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Social network analysis is emerging as a key technique to understanding social, 

cultural and economic phenomena.  However, social network analysis is inherently 

complex since analysts must understand every individual’s attributes as well as 

relationships between individuals.  There are many statistical algorithms which reveal 

nodes that occupy key social positions and form cohesive social groups.   However, it 

is difficult to find outliers and patterns in strictly quantitative output.  In these 

situations, information visualizations can enable users to make sense of their data, but 

typical network visualizations are often hard to interpret because of overlapping 

nodes and tangled edges.   



  

My first contribution improves the process of exploratory social network 

analysis.  I have designed and implemented a novel social network analysis tool, 

SocialAction (http://www.cs.umd.edu/hcil/socialaction), that integrates both statistics 

and visualizations to enable users to quickly derive the benefits of both.  Statistics are 

used to detect important individuals, relationships, and clusters.  Instead of tabular 

display of numbers, the results are integrated with a network visualization in which 

users can easily and dynamically filter nodes and edges.  The visualizations simplify 

the statistical results, facilitating sensemaking and discovery of features such as 

distributions, patterns, trends, gaps and outliers.  The statistics simplify the 

comprehension of a sometimes chaotic visualization, allowing users to focus on 

statistically significant nodes and edges.  SocialAction was also designed to help 

analysts explore non-social networks, such as citation, communication, financial and 

biological networks. 

My second contribution extends lessons learned from SocialAction and 

provides designs guidelines for interactive techniques to improve exploratory data 

analysis.  A taxonomy of seven interactive techniques are augmented with computed 

attributes from statistics and data mining to improve information visualization 

exploration.  Furthermore, systematic yet flexible design goals are provided to help 

guide domain experts through complex analysis over days, weeks and months. 

My third contribution demonstrates the effectiveness of long term case studies 

with domain experts to measure creative activities of information visualization users.  

Evaluating information visualization tools is problematic because controlled studies 

may not effectively represent the workflow of analysts.  Discoveries occur over 



  

weeks and months, and exploratory tasks may be poorly defined.  To capture 

authentic insights, I designed an evaluation methodology that used structured and 

replicated long-term case studies.  The methodology was implemented on unique 

domain experts that demonstrated the effectiveness of integrating statistics and 

visualization. 
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Chapter 1:  Introduction 

Insights are the measure of success for analysts.  Analysts may be seeking to confirm 

their intuitions, detect anomalies or outliers, or uncover underlying patterns.  Insights, 

as characterized by North in [62], are complex, deep, qualitative, unexpected and 

relevant findings.  With the proliferation of data in digital form, analysts can analyze 

their data by using tools to computationally detect such patterns, gaps, and outliers.   

In support of such tasks, user interfaces for exploratory data analysis should be fluid 

and efficient.  The most powerful sensory input for analysts, our human eyes, have 

more bandwidth and processing power than smell, sound, taste or touch.  Presenting 

data through information visualizations is therefore an effective way to utilize the 

strong capabilities of human perceptual systems. However, choosing an effective 

presentation is challenging, as not all information visualizations are created equally.  

Not all information visualizations highlight the patterns, gaps and outliers important 

to analysts’ tasks and, furthermore, not all information visualizations “force us to 

notice what we never expected to see” [89].  Well-designed interactive techniques are 

an effective strategy for making information visualizations more comprehensible for 

sensemaking.  The goal of this dissertation is to provide interaction techniques that 

lead analysts to the discovery of greater insights during exploratory data analysis, 

particularly social network analysts. 

 This dissertation focuses on social network analysis because it is topical, 

emerging and an inherently challenging process that requires creative approaches to 

problem solving.  It’s difficult to visualize, navigate, and analyze networks, and most 

problematic, its difficult to find task-relevant patterns in networks.  Despite all of 
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these challenges, the network perspective remains appealing to sociologists, 

intelligence analysts, communication theorists, bibliometricians, food-web ecologists, 

and numerous other professionals.  The growing popularity of social network analysis 

(SNA) can be seen in , and inspired by, popular best-selling books such as Malcolm 

Gladwell's, "The Tipping Point", Albert-László Barabási's, "Linked", and Duncan 

Watt's "Six Degrees.”  Countless analysts wish to analyze their network data, but 

there are few mature or widely used tools and techniques.  

Network analysts focus on relationships instead of just the individual elements 

which can explain social, cultural, or economic phenomena; how the elements are 

connected is just as important as the elements themselves. Prior to the social network 

analysis perspective,  many analysts focused largely on inherent individual attributes 

and neglected the social facet of behavior (how individuals interact and the influence 

they have on each other) [23].  Using newer techniques from the social network 

community, analysts can find patterns in the structure, witness the flow of resources 

or messages through a network, and learn how individuals are influenced by their 

surroundings. 

In practice, social network visualizations can be chaotic, particularly when the 

network is large.  Visualizations are useful in leveraging the powerful perceptual 

abilities of humans, but cluttered presentations, overlapping edges and illegible node 

labels often undermine the benefits of visual exploration.  In these situations, 

interactive techniques are necessary to make sense of such complex static 

visualizations.  Interactions such as zooming, panning or filtering by inherent 

attributes can simplify complex visualizations.  However, even such techniques only 
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get users so far with complex networks, particularly in small-world networks where 

dense connections will rarely untangle [91].  For situations like this, dynamic queries 

and filtering on inherent attributes of nodes and edges remain important strategies.  

Inherent attributes are the attributes that exist in the data set, such as gender, race, 

salary, or education level.  However, inherent attributes may not tell the whole story. 

Inherent attributes lack the structural, topological information critical to social 

network analysts.  A major contribution of my dissertation is to augment information 

visualizations with computed attributes that reflect the tasks of users.  Computed 

attributes can be calculated from relevant statistical importance metrics (e.g. degree 

or betweenness centrality), clustering algorithms, or data mining strategies.  

This approach is particularly valuable for social network analysis, as they 

have also come to believe that inherent attributes do not tell the whole story.  In fact, 

a philosophy shared by many social network analysts is to ignore inherent attributes 

during exploration to avoid bias, and only focus on the data’s structural properties.  

For social network analysts, computed attributes can be calculated with a rich set of 

statistical techniques - from sociology to graph theory - that allow analysts to 

numerically uncover interesting features within their networks.  Analysts might seek a 

tight-knit community of individuals, or the gatekeepers between them, or the most 

centrally powerful entities; there are a variety of sophisticated algorithms for finding 

these traits. 

1.1 Contribution (C1:Integration)  

Provides an integration of statistics and visualization to improve exploratory 

social network analysis. 
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Most visualization tools aim to project complex data into comprehensible views.  But 

few tools assist users by providing computed attributes that highlight important 

properties of their data.  Users can switch back and forth between statistical and 

visualization packages, but this can result in an inefficient flow in the analysis 

process, which inhibits discovery.   

 SocialAction is the software tool created to explore these issues 

(http://www.cs.umd.edu/hcil/socialaction).  It provides meaningful, computed 

attributes on the fly by integrating both statistics and visualizations to enable users to 

quickly derive the benefits of both.  SocialAction embeds statistical algorithms to 

detect important individuals, relationships, and clusters.  Instead of presenting 

statistical results in typical tabular fashion, the results are integrated with a network 

visualization while providing meaningful computed attributes of the nodes and edges.  

With computed attributes, users can easily and dynamically filter nodes and edges to 

find discover interesting data points.  The visualizations simplify the statistical 

results, facilitating sensemaking and discovery of features such as distributions, 

patterns, trends, gaps and outliers.  The statistics simplify the comprehension of a 

sometimes chaotic visualization, allowing users to focus on statistically significant 

nodes and edges.  The  presence of these rich interactions within one consistent 

interface provide a fluid, efficient, visual analytic system that allows users to focus on 

insights and generating hypotheses rather than managing a medley of software 

packages.  Furthermore, although SocialAction is designed to support social network 

analysis, it also allows users to explore and interpret non-social networks, such as 

citation, communication, financial and biological networks. 
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1.2 Contribution (C2:Guidelines) 

Provides design guidelines for interactive techniques to improve exploratory 

data analysis with computed attributes and systematic yet flexible guides. 

As data sets increase in size and complexity, static information visualizations 

decrease in comprehensibility.  Interactive techniques are often necessary to yield 

valuable discoveries, but current data analysis tools typically support only 

opportunistic exploration - which may be inefficient and incomplete.   That said, 

interactive techniques do not get as much attention in the information visualization 

community despite their growing need to produce comprehensible visualizations 

[106].  

 Providing computed attributes is not enough to guarantee a successful 

information visualization tool, but they should be integrated into rich interaction 

capabilities usually reserved for inherent attributes.  The interaction taxonomy of Yi 

et al. [59], I demonstrate how computed attributes can be incorporated into the design 

for tools beyond social network analysis. 

Furthermore, although interactive techniques are often necessary to yield 

valuable insights, interaction techniques typically only support opportunistic 

exploration that may be inefficient and incomplete.  To resolve this, I present a 

refined architecture that uses systematic yet flexible (SYF) design goals to guide 

domain expert users through complex exploration of data over days, weeks and 

months.  The SYF system aims to support exploratory data analysis with some of the 

simplicity of an e-commerce check-out while providing added flexibility to pursue 

novel insights.  The SYF system provides an overview of the analysis process, 
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suggests unexplored states, allows users to annotate useful states, supports 

collaboration, and enables reuse of successful strategies.  The affordances of the SYF 

system are demonstrated by integrating it into SocialAction. 

The methods are complete and repeatable, so if two analysts are presented 

with the same data, they should reach the same conclusion.  However, in the field of 

social networks, different networks need to be analyzed differently.  The spread of an 

epidemic among villages is not necessarily the same as a spread of a financial crisis 

on world markets [102].  Since there is no systematic way to interpret networks, users 

also need to be able to flexibly explore features to discover patterns.  The SYF design 

goals support this philosophy. 

1.3 Contribution (C3:Evaluation) 

Demonstrates the effectiveness of long term case studies with domain experts 

to measure creative activities of information visualization users. 

Although computer applications, such as SocialAction, shift from productivity 

support to creativity support [83], research evaluation methods are still predominantly 

based on older strategies. Controlled experiments with dependent variables such as 

time for performance of benchmark tasks are still valuable, but they may be 

inadequate to study tools that support creative exploration [70, 75].  These new tools 

may require substantial learning, changes to problem-solving strategies, and 

exploratory use of tactics that defy controlled experimentation. 

New research evaluation methods based on ethnographic observation and 

longitudinal study are being refined to meet the needs of these type of tools [84].  I 

designed a novel procedure to conduct Multi-dimensional In-depth Long-term Case 
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studies (MILCs) with academic and professional social network practitioners.  These 

long-term case studies shift the strategy to working with small numbers of domain 

experts over longer time periods.  MILCs with a political analyst, bibliometrician, 

healthcare consultant, counter-terrorism researcher and an online news magazine help 

demonstrate how my design of integrating statistics and visualization improves the 

exploratory data analysis process of social network analysis. 

These contributions are a constant theme throughout the dissertation.  Chapter 

2 describes the work most closely related to my dissertation, including social network 

analysis, network and graph visualization, guided exploration, and methodologies for 

evaluation.  Chapter 3 describes the contribution of integrating statistics and 

visualization, and demonstrates how the tasks of social network analysis are 

integrated into SocialAction (C1:Integration).  Chapter 4 describes general design 

goals for information visualization systems that integrate statistics and visualization 

with computed attributes (C2:Guidelines).  Most notably, there are systematic yet 

flexible (SYF) design goals to guide domain expert users through complex 

exploration of data over days, weeks and months.  Chapter 5 describes a novel 

evaluation methodology for information visualization systems with long-term case 

studies and its implementation on studying the use of SocialAction (C3:Evaluation).  

The dissertation culminates in demonstrating that there are effective ways to improve 

exploratory data analysis by using statistical techniques and information 

visualizations in an integrated manner. 
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Chapter 2: Related Work 

This dissertation builds on work from social network analysis as practiced in 

sociology and related disciplines.  This work aims to provide powerful interactive 

computing tools for analysts in a growing set of disciplines to make significant 

discoveries concerning relationships in their data.  This chapter focuses on tools used 

for network and graph visualization, as this dissertation has a substantial visual and 

statistical components.  A second key topic for this chapter is systems that help guide 

users through a discovery process that might take weeks and months.  The third 

component of this chapter is a review of methodologies for evaluating interactive 

visualization tools, especially those used for discovery. 

2.1 Social Network Analysis (SNA) 

Freeman suggests that social network analysts seek to uncover two types of patterns 

in networks:  (1) those that reveal subsets of nodes that are organized into cohesive 

social groups, and (2) those that reveal subsets of nodes that occupy equivalent social 

positions, or roles [24].  There is a large body of work that presents techniques and 

methods developed over the past 60 years to uncover such patterns. Social Network 

Analysis: Methods and Applications, by Wasserman and Faust, is perhaps the most 

widely used reference book for structural analysts [99].  The book presents a review 

of network analysis methods and an overview of the field. 

Using visualizations to assist in SNA is not a new concept for sociologists.  

Visual images can be used to examine the patterning of network data [24].  A history 

of the use of visual images in social networks is described in [25], including one of 

the earliest known examples of a social network visualization by Jacob Moreno in 
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1934.  In Figure 1, the triangle nodes are boys and the circle nodes are girls.  Without 

knowing any details about who the individuals in this classroom on, one quickly 

learns from the visualization that 1) boys are friends with boys, 2) girls are friends 

with girls, 3) one brave boy chose a girl as his friend which wasn’t reciprocated and 

4) there are an isolated group of two girls.  This visualization shows how a legible 

and well positioned network can explain the social structure of individuals.   

  

Figure 1.  One of the earliest known examples of a
social network visualization by Jacob Moreno in 1934.
This network illustrates the friendship choices among
fourth graders.  The triangular nodes are male, and the
circular nodes are female. 
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 In order to provide social scientists with the statistical and visualization techniques 

proven to be effective in analysing networks, many software tools have been 

developed.  I provide a brief review of the two most popular SNA packages, UCINET 

[9] and Pajek [17].  Huisman and van Dujin provide an overview of six software tools 

available for social network analysis [47]. De Nooy et al. also wrote a textbook that 

integrates theory, applications and professional software [17]. 

2.2 SNA Tools 

According to interviews, two of the most popular tools used by sociologists for social 

network analysis are UCINET [9] and Pajek [17].   Each of these tools features an 

impressive number of feature to measure social networks, grounded in the theory and 

techniques of sociologists.  However, these numerous features are not necessarily 

organized to support the tasks of the users.  In general, the programs are designed as 

shown in Figure 2. 
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Figure 2.  The Methodology of Popular SNA Tools.  In this particular example, I demonstrate how exploratory data analysis 
is performed in Pajek.  When the users wish to measure a network,they select a statistical measure from a menu-driven 
interface.  After selecting the algorithm, the results of the analysis are displayed in a text-based view.  If the users wish to see 
a visualization of the results, they can then generate a network view.  If users wish to perform a different statistical measure, 
the user needs to start the process all over again.   
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In the existing methodology, as practiced in UCINET, users begin by performing a 

statistical analysis of the network.  Then they output the results to a text window and 

a file, which is exported to a drawing tool, such as NetDraw which is typically 

bundled with UCINET. If the users wish to run another analysis, they must close i, 

open the original network file, run the new method, and the re-export to Netdraw.  

UCINET can handle networks with up to 32,000 nodes and Netdraw can support 

10,000 nodes.  However, the author admits that networks of these sizes run extremely 

slow in both packages. 

Pajek was built to overcome UCINET’s limitation on network size, and it 

describes itself as a “program for large network analysis”.  Its interface resembles 

UCINET, inasmuch as it organizes its analysis methods in deep, hierarchical menus 

and outputs all analysis to a textual report screen.  Unlike UCINET, Pajek has a built-

in graph visualizer.  However, this tool is not interlinked either.  After an analysis 

procedure has been run, one can call the ‘draw’ command to the see the network in a 

draw screen.  However, it is not possible to use the visualization as a point of 

departure for future analysis, e.g. selecting a portion of the graph to run additional 

analysis. 

These tools have been a breakthrough for the sociologist community because 

they no longer require structural analysts to implement their own algorithms.  

However, social network analysis is inherently a deductive task and these interfaces 

do not support exploratory data analysis well due to the strong disconnect between 

the statistical and visual analysis.  I believe these are reasons for analysts rarely using 
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visualizations during the exploratory phase.  Instead, they mostly use visualizations 

for communication purposes at the end of the analysis. 

2.3 Network and Graph Visualization 

The visualization of networks is important because it is a natural way to communicate 

connectivity and allows for fast pattern recognition by humans.  However, there are 

great challenges when visualizing networks [19, 43].  There are many layout 

algorithms that attempt to calculate the position of each node and the curve of each 

link to minimize link crossings and adhere to aesthetic principles.  These algorithms 

fall short, however, when the number of nodes is larger than several hundred and the 

large number of overlapping links makes it hard to judge connectivity [90].  Herman 

et al. provide a survey of layout and interaction techniques for information 

visualizations of graph [43].  They compile an impression of the limitations of various 

graph layout algorithms, approaches to navigation of large graphs, and methods of 

reducing visual complexity. 

In Viegas and Donath’s critique of the illegibility usually associated with 

social networks, they suggest two principles adapted from cartography:  (1) adaptive 

zooming and (2) multiple viewing modes [94].  By using principles of good layout 

and visual perception, graphs can more effectively capture social network 

phenomena. 

Mark Lombardi used social networks in his artwork to present financial and 

political scandals [57].  The drawings are accessible to his audience because actors 

never overlap, edges rarely cross, and the connections are smooth and curvy (Figure 
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3).  Studies of visual perception also confirm that it is easier to follow connecting 

lines that are curvilinear smooth [97]. 

  

Figure 3. Example’s of Mark Lombardi's social network artwork.  The top graphic depicts
relationships pertinent to Oliver North and the Iran-Contra affair. 

 



 

 15 

 

 

2.4 Layout Distortion Techniques 

Several approaches also attempt to more efficiently use available display space by 

distorting the graph. One such distortion technique is the use of fisheyes (Figure ).  

Fisheye techniques allow users to examine a focus area in great detail, but also tend to 

obscure the global structure of networks, e.g. [54, 59].   

Pirolli et al. studied the effects of focus+context techniques in a hyperbolic tree 

behavior [69].  They concluded that strong information scents, which are cues to 

guide browsing, improves visual search.  However, crowding of nodes in a 

compressed region degrades visual search, especially when there is a weak 

information scent. 

 

  

Figure 4.  Fisheye techniques, such Lamping and Rao's Hyperbolic 
Tree Browser [54] allows users to focus on a specific area but 
obscures the global structure. 
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Multiscale graph abstraction is another technique that preserves global structure by 

showing small-scale and large-scale structure simultaneously (Figure).  However, 

navigation is often difficult because clusters are explicitly contracted and expanded, 

e.g. [5, 64].   

Recent work combines these two approaches with topological fisheye views to 

reduce the number of displayed nodes while preserving the network structure [27].  

Van Ham and van Wijk also combine distortion strategies for highly connected, 

small-world networks [91], as shown in Figure. 

Even with these layout and distortion techniques, it still seems ineffective to 

show the entire network at once.  There have been a variety of systems that allow 

users to interactively explore networks, which I review in the next section. 
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2.5 Interactive Techniques 

GUESS is a novel graph exploration system that combines an interpreted language 

with a graphical front end [1]. GUESS attempts to combine analysis and visualization 

of graphs into one package to improve interactive exploration.  The system requires 

learning a domain-specific embedded language, Gython.  However, once learned, 

users can type commands and control the visualization of the graph to show attributes 

of interest.  Programmers can also use GUESS to rapidly deploy visualizations to 

analysts, and limit the menus to what is useful for the task at hand.  However, this 

requires a customized solution for each scenario. 

  

Figure 7.  GUESS [1] is an exploratory data analysis system for networks that 
requires users to learn a domain-specific embedded language. 
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TreePlus allows users to explore graphs using more comprehensible enhanced tree 

layouts [55]. Lee et al. suggest using trees extracted from networks to aid users’ 

ability to navigate.  Their implementation, TreePlus, increases the readability and 

stability of graphs using a tree representation.  The technique works best when users 

are interested in a local portion of a network – the overall structure or existence of 

clusters or bridges cannot be easily revealed.  TreePlus also outperforms force-

directed layouts for several tasks. 

NetLens allows users to explore an actor-event network yet avoids using 

graphs and trees as the driving visualization [50].  Instead, NetLens uses histograms 

and iterative queries to help users understand the network.  This approach seems to be 

especially effective when nodes have rich textual attributes.  
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Figure 8. TreePlus is an interactive graph visualization system based on a tree-style layout. TreePlus 
transforms graphs into trees and shows the missing graph structure with visualization and interaction 
techniques.   Here, a social network is visualized in TreePlus.

Figure 9. The NetLens system visualizing the citation network of the ACM Digital Library. 
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There have been several matrix-based approaches to visualizing networks, e.g. Figure 

10  Ghoneim et al. presented the promise of using matrix-based visualizations instead 

of node-link diagrams [29].  They demonstrated that matrices outperform node-link 

diagrams for several tasks. 

Ziegler et al. designed Matrix Browser, which uses an interactive matrix 

display to show relationships in a network [108].  The simplest matrix has all nodes 

on both axis, but the system also allows the axis to be flexibly filtered based on node 

attributes or properties of the relations in the grid.  This system was further designed 

to support networks with hierarchical information structures, so the axis had tree 

widgets that users could collapse to reduce that amount of visually displayed material.  

In two small studies of small networks (N=27), the matrix visualization was 2.5 times 

faster than standard network visualizations for visual search tasks. 

MatrixExplorer is a recent system designed for exploring social networks using a 

matrix visualization as the primary view [41].  After participatory design sessions 

with social scientists, they devised a list of requirements including matrix views, 

filtering, clustering, and interactive parameter tuning.  Their tool attempts to empower 

users for several of these tasks, such as reordering matrices, interactive clustering and 

comparing clusters.  

NodeTrix uses a hybrid approach of node-link diagrams, which show the 

structure of a network, and adjacency matrices, which highlight communities [42]. 
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Figure 10. The MatrixExplorer system shows two synchronized views of a network.  The matrix view is show on 
the left, while the node-link diagram is on the right. 



 

 23 

 

 

Figure 11.  NodeTrix visualization of the information visualization field. This is the largest connected
component extracted from the dataset used  in the Infovis’04 Contest. Some remaining duplicated authors were
manually removed. Colors on axes of matrices represent the number of citations of each author. Color intensity
within the matrices represents the strength of each collaboration. 
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The PivotGraph system is a tool for visualizing and exploring multivariate graphs 

[101].  The system compresses the network to a small number of meta-nodes and 

aligns them on a grid to present users with a simplified view of a network.  

Preliminary tests with experts provide evidence that these visualizations provide a 

different perspective from traditional graph visualization layouts. 

NVSS also addresses the challenge of node and edge layout by using attributes 

of nodes [81]. User-defined semantic substrates act as regions for nodes that share 

similar attributes.  This allows users to examine patterns within and across attributes 

among nodes.  To further reduce cluster, links between types of nodes can also be 

filtered to achieve a less cluttered network. 
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Figure 12.  A PivotGraph [101] visualization of a large network rolled up onto two categorical 
dimensions. 

Figure 13.  NVSS, a system that visualizes networks by assigning node positions based on  a semantic
structure. 
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In the computer science community, many domain-specific visualization and analysis 

tools have been built.  Online social networks [38],  criminal networks [105], 

scientific literature networks [14], language networks [60], and personal 

communication networks [93] are among a sample of previous work.   

There has also been a recent push to make use of network structure for 

guiding data mining techniques [28].  Social network analysis has also been used to 

aid knowledge discovery.  Xu and Chen use structural analysis techniques to extract 

criminal network knowledge with CrimeNet Explorer [105].  Chen uses social 

network analysis to detect emerging trends and transient patterns in scientific 

literature [14].  More recent work includes Greenland, which augments a node-link 

diagram with a MDS scatterplot of statistical graph signatures [104].   

2.6 Guides for Discovery 

When exploring large networks of information, maintaining a path history and 

providing guides can improve navigation. 

The World Wide Web is a one such vast repository of information, which users 

navigate with hyperlinks and view pages with browsers.  Most browsers feature 

history mechanisms, including a visual cue of changing the hyperlink’s color once it 

has been visited.  This technique is effective at alerting users to pages they have 

already visited, so they need not bother visiting them again [88]. Google’s Notebook 

[31] and Grokker’s Working List [33] enable easy recording of web pages that can be 

saved or sent to others. 
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However, as a task’s complexity increases, more sophisticated guides can 

alleviate the inevitable struggles of users.   “Wizards” are a common type of interface 

that, instead of informing users how to perform a task, break the task into a linear 

series of steps. This interface strategy is most successful for tasks that have standard 

solutions; that is, when a simple step-by-step procedure leads to success [21].  Users 

often wish to turn off wizards after they have learned a task, and research suggests 

that users have trouble transferring knowledge gained from wizards to a non-wizard 

environment [12].  Furthermore, secondary navigation is often preferred to allow 

users to complete the steps in their own order, and is featured in some commercial 

software (e.g. Intuit’s TurboTax) [12]. 

Another type of guide is an adaptive interface that reduces the complexity of 

tasks by “understanding” the user’s needs and simplifying the interface [58].  In 

practice, the algorithms supporting adaptive interfaces are often simple, such as 

Microsoft Office’s Adaptive Menus, which hide the least recently used items.  

COACH provides pre-coded, in-context guidance, captured from demonstrations that 

were based on observing user behavior [77].  DocWizards allows users to more easily 

create follow me documentation wizards by learning from demonstrations using a task 

model [7].  

For complex document assembly tasks, some systems will provide an 

overview of what is needed, so users can see their progress and make informed 

choices about what their next steps should be.  For example, the U.S. National 

Science Foundation FastLane provides such guidance for the 20+ components that 
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research teams must submit in grant proposals, with feedback about the last update 

for each component. 
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Figure 13.  Three adaptive user interfaces.  A version of Microsoft Office featured adaptive
menus, which hid the least recently used items.  COACH provided in-context guidance for 
programming tasks by observing user’s behaviors.  DocWizards allows users to create
documentation wizards more easily by learning from a task model. 
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However, there have been few approaches specifically designed for data 

analysis.  Spotfire, a commercial information visualization software package, allows 

end-users to create guides (Figure 14) [85].  After the process of analysis has been 

understood, end-users can compose Guides to help automate repetitive procedures 

and ensure consistency among analysts [86].  Spotfire Guides are presented as a series 

of hyperlinks that assist users in preparing data, opening standard visualizations, 

sorting data and even removing outliers.  However, the guides do not monitor the 

actions of users and thus do not provide a measurement of progress.   Another 

approach is by Groth and Streefkerk who describe a prototype system without guides 

that records the history of user explorations in a visualization tool, as well as the 

capability for users to annotate their exploration [34]. 
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Figure 14.  Spotfire, a commercial information visualization software package, allows end-
users to create guides for exploring data.  In this example, the guide is located on the 
bottom of the interface.  The guide describes the current task, provides instructions on how 
to manipulate the data, and offers a hyperlink to the next task after users believe they have 
finished. 
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Figure 15.  Groth and Streefkerks’s Provenance and Annotation system.  This prototype system keeps
track of the history of a user’s exploration through a scientific visualization.  The history is visualized
as a branching tree, as shown in the enlargement above.  Users also have the capability to annotate. 
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2.7 Evaluation of Information Visualization Systems 

There have been many studies evaluating information visualization systems using 

controlled experiments [15].  Controlled experiments can be effective when trying to 

decide between multiple designs, such as choosing between widgets [2] or visual 

mappings [49].  Similarly, controlled experiments can be effective when comparing 

multiple versions of tools [72].    

However, Plaisant has recently initiated a challenge to information 

visualization researchers to rethink their evaluation strategies and choose approaches 

that consider the nature of exploratory tasks [70].  In this spirit, Shneiderman and 

Plaisant propose Multi-dimensional In-depth Long-term Case studies (MILCs) to 

study the tasks of information visualization system users [84].   Their methodology 

suggests working closely with expert users and performing in-depth observations to 

capture users’ creative activities during exploration.  Of course, there is a long history 

of qualitative analysis and case studies [107], but I focus on work that takes into 

account the unique demands of information visualization users. 

Saraiya et al. identified characteristics of insight, arguably the primary 

purpose of visualization tools.  By pairing tools with experts and measuring the 

number of insights reached, they empirically evaluated five visualization tools [75].  

However, these evaluations did not capture long-term insights as the evaluation 

sessions lasted only a few hours.  Saraiya et al. followed up this work by performing 

long-term case studies with experts to address two key characteristics missing from 

their previous approach:  motivation and significance [76].  Their work provides 

insight into the practices of actual data analysts which have implications for both 
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design and evaluation of information visualization systems.  Seo and Shneiderman 

also conducted 3 long-term case studies with domain experts, aswell as a survey, 

which helped show efficacy and suggested improvements to Hierarchical Clustering 

Explorer [78].  Gonzales and Kobsa  used a six-week case study with weekly 

interviews that illustrated that information visualization tools are most powerful when 

they are complementary to the workflow of analysts  [30].   

In order to garner more support for information visualization evaluation, 

several recent initiatives have taken place  The InfoVis Contest also allows long-term 

analysis but the evaluation is informal [71].  The VAST Challenge improves upon 

this by making ground truth available [32].  Both of these initiatives provide 

information visualization designers with standard data sets, which they can use as 

benchmarks between multiple systems or designs.   

2.8 Summary 

This chapter has provided a detailed summary of previous work relevant to this 

dissertation.  The chapter begins with the current practice of many social network 

analysts and the tools they use.  This discussion is followed by a variety of advanced 

network visualization techniques, including layout distortion methods and interaction 

techniques.  Contribution C1:Integration builds on these techniques.  Next, a review 

of guides for discovery are reviewed, which Contribution C2:Guidelines builds on.  

Finally, a review of information visualization evaluation techniques are described, 

which Contribution C3:Evaluation builds on. 



 

 35 

 

Chapter 3: Integrating Statistics and Visualization to Improve Exploratory Data 

Analysis of Social Networks 

 

This chapter focuses on Contribution C1:Integration: 

Provides an integration of statistics and visualization to improve exploratory 

social network analysis. 

The integration of statistics and visualization is demonstrated in the implementation 

of SocialAction, a novel social network analysis tool.  SocialAction uses interactive 

information visualizations augmented with computed attributes to support the tasks of 

social network analysts.  Lessons from the design of SocialAction are described in 

Chapter 4, where I describe design guidelines for systems to integrate computed 

attributes.  The evaluation of these design goals and SocialAction are described in 

Chapter 5. 

3.1 Introduction 

My field work with social network analysts, both in academia and industry, 

suggest that statistical analysis is the most commonly used technique when 

attempting to interpret social networks.  Although visualizations are common in their 

research publications and reports, they are typically created after the analysis is 

complete for communicative purposes.  However, the most effective visualizations 

are those that are meticulously hand-crafted. 

These exploratory practices might seem surprising, as there is evidence that 

humans are  better at analyzing complex data with images rather than with numbers 
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[13].  Social network data is extremely complex, as the dimensionality of the data 

increases with each relationship.  However, those familiar with network visualizations 

might sympathize with these statistically attuned practitioners.  Network 

visualizations are typically a tangled set of nodes and edges, and rarely achieve 

“NetViz Nirvana” (the ability to see each node and follow its edges to all other 

nodes).   Network visualizations may offer evidence of clusters and outliers, but in 

general it is hard to gather deeper insights from static visualizations.   

My first argument is that it is hard to find patterns and trends using purely 

statistical methods.  My second argument is that network visualizations usually offer 

little utility beyond a small set of insights.  So what should a social network 

researcher do?  Use both – in a tightly integrated way.  The design of SocialAction 

centers on this goal. 

3.2 Designing for Social Network Analysis: Integrating Statistics with 

Visualization 

Numerous measures have been proposed by structural analysts to statistically 

assess social networks [99].  However, there is no systematic way to interpret 

networks, as measures can have different meaning in different networks. This is 

problematic, as analysts want to be certain they are not overlooking critical facets of 

the network.  In order to make exploration easier, I interviewed social network 

analysts and reviewed social network journals to tabulate the most commonly used 

measurements.  I then implemented and organized these measures into 6 user-

centered tasks:  Overview, Rank Nodes, Rank Edges, Plot Nodes, Find Communities, 

Edge Types.  In the sections below, I describe each of these tasks and their associated 
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features in detail.  However, I first begin with an illustration of the main goals of the 

process. 

 

 

The Visual Information Seeking Mantra (“Overview first, zoom and filter, 

then details on demand”) [80] serves as guidance for organizing the complex tasks of 

a social network analyst.  At the first step, analysts begin with an overview of the 

network both statistically and visually (Figure 17a).  Networks are sometimes to 

referred to as graphs in other communities.  Measurements of the entire network, such 

as density, diameter and number of components, are computed and presented 

alongside a force-directed layout of the network.  The visualization gives users a 

sense of the structure, clusters and depth of a network, while the statistics provide a 

way to both confirm and quantify the visual findings.  If the network is small, or the 

analysts are interested purely in the topology of the network, this step may be enough.   

A more capable analyst will wish to gain a deeper understanding of the 

individual elements of the network.  Users can use statistical importance metrics 

common in social network analysis to measure the nodes (also known as vertices) and 

edges (also known as links).  For instance,  analysts can rank the nodes by degree (the 

most connected nodes), betweenness (the gatekeepers), closeness (well-positioned 

nodes to receive information) or other metrics.  After users select a metric, a table 

lists the nodes in rank order.  SocialAction assigns each node a color, ranging from 

green (low ranking) to black (average ranking) to red (high ranking).  This helps 

illustrate each node’s position among all ranked entities.  The network visualization is 

Figure 16.  The main toolbar of SocialAction.  Each of the features are
organized into six tasks relevant to social network analysts. 
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updated simultaneously, as well, and paints each node with the corresponding color.  

Users now can scan the entire network to see where the important nodes reside 

(Figure 1a).   

To gain further insights, SocialAction allows users to continue on to step 2 of 

the Visual Information Seeking Mantra (“filter and zoom”), where most other social 

network analysis packages strand users.  Panning and zooming naively is not enough 

to empower users.  Zooming into sections of the network force users to lose the 

global structure, and dense networks may never untangle.  SocialAction allows user-

controlled statistics to drive the navigation.  Users can dismiss portions of the 

network that do not meet their criteria by using range sliders.  Filtering by attributes 

or importance metrics allows users to focus on the types of nodes they care about – 

while simultaneously simplifying the visualization (Figure 17b).  

After analysts make sense of global trends through statistical measurements 

and visual presentations, their analyses often are incomplete without understanding 

what the individual nodes represent.  Contrary to most other network visualizations, 

labels in SocialAction are always present.  The controls for font size and length allow 

the analyst to decide their emphasis.  In line with step 3 of the Visual Information 

Seeking Mantra’s “Details on Demand”, users can select a node to see all of its 

attributes.  Hovering over a node also highlights each node’s edges and neighbors, 

achieving “NetViz Nirvana” for the node of interest (Figure 17c). 
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Figure 17. Exploring a social network in SocialAction. This figure features the “Global Jihad” terrorist network
from a case study (366 nodes, 2334 edges).  In order to protect sensitive information, node labels have been
anonymized except for those individuals publicly identified in the Zacarias Moussaoui trial. 
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In summary, bringing together statistics and visualization is an elegant solution for 

exploratory data analysis.  The visualizations simplify the statistical results, 

improving the comprehension of patterns and global trends.  The statistics, in turn, 

simplify the comprehension of a sometimes chaotic visualization, allowing users to 

focus on statistically significant nodes and edges. 

3.3 Overview: Gaining Insights from the Network Structure 

After users load their data into SocialAction, an overview of the network is 

shown both visually and statistically, as shown in Figure 18. 

3.3.1 Visual overview 

 The network is visually presented with a force-directed layout.  This technique 

is common layout technique for networks  [20].   Their goal of the layout is to 

position nodes so there are few edge crossings and edges are close to equal length.  A 

full explanation of the algorithm and its implementation is in Chapter 5, but I quickly 

summarize the technique here.  Each node and edge is assigned a force.  Nodes are 

assigned forces similar to an electrically charged particle, whereas edges are assigned 

a force similar to a spring.  A simulation is then run on a network, which results in 

connected nodes to be pulled closer together and disconnected nodes to be pushed 

further away.  

 Most social network analysis packages run a force-directed algorithm until a 

state of equilibrium is reached.  However, in complex networks, the running-time can 

be quite long for a layout to converge, so they often resort to less-than-optimal 
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layouts.  SocialAction takes a different approach that allows users to decide when the 

layout reaches an acceptable state. 

 For each iteration of the force-directed layout in SocialAction, the layout 

animates into the next optimal state.  Users also have the capability to adjust the 

automatic layout of the network by dragging nodes around.  This can be useful during 

the force-directed layout to speed up convergence, or after the force-directed layout to 

untangle portions of the network that never reached a state of clarity to users.   When 

users are happy with the layout, users can stop the layout and begin to develop a 

mental model of the network.  These node positions in the network layout will remain 

stable throughout all of the other tasks and features of SocialAction, so analysts will 

not lose their orientation, unless they opt to redo the layout.   

 Users are also in control for the number of pixels that can be used for the 

network layout.  By default, the layout forces all nodes and edges to be inside the 

viewport of of SocialAction.  Users can zoom out to enlarge the viewport, or zoom-in 

to narrow it.  If users wish for the layout to not be constrained by the viewport, the 

users can allow nodes and edges to float off-screen.  Users can reach these nodes in 

the future by panning in the visualization. 

 Network visualizations with force-directed layouts are often criticized by 

information visualization researchers (e.g. [94]) for usually resulting in a tangled set 

of nodes and edges.  However, they are appropriate to use in SocialAction for a 

variety of reasons.  One reason is that social network analysts are often familiar with 

these layouts.  A second reason is that a force-directed layout does not require any 

specific attributes of nodes or edges, allowing analysts to visualize any type of 
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network they wish.  A third reason is that despite having international symposiums 

devoted to this topic (the Graph Drawing Conference is in its 16th iteration), the state 

of the art doesn’t seem to be much better than this traditional approach.  Rather than 

devote energy to devising new layout algorithms for networks, I focused my 

dissertation on developing new interaction techniques.  By allowing users to interact 

with the force-directed layout by deciding its convergence and manually altering the 

layout,  the users’ experience with the layout is improved. 

 The network visualization of SocialAction always draws nodes with labels.  

The ability for social network analysts to quickly identify which data point a node 

represents has been shown to be quite useful, a feature that is surprisingly absent from 

many typical network visualizations.    SocialAction renders nodes with the labeling 

inside the nodes which is helpful, compared to labels outside of the node.  This seems 

to reduce visual complexity by allowing one eye fixation per node rather than two.  It 

allows improved layouts with fewer edge crossings over or under a secondary text 

label.  At any time, users can increase the font size of the nodes to make the labels 

more readable with a dynamic slider.  Conversely, they can truncate the length of the 

label to limit the width of a node with another dynamic slider. 

 By default, edges are rendered as straight lines intersecting the target and 

source nodes in their respective centers.  However, users can also optionally select to 

draw the line as a cubic Bezier curve which can sometimes produce more 

aesthetically pleasing visualizations as well as allowing users to more easily follow 

the paths between nodes.  The thickness of these lines can be controlled at any time 

with a dynamic slider to further emphasize their role in the network.   
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3.3.2 Statistical Overviews 

 Three tables of descriptive statistics are calculated automatically when a 

network is loaded.  The first table describes the whole network, measuring its density, 

diameter, and the number of components.  (The implementation of these and other 

statistical measurements are described in Chapter 5).  These statistics can be used by 

the analyst to ensure the visualization they are seeing accurately describes the 

network.  This is particularly useful when the visualization technique (e.g. force-

directed layout) can sometimes be less than optimal.  Statistics can confirm the visual 

evidence, allowing users to be more confident about their interpretations. 

 In addition to the overall properties, summary statistics on the nodes and 

edges are also provided.  In the nodes table, a count of the number of nodes is 

presented, along with the maximum degree and average degree, in-degree, and out-

degree of all of the nodes.  Finally, a count of the isolates is also provided.  The edge 

table provides an edge count and average weight (if such an attribute exists).The 

number of bridges (removing this edge causes a connected component to become 

disconnected) and the average path length between nodes can also be displayed.  By 

default, these latter statistics are not calculated until users articulate their interest, as 

their run-times are considerable. 

 

3.4 Ranking Nodes: Gaining Insights from the Network’s Individuals 

When users are ready to begin ranking nodes, they click the ‘Rank Nodes’ button 

from SocialAction’s toolbar.  The social network visualization is kept stable on the 

right, and a corresponding list of nodes is presented on the left.  Users can select 
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nodes in either the ordered list or node-link diagram, and they will be highlighted in 

both views.  In some cases, such as very small networks, this display alone may allow 

the users to make discoveries.  Many networks tend to be larger, such as the example, 

and this is where computed attribute rankings come into play.   

According to my interviews, the methodology of social network analysts suggests 

to ignore the individual attributes of nodes and instead look at their structural 

attributes for meaning.  Nodes can have meaning derived from their position in the 

network, as nodes can be isolated or connected to many other nodes.  SocialAction 

allows users to rank nodes by their structural position by choosing a ranking of 

interest from a drop-down menu.  Sample choices are:  

• bary center: the total shortest path of a node to all other connected nodes [63] 

• betweenness centrality: how often a node appears on the shortest path between 

all other nodes [10] 

• closeness centrality:  how close a node is compared to all other nodes [22] 

• degree: the number of nodes a node is connected to.  (For directed graphs, 

rankings based on in- and out-degree also exist) 

• HITs: a “hubs and authorities” importance measure [52] 

• clustering coefficient:  how close the node and its neighbors are from being a 

clique [103] 

More details about each of these algorithms and their implementation can be found in 

Chapter 6.   When users select a ranking, all of the nodes are ranked according to this 

criterion in the ordered list.   
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One of my early partners is working with a dataset consisting of terrorist 

groups committing over 70,000 terrorist attacks across the world spanning 27 years.  

This network is being assembled by the Center of Excellence for Behavioral and 

Social Research on Terrorism and Counter-Terrorism, with the goal of developing 

strategies for disrupting the formation of terror networks and minimizing the impact 

of future attacks.  The technique is illustrated using this network and others from  

case studies in Chapter 5, to suggest how the approach applies to real data. 

3.4.1 Visual Coding 

Each ranking is encoded with a corresponding color, ranging from green to black to 

red, based on its value.  This helps illustrate each node’s position among all ranked 

entities.  The network visualization also paints each node with this color.  Figure 17 

illustrates SocialAction’s technique on a subgraph from the global terrorism network.  

This network is two-mode, which mean it has two different types of nodes:  terrorist 

groups and countries.  In this network, an edge exists if a terrorist group committed 

an attack in that country.  In this example, betweenness centrality was selected as the 

ranking criterion.  This feature is often used to detect “gatekeepers” between highly 

connected subgraphs.  The nodes are ordered by ranking in Figure 18a.  In this 

example, the “Muslim Militants” group has the highest score.  The network 

visualization, colored according to these rankings, is shown in Figure 18b.  Groups 

with high betweenness appear red in this network. 
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3.4.2 Filtering by Rankings 

In line with the Visual Information Seeking Mantra [80], SocialAction allows users to 

zoom and filter, since users’ perceptual clarity improves when the number of 

visualized elements is limited [43].  Users can freely zoom into sections of the 

network to improve clarity by dragging the right-mouse button.    SocialAction also 

allows users to filter the nodes in both the ordered list and the network view based on 

their rankings. 

Users can dismiss portions of the network that do not meet their criteria using 

a double range slider.  Users are also able to use the filter to fade the nodes to keep 

the networks full structure intact (Figure 19).  In this example, the betweenness 

centrality measure was selected and the left bar of the range slider was dragged to the 

right until it reached the value of 1000.  All nodes that do not have a betweenness 

centrality measure of at least 1000 are faded and are no longer labeled.  The nodes 

that meet the criteria are now prominently displayed with larger labels and allow 

users to focus on them.  If users believe the remaining nodes are still a distraction, 

users can have them removed entirely. 

By allowing users to filter based on rankings that are important to them, the 

network becomes more manageable in terms of legibility, as the number of nodes and 

link crossings will be reduced.  It also allows users to spot the phenomena of interest 

across an entire network. 
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Figure 19.  Users can adjust the double range slider to filter nodes that are not of interest.   In 
this graphic, the nodes of Figure 18 that do not have a “betweenness centrality” ranking score 
of at least 1000 become faded and their labels are removed (all but 13 of 97 nodes).  The 
labels of nodes that meet the ranking criteria can be increased by the user.  This allows users 
to focus on the type of nodes they are interested without ignoring the overall structure. 
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3.5 Ranking Edges: Gaining Insights from the Network’s Relations 

Edges can also be ranked to inherent and computed attributes.  Similar to nodes, 

ranked edges are presented in a ordered list and optionally visually encoded with 

color.   In Figure 20, the edges are colored according to their edge weight.  Darker 

edges represent high edge weights, and lighter edges represent smaller edge weights.  

In this image, color clearly communicates that the left cluster of blue nodes (U.S. 

Democratic Senators) have much higher edge weights than the right cluster of red 

nodes (U.S. Republican Senators).  This data set is described in more detail later on in 

a case study in Chapter 4. 

Edges can also be filtered.  Users have the option of having the edges removed 

simply from the visual display, or also removing their forces from the force-directed 

layout.  This type of filtering can be useful when users wish to deemphasize weak 

links in the layout.  This has a great effect on the layout, as illustrated in Figure 21. 
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Figure 20.  A social network of collobaration among US senators.  
The color of the edges represent the edge weights, with darker 
edges implying a higher edge weight.  In this social network, a 
weight of an edge is based upon how often a senator co-voted with 
another senator.  There are 98 nodes and 4753 edges. 

Figure 21.  The same network as above, but with unfiltered
edge rankings.  Since every node is connected in this network,
the layout results in a strongly connected, tangled sphere of
nodes and edges.  By filtering the network so that only higher
edges were present, the structure reshaped itself as shown in
the figure above. 
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3.6 Plotting Node Rankings:  Detecting Patterns of Individuals 

Structural analysts may be interested in the nodes that meet criteria across two 

rankings.  SocialAction presents this two-dimensional projection as a scatterplot.  A 

scatterplot reveals the form, direction and strength of a relationship between two 

features, in addition to identifying outliers easily.  Users can select two features that 

form the axes for a scatterplot.  

A scatterplot of 276 nodes is shown alongside the network it represents 

(Figure 22).  Users can select any of the ranking features to be the horizontal and 

vertical axes.  In this example, the horizontal axis is in-degree and the vertical axis is 

betweenness centrality.  For the visual coding, SocialAction fits the scatterplot to a 

linear function.  All nodes that appear above this linear cross-section are shaded from 

black to green, and those below are shaded from black to red.  The nodes in the 

network visualization are painted using the same palette.  The views are coordinated, 

so when users select a node in the scatterplot, the corresponding node also becomes 

highlighted in the network visualization. 

Using this scatterplot, users can quickly spot nodes of interest.  For instance, 

suppose an analyst was seeking nodes with low degree (committed attacks in few 

countries) but high betweennness centrality.  The nodes would appear in the upper-

left of the scatterplot (Figure 22a).  These nodes are also easily detected in the 

network visualization according to their bright green color (Figure 22b). 
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3.7 Finding Communities 

When networks become large, presenting rankings for every node and edge may not 

be ideal.  Ordered lists get quite long and scatterplots become crowded.  Filtering by 

ranking is one solution to this problem but it is not perfect because it ignores nodes 

that do not meet a certain criteria.  SocialAction offers subgroup detection to isolate 

groups of nodes based on their structural properties.  In fact, one of the main goals of 

sociologists studying social networks is to find cohesive subgroups of nodes [24]. 

There are a variety of techniques to detect subgroups.  For disconnected 

graphs, a subgroup could be defined as each connected component.  However, in 

practice, components are often large and need to partition themselves into local 

“communities” of tightly-knit nodes.  SocialAction includes choices, including a 

feature to automatically determine communities based on link structure.  Newman’s 

community identification algorithm [61] was chosen because it is fast enough to 

support interactive real-time adjustments.   

Like Vizster [38], SocialAction visually presents the communities by 

surrounding all members with a translucent convex hull.  In this example, the color of 

the convex hull represents the maximum ranking of any of its entities, so 

communities containing nodes with high betweenness are red.  Users can optionally 

color the communities by minimum and average ranking values, or opt for each 

community to be assigned an arbitrary, unique color.  By default, communities are 

labeled with a unique integer but users can rename the labels to have more semantic 

meaning.  
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This algorithm was also demonstrated effective in isolating subgroups of 

personal online social networks in Vizster when combined with a slider [38].  Since 

the algorithm may identify communities at an undesirable granularity, users can move 

the slider to adjust the state of clustering.  This capability is demonstrated in Figure 

23.  In the upper left image, the entire network is grouped into one group.  The next 

three images demonstrate the network divided into 2, 3 and 4 clusters. 

The force-directed layout is also modified with the presence of communities.  

Additional forces are adding into the algorithm’s simulation, which aim to separate 

the communities into non-overlapping portions of the viewport.  This separation is 

effective at making the edges than span multiple communities more noticeable.  The 

effects of this modified algorithm are also demonstrated in Figure 23, the nodes move 

into a region with only their fellow community members.  Users can also keep the 

network layout to remain stable during the community analysis, if they’ve already 

developed a meaningful mental model. 
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Figure 23.  Users have the ability to adjust the granularity of the clusters.  By dragging the slider
left, users can divide the clusters into smaller groups.  In the upper left image, the entire network
is grouped into one group.  The next three images demonstrate the network divided into 2, 3 and 
4 clusters.  Users have control over the algorithm, empowering them to choose clusters that
make sense for their analysis.  In this example, the layout also updates with each new
community, as additional forces are created to make a clear separation between clusters.  Users 
can control if they wish for the new layout to be in effect or not. 
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In Figure 24a, community detection is enabled on a 97-node network.  The algorithm 

finds nine communities.  In addition to detecting subgroups, SocialAction allows 

users to use the subgroup information to improve clarity in two ways. 

The first technique is presented in Figure 24b.  If users are interested in an overview 

of the structure, users can collapse a subgroup into a single meta-node (linked with 

meta-edges). 

This meta-node, representing the entire subgroup, will be positioned in the 

center of where the subgroup previously existed.  The node’s size will be in 

proportion to the number of nodes it contains.  Similarly, the size of the meta-link 

between nodes will be proportional to the number of links between the groups.  The 

ranking panels (ordered list, scatterplots) treat each subgroup as one entity, and users 

can search for patterns using the compressed subgroups.   

If users are interested in local structure, subgroups can be analyzed in 

isolation.  The system can treat the subgroup as if it is the entire graph, and all 

ranking panels will be updated accordingly.  Further aggregation can be performed on 

this subgroup, as well.  Figure 24c is the result of users choosing the third community 

in the upper center of Figure 24a, and then further dividing the community into two 

subgroups. 

After users finish exploring subgroups using either of these techniques, the 

users can return to the original graph, and all nodes that reappear will keep the 

position they held when they initially disappeared. 
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Figure 24.  A demonstration of the community features available in SocialAction on a social network of 97 nodes. 
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3.8 Multiplex Rankings 

When social networks have multiple edge types, they are often referred to as 

multiplex networks.  For instance, in a terrorism network, nodes can be connected 

based on if they committed a terrorist attack in the same area, or used the same 

weapons, or if they come from the same region.  Edges can also have temporal 

characteristics; a edge could represent an attack in a certain year.  The types of edge 

used depend on what types of questions the analyst is trying to answer.  

Often, a network will look drastically different based on which types of edge 

are shown (Figure 25).  The top image shows all edges. The middle shows edges 

between terrorist groups and countries based on if they attacked in the year 1988.  

The bottom shows edges if they attacked in 1989.  SocialAction allows users to 

quickly iterate between networks of different edge types while keeping the layout 

stable.  In this example, a force-directed layout was used based on the network 

structure with all edges present.  Since the layout was not optimized for the individual 

years, users have the choice to leave them in this position, or have the layout update 

with smooth animation to reduce the number of edge crossings.   

In these examples, the nodes are colored based on their degree ranking.  

Nodes that do not have any edges of the selected type are faded.  Users can increase 

the legibility of nodes with edges by increasing their font size with a slider.  For 

instance, ‘LTTE’ is an active terrorist group in 1988 (attacking India and Spain and 

painted red), but fades in 1989 due to a lack of activity. 
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Figure 25.A demonstration of the multiplex features of SocialAction. 
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SocialAction also offers a matrix summary so users can spot patterns across 

many different edge types at once (Figure 26).  Each node occupies a row, and each 

column represents a different edge type.  Each cell is colored based on a node’s 

ranking when only that edge type is present.  In Figure 26, degree was the selected 

ranking criterion and the rows are sorted in descending order by degree when all edge 

types are present.  For this subgraph, India has the highest degree (most terrorist 

attacks) when all edges are present as well as most years from 1980-1997, as those 

cells are colored bright red.  Countries such as Lebanon, Egypt and Pakistan are 

dominant in years that India is not.  SocialAction allows users to flexibly explore 

multiplex networks.  Users can iterate through different edge types separately and 

apply the ranking and aggregation techniques as well.  Users can also spot patterns 

across edge types using the matrix overview. 
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The matrix overview was limited and required scrolling, as not every node 

could fit on the display.  This was further improved to the form of a stacked 

histogram, similar to ThemeRiver [36].  Each node is represented as a line, and each 

column represents an edge type.  The node’s thickness in each column represents the 

node’s ranking in the network of that edge type.  The color is based on their overall 

ranking over all edge types.   In Figure 27, two stacked histograms are shown, which 

demonstrate the evolution of the terrorist bipartite network over time.  The country 

nodes are alphabetized and stacked in the top visualization, whereas all the terrorist 

groups are in the bottom visualization.   The thickness of the node at each year is 

based on the node’s degree in the network. Nodes are colored based on their degree 

(red implies high degree, green implies low degree).   Nodes receive labels in their 

peak year, if their degree is at least 6.  There is a clear peak of attacks in 1992.   

Various trends can be interpreted from this image, such as Italy has many different 

groups attacking in the earlier years, whereas India has peak activity in the later years.  

Since there are many more terrorist groups than countries, the bottom image is harder 

to interpret.  However, these visualizations are interactive and users can filter the 

visualization according to name.  So if an analyst typed the word “Armenia”, only the 

nodes with terrorist groups with the word Armenia (such as the Armenian Secret 

Army for the Liberation of Armenia, and Justice Commandos for the Armenian 

Genocide) would be shown.  This type of interaction is similar to searching for names 

in NameVoyager [100]. 
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The visualizations in Figure 27 were featured in the 2007 Competition on Visualizing 

Network Dynamics (http://vw.indiana.edu/07netsci/).  One of the reviewers sent a 

particular rewarding quote that emphasizes some of the goals of SocialAction: 

 

"Networks are best read if they are not only 'technically accurate' and visually 

attractive but when they employ a type of rendering that creates a landscape. That 

creates a bridge for the uninitiated audience to cross into the field of expertise. 

Dataland travels have now become so enjoyable; they may soon appear as special fare 

destinations at a travel agency near you. Perer's visuals make that trip into the land of 

terror networks absurdly attractive.   Having intellectual entertainment and visual 

pleasure with terrorism analysis is perhaps one way to diffuse the very essence of 

terror - by analyzing it without being terrified. And in the end it leads to a hopefully 

more rational dealing with it, which is the opposite of what terrorism is trying to 

instill."  

Ingo Günther (Journalism & Art)  

Tokyo National University for Fine Arts & Music, Japan 
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3.9 Supporting Effective Exploratory Data Analysis 

So far, I have described techniques of importance to the SNA community: 

ranking nodes and edges, plotting nodes, finding cohesive subgroups and exploring 

multiple edge types.  In addition to providing these features, I also designed the 

interface to support orderly exploratory data analysis.  Users can iterate through the 

network measures available to examine the range of structural properties.  The spatial 

layout of the node-link diagram remains unchanged during this process to preserve 

users’ mental model of the network.  If the network is too large to effectively deal 

with the entire network, users can iterate through each subgroup and apply the 

network measures to these smaller groups in order.  Finally, if a network is multiplex, 

users can iterate through each edge type while being provided a matrix overview.  

Users have the freedom to apply specific techniques to support their hypotheses.  

However, if they are interested in exploratory data analysis and want to examine the 

full range of measures, the interface provides an orderly, systematic method for doing 

so. 

3.10 Summary 

This chapter demonstrates how SocialAction provides computed attributes by 

integrating statistics and visualization to improve exploratory social network analysis.  

The design organizes the features for social network analysts into six distinct tasks 

(Overview, Rank Nodes, Rank Edges, Plot Nodes, Find Communities, and 

Multiplex).  For each task, relevant statistical and visual information are presented.   



 

 66 

 

The Overview task provides statistics that measure the overall topology of the 

network alongside a force-directed network visualization.  The Ranking tasks allow 

users to find important nodes and edges by using statistical algorithms to rank, color, 

and filter interactively in statistical and visualization views.  The Plotting task allows 

users to compare and filter multiple rankings using network visualizations and a more 

comprehensible scatterplot to locate patterns and outliers.  The Communities task 

allows users to find cohesive subgroups of nodes, presenting the results of the 

clustering algorithms in the visualization.  The multiplex task allows users to identify 

different edge types, statistical and visually measure them in isolation, or see a visual 

overview of them all.  The organization of these statistical and visual features into six 

tasks supports effective exploratory data analysis.  
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Chapter 4: Design Guidelines for Information Visualizations with Computed 

Attributes 

This chapter focuses on Contribution C2:Guidelines: 

Provides design guidelines for interactive techniques to improve exploratory 

data analysis with computed attributes and systematic yet flexible guides. 

Humans can be quite good at scanning data, recognizing patterns, and remembering 

images.  However, as data grows larger and more complex, it is clear that interaction 

is necessary to present data interpretable by humans.  Yi et al. provided a taxonomy 

of seven types of interaction techniques of existing approaches of interaction in 

information visualization systems [106].  Yi et al.’s categories (Select, Explore, 

Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect) suggest ways that 

users can navigate through complex information landscapes.  However, each of these 

techniques described usually rely on inherent attributes of the data.   

For instance, in a social network of male and female students, users could 

select students of interest, explore by performing a direct-walk through the network, 

or filter based on gender.  However, the inherent attribute-based interactions may not 

support the needs of certain users.  If the tasks are to find the gatekeepers, 

communities, and most popular students, an algorithmic approach may be faster and 

more precise.  Thus, it seems to make sense that the visualizations should be 

augmented with these computed attributes if they are relevant to users’ tasks.   

Using the taxonomy of Yi et al., I describe each of the seven interaction 

categories and demonstrate how they can be augmented with computed attributes 

from statistics and data mining.  As data becomes larger and more complex, 
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leveraging the benefits of statistical analysis seems both rational and necessary to 

answer many analytic tasks.  For example, Amar, Eagen and Stasko categorized all 

information visualization analytic tasks into 10 components  (Retrieve Value, Filter, 

Compute Derived Value, Find Extremum, Sort, Determine Range, Characterize 

Distribution, Find Anomalies, Cluster, Correlate) [3].  For each of these low-level 

visual analytic tasks, the use of statistics and data mining algorithms seems obvious to 

help show information that makes it easier to discern from visualizations. 

I present seven interaction techniques that can assist users when augmented 

with computed attributes.  In each of these interactions, users will still be in complete 

control not having to rely interpreting a black box of automatic algorithms. 

Of course, computed attributes from statistics and data mining requires information 

visualization tools to feature a more sophisticated design.  Users much navigate both 

the visualization and the statistical algorithms.  In order to aid such a design, I present 

guidelines for navigating the statistical algorithms as well. 

However, many different types of interaction can lead to complex paths of 

analysis.  In order to assist discovery of insights, I also provide design goals for 

systematic yet flexible (SYF) discovery.  The goal of these design goals is to help 

guide domain experts through analysis over days, weeks and months.  SYF offers 

systematic guides that provide users the ability explore relevant analytical features.  

However, SYF also supports flexible diversions to pursue insights while still 

maintaining overall progress.  To assist analysis, SYF provides annotation, 

collaboration and reuse capabilities.   This results in seven additional design goals for 

assisting analysts throughout the analytical process. 
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4.1 Exploratory Data Analysis & Computed Attributes 

The visual information seeking mantra of “Overview first, then details-on-demand” 

has been defined by Shneiderman in [80] to support interactive exploration of 

information visualizations.  Similarly, successful statistical analysis techniques have 

been defined in Tukey’s mantra of “Exploratory Data Analysis” [89].   Tukey’s 

techniques and inspired techniques allow analysts to answer questions like, “What is 

a typical value?”, “What is the distribution?”, “What is the percentile?”, and “What 

are the outliers?”. 

Given these two widely cited techniques, one might question the need for 

additional design goals.  However, there is a growing need to argue that both 

interactive techniques and statistical techniques are necessary for successful 

information visualization systems.  There are few information visualization tools that 

integrate this dual-front approach to solving data analysis problems.  However, my 

research suggests that long-term cases studies with information visualization analysts 

reveal integrating visualization and statistics lead to insights [66].  In fact, novel 

insights were reached in all case studies.  However, the lack of specific design 

guidelines perhaps limits its reach of direct usefulness to future researchers, 

designers, and practitioners. 

I note that despite this approach supporting algorithms from statistics, 

mathematics, and data mining, this approach is different than Keim et al.’s proposed 

Visual Analytics Mantra which emphasizes automatic detection of salient data to 

reduce complexity before and after human analysis [51].  I believe that users should 

be present in each step of the analytical process.  Instead of automatically preparing 
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and summarizing data, information visualization systems designers should design 

their interfaces to allow users to choose the most relevant algorithms, get feedback 

about the effect of the algorithms, and then filter the data according to pertinent 

statistical recommendations of the algorithms. 

This is similar in spirit to the GRID principles proposed by Seo and 

Shneiderman [79], which are summarized as: 

 (1) Study 1D projections, study 2D projections, and then find features. 

(2) Ranking guides insight, statistics confirm. 

However, the design principles described here go beyond ranking and support any 

types of computed attributes from statistical techniques or data mining knowledge.   

They also focus on specific interactions and emphasize how to show the data relevant.  

Here, each category of information visualization interactions are augmented 

and improved with computed attributes.  For each interaction technique, I also 

provide an example that demonstrates how SocialAction’s integrated computed 

attributes can improve user’s ability to find patterns, gaps, and outliers in the 

visualization.  

4.1.1 Reconfigure:  Augmenting Visualizations with Computed Attribute Views 

The reconfigure interaction is common in information visualizations to provide users 

with a different perspective on the data.  For instance, Spotfire provides 8 different 

perspectives to visualize tabular data, such as scatterplots, bar charts and heat maps 

[85], allowing users to easily switch between representations that best suits their task 

at hand.  In similar spirit, TableLens allows users to sort and rearrange columns of 

tabular data to highlight different patterns in the data [73].  Most of these techniques 
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focus on reconfiguration based on inherent attributes.  However, this dissertation 

demonstrates a valuable design goal of supporting reconfiguration based on 

computed attributes from statistical techniques and data mining algorithms, 

particularly when the visualization is complex. 

 The complexity of network visualizations is an example when a 

reconfiguration can be useful.  While others have tried reconfiguring network 

visualizations into trees [55] or matrices [41], a reconfiguration based on computed 

attributes can provide an even simpler view on the data while also highlighting 

statistically interesting properties.  SocialAction reduces the network visualization 

into tables and scatterplots.  A table view, ranked by a computed attribute, allows 

users to focus attention on important nodes.  A scatterplot view, presenting 2 

computed attributes, allow users to compare multiple importance rankings in a 

visualization that has been shown effective at highlighting patterns, gaps and outliers.  

The reconfigurations in Figure 28 illustrate how the reconfigure interaction technique 

can be made even more powerful by computed attributes.   
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Figure 28.  The reconfigure interaction technique with computed attributes, as implemented in 
SocialAction. 
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4.1.2 Connect: Coordinating Statistical and Visualization 

The connect interaction is in synergy with the reconfigure technique.  This technique 

aims to highlight associations and relationships between data items.  As the 

reconfigure technique suggests, it can be advantageous to users to see different 

displays of the same data.  Connect suggests to show these multiple displays at the 

same time.  A common interaction technique in this category is brushing, which 

allows users to select a data item in one view and see the item in multiple views.  

Brushing is most often used in coordination with different projections of inherent 

attributes of the data.  For instance, if a Spotfire user selects a data point in a 

scatterplot, the corresponding data point will also highlight in an associated bar chart. 

 Providing reconfigured views of computed attributes a good first step, but 

connecting these views is essential.  Users should be able to browse the data 

visualization and the computed attribute views in a coordinated manner. At time, the 

inherent attributes may reveal discoveries, and at other times, the computed attributes 

will help reveal clues during analysis.  SocialAction connects these two views 

together using side-by-side displays that are coordinated.  If a data-point is in one 

view, the same point is represented in another view.  Users can brush from one view 

to the other.  If users wish to find nodes with certain structural properties, they can 

choose an algorithm that detects it in a sorted table instead of being forced to visually 

scan a complex visualization.  If the users care about multiple structural properties, a 

scatterplot can saliently show the intersection between them.  However, computed 

attributes may not always measure what users are seeking.  By connecting both 

views, users can judge the utility of the algorithms and reflect on its impact to users 
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tasks.  Thus, the connect interaction with computed attributes allows users to both 

learn about the data and the quality of the algorithms.  SocialAction supports connect 

by providing side-by-side views, brushing operations, and coordinated visual 

encoding (described in the next section). 

 

 

Figure 29.  The connect interaction technique with computed attributes, as implemented in
SocialAction. 
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4.1.3 Encode:  Representing Computed Attributes. 

A popular use of encode is to allow users to use color, size, fonts, shapes, and 

orientation to visual code data point with attributes of interest.  This allows 

visualizations to keep their spatial arrangement constant while visually presenting 

additional data about each of the nodes.  This is a widely used technique in many 

information visualization systems; however, most encoding focuses on inherent 

attributes.  Visually encoding with computed attributes is a natural extension and a 

convenient way to augment visualizations with results from statistics or data mining 

algorithms.  

 SocialAction follows this design goal by using color to encode results from 

algorithms.   By encoding nodes and edges with computed attributes, entities with 

certain statistical features can be easily found (e.g. the most popular individuals or the 

gatekeepers).  By default, color is defined along a red-black-green spectrum.  Values 

with the highest ranking are colored red, those in the middle are colored black, and 

those with the lowest ranking are colored green.  SocialAction assigns these values 

along this gradient based on the value of a computed attribute.  When users select a 

different computed attribute, the colors update appropriately.  Non-colorblind human 

eyes can easily distinguish between red and green, suggesting it as an effective color 

spectrum.  These computed attribute encodings can provide clues about the topology 

even when the topology is too cluttered and dense to make sense of, as demonstrated 

in Figure 30. 
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Figure 30.  The encode interaction technique for computed attributes, as implemented in
SocialAction. 
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4.1.4 Select: Marking interesting computed attributes 

The select interaction technique allows users the ability to mark a data item as 

interesting.  As already discussed, the connect interaction technique allows users to 

select items in each of the views available to users.  However, after users find and 

mark a data point as interesting, the selection should be persistent.  This is a 

particularly important design goal when many different computed attributes are 

available to users.  During exploratory data analysis, users may not know which 

computed attributes will lead to insights.  The ability to efficiently switch between 

various computed attributes should be supported.  But ultimately, users may care 

about the effect of each available algorithm on particular data points.  When both 

computed attribute values and layouts can change, this selection technique can be 

important for analysts. 

 This design goal is demonstrated in SocialAction where uses have the ability 

to select a node at anytime.  They can choose a node in either the network 

visualization or the statistical views.  No matter if they change the layout of the 

network, or compute a new statistical measure, both views will keep track of the 

previously selected node.  Keeping selection information persistent is important for 

allow users to be more adventurous when trying out additional statistical algorithms.  

Users shouldn’t have their exploration feel constrained by the system, but instead 

give them the freedom to creatively select and analyze particular data points of 

interest. 
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Figure 31.  The select interaction technique for computed attributes, as implemented in SocialAction. 
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4.1.5 Filter: Reducing Complexity by Focusing on Important Data 

Filtering can decrease the complexity of the visualization by removing data points 

that aren’t immediately relevant to the task of users.  Many information visualization 

systems allow users to filter out certain data points based upon inherent attributes, and 

are most effective with dynamic queries and range sliders (e.g. [85]).  However, few 

systems allow users to remove data points that are deemed statistically less important.  

Allowing users to filter by computed attributes is one way to achieve this goal.  

Although computed attributes can be displayed with visual encoding and coordinated 

with statistical views, resulting visualizations may still be too complex to 

comprehend.  However, the ability to filter out data that is relevant according to task-

related computed attributes is an effective way of reducing complexity. 

 The design goal of filtering by computed attributes should be integrated into 

all systems wishing to give users more control over the visualization display.  Similar 

to inherent attributes, dynamic queries and range sliders should be used to give users 

freedom to see how the filtering process affects their data.  SocialAction follows this 

design goal, which is extremely important in social network visualizations that are 

typically incomprehensible with more than 50 nodes and edges. 

In this example, a social network visualization is made more comprehensible 

by filtering according to statistical rankings.  The selected ranking is betweenness 

centrality, a social network analysis statistic that attempts to quantify the gatekeepers.  

The top image shows the network unfiltered, whereas the bottom shows the filtering 

enabled.  In the right example, the important nodes can be read and the edges between 

them are apparent.   



 

 80 

 

Figure 32.  The filter interaction technique for computed attributes, as implemented in SocialAction. 
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4.1.6 Abstract/Elaborate:  Focusing on more or less detail 

When information visualizations are too dense, abstracting the data into higher-level 

components can be useful.  Inversely, when the information visualizations are too 

sparse, elaborating details can be effective.  By abstracting or elaborating in 

statistically significant ways, users may understand the data more effectively. 

Clustering is one statistical technique that adds or reduces detail.  For example, in a 

social network visualization, it can be difficult to discern where various communities 

of tightly-connected individuals exist.  Abstracting and elaborating can both be used 

to display the statistical findings from the clustering. 

In this example, the community information is elaborated into the 

visualization by surrounding each community with a surrounding polygon.  This new 

information allows users to see which nodes belong to which community, and which 

relationships span multiple communities.  Compared to the non-elaborated image on 

the left, rich information previously hidden from the human’s eyes is now presented 

thanks to statistical algorithms.  This community information could also be used to 

simplify the visualization by turning each community in a meta-node, as shown in 

[65]. 
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Figure 33.  The elaboration interaction technique for computed 
attributes, as implemented in SocialAction. 
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4.1.7 Explore: Reaching insights through exploration. 

Computed attributes can help guide users to explore.  Algorithms from statistics and 

data mining are often created to find interesting properties of data.  These results can 

act as suggestions for exploration by users.    However, there are often a variety of 

algorithms on which to measure a data set so I focus this discussion on the 

exploration of computed attribute choices.    For instance, SPSS, a leading statistical 

analysis tool, includes over 80 sophisticated statistical procedures 

(http://www.spss.com/spss/alpha.htm ).  Having quick access to being able to assess 

the usefulness of the algorithm is important.   

4.1.8 Grouping of Statistical Algorithms by Task 

Rather than present a lengthy list of statistical features to users, they should be 

organized according to tasks the users are trying to accomplish.  By focusing on tasks 

rather than features, users can concentrate on their analytical goals: understanding 

their data. 

In SocialAction, I took the complicated, opportunistic nature of social network 

analysis and organized the numerous techniques into 6 tasks.  These tasks were based 

upon knowledge gained through interviews with analysts who described their 

methodologies.  The 6 tasks, as described in [67], involve finding important 

individuals, relationships, and communities.  This results in an interface that is task-

based, allowing users to focus on discoveries and insights, rather than focusing on 

what techniques to use. 
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Obviously, different types of users may require different tasks.  User 

interfaces should be robust enough to support multiple user types.  Again, this 

robustness may add an additional layer of complexity to user interface design, but 

focusing on tasks rather than features will allow users to focus on discoveries rather 

than navigating menus.  

 

4.1.9 Choosing and ordering Statistical Algorithms by Usefulness 

As mentioned above, there is no shortage of statistical algorithms to measure data.  

For instance, in social network analysis, nearly every author seems to invent a 

centrality measurement to suit their needs.  Analysts generally have a finite amount of 

time to analyze their data, so bringing their attention to the most useful algorithms 

should be considered. 

In SocialAction, I reviewed and tabulated the use of ranking algorithms in 

popular social networks journals, such as “Connections”.  Based upon their popularity 

of use, this provided guidelines for which algorithms were implemented.  However, 

their order in the interface is also based upon their popularity.  The effect of this is 

two-fold: explorers will be more often to select algorithms to analyze their data that is 

respected by their peers, and also give users quick access to the algorithms they most 

likely care about. 

 

Figure 34.  The Toolbar of SocialAction illustrates its organization of statistical features 
into tasks. 
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4.1.10 Optimize Statistical Algorithms 

Algorithms should be optimized to run in real-time.  If the algorithms are too slow, 

algorithmic results should be pre-computed when possible.  Another strategy is to log 

which algorithms are most often run by the users and run them on a background 

thread when the user is performing less CPU-intensive actions. 

4.1.11 Guiding Users through Algorithms 

Statistical techniques can yield valuable discoveries, but typical data analysis tools 

typically support only opportunistic exploration that may be inefficient and 

incomplete.  When the number of tasks is large and the algorithms are complex, 

guides can help domain expert users through complex exploration of data over days, 

weeks and months.  In fact, I believe this idea is so important I dedicate the next 

section to defining this explicitly for both inherent and computed attributes. 

4.1.12 Guiding Users with Systematic Yet Flexible Discovery 

The integration of statistics and visualization emphasizes interaction which can lead 

to complex paths of exploration for discovery.  For this reason, I present a refined 

architecture that uses systematic yet flexible (SYF) design goals to guide domain 

expert users through complex exploration of data over days, weeks and months [67].  

The SYF system aims to support exploratory data analysis with some of the 

simplicity of an e-commerce check-out while providing added flexibility to pursue 

insights.  The SYF system provides an overview of the analysis process, suggests 

unexplored states, allows users to annotate useful states, supports collaboration, and 

enables reuse of successful strategies.  The affordances of the SYF system are 
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demonstrated by integrating it into a social network analysis tool employed by social 

scientists and intelligence analysts.  The SYF system is a tool-independent component 

and can be incorporated into other data analysis tools. 

4.2 Systematic Yet Flexible Guides 

The increasing availability of digitized information encourages users to 

conduct more frequent and complex exploratory data analyses. The basic string 

search or SQL query are no longer adequate for advanced users who seek to 

understand patterns, discern relationships, identify outliers, and discover gaps.   

Data mining strategies, cluster analysis, and search engine results are helpful tools for 

such exploration, which typically takes days, weeks, or months.  Domain experts may 

be trying to sift through gigabytes of genomic data to understand the causes of 

inherited disease, to filter legal cases in search of all relevant precedents, or to 

discover behavioral patterns in social networks with billions of people.  For these 

challenging tasks, users must conduct repeated searches, combine results, and consult 

with colleagues.  As they grow familiar with the data, they move from divergent 

conjectures to more careful hypothesis testing so as to collect evidence supporting 

their emerging insights. 

Current tools can produce useful nuggets of information, but domain experts 

are increasingly aware of the need to shift from opportunistic discoveries to more 

systematic approaches.  A systematic approach guarantees that all measures, 

dimensions and features of a data set are studied.  Such an approach guides new 

users, ensures analysts of completeness, and facilitates cooperation during analyses 

that may take weeks or months.  However, a wholly strict guide would undermine the 
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topic in areas such as survey completion, job applications, and business process 

modeling.  Such strategies are all the more central in the e-science community, where 

scientific workflow management and record keeping are issues of vital importance.  

E-science researchers must also address long duration projects, collaboration 

complexities, and guarantees of completeness [45, 87]. 

Most computer users have some form of experience with systematic 

interfaces, as they are pervasive in many common activities.  The checkout process at 

Amazon.com [4], shown in Figure 35, provides an overview of the four steps users 

are required to complete before making a purchase.  The process is simple and 

systematic, but inflexible in that it requires users to complete their purchase following 

a strict order of operations, as part of a one-time process which does not allow them 

to return to or revise entries weeks later.   

A more sophisticated interface is Intuit’s TurboTax [48], which guides users 

safely through the complex U.S. Internal Revenue Service tax filing procedures.  

TurboTax steps users through the process of entering required information.  The top 

of the interface, shown in Figure 36, features secondary navigation tabs that allow 

users to complete steps in any order, in case they should wish to make changes or 

review previously entered information.  The top of the interface presents an overview 

of users’ expected tax refunds or debts owed, and updates after each question is 

answered.  TurboTax then verifies that all appropriate forms are filled out before 

allowing users to print or file their taxes.  While flexible to user preferences, the 

TurboTax system still does not explicitly track user progress for presentation in the 

header overview. 
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Inspired by these approaches, my goal is to enhance the tools available for 

data analysis with systematic yet flexible (SYF) support.  Data analysis is not as 

simple as a purchase on a website or filling out tax forms, so I present seven design 

goals to handle these more challenging tasks.  I integrate these design goals into my 

tool-independent SYF infrastructure.  This infrastructure supports discovery through 

systematic and flexible exploration, as well as annotation, collaboration, and process 

reuse (Figure 37).  This integration supports orderly exploration over weeks, record-

keeping to support discovery claims, and collaboration with colleagues.  This also 

supports the iterative process of returning to review earlier work and bold initiatives 

that break from the formulaic approach.  

Figure  37.  The SYF infrastructure facilitates discovery by providing systematic guides
while also allowing users to flexibly pursue insights.  SYF also facilitates analysis by
allowing users to easily annotate during exploration, share exploration results with colleagues
and partition effort, and reapply past exploration paths on new data sets. 
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I demonstrate the benefits of SYF by integrating it into SocialAction [65].  

The maturity of social network analysis tools has not advanced as fast as the 

popularity of social network analysis.  Numerous measures have been proposed by 

structural analysts to statistically assess social networks [99].  With a wealth of 

metrics, analysts want to be certain they are not overlooking critical facets of the 

networks in question.  A design that allows social network analysts to quickly iterate 

and keep track of computed metrics is critical for exploring these vast statistical 

measures.  The ability to share results, annotate key findings and reapply past 

measurements on new networks allow past efforts to not be wasted.  The SYF system 

provides such benefits critical to social network analysts. 

Systematic Yet Flexible Design Goals 
Enable users to: 

 1. See an overview of the sequential process of actions  

 2. Step through actions 

 3. Select actions in any order. 

 4. See completed and remaining actions  

 5. Annotate their actions. 

 6. Share progress with other users. 

 7. Reapply past paths of exploration on new data. 

 

Table 1: Seven design goals for systematic yet flexible interface support 
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4.2.1 The SYF Infrastructure 

I propose a set of seven design goals shown in Table 1.  The first four goals 

provide systematic yet flexible discovery support by ensuring analysts of 

completeness and guiding novices.  The last three goals support analysis by enabling 

annotations, collaboration and reuse.  Each of these goals supports analysts who work 

over many days, weeks, or months.  Furthermore, these design goals emphasize 

maintaining concentration to achieve task completion [82].  By showing users their 

prior, current and future steps, users are assisted when returning after inevitable 

distractions. 

In order to facilitate the integration of SYF principles into data analysis tools, 

I provide an open-source infrastructure to tool developers.  First, the tool developers 

register the systematic steps of exploration via SYF’s application programming 

interface (API).  Then, they register GUI events from their tool using the API and 

specify which steps the events belong to.  SYF keeps track of user progress by 

maintaining a history of GUI events invoked.  After developers augment their 

application with the SYF user interface, they can easily provide users with an 

overview, progress feedback, history navigation, annotation support, and the 

additional features listed in Table 1.   

4.2.2 Supporting Discovery with Systematic Yet Flexible Guides 

When users are exploring data, there are many paths and permutations to 

examine and users can easily get lost.  The SYF system provides feedback to users 

about their current state, the actions they have already completed, and which actions 
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remain.  This information gives confidence to users that they have made progress 

through the rich landscape of data analysis. 

The SYF system, which augments a data analysis tool’s interface, provides an 

overview of each of the systematic steps for completeness (Design Goal 1).  The left-

hand side of Figure 39 presents SocialAction 3.0’s seven systematic steps for social 

network analysis derived from practitioner interviews. 

Users who wish to explore the data via SYF’s systematic guiding can use the 

navigation buttons, also found on the left-hand side of Figure 5.  When users are 

ready to continue analysis, they can click the ‘Next’ button to bring them to the next 

unvisited state (Design Goal 2), or return to a previous state using the ‘Back’ button.  

If users wish to explore the data in a flexible way, each step button acts as a secondary 

navigation button, much like a tab.  Users can click this button to navigate to the 

actions required to complete the step (Design Goal 3).   

Each step button features a progress bar.  These meters give users a sense of 

how far away they are from completing the current step, as well as the entire data 

analysis (Design Goal 4).  If users wish to view their path of exploration so far, they 

can launch the history panel.  In Figure 40, a user’s history is shown as a tabular list 

that is sortable by step number, state type, user action or annotation rating. 

 Users can also hide the SYF panel if they wish to focus on their work.  By dragging 

the divider panel that separates SYF and the data analysis tool, they can shrink or 

minimize the guide.  Even when the SYF interface is hidden, the user’s actions are 

monitored so the benefits of SYF can be leveraged later. 
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4.2.3 SYF In Action:  SocialAction 3.0’s Node Rankings 

One step in the defined systematic social network analysis path is ranking all 

nodes according to importance metrics.  In Figure 38, an analyst has completed 40% 

of the current step.  In order for users to finish this step, they must examine the rest of 

the node importance rankings.  Information about completed rankings is not isolated 

to the SYF interface, but can also be integrated into the main UI of SocialAction 3.0.  

For instance, the combo box in which users select importance rankings are augmented 

with icons highlighting previously visited options (Figure 39).  If users have already 

examined a ranking, a checkmark appears beside it.  Similarly, if users have already 

made an annotation about this ranking, an annotation icon appears.  SocialAction can 

look up this information about each ranking state by using the SYF system’s API.  

Informing users in a consistent manner is important, as many users prefer to use 

secondary navigation instead of following all steps in order, depending on their 

hypotheses or experience [12].   
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Figure 38.  The SYF system integrated into SocialAction 3.0.  The interface to SYF is presented on the left-hand side, 
whereas the main UI for SocialAction 3.0 is on the right.  This figure features a “Global Jihad” terrorist network that 
researchers are studying using SocialAction.  In order to protect sensitive information, node labels have been anonymized 
except for those individuals publicly identified in the Zacarias Moussaoui trial. 
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4.2.4 Supporting Analysis with Annotation 

Throughout the process of exploring data, users may come across important 

discoveries.  The SYF system features a light-weight solution for users to annotate 

these insights quickly (Design Goal 5).  Annotations are textual comments such as 

indications of insights, notes about informing partners about progress, or questions to 

be asked to collaborators.  Often, annotations will deal with schedules, deadlines, 

reminders of tasks to be done, or the need to prepare for presentations.  Useful 

annotations might be attached to objects being studied, such as indications of relative 

value of legal precedents or chemical structures.  I augment these textual annotations 

with ratings and tags so they can be easily found later. 

During any stage of data exploration, analysts have access to the annotation 

functionality shown in the panel on the left of Figures 38 and 41.  This persistent 

panel allows users to quickly comment, rate and tag any state of analysis.  Users can 

write their insights in the enlargeable text editor. 
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Users can also mark a state as interesting via the ‘thumbs up’ button, 

uninteresting via the ‘thumbs down’ button, or tag the state with meaningful words or 

phrases.  Users can also choose to mark this state and comment with a tag in the ‘Tag’ 

text field.  Whenever users return to an annotated state of analysis, the annotations 

reappear automatically in this space.  

Users can review all past annotations by clicking the annotation button located 

below the systematic steps.  The number next to the annotation link informs users 

how many annotations have been composed.  In the annotation panel, shown in 

Figure 41, users can browse all annotations, keyword search for specific annotations, 

navigate using the tag cloud for tagged comments [35], or filter based on rated 

interestingness.  Users can select individual annotations from a sortable, tabular list 

Figure 39.  SYF’s History panel shows users’ past actions 
in tabular form.  Users can navigate by sorting by step 
number, state type, user action or annotation rating.  A 
‘Date’ column also appears when analysis takes place over 
multiple days.  Furthermore, users can filter based on 
“important” or “unimportant” annotations using the combo 
box at the top.  Users can jump back to a previous state by 
clicking the ‘Go’ button. 

 

Figure 40.  The Combo Box in the SocialAction 3.0 GUI 
provides feedback in the form of a checkmark icon to 
show which measures have been computed previously. 
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where they can read the comment or jump back to the state where the annotation was 

written. 

In addition to allowing users to return to interesting states for further 

exploration, annotations are useful when users wish to create reports about their 

findings.  Since useful discoveries have been recorded, users can export the images, 

tables and descriptions associated with interesting states into word processors or web 

pages. 

4.2.5 SYF In Action: SocialAction Communities 

I illustrate the annotation functionality in another step of social network 

analysis:  community detection.  One of the main goals of sociologists studying social 

networks is to find cohesive subgroups of nodes [24].  SocialAction’s algorithms 

automatically determine communities based on their link structure, to help users find 

groups of nodes that are closely connected in the network.  Communities are visually 

represented by surrounding all members with a translucent convex hull as shown in 

the right side of Figure 41.   

In this example, the user is browsing all annotations created with SYF.  The 

tag cloud shows the user’s tags for all annotated states, and the tabular list shows all 

annotations.  The last annotation is selected and displayed below.  The user activated 

this state by clicking the “Go” button and can review and continue analysis. 
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Figure 41.  This figure is shows the annotation features of SYF.  Users can browse their annotations by selecting the annotation 
button located at the bottom of the systematic steps panel.  Users can keyword search, navigate using the tag cloud, or filter based on 
the rating to find specific comments.  When a user selects an annotation from the resulting tabular list, it is displayed below. Users 
can jump to the state where the annotation occurred by selecting the ‘Go’ button. 
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4.2.6 Supporting Analysis with Collaboration 

New evidence has emerged suggesting that communication and collaborations 

are necessary components of successful visualization systems [95].  User studies also 

suggest that supporting collaboration with visual data analysis can help people 

explore a data set both broadly and deeply [40].  

The SYF system supports collaboration by allowing users to easily share their 

exploratory paths and insights that were annotated during their data analysis (Design 

Goal 6).  Since SYF monitors each interaction and allows users to specify useful 

states, analysts can easily export interesting states to colleagues.  Furthermore, users 

can partition effort during analysis.  After users finish a segment of analysis, they can 

share their completed results.  Recipients will know which analyses have been 

performed and annotated and will be empowered to not duplicate past efforts.  

4.2.7 Supporting Analysis with Reusable Exploration 

In addition to user-to-user collaboration, SYF also supports data-to-data 

collaboration.  Users can repeat analyses conducted on previous data to new data sets 

(Design Goal 7).  For instance, if a user already found several useful states during 

exploration and marked them as useful in the annotation panel, they could reuse these 

“best practices” on new data, as if it was a macro.  Analysts can quickly see if the 

same patterns, gaps or outliers are present in the new data set. 
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4.2.8 SYF In Action: Comparing Networks in SocialAction 

I illustrate an example of reusing past exploration in SocialAction 3.0.  This 

example comes from colleagues studying social networks that span thirty years.  In 

order to grasp the dynamics of a network, they often study a year’s data 

independently and then make comparisons to other years.  Instead of repeating 

calculations on every year manually, SYF allows these analysts to automatically 

compute and present analysis after the first exploratory path has been defined.  Social 

scientists often collect and input data manually and sometimes the visualizations 

present coding mistakes in the data.  In this situation, users need to fix the mistakes in 

the original dataset.  Instead of starting over from the beginning, analysts can use 

SYF to reapply all past analyses and continue to make progress. 

4.2.9 Defining a Systematic Path to Completeness 

Understanding the domain experts’ tasks is necessary to defining the 

systematic steps for guided discovery.  Although some professions such as 

physicians, field biologists, and forensic scientists have specific methodologies 

defined for accomplishing tasks, this is rarer in data analysis.  Interviewing analysts, 

reviewing current software approaches, and tabulating techniques common in 

research publications are important ways to deduce these steps. 

For instance, even though there are many importance rankings, clustering algorithms, 

and statistical techniques for assessing social networks, there is no well-defined 

methodology for performing these operations [99].  During the design of SocialAction 

I conducted in-depth interviews with six social network practitioners to understand 

their current work habits.  Since most social network practitioners were not using 
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visualizations during their exploratory analysis, these findings were augmented with 

several key principles from the information visualization community.  The tenets of 

the Visual Information Seeking Mantra [80] (“Overview first, zoom and filter, 

details-on-demand”) were kept in mind when ordering the tasks of social network 

analysts.  Furthermore, the Graphics, Ranking, and Interaction for Discovery (GRID) 

principles [79] (“Study 1D, study 2D, then find features.  Ranking guides insight, 

statistics confirm”) also shaped the systematic method for analyzing social networks. 

The resulting 7-step methodology for social network analysis, integrated into 

SocialAction 3.0, is: 

1. Overall network metrics (e.g. number of nodes, number of edges, density, 

diameter) 

2. Node rankings (e.g. degree, betweenness, closeness centrality) 

3. Edge rankings (e.g. weight, betweenness centrality) 

4. Node rankings in pairs (e.g. degree vs. betweenness, plotted on a scattergram) 

5. Edge rankings in pairs 

6. Cohesive subgroups (e.g. finding communities in networks) 

7. Multiplexity (e.g. analyzing comparisons between different edge types, such 

as friends vs. enemies) 

This is not the only systematic method for social network analysis, but one 

that will assure analysts they have explored relevant features in SocialAction 3.0.  

This methodology is evident in the SYF user interface that augments SocialAction 3.0 

(left side of Figures 38 and 41). 



 

 102 

 

4.2.10 Summary 

This chapter demonstrates that in order to design for exploratory data analysis, rich 

interactions need to be available to support the creative tasks of analysts.  In 

information visualization systems, interaction controls typically focus on inherent 

attributes, rather than computed attributes.  Using an established taxonomy of 

interaction techniques (Select, Explore, Reconfigure, Encode, Abstract/Elaborate, 

Filter, and Connect), design guidelines are presented to enable system designers to 

employ computed attributes with statistics and visualization.  This allows 

practitioners to yield generalized lessons learned from the design of SocialAction. 

 Although these interaction techniques are powerful, they can lead to complex 

paths of exploration.  In order to support analysts, I provide systematic yet flexible 

(SYF) techniques that guide users through the analytical process.  Users are able to 

see an overview of a sequential process to complete analysis.  They can step through 

actions or choose them in any order.  Regardless of the path of exploration, users can 

see the completed and remaining actions left.  In addition, support for annotation, 

collaboration, and reusable exploration is beneficial for aiding the exploration of 

users.  These design goals improve the process of exploratory data analysis. 
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Chapter 5: Evaluation 

In this chapter, I describe Contribution C3:Evaluation: 

Demonstrates the effectiveness of long term case studies with domain experts 

to measure creative activities of information visualization users. 

Traditional laboratory-based controlled experiments have proven to be 

effective in many user interface research projects.  When new widgets, displays, 

interaction methods, or input devices are being developed, controlled experiments can 

compare two or more treatments by measuring learning times, task performance 

times, or error rates.  Typical experiments would have 20-60 participants, who are 

given 10-30 minutes of training, followed by all participants doing the same 2-20 

tasks during a 1-3 hour session. Statistical methods such as t-tests and ANOVA are 

applied to show significant differences in mean values.   These summary statistics are 

effective, especially if there is small variance across users.   

However, because domain experts work for days and weeks to carry out 

exploratory data analysis on substantial problems, their work processes are nearly 

impossible to reconstruct in a laboratory-based controlled experiment, even if large 

numbers of professionals could be obtained for the requisite time periods. A second 

difficulty is that exploratory tasks are poorly defined, so telling the users which tasks 

to carry out is incompatible with discovery. Third, each user has unique skills and 

experience, leading to wide variations in performance which undermine the utility of 

summary statistics.  In controlled studies, exceptional performance is seen as an 

unfortunate outlier, but in case studies, these special events are fruitful critical 

incidents that provide insight into how discovery happens. Fourth, I wanted more than 
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quantitative analyses of the tool.  I also wished to hear about the problems and 

frustrations users encountered as well as their thrilling tales of success [46]. For such 

reasons, I turned to structured and replicated case study research methods to collect 

supporting evidence for the conjecture that integrating statistics with visualization 

would facilitate discovery for social network analysts. 

The novelty of structured and replicated case studies is apparent from a review 

of the 132 papers in the 2005-2007 IEEE Information Visualization and the 2006-

2007 Visual Analytics Science & Technology Conferences. Only 39 papers had any 

Figure 42. An analysis of InfoVis (2005-2007) and VAST (2006-
2007) Papers.  This analysis shows how a majority of papers 
feature no analysis, and most evaluations are controlled studies.  
No papers in these conferences have had structured, replicated case 
studies. 



 

 105 

 

user evaluation and each tested users for less than 2 hours of tool usage. Furthermore, 

all but 9 of these tests used domain novices who were given standard tasks.  

5.1 Evaluation Methodology  

Evaluating systems for information visualization tools is problematic because 

controlled studies may not effectively represent research strategies.  Information 

visualization can differ from other fields of HCI since systems are designed to be 

exploratory:  the set of tasks users may want to perform is not known.  For these 

reasons, I designed a methodology to evaluate SocialAction with four case studies 

involving researchers who worked on their own data with their own problems.   

Inspired by the goals of MILCs [84], I developed a methodology for studying the 

effectiveness of SocialAction.  Of course, there is a long history of long-term 

qualitative case studies (e.g. [107]), but this methodology takes into account the 

unique demands of information visualization users.  The methodology also takes into 

account the lessons learned from Seo and Shneiderman [78], but provides a structured 

and replicated approach with diverse domain experts. 

 

1. Interview (1 hour): This initial phase involves an interview to understand the 

intentions of the domain experts.  The achievement of the intentions acts as one 

benchmark of success at the end of the study.  Furthermore, this phase acts as an 

opportunity for observers to decide if the domain experts are appropriate 

candidates for the study.  This evaluation was limited to knowledgeable domain 

experts conducting serious research with well-defined goals. 
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2. Training (2 hours): Users participate in a training session with the software 

developers.  The domain experts are expected to use SocialAction to find insights 

during this practice analysis session.  After the training session, users have access 

to a brief instruction manual. 

3. Early use (2-4 weeks): Domain experts install SocialAction in their workplace 

where they load their own data relevant to their research goals.  Each week, 

observers visit the domain experts’ workplaces to interview them regarding their 

progress.  For case studies involving remote locations, interviews occur over the 

phone.  In the tradition of action research [98], the developers try to accommodate 

domain experts needs by modifying and adding features to the software to meet 

critical needs.   

4. Mature use (2-4 weeks): This phase features more hands-off, “ethnographic”-style 

observation.  No further improvements are made to the software despite requests 

from domain experts.  Similar to phase 3, researchers visit each domain expert’s 

workplace or conduct phone interviews.  The software developers continue to 

provide technical support as needed. 

5. Outcome (1 hour): This exit interview provides domain experts a formal chance to 

explain how the software impacted their research.  The domain experts revisit 

their original intentions from Phase 1 and rate each intention based on the level of 

achievement. 
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5.2 Data Collection 

In each of the five phases, the primary data collection method was interviews.  The 

interviews were conducted on-site in the domain expert’s workplace.  One domain 

expert was based in the Boston-area, so interviews for him were conducted over the 

phone.  Notes from each interview were recorded as field notes, and they were later 

transcribed digitally.  An example of field notes is located in Appendix A.   

 The on-site interviews in the Early use and Mature use phases (Phase 3 and 4) 

occurred weekly.  The domain experts would spend at least an hour recalling their 

insights from that week’s efforts using SocialAction.  Generally, screenshots from 

SocialAction would be shown in conjunction with each insight.  Furthermore, the 

domain experts would often recreate the path of discovery in SocialAction to 

demonstrate how they got there.  SocialAction did not automatically log the actions of 

each domain expert, so the interviews required the domain expert to manually step 

through the steps discoveries. 

 In the Early use phase, domain experts were able to request additional features 

in the spirit of action research [98].  In the interviews, the domain experts would 

highlight ways that they thought certain insights were being impeded by certain 

missing features.  A master list of all feature requests was documented.  I would then 

estimate to the domain experts how long each feature would take to implement.  The 

domain experts would then prioritize the features they would prefer to have before the 

next interview session.  In the Mature use phase, domain experts could still make 

suggestions but no new features were added to SocialAction. 
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 After the Early use and Mature use phases, a closing interview was conducted 

on-site.  I would share the highlights of my field notes and make sure everything was 

documented correctly and precisely.  We would then discuss how SocialAction helped 

or impeded the generation of hypotheses and insights throughout the case study.  

Here, they could also discuss their future plans and expected outcomes.  In the 

following sections, I describe in case study in full detail, beginning with the initial 

expectations from the first interview, to the discoveries made in the early and mature 

use phases.  Finally, I conclude with their outcomes, which led to scientific 

publications and internal reports.  One sample summary of the field notes from one 

case study is located in the Appendix. 

5.3 Case Studies with Domain Experts 

In order to validate my claims, I conducted four case studies of domain 

experts with diverse skill sets, domains of knowledge, and social network expertise.  

The domain experts were not recruited, but instead sought out SocialAction on their 

own after facing challenges in making sense of social networks.  The descriptions of 

the case studies below only discuss a fraction of the domain expert’s insights but are 

representative of their overall experience.  The domain experts were given 

SocialAction as described in Chapter 3.  The systematic yet flexible interface 

enhancements discussed in Chapter 4 were not evaluated. 

5.4 Case Study 1: Senatorial Voting Patterns  

Congressional analysts are interested in partisan unity in the United States 

Senate. For instance, Congressional Quarterly calculates such unity by identifying 
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every vote in which a majority of Democrats voted opposite a majority of 

Republicans, and then counts, for each senator, the percentage of those votes where 

they voted with the party. This metric can be useful for tracking an individual 

senator’s party loyalty from year to year, but it does not tell much about the overall 

patterns in the body.  Chris Wilson, then an associate editor for the US News & World 

Report, was interested in voting patterns among United States senators. 

Wilson was seeking to uncover senatorial patterns, such as strategic, 

bipartisan, or geographic alliances in the data set.  Wilson spent significant effort 

mining voting data from public databases, but was unable to find such distinct 

patterns through his normal methods of analysis.   

Wilson believed social network analysis could yield the answers he sought.  

His data included voting results for each senator during the first six months of 2007, 

beginning when the Democratic Party assumed control of the chamber with a one-seat 

majority.  A social network can be inferred from co-occurrences of votes.  Before 

contacting us, Wilson tried to visualize this data in KrackPlot [53], ManyEyes [96] 

and NetDraw [8] but did not manage to find any interesting patterns. 

5.4.1 Early Use 

From the data, Wilson constructed the network such that when a senator votes 

with another senator on a resolution, an edge connects them.   The strength of each 

edge is based on how often they vote with each other (e.g., Barack Obama and Hillary 

Clinton voted together 203 times, whereas Obama and Sam Brownback voted 

together only 59 times).  This leads to a very dense network because there are certain 

uncontroversial resolutions that all senators vote for (e.g. Resolution RC-20, a bill 
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commending the actions of “the Subway Hero” Wesley Autrey).  All senators are 

connected, which leads to a visualization of a huge, tangled web.  SocialAction’s 

interactive statistics empower users to dig deeper, without forcing users to choose an 

arbitrary cut-off before analysis begins. 

SocialAction allows users to rank edges according to importance metrics.  

Wilson used this feature to compare network visualizations by dynamically filtering 

out relationships with low importance rankings.  For instance, the 180-vote threshold 

(about 60 percent voting coincidence) is shown in Figure 43a.  Partisanship is strong 

even at this fairly low threshold, and the Republican senators who are most likely to 

vote with Democrats (Collins, Snowe, Specter, and Smith) are evident. This suggests 

that, in this particular Senate, although both parties are partisan, Republicans are less 

so than Democrats.  

As the threshold increases, the bipartisan edges diminish (Figure 43b).  

Another unexpected consequence was that the Democrats stay more tightly unified 

than the Republicans as the threshold increases. Wilson believed this interaction 

beautifully illustrated the Democratic caucus’s success in keeping members in line, an 

important fact when reviewing legislative tactics.  The integration of statistics and 

visualization made this discovery possible. 
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Figure 43.  The social network of the U.S. Senators voting patterns (98 nodes, 4753 edges). 
Republicans are colored red, Democrats blue and Independents maroon.  In the top image (a), the
partisanship of the parties appeared automatically (180 vote threshold).  In the bottom image (b), the
threshold is raised to 290 votes.  The Democrats’ relationships are much more intact than the
Republicans.   Details-on-demand are provided for Senator Whitehouse, the senator with the highest
degree at this threshold.    
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5.4.2 Mature Use 

In order to determine patterns of individual politicians, Wilson used the 

statistical importance metrics of SocialAction.  The capability to rank all nodes, 

visualize the outcome of the ranking, and filter out the unimportant nodes led to many 

discoveries.  Wilson stated, for instance, that the betweenness centrality statistic 

turned out to be “a wonderful way to quantitatively measure the centers of gravity in 

the Senate”.  SocialAction made it evident that only a few senators centrally link their 

colleagues to one another.  Wilson was also able to use the interactive clustering 

algorithms of SocialAction to “uncover geographic alliances among Democrats”.  

These findings are just a sample of the sorts of insights that eluded Wilson prior to his 

analysis with SocialAction. 

5.4.3 Outcome 

Wilson was impressed with the discoveries that SocialAction helped reveal.  The tight 

integration of statistics and visualization allowed him to uncover findings and 

communicate them to his peers both at his publication and on Capitol Hill.  

SocialAction received so much attention internally that the magazine hopes to 

replicate some of its functionality for its online readers.  This will provide readers 

with further data analysis opportunities, in the spirit of [95].  Since the case study, 

Wilson has moved to Slate Magazine but still uses SocialAction for investigative 

reporting.  So far, analysis from SocialAction has led to an interactive feature 

analyzing the social networks of steroids users in Major League Baseball [68], with 

more stories planned for the future. 
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5.5 Case study 2: Knowledge discovery for medical research 

The National Library of Medicine (NLM) maintains PubMed, a search engine 

with access to more than 17 million citations in the health sciences.  A recently 

revised feature of PubMed is the related article search.  This feature aims to improve 

knowledge discovery by linking together critical information that may be missed by 

keyword searching.  When users reach a citation of interest, five related articles are 

suggested on the screen.  Sophisticated information retrieval algorithms generate 

these recommendations automatically.   Jimmy Lin, a Ph.D. expert in information 

retrieval, led the project at NLM. 

Lin and his colleagues sought to understand the usefulness of the 

recommendation algorithm.  A successful algorithm would allow users to browse the 

document collection using the related articles links and reach other relevant 

documents.  A network of documents can be created by linking together each 

document with its recommendations from the algorithm.  The network’s structure is 

important, since isolated documents without links from other relevant documents 

cannot be reached by browsing.  Lin hoped to gain deeper insights about the 

usefulness of the algorithms by using SNA to explore the recommendation network.   

The recommendation network is not a “social” network, but demonstrates that 

although SocialAction is designed to support social network analysis, it also allows 

users to explore and interpret non-social networks, such communication, financial and 

biological and citation networks. 
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5.5.1 Early Use 

For the experimentation with SocialAction, Lin used data from a TREC genomics test 

set [44].  This set was chosen because there was ground truth on the relevance of 

documents (such as results for the query "what is the role of the gene GSTM1 in the 

disease Breast Cancer").  Lin then generated document networks, where for each 

known relevant document, the top five related documents were linked (e.g., the 

suggestions from the related article search in PubMed).  Upon loading the network for 

the first time in SocialAction, a eureka moment occurred.  Lin proclaimed, “This 

figure is exactly what I wanted to see!” 

Two phenomena were immediately noticeable from the visualization.  First, 

relevant documents tend to cluster around each other (notice the dense red cluster in 

the middle of the network in Figure 44).  This supports the cluster hypothesis in 

information retrieval, which proposes that relevant documents tend to be more similar 

to each other than to non-relevant documents [92].  However, there were also a 

number of isolated islands of documents (notice the disconnected, star-shaped 

clusters in Figure 45).  These represent documents that would be unreachable by users 

when using the related article feature, undermining the goals of that feature.  

Lin used a variety of the exploratory features of SocialAction.  For instance, 

he used the importance rankings for nodes to find the most suggested articles, or the 

gatekeeper articles that bridge two clusters together.   However, Lin’s initial goal was 

to characterize the effects of the related article search, as opposed to refining the 

algorithm.  Thus, Lin focused mostly on overall network statistics (such as number of 

disconnected components, density, and diameter) to quantify the output of the 
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retrieval algorithm.  Figuring out which statistics are useful is often an under-

surveyed problem of analysis tools. SocialAction’s design, which supports users 

quickly iterating through measurements while maintaining a constant visualization, 

served a useful role in this exploration. 

Lin also requested additional features for SocialAction, such as the capability 

to calculate statistics for nodes with certain attributes (e.g., the number of relevant 

documents linked from each relevant document).  Since Lin also was interested in 

using the statistical information to inform his retrieval algorithm, an exporter for the 

statistics was built. 
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Figure 44.  The recommendation network of a query on PubMed documents (200 nodes and 305 edges).  Relevant
documents are red, non-relevant are green.  The community algorithm highlights closely-connected clusters in the
network.  Communities are color-coded by the percentage of relevant documents and labeled by the number of
relevant documents. 
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5.5.2 Mature Use 

With the requested features implemented, Lin used SocialAction to study 49 

different query networks.  Each of the networks had varying properties (number of 

suggested articles, number of relevant documents, density).  The integration of 

statistics and visualization allowed Lin to quickly explore the networks, spending less 

than a few minutes on each network after becoming comfortable with SocialAction.  

This exploratory investigation led to the visual insight that networks with more 

relevant documents (red nodes) clustered together tend to have fewer the 

disconnected components. 

Lin also used the clustering features of SocialAction to find tight-knit groups 

of articles that are highly similar to each other.  Figure 44 shows the network 

components broken down into smaller communities using the hierarchical clustering 

algorithms available in SocialAction [65].  Each community is surrounded by a 

bubble colored based upon statistical information chosen by users (in this case, the 

average number of relevant documents).  This visual evidence supports the cluster 

hypothesis Lin sought to confirm.  SocialAction allows users to control the size of the 

clusters, digging deeper and deeper into the closest-knit groups.  However, while this 

feature allowed Lin to advance his exploration, he chose to leave these results out of 

his analysis due to the subjective nature of cluster size.   

5.5.3 Outcome 

Using SocialAction, Lin and his colleagues were able to better understand the 

performance of their retrieval algorithm.  The analysis showed that users can access 

most of the relevant documents by clicking on the related article links (e.g., without 
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having to go back to the search results and reformulate a query).  However, they also 

identified isolated clusters, which represented relevant documents that were not 

reachable by browsing.  The results of this analysis led to a publication of a high-

quality research article in a prestigious information retrieval journal [56].    The 

exploratory nature of SocialAction allowed the researchers to measure their 

algorithms even though they had no prior knowledge of which SNA statistics would 

be useful.  They also believe SocialAction will be a useful tool for verifying the 

effectiveness of new recommendation algorithms for PubMed. 

5.6 Case Study 3: Engaging Hospital Trustee Networks 

A Northeastern healthcare insurer is interested in engaging hospital boards in their 

region to speak loudly about healthcare quality.  They are using social network 

analysis to help inform and prioritize this initiative.  They hired Bruce Hoppe, a 

professor at Boston University, who also serves as a consultant aiding businesses in 

optimizing their operational networks.  He uses social network analysis to accelerate 

business results and has experience with many Fortune 500 companies.  Despite 

having a repertoire with over 8 social network analysis software tools (including [8, 

9, 11, 53]), he has yet to find a suite that achieves his needs in exploring data 

effectively.  For this reason, he was interested in integrating SocialAction into the 

workflow of his latest project. 

5.6.1 Early Use 

Hoppe began using SocialAction to analyze the board interlock network of over 500 

organizations (such as hospitals, businesses, and non-profits) provided by the 
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healthcare insurer.  These 500 organizations had a total of almost 8,000 board 

members.  Hoppe was pleased that SocialAction could load all of the data at once and 

provide an overview of the whole network.  In general, he was used to cropping data 

before analysis.   

After seeing the large network, the healthcare insurer asked Hoppe to focus on 

a subset of the network: the hospitals and their boards of trustees (1740 nodes and 

1854 edges).  Unlike other SNA tools, SocialAction allows users to compare different 

but related varieties of statistical measures on a scatterplot.  When Hoppe noticed this 

feature, he became interested in the relationship of degree centrality and betweenness 

centrality:  to what extent were trustees sitting on many boards also the gatekeepers 

who connected many diverse hospitals.  The scatterplot enabled Hoppe to quickly 

spot patterns in the healthcare network and the important outliers (Figure 45).  In 

particular, a relatively unknown “Trustee 527” (anonymized for confidentiality) 

emerged as a focus of attention due to her unique position of few hospital connections 

but nonetheless a key gatekeeper in the network. The integration of statistics and 

visualization provided Hoppe with inspiration for a report delivered to the healthcare 

insurer.   

  



 

 120 

 

 

  
Figure 45.  The scatterplot allows users to compare multiple SNA metrics (In this example, out-degree and
betweenness) of the healthcare network (1740 nodes, 1854 edges).  An obvious outlier is selected in the
scatterplot, who was a trustee that had the highest betweenness (key gatekeeper) despite having only 4
connections.  The names of trustees and organizations are anonymized to protect this confidentiality. 
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5.6.2 Mature Use 

The healthcare insurer was informed by the report which Hoppe provided after his 

analysis with SocialAction.  The network was filtered according to meaningful SNA 

metrics and had become more comprehensible.  Now present were labels which 

allowed viewers to focus on the connections between hospitals and trustees.  This 

transparency of the underlying data led the healthcare insurer to question the data.  In 

fact, they found gaps in their data.  These data discrepancies are being corrected, so 

Hoppe was forced to temporarily halt his exploration.  However, the visualizations 

and filtering power of SocialAction allowed him to interpret these critically important 

data issues during analysis.  Hoppe suspects a purely statistical approach to analysis 

might have missed these details. 

5.6.3 Outcome 

Hoppe used SocialAction as his main exploratory tool during his consulting work for 

the Northeastern healthcare insurer.  In his monthly reports, he often included insights 

and visualizations resulting from his use of SocialAction.  These findings have had 

significant impact with the healthcare organization.  They now have a better 

understanding of the region’s hospital trustee network and are working to make sure 

it informs their quality initiative.  However, Hoppe admitted “I like having a medley 

of complex and ad-hoc tools.  I am much more likely to recommend SocialAction to 

my clients – who need one simple approach to network exploration – than I am to 

adopt it as my own primary SNA tool.”   SocialAction lacked certain features critical 
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to his needs, such as additional statistical measures, comprehensive map-editing for 

nodes (e.g., size, label, and color), the ability to save these edits for future updating, 

and the ability to export the final results as vector graphics for high resolution 

presentations. 

5.7 Case Study 4: Group Dynamics in Terrorist Networks 

The National Consortium for the Study of Terrorism and Responses to Terror 

(START) is a U.S. Department of Homeland Security Center of Excellence.  START 

has a research team around the world which “aims to provide timely guidance on how 

to disrupt terrorist networks, reduce the incidence of terrorism, and enhance the 

resilience of U.S. society in the face of the terrorist threat”.  One member of this team 

is James Hendrickson, a criminologist Ph.D. candidate, who is interested in analyzing 

the social networks of “Global Jihad”.   

Previous research has pointed to the importance of radicalization informing 

and sustaining terrorist organizations.  While the radicalization process has been well 

described from a psychological standpoint, he believes theories examining the group 

dynamics of terrorism have largely failed to properly measure the size, scope and 

other dynamics of group relations.  Hendrickson proposes to systematically compare 

the density and type of relationships held by members of the "Global Jihad" to 

evaluate their predictive ability in determining involvement in terrorist attacks.  Marc 

Sageman, a visiting fellow at START, assembled a database of over 350 terrorists 

involved in jihad when researching his best-selling book, “Understanding Terror 

Networks” [74].  Hendrickson plans to update and formally apply social network 

analysis to this data as a part of his Ph.D. dissertation. 
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5.7.1 Early Use 

The Sageman database has over 30 variables for each terrorist.  Among these 

variables are different types of relationships, including friends, family members, and 

educational ties for religion.  Hendrickson proposes that the types of relationships 

connecting two individuals will hugely affect their participation in terrorist attacks.  

Hendrickson began this analysis using UCINET [9] and was able to analyze some of 

his hypotheses.  However, he believed UCINET did not facilitate exploration and 

generating new hypotheses easily.  Hendrickson initially was skeptical of using 

visualizations for his analysis.  He prefers being able to prove statistical significance 

quantitatively rather than relying on a human’s judgment of an image.  The quick 

access to the statistical counterparts of SocialAction’s visualizations eased his 

concerns.   

In particular, SocialAction’s multiplexity feature aided Hendrickson’s 

exploration.  SocialAction allows users to analyze different relationship types without 

forcing users to load new data sets.  The visualization shows the selected relationship 

edges but keeps node positions stable in order to aid comprehension.  The statistical 

results are also automatically recomputed based on the newly selected structure.  For 

instance, only the ‘Friend’ relationships among Jihadists are selected in Figure 46a.  

(Compare this to the denser Figure 17a, which shows all relationship types.)  The 

nodes here are ranked by degree, so red nodes have the most friends.  Jihadists Osama 

Bin Laden and Mohamed Atta (known for his role in the 9/11 attack) are ranked the 

highest.  However, when the religious ties are invoked, a different set of key jihadists 

emerge (Figure 46b).  
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Figure 46.  The multiplexity of the “Global Jihad” social network of 366 nodes is demonstrated.  The
upper visualization (a) shows the Friendship network (338 edges), with bin Laden the most popular
individual.  The bottom network (b), showing religious ties (106 edges), offers a much different view
of the terrorist organization. 
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5.7.2 Mature Use 

After analyzing the statistical attributes of nodes, Hendrickson became interested in 

understanding the individuals’ attributes.  As an example, he was interested in 

answering questions like, “Does an individual’s socioeconomic status or education 

level impact their position in the terrorist network?”  Of course, social network data 

does not allow users to infer causation but instead may show correlation.  Like 

statistical rankings in SocialAction, users can rank and filter based upon attributes.  

Hendrickson filtered out individuals without college degrees, without religious 

backgrounds, or without engineering expertise and analyzed the results.  The 

combination of nodal attributes with statistical filtering and plotting streamlined his 

accustomed workflow.  He suspects he may not have been as free thinking if it wasn’t 

for the ease of exploration in SocialAction.  This analysis inspired Hendrickson to 

think of new, not-yet-coded attributes, to test additional hypotheses.  He is currently 

augmenting Sageman’s database with new attributes so he can look for patterns in 

SocialAction, visually and statistically.   

5.7.3 Outcome 

Hendrickson’s experience with SocialAction has led to new inspiration for his 

dissertation thesis.  Although he had access to the dataset long before the case study 

began and conducted analysis with other SNA software, the integration of statistics 

and visualization allowed exploration in new, interesting ways.  As a result, the 

START center is interested in making SocialAction the default network analysis tool 

for internal and external users who wish to access their databases.  They are currently 
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integrating a specialized version of SocialAction into their online global terrorism 

database. 

5.8 From Information Visualization to Journalism:  A Case Study with Slate 

Magazine 

Due to the popularity of social networks in the mainstream, as well as the abilities of 

SocialAction to allow users to find and share social network discoveries more easily, 

there has been demand for SocialAction among journalists.  Journalists can be quite 

different than academic researchers.  They often have tight deadlines, which can 

result in limited patience for confusing interfaces, unclear statistical results, chaotic 

visualizations, or input file formats that are difficult to manually prepare.  These 

problems are further started by Rich Gordon, a journalism professor at Northwestern, 

who states: 

“One key problem is that many journalists just aren't comfortable with 

technology. And even if they learn to use technology tools successfully in 

their work, few want to delve deeply into the process of developing new 

technology. And most media organizations don't seem to value their 

programming staffs or involve them in the journalism process. Instead, their 

work supports back-end systems like payroll and billing.” 

http://www.pbs.org/idealab/2008/02/computation-journalism.html 

However, the divide between journalism and computation is narrowing.  A course on 

Computational Journalism has been taught at Georgia Tech, and a recent conference 

“Journalism 3G: The Future of Technology in the Field” brought together journalists, 

technology entrepreneurs, and researchers.   
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Information visualization tools seem to complement the ideals of 

computational journalism.  Unlike data mining, which can sometimes take humans 

out of the process, Information Visualization tools engage users to analyze and find 

stories in the data.  For this reason, I was curious in investigating the role my 

information visualization tool, SocialAction, among journalists.  By taking into 

consideration the guidelines and findings I provide, a new user base of information 

visualization users can partake in data analysis.  Journalists can be a valuable user 

base because they can promote our work but also promote the goals of information 

visualization:  visual representations of complex data that highlights patterns, gaps, 

and outliers.  Furthermore, journalists have mastered the art of storytelling, so their 

comments, feedback, and use of tools can influence information visualization 

designers to focus on features that lead to insights, discoveries, and compelling 

stories.  In this chapter, I present evidence from a case study with journalists from 

Slate Magazine. 

5.9 A Case Study with Slate Magazine 

Slate is a popular, award-winning online news and culture magazine established in 

1996.  Although Slate does not have an organized, strategic initiative to better support 

computational journalism, this online magazine seemed to be an ideal home for 

disseminating information visualization results.  For instance, the magazine features a 

section entitled, “Low concept: Dubious and Far-fetched ideas”.  Their online 

medium also facilitates interaction, a prime goal of information visualization tools. 
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This case studies centers around Chris Wilson, an editorial assistant at Slate, 

who initially used SocialAction while working at US News & World Report.  The 

results from his experience with SocialAction were previously described and in [66]. 

5.9.1 Story #1: The Steroids Social Network 

In December 2007, US Senator George Mitchell delivered a 409-page report on 

performance-enhancing drugs in the sport of baseball.  The report described an 

underground market for steroids and human growth hormone involving many players 

and trainers throughout the sport.   Reading the report, it became clear that drug use 

spread as players referred their friends and teammates, creating a social network of 

illicit activity in the majorly league baseball.  Slate was interested in providing a 

visual overview of these connections defined in the Mitchell Report for their readers. 

Wilson manually went through the Mitchell Report and tabulated the 

individuals and relationships mentioned using Microsoft Excel.  Wilson then sent this 

spreadsheet to me, and I imported it into SocialAction.  Since the network was rather 

small (58 nodes and 58 relationships), the network’s structure became apparent 

through the force-directed algorithm alone.  Kirk Radomski, a former batboy and 

clubhouse employee for the New York Mets, was at the center of the network.  

(Radomski cooperated with the federal commission and Mitchell Report and provided 

much of their evidence).   Further discoveries were made when running the 

community algorithm on the network.  Communities centered around trainer Brian 

McNamee (made famous by testifying against the all-star pitcher Roger Clemens), 

David Segui (a home-run hitter who played on many teams), trainer Todd Seyler, and 
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others.  I sent a screenshot of these findings to the Slate team, and they immediately 

saw a story worthy of print (Figure 47).   

At the time, SocialAction only had the ability to output rasterized graphics.  

Since they wanted the graphic to become interactive, they paid a graphic designer to 

trace the screenshot in Adobe Illustrator to make a vector graphic, as shown in Figure 

48.  This vector graphic was then delivered to a Flash programmer, who implemented 

the mouse-over features shown in Figure 49.  This process took about 48 hours of 

iterative improvements and continuous contact between the writers, the graphic 

designer, the programmer, and the Slate editors. 

Amidst this collaboration in Slate, I was slightly left out of the loop.  This 

resulted in several complaints I had about the resulting visualization (e.g. there were 

more tangled edges and nodes than necessary).  However, the graphic designer was 

able to accommodate most of my requests, making the paths between persons in the 

graphic easier to see.   

The end result was a very successful visualization that was timely (released 

less than 1 week after the report) and popular (favorably talked about on one of the 

most popular sports blogs, Deadspin) .  Even months later, the visualization was still 

often promoted in Slate Magazine (e.g. Figure 50).  The interactive visualization is 

online at http://www.slate.com/id/2180392/. 

The advantage of this joint approach was that I was able to leverage the input 

from the information visualization tool designer (myself), the reporter (Chris Wilson), 

the graphic designer (Holly Allen), the programmer (Matt Dodson), and the Slate 

editorial staff.  The downside was that the original reporter and I didn’t have as much 
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control over the final graphic was as one would have liked.  It was also rather 

expensive and inefficient for both a graphic designer and programmer to replicate the 

output that SocialAction had automatically produced.    
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Figure 47.  A screenshot of SocialAction after analysis of the Mitchell Report social network data.  In
this screenshot, the clusters were found using the community algorithm. 

Figure 48.  The Steroids Social Network interactive graphic on Slate.  This graphic was manually 
created by a graphic designer and Flash programmer based upon the  screenshot of SocialAction shown 
in the previous figure. 
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Figure 49.  The Steroids Social Network graphics’s interactive features.   When a user mouse-overs a 
person or relationship, the applet describes the information in the Mitchell Report about that person or 
relationship. 

 

 
Figure 50.  Promotional Advertisements on Slate Magazine’s website, which were featured 
prominently December 2007 through February 2008.  
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5.9.2 Story #2:  The Oscars Social Network 

The Slate Editorial Staff was interested in producing an interactive visualization to 

support their Oscar coverage.  Chris Wilson and I wondered if a story could be told 

surrounding the collaboration of the nominated actors.  Using public data sources, 

Wilson created a collaboration network of movie stars based upon the movies they’ve 

acted in, and their fellow co-stars.  By crawling out from the nominated actors, a 

social network was constructed of all of the nominated actors and their co-stars.  This 

resulted in a social network of over 4,000 actors and 25,000 relationships.  This may 

seem like a huge, diverse talent pool -- but upon closer inspection, it was a rather 

small world for these elite actors.  Using social network analysis analysis algorithms 

to find the gatekeepers, it turns out there were four prominent non-nominated actors 

in the network to connect all of the nominees:  Catherine Keener, Keira Knightley, 

Steve Buschemi, John Turturro. 

While the editors were intrigued by this “small world” graphic, Wilson was 

not able to convince them that it had a clear message that could easily be distilled for 

readers not steeped in SNA theory. This can be a tension in these collaborations 

between journalists and academics.  Wilson adds that the first question an editor is 

likely to ask is: “So what? What to readers learn from this? What specific question 

does it answer that people may have wondered in the past?”  

The editors, however, strongly supported the concept of the graphics and are 

eager to incorporate them in Slate’s coverage when the right opportunity arises. Their 

argument, as Wilson describes, is that since the public is not usually familiar with the 
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particulars of social networks, the first data-driven implementation should present a 

clear image of a data set with which people are particularly familiar. One problem 

with the Oscar data this year, from this perspective, was that it included a lot of 

unfamiliar names from newcomers and foreign actors. Furthermore, one year’s worth 

of nominees struck some as a bit arbitrary.  

The editors searched this graphic to find if a reader could use it to answer a 

juicy question.  For example, could this data identify people who had never won (or 

never been nominated) but had a close connectivity to many winners/nominees? This 

question was pegged to a larger data set of winners over a least a decade, and 

occurred too late in the week for it to be plausible to build this exponentially larger 

database.  

Wilson mentioned this was an interesting experience, as the mere existence of 

non-intuitive communities within a network doesn’t qualify as a story. Rather, it has 

to reveal something that fits logically into a storyline or (as was the case with the 

steroids network) provides an insightful way to look at a group that people already 

fundamentally think of as a social network. While this was true of the Mitchell 

Report, actors and actresses in movies are equally as logical as candidates for a 

network. 

Wilson adds there was one other distinction between the two stories: “The 

Mitchell Report was a bounded network of about 60 people, whereas the movie data 

could theoretically have continued expanded to tens of thousands of names. There 

was no glaringly obvious group of people who qualified for the network based on 

some other distinction than connectedness. This is one reason the Senate graphic is 
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such a good example of the technology: There is a discrete group of 100 nodes.”  

Wilson and his editors are confident that SocialAction “will be an engaging editorial 

tool”.  However, the artificial construction of the actor’s social network didn’t quite 

fit with the editor’s preference for their Oscar coverage. 
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Figure 51.  The Oscar Nominee Social Network after filtering out
all but the essential gatekeepers. 

Figure 52.  The corresponding Flash applet , automatically generated by
SocialAction, for distribution in Slate Magazine. 
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5.9.3 Summary of Slate Case Study 

In summary, this case study with Slate Magazine illustrates a journalist’s perspective 

into information visualization, and how a tool can be used for both data analysis and a 

story of interest to the general public.  In addition to these insights, tool designers 

should also keep in mind the requirements of accessibility for journalists, including: 

• Ability to input data from standard programs, such as Microsoft Excel. 

Complex data formats like XML are difficult for non-programmers to provide.   

• Ability to export data formats. 

• Print quality graphics. 

• Cross-Platform applets. 

• No special software to be installed by end-users to experience the 

visualization. 

Journalism is a media outlet that can help gain information visualization more 

prominence among readers, researchers, analysts and scientists.  However, journalists 

may be different than typical data analysts due to their short deadlines and 

requirement for thrilling discoveries. 

5.10 Summary 

This chapter describes how my dissertation provides a novel evaluation methodology 

that improves the ability to measure the creative activities of information 

visualization users.  Traditional laboratory controlled experiments are often not suited 

for the tasks of information visualization users, whose tasks are exploratory and not 

well known, and users have unique domain expertise.  I propose the use of long-term 

case studies with domain experts to validate if a system is successful or not.  My 5 
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step methodology lasts 4-8 weeks with the system deployed to domain expert users.  

The first step, the interview, gauges the domain experts intentions, where are used as 

a reference to help validate the tool success.  After a subsequent training session, the 

early use phase begins where domain experts use the tool for 2-4 weeks with the 

ability to request missing features.   This stage is followed by a mature use phase, 

where domain experts continue to use the tool for 2-4 more weeks.  In both the early 

and mature use phase, interviews are conducted on-site where the domain experts 

report on their experience and insights.   The final stage is an outcome session, where 

users debrief their experience and revisit their intentions from the first stage.   

This methodology was applied four times for case studies with unique users 

with varying domain expertise.  A political analyst, bibliometrician, healthcare 

consultant, and counter-terrorism researcher were all able to make previously 

unknown discoveries using SocialAction, despite having prior studied the data with 

other tools.  These unique insights help validate that SocialAction’s integration of 

statistics and visualization helps better support the workflow and creative activities of 

social network analysts.  A follow-up case study, with Slate magazine, is also 

included to further illustrate how information visualization tools deployed over a long 

time can aid the creative activities of journalists.  
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Chapter 6:  Implementation 

I have developed SocialAction since 2005.  SocialAction 1.0 was a prototype 

demonstrated coordinated views and attribute rankings in my InfoVis 2006 paper 

[65].  SocialAction 2.0 was a significant rewrite of SocialAction 1.0, where the 

statistical and visualization algorithms have been optimized to support real-time 

interaction with large networks of interest to my case study partners described in the 

my CHI 2008 paper and Chapter 5 [66].  SocialAction 3.0 added the Systematic Yet 

Flexible guides for exploration described in my IUI 2008 paper and in Chapter 4 [67].  

 SocialAction is implemented in Java to provide an OS-independent social 

network analysis tool for social network analysts.  SocialAction uses the Prefuse [39] 

visualization toolkit to render the visualizations in Java2D.  This chapter describes the 

implementation details of SocialAction 3.0 without the systematic yet flexible guiding 

to simplify the description. 

 The resulting SocialAction application is over 15,000 lines of code, in addition 

to contributions to various open-source libraries to improve the rich interaction and 

visualization capabilities necessary for its design. 

6.1 User Interface of SocialAction 

Since the design of SocialAction’s user interface is a primary contribution of this 

dissertation, much of the user interface discussion is found in Chapter 3.  This chapter 

only provides details relevant to the implementation.  The overall user interface 

layout of SocialAction is shown in Figure 53.  The ToolBar features a button for each 

of the tasks relevant to social network analysts described in Chapter 3.  When one of 

these buttons is clicked, both the Statistical Panel view and the Network Visualization 
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view are updated.  Throughout all user interactions, both the Statistical Panel and the 

Network Visualization view are coordinated.  This achieves my design contribution 

of integrating statistics with visualization throughout analysis.  A common challenge 

with multiple views of data is they each view competes for screen real estate. Users 

have the ability to emphasize a particular view by enlarging the panel of interest 

(which results in the shrinking of the panel of less interest).  This action can be done 

by dragging the divider between the two panels to resize both views.  There are also 

arrows on the divider that can be selected to completely hide one view.     
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Figure 53.  An overview of the user interface of SocialAction. 
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To achieve this coordination, SocialAction stores the social network data into 

the Prefuse Reference Model [37].  This architecture is appropriate for an information 

visualization system because it separates the data and visual models to allow multiple 

visualizations of the same data source.  Multiple views of visualizations are also 

possible due to separate visual models.  And finally, separate controllers allow user 

input to flexibly update any component of the system.  This Reference Model 

framework has been advocated by both Chi et al.’s data state model [16] and Card et 

al.’s infovis reference model [13].  This model allows each of the visualizations in 

SocialAction to be coordinated with each other. 

The social network data is stored in four main tables.  A NetworkTable is 

maintained for overall attributes of the social network, such as the number of nodes 

and edges or if it’s directed, as well as the computed statistical attributes, such as 

density and diameter.  Each row in this table in an attribute describing the network.  A 

NodeTable is maintained to store data about each of the nodes.  Each row in this table 

is a node, and each column represents an attribute of the node.  Some columns are 

attributes (e.g. Label and Image information, as well as any attributes inherent to the 

data).  When a new statistical measure on the nodes has been computed, a new 

column is added to this table to store the newly computed attribute.  The EdgeTable is 

similar to the NodeTable, except each row represents an edge.  An edge is required to 

have two columns, the first referencing the source node and the second reference the 

target node.  Each additional column reflects an inherent or computed attribute.  

Finally, there is also a CommunityTable that maintains information about each of the 

communities.  Rows represent each of the communities, and the columns represent 
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their computed attributes.  The NodeTable, EdgeTable, and CommunityTable each 

have a corresponding VisualTable that represents their current visual representation, 

as shown in Figure 54.  Here, size, color, position, and other visual characteristics 

corresponding to the nodes, edges, and communities are stored.  The statistical and 

network visualizations use this information, and allow both the data and visual 

attributes to be coordinated. 
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Figure 54.  The data reference model of SocialAction. 
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6.2 Input Data Formats 

SocialAction supports a variety of data formats.  Users can import social networks in 

a variety of popular formats among social network analysts, such as Pajek [17] and 

GraphML.  However, these formats can be difficult for non-programmers to produce, 

as they are structured formats that cannot easily be edited in a spreadsheet program 

like MS Excel.  For this reason, SocialAction also supports the HCIL Network 

Visualization Input Data Format (http://www.cs.umd.edu/hcil/nvss/netFormat.shtml).  

The format requires two separate files:  a node table and an edge table.  Similar to the 

internal representation described above, the node/edge tables consists of a row for 

each node/edge.  Each column represents an inherent attribute of the node/edge that 

can be accessed from within SocialAction.  For instance, users can choose to color, 

label, or rank according to these attributes present during the import process. 

 After users select the input files, SocialAction provides a preview dialog 

window, as shown in Figure 55.  Users can construct the network based upon the 

attributes of the nodes and edges they’ve imported.  Users can select the column in 

the node table that represents the ID of each node.  The ComboBox is automatically 

populated with the names of each column in the node table.  Similarly, users must 

select the two edge columns.  Users can also select the initial columns they want to 

reflect the labels of each node, the multiplex attribute for varying edge types, and the 

edge column that stores in each edge.  Furthermore, users can check the appropriate 

box if the edges are bi-directional or directed.  After users click the “Import” button, 

the network is constructed and loaded into the statistical and visualization views. 
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Figure 55.  The import Dialog Box for SocialAction 
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6.3 Algorithms and Scalability 

Due to the tight integration of statistics and visualization, the speed of the algorithms 

driving the statistically computed attributes is very important.  The algorithms 

implemented in SocialAction were often based upon known fast optimizations (e.g. 

[10]) or derived from existing fast implementations (e.g. [63]).  For certain algorithms 

not available, they were personally implemented.  In all cases, they were optimized to 

interact with the SocialAction data reference model previously described. 

 To illustrate the runtime of SocialAction and the computational complexity of 

the statistical algorithms, a table of run-time speed is provided for a sample of 

algorithms.  The length and time of each algorithm is dependent on the topology of 

the network, such as the number of nodes, edges and the diameter.  Run-time speeds 

are shown for each of the networks used in the case studies to illustrate the speeds in 

public.  These speeds with computed on a Microsoft Windows XP PC with an Intel 

Core2 Duo 3.00 GHz processor, with 3.25 GB RAM.   
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 Case Case Case Case 

Network Attributes 
Study 

2 Study 1 Study 3 Study 4 

# of Nodes 220 98 1740 366 
# of Edges 305 2444 1854 2334 

Diameter 11 3 24 9 
Algorithm Time (Milliseconds) 

Degree Centrality [99]. 16 16 46 16 
Betweenness Centrality [99].   
Derived from implementation in [63]. 125 204 2265 627 
Closeness Centrality [99]. 110 392 5016 895 
Farness Centrality [99]. 109 189 4594 831 
Clustering Coefficient [103].   
Derived from implementation in [63]. 16 439 62 110 
HITS Authority [52].  
Derived from implementation in [63]. 109 267 672 345 
HITS Hub [52].   
Derived from implementation in [63]. 110 219 641 345 
Diameter [99]. 125 189 6312 910 
Fast Community Algorithm [61].   
Derived from implementation in [39]. 47 78 1031 110 

  
Table 2.  Run-times for a set of statistical algorithms in 
SocialAction. 
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In addition to algorithms for the computed attributes, the visualization also relies on 

complex algorithms for producing a layout of the nodes.  The strategy employed by 

SocialAction is a force-directed algorithm, which acts as a physics simulation.  Nodes 

repel each other and edges act as springs bringing connected nodes together.  The 

following pseudo-code simplifies this behavior: 

 
initialize node velocities to 0 

initialize node positions to random 

loop 

     for each node 

         node-forces := 0   // sum of total forces on this node 

         for each other_node 

             node-forces:= node-forces + repulsion( node, other_node ) 

         for each edge connected to this node 

             node-forces:= node-forces + attraction( node, edge ) 

         node.velocity := node.velocity * node-forces 

         node.position := node.position * node.velocity 

until user intervention 

 

The force directed layout’s implementation has a running time of MAX( O(N log N), 

O(E) ), where N is the number of nodes and E is the number of edges. This running 

time increases when additional forces are added, such as when new forces are 

introduced after the community algorithm to produce separation between 

communities.  The implementation of this algorithm is derived from [39], which uses 
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the Barnes-Hut algorithm for efficient force simulations [6].  However, SocialAction 

extends the force simulator with customizations to better support social network 

analysts, as described in Chapter 3.   

Force-directed algorithms generally lack a clear definition of convergence.  

Consistent with the design to empower users with these critical decisions, the 

algorithm runs until users decide when the layout is good enough.  The algorithm 

updates the visualization in a fluid and dynamic way by animating the nodes until 

users.  This process is illustrated in Figure 56 for each of the case study data sets.  For 

each case study, the left-most image was rendered 0.1 seconds after the data was 

loaded.  The right-most image is after users decided the network layout was good 

enough.   
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Figure 56.  An illustration of the run-time of the force-directed algorithm on 4 case study data 
sets. 
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In each of the case studies, the statistical algorithms for computed attributes in 

SocialAction were able to run without noticeable lag.  Some of the more complex 

algorithms, as illustrated in Table 2, induce a small delay.  The complexity of 

networks will certainly always result in certain meaningful algorithms with large 

runtimes.  For this reason, SocialAction was designed to be an interactive 

environment even when algorithms are running.  The statistical and visual processes 

run on separate threads, allowing the user to examine the visualization while 

statistical attributes are being computed.  Conversely, users can browse statistical 

attributes if the force-directed layout is still untangling.  Of course, the greatest 

discoveries may rely on synergy between the statistical and visual components.  By 

for situations when it is impossible to do so due to algorithmic complexity issues, 

users are still able to explore the data that is currently available without being forced 

to stare at a frozen interface. 

Although certain algorithms have lengthy run times with large networks, the 

SocialAction infrastructure is robust.  The robustness is illustrated in Figure 57, which 

demonstrates the scalable capabilities of SocialAction.  In this image, over 152,000 

nodes are connected by 148,000 edges, representing a real and complete Customer 

Relationship Management database of donors to non-profit organizations.  The 

interactions and rendering are slow, but still work, as the filtering interaction 

demonstrates in the bottom image of Figure 57.   
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Figure 57.  An illustration of the scalable infrastructure of SocialAction. 
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Since networks of this size and larger have not been a primary focus of SocialAction, 

there are still many improvements to achieve better performance with larger 

networks.  Implementing faster statistical algorithms that approximate importance 

metrics may provide users with effective enough strategies for exploration.  

Furthermore, off-loading algorithms to the GPU [26]or MapReduce [18] may also be 

possible. 

6.4 Summary 

The implementation of the SocialAction to achieve the integration of statistics and 

visualization, as well as the requirements of social network analysts, was a significant 

computer science challenge.  The architecture and user interface of SocialAction 

required sophisticated data models.  Furthermore, the algorithms necessary for 

statistical analysis had to be optimized to run in real-time, to better support the 

creative activities of analysts.  Scalability challenges also needed to be met to make 

sure the system worked on real data of value to domain experts.  The design and 

implementation of SocialAction was a significant effort, which results in a powerful 

tool that will live on for social network analysts to help them make sense of their 

data. 
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Chapter 7:  Conclusions and Future Work 

This dissertation focuses on three major contributions of my doctoral research.  These 

contributions were outlined in Chapter 1.  I revisit these contributions here and reflect 

on their impact to interactive, visual analysis of complex data.  

7.1 Contribution (C1:Integration) 

Provides an integration of statistics and visualization to improve exploratory 

social network analysis. 

Social network analysis is a complex process.  Not only do analysts have to 

understand the inherent attributes of each individual in a network, but also the 

relationships of between individuals.  Both visual and statistical approaches have 

great value, but an integrated solution aids the exploratory and creative tasks of 

analysts.  By organizing the many features of social network analysis into goal-

centric tasks, users may gain an overview of networks, find important nodes and 

edges by ranking and filtering, find patterns and outliers by plotting nodes in a 

scattergram, find communities by enabling clustering algorithms, and understand 

different types of relationships by isolating multiplex edge types.  These tasks are all 

part of the design of SocialAction, which coordinates the statistical and visual 

information necessary to make sense of the social networks.  The system is highly 

interactive, so users can simplify the lengthy tabular output of statistical results or 

crowded network visualizations.  SocialAction allows users to dig deeper into their 

networks, guided by statistical algorithms.  This also improves the scientific 

workflow for complex analysis, as users no longer have to navigate back and forth 

between statistical and visualization packages.    Furthermore, although SocialAction 
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is designed to support social network analysis, it also allows users to explore and 

interpret non-social networks. 

7.1.1 Reflections on Contribution C1:Integration 

Much of the design of SocialAction has focused on visualizing and interacting with 

computed attributes that use statistical algorithms to measure the network.  This is due 

to the need to understand the social position and structure of the nodes and edges.  

However, less attention has focused on the inherent attributes.  More dynamic queries 

and filtering based on inherent attributes is an obvious next step, but an even more 

challenging approach would be to support both concurrently.  As an example, 

filtering based on inherent attributes of nodes should update the related computed 

attributes automatically.  If an analyst was looking for the gatekeepers in a network, 

and decided to exclude a gender, the statistical output should update automatically.  

Similarly, when filtering according to statistically computed attributes, analysts 

should be given statistical summaries on the inherent properties of the remaining 

nodes.  This may lead to further hypotheses among inherent attributes that may not 

have been thought to be important. 

 SocialAction’s design has mainly focused on static networks that do not 

change over time.  Although its multiplex features supported binning of time, as 

demonstrated earlier in this dissertation, dynamic network analysis requires even 

more sophisticated support.  Networks that evolve, grow, and change over time are of 

growing interest to analysts.  Although many dynamic network analysis techniques 

are still immature, the ability to support these tasks is becoming critical for domains 

like fraud detection and intelligence analysis.    
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 Furthermore, a complex set of engineering challenges remain.  Although 

scalability has been achieved for the initial target group of SocialAction users, there 

are many social network analysts who wish to study networks with millions or even 

billions of nodes.  The algorithms generating the statistical analysis and network 

visualizations require optimization in order to support networks of these sizes.  Faster 

algorithms that can approximate the structure of networks may also need to be 

designed, as the running time of some existing algorithms in their current form do not 

scale well.  Another strategy might be to offload computationally expensive 

operations to the GPU or cloud computing, if the algorithms can be parallelized.    

Reducing the visual clutter of large networks is also still a challenge.  SocialAction 

already supports node aggregation and filtering to this end, but additional solutions 

may be necessary.  With proper engineering, the design goals presented in the next 

contribution will continue to aid the exploratory process of analysts studying social 

networks. 

7.2 Contribution (C2:Guidelines) 

Provides design guidelines for interactive techniques to improve exploratory 

data analysis with computed attributes and systematic yet flexible guides. 

The implementation of SocialAction has demonstrated that the integration of statistics 

and visualizations can improve exploratory data analysis, as it supports the 

explorative and creative tasks of analysts.  Interactive techniques are a key part of the 

design to make both the statistical and visual components comprehensible.  Without 

interactions such as ranking and filtering, statistical output and network visualizations 

may be too complex to interpret.  In most information visualization systems, these 
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interactive techniques often focus on inherent attributes, rather than computed 

attributes from statistical techniques or data mining.  In order to make the lessons 

learned from SocialAction more applicable to a broad range of researchers and 

designers, I have proposed a set of design guidelines.  Using an established taxonomy 

of seven categories of infovis interaction techniques, I provide a thorough description 

of how the technique can be enhanced with computed attributes. 

 Another challenge is that complex and large data sets like social networks 

typically require numerous interactions in order to find patterns, outliers, and insights.  

The many resulting interactions can lead to complicated paths of exploration.  To 

assist discovery, I provide systematic yet flexible (SYF) design goals to help guide 

domain experts through analysis over days, weeks and months.  SYF offers 

systematic guides that provide users the ability explore relevant analytical features.  

However, SYF also supports flexible diversions to pursue insights while still 

maintaining overall progress.  To assist analysis, SYF provides annotation, 

collaboration and reuse capabilities.  These three tasks offer analysts a way to record, 

share, and more easily find new insights.  After all, data analysis is all about finding 

the useful nuggets.  SYF still relies on human analysts to find these nuggets, but 

empowers them by maintaining their history, measuring their progress, and most 

importantly, keeping them informed. 

7.2.1 Reflections on C2:Guidelines 

These design goals highlight how researchers and practitioners can integrate statistics 

and visualization to better improve exploratory data analysis of social networks.  

However, integrating statistics and visualization goes beyond social networks – 
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statistical algorithms and data mining results can aid in analyzing temporal, 

hierarchical, and multi-dimensional data.  The design goals and examples can extend 

to such other complex data types as those above - to emphasizing the power of an 

integrated approach.   

 Similarly, the systematic yet flexible design outline the high level goals of 

guided discovery, but additional techniques might be required for it to achieve 

adoption by both system designers and users.  Providing a guide through all actions 

ensures a systematically complex exploration, but as the number of states and 

interactions grows, a complete exploration may be impractical.  One possible strategy 

is to use the statistical methods and data mining techniques to emphasize certain 

states that have interesting patterns.  A second possibility is to build a 

recommendation system on top of the systematic yet flexible architecture.  If analysts 

follow similar paths of exploration, recommending future steps may be appropriate.  

These recommendations can help novices as well as experts who have developed 

systematic and repeatable strategies for analysis.   

Systematic yet flexible support has implications beyond data analysis tools.  

Wizards and tabs are pervasive in the user interfaces of many applications.  SYF 

combines the systematic properties of wizards with the flexible properties of tabs, 

while providing users feedback about progress.  For any interface that requires steps 

to be completed, and where order of completion is not restricted, I believe the SYF 

interface would improve the user experience. 

To date, the SYF design has only been integrated into SocialAction.  

However, since the SYF system is designed as a modular component, it is possible to 
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integrate the system into other data analysis tools as well.  Several tool designers that 

were given a preview of the SYF system immediately noted the benefits it would 

offer to their users.  In addition to providing guides, developers would obtain critical 

features that users demand for free, such as history keeping and supporting “undo”. 

There is also future work to be done in advancing the collaborative 

functionalities.  Although users can take turns and share their exploration, 

SocialAction provides no way to merge them if they are concurrent.  The 

collaborative requirements of small groups (2-10) and larger teams (10-100) of 

researchers need to be studied further. 

Expert users might also wish to rearrange or design their own steps for social 

network analysis.  Currently, step design is left up to the developer using the API.  

However, since most expert users are end users and not developers, it makes sense to 

afford them this capability as well.  This feature would also be useful in allowing 

users to compose smaller steps for more specific tasks.  If analysts are only interested 

in a small subset of measurements, having a way to measure progress based on those 

goals instead of the overall features is important.  For these reasons, a systematic 

customization feature for experts seems necessary. 

7.3 Contribution (C3:Evaluation) 

 Demonstrates the effectiveness of long term case studies with domain experts 

to measure creative activities of information visualization users. 

 

In order to study the effects of the integration of statistics and visualization on 

exploratory data analysis, novel evaluation methods are necessary.  Traditional 
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laboratory-based controlled experiments have proven to be effective in many user 

interface research projects.  However, because domain experts work for days and 

weeks to carry out exploratory data analysis, their typical workflow is nearly 

impossible to recreate in a laboratory-based controlled experiment.  Furthermore, 

exploratory tasks are poorly defined, so telling the users which tasks to perform is 

incompatible with discovery.   For these and other reasons, I chose to design an 

evaluation methodology that used structured and replicated case studies.  The 

resulting 5-step case study design was implemented on four unique domain experts 

with unique data and research questions. 

The four case studies conducted provide evidence that exploratory data 

analysis improves with integrated statistics and visualization.  Tools to support the 

generation of hypotheses are sometimes overlooked.  SocialAction provides users 

with the freedom to load all of their data to identify global trends.  Instead of 

removing data blindly, users can filter the data according to statistical principles of 

social network analysis.  This provided the domain experts with a level of comfort 

they lacked in using other tools. 

In addition to providing evidence to support my hypothesis, the case studies 

also served as a stimulus for pushing the technology’s development forward.  The 

implementation was not driven for a controlled study, but rather to handle a wide 

range of use by inquisitive researchers.  It forced the implementation to operate on 

real, large datasets.  Subsequently, SocialAction has matured into a tool that can be 

used by numerous professional researchers to solve a wide range of research 

problems.   



 

 162 

 

7.3.1 Reflections on C3:Evaluation 

Long-term case studies with domain experts clearly show that SocialAction led to 

insights and discoveries previously unknown to their users.   These creative 

discoveries might have been lost or undermined in traditional experiments with 

summary statistics.    However, the case studies do not show quite as clearly the 

extent to which SocialAction was responsible for the discoveries.  The evaluation 

method relied on weekly interviews, in which the domain experts would share their 

tales of success or frustration and would recreate their discovery process.  This would 

often highlight their great moments of discovery.  Unfortunately, moments of limited 

success were recorded or remembered less frequently, which provided less useful 

feedback about negative aspects of the design. 

Logging user actions is an obvious extension to the methodology.  While logs 

alone will not capture the full story of exploration, they can be used in conjunction 

with interviews to refresh users’ memories as well as figure out a quantitatively 

accurate version of where users spent most of their time.  Logs may highlight users 

getting lost during exploration, or never using certain features that may have led to 

insights.   Logging will hopefully serve as a tool to improve the accuracy of reporting 

on insights, and serve as a reference for reporting on failures.  Advancing logging that 

allows users to annotate important states mid-analysis and later replay states, as 

described in the systematic yet flexible architecture, should yield advantages for data 

collection during evaluation as well. 
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browse using these links, they’d eventually stumble upon all important documents.  

Essentially, they wanted to make sure there weren’t any isolated or broken paths in 

the network.  The lead researcher, Dr. Jimmy Lin, explained his goals: 

For a given PubMed article, we are able to find a number of related articles (each associated with a relevance score).  

So one might imagine a large network of documents connected by these association links (some stronger than others).  

Users would "traverse" this network by clicking on "related article" links.  I'm wondering what this network looks 

like.  For example: 

- is the network densely connected?  Or are there "islands" you can't get to just by clicking?  (We would 

like to filter by strength of link---i.e., show only related score > 0.8) 

- for some networks, we have ground truth (relevance judgments as assessed by users): are these 

documents clustered?  (these relevance judgments can be metadata on each node---i.e., show relevance nodes in red). 

- in addition, we were wondering if it was possible to get stats like diameter of network, etc. 

Related to this is the Cluster Hypothesis in information retrieval---that relevant 

articles tend to be similar to each other (hence they cluster together).  The researchers 

were interested in seeing if this hypothesis was true. 

These researchers had no experience with network visualizations or social network 

analysis in the past. 

A.1.2 Early Use   

The first contact with these researchers was via email.  Jimmy first had data from a 

TREC genomics test set, where they had ground truth on the relevance of documents 

(in this case, "what is the role of the gene GSTM1 in the disease Breast Cancer").  For 

every known relevant document, the top five related docs were linked (i.e., what 

would be displayed on the related links panel in PubMed)---the data file includes both 

rank and similarity score.  This network is shown in the figure below: 
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  2. What is the average in-link for each relevant document? (from other relevant docs)? 

  3. What is the average out-link for each relevant document? (to other relevant docs)? 

  4. We want to characterize the clumpiness of rel docs---any statistic that does this will be good. 

SocialAction didn’t support features 2-4.   I quickly implemented features 2 and 3 

(which turned out to be that useful) and then deployed the new version in their offices 

of NLM on June 20, 2007.  

 

I visited the offices of two NLM researchers (Jimmy Lin and John Wilbur) and gave 

them a brief training session on using SocialAction.  For the training sessions, we 

used their real data (two networks of two topics), and show them how to rank, filter 

and visually explore the network.  In this training session, it became apparent there 

were several features of importance to them that were missing from SocialAction.  In 

particular, there were very interested in the direction of links (this was quickly 

implemented to have links show arrows when there is direction).  After the meeting, 

the researchers formulated their goals and objectives: 

Goals: 

Explore the typology of related abstract networks in the biomedical domain. Characteristics of interest include: 

the connectedness of abstracts (in and out degrees) 

the number of disconnected components 

the diameter of the graph 

Understand the extent to which the Cluster Hypothesis holds in the biomedical domain. In short, the Cluster 

Hypothesis says that closely associated documents tend to be relevant to the same requests. 

Desired outcomes: 

Gain insights about the structure of related abstract networks. 

Quantify the typology of such networks in a meaningful way: histograms, scatter plots, etc. 

Publish high quality research articles with the above data. 

After these initial meetings, I provided regular minor feature requests and bug fixes 

throughout the early phase. 
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A.1.3 Mature Phase 

 Once SocialAction was a stable and robust enough platform, the researchers 

followed the following methodology: 

The researchers had 50 topics from a genomic dataset, which in turn meant 50 

networks to explore.  Jimmy Lin wrote a perl script to convert their data into a format 

readable by SocialAction.  For each network, the researchers manually: 

1.  Loaded each network. 

2. Adjusted the visualization, zooming and panning where appropriate. 

3. Froze the image (paused the force-directed algorithm). 

4. Copied and pasted results from the Statistics Panel (e.g. the left side of the 
figure below).  These researchers didn’t use more advanced or node-
specific statistics, but instead just relied on these “overall” network stats. 
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5. Used the visualization component (e.g. the right side of the above image) 
to note patterns.  When looking at all 50 networks, patterns became 
obviously evident.    In particular, the researchers paid attention to the 
following properties: 

a. The number of components. 

b. How dense the network was.  This was a way of understanding 
how easy it was to navigate from one document to the next.   

c. Confirmed their hypothesis about the # of components (that most 
documents would cluster together) and the # of related documents 
(that related documents tended to point to each other – the number 
of red’s connected to red’s) 

6. Pasted the statistics into excel and plotted the results after each network.  
They noticed patterns emerging after each new network was added to the 
spreadsheet and replotted. 

The researchers spent about 10 minutes on each of the initial networks they explored.  

After about 5 and patterns were emerging, the researchers spent much less time, and 

then began simply copying & pasting the stats in Excel.   

The researchers didn’t use the Community feature, because they could not objectively 

assess which community parameters defined a good community.  Furthermore, the 

communities found by the algorithms often turned out to be too fine-grained for their 

tastes. 

This above methodology led to an accepted journal paper: 

Jimmy Lin, Michael DiCuccio, Vahan Grigoryan, and W. John Wilbur. 

Navigating Information Spaces: A Case Study of Related Article Search in 

PubMed. Information Processing and Management, 2008 

In this paper, the researchers used SocialAction solely for their analysis.  

Visualizations from SocialAction were used to communicate how document networks 

look in the PubMed database.  Furthermore, statistical information from SocialAction 
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were illustrated in tables and scatterplots to convince their readers of interesting 

phenomenon. 

In summary, the authors got a unique perspective on how related documents 

connected to each other, and they were able to report these findings thanks to 

SocialAction. 

A.1.4 Outcome 

I  met again with Jimmy Lin, the lead researcher.  He briefed us on the methodology 

above and provided us feature requests. 

SocialAction Bugs/Feature Requests: 

- Disconnected components continue drifting apart forever.  This shouldn't happen. 

- In community mode, communities continue drifting apart forever.  This shouldn't happen. 

- Different behavior as nodes approach edges---perhaps edges should  have repulsion? 

- **Ability to run in batch mode and do dump of statistics 

- Ability to remove (or dim out) nodes based on certain properties,  without changing layout.  Same with edges. 

- Ability to differentiate between edge types 

- Ability to do raw data dump of computed statistics: e.g., in/out  degree of each node, community membership 

Important!!   

How SocialAction potentially could support my work flow: 

I use the tool to visualize the network, find patterns,  etc.---however, my end goal may be something different.  For 

example, 

develop algorithms for information retrieval based on properties of these networks.  Therefore, it would be helpful to 

dump to statistics wholesale so I can manipluate, e.g., by a retrieval algorithm. 

Jimmy summarized his intended workflow quite nicely.  He intends (and did) use 

SocialAction as an exploratory data analysis device.  By using the combination of 

visualization + statistics, he could find patterns that were prominent in the networks 

he was analyzing.  From there, he would dump the useful statistics and use them to 

implement and inform new retrieval algorithms. 
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