a continuous stirred reactor. In 

some applications, the output from an inline device is recycled back into the rotor-
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stator until it has reached a desired state (i.e. level of emulsification). Alternatively, a 

rotor-stator may be used as the mixing head for a batch type processing system. 

A typical rotor-stator device used in the chemical processing industry is 

cylindrical in shape and consists of concentric rows of teeth separated by a very 

narrow circular gap region(~ 0.5 mm width). Alternating rows of teeth either rotate at 

high speed (rotor teeth) or are stationary (stator teeth). Fluid mixtures passing through 

the rotor-stator are accelerated tangentially while in the rotor region, pass into the gap 

where a very high shear may be experienced, and then impinge onto the stator teeth. 

In the rotor-stators used in industrial applications there are often many sets of rotor 

and stator teeth rows in which case the acceleration, shear, and impingement cycle is 

repeated several times as an element of fluid passes through the device. Figure 1-1 is 

a photograph of the simple (single row of rotor and stator teeth) inline rotor-stator 

device which is the focus of this study. A two-dimensional diagram of a radial cross 

section is shown in Fig. 1-2, and an axisymmetric cross section is shown in Fig. 1-3. 

Turbulence, very high shear in the gap region, and impingement on the stator 

teeth are believed to be the reasons that rotor-stator mixers are so efficient as 

emulsification devices. These forces may also result in an enhanced rate of mixing 

(over a traditional turbine style mixer) which may be useful for speeding and/or 

increasing the selectivity of very fast reactions. Consider for example the sequence of 

reactions. 

A + B ➔ R 

B+R ➔ S 

2 

(1.2-la) 

(1 .2-1 b) 



I.>) 

Figure 1-1. Photograph (front view) of the IKA type inline rotor-stator mixer. 
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where reactions 1.2-la and bare controlled by rate constants k1 and k2 respectively, 

and the desired product is R. If k1 is so large that the rate of Eq. 1.2-1 a is detennined 

only by the rate at which A and Bare brought together, and k1 >> k2, then, even if 

mixing is 'slow', as long as Bis a limiting reagent the overall selectivity will be good. 

However, if k1 ~ k2 then the nature of the flow and mixing in the reactor becomes very 

important (Carpenter, 1986). A high rate ofmicromixing may then be required to 

achieve good selectivity. Rotor-stator mixers are capable of creating very intense 

localized turbulence and therefore very intense and localized micromixing. Since the 

turbulence in rotor-stator mixers is localized, the power input required by them to 

achieve a high rate of micromixing is much less than what would be required to 

achieve the same rate in traditional stirred tanks. This makes rotor-stators potentially 

very useful for processes involving fast competing reactions. Reaction systems 

similar to Eq. 1.2-1 have been studied experimentally in both batch and continuous 

rotor-stator mixers (Bourne and Garcia-Rosas, 1986), and they have been found to be 

capable of imparting a high degree of selectivity for industrially applicable reactions. 

To the author's knowledge, other than the work by Bourne, there is very little 

information available in the open literature on rotor-stator devices as used in the 

process industry. 

1.2 Motivation Purpose and Scope 

There is a considerable body of knowledge available to the practicing engineer 

who needs to design or scale up a stirred tank for use in a specific process. The state­

of-the-art in stirred vessels has derived from numerous experimental studies designed 
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to understand either the bulk phenomenological characteristics, like power 

consumption and large scale fluid motion, or the fundamental nature of the flows 

occurring in them by using techniques like Laser Doppler Anemometry (LDA) 

(Stoots, 1989) to allow instantaneous measurement of a fluid ' s velocity at a given 

point by use of the Doppler effect. More recently, since the 1970's, Computational 

Fluid Dynamics (CFD), which is the use of computers to solve the discretized partial 

differential equations (PDE) which govern the flow of a fluid, have been used to 

provide insight into stirred tanks. For an incompressible fluid these PDEs are 

collectively known as the Navier-Stokes (N-S) and continuity equations (a set of four 

equations in three dimensions). CFO has been used to simulate both lan1inar and 

turbulent flows in stirred vessels and has shown promise in allowing for more rational 

design decisions for stirred vessels in the chemical industry. 

Although rotor-stator devices are widely used throughout many industries, 

there is very little information available about the fundamental physics of flows 

occurring in them. As is the case with stirred tanks, it is desirable to be able to predict, 

through simulation, the effect that operating conditions such as rotational velocity, 

fluid viscosity and rheology, inlet mass flow rate, and rotor-stator geometry will have 

on the physical properties of rotor-stator flow fields and the mixing, shearing, breakup, 

reaction, and other processes occurring in them. If CFO can be used for the accurate 

simulation of rotor-stator mixers, it may allow for engineers to use it as a relatively 

inexpensive tool, saving time and expensive trial and error experimentation in at least 

the initial stages of process design and / or scale up. With the phenomenal increase in 
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computing power over the last few years, it is now reasonable to attempt accurate CFD 

simulations of rotor-stator mixers. 

The purpose of this thesis is to present results for the isothermal, time 

dependent, turbulent simulations of water in a simplified inline rotor-stator device, 

custom made by IKA Works Inc. The simulations utilize a sliding mesh technique 

with the commercially available finite volume computational fluid dynamics code 

FLUENT™ version 5. A two-dimensional approximation is made. For turbulent 

flow, it is in general impossible or very difficult to directly solve the Equations of 

motion. Rather, the ensemble average of the equations is taken to yield the well 

known Reynolds Averaged Navier-Stokes Equations (RANS). The RANS equations 

lack closure due to the presence of the covariances of each of the fluctuating flow 

variables. In order to solve the RANS equations, the covariances are modeled. Of the 

several turbulence models available, the one chosen for this study is among the 

simplest and is called the Standard k-epsilon (Std k-e) model. Herek stands for the 

kinetic energy of the fluid per unit mass of fluid contained in the turbulent fluctuations 

(also abbreviated as TKE) and Eis its rate of dissipation per unit mass (Mohammadi, 

1997). The k-E model was chosen because it is computationally one of the least 

expensive models, and it has been widely used for CFD in stirred tanks. Moreover, a 

study by Sturesson and Rasmuson (1995) found that the k-e model gave similar results 

for the mean velocity field in a stirred tank compared to the much more sophisticated 

Reynolds Stress Model (RSM). In the RSM model, transport of each of the Reynolds 

stresses is modeled directly by a PDE rather than lumping them together in a turbulent 
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kinetic energy parameter. More details on how the k-E turbulence model is used for 

closure of the RANS equations can be found in chapter 3, along with other details of 

the numerical procedures. 

The simulations presented here are a continuation of work done by Epee­

Bounya (1998) where a device similar to the one presently under consideration was 

simulated also using a two-dimensional approximation and the std k-E turbulence 

model. Epee-Bounya's work laid a solid foundation for the simulation of rotor-stator 

mixers by showing that simulations could be done with a reasonable amount of 

computer resources and time and also that the results appeared, at least on a qualitative 

level, to be physically realistic. However, his simulations left several questions 

unanswered, in part due to the fact that the geometry he used for simulation was 

slightly different from the true device geometry and also because there exists no 

experimental data at the operating conditions of his simulations with which to make a 

comparison. Moreover, his simulations used a 1st order discretization scheme and the 

results obtained may be tainted by excessive numerical diffusion. Finally, his work 

was perfonned for only one set of operating conditions and one geometric 

configuration and therefore provide no insight into how flow characteristics may vary 

as a function of rotor speed, inlet flow rate, or shear gap width. The present thesis 

expands on previous work and attempts to: 

1. Provide indications of how fine the computational mesh needs to be for 

simulations of this type by carrying out calculations on a 'medium' and 'fine' 

grid. 
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2. Investigate the sensitivity of the simulated flow to the type of outlet boundary 

condition. 

3. Critically analyze the simulation time necessary to reach a steady periodic 

solution. 

4. Provide a more thorough analysis of simulated flow characteristics. 

5. Provide insight into the effect that the shear gap width may have on rotor-stator 

flow fields by simulating two devices: A 'wide gap' model with a gap width 

of 4 mm and a 'standard gap' model with a gap width of 0.5 mm. 

6. Validate ( or negate) assumptions used in the modeling approximations by 

running simulations at operating conditions (inlet mass flow rate and rotor 

speed) for which there is experimental LDA data of the velocity and turbulence 

fields available and performing a limited qualitative comparison of the results. 

Although the scope of this thesis does not involve a detailed quantitative 

comparison between simulated and experimental results, later work is planned for a 

more in-depth comparison. The work here should provide direction for future three­

dimensional simulations planned for the device used for this study, and also for 

simulation of more complex rotor-stators with fluids exhibiting more complex 

rheological behavior. 

1.3 Device Overview 

Dimensions of the physical rotor-stator mixers that are simulated are listed in 

Table 1-1. Dimensions of the two-dimensional axisymmetric domain used for 

simulation is shown in Fig. 1-4. Note that Table 1-1 includes a tooth 'depth' which 
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refers to the third dimension ignored in the simulations. Also note the difference in 

the rotor inner diameter between the actual physical device and the simulation domain 

(118 mm vs. 124.5 mm). This is due to an error during the mesh generation process. 

The resulting different rotor tooth lengths (8.25 mm simulation, 11 mm physical) is 

not expected to strongly affect the solution in or beyond the shear gap because the 

error is in the placement of the radially inner edge of the rotor tooth, not the edge near 

the shear gap. Further, as will be discussed later, three-dimensional effects may 

actually be more important. 

Table 1-1. Physical Dimensions of the IKA Rotor-Stator Devices in mm 

Wide GaQ Device Standard GaQ Device 
Rotor Stator Rotor Stator 

Inner diameter 111 142 118 142 

Outer diameter 134 154 141 154 

Tooth length 11.5 6 11.5 6 

Tooth width 24 22 26 22 
(21.4°) (17.6°) (21.9°) (17.6°) 

Tooth depth 10 12 10 12 

Slot width 10 10 10 10 
(8.56°) (8.08°) (8.14°) (8.08°) 

Number of teeth 12 14 12 14 

Volute outer 182.5 182.5 
Diameter 

Gap width 4 0.5 
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Figure 1-4. Model dimensions used for CFD simulation in millimeters. Top values are for the wide gap (4 mm) 
model, lower values are for the standard gap (0.5 mm) model. 



Two different geometrical configurations of the rotor-stator are used for both 

simulation and experimental LDA measurements. In the first geometry, the shear gap 

or region between the rotor and stator teeth, has a width of 4 mm, and is referred to as 

the wide gap device or model. In the second configuration, the gap has a width of 0.5 

mm, which is more typical of actual industrial equipment, and is referred to as the 

standard gap device or model. 

1.4 Frames of Reference for Velocity Fields in Stirred Tanks and 
Rotor-Stator Devices 

In both stirred tanks and rotor-stator mixers, there is always one portion of the 

device that moves with respect to the 'inertial' laboratory frame of reference (i.e. the 

rotor in a rotor-stator device or the impeller in a stirred tank) and one portion that is 

stationary. This fact can make computation and measurement of the flow in them 

somewhat complicated. 

Methods for finite difference and finite volume simulations of flow in these 

systems can be divided into four major categories. The first method, which was quite 

common in the early days of stirred tank CFD, is probably not applicable to rotor­

stator simulations. In this method, the entire domain is treated as existing in the 

laboratory or fixed frame of reference. Action of the tank impeller is modeled by 

treating the surface of the impeller sweep volume as a 'black box' source of 

momentum. Boundary conditions for the surface are obtained either by experimental 

measurements or simple empirical formulas. Measurements of velocities in the fixed 

frame of reference ignore the passage of stirrer blades or rotor teeth. 
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The other three CFD methods are based on solving the equations of motion in 

one or more rotating reference frames. In the rotating reference frame (RRF) method, 

the equations of fluid motion are solved in a frame of reference stationary with respect 

to the rotor or impeller. The tank wall or stator then moves relative to this frame. 

Extra terms are added to the equations of motion to account for the rotation. If there is 

no periodic interaction between walls of the rotating and stationary frames (as is the 

case in an unbaffled, cylindrical stirred tank), then solving the resulting steady state 

equations will in principle yield an exact solution (ignoring discretization error). Even 

when the flow is periodic in the inertial frame due to the presence of baffles in the tank 

or a stator, RRF is sometimes used if the interaction between the stationary and 

moving walls is expected to be weak, thus yielding an approximate solution. 

The third method, the multiple reference frame method (MRF), yields an exact 

solution under the same conditions as the rotating reference frame method. In MRF, 

the fluid domain is divided into two (or more) regions. In the region(s) bounding 

rotating wall(s), the equations of motion are written and solved for a rotating frame of 

reference. In region(s) bounding stationary wall(s), the equations are written in a 

stationary frame of reference. During the solution process, fluxes of flow variables are 

interpolated across the boundaries between the regions, taking into account the 

difference in the equations for the zones. Like RRF, MRF methods are solved using a 

steady state discretization. 

The most accurate, and computationally intensive, methods are those based on 

the sliding mesh technique. Sliding mesh simulations are fully time dependent and do 

not require empirical boundary conditions. In this method, the domain is divided into 
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a moving and stationary zone. Discretization of the governing equations is time 

dependent. At the end of each time step, the mesh attached to rotating walls rotates 

with the wall. In order to do this, the interface between the stationary and moving 

mesh is broken and reformed. The interface itself must thus consist of non-conformal 

cells. Fluxes across the interface are computed by interpolation. Measurements of 

velocity fields corresponding to this frame of reference are referred to as angularly 

correlated. These types of measurements are accomplished by synchronizing the 

output of a shaft mounted encoder with the instantaneous measurements. More will be 

said about this later in the manuscript. 

1.5 Review of CFD for Stirred Tanks and Rotor-Stators 

To date, the author knows of only two published works involving CFD 

simulations of rotor-stator mixers that are applicable to the chemical and process 

industries. One of these is the work by Epee-Bounya mentioned above. The other 

(LeClaire, 1995) simulated a KADY Mill Model 4C rotor-stator device which has one 

row ofrotor and stator teeth and looks similar to the IKA type device of this study, but 

the rotor slots are slightly off angle (i.e. the slots have a cut angle that is opposed to 

the direction of rotor rotation). The simulation incorporated a two-dimensional 

approximation with a Newtonian fluid (5,000 cps). It assumed a laminar flow regime 

even though the rotor tip speed was set at 50 m I sec which probably results in 

turbulent flow. Almost no other details concerning the device geometry, boundary 

conditions, type of computational model, reference frame, or mesh details was given 

in this paper. There was also no comparison of simulation results to experimental 
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data. LeClaire's main inference from this work was that details of rotor-stator flow 

fields that are counterintuitive may be found through CFD simulation: His simulation 

showed that immediately after passage of a rotor slot by a stator slot, the flow in the 

shear gap near the downstream side of the stator slot may move in a direction opposed 

to the natural motion imposed on it by the rotor. 

The literature on CFD of stirred tanks is much more extensive and includes 

simulations of both laminar and turbulent, steady-state and time dependent, and two 

and three-dimensional studies. Kuriyamam et. al. (1982) made a two-dimensional 

approximation and solved for the laminar flow field in an anchor-impeller unbaffled 

stirred tank using the stream function formulation of the flow equations. They 

obtained good agreement with experimental measurements for the radial and 

tangential velocities as well as the agitation power. Their results were also 

qualitatively comparable with experimental data on the variation of the streamline 

patterns with the tank Reynolds number. 

In more realistic three-dimensional simulations it is not possible to use the 

stream function approach. Hiraoka et. al. (1988) used the rotating reference frame 

method was used for three-dimensional simulations of laminar flow in stirred tanks 

without baffles and good agreement between simulation and experimental laser 

Doppler Anemometry (LDA) data was obtained, except near the impeller shaft. 

Similar work by Abid et. al. (1994) also showed promising results in comparison to 

experimental data. 

Although in baffled stirred tank reactors (BSTRs) the flow field is not steady in 

any reference frame, the earliest attempts at CFO in BSTRs attempted to simulate the 
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fixed frame flow by modeling the baffles as a momentum sink or pressure-induced 

drag and then solving the steady state equations (Harvey and Greaves, 1982) . In the 

work of Harvey and Greaves, the turbulent flow field in a baffled, 6-blade impeller 

agitated tank was simulated using the k-E turbulence model and a two-dimensional 

approximation. In addition to modeling rather than directly computing the effect of 

baffles, they also treated the impeller blades as a ' black box' source of momentum by 

assigning specific, steady values for the velocities in computational cells bounding the 

geometric surface defined by the impeller. The velocities on the surface were chosen 

based on simple physical arguments. Because no experimental data were available for 

the values of k and epsilon at the impeller surface, Harvey and Greaves assigned fairly 

arbitrary values there. The numerical results they obtained for the mean velocity field 

and turbulent kinetic energy were compared to experimental data and only a 

qualitative similarity was found which is attributable, at least in part, to the gross 

simplifications of the model: Note that the modeling ofbaffies as a momentum drag 

implies perfect symmetry in the tangential direction which clearly cannot be the case 

near the outer baffled wall. 

Attempts at three-dimensional modeling of BSTRs included several 

studies where the time averaged velocity profile and turbulent kinetic energy on the 

surface of the impeller swept volume was assigned based on experimental LDA 

measurements (Middleton et. al., 1986). Middleton and co-workers specifically 

modeled the baffles as solid walls with a no-slip boundary condition, and then solved 

the steady state equations in a fixed reference frame to obtain the time-averaged 

solution. Very good agreement between the simulated and experimental velocity 
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fields were found. Further simulations of mixing phenomenon using the simulated 

velocity field results obtained by Middleton also compared well with experimental 

data and offered insight into the inadequacy of scale-up rules then in use. 

Ranade and Joshi (1989, 1990) also performed a series of fixed frame three­

dimensional BSTR simulations using experimental and semi-empirical boundary 

conditions on the impeller swept volume surface and directly modeling the baffles as 

solid walls. Their work was motivated in part by the practical need to find which 

numerical algorithms and empirical model parameters were best suited to modeling 

turbulent flow in stirred tank reactors. In their study they introduced a numerical code 

called FIAT (Flow in Agitated Tanks) that was specifically tailored to time averaged 

three-dimensional simulations of stirred tanks and employed the std k-s turbulence 

model. From their parametric studies, they concluded that fixed frame BSTR 

simulations are fairly sensitive to the boundary conditions applied on the impeller 

swept volume, as well as the value of the empirical parameters which appear in the k-s 

turbulence model equations. 

More work to simulate BSTRs in the spirit of the time averaged approach 

utilized by Middleton was performed by several other researchers, who proposed their 

own modifications to methods for specifying boundary conditions on the impeller 

control volume surface (see for instance Kresta and Wood, 1991). Later simulations 

compared results based on this method using three different turbulence models: the 

std k-s model, the Reynolds stress model (RSM), and the Algebraic stress model 

(ASM) (Sturesson and Rasmuson, 1995). Sturesson et. al. found little difference in the 

averaged velocity fields predicted by the turbulence models. 
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Sheng et. al. ( I 998) performed a series of fixed frame simulations on a stirred 

tank with baffles and compared their results to Particle Image Velocimetry (PIV) data. 

PIV is a method where the instantaneous flow field over a given area ( or volume) of 

fluid can be photographed to yield velocity and turbulent kinetic energy information. 

These simulations were performed in a stationary frame and used experimental PIV or 

LDA data to apply boundary conditions on the surface of the impeller sweep volume. 

In these simulations, the Renormalized k-6 turbulence model (RNG k-6, a more 

sophisticated variation of the standard k-E model) was compared to results obtained 

through the RSM model. They found the mean velocity field to be predicted fairly 

well by both models. The turbulent kinetic energy was underpredicted by up to one 

order of magnitude in both models. Further, the turbulent kinetic energy prediction of 

both models was worse in the impeller flow discharge region (below the impeller) than 

in the plane of the impeller itself. 

Sheng et. al. ( 1998) also studied the effect that impeller boundary conditions 

have on the simulated field and concluded similarly to Ranade et. al. ( 1990) that 

simulation results are sensitive to the impeller swept volume boundary conditions, but 

primarily the turbulent kinetic energy and its dissipation, not the mean velocity field. 

This conclusion is not certain, however, because the simulations with different 

boundary conditions also used different turbulence models: RNG k-6 or RSM. 

A slightly different approach to the problem was used to obtain time averaged 

results for BSTRs without the need for experimental input by Harvey et. al. (1995). 

Their method was essentially a variant of the RRF treatment. Both the baffles and 

impeller were included as solid surfaces and the steady-state, laminar flow equations 
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were then solved in the reference frame of the rotating impeller. Relative motion 

between the impeller and baffles was neglected, although computationally the fluid 

velocities computed at the baffled wall were based on a relative motion so that the no­

slip wall boundary condition (based on a relative angular motion) was still satisfied. 

Although this model is physically unrealistic (i.e. a relative motion that does not exist 

in one sense but does in another), they obtained surprisingly good agreement with 

experimental LOA measurements of the time averaged velocity field by spatially 

averaging (in a tangential sense) their numerical results after simulation. The largest 

discrepancies were in tangential velocities close to the impeller. 

To this author's knowledge, the first fully time dependent three-dimensional 

simulation of a BSTR was performed by Luo et. al. (1993) for a tank with a pitched 

blade impeller and six baffles. They used the std. k-E model in conjunction with the 

sliding mesh technique. The computational domain was divided into two separate 

zones. Zone 1 was cylindrical, ran the entire axial length of the mixing vessel, and 

had a diameter just slightly larger than that of the impeller. Zone 2 was an annular 

cylindrical region encompassing the remainder of the vessel. In the computations, 

zone 1 rotated with the explicitly modeled impeller while zone 2 remained stationary 

with the tank wall / baffies. At the end of each time step, the impeller along with the 

inner mesh was rotated a slight amount corresponding to the mixer rotational speed. 

Fluxes of momentum were interpolated across the interface between zones 1 and 2 

during the calculation of each time step. Luo et. al. time averaged their unsteady 

results and compared the resultant velocity field to experimental LOA data. They 

found fairly good agreement with experimental data. Further, comparison of their 
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velocity field results with those from a steady state approximate simulation showed 

fairly large discrepancies, indicating that time dependant calculations may be essential 

for a complete understanding of the flow in these systems. They did not perform any 

analysis of the turbulence parameters. 

Bakker et. al. (1997) performed sliding mesh simulations of laminar flow in a 

pitched blade stirred tank for several tank Reynolds numbers by varying the fluid 

viscosity (Re between 40 and 1200). Here Re is based on the turbine size and 

rotational speed and defined as Re= pND/µ2 where pis the fluid density, N the 

impeller rotational speed, D the impeller diameter, and µ the fluid viscosity. They 

found a good qualitative prediction of the Reynolds Averaged velocity field when 

compared to the experimental data of Wang et. al. (1995). The pumping number, 

which is defined as Nq = Qi IN D3 where Q1 is the volumetric flow rate of fluid 

leaving a control surface surrounding the impeller, was also well predicted as a 

function of Reynolds number. 

Std. k-E turbulence model sliding mesh simulation of a BSTR with comparison 

to LDA measurements performed by Ng et. al. (1998) also found a good prediction for 

the mean velocity field, but, as was the case for steady state studies (Sheng, 1998), the 

turbulent kinetic energy field was underpredicted. 

Most recently, attention has shifted to turbulence models called Large Eddy 

Simulation (LES). These models attempt to directly simulate large turbulent eddies 

occurring in a flow and model those that are smaller than the computational grid size 

using what is called a subgrid scale model. LES is inherently an unsteady calculation 

requiring an extremely fine mesh. In one study where a tank driven with a Rushton 
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turbine was simulated using a Lattice-Boltzmann discretization in combination with 

LES (Derksen et. al., 1999), very good agreement was found when simulation was 

compared to LDA data for both the ensemble averaged velocity field and the turbulent 

kinetic energy, however there were still some deviations in the region of outflow from 

the impeller. 

In summary, computational fluid dynamics in stirred tanks has progressed 

considerably since the 1970's, starting with stationary reference frame simulations, 

and moving on to RRF and sliding mesh methods. For laminar flow, there is no great 

difficulty in carrying out simulations that correlate well with experimental data. Until 

recently, turbulent flows have always been modeled with RANS equations. RANS 

models have been good for predicting mean velocity fields, but not the turbulent 

kinetic energy. In general, the RSM model predicts the turbulent kinetic energy 

pattern qualitatively better than k-E models, but still underpredicts the turbulence. 

LES methods are now being used for simulations of stirred tanks and have shown 

better prediction of turbulence quantities, but the amount of computational power 

required for these types of simulations is beyond the reach of most engineers, both 

industrial and academic. 

Work on simulation of the types of rotor-stator mixers used in the process 

industry is far behind that for stirred tanks, primarily because sliding mesh techniques, 

which are most appropriate for them, have only recently become available with 

commercial CFD codes. Although RANS methods may not be ideal for turbulent 

simulations of rotor-stator mixers, they are adequate for initial work. Results with 

stirred tank simulations seem to indicate that RANS simulations of rotor-stator devices 

22 



may be able to predict the mean velocity field and qualitative patterns of the turbulent 

kinetic energy, even if absolute magnitudes are incorrect. 

1.6 Layout of Manuscript 

Chapters two and three cover, in-depth, the methods used in this study: 

boundary conditions, grid generation and quality, computers, and computational 

algorithms. The first part of chapter two summarizes important characteristics for the 

five simulations that form this work. It also covers the two geometrical configurations 

of the inline rotor-stator that were simulated, the simplifying asswnptions used for 

simulation and why they were chosen, the computational meshes, and it introduces the 

std k-e turbulence model. 

The second part of chapter two explains the several different sets of boundary 

conditions used for simulation, why they were chosen, and justifies their use. In the 

case of the turbulence boundary conditions, some detail is gone into as to how their 

values were computed. 

Chapter three contains an overview of the grid generation process, computer 

resources and compute times, and specific computational algorithms used by the 

Fluent code for the simulations. This includes a fairly detailed discussion of the 

discretization, pressure-momentwn coupling, turbulence modeling, treatment at walls, 

time stepping, and judgment of convergence. 

Chapter four is an analysis of simulation results for the first geometrical 

configuration of the rotor-stator, the wide gap model. Chapter five is an analysis of 

simulation results for the second geometrical configuration, the standard gap model. 
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A detailed comparison to the wide gap results is also presented. In chapter six there is 

a brief comparison of experimental LDA data, obtained elsewhere, with the results 

presented in chapters four and five. Chapter seven draws final conclusions and 

proposes recommendations for further work. 
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Chapter 2 Simulation Models 

With the exception of details concerning the computational algorithms, types 

of computers utilized, and CPU times required, the methods and models employed for 

this work are reported in this chapter. As stated in chapter 1, both a wide shear gap ( 4 

mm) and standard shear gap (0.5 mm) IKA type inline rotor-stator mixer are simulated 

(Figs. t -1 through 1-4 ). Additionally, 3 more simulations are performed of the wide 

gap model in order to gain insight into the effect that grid size, outlet boundary 

conditions, and operating conditions have on simulation results. Important parameters 

concerning differences between the five simulations are summarized in Table 2-1 

which is a useful reference throughout this chapter. In Table 2-1, the number of mesh 

elements does not include cells in the extended outlet region for simulations 2 and 5 

(see section 2.5). 

Table 2-1. Model Parameters for CFD Simulations 

Simulation 

Wide GaR Standard Ga2 
1 2 3 4 5 

Mesh elements 73.6 73.6 125.3 125.3 322.4 
(thousands) 

Gap width 4 4 4 4 0.5 

(mm) 

Rotor speed 50 50 50 30 30 
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(rps) 

Gap Reynolds 83,800 83,800 83,800 50,300 6,600 
Number 

Inlet velocity 2.64 2.64 2.64 1.52 l.52 
(m/sec) 

Inlet flow rate 78.8 78.8 78.8 45.4 45.4 
(gpm) 

Inlet TKE 0.01 0.01 0.01 0.006 0.006 
(m2/sec2

) 

Inlet E 0.007 0.007 0.007 0.002 0.002 
(m2/sec2

) 

Outlet pressure 0 NIA 0 0 NIA 
(Pa) 

Fluid density 998.2 998.2 998.2 998.2 998.2 

(kg/m3
) 

Fluid viscosity 0.001 0.001 0.001 0.001 0.001 
(kgLm sec) 

2.1 Model Geometry 

For purposes of simulation, it was assumed that flow in the axial direction of 

the IKA rotor-stator mixer would be negligible after fluid entered the device and was 

forced to move in a primarily radial direction towards the rotor teeth. This assumption 

allowed the device to be approximated as an axisymmetric two-dimensional cross 

section as previously shown in Fig. 1-4. The reader is reminded that the rotor slot 

length in the simulated model is 8.25 mm while in the actual rotor-stator it is 11 mm 

( compare Fig. 1-4 with Table 1-1) due to an error during the mesh generation process. 

In the two-dimensional model, the working fluid, water, enters the rotor-stator 

mixer normal to the circular inlet region, flows through the rotor teeth slots, into the 
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shear gap region and stator slots, enters the volute, and then exits the device in the 

upper left hand corner. 

A two-dimensional approximation was justified because the rotor and stator 

slots of the physical rotor-stator have depths of only 10 and 12 mm respectively. 

Since the radial dimension of the device is more than 180 mm, it is reasonable to 

expect that the flow is primarily two-dimensional. It is clear from Fig. 1-2 that the 

depth of the rotor and stator teeth are very small in comparison to the radial 

dimension. Further, time dependent Reynolds averaged turbulent flow simulations 

using a finite volume method (the method employed in the FLUENT™ code) in 

conjunction with the sliding mesh technique are extremely computationally intensive. 

Compute times would be prohibitively long if a full three-dimensional simulation were 

performed with present technology. Analysis of two-dimensional simulation results 

will provide a starting point for an understanding of the fundamental physics of rotor­

stator flows. Further, comparison of the simulations with experimental measurements 

will hopefully elucidate where and in what manner the two-dimensional 

approximation may break down and also provide direction for experimental programs 

and future three-dimensional simulations. 

Two different shear gap geometries are used for both CFD simulation and 

experimental LDA measurements. In the first geometry, the gap has a width of 4 mm 

and will be referred to as the wide gap model. In the second geometry, the gap has a 

width of 0.5 mm and will be referred to as the standard gap model. 

There are several reasons for simulating a wide gap model before the more 

industrially applicable standard gap model. These include meshing constraints 
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(resulting in an extremely large mesh for the standard gap model) and larger expected 

velocity gradients encountered in the standard gap model but not, to the same extent, 

in the wide gap model. Both of these factors have an effect on computational intensity 

and may influence the ability to converge to a solution. It is therefore desirable to 

make certain that the wide gap model converges to a physically realistic solution in a 

reasonable time before attempting simulation of the standard gap model. 

Figure 2-1 shows a close up of the meshes used for simulation of both the wide 

and standard gap models in the vicinity of the gap and a stator slot and may be a 

helpful aid in order to make the following discussion clear. Meshing constraints in the 

standard gap model are due to large differences in geometric length scales between the 

gap region (0.5 mm width) and adjacent stator slot regions (10 mm width). In order to 

obtain an accurate solution on a block structured quadrilateral mesh (the type of mesh 

employed) using the finite volume method, adjacent mesh elements should ideally be 

as similar in size as possible and should never vary by more than a factor of about 1.5. 

Additionally, for complex flows where there is no way to design the mesh before 

simulation so that the flow field is predominantly aligned with the mesh elements, or 

for flows where the field is expected to have significant curl, it is essential that 

quadrilateral elements are as close to square as possible. The element aspect ratio, a 

measure of its closeness to being square, is defined as the ratio of its adjacent sides 

and should have a value between I and I 0, but should be at the high end only at 

points where the flow is aligned with the mesh. Finally, in order to resolve the flow 

field sufficiently in the gap region, it is necessary to have as many elements as 

possible spanning the gap width. 
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In order to simultaneously meet these three meshing requirements of small 

element size changes, unity aspect ratio, and large number of elements across the gap , 

it is clear that, as the model gap width decreases, smaller elements will be required in 

the gap region. This will force the size of adjacent elements in the stator slots to be 

smaller, which will in tum force elements in the volute region to be smaller. By 

grading elements to larger sizes as the mesh moves further from the gap region 

through the stator slots and into the volute, it is possible to minimize the total mesh 

elements. However, element sizes far from the gap will ultimately be limited due to 

the aspect ratio constraint. Thus, as the gap size decreases, the number of mesh 

elements increases rapidly even in areas such as the volute where one would not 

expect a need for a greater number of elements in the standard gap over the wide gap 

model. 

The second reason for simulating a wide gap model is because experimental 

LDA measurements in a 0.5 mm gap region are not possible at the present time. Thus, 

in order to validate CFD's predictive value in the gap region, where the highest shear 

and turbulence are expected to exist, it is necessary to use the wide gap model. 

Finally, a wide gap device was simulated because it is desirable to compare the 

flow fields between the wide and standard gap models. To gain the greatest insight 

from this comparison all other simulation variables, such as rotor speed and inlet mass 

flow rate, would ideally be held constant during simulation or experimental 

measurement. By detailed comparison of flow field solutions (or measurements), it 

may then be possible to find some sort of quantitative dependence of flow variables in 
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the gap region, such as turbulent kinetic energy and turbulent energy dissipation rate, 

on gap width. 

2.2 Computational Meshes 

Grids for both the standard and wide gap models were created using the 

Geomesh module of the FLUENT™/UNS 4.4 software. For both models, all grids 

were two-block structured and utilized quadrilateral control volumes. The first block 
' 

called the rotor block, consists of an annular region with a radius extending from the 

circular inlet to one half the shear gap width (Fig. 2-2). The second block, called the 

stator block, is essentially an annular region consisting of the remainder of the 

computational domain (Fig. 2-3). The two blocks were fused at the interface between 

them (the middle of the shear gap region) in the FLUENT™ program. At the end of 

each time step, the interface between the two blocks is 'broken' and the rotor block 

'slides' a small angle, 8, the value of which depends on the rotational speed of the 

simulation. After movement, the block interface is reformed and new momentum 

fluxes are computed across its boundary. Computation continues in this manner after 

each time step. 

Four distinct meshes were created for a total of five simulations. Table 2-1 

summarizes important differences between the simulations. Simulation l, 2, and 3 are 

simulations of the wide gap model and were all run at operating conditions 

corresponding to a rotor speed of 50 rps and an inlet volumetric flow rate of78.8 gpm. 

Differences between these simulations lie in the size of the mesh used (for grid 

independence studies) or the type of outlet boundary condition applied. 
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Simulation 1 utilized a 'coarse' mesh consisting of 73,600 quadrilateral cells 

and its overall domain was truncated at the outlet where a constant pressure boundary 

condition was applied (see Fig. 1-3 and section 2.5). Simulation 2 utilized the same 

coarse mesh of 73,600 cells, but the outlet was extended 0.25 m beyond that for 

simulation l so that a 'fully developed flow' boundary condition could be applied 

there (see Fig. 2-4 and section 2.5). The mesh for simulations 3 is a refined version of 

the mesh used for simulation l and consists of 125,300 cells. The coarse mesh has 26 

elements spanning the 4 mm shear gap while the refined mesh has 30 elements. The 

primary difference between the coarse and fine meshes, however, is in the aspect ratio 

of these cells: It is closer to unity in the refined mesh. The mesh for simulation 4 is 

identical to that used for simulation 3. Simulation 4 was run at operating conditions 

corresponding to a rotor speed of 30 rps and an inlet volumetric flow rate of 45.4 gpm, 

which are the only operating conditions that were used for experimental LDA 

measurements of the wide gap device. The coarse and fine meshes used for the wide 

gap simulations are shown in Fig. 2-5. 

The mesh for simulation 5, the standard gap simulation, has an extended 

outlet (and outlet boundary condition) identical in dimensions to that used for 

simulation 2. This mesh consists of322,400 cells, with 8 cells spanning the 0.5 mm 

shear gap. This mesh is shown in Fig. 2-6. 

2.3 Model Operating Conditions 

In the wide gap model, simulations were performed for two distinct sets of 

operating conditions which are outlined in Table 2-1. Experimental LDA 
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Figure 2-4. The computational domain used to simulate the rotor-stator with an outflow boundary condition 
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Figure 2-5. Close up of the mesh used for the wide gap model simulations in the vicinity of a stator slot and 
the adjacent shear gap and volute regions. 
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Figure 2-6. Close up of the mesh used for the standard gap model simulation in the vicinity of a stator slot and 
the adjacent shear gap and volute regions. 
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measurements were made for one of these sets of conditions. Specifically, only for a 

rotational speed of 30 revolutions per second (rps) and an inlet volumetric flow rate of 

45.4 gallons per minute (gpm). The other operating condition simulated was 50 rps 

and an inlet volumetric flow rate of 78.8gpm. 

Initially it was intended to simulate the wide gap device only at conditions for 

which experimental LDA measurements would be taken. However, simulations were 

begun before LDA measurements, and, when measurements commenced, it was found 

that the supply pump for the rotor-stator mixer was not capable of supplying an inlet 

flow of 78.8 gpm. Nevertheless, simulation at different sets of operating conditions 

may be useful for performing a parametric analysis of flow field dependence on 

operating conditions. Unfortunately, in the case of the two sets of operating 

conditions used, two variables (inlet flow rate and rotational speed) were varied 

simultaneously. This makes it somewhat difficult to determine exactly which 

operating condition variable causes an observed change in the simulated flow field, 

although careful physical reasoning does allow some discrimination between which 

operating condition variable causes an observed effect on the simulated field. In the 

future, it may be useful to run a simulation at 50 rps and 45.4 gpm so that a set of three 

simulations can be compared where only one operating condition variable is changed 

between each of them. This will allow a more rigorous analysis of flow dependence 

on operating conditions. 

Only one set of operating conditions were used for both simulation and 

experimental measurements of the standard gap model (Table 1-2) : 30 rps and 45.4 

gpm inlet flow rate. These are the same conditions used for both experimental 
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measurements and simulation in the wide gap model and allows for a direct qualitative 

and quantitative comparison between the solution fields for the two geometries. 

2.4 Turbulence Model 

The Reynolds number (Re) is a dimensionless group which is a measure of the 

ratio of inertial forces to viscous forces present in a flow field. When inertial forces 

are large, the flow is almost always turbulent. The definition of the Re number is 

different for different flow geometries. For the simple rotor-stator geometries 

simulated here, the Re number may be defined as 

Re= p D Vtip 

µ (2.4-1) 

Where 8 is the gap width, Vtip is the tangential velocity of the rotor tip, and p and ~L the 

density and viscosity of the working fluid respectively. It should be noted that the 

Reynolds number for a given system may be defined in several ways. Equation 2.4-1 

is only one possibility. At the operating conditions used for the simulations (Re> 

50 000 for the wide gap model) the flow should be highly turbulent. Turbulent flow 
' 

differs from smooth flow, also known as laminar flow, in that the fluid velocity and 

pressure at a given point fluctuate rapidly in time. These fluctuations occur even 

though velocity and pressure values, averaged over a time scale much longer than that 

of the fluctuations, may be constant. For example, when flow through a long tube is 

laminar then, after an initial start-up time, the flow no longer evolves with time and 

the velocity and pressure are constants at each point in the tube. Turbulent flow in a 

tube, on the other hand, will technically never reach a steady state. Rather, a steady 
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average value of the velocity and pressure will be reached after an initial start-up time, 

this average being relative to the fluctuations. Turbulence is fundamentally a three­

dimensional phenomenon, meaning that when present, fluctuations always occur in 

three directions. 

Since turbulent flow fields are three-dimensional and involve extremely steep 

velocity and pressure gradients with respect to time and space (the fluctuations), it is 

nearly impossible at present to solve the flow equations precisely for any geometry. 

To do so using a finite volume model would require mesh element sizes and time steps 

prohibitively small. 

Some CFD codes have been written that attempt to directly simulate turbulence 

introduced at the boundaries of a computational domain. For most practical 

engineering applications, however, it is not presently possible to perfonn direct 

calculation. Rather, the turbulence is modeled by the addition of extra equations 

coupled to those for the flow field. These equations are based on semi-empirical 

reasoning rather than being completely derived by first principles. 

Of the several turbulence models available for use in CFD, the simplest ones 

are based on the eddy viscosity hypothesis. This hypothesis assumes that the effect of 

turbulence on the ensemble averaged flow is to increase the apparent viscosity of the 

fluid. This is based on the reasoning that there is an increased transport of the mean 

momentum in a direction perpendicular to the flow, above that occurring by molecular 

viscous effects, in turbulent flow. Tue increased transport is due to the turbulent 

fluctuations or 'eddies' . 
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The eddy viscosity model chosen for the simulations presented here is known 

as the standard k-epsilon (k-e) model. In the k-e model, it is assumed that the eddy 

viscosity, µt, is the same in all three spatial directions. In this sense, the k-e model is 

isotropic and less sophisticated than the RSM model which accounts for differences in 

the value of µ1 for each spatial dimension. The k-£ model involves two additional 

equations, one for k and one for £. Here k stands for the turbulent kinetic energy per 

unit mass (TKE) contained in the flow field fluctuations and £ is the rate at which this 

energy is dissipated. A brief description of the mathematical derivation of this model 

is given in chapter three. 

2.5 Inlet and Outlet Boundary Conditions 

The RANS equations are a system of partial differential equations and 

therefore require a set of boundary conditions for all variables in order to describe how 

the system interacts with its external environment. Some of these boundary 

conditions, like the fluid velocity at the inlet, are simply an expression of the 

conditions at which the device is operated. Other boundary conditions derive from 

physical principles of fluid flow and include concepts like that of no fluid slip at solid 

boundaries. Table 2-1 summarizes the boundary conditions for the five separate CFD 

simulations to be presented. 

For all simulations, the velocity at the circular inlet is defined to be in the 

normal (radial) direction. Its magnitude is constant and determined by assuming that 
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the inlet is actually a cylinder with an axial depth of 10 mm, this being the actual 

depth of the rotor portion of the device (Table 1-1 ). By use of the equation 

Q=V A (2.5-1) 

where Q is the inlet volumetric flow rate to be simulated and A is the surface area of 

the cylindrical inlet, the appropriate velocity, V, is calculated. The two volumetric 

flow rates simulated of 45.4 and 78.8 gpm correspond to inlet velocities of 1.52 and 

2.64 m I sec respectively. 

Values at the inlet must also be assigned for the turbulence variables k and 

E. The inlet to the rotor-stator device is the outlet of a cylindrical pipe 60 mm in 

diameter. Turbulent quantities in fully developed pipe and duct flow are known to 

depend only on the upstream characteristics of the flow. This fact is useful for 

simulation since it is not known a-priori what values k and E may take in the interior of 

the device. 

On the other hand, it is to be expected that significant additional turbulence 
' 

beyond that due to simple pipe flow, will be created at the inlet of the actual (physical) 

device due to impingement of the fluid on a plane surface as the average fluid motion 

undergoes a sudden violent change of 90° from an axial to radial direction. Since the 

simulation model is two-dimensional and does not contain an axial dimension there is 

no way for the computation to predict the affect that this flow characteristic will have, 

which in all likelihood is the primary turbulence source at the inlet. 

There is thus no way at present to accurately determine appropriate inlet values 

fork and 8 with a two dimensional geometry. Fortunately, however, the turbulence at 

the inlet should be very small compared to that produced within the gap, especially 
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near the stator teeth where the fluid impinges at high velocity. For this reason 

computation of k and E in these areas should be relatively insensitive to the much 

smaller values occurring at the inlet. In any case, turbulence characteristics at the inlet 

region before the gap is of relatively little interest. It may therefore be reasonable to 

simply assign values fork and E based on those known to occur in the core (i.e. the 

center) of pipe flow. 

Experimental research has resulted in empirical relationships which can be 

used to determine realistic values for turbulence parameters in pipes. Specifically, the 

turbulence intensity, I, which is defined to be the ratio of the root mean square of the 

velocity fluctuations, u', at a point to the average velocity, u, at the same point, at the 

core of fully developed pipe flow is found to be given approximately by the relation 

I ::::i 0.16 Re-118 

Re=DVap 
µ 

(2.5-2a) 

(2.5-2b) 

where Dis the tube diameter, Va is the average axial velocity through a cross section 

of the pipe, pis the fluid density, andµ is the fluid viscosity (Fluent Inc., 1997). The 

core value of k in the pipe can then be computed by its definition 

k=i(ul)2 
2 (2.5-3) 

which implicitly assumes that the TKE is isotropic. This is approximately true for 

core pipe flow (Hinze, 1975). The value for the turbulent dissipation rate at the pipe 

core can be related to the TK.E using a semi-empirical relationship if a value for the 

turbulent length scale, I, is known. The turbulent length scale is a quantity describing 
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the size of the largest turbulent fluctuations in the flow. In pipe flow fluctuation size 

is limited by the pipe diameter. An empirical relation for 1 is 

l~0.07D (2.5-4) 

(Fluent Inc., 1997). The core turbulent dissipation rate can now be approximated from 

Eqs. 2.5-2 through 2.5-4 as 

E ~ C 314 k.312 I 1 µ (2.4-5) 

where Cµ is an empirical constant with a value of approximately 0.09 (Fluent Inc., 

1997). Application of the above equations for the operating conditions used in the 

simulations results in rather small values fork and E to be used at the inlet (Table 2-1 ). 

Boundary conditions must also be set at the outlet region. The commercial 

CPD code used for simulation allows for two different outlet boundary conditions 

which may be appropriate for the model being simulated. These conditions are called 

either pressure outlet or outflow. Both were used in separate simulations (Table 2-1). 

The pressure outlet boundary condition defines the gauge static pressure along 

the outlet (Fig. 1-3) to be 0. All pressures within the domain are then computed with 

respect to this value. A constant pressure outlet would seem to be reasonable for a 

rotor-stator that expels its working fluid to the atmosphere. In the simulations that 

were performed with this boundary condition it should be noted that the outlet is 

contiguous with the volute region rather than having a length of pipe running between 

the volute and outlet. This somewhat artificial condition may have an affect on the 

accuracy of the simulated flow field near the outlet as compared to the true physical 

flow. 
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In order to determine if a pressure outlet results in unrealistic flow in the volute 

region immediately adjacent to it, another simulation was performed with an outflow 

boundary condition. The outflow condition, in the case of the simulated device, is 

similar to, but not exactly, that found in the physical situation of fully developed pipe 

flow. For the outflow condition, the computational domain is extended an additional 

0.25 m beyond the volute (Fig. 2-4), and the gradient of all flow variables in they­

direction ( direction normal to the exit) are defined to be zero. The pressure is not 

defined on the outlet. 

An extension value of 0.25 m in the outflow model was chosen on the basis of 

an empirical rule which states that length of piping necessary for turbulent flow to 

become fully developed, assuming that the flow at the entrance of the pipe has a flat 

profile, is 50 times the pipe diameter (Geankopolis, 1993). Since the outlet diameter is 

0.035 m, application of this rule gives 1. 75 m. Ideally the pipe extension would be 

even greater than 1. 75 meters because the flow is not expected to have a flat profile at 

the extension inlet. Unfortunately it is not feasible to use such a long extension 

because it would make the mesh the too large. However, even though the length of 

0.25 m is not sufficient to completely justify outflow conditions, it is so far removed 

from the volute region that if a pressure outlet boundary condition does significantly 

alter results in the adjacent volute region, a difference between the two simulations 

should be obvious. 
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2.6 Wall Boundary Conditions 

A no-slip condition was applied at all solid walls. At rotor boundaries, the no­

slip condition corresponds to a relative motion in the stationary frame of reference, 

dependant on the radial position. Standard wall functions (default in FLUENT™ for 

turbulent flow) were used in wall adjacent cells in order to decrease the required 

computation time. The mathematical implementation used for the wall functions can 

be found in chapter three. 

2.7 Summary 

Five different simulations are to be presented (Table 2-1 ). Only results from 

simulations 4 and 5 will be examined and compared in depth, these being simulations 

of the wide and standard gap geometries respectively at operating conditions for which 

experimental LDA measurements were performed. 

Results from the remaining simulations are presented in an abbreviated fashion 

as an in depth examination would be redundant. These simulations were performed 

primarily for comparison purposes. Specifically, grid independence of the simulations 

will be evaluated by comparison between simulations 1 and 3. Flow field differences 

due to the type of boundary condition at the outlet will be determined by a comparison 

of simulations 1 and 2. The effect of inlet volumetric flow rate and rotor speed will be 

established by comparison of simulations 3 and 4. 
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Chapter 3 Computational Methods 

Problems in computational fluid dynamics are solved by discretized methods 

where the domain of interest is divided into a mesh of finite volumes and discretized 

equations describing the flow are written for each element. The equations are then 

assembled into a non-linear system which is usually solved by iterative linearization 

methods. Issues related to specifics of the actual computation of solutions to the 

Navier-Stokes and k-s equations are covered in this chapter. Important numerical 

parameters for the rotor-stator mixer simulations, including discretization schemes, 

pressure treatment, residual reduction, and time step size are shown in Table 3-1. 

Table 3-1. Solver Settings for CFD Simulations 

Time step size for simulations l, 2, 3 

Time step size for simulations 4, 5 

Solution initialization 

Pressure treatment 

Pressure-velocity coupling 

Time discretization 

Momentum discretization 

Turbulence (k and E) discretization 

Wall treatment 

Residual reduction criteria 
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5.9525e-4 seconds (I .07 °) 

l .0032e-4 seconds (1.07 °) 

Zero for all variables; full rotor 
speed and inlet mass flow rate 

PRESTO (Staggered grid) 

SIMPLE algorithm 

I 
st 

order implicit 

2nd d . or erupwmd 

2
nd 

order upwind 

Standard wall functions 

le-4 (All variables) 



The computational details covered in sections 3 through 11 of this chapter are 

specific to the implementation chosen for this study and come from the FLUENT™ 

manuals (Fluent Inc., 1997). 

3.1 Computer Resources and Computational Expense 

All simulations were begun in serial processing mode on a 195 MHz Silicon 

Graphics Octane workstation with 256 Mbytes of RAM made available for use by the 

Procter and Gamble Company. 

Later, the meshes were partitioned into two domains utilizing the FLUENT™ 

program so that the simulations could be run using a parallel version of the CFD code. 

The simulations were then continued on a 500 MHz Pentium III dual processor Dell 

Precision 410 workstation with 1.0 Gigabyte of RAM running Windows NT 4.0. On 

the Dell workstation, each time step required approximately 5 or 20 minutes for the 

wide and standard gap simulations respectively (time step size corresponding to 1.070 

of rotor rotation). The wide gap simulations required about 40 linearized outer 

iterations per time step while the standard gap simulation required up to 100 (see 

section 3.3). In general, each time step required considerably more CPU time at the 

beginning of simulation than at the middle or end. 
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3.2 Equations of Motion 

The Navier-Stokes equations describe the flow of an incompressible fluid. For 

a simple Newtonian fluid moving in two directions, as in the rotor-stator mixer model , 

they may be written in cartesian coordinates as (Bird et. al., 1960) 

(
8 Vx 8 Vx 8 Vx) 8 P (8

2
Vx 8

2
Vx) p --+Vx--+Vy-- =--+µ --+-- +pg:r at ax oy ox ox 2 8y 2 (3.2.la) 

(
a vy v a Vy v a vyJ a P (a2vy a2vyJ p --+ x--+ y-- =--+µ --+-- +pgy at ax oy oy ox 2 oy2 (3.2.lb) 

where Vx and Vy are the x and y velocities respectively, Pis the fluid pressure, µ the 

fluid viscosity, pits density, and gi the gravitational force in the i direction. The 

variables to be solved for include the two velocities and pressure. Closure is obtained 

by the continuity equation which expresses conservation of mass 

(3.2.2) 

Equations 3.2.1 and 3.2.2 describe the flow for a given system exactly. As 

stated in chapter two, it is not presently practical to solve them when the flow is 

turbulent. Instead, another set of equations may be derived by taking the time average 

(for statistically steady flow), on a scale longer than the fluctuations, or the ensemble 

average (for statistically unsteady flow) of the equations after making the substitutions 

V; = Vi+ v~ and p = P + P' where Vi and P are the time (ensemble) averaged 

velocity in the i direction and pressure respectively, Vi and p their instantaneous 

values, and v~ and P' the instantaneous magnitudes of their turbulent fluctuations. 

Equations 3.2.1 and 3.2.2 may now be written in summation notation as 
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(
8Vi - 8Vi) BP a (8Vi) a (-·- ·) p -+Vj- =--+µ- - +pgi-p- V.V. a t a xj a xi a Xj a xj a Xj J • 

(3.2.3) 

(3 .2.4) 

The last term in Eq. 3.2.3 is known as the Reynolds stress term and is the only 

mathematical difference between it and Eq. 3.2.1. There are a total of 4 Reynolds 

stresses in two-dimensional flow. The Bousinesq Hypothesis (not necessarily the best 

theory) states that the Reynolds stress has a form similar to ordinary viscous stress, 

being proportional to the gradient of the averaged velocities. This 'constant' of 

proportionality, called the turbulent or eddy viscosity and abbreviated µt, actually 

varies with the characteristics of the flow and is thus a function of both position and 

time. Using this hypothesis, Eq. 3.2.3 becomes 

(
8Vi - 8Vi) al> (µ ) 8 (8Vi) p --+Vj-- = --+ +µ, - -- +pgi a t a xj a xi a xj a xj (3.2.5) 

3.3 The Standard k-E Model Equations 

The k-E model is used to determine·the value of µt to be used in the 

computation of a solution for Eq. 3.2.5. It models turbulent kinetic energy throughout 

the flow field by use of a general transport equation 

(
8k - . Bk) 8 (( µ,) 8k) (-· •)8V1 +~-=- µ+- - -pVV + 

p 8t 8 Xi 8 Xi O' le 8 Xi i j 8 Xi pc (3 .3.I) 
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The second to last term in Eq. 3.3.l is the production of k and the last term is its 

dissipation rate. Again using the Bousinesq hypothesis, the production term can be 

rewritten to give 

( a k -. ak ) a (( µ , ) a k) a vj a vj p -+Vi- = - µ+- - +µ, ----+ps 
8 t 8 Xi 8 Xi cr k 8 Xi 8 Xi 8 Xi 

(3.3.2) 

The dissipation rate of k is modeled by a similar equation 

(
as - as ) a (( µ , ) as) s a vj a vj s 2 

p -+Vi- =- µ+- - +1.44-µ,-- - 1.92p-
8t 8x; 8x; crc 8Xi k 8x; 8Xi k (3.3.3) 

Where crk and cr e are the turbulent Prandtl numbers fork and E and have values of 1.0 

and 1.3 respectively. These values, along with the other constants in Eq. 3.3.3, were 

determined experimentally from turbulent shear flows. Note that the second to last 

term also contains the Bousinesq formulation for the production of k. Both Eqs. 3.3.2 

and 3.3.3 are special cases of the k and E transport equations, valid only for 

incompressible isothermal flows. 

The solution ofEqs. 3.3.2 and 3.3.3 allow the turbulent viscosity to be 

computed from the relation 

k2 
µ,= pCµ­

s 

where Cµ is an empirical constant with a value of 0.09. 

(3.3.4) 

Together Eqs. 3.2.4, 3.2.5, and 3.3.2 through 3.3.4 constitute a closed system 

of equations which are used to compute a flow field solution inside the computational 

domain. The FLUENT™ solver is a finite volume code that allows the user to choose 
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from among several algorithms to solve these equations. The specific ones used for 

this study are discussed below. 

3.4 Overview of the Numerical Algorithm 

Eqs. 3.2.4, 3.2.5, 3.3.2, and 3.3.3 are each discretized in time using a first order 

implicit formulation and in space using a 2nd order method. The approach used for 

computation in this study may be summarized as follows: 

I. The momentum equations are discretized for each (two-dimensional) mesh 

cell in a manner such that the nonlinearity of the velocity components does not 

explicitly appear. This yields a separate system of linear equations for each 

velocity component. 

2. The x-momentum equations from step I are solved for Vx. Implicit in the 

coefficients for each cell equation are the mass flow rates through each of the 4 

cell boundaries, ril, and the pressures, P, and turbulent viscosities, µt, from 

both the cell of interest and its neighbors. During solution, the x-momentum 

equations are uncoupled from these variables by using their most recently 

known values rather than solving for them simultaneously. The computed x­

velocity field satisfies the x-momentum equation but not the continuity 

equation. 

3. Step 2 is repeated for they-momentum equation 

4. The continuity equation is discretized in a manner that introduces the pressure 

to yield a system of linear equations which is solved to give a pressure 

correction. The x and y-velocities are present in the system coefficients and 
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must be uncoupled. This is accomplished by using velocity values computed 

in steps 1 and 2. 

5. The pressure correction computed in step 4 is used to calculate an updated 

pressure field and mass flow rates through each cell boundary. These updated 

values do satisfy continuity, but may not satisfy the momentum equations. 

6. The turbulent kinetic energy equation is discretized and solved using the 

current values for µt, e, velocities, and face mass flow rates. 

7. The turbulent kinetic energy dissipation rate equation is discretized and solved 

using the present values for ~. k, velocities, and mass flow rates. 

8. A new turbulent viscosity, ~ is computed using equation 3.3.4. 

9. Convergence of all equations is tested. If the solution has converged to a 

desired level, the time step is advanced and the rotor portion of the 

computational mesh is moved. Otherwise, steps 1-9 are repeated using the 

updated field variables. 

The above algorithm is known as a segregated method since both the non­

linearity and coupling of the equations is treated through an iterative process. One 

completion of the above algorithm constitutes an 'outer' iteration as opposed to the 

'inner' iterations, which refer to the algorithms used for solution of the large systems 

of linear equations produced in each of steps 2, 3, 4, 6, and 7. 

3.5 Spatial Discretization of Momentum Equation 

The FLUENT™ code discretizes all the partial differential equations of flow 

using a control volume technique. Each cell (control volume) in the computational 
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domain yields an equation for the dependent variable of interest at the cell centroid. 

The primary difference between this and finite difference methods is that integrals are 

approximated rather than derivatives. Interpolation is used in the control volume 

technique to calculate variable values at, or fluxes across, cell boundaries during 

assembly of the discrete equations. 

The momentum equation can be cast in integral form for a control area (CA) 

by considering the convective fluxes of momentum across its boundaries (also called 

faces), the stresses at the faces, and the body force acting within it. Equation 3.2.5 

may then be written as 

.!._ Jfp VidO.=-f p ViV •nd/ +fr{ i •nd/-cfPi •n df +cff'pgidO. 
at n / / / n 

(3.5.1) 

where n is the CA's surface area, / its boundary, -r~ the turbulent stress tensor 

(containing both the viscous and Reynolds stress terms), V; the Reynolds averaged 

velocity vector, i the basis vector in the i direction, and n the unit vector nonnal to 

the cell boundary. 

The first term on the right ofEq. 3.5.1 represents the momentum flux into the 

CA due to convection by the bulk fluid velocity. Assuming that the Vx values may be 

approximated as a constant along each of the four cell boundaries, which is true in the 

limit of an infinitely fine mesh, the x-component of the convection term is discretized 

for each cell as 

(3.5.2) 
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where rh r is the mass flow rate through face f, V "· / the x-velocity at face f, and /,-

the length of the face. 

Since the discrete equations are solved for velocity values only at the cell 

centers it is necessary to interpolate values to the faces in order to apply Eq. 3.5.2. 

This is done using an upwind scheme meaning that interpolation is performed from the 

cell adjacent to the face that is upwind of the flow. For instance, Fig. 3-1 shows a 

schematic of 12 computational cells labeled 1 through 12 neighboring a primary cell Cp 

for which it is desired to write Eq. 3.5.2. If the present flow field at the center of Cp is 

in the North-West direction then Vx at face 1 (fl) would be computed by interpolation 

from the center of cell 7. The least accurate approximation for Vx at fl would be that 

its value is equal to that at the center of cell 7. This approximation is a first-order 

upwind scheme and is the method tlrn: was used in previous rotor-stator simulations 

(Epee-Bounya, 1998). Discretization error introduced using this very simple 

interpolation can be significant, and it has the effect of increasing the 'apparent' 

diffusivity of momentum. 

A better, 2nd order, approximation for Vx at fl and the one used in these 

simulations is obtained by using a scheme based on the Vx value in the center of the 

upwind cell and its neighbors. In the 2nd order method, Vx at fl (Fig. 3-1) is 

approximated using a linear combination of its cell centered values in the primary cell 

and cells 4, 7, 8, and 11. Specifically 

V ,. / I ~ V '<. c7 + 'y V x. c7 • ~s (3.5.3) 
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Figure 3-1. Discretization of a primary cell, cp, on the computational mesh. 
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where V V x, c7 is the gradient of V x evaluated at cell 7' s centroid and .1.S is the 

displacement vector from the cell centroid to face 1 's centroid. The gradient term is 

approximated using a discrete form of the divergence theorem 

(3 .5.4) 

where Vx./ is the mean of the cell centered Vxvalues adjacent to face f. In Eq. 3.5.4 

the summation is taken over the faces bounding cell 7, not the primary cell. 

Discretization of the shear stress term in Eq. 3.5.1 is also 2nd order and 

proceeds in a similar manner. The body force term may be written in discrete form 

exactly as 

#P gi dQp = p gd:2P 
Op 

and the pressure term is discretized according to 

(3.5.5) 

(3.5.6) 

As with the convective term, the pressure is assumed constant on each of the four 

faces, and the present values of pressure at the cell centroid must be interpolated to the 

faces. Since the pressures are actually solved for in step 4 of the algorithm (i.e. during 

solution of the continuity equation, see sections 3.4 and 3.7), this is accomplished 

indirectly by staggering the mesh for the continuity equation so that its cell centers 

correspond to the faces in the mesh used for the momentum equation. This scheme is 

called PRESTO (PREssure STaggering Option) in the FLUENT™ code. 
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Substitution of the shear stress discretization (not shown) and Eqs. 3.5.2 _ 

3.5.6 into 3.5.l yields a ' linear' equation for each mesh cell 

f} ff - - ~ - ~- ~ - p V x, p dQ,, = Gp V X, p + ""-' a nb V X, nb + ""-' Pf n · i/1 + p gi Qp 
0 t Op nb=I / • I 

(3.5.7) 

where the subscript nb refers to values at the centroids of cells neighboring the 

primary cell (subscript p). Note that for this 2nd order discretization up to 12 

neighboring cell values may be required yielding a linear system with a bandwidth of 

about 12. The coefficients ap and anb contain contributions from values of 111 at the 

primary cells faces as well as contributions due to the primary and neighboring cell 

geometries (Eqs. 3.5.2 and 3.5.3). 

3.6 Temporal Discretization of Momentum Equation 

Equation 3.5.7 is discretized implicitly in time for step size .1t at time step n to 

yield the final form of the x-momentum equations 

(3 .6.1) 

Equation 3.6.1 is solved using a Gauss-Seidel solver in combination with multigrid 

methods. 

Since the rotor-stator model has 12 rotor teeth and 14 stator teeth, a temporally 

periodic flow pattern with 12 periods per revolution of the rotor is expected. On the 

basis of CFD research on stirred tanks by Ng et. al. (1998), a time step size 

corresponding to 1.07° was deemed to be small enough to resolve details of the time 

dependent flow and was used for all simulations. This step size corresponds to 28 
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time steps per period, or 336 time steps per complete revolution of the rotor. For 

simulations I, 2, and 3, this translates to 5.9525 x 10·
5 

seconds per time step, and for 

simulations 4 and 5 it corresponds to 1.0032 x 10
4 

seconds per time step. 

3.7 Pressure-Momentum Coupling (Continuity Discretization) 

When the solution process advances to a new time step, n, the mass flow rates 

and pressures implicitly appearing in Eq. 3.6.1 (ap, anb, and Pr) are evaluated using 

their most recently known values. The continuity equation is then used to update their 

values for use in the next outer iteration by calculating a pressure and mass flow rate 

correction. The discrete form of mass conservation (Eq. 3.2.4) may be written for 

each cell as 

4 4 

L ffif ~ L p V /1 = 0 (3.7.1) 
/•I /•I 

where Vis the Reynolds averaged velocity magnitude at the centroid of face f. The 

right side ofEq. 3.7.1 is then written in a manner that introduces the pressure 

Im1 ~ :i:(J+d1(Pco-Pc1)) (3.7.2) 
/•I /.,J 

where J contains the influence of the velocities in the cells adjacent to face f and the 

pc' s are the pressures at the center of those cells . The calculation of J is done using 

a non-linear averaging of the two adjacent velocities in order to eliminate checker­

boarding of the pressure field which has been found to result when simpler schemes 

are used. The coefficient dr is obtained from an algebraic combination of the current 
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ap coefficients on either side of the face appearing in the momentum equation and the 

face length (Fluent Inc., 1997) 

The SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equations) 

is used to compute a pressure and mass flow rate correction. In brief, Eq. 3.7.2 is 

evaluated for each (non-boundary) face in the domain using the current value of the 

velocity field obtained from the preceding iteration of the momentum equations and 

the current pressure field. This results in values for the face mass flow rates , 

m ~ which do not satisfy the continuity equation. A mass flow rate which does satisfy 

continuity, m 
1

, may be written as the sum of the incorrect value and a correction, m~ 

(3.7.3) 

It is postulated that the mass flow rate correction be written as 

(3. 7.4) 

where p• is a pressure correction. Substitution of Eqs. 3.7.3 and 3.7.4 into the left side 

of Eq. 3. 7.1 yields an equation for each cell. For a given cell, p, the resulting pressure 

correction equation may be written as 

4 

CpP; = IcnbP'nb+ Im~ 
nb /=I 

(3.7.5) 

where the e's are coefficients and the summation notation and solution method is the 

same as that for the discretized momentum equation. After solution, an updated mass 

flow rate for each face, rh 1 , is calculated from Eqs. 3. 7.3, 3. 7.4, and the pressure 

corrections which gives 

(3.7.6) 
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The updated mass flow rates calculated by Eq. 3.7.6 satisfy continuity however they 

no longer satisfy the momentum equations. During the next outer iteration, corrected 

pressures and mass flow rates are used in the momentum equation to solve for the 

velocities. After enough outer iterations, the corrected mass flow rates computed from 

Eq. 3.7.6 wiU satisfy both the continuity and momentum balances, to within a desired 

level of tolerance, and the solution proceeds to the next time step. 

3.8 k and E Discretization 

After solving the discrete continuity equation to yield updated pressures and 

face mass flow rates, the turbulence equations, k and E, are discretized and solved 

sequentiaUy in order to compute a new value for µ1 to be used in the next outer 

iteration. The procedure is very similar to that for the momentum equation and wiII 

not be discussed further. 

3.9 Treatment at Inlet and Outlet Boundaries 

The velocities and turbulence values defined at the inlet faces are used for 

interpolation of values to the cells bounding the inlet. 

For pressure-outlet conditions the discrete equations for the ceIIs bounding the 

outlet are set up by interpolation of values from the interior of the domain, except for 

the static pressure which uses the value set at the outlet (0 bar). When backflow 

occurs, the values fork and E set at the outlet are used. 

61 



Calculation for an outflow boundary condition is only slightly more 

complicated due to the fact that the static pressure is not explicitly defined anywhere 

on the computational domain. All values in the boundary cells are interpolated from 

within the domain. In order to keep the static pressure from floating as the simulation 

advances in time, a reference cell is chosen by the solver and at the end of each time 

step, the value of the pressure in this cell is subtracted from the entire domain. The 

pressure field is thus relative to the (arbitrary) reference cell. 

3.10 Treatment at Walls 

Near the walls the flow can be divided into three regions: A viscous sublayer 

where turbulent effects are not important, a buffer region where molecular viscosity 

and turbulence are both important, and a fully turbulent region. With the k-E 

turbulence model it is possible to simulate the flow all the way to the walls, however 

the model must be modified in the near wall region so that it is valid in the viscous and 

buffer sublayers. Further, cells near the wall would be required to be very small, since 

these sublayers exist only very close to the wall, and this would increase 

computational cost dramatically. 

Thus, rather than attempting to integrate the flow equations all the way to the 

wall, standard wall functions were used to compute velocities and turbulence values in 

the wall adjacent cells. Wall functions provide formulas, based on semi-empirical 

results, for the mean velocity and turbulence parameters in wall adjacent cells 

(Mohammadi, 1995). Specifically, the mean velocity, Up, is calculated by 
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1 
U * = - ln{E y *) 

K 

U C114 k 112 p U*= P µ 

't'o 

Up C i14 k u2 y p 
y*= µ 

}-l 

(3.1 0.l a) 

(3.10.lb) 

(3.10.lc) 

where K is Von Karman's constant (0.42), E has a value of 9.81 obtained empirically, 

k is the turbulent kinetic energy in the cell, To is the wall shear stress, and y is the 

distance from the cell center to the wall. 

In order to apply Eq. 3.10.1 , the value ofk in the wall adjacent cell is obtained 

by integrating the k equation all the way to the wall. The boundary condition is 

dk=O 
dn 

(3.10.2) 

where n is the unit vector in a direction normal to the wall. The production of k and 

its dissipation are assumed to be at equilibrium in the wall adjacent cells and are 

calculated using empirical formulas. 

It should be noted that the use of these wall functions is strictly valid only 

when applied to shear layers adjacent to flat walls where there is no pressure gradient 

normal to the wall. Nonetheless, wall functions have been used extensively for flows 

where this does not hold because without them computation is generally too 

expensive. 
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3.11 Convergence Criteria 

At the end of each outer iteration, the level of convergence is tested by 

evaluating a residual for each equation. The discretized transport equation of a scalar 

quantity q, may be written 

12 

Qp <pp = I a nb lppnb + b 
nb=I 

(3. I I. I) 

The residual for the entire solution is defined as a scaled sum of individual residuals 

evaluated at each cell in the domain 

L ( I a nb lppnb + b - ap <pp) 
R 4i = All cells nb; I 

- I /ap</>i,/ (3.11.2) 

All cells 

In Eq. 3 .11.2 the numerator provides a measure of how close the computed value of 

<pp is to actually satisfying Eq. 3.11. I. The denominator acts as a scaling factor. 

Equation 3.11.2 is applicable to the momentum, k, and E equations. The residual for 

the continuity equation is defined as 

L /Rate of mass creation in cell, present iteration/ 
Rc=Allcells •• L /Rate of mass creat10n m cell, iteration 5/ 

All cells 

(3.11.3) 

In the rotor-stator simulations, all residuals were required to reach a value of _s; 

I o-4 before proceeding to the next time step. 
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Chapter 4 Wide Gap Results 

In this chapter, detailed results for all simulations run for the wide gap model 

are covered. Sections 4.1 through 4.4 present results obtained exclusively from 

simulation 4. Recall that simulation 4 was run on a mesh consisting of approximately 

125,000 elements at operating conditions of 30 rps and 45.4 gpm with a constant 

pressure outlet boundary condition (Table 2-1 ). Also recall that that the computational 

domain implies a periodic flow pattern with 12 periods per revolution of the rotor. All 

simulations were run using a time step that resulted in 28 time intervals per period 

which corresponds to 1.07° of rotor rotation/ time step. In the vector and contour 

plots of sections 4.2 - 4.4, only every fourth time step is presented for each field 

variable. 

In the remainder of the chapter, results between simulations 3 and 4; I and 2; 

or 1 and 3 are compared in order to examine the effects that operating conditions, 

mesh size, and outlet boundary condition have on the simulated flow field. 

4.1 Approach to Periodic Steady State 

In previous CFD work to simulate rotor-stator flow fields it was assumed that 

the solution process reaches a periodic steady state after IO full revolutions of 

simulation (Epee-Bounya, 1998). The usual method to monitor for periodicity is to 

choose a point in the computational domain where a moderate to strong periodic 
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behavior is expected and record the values of a flow variable there. In the present 

simulations, the mass flow rate across lines in each of the stator slots was monitored as 

shown in Fig. 4-1. Mass flow rates across lines in stator slot 1 and 6 as a function of 

time step are shown in Fig. 4-2. After approximately 9 revolutions, the mass flow rate 

through stator slot 1 is fully periodic while the value through slot 6 is still decreasing. 

Four revolutions later, all 14 stator slot mass flow rates are periodic (result shown at 9 

and 26.6 revolutions). 

From the above results it would appear that flow in the region of stator slot 6 

takes the longest time to develop, and it is fully developed after 13 revolutions. Using 

the methods described above, however, it is impossible to test for periodicity 

everywhere in the domain. A more unambiguous way to judge periodicity is to 

compare the difference in the solution at two different simulation times by contour 

plots. 

Rather than do this comparison for each of the 28 time intervals in a full 

period, a program was written in Matlab to take the simulation solutions for an entire 

flow period (29 distinct solution fields) after a given revolution and time average the 

Reynolds averaged field variables. This was accomplished by taking the FLUENT™ 

data files for 29 consecutive time steps of simulation and using them to write what are 

known as interpolation files. An interpolation file consists of the x and y spatial 

coordinates for the center of each cell in the computational domain, along with the 

corresponding values of the solution variables for the x-velocity, y-velocity, TKE, and 

turbulent energy dissipation rate. The program 'AVERAGE' was then used to 
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compute the time average value of each flow variable for each computational cell 

according to the equation 

t29 

vir = -1 f s(v(tl), v(t2), ... v(t29)) dt 
.1t ti 

Where Vff is the time averaged variable of interest, .1t is the time interval of one 

period, and s(v(tl), v(t2), ... v(t29)) is a spline formed by evaluating the Reynolds 

averaged variable of interest, v, at the 29 discreet time steps in one period of 

simulation. 

(4.1.1) 

Averaged solutions obtained by Eq. 4.1.1 were manipulated using one of two 

other Matlab programs ('PercentDifference' or 'MagnitudeDifference') to yield 

interpolation files which were plotted in FLUENT™ as contour plots and show the 

percent or absolute difference in the time averaged flow variables between either 28 

and 9.1 or 28 and 15.3 revolutions of simulation. Simulation times at these 

revolutions correspond to 0.30, 0.51, and 0.93 seconds for 9.1, 15.3, and 28 

revolutions respectively. 

Equation 4.1.1 transforms the simulated flow variables into what is called the 

fixed frame of reference. In early LDA studies of mixing equipment, data was always 

collected in the fixed frame. In fixed frame measurements of rotor-stator flows, data 

are taken at a fixed point relative to the laboratory and rotational motion of the rotor is 

ignored. The resulting measurements are then the average of their values for all 

possible positions of the rotor. A fixed frame value differs from its Reynolds averaged 

counterpart in that it is an average taken over a time scale that is long with respect to 
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the periodicity imposed by the rotor. In contrast, an angularly resolved measurement 

of a Reynolds averaged flow variable for a rotor-stator flow is, strictly speaking, not a 

time average. Rather, it is an ensemble average. In statistically steady turbulent 

flows, such as simple pipe flows, a Reynolds or ensemble average is equivalent to a 

fixed frame value. However, in a rotor-stator, due to periodicity, the Reynolds 

average must be defined more strictly as 

1 N 

v= Jim - _LV(t) 
N➔oo N n=l 

(4.1.2) 

where v(t) is the instantaneous value of a flow variable and "N is the number of 

members of the ensemble ( an imagined set of flows in which all controllable variables 

are identical)" (Ferziger and Perie, 1999). In the case of a rotor-stator mixer, a very 

important 'controllable variable' in the computation or measurement of Eq. 4.1.2 is the 

angular position of the rotor with respect to the point of measurement: Each 

measurement in the summation term of Eq. 4.1.2 corresponds to the same distinct 

rotor position relative to the stator. 

Throughout the remainder of this work, with the exception of the TKE and its 

dissipation rate E:, simulation results that have been computed after application of Eq. 

4.1.1 are referred to as fixed frame results. TKE and E: results that are reported after 

application of equation 4.1 .1 are referred to simply as 'time averaged ' . This is 

because the TKE and E:, in contrast to the mean velocities and pressures, are modeled 

parameters in the simulations and therefore not directly comparable to fixed frame 

measurements. This distinction between simulated mean velocities and pressures 
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versus the TKE and its dissipation rate is related to the phenomenon of 

pseudoturbulence in LOA measurements and is discussed more fully in chapter 6. 

The rotor-stator domain is divided into four quadrants and the stator slots are 

numbered for reference throughout the remainder of this work (Fig. 4-1). Figures 4-3a 

and b show difference plots of the fixed frame velocity vectors between solutions at 28 

and 9.1 revolutions of simulation in quadrants II and IV. The maximum difference in 

quadrant I is only 0.8 m/sec and occurs in the portion of the volute adjacent to the 

stator teeth. In quadrant IV the maximum difference is about 4 m/sec and occurs in 

the volute region between stator slots 5 and 6. After 15.3 revolutions of simulation 

(Fig. 4-3b and c), the differences in the fixed frame velocity field are negligible in all 

areas of the domain ( < 0.03 m/sec). The red areas in Fig. 4-3b and care an artifact of 

the interpolation procedure used to calculate the fixed frame values, and occur in 

portions of the domain where the computational mesh moves with each time step. 

Figure 4-4 shows difference contour plots for the time averaged TKE. After 

9.1 revolutions the TKE is overestimated in the gap region as compared to the fully 

periodic solution at 28 revolutions. The percent difference in the gap varies from a 

minimum of close to zero near slots 1-5 and 14 to a maximum of about -25 % near 

slots 6-13 (plots not shown for all regions). The TKE field appears to be completely 

periodic in all stator slots after 9.1 revolutions except for slot 6, where its average 

value decreases by more than 30 % after 28 revolutions. The greatest deviation 

between the time averaged TKE field obtained at the two simulation times is, similarly 

to the fixed frame velocity field, in the volute region between slots 5 and 6 where there 

is up to a 100 % difference. There is also a difference of up to 30 % at the outer edge 
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of the volute region near slots I, 2, and 14. Figure 4-4 b and c shows that the TKE 

field is fully developed after 15.3 revolutions ( < 1 % change everywhere). 

The time averaged turbulent energy dissipation rate develops in a manner 

similar to the TKE field, however it does appear to be nearly fully periodic after 9.1 

revolutions throughout the entire gap region, having a maximum difference of about -

5 % occurring in quadrant IV (Fig. 4-5). The volute region differences between 9.1 

and 27 revolutions are identical to those for the TKE except that the magnitudes of 

change in the case of E are much larger: up to 200 % in the volute region between 

slots 5 and 6 and up to 90 % in the outer volute region near slots 1, 2, and 14. 

The mean static pressure develops to a periodic solution more rapidly than any 

other flow variable (Fig. 4-6). After 9.1 revolutions the fixed frame pressure is 

essentially constant in time. Changes with further simulation occur in slot 14 and 

again in the volute region near slots 5 and 6. Even in these areas, however, the 

magnitude of change is only about IO %. 

In summary, the difference plo1s show that a periodic solution is probably not 

reached after 10 revolutions. All flow variables take about 15 revolutions of 

simulation to develop in the volute region diametrically opposed to the outlet. The 

periodicity of the TKE and its dissipation rate also take 15 revolutions to develop in 

the volute region immediately above stator slot 1, and the TKE is significantly 

underdeveloped in the gap region near slots 6-13 and in stator slot 6. The large 

deviations of the time averaged turbulence parameters in the volute regions ( 30 - 200 

% ) between 9 and 15 revolutions of simulation may be due in part to their small values 

74 



-...I 
V, 

...... 

200 

t 148 = Q,j 
I. 

~ .... 
"C -= 

96 

t 44 
t 
C. 

Q,j 
(j 

= 
?:! 
~ 
:.a -= Q,j 
(j 
I. 
~ 
C. 

-8 

-60 

IO 

6 

2 

-2 

-6 

-10 

A 

C 

200 

t 148 = 
?:! 
~ .... 96 
"C ... = t 44 
I. 
Q,j 

C. 

Q,j 
(j 

= Q,j 
I. 

~ .... 
"C -= Q,j 
(j 
I. 
Q,j 

C. 

-8 

-60 

10 

6 

2 

-2 

-6 

-10 

B 

D 

Figure 4-5. Percent difference between the time averaged turbulent dissipation rates for 28 versus 9.1 revolutions 
of simulation (A) and (B) and 28 versus 15.3 revolutions of simulation (C) and (D). Simulation 4 . 

-:,.- -~ "· '- -'-5..\..'::~. « ,._ \.. \. \:;::,~-:. ~ :.:~,;., ':;. "-~~~,,,~~~~~'¥-:'oh, 



--.J 
0-

~ 
<.I 

= ~ -5 
i= .... 
5 
<.I -~ Q. 

IO 

6 

2 

-2 

-6 

-I 0 

1.0 

t 0.6 = 
~ 
~ 

5 0.2 
i= .... 
= t -0.2 
I. 
~ 
Q. 

-0.6 

-1.0 

C 

~ 
<.I 

= 
~ 

5 
i= .... 
= ~ 
<.I 

t 
Q. 

10 

6 

2 

-2 

-6 

-10 

LU 

~ 0.6 = f 
5 
i= .... 
= 

0.2 

t -0.2 -~ Q. 

-0.6 

-1.0 

B 

~ // 
/ / 

D 

(1/ 

Figure 4-6. Percent difference between the fixed frame static pressures for 28 versus 9.1 revolutions of 
simulation (A) and (B) and 28 versus 15.3 revolutions of simulation (C) and (D). Simulation 4. 

~°'I:~~--~-~,, ¼.'-... \. "~\.i ~~,.~i~ . .'-_\. 
, .. ~, ' '~""''' ~ ~~~-a'=.,~ ....... , 



there (section 4.4). All results to follow come from simulations run for at least 15 

revolutions. 

4.2 Mean Velocity Field at 30 rps and 45.4 gpm Operating Conditions 

Figures 4-7 through 4-13 show a linear sequence of the angularly resolved 

mean velocity vectors in the vicinity of stator slot 1 for simulation 4 after about 28 

revolutions of simulation. When the leading edge of a rotor slot is aligned with the 

left edge of stator slot 1, the flow in the gap reaches its largest mean velocity of about 

24 m/sec in a tangential direction, close to the stator side of the gap directly above the 

center of the rotor slot (Fig. 4-7). Flow in the gap region bounded on the left by the 

right edge of slot 14 and on the right by the left edge of stator slot 2 varies in 

magnitude from about 2 m/sec to 24 m/sec at any given instant of time. There is 

always a moderate to significant radial component to the gap flow directly above the 

left half of the rotor slot and extending about 2 mm into the gap. Gap flow above the 

right half of the rotor slot is always primarily tangential. When rotor and stator slots 

are aligned, the radial mean velocity component in the fluid directly above the rotor 

slot increases in magnitude and extends across the entire gap into the stator slot (Fig. 

4-9). The highest gap mean velocities always occur directly above the rotor slot. 

While there is a variation of gap flow velocities above the rotor slot, the entire region 

above the rotor slot may be considered to behave like a turbulent jet. 

The mean velocity in the turbulentjet in the gap never decreases below 18 

m/sec. The jet velocity does decrease by about 5 m/sec when a rotor slot has passed 

stator slot 1 (Figs. 4-7 through 4-10). The increased radial velocity in the jet as slots 
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move into alignment results in an increased mass outflow from the stator slot into the 

volute during this period. The radial (and absolute) magnitude change is probably due 

to the fact that slot alignment allows the system driving pressure, at the inlet, to push 

in its natural radial direction and force the fluid out of the gap toward the volute most 

easily during this period. Figure 4-14 shows the mass outflow from stator slots as a 

function of time step from alignment with a rotor slot. These plots clearly show that 

outflow in slot 1 is significantly higher during alignment, although the maximum 

outflow does occur when the slots are only half aligned, with the leading edge of a 

rotor tooth directly under the middle of slot 1 (Figs. 4-10 and 4-14). 

The presence of a turbulent jet above the rotor slot in the simulation is an 

interesting phenomenon that has yet to be shown experimentally. Figures 4-12 and 4-

13 show that flow in the gap region to the right of the lower right corner of stator slots 

1 and 14 becomes stagnated and partially reversed after a rotor slot has completely 

swept past stator slot 1 (or 14). With some areas of the gap having close to zero flow 

at a given time, it is at least physically defensible on the basis of mass conservation 

arguments that there would be some areas of especially high velocity. 

Due to the no-slip boundary condition at all walls, the spatially averaged or 

8Vo · d t· h nominal shear rate, 8r , across the gap m areas an 1mes w en a rotor tooth is in 

th
. . b V,ip h . 

partial or full alignment with a stator too 1s given Y 8 w ere o 1s the gap width 

and Ytip is the rotor tip speed. Flow in these regions can be very crudely compared to 

flow between concentric cylinders with the inner cylinder rotating (Couette flow). For 
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laminar Couette flow the equations of motion can be solved exactly and an 

approximately constant shear would be expected between walls. For turbulent Couette 

flow it is reasonable to expect that, in analogy with turbulent pipe flow, the mean 

tangential velocity would decrease very rapidly near the rotating cylinder and much 

less rapidly further away resulting in a very high shear rate near the inner cylinder and 

a substantially lower shear in the central region between the two walls, and also close 

to the stationary wall. 

The numerical results show that, when a rotor tooth and stator tooth l are fully 

aligned (Fig. 4-9), the simulated gap flow appears to be plug. Clearly this pattern 

differs significantly from that hypothesized for turbulent tangential annular flow. The 

reason for this can be attributed partly to the presence of slots in both the rotor and 

stator, but the primary reason is probably that the gap flow is driven by both rotation 

and a mass source (i.e. the gap mass inlet is through the rotor slots). In the gap, 

stresses are the primary means of tangential momentum transport by the rotor, while 

convection is the primary means for transport due to mass inflow. A dimensionless 

parameter, which we can call the Gap Number, that acts as a measure of these two 

mechanisms may be useful for characterizing flow patterns in the gap. The simplest 

possibility is 

Ga= V,;p 
Violet 

(4.2.1) 

A small Ga indicates gap flow similar to that expected in turbulent duct flow while a 

larger Ga indicates flow more similar to that found in turbulent tangential annular 

flow. 
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For the simulation under consideration Ga= 8.3. When a rotor tooth is in 

perfect alignment with a stator tooth, the shear across the gap is most likely to be 

represented by duct or tangential annular flow depending on Ga. Figure 4-15a shows 

the tangential mean velocity, Vtan, normalized to the rotor tip speed, Vtip, across the 

gap from the azimuthal center of a rotor tooth when it is directly under stator tooth I 

and shows in detail that the profile is essentially plug except for a thin, very steep 

boundary layer at the stator tooth. Interestingly there is no boundary layer at the rotor 

tooth. It may be expected that if the volumetric flow rate were to decrease (smaller 

Ga) then a boundary layer would be present next to the rotor. The average shear in the 

gap due to the mean velocity field (at this instant in the simulation) excluding that in 

the stator boundary layer is approximately 850 sec·
1
, which is the shear that the bulk of 

fluid crossing an imaginary line in the gap would experience. This is only 26 % of the 

value of the nominal shear rate of 3,150 sec·
1
• 

The numerical solution of turbulent flow bounding walls is difficult, and the 

lack of a boundary layer near the rotor wall in Fig. 4-15a, although plausible, is a 

surprising result. In addition to being most applicable for shear flows adjacent to flat 

walls, the Log Law of the Wall used for the wall function treatment in the simulations 

is not suitable for values of the dimensionless distance y+ less than 30 or greater than 

300. Y+ at a given point is defined as 

yp,F:ip 
y + = 

µ (4.2.2) 

where y is the distance from the point to the wall, 'to the shear stress at the wall, and 

the other variables are as previously defined. The value of y+ near the rotor tooth and 

88 



00 
\D 

I.I 7 1.1 

1.0 
A 1.0 1 B 

0.9 0.9 

0.8 0.8 

0.7 
30 rps, 45.4 gpm 

0
_7 j 50 rps, 78.8 gpm 

.e-0.6 ~0.6 

~ Time step 9,244 (0.927 4 sec) \o.s 1 Time step -5,624 (0.5642 sec) 
~ 0.5 

> > 
0.4 0.4 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0 -l---------,-----.---------,------- 0+------.-- --,--------,--------
67 68 69 70 71 67 68 69 70 

radial coordinate (mm) radial coordinate (mm) 

Figure 4-15. Reduced tangential mean velocity profiles across the gap at the azimuthal center of stator tooth 1 
when in full alignment with a rotor tooth . Simulation 4 (A), and simulation 3 (B). 

.. . - .. - ... .. - .. .. .... .. ~ 
~ ..... "\."...t "'~.,,~~ --...~~ --..~ "':.. \.,:, "'.. '":...-~".. ~-:.\.-:".;'_..._ _..__'-

'~' '\.,.~~''-~~ !'"~~~,}.'\"'-"''',"-

71 



stator tooth I at the same time step corresponding to Fig. 4-15a is plotted in Fig. 4_ 

l 6a. Y+ is about 50 in the computational cells bounding stator tooth I which is ideal 

for proper application of the wall functions. Near the rotor tooth y+ is too low, having 

a value anywhere from 5 to 20 which in principle could adversely affect the solution 

there. 

Mean flow velocities in stator slot I are not as strongly periodic as those 

occurring in the gap. Outflow from the left side of the slot is essentially non-existent 

due to the formation of a very low velocity vortex. All mass outflow into the volute 

occurs on the right side of the stator slot and, as mentioned above, the mean velocity 

there correlates with the approach of the high-speed jet in the gap region. Fluid 

exiting the right side of slot 1, makes a half horseshoe, 90° tum extending into the 

central region of the volute above the right side of stator tooth 14. 

Existence of a vortex in slot 1 may be explained as follows: Flow in the gap 

region has a very small radial component but, as fluid impinges on the right edge of 

the stator slot and moves toward the volute, the radial velocity becomes dominant. 

Once an element of fluid has reached the right top corner of slot 1 it is forced to curl 

further in a counterclockwise direction as it makes its way to the outlet. The simulated 

flow on the right side of slot 1 is due primarily to convective momentum transport 

from the gap region, and it transfers its counterclockwise motion to the left side of the 

slot through viscous effects resulting in the observed vortex. Since viscous effects are 

expected to be very small in comparison to convection for the large Reynolds number 

of the simulation, this explains the relatively small magnitudes of the mean velocities 

in the vortex as compared to those observed on the right side of the slot. The velocity 
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magnitudes in the vortex correlate weakly with the time dependent increases in 

velocity on the right side of slot 1 as would be expected ( compare Figs. 4-7 and 4-9). 

Time dependent flow in other stator slots and gap regions have very similar 

characteristics to those for slot 1. The primary difference is the magnitude of flow 

variables as is indicated by the instantaneous and fixed frame mass flow rates through 

each of the slots (Figs. 4-14 and 4-17a). According to the simulation, there is a strong 

correlation between slot distance from the outlet and mass flow rate. Of the slots in 

the half of the domain to the right of the outlet, slot 14 has by far the highest mass 

flow rate. Flow rates through slots 1 - 6 decrease in order and have from two fifths to 

one eighth that of slot 14. Beginning with slot 7 mass flow rates begin to increase 

again. Nearly 30 % of the total device mass outflow occurs through stator slot 14. It 

is interesting to note that the stator teeth bounding the slot nearest the exit (slot 14 for 

these simulations) are often the first to fail in industrial equipment. 

Volute flow is most strongly periodic directly above each stator slot. Even 

here, however, the periodicity is for all practical purposes restricted to changes in 

magnitudes, in synchronization with those found in slot I, rather than any changes in 

direction. For this reason it is justified and more succinct to visualize the volute flow 

using fixed frame simulation results after 28 rotor revolutions (Figs. 4-18 through 4-

22). 

The fixed frame volute velocity field magnitudes in the area bounded by stator 

tooth 14 below and the horseshoe outflow region above are very small, and near the 

tooth the fluid reverses direction (Fig. 4-18). The reversed flow in this region then 

feeds back into the vortex on the left side of slot 1 which shows that the slot vortex is 
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not a completely stagnated area of flow but rather has a continuous mass source from 

the volute. Practically this means that a small fraction of mass flowing out the right 

one-fourth of slot I is recirculated back to the left side of the slot, and any particles 

following this trajectory will have an extended residence time. 

Overall flow patterns throughout the volute may help explain the strong 

correlation between slot mass outflow and distance from the outlet. Consider again 

the fluid exiting from the right of stator slot I and the 90° turn it takes in the volute. 

This tum is an acceleration and must involve a concomitant loss of energy by 

conservation principles. Although only speculation, the source of energy for inducing 

the momentum change may be at the expense of the volute flow downstream of a 

given slot. The counterclockwise flow in the volute before slot I is responsible, 

through inertial transfer, for changing the momentum of the fluid leaving slot 1. The 

loss of inertia in the upstream volute flow incurred during this process manifests itself 

through a redistribution of mass outflow from the slots. Of slots 1-6 and 14, those 

further from the outlet will feel the effects of energy loss due to inertial transfer in the 

volute regions more than slots closer to the outlet. A similar argument applies to slots 

7-13 where volute flow is in the clockwise direction. Outflow from slot 6 requires 

special consideration (see below). 

Figures 4-23 and 4-24 show the pathlines followed by particles released from 

the gap due to the fixed frame velocity field. It should be noted that visualization of 

the flow field by this method ignores the effect of turbulent fluctuations on the 

pathlines that particles would be expected to take, but is nevertheless a very useful 

tool. The first stator slot where volute flow splits between a clockwise and 
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counterclockwise direction is at slot 5, although for practical purposes the outflow 

from slot 5 may be considered to be quantitatively counterclockwise. Outflow from 

slots 6 and 7 are 100% in the clockwise direction. The very low outflow rates from 

these slots may be in part explained by the fact that there is no (slot 6) or very little 

(slot 7) inertial momentum transfer occurring in the volute to drive the flow from these 

slots toward the outlet. In the volute region adjacent to slot 6 this results in the 90° 

direction change being affected by the volute wall rather than upstream flow. Notice 

that the pathlines due to flow from slot 6 are much closer to the volute wall than those 

from slots where considerable inertial transfer is significant: Compare to pathlines 

above slot 1 or even slot 7. Practically, this results in extension of the recirculation 

areas near the stator teeth further into the volute region. 

Since volute flow from slot 5 is predominantly counterclockwise and that from 

slot 6 is clockwise, the volute flow between these two slots is very highly recirculatory 

and stagnated. Between the slots there are two vortices: one directly below slot 6 

which moves in a clockwise direction and one closer to slot 5 moving in a 

counterclockwise direction. The directional splitting explains the reason that the 

simulation takes so long to develop in this area (section 4.2): There is no convective 

momentum transport of the Reynolds averaged velocity field here. 

The pathlines also clearly show that flow from the volute back into stator slots 

is significant for slots where the adjacent volute flow is in the clockwise direction 

(Fig. 4-24). Backflow also occurs in the other slots, however for these slots the 

backflow occurs from a fluid element that has left the slot to which it flows back into 

(see analysis of slot 1 above). For slots 6-12, the backflow occurs from fluid that left 
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slots upstream. This distinction may be irrelevant, however, the pathlines seem to 

indicate that backflow into slots 7-12 is much greater than that occurring in slots I -5 

and 14. In fact, backflow in slots 1-5 and 14 is not even apparent from the pathlines, 

but was deduced for slot 1 from an analysis of the mean velocity field near the left top 

comer of slot 14 (Fig. 4-18). 

Flow in the volute region near slot 13, which is closest to the exit, is quite 

different than in other areas of the volute (Fig. 4-21). Essentially, fluid leaving slot 13 

travels straight to the exit with no change in direction. There are low velocity vortices 

adjacent to the teeth bounding slot 13. If backflow occurs into this slot, it appears that 

it would be due to a mechanism similar to that described for slot 1 rather than that for 

slots 7-12. 

4.3 Mean Pressure Field at 30 rps and 45.4 gpm Operating Conditions 

Figures 4-25 through 4-31 show how the mean static pressure field changes 

throughout a period in the vicinity of stator slot 1. The mean pressure spans a range of 

about 4 bar throughout the device ( 1 bar= 9.99 atm). The highest mean pressures in 

the gap close to slot 1 occur in two areas. The first region is roughly semi-circular in 

shape with a radius of about 2 mm and extends from either stator tooth 14, 1, or both, 

depending on the rotor position, halfway into the gap. When the leading edge of a 

rotor slot is aligned with the left edge of stator slot 1 (Fig. 4-25) this high-pressure 

area is about 3 bar and located directly above the left edge of the rotor slot. 

Comparison with Fig. 4-7 shows that it is due to impingement of fluid leaving the left 
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Figure 4-25. Angularly resolved mean static pressure near slot 1 at time step 9,236 (0.9266 seconds). 
Simulation 4 

.. - .. ,. --.... ~ - -- -



r 

-0 
Vt 

'­= .c 

3.6 

2.8 

2.0 

1.2 

0.4 

-0.4 - ~- ~ - --­
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Figure 4-27. Angularly resolved mean static pressure near slot 1 at time step 9,244 (0.9274 seconds). 
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Figure 4-30. Angularly resolved mean static pressure near slot 1 at time step 9,256 (0.9286 seconds). 
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Figure 4-31. Angularly resolved mean static pressure near slot 1 at time step 9,260 (0.9290 seconds). 
Simulation 4 



side of the rotor slot with the stator tooth: Recall that the fluid exiting the left side of a 

rotor slot always has the strongest radial component relative to other gap velocities. 

The high-pressure region on stator tooth 14 moves clockwise along the tooth 

edge as the rotor slot sweeps by and always remains directly above the left edge of the 

rotor slot as would be expected. The mean pressure magnitude, however, does 

decrease to about 2 bar as the rotor and stator slots become more aligned (Figs. 4-8 

and 4-26). When the slots are completely aligned (Figs. 4-9 and 4-27), the high­

pressure area under stator tooth 14 completely disappears, and the gap region under 

the tooth has a tangential mean pressure gradient very roughly resembling that which 

would be expected for duct flow due to an imposed pressure: a higher pressure to the 

left (about 2.5 bar) decreasing to about 1.5 bar on the right. 

The second high-pressure region occurs on the right comer of stator slot I and 

is observed at almost every time step of the simulation. In actuality, this region may 

be considered identical to the high-pressure area that follows the lower edge of the 

stator tooth throughout a period. Figure 4-25 shows that, with the leading edge of a 

rotor tooth under stator tooth 14, the mean pressure at the comer is only slightly 

greater than that observed in the high-pressure regions underneath teeth 1 and 14 (~3 

bar). As the rotor and stator slots become aligned and the jet approaches the right 

edge of stator tooth 1, the mean pressure at the comer increases commensurately, and 

it is a maximum when the two slots are directly under each other (Fig. 4-27). Note 

that when the two slots are in complete alignment, the fluid impinging on the comer of 

tooth 1 is flowing in a primarily tangential direction (Fig. 4-9). Four time steps later, 

the fluid in this region still has a strong tangential direction, but it does appear to be 
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slightly less so. Further, the mean velocity in the jet has decreased in magnitude 

( compare Figs. 4-9 and 4-10). Clearly the high mean pressure at the comer of tooth 1 

is due to impingement on it by the jet. Changes in jet velocity and direction account 

for the concomitant decrease in mean pressure, as well as the apparent paradox of the 

smaller mass outflow from slot l when rotor and stator slots are completely aligned 

compared to four time steps later when the slots are only half aligned (Fig. 4-14). 

As the rotor slot moves from a position of 4.3 ° past full alignment with slot 1 

(Fig. 4-28) to being completely underneath stator tooth 1 (Fig. 4-29), the high-pressure 

region on the tooth moves around the comer to the bottom edge of stator tooth 1 inside 

the gap, and also decreases about 0.5 bar in magnitude. After moving around the 

comer, this high-pressure region and the one discussed previously may be considered 

one and the same. The high-pressure area follows the leading edge of the rotor tooth 

throughout its passage by stator tooth l, increasing slightly in size as it moves from 

the left to right edge of the tooth. 

Regions of relatively low mean pressure exist inside slot 1 on the left where 

the vortex is present. The low-pressure region is smallest ( ~ 0.5 bar) when a rotor slot 

has just passed the stator slot and high-pressure region number 2 has rounded the tooth 

comer (Fig. 4-29). At this time, the low-pressure region also reaches its greatest size, 

extending all the way across the slot and well into the volute. As the rotor continues 

its passage, the low-pressure region in the slot slowly increases in magnitude and 

recedes from the volute. The slot mean pressure increase continues until the lagging 

edge of the rotor tooth is aligned with the left edge of slot l , after which time it begins 

to decrease and the cycle begins again. The time of lowest mean pressure on the left 
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side of the slot (Fig. 4-29) corresponds to time step 8 in Fig. 4-14. Comparison shows 

that at this time the mass outflow from slot 1 is close to a minimum. However, the 

mean pressure there is also fairly low 4 time steps previously (Fig. 4-28) and at this 

time the slot mass outflow is nearly maximal. Additionally, when a rotor tooth 

completely blocks slot 1 (Fig. 4-31), the outflow is nearly equivalent to that which 

occurs during the period of lowest slot mean pressure, yet at this time the mean 

pressure on the left of the slot is nearly at its highest level ( ~2.4 bar). There appears to 

be no simple correlation between stator slot mean pressure and mass outflow. 

The mean pressure field in the inlet region before the rotor and also in the 

volute undergoes a periodic shocking. Figure 4-32b shows the pressure distribution 

when it is at its overall lowest throughout the volute and inlet (about 1.7 bar) while 

Fig. 4-33b shows the distribution when it is at its highest (about 3.0 bar). Figures 4-

32a and 4-33a are plots of the relative mass outflow from each of the stator slots at 

these instants of time. The scale in Figs. 4-32a and 4-33a is not straightforward: On 

average, the difference between mass flow rates from any two given stator slots does 

not change greatly. For this reason, a bar chart of stator mass flow rates at any given 

instant will always have the same general shape as that for their fixed frame mass flow 

rates (Fig. 4-17). In order to discriminate between the relative slot flow rates at 

different rotor positions, it is necessary to use a scale that is normalized to each slot 

individually. For instance, in Fig. 4-32a a value of zero on the y-axis represents the 

minimum value for the mass flow rate through a given slot and a value of I represents 

the maximum value through that slot. If the maximum total mass fraction of flow 

through stator slot 1 is 0.116 and the minimum value is 0.09, then in Fig. 4-32a, a 
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value of 1.0 for stator slot 1 would correspond to a mass fraction of 0.116 while a 

value of 0 would correspond to a mass fraction of 0.09. Each slot is normalized to its 

own maximum and minimum so that a value of 1.0 for stator slot 2 corresponds to a 

mass fraction of 0.065, not 0.116. 

When the mean pressure is low in the volute and inlet (Fig. 4-32), the mass 

outflow from stator slots 1 and 8 is maximal. When the volute and inlet pressure is 

maximum (Fig. 4-33), the mass flow rate from slot 6 and 13 is maximal. In fact, there 

is a very strong correlation between which slots have maximal outflow and the volute / 

inlet pressure. Specifically, as the simulation advances forward in time, the slots 

which have maximum outflow move sequentially from numbers 6 to 1. The mean 

pressure is highest when slot 6 is maximum, considerably less when slot 5 is 

maximum, and so forth all the way to when slot 1 has maximum outflow, after which 

time the cycle repeats itself Note that the geometry of the device implies that the two 

stator slots opposite each other will have maximum ( or minimum) flow rates 

simultaneously. 

4.4 Turbulence Field at 30 rps and 45.4 gpm Operating Conditions 

Figures 4-34 through 4-40 show the time dependent evolution of turbulent 

kinetic energy in the vicinity of stator slot 1. When the leading edge of a rotor slot is 

aligned with the left edge of stator slot 1, the highest region of turbulent kinetic energy 

is about 3 8 m2 / sec2 and occurs directly above the top left comer of the rotor slot 
' 

extending approximately 2 mm into the gap (Fig. 4-34). Comparison with the mean 

velocity and pressure fields at this time (Figs. 4-7 and 4-25) show that this is the same 
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Figure 4-35. Angularly resolved turbulent kinetic energy near slot 1 at time step 9,240 (0.9270 seconds). 
Simulation 4. 
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Figure 4-36. Angularly resolved turbulent kinetic energy near slot 1 at time step 9,244 (0.9274 seconds). 
Simulation 4. 
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Figure 4-37. Angularly resolved turbulent kinetic energy near slot 1 at time step 9,248 (0.9278 seconds). 
Simulation 4. 
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Figure 4-38. Angularly resolved turbulent kinetic energy near slot 1 at time step 9,252 (0.9282 seconds). 
Simulation 4. 
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Figure 4-39. Angularly resolved turbulent kinetic energy near slot I at time step 9,256 (0.9286 seconds). 
Simulation 4. 
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Figure 4-40. Angularly resolved turbulent kinetic energy near slot 1 at time step 9,260 (0.9290 seconds). 
Simulation 4. 
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time and location that fluid leaves the rotor slot radially and impinges upon the stator 

tooth. Four time steps later, the region of high turbulent kinetic energy has followed 

the lagging edge of the rotor slot, but it has decreased substantially in size (Fig. 4-35). 

When the rotor and stator slots are aligned (Fig. 4-36), the tangentially moving region 

has decreased to about 25 m2 I sec2 and extends well into stator slot I from the lower 

right corner of stator tooth 14. After an additional 4.3° ofrotation (slot now half 

closed), the turbulent region has decreased in magnitude so that it is essentially 

indistinguishable from the background turbulence in slot 1 (Fig. 4-37). 

While the turbulent region travels along the gap toward the left side of slot I, a 

second area of even higher turbulence first appears on the right lower corner of tooth I 

when a rotor-slot is half aligned with stator-slot I (Fig. 4-35). This region grows in 

size and magnitude as the slots become more aligned, reaches a maximum of about 50 

m2/sec2 when the rotor slot has moved 4.3° past complete alignment (Fig. 4-37), and 

then begins to decrease. During the time of increase, this turbulent region extends 

further up slot I toward the volute region, but its maximum appears to remain on the 

lower corner of stator tooth I. 

The highly turbulent region on the corner of tooth I correlates with impaction 

of the jet that follows each rotor slot throughout a period of simulation. Indeed its rise 

and fall in magnitude correlates well with mass flow rate out the right side of stator 

slot 1 (compare with Fig. 4-14). Further, it is clear that this turbulent region also 

correlates with the appearance of the high-pressure area on the corner of tooth I 

(section 4.4). As is the case with the two high-pressure regions in the gap, the high 

turbulence region at the corner of tooth I passes around the corner of the tooth (Fig. 4_ 
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38) while undergoing a decrease in magnitude. At this point, it may be considered to 

be the region of turbulence which will follow the lagging edge of the adjacent rotor 

slot and increase in magnitude and size until it reaches the center of tooth 1 at which 

point it will begin to decrease until it finally disappears at slot 2. 

The time dependent turbulent energy dissipation rate, 8, has a qualitative 

distribution very similar to the turbulent kinetic energy (Figs. 4-41 through 4-47). 

Regions of high energy dissipation exist in exactly the same locations as those of high 

turbulent kinetic energy. The maximum magnitude ofregion 1 for E is approximately 

80,000 m
2 I sec3 and when the leading edge of a rotor slot is aligned with the left edge 

of stator slot 1 (Fig. 4-41). As the rotor continues its passage, the high energy 

dissipation region decreases in a manner similar to the TKE. Right before a rotor-slot 

moves into partial alignment with stator-slot 1 (Fig. 4-41 ). a thin wisp like region of 

very high energy dissipation is present at the comer of stator tooth 14 and extends 

tangentially about one quarter of the distance across slot 1. This wisp is present in the 

TKE field, although it is less distinguishable from the background slot turbulence. In 

the case of the energy dissipation rate, the wisp at the tooth corner is about 1.5 times 

the magnitude of the region approaching the slot, whereas in the case of the turbulent 

kinetic energy, the wisp has a magnitude equal to or less than the approaching high 

TKE region. Further, in the case of 8, the wisp increases in magnitude and stretches to 

a maximum distance of one-half the slot width as a rotor-slot moves into complete 

alignment with stator-slot 1 (Figs. 4-41 through 4-43). In the case of the turbulent 

kinetic energy, the wisp extends much less of the way into stator-slot 1 and it appears 
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Figure 4-41. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,236 (0.9266 seconds). 
Simulation 4. 
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Figure 4-42. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,240 (0.9270 seconds). 
Simulation 4. 
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Figure 4-43. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,244 (0.9274 seconds). 
Simulation 4. 
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Figure 4-44. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,248 (0.9278 seconds). 
Simulation 4. 
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Figure 4-45. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,252 (0.9282 seconds). 
Simulation 4. 
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Figure 4-46. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 9,256 (0.9286 seconds). 
Simulation 4. 
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Figure 4-47. Angularly resolved turbulent kinetic energy dissipation rate near slot I at time step 9,260 (0.9290 seconds). 
Simulation 4. 



to reach a maximum when the rotor-slot and stator-slot are only half aligned, and then 

decrease with further slot alignment. 

As the wisp of turbulent dissipation appears on the left comer of tooth I 4, the 

dissipation rate at the right lower comer of tooth I increases. In a manner similar to 

the turbulent kinetic energy, the energy dissipation rate at the right corner increases as 

the rotor-slot continues its passage by the stator slot. The area of high energy 

dissipation here appears to cover a larger area than the corresponding area of high 

turbulent kinetic energy. At one point, the high energy dissipation area extends from 

the lower corner of slot I, all the way up its right side, and out into the volute while 

simultaneously extending around the comer along the wall of stator-tooth l and well 

into the gap region (Fig. 4-44). 

The patterns of turbulence in the gap near all stator-slots is very similar, 

however, as with the velocity field, the absolute magnitudes vary considerably from 

slot to slot as would be expected since the "local" Reynolds numbers will vary around 

the domain. Figures 4-48 and 4-49 show the time dependent spatial average of either 

the turbulent kinetic energy or the turbulent energy dissipation rate on an imaginary 

line extending from the corner of each tooth halfway across the shear gap (see Fig. 4_ 

l ). This position was chosen for monitoring the time dependent behavior of 

turbulence around the domain because, from the above analysis, it is the region that 

appears to have the highest turbulent kinetic energies. The plots are normalized to 

· f l V2 th . I either the nominal rotor tip kinetic energy o 2 tip or e nomma gap viscous 
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dissipation rate of µ y 2 where y is the nominal gap shear rate previously defined. As 
p 

expected, both the turbulent kinetic energy and its dissipation are highest on the line 

immediately to the right of stator slot 14 ( called ' gap 14' in Figs. 4-48 and 4-49) 

followed by the lines near slots 1 and 13. The energies and dissipation near the 

remaining slots crudely follows a similar pattern observed for mass flow rates: The 

closer the slot is to the outlet, the higher its turbulence. The region near slot 14 has an 

interesting feature that is qualitatively different from the time dependent turbulence 

observed near the other slots. Specifically, the turbulence near all slots except 14 is an 

absolute maximum after a rotor-slot has moved about 4.3° from complete alignment 

with the stator-slot. A local maximum in the case of slots 13 and 1, or an apparent 

inflection point in the turbulence for slots 2-12, is then reached approximately 8.6° 

later. The angular location of a rotor-slot at the absolute maximum turbulence 

correlates well with its position at maximum mass outflow from the slots (compare to 

Fig. 4-14 ). However, in the case of slot 14, the pattern seems to be reversed from that 

in slot 1. An absolute maximum in the turbulence is observed for slot 14 at the same 

rotor-slot stator-slot alignment where a local maximum is observed for slot 1. Further, 

the rotor-slot position corresponding to an absolute maximum in turbulence near slot 1 

results in only a local maximum near slot 14. Analysis of the mass flow rates through 

stator slot 14 (Fig. 4-14) shows no qualitative difference between it and slot I and the 

reason for the difference in their predicted turbulence patterns is not clear. 
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4.s Comparison of 30 rps, 45.4 gpm and 50 rps, 78.8 gpm Operating Conditions 

Simulation 3 was performed at operating conditions of 50 rps and 78.8 gpm 

inlet volumetric flow rate on the same mesh as simulation 4. The time dependent (not 

shown) and fixed frame mass flow rates through each of the stator slots is nearly 

identical to those for 30 rps and 45.4 gpm operating conditions when normalized to the 

overall mass flow rate (Fig. 4-17b). Since the Gap number is approximately the same 

for both simulations ( 19. 7 vs. 18.9) this result is not surprising. 

The overall patterns of time dependent mean velocity, mean static pressure, 

and turbulence are all identical between the two simulations. As is the case with 

volute flow patterns, it is most succinct to compare results between the two 

simulations using fixed frame solution fields since no qualitative difference was 

observed between the two simulations upon initial examination. The fixed frame 

velocity field obtained for the two different operating conditions is shown in Fig. 4-50. 

The maximum velocity at 50 rps I 78.8 gpm is about 35 m/sec and the maximum at 30 

rps I 45.4 gpm is about 20 m/sec. The fixed frame static pressure fields are also 

identical except for absolute magnitudes (Fig. 4-51 ). The maximum pressures 

obtained are about 8.9 and 3.1 bar for 50 rps I 78.8 gpm and 30 rps/ 45.4 gpm 

respectively. The minimum fixed frame pressure is identical for the two simulations 

because it occurs directly adjacent to the outlet that is set to 0 for both simulations. 

The maximum value obtained for the time averaged turbulent kinetic energy 

field is about 50 m2/sec2 for 30 rps/ 45.4 gpm and 160 m
2
/sec

2 
for 50 rps I 78.8 gpm. 

Both maximums occur in the right comer of slot 14 (Fig. 4-52). The maximum 

turbulent energy dissipation rate also occurs in the right corner of slot 14 and is about 
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200,000 and 1,000,000 m2/sec3 for the two simulations (Fig. 4-53). In general, the 

time averaged turbulent kinetic energy and its dissipation is higher near the leading 

edge of a stator tooth (where impaction of the turbulent jet occurs) rather than near the 

lagging edge of the adjacent tooth. 

The tangential mean velocity profile across the gap for 50 rps I 78.8 gpm is 

shown in Fig. 4-15b. The profile is almost exactly the same as for 30 rps/ 45.4 gpm 

when plotted as a reduced velocity: The flow in the gap is plug except for a very thin 

boundary layer near the stator wall. The average shear outside of the boundary layer 

(i.e. ignoring the 2 points nearest the stator wall in Fig. 4-15b) is 1320 sec·1 which is 

approximately 1.6 times that computed for simulation 4: 850 sec·
1
• Since there is no 

change in the reduced velocity profile across the gap it is logical that the average shear 

outside the rotor boundary layer scale linearly with the overall mass flow rate: 

78.8 gpm = 
1
_
7 
~ 

1
_
6 

= 1320 sec·' 
45.4 gpm 850 sec·' 

Perhaps if Ga of the simulations had been substantially different a much different 

reduced velocity pro.file and average gap shear outside of the boundary layer would 

have resulted at 78.8 gpm. The values ofy+ near the rotor and stator tooth 1 are 

similar for the two simulations (Fig. 4-16), and the same caveats covered in section 4.2 

apply. 

4.6 Effect of Outlet Boundary Conditions: Constant Pressure Versus Outflow 

Simulations 1 and 2 were both run at operating conditions of 50 rps / 78.8 gpm 

on coarse meshes of approximately 73,000 cells. However, the outlet for simulation 2 
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was extended an additional 0.25 m and set to an outflow boundary condition while 

simulation 1 had an outlet set to a constant pressure and cut off immediately adjacent 

to the volute (see Table 2-1). Direct visual comparison of the time dependant mean 

velocity, mean pressure, and turbulence fields did not reveal any difference between 

the two solutions, even in the region of the volute immediately adjacent to the outlet. 

Comparison of the fixed frame mass flow rates from the stator slots also did not show 

any difference (result not shown). 

Since the magnitudes present in the different solution fields can span a wide 

range it is nearly impossible to know exactly how different the two simulations are 

using direct visual comparison. For this reason, percent difference plots for each of 

the fixed frame or time averaged fields between the two simulations were made 

(except for the mean static pressure), similar to those found in section 4.1 for the 

analysis of the approach to a periodic steady state. 

The numerical treatment of an outflow boundary condition results in a mean 

pressure offset throughout the computational domain that is reset at each time step. 

Thus, the mean pressures between simulations 1 and 2 cannot be directly compared. 

In fact, the time dependent mean pressure results in simulation 2 are mathematically 

incorrect. The reason for this is that the 'true' mean pressure at the inlet is expected to 

change magnitude throughout a period of simulation (see Figs. 4-32 and 4-33). In the 

outflow boundary condition used, the mean static pressure of an (arbitrary) cell 

adjacent to the inlet is set to O gauge at the beginning of each time step so that any 

changes in pressure there are not captured. The lack of change in mean pressure at the 

inlet implies an incorrect pressure change (from time step to time step) anywhere in 
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the domain that 'sees' the_ inlet pressure field. Certainly it is reasonable to expect that 

the mean pressure field throughout the domain is dependent on the pressure at the 

inlet. The above argument, of course, does not imply that the solution obtained for 

simulation 2 for each individual time step is (mathematically) incorrect. The solution 

at each time step is in principle correct. To compare the pressure fields of simulation 

I and 2 all that would be needed is to determine an offset pressure to apply to the 

solution of one or the other solutions. The problem is that a different offset pressure 

will be needed for each time step. It is for this reason that a thorough analysis of the 

differences in the mean pressure field between simulation 1 and 2 was not attempted 

even though it is possible. Presently, it can be said that a superficial comparison of the 

mean pressure field for several time steps did not reveal any differences. In any event, 

the primary concerns of the simulations are mean velocities and turbulence, and their 

computation is not affected by relative offsets in mean static pressure. 

Figure 4-54 is a percent difference plot of the fixed frame velocity magnitudes. 

The difference in mean velocity magnitudes is near zero throughout most of the 

domain. An exception to this is in each of the slots and the volute region where the 

fixed frame velocity field itself has a very small magnitude (see Fig. 4-S0a). Also, 

near the outlet the difference in the two velocity fields is significant (up to 90 %) and 

is attributable to the different outlet boundary conditions rather than small mean 

velocity magnitudes. 

Differences between the turbulent kinetic energy fields (Fig. 4-55a) are 

negligible almost everywhere except adjacent to the outlet. There are other regions, 

scattered evenly throughout the domain, where there is a moderate discrepancy 
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between the two simulations: This may be due to errors introduced during the 

averaging process. Differences in the turbulent energy dissipation rate are also most 

pronounced near the outlet (Fig. 4-55b). As with the turbulent kinetic energy, there 

are some very small regions of discrepancy in the computed energy dissipation rates 

(from 25 - 100 %) scattered more or less evenly throughout the domain. Often these 

regions occur where the simulated dissipation is small, but in some of these areas, like 

the boundary between stator-slots and the shear gap or extending from the leading 

edge of a stator tooth into the volute, the dissipation rate has a moderately large value 

(see Fig. 4-53b). 

It appears that the major effect of cutting the outlet off at the volute is to 

overestimate the turbulent kinetic energy and its dissipation rate, and the mean 

velocity near the outlet when compared to the outflow boundary condition solution. 

There are, however, some regions near the outlet where the opposite holds true. Of 

the field variables, the turbulent dissipation rate seems to be most sensitive to changes 

in the outlet boundary condition. 

4. 7 Grid Independence of Simulations 

Simulations 1 and 3 were run on meshes of 73.6 and 125 thousand elements 

respectively with pressure outlet boundary conditions, an inlet volumetric flow rate of 

78.8 gpm, and a rotor speed of 50 rps. The primary difference between the two 

meshes is the element quality in the gap region. There are 30 elements spanning the 

gap in the 125 K mesh and 26 elements in the 73 K mesh. More importantly, the 

aspect ratios of the gap elements in the 125 K mesh are much less on average than 
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those in the 73 K mesh which was achieved by increasing the number of elements 

spanning the stator slot from 18 to 33. The 125 K mesh is also more dense near the 

slot and volute walls (Fig. 1-8). 

Both the time dependent and fixed frame stator slot mass flow rates are 

identical for both simulations (result not shown). Figures 4-56a and b are percent 

difference plots of the fixed frame mean velocity magnitudes and static pressures. 

Figure 4-56a shows that the mean velocity fields for the simulations are identical. 

Regions of large discrepancy in Fig. 4-56a are areas where there is recirculation / 

stagnation of the fluid and the mean velocities are very small. There is essentially no 

difference in the fixed frame static pressure fields except close to the outlet and in 

stator slot 14. The reason for this is not clear, especially in stator slot 14 which is 

meshed the same as other stator slots in the two simulations. 

The turbulence field differences (Figs. 4-57a and b) are most sensitive to 

changes in the mesh. For the most part, they are the same between the two 

simulations, however there are significant differences extending from the leading edge 

of some of the stator teeth (i.e. stator tooth 2) into the volute region. One possible 

reason for this is due to the use of the wall functions. The wall functions are valid at 

y+ ~ 30-600. On the right wall of the stator slots, y+ reaches a value of up to 150 

whereas on the wall that forms a 90° angle with this edge, the value of y+ is only about 

5. This is because most mass outflow from the stator occurs adjacent to the slot wall 
' 

while the other wall, which bounds the volute, is a region of very stagnated, 

recirculatory flow that may even be laminar. The very different flow regimes in cells 
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bounding stator slot corners may be too much for the wall functio ns to handle 

properly .. 
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Chapter 5 Standard Gap Results with Comparison to the Wide Gap 

Model 

This chapter contains results from simulation 5, which is the standard gap 

model run with an outflow outlet boundary condition and operating conditions of 30 

rps and 45.4 gpm (Table 2-1). Standard gap results are also compared with the wide 

gap model, simulation 4. Recall that both of these simulations were run at the same 

rotor speed and inlet mass flow rate. 

Analysis and comparison of the time dependent mean velocity field for 

simulation 5 in the gap region near stator slot 1 as a rotor tooth sweeps out one period 

is found in sections 5.1.1 through 5. I .6. These results are illustrated graphically by the 

series of Figs. 5-1 through 5-21. The series is broken into sets of three (for instance 

Figs. 5-1 through 5-3) which each correspond to the same rotor position relative to 

stator slot l. The next set of three (Figs. 5-4 through 5-6) illustrate the same location 4 

time steps later ( 4.3 ° of rotor rotation) and so forth. It is necessary to break the 

presentation in this manner in order to blow up the region enough to see details of the 

mean velocity field in the very small shear gap. Each set of three figures corresponds 

to the same rotor positions for Figs. 4-7 through 4-13, respectively, presented for the 

Wide gap model. The first figure in each set is the region directly under stator slot l. 

The second figure is directly to the left of slot I. The third figure covers the shear gap 

region directly to the right of stator slot 14. Since there are a total of seven rotor 

positions presented in the mean velocity field sequence of figures, each figure is 
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Figure 5-13. Angularly resolved mean velocity vectors in the gap under stator slot 1 at time step 6,428 (0.6448 seconds). 
Simulation 5 
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Figure 5-14. Angularly resolved mean velocity vectors in the gap to the left of stator slot 1 at time step 6,428 
(0.6448 seconds). Simulation 5 
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Figure 5-15. Angularly resolved mean velocity vectors in the gap to the right of stator slot 14 at time step 6,428 
(0.6448 seconds). Simulation 5 
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Figure 5-16. Angularly resolved mean velocity vectors in the gap under stator slot 1 at time step 6,432 (0.6452 seconds). 
Simulation 5 
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Figure 5-17. Angularly resolved mean velocity vectors in the gap to the left of stator slot 1 at time step 6,432 
(0.6452 seconds). Simulation 5 
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Figure 5-19. Angularly resolved mean velocity vectors in the gap under stator slot 1 at time step 6,436 (0.6456 seconds). 

Simulation 5 
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Figure 5-21. Angularly resolved mean velocity vectors in the gap to the right of stator slot 14 at time step 6,436 
(0.6456 seconds). Simulation 5 



labeled 'Rotor Position n' where n goes from 1 to 7. Shear patterns in the gap, mass 

flow rates, and fixed frame mean velocities are covered in the last part of section 5.1. 

The remainder of the chapter contains an analysis and comparison of the mean 

static pressure and turbulence fields. 

5.1.1 Gap Mean Velocity Field at Rotor Position 1 

When the leading edge of a rotor slot is directly under the left edge of stator 

slot 1 (Figs. 5-1 through 5-3), a high speed tangential jet spans the width of the gap. 

This jet is similar to the one observed in the wide gap simulation (Fig. 4-7). In the 

standard gap simulation, the jet begins at the left edge of stator slot l and extends 

almost a11 the way across the stator slot. Its magnitude decreases from a maximum of 

about 34 m I sec at the left edge of slot 1 to about 21 m I sec at the right edge of slot 1. 

The position of the jet in the standard gap simulation is quite different from that 

observed in the wide gap simulation, where the jet maximum occurs directly above the 

center of the rotor slot approaching stator slot 1. The maximum jet mean velocity 

magnitude in the standard gap simulation is about 40% greater than that for the wide 

gap simulation. 

Except for the shift in jet position, the mean flow velocities in the region of 

the gap directly above the rotor slot at the simulation time under consideration (Fig. 5_ 

2) is qualitatively similar to results obtained for the wide gap model. Above the left 

edge of the rotor slot, the gap mean velocities have a moderate radial component to 

them that is converted to a tangential motion by impaction with the stator tooth. 

Moving more toward the center of the rotor slot, the gap mean velocities lose their 
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radial component and become purely tangential. This shift from a raidial to tangential 

direction does occur over a much shorter length than in the wide gap simulation 

( compare to Fig. 4-7), probably due to the much shorter width of the gap in the present 

simulation. Interestingly, the gap mean velocities on the left side of the rotor slot in 

the standard gap simulation are much smaller than the corresponding ones in the wide 

gap simulation, both in terms of absolute magnitude, and relative to the maximum 

obtained in the high speed jet. 

Further left of the rotor slot (Fig. 5-3) the flow in the gap region is 

reciruclatory and almost stagnated relative to the mean velocity magnitudes present in 

other regions of the gap. Close to the rotor side of the gap the flow moves in a 

clockwise tangential direction as would be expected, and the mean velocity 

magnitudes in the computational ce11s bounding the rotor tooth are about 4 m/sec 

which implies a fairly steep gradient in the tooth boundary layer. This is in contrast to 

the corresponding mean velocities in the wide gap simulation, which were found to be 

about IO -12 m / sec: roughly the same velocity as the rotor implying the absence of a 

boundary layer. On the stator side of the gap the flow actua11y moves in a 

counterclockwise direction in an attempt to exit from stator slot 14. Note the splitting 

of flow in the gap directly above the leading edge of the rotor tooth evident in both 

Figs. 5-2 and 5-3. 

5.1.2 Gap Mean Velocity Field at Rotor Position 2 

With the rotor advancing an additional 4.3° (Figs. 5-4 through 5-6), the rotor 

slot is now halfway aligned with stator slot 1 and the maximum jet mean velocity in 
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the gap decreases to about 24 m / sec and shifts slightly to the right. The gap mean 

velocities also take on a radial component towards the middle of stator slot 1. This 

shift in direction also occurs in the wide gap model, but at a later time when the rotor 

and stator slots are in complete alignment (Fig. 4-9). 

To the right of stator slot 14, the recirculation in the gap that was evident at 

rotor position 1 is gone (Figs. 5-5 and 5-6): AII fluid is now moving in a clockwise 

tangential direction, albeit very slowly. The steep boundary layer near the rotor side 

of the gap has also decreased, as evidenced by the larger mean velocity magnitudes 

(~7-10 m I sec) in the rotor adjacent ceIIs (Fig. 5-6). 

5.1.3 Gap Mean Velocity Field at Rotor Position 3 

As the rotor and stator slots move into complete alignment, the maximal gap 

mean velocities are located tangentially further into stator slot 1, so that they occur 

directly at the angular center of the slot (Fig. 5-7). The gap velocities under the stator 

slot also take on a greater radial component. To the left of stator slot 1, the gap flow 

mean velocity is stiII small and appears to be nearly plug except very close to stator 

slot 14, where a slight gradient across the gap exists (Figs. 5-8 and 5-9). 

5.1.4 Gap Mean Velocity Field at Rotor Position 4 

When the rotor slot has moved an additional 4.3°, so that it is again only half 

aligned with stator slot 1 (Figs. 5-10 through 5-12), there is little change in the gap 

flow except in the 5 mm long span where the two slots are aligned (Fig. 5- 10). In this 

region the flow takes on a nearly I 00 % radial direction, and its mean velocity 
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magnitude is in the range of 18 - 25 m I sec. These are the highest radial mean 

velocities occurring in the gap bounding slot 1, and the mass flow rate out the slot is 

also highest at this time (Fig. 5-22: 4 steps from rotor-slot stator-slot alignment). 

5.1.5 Gap Mean Velocity Field at Rotor Positions 5 and 6 

4.3° of rotation later the rotor slot has completely passed stator slot 1 and the 

stator slot may be considered 'closed ' (Figs. 5-13 through 5-15). It is evident that the 

gap flow near the right corner of stator slot 1 is beginning to undergo a flow reversal. 

Most of the fluid exiting the rotor slot into the gap at this point in time still attempts to 

exit the gap from stator slot 1, even though to do so it must move in a direction 

opposing the natural tendency imposed on it by rotor rotation. 

The radial mean velocities in the lower portion of slot 1 have disappeared with 

the exception of those at the far right end. Concomitantly, the mass flow rate out the 

slot decreases significantly to near its minimum (Fig. 5-22: 8 steps from rotor-slot 

stator-slot alignment). An additional 4.3 ° later (Figs. 5-16 through 5-18), flow 

reversal is still evident at the right corner of stator slot 1, and it is beginning to develop 

at the corner of stator slot 14. Note that geometrically, the time step represented by 

Figs. 5-16 through 5-18 is identical, relative to slot 14, as the time step represented by 

Figs. 5-13 through 5-15 is relative to slot 1. Clearly the flow fields in these two 

regions at their relative time steps are qualitatively identical. 
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5.1.6 Gap Mean Velocity Field at Rotor Position 7 

The final set of figures for the gap mean velocity field (Figs. 5-19 through 5-

21) show that the mean velocity in the high speed jet increases in magnitude directly 

above the leading edge of the rotor slot. Flow reversal is still evident to the right of 

stator slot 1, although the counterclockwise flow is now minor. The flow reversal near 

slot 14 is also stiU apparent. 4.3° or 8.6° more ofrotation corresponds to rotor 

positions 1 and 2 respectively, at which times the flow reversal is no longer present 

near slot 1 (4.3°) or slot 14 (8.6°). 

5.1. 7 Mean Shear Patterns Across the Gap 

The reduced mean tangential yelocity profile across the gap from the azimuthal 

center of a rotor tooth when it is directly under stator tooth I is plotted in Fig. 5-23a. 

It is very similar in form to the profile obtained for the standard gap model (Fig. 4-

15a) in that a we11 defined boundary layer is lacking at the rotor wall. The average 

shear experienced by the majority of fluid in this region of the gap at this time ( outside 

of the boundary layer) is approximately 9,200 sec·1, which is about 10 times greater 

than that in the corresponding wide gap simulation. 

The original standard gap mesh (Table 2-1) consists of 8 elements spanning the 

gap. Since this is a fairly sma11 nwnber, it is possible that this could effect the flow 

field results there. Therefore, the mesh used for simulation 5 was adapted based on 

the value of y+ in wall adjacent cells after 6,428 time steps of simulation (19.1 

revolutions). This yielded a mesh where every wall adjacent cell with a y+ value 

greater than I was split into four equal quadrants. Solution was continued on this 
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mesh for 40 time steps ( ~ 1.3 periods), and the adaption process was repeated. 

Solution then proceeded again for 32 time steps at which time a final y+ adaption was 

performed. This final mesh was very dense around the gap walls (Fig. 5-24) and 

consisted of 680,000 computational cells. Solution was continued on the final mesh 

for 230 time steps. 

After the first adaption of the mesh, the wall function treatment was disabled in 

favor of the two-layer zonal model available in FLUENT™. The two layer zonal 

model attempts to solve the flow field all the way to the wall, using a low Reynolds 

number turbulence model in cells close to the wall. Details of the model can be found 

in the FLUENT™ manual (Fluent Inc., 1997). 

Although 230 time steps may not be enough time steps to reach a fully periodic 

condition with the two layer zonal model, it is enough to see significant differences in 

changes to the simulated flow near the wall. Figure 5-23b shows the reduced mean 

tangential velocity profile across the gap obtained from the two layer zonal model. A 

very slight boundary layer is predicted near the rotor wall which, although 

considerably smaller than the boundary layer near the stator, is still noticeably 

different from results obtained with standard wall functions. Overall, however, it is 

arguable that the wall function approach yields results comparable to the two layer 

zonal model: Notice in Fig. 5-23a that there appears to be a very small and ill-defined 

boundary layer at the rotor wall, but it is not as noticeable as for the two layer zonal 

model because there are not as many mesh cells in the region. 

On the other hand, Fig. 5-25a shows the wall y+ values near stator tooth 1 for 

the standard gap simulation using wall functions. The stator side, and to a greater 
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extent the rotor side, of the gap have y+ values that are too low for proper application 

of wall functions. Thus, on this basis alone, not to mention the strong pressure 

gradients present at some places in the gap, the wall function approach may be a bad 

choice for simulating devices with very small gaps. 

Generally, y+ values for the two-layer zonal model as applied in Fluent should 

be $ 1, but may be slightly larger (Fluent Inc., 1997). Figure 5-25b illustrates wall y+ 

values for the simulation using the two layer zonal model, and shows that the adapted 

mesh yields (barely) appropriate values ofy+. 

5.1.8 Slot Mass Flow Rates 

Time dependent mass flow rates through the stator slots are shown in Fig. 5_ 

22. For all slots, the maximum occurs at about 4 time steps ( 4.3°) after rotor-slot 

stator-slot alignment, which corresponds to a half-closed orientation (rotor position 4). 

This is the same position at which maximum slot mass outflow appears in the wide 

gap model (Fig. 4-14 ), however, there is a big difference between the mass outflow 

patterns in the two simulations. In the standard gap model, after attaining a maximum 
' 

mass outflow through all the slots very rapidly decreases to a minimum and remains 

approximately constant until a rotor tooth has completed its passage by the stator slot 

(time step 20 in Fig. 5-22). After this, the rotor and stator slots are just starting to 

become aligned ( corresponding to Figs. 5-1 through 5-3 ), the jet in the gap region first 

enters the stator slot, and the mass flow rate through the slot begins to rapidly increase. 

One effect of decreasing the gap width from 4 to 0.5 mm appears to be that the slot 

mass outflows undergo extremely rapid changes, and when a rotor tooth is under a 
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stator slot, the flow is almost completely shut off (relative to the maximums). The 

rotor teeth in the standard gap simulation are more effective at acting like a fu11y 

opening-closing valve, controUing flow from the stator slots. The mass flow rates 

through each of the 12 stator slots in the standard gap simulation sti11 correlate with 

their distance from the outlet (Figs. 5-22 and 5-26). However, the differences are more 

gradual and not as great as in the wide gap simulations: The mass outflows from slot 

to slot are much more evenly distributed. Clearly this is a result of the more pulsating 

nature of the slot mass flow rates, but a detailed physical explanation cannot be given 

at this time. 

5.1.9 Mean Flow Patterns in The Stator Slots and Volute 

The mean flow forms a vortex pattern in stator slot I at a11 times throughout 

the simulation. The size of the vortex in the standard gap model appears to change its 

size throughout a period of simulation. In Fig. 5-1, with the rotor slot just beginning 

to come into alignment with a stator slot, the vortex extends all the way from the left 

side of slot I to within about 0.5 mm of the right side. Later, when the rotor and stator 

slots are fully aligned, the right side of the slot vortex is shifted about 0.5 mm more to 

the left (Fig. 5-7). Even later, when the rotor and stator slots have moved back to half 

alignment, the right side of the vortex is further shifted so that it is at its smallest 

width, spanning only about one half of the stator slot (Fig. 5-10). This is in contrast to 

the vortex in the wide gap model where changes in its width were not as large. The 

difference is likely due to the fact that the gap mean velocities in the standard gap 

model undergo a much stronger shift from a tangential to radial direction throughout a 
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period of simulation than those in the wide gap models ( compare Figs. 5-1 and 5-1 o 

with 4-7 and 4-10). When the slots are half out of alignment in the standard gap 

simulations, the radial flow in the gap forces the vortex to reduce its width, whereas in 

the wide gap model the vortex always spans only about one half to two thirds of the 

slot width, since there is always a considerable amount of mass outflow from the slots. 

In the volute, the mean flow directly at the top right of a stator slot changes in 

magnitude in a periodic fashion as the mass flow rate out the slot cycles. 

Superficially, the volute mean flow appears to be only weakly directionally periodic 

and so analysis of the fixed frame velocity field in this region is appropriate, as it was 

for the wide gap model. In the portion of the volute near stator slot 1 (Fig. 5-27), the 

fixed frame flow pattern is similar to that found in the wide gap simulation (Fig. 4-18) 

except it is not as stagnated and recirculatory close to stator teeth 1 and 14: Reversal 

of flow along the teeth from the volute back into the stator slots is not seen. Fluid 

entering the volute from the top right side of stator slot 1 appears to make a 90° tum 

towards the outlet over a shorter distance than in the wide gap simulations: The flow 

from the slot extends a smaller distance into the volute before completing its 90° tum). 

Volute flow does not split between a clockwise and counterclockwise direction 

until slot 7 (Fig. 5-28). Even here, however, the clockwise flow is extremely minor so 

that volute flow originating from slots 1-7 and 14 is essentially quantitatively 

counterclockwise, while that originating from slots 8-12 is quantitatively clockwise. 

The volute flow field near slots 9 - 12 (Figs. 5-29 and 5-30) indicates that there may 

be some reentrainment of fluid back into the stator slots as was evident in the wide gap 

simulations. The volute flow patterns near slots 13 and 14 are qualitatively similar to 
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Figure 5-28. Fixed frame velocity vectors near slots 5 - 7 after 19 revolutions of simulation. Simulation 5 
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Figure 5-29. Fixed frame velocity vectors near slots 10 and 11 after 19 revolutions of simulation. Simulation 5 
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Figure 5-30. Fixed frame velocity vectors near slots 12-14 after 19 revolutions of simulation. Simulation 5 
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those found for the wide gap model (compare Figs. 4-21 and 5-30), however, note that 

the mean velocity magnitudes of the fluid exiting these slots are significantly smaller 

in the standard gap simulation. This is related to the fact that the slot mass outflows 

are more evenly distributed in the standard gap simulations. 

Figures 5-32 and 5-33 show the pathlines, due to the fixed frame velocity field, 

followed by massless particles released from imaginary lines spanning all the way 

across the gap ( compare to Figs. 4-23 and 4-24 for the wide gap simulations). In the 

standard gap model, the particles always exit the stator slot closest (in the downstream 

sense) to their point of release whereas, in the wide gap model, a substantial number of 

Particles exit at the second or even third nearest stator slot. This difference is 

explained by the fact that in the wide gap model particles released near the rotor side 

of the gap must travel about 4 mm radially to exit the nearest slot. Since gap flow is 

for the most part only weakly radial in the wide gap simulations, a substantial number 

of particles do not exit the nearest stator slot. In the standard gap simulations, not only 

is the maximum radial distance that a particle must travel to span the gap 8 times 

smaller than in the wide gap model, but the gap velocities are at times more strongly 

radial (compare Figs. 4-10 and 5-10) which results in all particles exiting the slot 

nearest their release. 

S.2 Mean Pressure Field 

For reasons similar to those stated in section 4.7, full analysis of the simulated 

mean static pressure field in the standard gap simulations was not done. The (relative) 

invariance of the simulated static pressure near the inlet due to the numerical treatment 
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Figure 5-32. Pathlines near slot 2 due to the fixed frame velocity field after 19 revolutions of simulation. 
Simulation 5 
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Figure 5-33. Pathlines near slot 4 due to the fixed frame velocity field after 19 revolutions of simulation. 
Simulation 5 



used for the outflow boundary condition can be inferred from the sequence of Figs. 5-

34 through 5-40, which show the time dependent mean static pressure near stator slot 

l. Note that, near the bottom of these figures, the simulation resulted in a static 

pressure near zero at all times, although clearly there are small changes throughout the 

period there. 

With the outflow boundary condition it is only possible to observe simulated 

mean pressure differences between regions that are insensitive to changes in the 

pressure field of the inlet region. Based on results from the wide gap simulations, it is 

hard to believe that this is fully true anywhere in the gap and stator slots. For instance, 

Figs. 4-32 and 4-33 clearly show that, when the mean pressure is very low or very 

high in the inlet region, then the mean pressures in the gap and slots are also ( on 

average) high or low. 

Nevertheless, it should still be possible to observe gross differences in static 

pressure in the gap, stator slots, and volute regions. Figures 5-34 through 5-40 are a 

sequence showing the simulated mean static pressure near stator slot 1 throughout a 

period. Immediately before a rotor slot and stator slot I become partially aligned (Fig. 

5-34), the mean pressure in the stator slot is about-2 bar relative to the inlet. Four 

and eight time steps later, when the rotor and stator are in half (Fig. 5-35) or full (Fig. 

5-36) alignment, the slot mean pressure first increases to about - I bar relative and then 

decreases. The decrease in slot mean pressure continues as the rotor and stator slots 

move out of alignment (Figs. 5-37 and 5-38), the lowest slot mean pressure of about _ 

7 bar being reached when the two slots first reach a fully closed orientation (Fig. 5_ 
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Figure 5-34. Angularly resolved mean static pressure near slot 1 at time step 6,412 (0.6432 seconds). 
Simulation 5. 
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Figure 5-35. Angularly resolved mean static pressure near slot 1 at time step 6,416 (0.6436 seconds). 
Simulation 5. 
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Figure 5-36. Angularly resolved mean static pressure near slot 1 at time step 6,420 (0.6440 seconds). 
Simulation 5. 
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Figure 5-37. Angularly resolved mean static pressure near slot 1 at time step 6,424 (0.6444 seconds). 
Simulation 5. 
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Figure 5-38. Angularly resolved mean static pressure near slot 1 at time step 6,428 (0.6448 seconds). 
Simulation 5. 
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Figure 5-39. Angularly resolved mean static pressure near slot 1 at time step 6,432 (0.6452 seconds). 
Simulation 5. 



4 

3 

2 

1 

0 

-1 
t-

N 
= .Q -2 

0 w 

Figure 5-40. Angularly resolved mean static pressure near slot 1 at time step 6,436 (0.6456 seconds). 
Simulation 5. 



38). Through the next 8.6° ofrotation, the slot mean pressure increases to an average 

of about -2 bar relative (Figs. 5-39 and 5-40). 

In the region near the right corner of slot 1, the mean pressure is relatively high 

even as the pressure goes low in the majority of slot I (Figs. 5-34 through 5-37). This 

corresponds to the high-pressure region seen on the san1e corner in the wide gap 

simulations. As soon as the two slots are fully closed (Fig. 5-38), the high-pressure 

region rounds the corner of stator tooth I and takes on its highest value of about 4 bar 

relative. The lowest slot mean pressure is also reached at this time, and occurs directly 

adjacent to the high-pressure region. These two adjacent regions of high and low 

pressure occur at the same position and rotor-stator orientation as that during gap flow 

reversal (Fig. 5- I 3 ). 

S.3 Turbulence FieJd 

Figures 5-41 through 5-47 illustrate the simulated turbulent kinetic energy near 

stator slot I . Immediately before rotor-stator slot alignment (Fig. 5-41 ), there are two 

regions of relatively high turbulent kinetic energy. The first region occurs 

immediately above the top right corner of the rotor slot and is about 60 m
2
/sec2 in 

magnitude. The second region, which is of about equal magnitude, extends from the 

lower left comer of stator slot 1 to halfway across the slot. 4.3° of rotation later, when 

the rotor slot and stator slot 1 are half aligned (Fig. 5-42), 00th regions have decreased 

substantially so that their intensities are about 20 m
2 

I sec
2
• As the rotor slot moves 

past complete alignment with stator slot I and the opening between the slots decreases 

(Figs. 5-43 and 5-44), a region of high TKE is observed to form on the right lower 
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Figure 5-41. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,412 (0.6432 seconds). 
Simulation 5. 
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Figure 5-42. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,416 (0.6436 seconds). 
Simulation 5. 
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Figure 5-43. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,420 (0.6440 seconds). 
Simulation 5. 
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Figure 5-44. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,424 (0.6444 seconds). 
Simulation 5. 
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Figure 5-45. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,428 (0.6448 seconds). 
Simulation 5. 
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Figure 5-47. Angularly resolved turbulent kinetic energy near slot 1 at time step 6,436 (0.6456 seconds). 

Simulation 5. 



corner of the stator slot. This region increases in size and magnitude as the distance 

betwe · d en It an the conier of the approaching rotor tooth decreases. Simultaneously, 

the TKE intensity increases near the tip of the approaching rotor tooth. In Fig. 5-45 , 

the corner of the rotor and stator teeth align, and the two regions combine. It is at this 

location and time that the TKE in slot 1 is at its highest value of about 200 m2 / sec2. 

As the rotor continues its motion, the region of high TKE near the corner of slot I 

moves into the gap, following the comer of the rotor tooth and decreasing in 

magnitude (Figs. 5-46 and 5-47). 

Figures 5-48 through 5-54 show the simulated turbulent energy dissipation rate 

near stator slot I. The patterns for the turbulent energy dissipation rate are identical to 

that for the TKE. 

In comparison to the turbulence results obtained for the wide gap simulations 

there are both similarities and differences. The region of high turbulent kinetic energy 

above the leading edge of the rotor tooth that was apparent in the wide gap simulations 

(Figs. 4-34 and 4-35) is much less pronounced in the standard gap simulation (Figs. 5-

41 and 5-42). Further, the region of high turbulence extending from the left lower 

corner of stator slot 1 in the standard gap simulation is much less pronounced in the 

wide gap simulation ( compare Figs. 4-34 and 5-41). It appears that one of the primary 

effects of a decrease in gap width is that the high turbulence shifts from a 'moving 

vortex' in the wide gap simulations to a more stationary turbulent region extending 

from the left corner of the stator slot in the standard gap simulations. 

While there is a region of high turbulent kinetic energy in the lower right 

region of stator slot 1 in both the wide and standard gap simulations, its magnitude in 
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Figure 5-48. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6,412 (0.6432 seconds). 
Simulation 5. 
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Figure 5-49. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6,416 (0.6436 seconds). 
Simulation 5. 
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Figure 5-50. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6,420 (0.6440 seconds). 
Simulation 5. 
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Figure 5-51. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6A24 (0.6444 seconds). 
Simulation 5. 
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Figure 5-52. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6,428 (0.6448 seconds). 
Simulation 5. 
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Figure 5-53. Angularly resolved turbulent kinetic energy dissipation rate near slot 1 at time step 6,432 (0.6452 seconds). 
Simulation 5. 
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Figure 5-54. Angularly resolved turbulent kinetic energy dissipation rate near slot I at time step 6,436 (0.6456 seconds). 
Simulation 5. 



the standard gap model is about J 50 m2/sec2 whereas in the wide gap model it is only 

about 50 m2/sec2• Further, in the standard gap model, the absolutely highest value for 

the TKE is obtained slightly below this region, in the shear gap, and has a magnitude 

of about 250 m2/sec2 (This is difficult to see in Fig. 5-45 because the scale only goes 

to 100 m2/sec2, so any value greater than J 00 nl/sec2 is red). In contrast, for the wide 

gap model there is not much difference between the magnitude ofthe TKE at the 

lower right corner of slot 1 a11d in the shear gap directly below (see Fig. 4-3 7). There 

is also a qualitative difference in the pattern of turbulence at the comer of slot 1 

between the wide and standard gap models. In the wide gap simulation, the maximum 

TKE at the lower right corner occurs when the rotor and stator slots have passed full 

alignment and are only half open (Fig. 4-37). In the standard gap simulation, the 

maximum TKE occurs 4.3° later, when the slot is just closing (Fig. 5-45). Further, the 

turbulence on the right comer of stator tooth J appears to be more diffuse in tl1e wide 

gap simulation and extends all the way up the side of the tooth into the volute. The 

standard gap model results in a more concentrated distribution of turbulence near the 

tooth corner. 

Figures 5-55 and 5-56 show the time dependent behavior of the turbulent 

kinetic energy and turbulent energy dissipation rate spatially averaged over an 

imaginary line extending halfway across the gap from the comer of each stator tooth 

(see Fig. 4-1). The maximum turbulent kinetic energy in the gap is about 5 times 

larger in the standard ~odel than in the wide gap model ( compare Figs. 4-48 and 5-

55). The turbulent energy dissipation rate is about 25 times greater in the standard gap 

model (compare Figs. 4-49 and 5-56). Also, as with the slot mass flow rates, the gap 
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Figure 5-55. Time dependent turbulent kinetic energy (normalized to 0.5 V2tip) across lines spanning one-half 
the shear gap, as a function of slot alignment. Plots begin at approximately time step 6,412. 
Simulation 4. 
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turbulence 1 
va ues appear to be more nearly equal from slot to slot in the standard gap 

model. 

Figures 5-55 and 5-56 also reveal a qualitative difference mentioned above for 

the TKE · ·d ms1 e slot 1. In the wide gap model the peak turbulence values occur when 

the rotor 1 t . . so 1s onented about 5.3° past full alignment with the stator slot, with the 

ex · ception of slot 14 (i.e. step 5 in Figs. 4-48 and 4-49). In the standard gap model, a 

local maxi · th · · mum m e turbulence occurs at the same rotor onentat10n, but a much 

stronger global maximum occurs immediately after a rotor slot passes a stator slot. 

This same pattern is also seen in the time dependent contour plots of the TKE and its 

dissipation. 

S.4 Summary of Major Differences Between Standard and Wide Gap ModeJs 

Compared to the wide gap model, the mean velocity turbulent jet in the 

standard gap model is displaced further to the right, relative to the approaching rotor 

slot. Further, mean velocity magnitudes in the jet are up to 40% greater in the 

standard gap simulations. 

During alignment of a rotor slot with a stator slot, the mean velocities in the 

lower portion of the stator slot take on an almost purely radial direction in the standard 

gap simulation. While this shift to a radial direction is also seen in the wide gap 

simulation, the extent of change is not nearly as great. The larger changes in the radial 

component of the mean flow seen in the standard gap device is probably also the 

reason that its slot vortex is seen to oscillate in its extent of span across the stator slot. 
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In the gap, near the downstream side of a given stator slot, the mean flow 

st
agnates on the stator tooth corner, in both the wide and standard gap model, after a 

rotor tooth just blocks the corresponding slot. In the wide gap model, gap flow 

reversal is minor: Primarily, the flow is just stagnant (Fig. 4-12). In contrast, flow 

reversal is extreme in the standard gap model (Fig. 5-13). In fact, some of the largest 

mean velocities in the gap are seen to travel in a direction opposite to rotor motion. 

In the volute, flow in both the wide and standard gap models is similar, but in 

the standard gap, slot outflow penetrates less deeply into the volute before turning 

toward the outlet. Both models predict reentrainment of flow from the volute into the 

stator slots. 

Both models predict a correlation between slot proximity to the device outlet 

and extent of mass outflow from the slot. In the standard gap model, however, the 

difference in mass flow rate between slots is not nearly as exaggerated. Further, the 

standard gap model predicts that the rotor teeth act more efficiently at blocking 

outflow from stator slots, resulting in a more pulsating time dependent slot mass flow 

rate as compared to the wide gap model. 

The turbulent kinetic energy in stator slot 1 of the standard gap model is about 

three times larger tl1an that in the wide gap model. Further, in the gap itself, near the 

lower right corner of stator slot 1, the TKE is five times greater in the standard gap 

model. Qualitatively, the TKE in the slots of the wide gap model appears to be more 

diffuse than in the standard gap model. 

I th 
'd d 1 the maximum gap TKE occurs near the bottom right 

n e w1 e gap mo e , 

corner of a stator slot when a rotor and stator slot are about 5.30 past full alignment. 

224 



In contrast, in the standard gap model the maximum TKE occurs when a rotor and 

stator slot are about 8.6° past full alignment. This implies that the maximum gap TKE 

in the wide gap model correlates with the maximum stator slot mass outflow, but in 

the standard gap model, it correlates with blockage of the slot. 
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Chapter 6 Experiment Versus Simulation 

Laser Doppler anemometry (LDA) measurements of the flow field in the 

standard and wide gap IKA rotor-stator device were performed in both a fixed and 

angularly resolved reference frame by Dr. Ved P. Mishra using a two-component LDA 

supplied by Dantec Inc. Mean and root mean square (rms) turbulent velocity 

measurements were made in the rand 8 directions. The raw LDA signals were 

processed using a Flow Velocity Analyzer (FV A), and all the figures in this chapter 

(except Fig. 6-12) were generated by Dr. Mishra. Like for the simulations, the current 

experimental facility did not allow measurement of the z-velocity component. 

Definition of the cylindrical coordinate system used for description of the rotor-stator 

device in this chapter is given in Fig. 6-1. 

During experiments it was found that the volute cover did not fit tightly, 

leaving a clearance between its front face and the top of the stator teeth. This fact 

appears to result in fluid bypassing the shear gap and leaking over the rotor and stator 

teeth when a rotor tooth blocks a stator slot. Because of this, measurements for the 

standard gap model were performed using both the original volute cover (henceforth, 

volute cover I) and a newer volute cover that fit more tightly with the stator teeth 

(henceforth, volute cover 2). All measurements for the wide gap device were made 

with volute cover 1. Volute cover 2 is shown in Fig. 6-2. 
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Figure 6-1 _ Radial cross section schematic of the IKA type inline rotor-stator mixer and coordinate system 
used to take the LDA data. Z = 0 corresponds to the position where the top of the stator teeth 
and volute cover (ideally) meet 
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In both geometries, tl1e clearance between the top of the rotor teeth and volute 

cover is bet b ween a out 0.25 and 0.6 mm. When volute cover 1 is in place, the 

clearance b t • e ween 1t and tl1e stator teeth is about 0.5 mm. The clearance between the 

stator teeth d an volute cover 2 is significantly less (about 0.1 mm), however it became 

apparent when LDA measurements were made that there was a slight asymmetry in 

the fit s .fl · pec1 1eally, stator teeth 11, 12, and 13 appear to have been completely flush 

Wi th volute cover 2 while the other stator teeth had a gap of ~0.1 mm. This fact was 

deduced by marks that teeth 11 12 and 13 left on volute cover 2. , ' 

Volute cover J is partially made of transparent plexiglass for access of the 

LDA laser beams. However, it leaves stator slots 5, 12, and the volute, beyond a 

radius of about 80 mm, inaccessible for measurement. Volute cover 2 has a larger 

plexiglass window, allowing LDA access to all stator slots and nearly the entire 

Volute. This is the reason why some of the figures in section 6.2 lack data for slots 5 

and 12. 

This chapter contains a comparison of CFD simulations 4 and 5 with LDA data 

taken primarily in the fixed .frame of reference. Some LDA data for mass flow rates 

taken in the angularly resolved reference frame for the standard gap model witl1 volute 

cover 1 are also included. The reader is reminded that both simulations 4 and 5 were 

Performed for a rotor speed of 30 rps and 45.4 gpm. The LDA data were collected at 

two d'£fc . . • h' hare summarized in Table 6-1. The very 1 erent operatmg cond1t10ns w. JC 

slight differences between simulation and experiment is not expected to have a 

significant effect on validity of the comparison since there are already significant 

sim i ·t~ . d ls Further, it is realistic to expect that the sinall P 1 1cations in the simulation mo e · 
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difference · . 
s m operatmg conditions will not grossly effect the rotor-stator mixer flow 

field characteristics. 

TabJe 6-.J. Differences Between Simulation and Experimental Conditions 

Wide Gap Standard Gap 

Simulation 4 Experiment Simulation 5 Experiment 

Rotor speed 30 29.7 30 29.7 
(rps) 

Rotor tip speed 12.63 12.50 13.29 13.16 
(mlsec) 

Inlet flow rate 45.4 45.6 45.4 40.4 
(gpm) 

A. Verage inlet 1.52 1.53 1.52 1.35 
Velocity 
(mlsec) 

Working fluid Water Water Water Water 

~erature 2s0 c 25°- 35° C 2s0 c 25°- 35° C 

While considerably more LDA data exists for both the wide and standard gap 

devices, it is not presented here. Further manipulation and analysis of the LDA data, 

beyond the scope of this work, is needed before a more meaningful comparison with 

simulation results cm1 be made. 
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6.1 
Fixed Frame Mean V clocity Field 

The fixed frame velocity fields obtained by LDA measurements for the wide 

and standard . 
gap devices are shown in Figs. 6-3 through 6-6 and Figs. 6-7 through 6_ 

10 respectively. B th 
o sets of figures come from data collected with volute cover I and 

correspond tor and e velocities obtained on an axisymmetric plane topologically 

ide f 
n ical to that used for simulation (Fig. 1-3). The z-coordinate of the measurements 

Is -
6 nun, which is the axial depth at the physical centroid of a stator slot and the most 

logical pla fc · · · al · 1 · ce or comparison with two-d1mens10n s1mu atlons. 

Comparison of Figs. 6-3 through 6-6 with Figs. 4-18 through 4-21 show that 

th
e simulated and experimental fields are qualitatively similar for the wide gap device. 

A.II exit flow from stator slots occurs on the downstream side (i.e. in stator slot J from 

th
e right-hand side). On the upstream side of each slot, flow is reentrained. The gap 

jet that Was visible in the simulation fixed frame velocity field (Fig. 4-21) is not 

apparent in the LDA results as presented here. The slot vortices in the simulation 

results also appear to be exaggerated in comparison to the experimental 

measurements. Experimental flow patterns in the volute near the stator teeth is fairly 

complicated and, at least qualitatively, resembles the computed patterns. 

Recirculation near several of the stator teeth, for example stator tooth 1, is indicated 

by the LDA data. Recall that stator slot labels are shown in Fig. 4-1. 

Exa · t· f •mental measurements for the standard gap device show mrna 10n o expert 

the fixed frame velocity field to be qualitatively similar to that obtained for the wide 

gap device (Figs. 6-7 through 6-10). The fixed .frame velocity appears to be larger in 

the stato I h . th standard gap device: Compare, for instance the r s ots near t e gap m e ' 
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Figure 6-3. Fixed frame LDA velocity data near stator slots 1-4 in the wide gap device. Volute cover 1. 
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Figure 6-4. Fixed frame LDA velocity data near stator slots 6-8 in the wide gap device. Volute cover 1. 
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Figure 6-5. Fixed frame LDA velocity data near stator slots 9-11 in the wide gap device. Volute cover 1. 
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Figure 6-6. Fixed frame LOA velocity data near stator slots 13 and 14 in the wide gap device. Volute cover 1. 
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Figure 6-7. Fixed frame LDA velocity data near stator slots 2-4 in the standard gap device. Volute cover 1. 
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Figure 6-8. Fixed frame LOA velocity data near stator slots 6-8 in the standard gap device. Volute cover 1. 
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Figure 6-10. Fixed frame LDA velocity data near stator slots 13, 14, and 1 in the standard gap device. Volute cover 1. 
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fixed frame velocity vectors near the lower right corner of slot 14 in Fig. 6-10 with 

those in Fig. 6-6. Larger mean velocities near the downstream corners of the slots 

were also seen when the wide and standard gap simulations were compared: Recall 

that the mean jet velocities were 40% greater for the standard gap simulation. 

In the simulations, there were significant qualitative differences in the mean 

velocities between the wide and standard gap models. For instance the location of the 

turbulent jet in the standard gap model was displaced to the right relative to the wide 

gap model. Also, the slot vortex in the standard gap model cycled in the extent of its 

span across the slot throughout a period of flow. With the current plots, it is not 

possible to see major qualitative differences in the LDA data for the wide and standard 

gap device mean flows. Future, more sophisticated analysis of angle correlated LOA 

data for the mean velocity field may help address this. 

Figure 6-11 illustrates, for stator slot I, an additional set of mean velocity 

measurements made for the standard gap rotor-stator device near the exit (r = 77 mm) 

of slot I. At this location, the radial and tangential velocities were measured across 

the slot at several different axial depths. In measurements performed with volute 

cover 1 (Fig. 6-1 la), reentrainment of the flow occurs at all depths. However, in 

measurements performed with volute cover 2 (Fig. 6-11 b ), there is no reentrainment 

very close to the volute cover (at z = -1 mm). Figure 6-12 illustrates the simulated 

fixed frame velocity at the exit of slot I in the standard gap model obtained by CFO. 

In the CFD simulation, reentrainment is clearly seen along the left one third at the slot 

exit. This is similar to the experimental results. Note that with volute cover I, 
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Figure 6-11. Fixed frame LDA velocity data at the exit to slot 7 (r = 77 mm) as a function of depth in the 
standard gap device. Volute cover 1 (A) and volute cover 2 (B). 
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Figure 6-12. Fixed frame simulated velocity data at the exit to slot 1 (r = 77 mm) in the standard gap device. 
Simulation 5. 



however, reentrained flow is seen along greater than one half the width of the slot, 

except at z = -2, where flow is reentrained for close to exactly one half the slot width. 

The simulated flow pattern at the exit to slot 1 more closely resembles the 

experimental data obtained with volute cover 2: TI1e velocity vectors on the right side 

of the slot exit point radially outward in a counterclockwise direction (toward the 

outlet) in both simulation and LDA measurements with volute cover 2. In contrast, 

LDA measurements of the flow with volute cover 1 show that the flow leaving the 

right side of stator slot 1 tends to have a smaller tangential component. The flow 

patterns near the exit of stator slot I vary greatly as a function of depth and are very 

complicated. Clearly a two dimensional model is an inadequate for simulating the full 

range of flows occurring in the stator slots. 

6.2 Fixed Frame and Angularly Resolved Stator Slot Mass Flow Rates 

Figures 6-13 and 6-14 are plots of the estimated fixed frame mass flow rates 

through stator slots in the wide and standard gap devices respectively, and are based 

on data collected at the midplane exit of the slots (z=-6 mm and r = 77mm) using 

volute cover 1. The estimated mass flow rates are based on the assumption that the 

flow field through the entire 12 mm depth of the stator slots is identical to that 

observed at the midplane. For both the wide and standard gap, the total mass fraction 

calculated in this way accounts for only about 60% of the total device throughput. 

This calculation does ignore slots 5 and 12 since no LDA data were collected there, 

but nonetheless, the value is clearly too low, indicating again that flow in the stator 

slots is highly dependent on depth 
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Figure 6-13. Fixed frame mass flow rates through stator slots in the wide gap device. Based on LDA data 
taken at z = -6 mm. Volute cover 1. 
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Figure 6-14. Fixed frame mass flow rates through stator slots in the standard gap device. Based on LDA data 
taken at z = -6 mm. Volute cover 1. 



The region where mean velocity was collected for the standard gap device with 

volute cover 2 at the slot exits as a function of depth (Fig. 6-11 for stator slot 1) is 

defined by a two-dimensional array of points. Integration of the velocity data over this 

region results in a better estimate of the corresponding slot mass flow rate since a 

constant velocity throughout the slot depth is not assumed. Mass flow rates so 

calculated are illustrated by Fig. 6-15. The flow through slots 3 and 10 were estimated 

by assuming that their values were the averages of the mass flow rate through slots 2 

and 4 or 9 and 11 respectively (data not available for slots 3 and 10). The resulting 

overall slot mass flow rate balances with the device throughput to 98%. Similar two­

dimensional integration for the standard gap device with volute cover 1 and the wide 

gap device with volute covers 1 and 2 was also performed (data not shown). 

Comparison indicates that up to 29% of the flow in both the wide and standard gap 

device with volute cover 1 bypasses the stator slots, and instead leaks over the top of 

the stator teeth (Mishra, 2000). 

Even though volute cover 2 appears to help stop leakage flow, which is clearly 

impossible to see in two-dimensional simulations, the LDA mass flow rate data still 

does not compare well with CFD results. In fact, according to Fig. 6-15, slots 1 and 

14 have substantially smaller mass flow rates than slots 2-9 which is opposite to CFD 

prediction. Possibly this is due to the fact that volute cover 2 fits with the top of the 

stator teeth near the exit (teeth I 2-14) better than with those opposed to the exit (teeth 

4,5,6) as stated earlier. 

The only angularly resolved LDA data presented here (Figs. 6-16 through 6-

18) illustrate the periodically time dependent mass flow rates through stator slots 13, 
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Figure 6-15. Fixed frame mass flow rates through stator slots in the standard gap device. Based on LDA data 
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I 



N 
~ 
00 

0.0706 

0.0627 

0.0549 

0.0470 
= 0 
;: 0.0392 

CJ 
~ 

i.!:: 0.0313 
~ 
~ 8 0.0235 

0.0156 

0.0078 

0 

-0.008 

0.36 3.24 6.12 9.00 11.88 14.76 17.64 20.52 23.40 26.28 29.16 

rotor slot position from rotor-stator slot alignment (degrees) 

Figure 6-16. Time dependent mass flow rate through stator slot 13 in the standard gap device over one period. 
Based on LDA data at z = -6 mm. Volute cover 1. 
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Figure 6-17. Time dependent mass flow rate through stator slot 14 in the standard gap device over one period. 
Based on LOA data at z = -6 mm. Volute cover 1. 
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Figure 6-18. Time dependent mass flow rate through stator slot 1 in the standard gap device over one period. 
Based on LDA data at z = -6 mm. Volute cover 1. 



J 4, and I, respectively, for the standard gap rotor-stator device with volute cover 1. 

1'he calculation of these mass flow rates is based on measurement in only the z = -6 

plane of the device and therefore are not completely accurate, but nevertheless may be 

useful for comparison to simulation. In these figures, 0.36° indicates a rotor slot 

orientation in perfect alignment with the corresponding stator slot (see, for instance, 

fig. 5-7). In all three slots, the flow is near a maximum when the stator slot is 

completely open. The flow rate remains nearly constant until a rotor slot has 

completely passed a stator slot (~9°), at which time the flow rapidly decreases to its 

rninimum value. The flow then rapidly increases to nearly the same level that it was 

when the slot was fully open. This increase occurs well before the stator slot has 

begun to reopen, which is counterintuitive. Recall that CFD simulation predicted that 

the slot mass flow rates remain near zero for the entire time that a rotor tooth blocks 

the slot (Fig. 5-22). This indicates that, in the physical device, when a stator slot is 

blocked by a rotor tooth, the path of least resistance to flow for fluid in the gap is 

between the stator teeth and volute cover clearance, rather than tangentially through 

the gap to the next open downstream stator slot. 

6.3 Fixed Frame Turbulent Kinetic Energy 

The turbulent kinetic energy based on fixed frame LDA measurements of the r 

and 0 velocity fluctuations in the z = -6 mm plane for the wide gap model are shown 

in the vicinity of slots 14, 1, and 2 in Figs. 6-19 through 6-21. Unfortunately, fixed 

frame turbulence measurements include a psudoturbulence due to the periodicity of 

the rotor and, therefore, direct comparison to CFD results is ambiguous. Nevertheless, 
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Figure 6-19. Fixed frame LDA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
14 of the wide gap device. Volute cover 1. 
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Figure 6-20. Fixed frame LDA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
1 of the wide gap device. Volute cover 1. 
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Figure 6-21. Fixed frame LDA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
2 of the wide gap device. Volute cover 1. 



the LDA data indicate that in all 3 slots the highest turbulence occurs near the left 

lower corner of the stator slot. The volute regions near the slots have relatively low 

turbulence values. Of the three regions depicted, only the gap near slot 2 has 

significantly high turbulence values (up to 9 m2
/ sec2 or 0.05V\p) 

The measured fixed frame turbulent kinetic energies for the standard gap 

device in the z = -6 mm plane (Figs. 6-22 through 6-24) show that the highest 

turbulence occurs all the way across each stator slot very near the boundary with the 

gap. The maximum TKE in the standard gap model is also on the order of 0.05V2tip• 

In comparison to the wide gap device, the stator slot TKE in the standard gap device 

appears to be concentrated more towards the shear gap. Measurements in the gap 

itself were not possible for the standard gap device. 

Very roughly, the differences in the localization of high turbulence between 

the standard and wide gap devices found experimentally coincide with the differences 

predicted by CFD. In the standard gap CFD simulation, a region of high turbulent 

kinetic energy was found to extend from the left lower corner of a stator slot much 

further across the slot width than in the wide gap simulations (compare Figs. 4-34 and 

5-48). Further, similarly to the fixed frame LDA data, CFD simulations predicted that 

the slot turbulence in the standard gap device is concentrated into a smaller region 

near the shear gap than in the wide gap device. CFD predicted maximum angularly 

resolved TKE values in the right comer of stator slot 1 to be about 50 m2/sec2 

(0.30V2
1ip) for the wide gap device and 150 m2/sec2 (0.90V\p) for the standard gap 

device (section 5.3) which seems to be an overestimate. However, it should be kept in 
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Figure 6-22. Fixed frame LDA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
14 of the standard gap device. Volute cover 1. 
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Figure 6-23. Fixed frame LDA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
1 of the standard gap device. Volute cover 1. 
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Figure 6-24. Fixed frame LOA turbulent kinetic energy data (m2/sec2) in the z = -6 mm plane near stator slot 
2 of the standard gap device. Volute cover 1. 



J11ind that LOA cannot measure close to walls, where the CFD predicted the highest 

values due to stagnation of the gap jet with the wall. 

6.4 Summary 

Qualitatively, CFD simulation compares well with fixed frame LDA data of 

tbe mean velocity field in stator slots for both the wide and standard gap devices. 

90th simulation and experiment predict vortices in the slots, with reentrainment of 

f1ow from the volute. Further, both simulation and LDA show that velocities near the 

portion of the slots closer to the gap are higher in the standard gap device, 

Jvfeasurements in the shear gap of the standard gap device cannot be compared with 

simulation due to limitations of LOA. Future comparisons of gap mean velocity data 

with simulation need to be performed for further validation of the wide gap model. 

The CFO simulations, obviously, do not do a good job in predicting the strong 

dependence of stator slot flow patterns on axial depth. When volute cover 2, which 

reduces leakage flow over the stator teeth, is used for experiment, the flow patterns at 

the slot exit more closely resemble those obtained with simulation. 

Further, due at least in part to leakage flow between the volute cover and the 

top of stator teeth when a stator slot is blocked by a rotor slot, CFD does not predict 

the fixed frame distribution of flow rates between the slots correctly. In the angularly 

resolved reference frame, both CFO and LOA data do show that, in the standard gap 

device, individual slot flow rates undergo a rapid decrease as soon as a rotor tooth 

completely blocks a stator slot. However, experimentally, the slot flow rate rapidly 

increases back to a maximum long before the rotor tooth completes its passage. CFD 
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simulation, on the other hand, predicts that the slot mass flow rate remains very low 

for the entire passage of a rotor tooth. This discrepancy is also likely due to leakage 

f10W. 

Patterns of the fixed frame turbulent kinetic energy in the stator slots are 

crudely predicted by CFD: The TKE is more focused near the interface of a stator slot 

aJ1d the shear gap in the standard gap model. Nevertheless, the simulations appear to 

0 verpredict the magnitude of TKE significantly. Because of pseudoturbulence, a more 

J11eaningful comparison of the device turbulence field predicted by simulation and 

observed with experiment cannot be done until the angularly resolved LDA data is 

fully analyzed. 
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Chapter 7 Conclusions and Recommendations 

The simulations presented in this work have shown that CFD may indeed 

provide insight into the fundamental physics of flows occurring in rotor-stator mixers. 

Significant differences in the simulated flow occurring in the wide and standard gap 

models were found, and indicate that parametric studies may be the best approach to 

the use of CFD for rotor-stator mixers. The simulations show several interesting 

phenomenon that are not necessarily intuitive. These include the finding that, 

according to simulation, shear in the gap is much smaller than what might have been 

expected in both the standard and wide gap models. Thus, high shear in rotor-stator 

mixers may play only a very small role in dispersion processes. Further, flow reversal 

in the gap region, according to simulation, is more likely as the gap width decreases, 

and the maximum gap mean velocities actually occur in a direction opposite that of the 

rotor motion. 

While many of the simulation results are interesting, and have significant 

potential to be an aid in the design of rotor-stator mixers, there are many issues to be 

addressed before CFD simulations of these devices can be utilized with confidence. 

First among these is continued, in-depth, comparison of simulation with angle 

correlated LDA data. The preliminary comparison done here has shown that 

the two-dimensional approximation appears to correctly predict, on a qualitative level, 

the mean velocity field, in the mid-plane of the device, in the stator slots and volute. 
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H . t d the qualitative owever, it is still not known whether the CFD simulatwns cap ure 

nature of flow in the shear gap region for the wide gap device. 

I 
. d . . f th mean velocity field is t is clear, however, that a quantitative pre 1ct10n ° e 

not obt · . • fi d frame velocities are a ined with the present simulations: The maximum ixe 

ove th t s of stator teeth rpredicted by CFD. It appears that leakage flow between e op 

and th f h fl It is therefore essential e volute cover is a very significant feature o t e ow. 

th
at future CFD simulations address this three-dimensional nature of the flow. 

F h · · d ' t th turbulent kinetic energy. urt er, the s1mulat10ns appear to over pre 1c e 

This is opposite to most turbulent simulations in stirred tanks (Robinson, 200l), and 

th
e reason for this is not clear at present, but it may also be due to leakage flow. It is 

also likely that the k-i:: turbulence model and the wall function treatment are not 

sophi
st

icated enough for the complex flows occurring in the gap, and it is 

recommended that other models, such as RSM or large eddy simulation (LES) be 

employed without wall functions in the future. 

The difficulty with using more sophisticated turbulence models in conjunction 

wi
th 

full y three-dimensional simulations is the very long compute times required. 

In the short time since CFD work began for the rotor-stator mixer under consideration 

here, computing power has increased at a rapid pace. With the present ability to run 

CFD simulations on parallel processor systems, it is possible to routinely run three­

dimensional sliding mesh simulations with upwards of 1.5 million cells. Clearly, 

however, the fact that it takes upwards of 9 rotor revolutions before a periodic steady 
st

ate is reached makes simulations of rotor-stator mixers, as performed here, very time 

consuming and not feasible for routine use. For instance, for simulation 5 (~350,000 
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comp t · . ht· e step required u ational cells) , on a two-processor machme, eac im 

app · . fCPU f 1e) as described in roximately 100 outer iterations (about 20 mmutes O m 

chapt 3 • f CPU · ~or a single simulation. er · This corresponds to roughly 31 days o time 1' 

Th · · ·1 truly periodic is is not to say that it is essential to carry out computations untI a 

sol ut · · . 1 · d·c solution will suffice. ion is reached: In many cases an approximate Y peno 1 

How ·r • · I d incorporate turbulence ever, 1 future simulations are to be three-d1mensiona an 

models like LES, then the grids are going to have to be extremely fine. One solution, 

of course, is to use brute force and carry out simulation on massively parallel 

machines. 

Alternatively, there are several properties of the rotor-stator simulation 

solutions that suggest changes to the computational methods employed, at least for 

RANS models. It is recommended that highly specialized and optimized codes and I 

or subroutines be written specifically for the simulation of rotor-stator mixers. 

For instance, the fact that the pressure reaches periodicity much faster than 

other flow variables raises the possibility that, rather than using the previous pressure 

fi eld as a first guess for the pressure field at a new time step, the periodic nature of the 

(fa
st 

developing) pressure can be exploited to provide a better initial guess. This may 

result in convergence at each time step in fewer iterations. Clearly this could not be 

done during initial startup of simulation, but could be implemented after a few periods 

have been completed. 

Besides algorithm optimization, there are some simple steps that can be taken 

to decrease the amount of computational time required in future simulations. For 

in
st

ance, it may be possible to speed the solution process by initially running quasi-
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steady state . . 
sunulations as a first approximation. Time dependence could then be 

turned on afte fl . l R 
r ow in regions of stagnation has had a chance to deve op. otor-stator 

mixer simul• . . 
ations could be started with 'moving' rotor walls but a non-movmg mesh 

to · 
Yield a stead • • 

Y state approximation to the problem at a given rotor posztzon. In this 
type of simuJ . 

atton, rotor adjacent cells would be treated computationally as if the rotor 
were movin b 

g, ut the overall discretization of the problem would be steady state. 
While ph · 

Y
s
ically unrealistic, this hybrid RRF type of treatment is conceptually simple 

t . 
o implement and . . . 

similar m spirit to simulations of stirred tank reactors performed by 
I-Iarvey L 

, ee, and Rogers ( 1995). 
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