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Aquatic ecosystems display complex spatially-varying patterns of growth and 

decay.  These patterns are produced by the interaction of numerous physical and 

biological processes that result in characteristic scales of patchiness with important 

ecological consequences.  Although these interactions and processes have been studied 

extensively, it is still unclear under what conditions and to what degree one process 

dominates the other and how the dynamics change across scales.  This dissertation uses a 

spatial modeling approach to examine how processes and patterns translate across spatial 

and temporal scales and how the spatial distribution of resources in turn, influences these 

processes and patterns.  This is accomplished through the development of a novel 

spatially-explicit simulation framework which utilizes 1) a nutrient-phytoplankton-

zooplankton-detritus (NPZD) ecosystem model; 2) realistic physical exchanges between 

individual model cells; 3) spatially varying forcing functions and 4) robust pattern 

analysis techniques, to produce a consistent and reliable method for extrapolating 

detailed, fine-grained dynamics to broad-scale patterns within aquatic environments.  

Application of the framework required the development of two novel components, an 
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NPZD ecosystem model to simulate biological processes and a method to simulate 

turbulent mixing at fine and intermediate scales.  Experiments testing the robustness of 

these components are presented along with results from simulations applying the 

framework to investigate species and ecosystem level response to spatial and temporal 

heterogeneity in nutrient forcing.  Major results of the work and potential applications for 

investigating scale-dependent patterns in aquatic ecosystems are discussed. 
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Chapter 1 

General Introduction 

 

1.1  The Issue of Extrapolation 

The extrapolation of theoretical and experimental information across spatial and 

temporal scales is a significant challenge facing the scientific community.  Extrapolation 

across scales directly impacts our ability to address broad-scale environmental problems 

that often require integration of information obtained at multiple scales (Root and 

Schneider 1995).  During the last century, environmental problems such as eutrophication 

(Vitousek et al. 1997), habitat loss (Laurance et al. 1997), overharvesting of marine 

systems (Pauly et al. 1998) and greenhouse gas emissions (Root and Schneider 1995) 

have steadily grown to become broad-scale global issues.  Traditional ecological 

research, however, has usually been conducted over fine spatial scales of short duration 

(Kareiva and Anderson 1988) leaving ecologists with the difficult task of extrapolating 

results to larger scales (Frost et al. 1988; Levin 1992).  The extent to which information 

from these fine-scale studies (e.g., field plots, mesocosms, experimental ecosystems) can 

be used to address broad-scale issues remains a pressing problem (Schneider 1994; 

Carpenter et al. 1995). 

The issue of scale has played an increasingly important role in the design and 

interpretation of ecological experiments (Stommel 1963; Allen 1977; Frost et al. 1988; 

Wiens 1989; Levin 1992).  This increasing role is due, in part, to a growing awareness 

that the extrapolation of local conditions (i.e., mean values estimated from fine-scale 

measurements) do not adequately characterize the variance and nonlinear dynamics that 
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often define natural ecosystems (Allen and Hoekstra 1992; Giller et al. 1992; Peterson 

and Parker 1998).  Spatial heterogeneity caused by the complex interaction of physical 

and biological processes over multiple scales is often cited as a major factor limiting 

extrapolation (Levin 1992; Holling 1992).  The resulting “patchiness”, or spatial 

heterogeneity, is a significant source of scale-dependent effects, and also a source of error 

when results are extrapolated to broader scales (for reviews see Allen and Hoekstra 1992; 

Levin 1992; Holling 1992; Kemp et al. 2001).  Failure to account for the effects of 

patchiness in modeling and empirical studies may severely limit the applicability of fine-

scale studies to current environmental issues (Tilman and Kareiva 1997). 

Unfortunately, employing a suite of experimental units (e.g., field plots or 

experimental ecosystems) of different sizes to study the scale-dependent nature of a 

particular ecological issue may exceed the budget of many projects.  Instead, one is often 

forced to extrapolate beyond the confines of their particular experimental system.  The 

implicit assumption here is that the experimental system of study is an analog of the 

larger system, very similar to what is done in engineering studies when a small-scale 

model is created for testing various effects which are then scaled up to the real system or 

object.  But within an ecological context, a simple linear extrapolation is usually not 

possible (Schneider 1994).  The relative importance of controlling biological and physical 

processes can change with scale, creating difficulties in extrapolation (Steele 1978; Harris 

1980; Powell 1989).  Often, the scale-dependent effects of these processes can neither be 

reproduced nor eliminated from studies with limited temporal and spatial domains 

(Tilman 1989; Peters 1991).  Moving from the “simplified”, truncated, and usually 

homogenous assumptions, typical of many of these studies, to the spatially heterogeneous 



 3

natural environment can cause serious problems for extrapolation (Frost et al. 1988; 

Carpenter et al. 1995). 

 

1.2  Physical and Biological Scales of Patchiness in Aquatic Systems 

Physical and biological scales of patchiness, along with their interactions, have a 

long history in oceanographic and limnologic research (Platt 1972; Powell et al. 1975; 

Haury et al. 1978; Harris 1980; Okubo 1980; Mackas et al. 1985; Powell 1989; Steele 

1991).  Since the early 1960’s when Hutchinson observed the “paradox of the plankton” 

(Hutchinson 1961) and Stommel created his famous space-time diagram of physical 

scales for the oceanic environment (Stommel 1963) patchiness (i.e., spatial 

heterogeneity) has been considered extremely important in aquatic systems.  Patchiness, 

both physical and biological, exists at all scales (Steele 1978) and, in the highly 

dispersive aquatic environment, there is a general trade-off between physical (advective, 

dispersive) and biological (growth, death, and behavior) forces that results in 

characteristic scales of patchiness with important biological consequences.  Surprisingly, 

it is still unclear under what conditions and to what degree one process dominates the 

other and how the dynamics change across scales (Giller et al. 1992; Powell and Steele 

1995). 

There are many variance-generating structures within the oceanic environment 

that create patchiness over a broad range of space (10-3 m to 104 km) and time (seconds to 

years) scales.  At the broadest scales (>10,000 km), the atmosphere and ocean couple to 

generate basin-wide circulation (gyres) and current patterns that give rise to eddies and 

rings at the 10 to 1000 km scale.  Other processes, such as internal waves and fronts, 
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occur in the 100 m to 10 km range and give way to turbulence and viscous dissipation at 

the finest scales (Kolmogorov 1941; Mackas et al. 1985).  Even though there is a 

continuous transfer of variance from broad to fine scales, with the largest variability 

occurring at the longest time and broadest space scales, certain processes dominate others 

at particular scales (Saunders 1992).  For example, at broad scales the oceanic 

environment resembles a two-dimensional “flat” system.  Geostrophic motions (i.e., 

oceanic current systems) drive the dynamics in the horizontal direction while vertical 

processes play a minor role.  At finer scales, the variability is more three-dimensional 

because turbulence becomes the main driving force rather than geostrophic motion 

(Denman 1992).  

Recognition that marine organisms are not randomly distributed but are patchy in 

time and space dates back to the early part of the last century (Hardy and Gunther 1935).  

Since then, many investigators have searched for mechanisms that may produce 

biological patchiness within an environment dominated by physical processes (e.g., 

Steele 1978; Okubo 1980; Mackas et al. 1985).  The early work of Skellam, Kierstead, 

and Slobodkin showed that biological patchiness in plankton could be maintained 

through reproductive means despite the highly dispersive physical environment found in 

aquatic systems (Skellam 1951; Kierstead and Slobodkin 1953).  In the natural 

environment under optimal conditions (high nutrients, stable water column, convergence 

zones), phytoplankton patch maintenance through reproductive means can be achieved 

and sustained such as when an algal bloom occurs.  But in general, growth-induced 

patches are ephemeral because nutrients become exhausted, predators respond to higher 

densities, or large mixing events break down and disperse the patch.  Consequently, for 
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passively dispersed plankton their distribution or patchiness is largely governed by 

physical processes (Denman 1976; Denman and Platt 1976; Gower et al. 1980). 

As organism size increases, generation time also increases reducing the ability of 

larger organisms to grow at a sufficient rate to create local patches of high density 

(Sheldon et al. 1972).  However, larger organisms are usually more mobile (e.g., 

zooplankton, fish, etc.) and have the ability to create biological patchiness through 

directed movement in the form of aggregations, schools, swarms, and as a result of taxis 

behavior (Hamner et al. 1983; Okubo 1986; Norris and Schilt 1987).  This mobility 

decouples biota from the physical environment that plays such a dominant role in 

structuring groups of strictly planktonic organisms, producing effects at smaller scales 

than  predicted from physical effects alone (Weber et al. 1986; Levin et al. 1989; 

Schneider 1992; Horne and Schneider 1997). 

When physical and biological processes are in synchrony there is a potential for 

the dynamics to become amplified, further enhancing patch generation (Denman and 

Powell 1984; Abbot 1993).  For example, frontal zones are often areas of enhanced 

biological productivity.  Organisms, especially planktonic species, can become trapped in 

convergence zones where nutrient concentrations may be higher than in the surrounding 

water column (Franks 1992).  If the planktonic organisms are retained long enough, they 

can take advantage of the elevated nutrients and reduced physical dispersal to greatly 

increase biomass levels (Strass 1992).  This effect is not only limited to frontal 

boundaries but can apply to any physical discontinuity from the scale of a thermocline up 

to mesoscale oceanic eddies (Gower et al. 1980; Venrick 1982; Oschlies and Garcon 

1998). 
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Patchiness in the pelagic ocean is important for many reasons.  Patches 

concentrate resources and are, therefore, critical for organisms living in areas were the 

average distribution of a resource is so dilute that growth and survival are reduced 

(LeBrasseur et al. 1969; Lasker 1975).  Patchiness is also important because it provides 

protection from predation (Turner and Pitcher 1986; Inman and Krebs 1987).  In a 

statistical sense, the chances of being consumed decreases as the school (i.e., patch) gets 

larger and saturation of predators due to handling time constraints and satiation becomes 

more probable.  Patches can create advantages for reproduction (Brown 1975).  Mate 

acquisition is facilitated in aggregations of individuals, and synchronized spawning 

adaptations can increase fertilization success.  From a life-history standpoint, a large 

reproductive output released at one time will improve survival probabilities, thereby 

augmenting recruitment and future cohorts.  In addition, the magnitude or degree of 

patchiness will influence processes such as the exchange of material and organisms 

across boundaries, predator-prey interactions, effects of disturbance, life-history traits, 

and genetic transfer between populations (Marquet et al. 1993).   

Many organisms exploit the physical and biological patch-generating processes to 

increase their survival and reproductive success. The congregation of sea birds, pelagic 

fish, and marine mammals on krill patches are all examples of this type of behavior 

(Gaskin 1976; Sund et al. 1981; Schneider 1991). Vertical migration is used by some 

planktonic organisms to either maintain their position within a favorable habitat or to 

move to a new location.  This is seen in estuaries when larvae of some organisms migrate 

into the surface water on the flood tide and then migrate to the bottom on the ebb tide 

(Staples 1979; Rothlisberg et al. 1983).  Occurrence of breeding grounds in favorable 
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hydrographic environments provides free transport mechanisms that can aid in the 

survival of larval offspring (Sinclair 1987). 

  

1.3  Patchiness Issues Associated with Experimental Ecosystems 

Typical mesocosm experiments have limited temporal (days to months) and 

spatial (1 to 10’s m) scales that create corresponding truncated physical and biological 

dynamics (Petersen et al. 1999). Given these constraints, the full suite of patch-generating 

mechanisms operating in the marine environment cannot be reproduced in experimental 

ecosystems, which can lead to scale-dependent results and a corresponding limit on 

extrapolation (Kemp et al. 2001).  The next section discusses how processes affecting 

patch generation are either modified, distorted, or absent from experimental ecosystems.  

Space: Marine mesocosms are small, typically isolated, and mixed differently 

from marine systems. Phenomena such as clumping, patterns of species coexistence, and 

stabilization of predator/prey cycles are examples of phenomena altered by enclosures 

(Tilman and Kareiva 1997). Isolation caused by mesocosms also produces patterns of 

species extinctions, either from competitive exclusion or unstable population cycles, that 

differ from natural systems and also alter ecosystem function. 

The walls of mesocosms will affect the spatial dynamics and environment that an 

organism experiences. Some effects include the increased attenuation of light through the 

water column (Petersen et al. 1997), altered benthic/pelagic coupling due to enhanced 

exchanges with wall organisms (Chen et al. 1997), and artificial gradients (e.g., dead 

zones) resulting from uneven mixing (Sanford 1997). While such effects occur in the 

natural environment from interactions with the bottom and attached structures, within 
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mesocosms, the effect is much greater because of the higher surface area to volume ratio 

found within these enclosed systems. For pelagic systems, bottom or wall effects are 

usually non-existent.  

In the natural environment, the exchange of material and individuals (fluxes) is a 

key process (Marquet et al. 1993). At the mesocosm scale, these processes (emigration, 

immigration, transport) are difficult to include and are an often-cited reason why 

mesocosms diverge from natural systems over time (Bloesch et al. 1988). The biological 

development of a mesocosm can be highly sensitive to the assemblage of species present 

at the start of an experiment and to mesocosm size.  Consequently, mesocosm measures 

of extinction, competitive exclusion, or coexistence are likely to have limited 

applicability to “open” systems where populations are constantly replenished from 

neighboring regions (NRC 1995).  

Physical Processes: The type of mixing (rate, frequency, etc.) applied to 

mesocosms affects a number of important physically mediated ecosystem processes 

(Sanford 1997).  Effects include the rate of diffusion across boundaries, uptake kinetics, 

predator-prey contact rates, the time scales for mixing and flushing, and shear effects on 

organisms. When mesocosms are designed to mimic realistic water column turbulence, 

unrealistically high fluxes across the sediment-water interface are produced by artificial 

stirring.  A mixing rate designed to achieve a particular light regime may produce higher 

shear velocities or predator-prey contact rates.  Consequently, fine-scale studies in 

aquatic experimental ecosystems tend to be dominated by diffusive processes, while 

advection plays a more prominent role in the larger domain of natural ecosystems. 
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 Because the strength of turbulence depends on spatial scale (Denman 1992), the 

extrapolation of turbulent effects is challenging in mesocosms. Turbulent effects may 

include those due to shear flows across boundaries (pycnoclines, thermoclines), 

patchiness generated through advection and eddies, and stratification/destratification 

events.  Mesocosms are generally too limited in their size to include these important 

larger-scale effects that affect the growth and development of the biotic community and 

ecosystem-level processes such as nutrient recycling. 

Biological Processes: A potentially serious problem of mesocosm studies is the 

lack of trophic complexity that arises because of truncated space and time scales. The 

effects of larger organisms or organisms with broad home ranges are particularly 

problematic (Carpenter et al. 1995). These organisms can have important feedbacks with 

ecosystem processes or can have a direct “top-down” effect on dynamics. The effects 

created by organisms at the top of the food chain can be dramatic but very transient or 

“patchy” in nature. The extrapolation of mesocosm predation rates, for example, based on 

average values can over- or under-estimate the true rates occurring in the “patchy” non-

linear natural system. 

Movement patterns are also altered in mesocosms. For example, diurnal vertical 

migration of zooplankton species may be restricted in a spatially constrained mesocosm 

with realistic levels of turbulence. Movement is unrealistically restricted for nekton 

species that are maintained at non-natural densities or confined to restricted spaces that 

preclude important dynamics such as schooling (Heath and Houde 2001).  In addition, the 

confined spaces of smaller mesocosms prevent or alter escape mechanisms normally 
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employed by prey species, resulting in predator-prey contact rates between species that 

can exceed those under natural conditions.  

In marine systems, physical and biological variability generally increase at 

broader temporal and spatial scales (Steele 1978).  This means that patch-generating 

processes at these broad, long-term scales have relatively large effects on ecosystem level 

dynamics. Examples of such processes include climate shifts, the North Atlantic 

oscillation, and the ENSO cycle in the Pacific. These events have profound effects on 

community dynamics and ecosystem functioning (Southward 1980).  For instance, a 

common consequence of the cessation of upwelling off the Peruvian coast due to an El 

Niño event is the collapse of populations that depend on the high supply of nutrients 

(Barber and Chavez 1986). The Russell cycle is another important large-scale process 

(Southward 1980).  It results in a dramatic shift in the dominant species of the North 

Atlantic, thus affecting recruitment and growth in important fisheries such as the cod 

fishery. Mesocosm experiments cannot address questions at these broad time-space 

scales, leaving them at a disadvantage to tackle current environmental issues (e.g., fish 

stock fluctuation, marine pollution, marine mammal-fishery interactions, effects of 

aquaculture, or establishment of marine protected areas). 

 

1.4  Linking Experimental Ecosystems to Marine Systems 

The net result of the issues outlined above is that it is difficult, if not impossible, 

to simulate the full suite of marine biological-physical interactions in individual 

mesocosms.  Short of enclosing extremely large volumes of water, the inclusion of patch 

effects within mesocosm experiments remains a significant challenge.  The Multiscale 
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Experimental Ecosystem Research Center (MEERC) was established to develop a 

fundamental understanding of these scale-dependent effects and their potential 

implications for understanding natural estuarine ecosystems.  Through this center, 

scientists worked to understand principles for scaling the structure, function, and 

dynamics of estuarine ecosystems through the use of experimental ecosystems, 

hydrodynamic experiments, and numerical and simulation models.  Research within 

MEERC used experimental ecosystems (i.e., mesocosms) of various sizes, shapes, and 

ecological complexity to evaluate scale-related hypotheses (Gardner et al. 2001; Petersen 

et al. 2003).  Experiments using mesocosms of different sizes can capture the change in 

process that occurs as a result of changes in the geometric dimension of the mesocosm, 

thus allowing the effects of artifacts due to enclosure to be quantified (Chen et al. 1997; 

Sanford 1997; Berg et al. 1999; Heath an Houde 2001).  The results of these experiments 

have also uncovered fundamental scaling relationships related to primary productivity in 

natural systems (Petersen et al. 1997), the impacts of turbulent mixing (Petersen et al. 

1998), the design of experimental ecosystems (Petersen et al. 1999), fluxes across 

boundaries (Sanford and Crawford. 2000) and impacts of fish predation (Mowitt et al. 

2006).  

Alternatively, modeling studies can provide a cost-effective means of examining 

scaling relationships and investigating the scale-dependence of a particular system.  

Models enable researchers to simulate the system of interest (including appropriate levels 

of physical and biological patchiness) over a range of spatial, temporal and complexity 

scales.  The models can be adjusted to give similar results as fine-scale empirical studies 

and then used as a tool to investigate dynamics beyond the boundaries imposed by their 
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restricted time, space, and organismal scales.  A wide variety of different habitat 

configurations, physical conditions, and biotic components can be explored, thereby 

providing a valuable link between isolated empirical experiments and the natural system. 

Many of these experiments would not be possible or are too cost prohibitive to conduct 

within the field.   

 

1.5  Dissertation Objectives 

The continued development of scaling relationships from a purely experimental 

approach will remain limited by the scope of fine-scale experiments and the time and 

resources necessary to perform them.  The ability to detect and explain fundamental 

scaling relations in aquatic ecosystems must be extended beyond these limitations.  The 

explicit use of simulation models to bridge this gap should prove useful in the 

identification of scale-dependent processes and the characterization of the domains over 

which they apply (Gardner et al. 2001; Kemp et al. 2001; Petersen et al. 2003).  Thus, a 

model adequate to explain the fine-grained dynamics of individual mesocosms can also 

be used to extrapolate results to the scales of the natural system. 

My dissertation uses a strong, theoretical modeling approach to examine how 

processes and patterns translate across spatial and temporal scales and how the spatial 

distribution (e.g., heterogeneity, patchiness) of resources influences these processes and 

patterns.  To produce a consistent and reliable method for extrapolating detailed, fine-

grained dynamics to broad-scale patterns within aquatic environments I developed a 

robust spatially-explicit modeling framework capable of incorporating a wide variety of 

different physical, biological, and input components.  This was accomplished through the 
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development of several components: 1) a spatially-explicit simulation framework; 2) a 

nutrient-phytoplankton-zooplankton-detritus ecosystem model for fine-scale pelagic 

interactions; 3) realistic physical exchanges between grid-cells; 4) spatially and 

temporally varying forcing functions and 5) robust pattern analysis and visualization 

techniques.  Each of these components will be described below.  

 

1.6  Components of Modeling System 

Modeling Platform: A general framework, the SLS (spatial lattice system), for 

simulating spatial effects in aquatic systems was developed to explore linkages between 

temporally and spatially varying ecosystem dynamics over a wide range of scales.  The 

SLS involves the spatial linkage of fine scale ecosystem models (e.g., resolution of 

meters) into a gridded landscape with exchanges among grid sites simulated by sets of 

difference equations.  The bulk flow of constituents and organisms past a fixed point are 

recorded (i.e., Eulerian method) as opposed to following particles around as they move 

within a pre-defined model domain (i.e., Lagrangian method).  This methodology has 

already been implemented for a number of terrestrial systems, including fire (Gardner et 

al. 1996), population dynamics of plant species (Lavorel et al. 1994), and dispersal of 

insects and pests (With et al. 1997).  The advantage of the SLS is that the solution 

technique, based on linear rates of exchange via the Euler integration method, is 

computational efficient allowing large spatial systems to be simulated with high 

resolution.  The method however is restricted to two-dimensional systems.  

The model domain can range from one pixel (non-spatial) up to a one million 

pixel map (current computational limit).  A typical simulation is run on a square map, but 
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other map configurations such as a rectangle are possible.  The map boundary conditions 

can be set as absorbing to approximate an isolated section of water or wrapped to 

minimize boundary effects.  The modeling framework and ecosystem models are written 

in FORTRAN 95 and run on a Pentium-PC with a Windows operating system.  A flexible 

user interface for the SLS allows generated spatial patterns to be visualized in “real-time” 

along with corresponding statistical summaries.  Output from the simulations can also be 

sent to data files for later analysis by spatial statistics software (e.g., SAS).  Incorporation 

of a wide range of input functions is also possible (spatially variable nutrient inputs or 

fish predation) and when fully configured the SLS framework is capable of reproducing 

physical and biological exchanges typical of the natural environment while handling a 

range of mixing and or physical forcing scenarios.  The SLS also allows a single 

ecosystem to be simulated in isolation for direct comparison with data from experimental 

mesocosms.  For additional information about the SLS platform see Chapter 2. 

Unit Model: Each grid cell of the SLS platform is represented by an aquatic 

ecosystem model.  Replicate models are arrayed across the grid requiring that the model 

be both simple yet of sufficient detail to represent relevant physical and biological 

processes affecting estuarine ecosystems.  The unit model employed in my dissertation 

considers nutrient, phytoplankton, zooplankton, and detritus dynamics (NPZD).  The 

NPZD model is composed of sets of generally accepted functional relationships that have 

been broadly applied and tested.  The values of the model parameters were based on rate 

constants published for similar models and environmental conditions (including MEERC 

experiments) with parameters estimated to approximate dynamics occurring in the 
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Chesapeake Bay under stratified summer time conditions.  Additional information about 

the NPZD model can be found in Chapter 2. 

Cell-to-cell exchanges: Two physical mixing routines representing the processes 

of advection and diffusion were included in the SLS.  The advection routine utilized a 

simple technique where the direction and magnitude of the flow could vary with time 

while the diffusion routine uses a isotropic mass-balance approach which is identical to 

Fickian diffusion methods.  Numerical comparison of the diffusion algorithm to the 

common advection-diffusion equations found in the oceanographic literature gave similar 

results.  However, the SLS method was more efficient, reducing computation times by 

nearly an order of magnitude for two-dimensional maps.   

Complex flow patterns are a particular challenge because the full equations of 

motion are not considered by the SLS.  Therefore, a novel technique for 2-dimensional 

turbulence in aquatic systems was developed from a seeded eddy model for particle 

systems (Dyke and Robertson 1985; Abraham 1998).  This method was adapted to a 

gridded framework, preserving the cascade of turbulent energy from broad- to fine-

scales.  The technique is theoretically based, computationally efficient, and statistically 

accurate.  The technique also exhibits no numerical diffusion, can simulate scale-

dependent mixing and preserves fine-scale concentration gradients.  When combined 

with the diffusion routine to simulate sub-grid mixing, the method has the added 

advantage of being able to introduce realistic fluid effects within a Eulerian framework 

without having to resort to complex fluid dynamical models or oversimplifications of 

turbulent mixing.  Additional information about this novel method can be found in 

Chapter 3.  
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Spatially and temporally varying forcing functions:  Three specially written 

functions were developed to control model initialization of nutrients and biota into the 

spatial domain, allow time-varying patterns of nutrient input to be simulated, and to 

systematically examine the effect of biotic and physical variables on ecosystem 

processes.  These functions are described below.  

In many systems the frequency, duration, and magnitude of inputs can have a 

profound effect on system dynamics (Roughgarden 1978; Reynolds 1993; Petchey et al. 

1997).  The first function addressed this issue by producing a correlated time-series of 

model inputs at prescribed frequencies.  This input function included random variation 

(white noise), low-frequency variation (red noise), high-frequency variation ( blue noise), 

as well as constant inputs.   

The second function created spatially varying patterns of the forcing functions for 

nutrients and fish predation.  This routine created a circular impact zone within the 

simulation domain similar to a disturbance in terrestrial systems.  The size of the impact 

ranged from a single pixel to the size of the whole simulation domain with the magnitude 

and frequency of the impact varied by prescribed values.  In addition, the routine allowed 

the location of impact to vary either randomly or via a correlated random walk.  This 

routine was used for conducting simulated “pulse” and “press” experiments and to 

simulate spatially and temporally effects (biomass loss) due to fish predation.   

The third function generated spatially-explicit patterns based on multifractal map 

generation techniques (Saupe 1998) to produce two-dimensional patterns of variation in 

nutrients similar to those observed in natural systems.  The method can simulate a range 

of correlation structures from almost no correlation structure all the way to highly 
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correlated.  Through alterations in this correlation structure, different degrees of 

“patchiness” can be simulated and matched to what might be found in natural systems for 

a particular substance or organism.   

Statistical Toolbox: A final component of the dissertation was the implementation 

of a set of quantitative methods to analyze and compare the effects of model experiments 

on predicted spatial and temporal variation in ecosystem dynamics.   

Testing and development of the newly developed NPZD biological model was 

conducted through sensitivity analysis.  The Gardner and Trabalka (1985) method of 

sensitivity analysis was used to identify the key parameters of the model over a broad 

range of environmental conditions and to determine conditions for which the model 

provides reliable predictions.  This numerical method used Latin hypercube sampling to 

simultaneously vary all parameters by +/- 1% of their default value giving an unbiased 

indication of a model’s sensitivity to a minimal change in parameter value while also 

taking into account the interactive effects of the other parameters.  The technique has 

been used to address a wide range of issues which include: plankton productivity (Bartell 

et al. 1988a), toxicological effects (O’Neill et al. 1983), top-down and bottom-up controls 

on productivity (Bartell et al. 1988b) and forest development (Dale et al. 1988).  

Additional information on this method and its application can be found in Chapter 2.   

 The second component was the statistical analysis of model output in time and 

space to characterize the spatial heterogeneity of ecosystem dynamics.  Spectral analysis 

has been extensively used for examining patchiness and scale-dependencies in aquatic 

systems (Platt 1972; Powell et al. 1975; Denman et al. 1977; Lekan and Wilson 1978; 

Haury et al. 1978; Steele 1985; Weber et al. 1986) and was used here to characterize the 
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change in variance in data series through time and space (Weber et al., 1986).  Details 

regarding the methods used and the results produced by spectral analysis can be found in 

Chapters 3 and 4. 

 

1.7  Dissertation Structure 

This dissertation is based on a novel framework for assessing scale-dependent 

effects in aquatic ecosystems.  The following chapters present experiments testing each 

model component followed by an application of the framework testing the effect of 

spatial and temporal variation in nutrient forcing.  Major results and potential 

applications are also discussed.  The appendices provide a listing of the FORTRAN code 

for the SLS.  Each chapter is designed to be submitted as a stand-alone peer-reviewed 

publication resulting in some duplication of materials among chapters.  The structure is as 

follows: 

Chapter 2:  The dynamic effects of changing chemical, biological and physical 

conditions on the predictability of an NPZD pelagic ecosystem model.  This chapter 

describes the NPZD model and uses sensitivity analysis to understand model behavior 

over a wide range of environmentally relevant conditions. 

Chapter 3:  A grid-based method for simulating idealized turbulence in aquatic 

systems is presented.  The chapter describes the mixing processes used by the simulation 

framework (turbulence and diffusion) and validation of the accuracy and utility of the 

turbulent mixing routine. 

Chapter 4:  The response of an NPZD model to spatially and temporally varying 

nutrient input is evaluated.  Special emphasis is given to the analysis of nutrient input and 
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physical and biological processes that occur during advection through an idealized 

estuary. 

The integration of experimental methods, empirical studies, and modeling is 

required for extrapolation of results across temporal and spatial scales.  The SLS is a 

useful platform from bridging the gap between experimental ecosystems and natural 

systems through inclusion of “realistic” ecosystem dynamics and providing a 

quantitatively consistent means for identifying scale-dependent theoretical and empirical 

“rules” across space, time, and ecological complexity scales. 
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Chapter 2 
 

Sensitivity analysis of an NPZD pelagic ecosystem model under 
changing chemical, biological, and physical conditions  

 
 

Abstract  

Marine ecosystem models of nutrient, phytoplankton, zooplankton and detrital 

dynamics (commonly referred to as NPZD models) simulate ecological systems that can 

vary greatly as a function of changing environmental conditions (e.g., light, temperature, 

nutrient inputs, etc.).  Sensitivity analysis was applied to identify the dominant 

parameters and processes affecting the predictions of a generalized NPZD ecosystem 

model.  Systematic experiments were performed over a broad range of environmental 

conditions, including variation in nutrient input, fish predation, and water exchange rates, 

to assess the range of relationships between parameters and predictions.  Results 

demonstrated that when environmental conditions were well known only three to five of 

28 total parameters directly affected model predictions but the relative importance of 

individual parameters shifted dramatically when environmental conditions changed.  

When results were pooled over all experiments, a total of 17 parameters were found to 

significantly affect model results.  Parameters representing the zooplankton maximum 

growth rate and assimilation efficiency were consistently sensitive across all experiments, 

supporting previous studies identifying the dominant role of these processes in NPZD 

models.  Other parameters were sensitive over a restricted sub-set of environmental 

conditions, making the importance of accurate estimates of these parameters situationally 

dependent.  Sensitivity analysis proved to be a powerful means for understanding model 
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dynamics and identifying where parameter accuracy most affects model predictions.  

These methods are generally applicable to a broad range of marine biogeochemical 

models. 

 

2.1  Introduction 

Marine biogeochemical models such as the NPZ, NPZD, and similar formulations 

have been increasingly used to address a wide range of important oceanographic 

questions including: broad scale dynamics of oceanic plankton production (Dadou et al. 

1996), the effects of physical forcings (Goericke and Welschmeyer 1998), iron limitation 

(Loukos et al. 1997; Denman and Pena 1999), frontal zone dynamics (Franks and 

Walstad 1997), effects of stocasticity (Steele and Henderson 1992b), nutrient cycling 

(Oguz et al. 1999), predator/prey dynamics (Edwards and Brindley 1996), impacts of 

predation (Steele and Henderson 1992a), mixotrophy (Stickney et al. 2000), bloom 

processes (McGillicuddy et al. 1995), and nutrient enrichment (Murray and Parslow 

1999; Kemp et al. 2001).  These simple but comprehensive ecosystem models are 

attractive because they have well characterized dynamics, utilize generally accepted 

functional response relationships, have been broadly utilized, and have a limited number 

of parameters to estimate. 

As with all models, NPZD models are idealized representations of complex 

ecosystems.  In spite of this simplicity, simulation results are often dependent on 

uncertain parameters which may vary over a wide range of values depending on the 

experimental conditions being examined.  Ignoring the error or uncertainty associated 

with each parameter can seriously affect the reliability of model predictions especially if 
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the processes they affect vary in time and space (O'Neill 1973; Gardner et al. 1982).  

Determining the effects of parameter variability on model dynamics is therefore one of 

the most important steps in model development (i.e., design, testing, calibration, 

validation) and should be rigorously quantified whenever possible (Miller 1974; Oreskes 

et al. 1994; Caswell 2000). 

An important method of model characterization is the use of sensitivity analysis to 

identify key model parameters and associated processes.  Sensitivity analysis assumes 

that if a model coefficient or a group of coefficients representing a process is found to be 

highly sensitive then a change in that parameter/coefficient will cause a dramatic change 

in the model output (Brylinsky 1972; Tomovic and Vukobratovic 1972).  Thus, 

sensitivity analysis highlights the parameters having the greatest effect on model output 

(e.g., changes in mean levels, productivity) which can then aid model development 

efforts. 

I used the Gardner and Trabalka (1985) method of sensitivity analysis to identify 

the key parameters of a newly developed NPZD aquatic ecosystem model.  This 

numerical method simultaneously varies parameters by +/- 1% of their default value and 

statistically estimates the effect of these perturbations on model response.  Experiments 

were performed over a broad range of environmental conditions in order to: 1) identify 

the most sensitive parameters for each set of conditions; 2) determine conditions for 

which the model provides reliable predictions, and 3) develop a more general 

understanding of the dynamics of this NPZD model.  To my knowledge, this form of 

sensitivity analysis has yet to be attempted on the NPZD class of models (i.e., marine 

biogeochemical) and should complement other studies that have used related methods to 



 23

investigate model behavior (e.g., Fasham 1995; Druon and Fevre 1999; Edwards and 

Brindley 1999; Edwards 2001; Fennel et al. 2001; Halvorsen et al. 2001).  

 

2.2  Methods 

2.2.1  General Model Description 

An NPZD (nutrient-phytoplankton-zooplankton-detritus) pelagic ecosystem 

model was developed as one component of a spatially-explicit simulation platform.  This 

work was part of an EPA-funded project that was established to investigate how to 

extrapolate results from fine-grained experiments to the scales of natural ecosystems 

(Multiscale Experimental Ecosystem Research Center (see Chapter 1).  My model needed 

to approximate basic dynamics in fine-scale aquatic systems (i.e. mesocosms), both in 

complexity and behavior, but still be applicable to broader-scale natural systems.  Since 

the model was to be arrayed on a grid to allow for extrapolation through the inclusion of 

spatial dynamics, the basic structure had to be simple.  The NPZD model structure 

seemed ideally suited for my goals. 

The model simulates a well-mixed pelagic water column typical of summer 

conditions in the Chesapeake Bay and the MEERC mesocosm experiments (Harding et 

al. 1986; Kemp et al. 1990; Chen et al. 1997; Petersen et al. 1997).  Various equations 

and formulations were taken from other biogeochemical models found in the literature 

and then modified to meet the needs of the MEERC experiments.  Additional information 

is given in section 2.2.3 below.  

Important model features and assumptions are as follows. Seasonal variation in 

environmental conditions such as changes in temperature and light was not simulated.  
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Phytoplankton, zooplankton, and detritus were measured in carbon units (gC) while 

nutrients are in nitrogen units (gN).  The fluxes between the state variables are shown in 

Figure 2.1.  Phytoplankton and zooplankton are represented as a single “generic” species, 

bulk nitrogen is the only nutrient considered and the detrital compartment represents a 

“static” microbial loop.  Phytoplankton growth is affected by nutrient concentration, 

irradiance level and self-shading effects.  Zooplankton can prey on phytoplankton and 

detritus based on a feeding preference and their respective densities.  Nutrients enter 

through diffusive mixing across the thermocline while exports occur either through the 

sinking of phytoplankton and detritus or by fish predation.  Unit dimensions are in m3 

with a five-minute time-step used to solve the model difference equations via the Euler 

integration method.  The model is written and compiled in FORTRAN 95 and runs on a 

PC platform.   

 

2.2.2  Model Parameters 

The NPZD model contains 28 parameters (see Table 2.1 and Appendix A for a 

complete listing) with values based on rate constants published for similar models and 

environmental conditions.  Because there was a large variation in published values for 

parameters, final estimates were determined by a general consensus (i.e., highest 

frequency) or as a simple average when a consensus did not exist.  In most cases, values 

representing conditions typical of the Chesapeake Bay and the MEERC mesocosm 

experiments were selected.  The model was then calibrated to give stable dynamics (i.e., 

no oscillations or predator/prey cycles) and equilibrium biomass and concentration levels 

that might be observed during the summer months in the Chesapeake Bay. 
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Figure 2.1.  Conceptual diagram of the NPZD model used for the sensitivity analysis.  
External inputs and outputs are in solid lines and internal fluxes between the state 
variables are represented as dashed lines.  See text for additional details. 
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Table 2.1.  Description, symbols and nominal values of model state variables and 
parameters for sensitivity experiments.  Parameters are separated into the state variable in 
which they appear. 
 

Description Symbol Value1 Units 

State variables    

Nutrient N 0.002 gN m-3

Phytoplankton P 0.380 gC m-3 
Zooplankton Z 0.056 gC m-3 
Detritus D 0.160 gC m-3 

Nutrient parameters, (N)    

Concentration of N below mixed layer No 0.30 gN m-3

Exchange rate across mixed layer Nd 0.02 day-1 
Respiratory losses for fish Rf 0.10 day-1 

Phytoplankton parameters, (P)    

Maximum P growth rate Pmax 2.80 day-1

Respiratory losses for P Rp 0.05 day-1 
Mortality losses for P Mp 0.05 day-1 
Sinking losses for P Sp 0.05 day-1 
Light half-saturation constant In 10.00 E m-2 day-1 
Surface light intensity Io 26.00 E m-2 day-1 
Self-shading effects of P Kc 0.40 m2 gC-1 
Light attenuation coefficient Kw 0.20 m-1 
Depth of mixed layer Kz 5.00 m 
Nutrient half-saturation constant  Kn 0.02 gN m-3 

Zooplankton parameters, (Z)    

Maximum Z ingestion rate Zmax 1.00 day-1

Assimilation efficiency Az 0.70 day-1 
Respiratory losses for Z Rz 0.25 day-1 
Quadratic mortality losses for Z Mz 1.00 day-1 (gC m-3)-1 
Grazing half-saturation constant k 0.10 gC m-3 
Preference for P over D Ppref 0.70 unitless 

1Initial values of state variables, nominal values for parameters, and range of values for 
external drivers. 
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Table 2.1 (cont’d).  Description, symbols and nominal values of model state variables and 
parameters for sensitivity experiments.  Parameters are separated into the state variable in 
which they appear. 
 

Description Symbol Value1 Units 

Detritus parameters, (D)    

Remineralization rate Rd 0.20 day-1

Sinking rate of D Sd 0.05 day-1 
Unassimilated losses for fish Fd 0.40 day-1 

External drivers, (Sensitivity Experiments)    

Nutrient input rate η 0.0-0.64 gN m-3 day-1 
Water exchange rate µ 0.0-0.20 day-1 
Fish predation rate ν 0.0-0.80 day-1 

1Initial values of state variables, nominal values for parameters, and range of values for 
external drivers. 
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2.2.3  Model equations  

Four coupled ordinary difference equations were used to describe changes in the 

concentration of nutrient, N, phytoplankton, P, zooplankton, Z, and detritus, D, in a well-

mixed water column separated from deeper water by a thermocline.   

Phytoplankton:  Changes in P concentration were affected by growth, respiration, 

mortality, sinking, grazing and mixing as indicated in Eq. (1): 

 

P growth is a function of nutrient uptake, f(N), and photosynthesis, f(L), each of which 

returns a value between zero and one.  Based on Liebig’s law of the minimum (Liebig 

1840), the minimum value of these two functions was used to constrain the maximum 

phytoplankton growth rate, Pmax.  The effect of N concentration on P growth rate is 

modeled as a Michaelis-Menten formulation (Monod 1942): 

 

N uptake rate, f(N), is a function of the ambient nutrient concentration, N, with Kn as the 

half-saturation coefficient.  The storage of nutrients by P and the separation of nutrients 

into specific compounds (i.e., nitrate, ammonia, etc) were not considered.  Phosphorous 

and other potential limiting chemical constituents (e.g., silicate, iron) were not modeled 

because they were assumed to be non-limiting over the conditions tested.  The 

relationship between light intensity and the rate of photosynthesis, f(L), is based on an 
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analytical solution of the hyperbolic photosynthesis-irradiance curve from formulations 

by Kirk (1994) and Huisman and Weissing (1994) and is briefly explained below.   

Light intensity, I, at a specific depth, Kz, in the water column is formulated with 

the Beer-Lambert exponential light attenuation equation:  

 

where Io is the irradiance level just under the water surface and Kd is the light attenuation 

coefficient due to water.  The P biomass production rate, P(I), as a function of light 

intensity at a specific depth, can then be modeled with a hyperbolic equation where In is 

the light half-saturation constant: 

 

Since phytoplankton were assumed to be well-mixed and experience the whole light 

field, the integral of Eq. (4) was taken over the mixed layer depth to integrate the 

production rate and divided by water column depth, Kz, to convert from areal to 

volumetric units:  

  

Although other production-irradiance formulations could have been used (Cullen 1990), I 

chose the above formulation because an interpretable analytical solution was available 

providing an accurate productivity rate with minimal computational costs.  This 
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formulation does not consider photoinhibition effects which were assumed negligible in a 

well-mixed water column. 

The effects of water column turbidity and P biomass on the light attenuation 

coefficient, Kd, were based after the linear formulation used in Frost (1997): 

 

The light attenuation coefficient used in Eq. (3) governs how rapidly light is attenuated 

with depth.  Water column turbidity, Kw, is parameterized according to the amount of 

suspended non-living material present in the water.  Turbidity caused by living biomass is 

parameterized by Kc and reflects the degree to which phytoplankton biomass will block 

light as it travels through the water column.  Eq. (6) provides a realistic feedback where 

unconstrained P growth, such as from a lack of predation or excess nutrients, will be 

prevented due to self-shading.    

The remaining terms in Eq. (1) represent P losses associated with respiration, Rp, 

mortality, Mp, sinking, Sp, and dilution of biomass from mixing with the external 

environment (i.e., water exchange rate, µ, see section 2.5 for additional details regarding 

the sensitivity experiments).  Respiration is the loss of P biomass due to metabolic 

activities while mortality losses were due to cell senescence.  Mortality losses from P 

were assumed to result in particulate material that remains suspended within the upper 

water column.  Sinking results in biomass lost due to transport across the thermocline and 

is exported from the model.  The grazing term is the amount of biomass lost due to Z 

predation on P and will be explained further below. 

PKKK cwd +=  (Eq. 6) 
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Zooplankton:  Changes in Z biomass were affected by growth, respiration, 

mortality, predation, and mixing as indicated in Eq. (7):  

 

Z growth is a function of the combined P and D grazing rates (Pgraz, Dgraz) multiplied by 

the assimilation efficiency, Az.  The grazing rates were, in turn, a function of the Z 

maximum grazing rate, Zmax, the half-saturation coefficient for grazing, k, and the relative 

concentration of P and D as shown in Eqs. (8a) and (8b). 

 

The equations for Z grazing were based on the formulation of Fasham et al. (1990) with 

modifications of the shape factor, M, suggested by Matsuda et al. (1986) and Fasham 

(1995).  The Holling type-2 functional response (i.e., hyperbolic curve) occurs when the 

coefficient, M, is equal to 1 while a Holling type-3 functional response (i.e., sigmoid 

curve, Holling 1959) occurs when M is equal to 2.  I used a value for M of 1 for all 

simulations.  The functions represented by Eqs. (8a) and (8b) were formulated to return a 

value between 0 and 1 with the combined value never exceeding 1.  This constraint is 

necessary since Zmax represents the maximum daily biomass specific grazing rate 

regardless of whether Z are feeding on P or D.   

An additional term was added to Eqs. (8a) and (8b) to account for a feeding  
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preference by the Z, producing a final grazing term similar to that of Loukos et al. (1997): 

 

where Prate and Drate were formulated as follows:  

 

The modified grazing terms in equations (10a) and (10b) are dimensionless functions that 

account for the relative density of P and D and the preference, Ppref, that Z have for 

feeding on P over D.  For example, if the Z show no preference for either P or D then 

Ppref  equals 0.5.  If P and D densities are equal then Prate and Drate would also be equal 

(i.e., 0.5); if P are twice as dense then the Prate would be 0.66 and the Drate would be 0.33.  

I choose Eqs. (9a) and (9b) over other formulations in the literature (e.g., Ivlev) because 

the expression allows Z to feed on multiple food sources by specifying only two 

coefficients, Ppref and k.   

The loss terms of the Z equation were from respiration, mortality, predation, and 

mixing.  Mixing losses result from the exchange of biomass with the surrounding 

environment and is parameterized with the, µ, coefficient (see section 2.2.5 for additional 

details regarding the sensitivity experiments).  Respiratory losses were parameterized as a 
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linear loss term controlled by the Z respiration coefficient, Rz, while mortality, Mz, may 

be either a linear (q = 1) or quadratic (q = 2) function of Z biomass.  The Z mortality term 

is often used as a “closure term” for ecosystem models to represent higher-order effects 

such as predation or internal density-dependent regulation factors (e.g., cannibalization).   

The specific form of the Z mortality term (e.g., linear, quadratic, etc.) is still an 

active area of debate due to the dramatic impact that its parameterization can have on 

model dynamics (Steele and Henderson 1992a; Edwards and Brindley 1996).  I choose a 

quadratic mortality function to simulate increasing mortality due to cannibalism at higher 

biomass levels.  The quadratic formulation also has the added benefit of reducing 

instabilities and attenuating swings in predator-prey cycles that may occur with linear 

loss terms (but see Caswell and Neubert 1998; Edwards and Bees 2001).  Mortality losses 

from Z were assumed to result in particulate material that remains suspended within the 

water column.  

The “closure” term for this NPZD model represents the removal of Z biomass due 

to mobile predators such as fish.  The fish predation rate, ν, is used to approximate this 

relationship as a linear loss of Z biomass.  Half of the Z biomass removed by fish 

predation is incorporated as fish biomass (i.e., exported from the model) while the rest is 

recycled as input to the N and D pools.  This partitioning of Z biomass allows the NPZD 

model to be incorporated into a spatially-explicit modeling framework (i.e., future 

simulations) to consider how spatially variable fish predation affects spatial patterns in 

aquatic systems.  In this chapter, I use the (ν) coefficient to vary the amount of fish 

predation in the sensitivity experiments (see section 2.2.5 for additional details).    
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Detritus:  The detrital material, D, found in the water column is simulated as a 

simplified “microbial” loop consisting mainly of bacteria and protist feeding on 

particulate material (i.e., fecal pellets, dead phytoplankton and zooplankton; see: Steele 

1998; Fasham et al. 1990; Loukos et al. 1997).   Eq. (11) represents the key processes 

affecting the amount of D within the water column as:  

 

Inputs to the D compartment were from the P and Z mortality loss terms (MpP + MzZq) as 

well as unassimilated biomass from grazing by zooplankton and fish.  The unassimilated 

portion due to fish predation on Z is represented by the Fd coefficient while (1-Az) is the 

proportion of grazed P and D that is unassimilated from the Z grazing formulations.  The 

organisms within the compartment break down the particulate material, returning a 

portion back into soluble nitrogen, a linear process regulated by the remineralization 

coefficient, Rd.  Much of the suspended particulate material will settle out of the water 

column at a rate proportional to the D sinking velocity, Sd.  Any material lost through this 

mechanism is assumed to be mixed below the thermocline and exported from the model.  

The Z grazing rate on D is the loss of D biomass due to Z grazing and has been 

previously described in the Z state variable section.  The final loss term for D is the 

removal of biomass due to mixing with the external environment (i.e., water exchange 

rate, µ, see section 2.2.5 for additional details regarding the sensitivity experiments).  The 

explicit consideration of a D compartment enables a wider range of possible processes to 

be simulated, including the separation of N regeneration into a fast and slow turnover 

pool and for Z to feed on an additional food source other than P.   
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Nutrients:  Changes in the nutrient pool, N, are shown in Eq. (12):  

 

The nutrient state variable, N, is the total nitrogen dissolved in the water column (i.e., 

mainly nitrate and ammonia).  Many studies have modeled these two separate forms of 

nitrogen as distinct compartments to address a variety of issues or questions such as 

separating new versus regenerated production (e.g., McGillicuddy et al. 1995) or 

examining the inhibitory effects of ammonium on nitrate uptake by phytoplankton (e.g., 

Fasham 1995).   This level of detail was not required in my simulations so only changes 

to bulk nitrogen were considered.   

Inputs to the N state variable occur via external input, mixing, respiration, and 

regeneration.  Mixing occurs via the diffusive exchange of nutrients from below the 

thermocline, modeled after Steele and Henderson (1981) and Edwards and Brindley 

(1996) where Nd is the fraction of the mixed layer which is exchanged daily with the 

deeper water.  The N pool below the mixed layer, No, remains constant under the 

assumption that sources of N below the mixed layer balance losses due to diffusion.  

Water column inputs of N occur through P, Z, and fish respiration and the regeneration of 

N through microbial breakdown of D.  The Rf  coefficient represents that portion of the Z 

predation loss term that is returned to the N state variable due to fish respiration.  

Nutrients can also enter the model externally through a spatially and or temporally 

varying input function, η, allowing N inputs from a wide variety of sources to be 

simulated (e.g., pulsed upwelling events, inputs from riverine sources).  For the purposes 

of this chapter, I used this parameter to force the model under a range of nutrient input 

 N)PL,fNMin(fPDRνZ)RZRP(RN)(NNη
Δt
ΔN

dfzpod μ−−++++−+= )()(max (Eq. 12) 
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scenarios as part of the sensitivity analysis (see section 2.2.5 for further details regarding 

the sensitivity experiments). 

The only two loss terms for the N compartment were through uptake by P to 

generate biomass and from mixing with the external environment (i.e., water exchange 

rate, µ, see section 2.2.5 for additional details regarding the sensitivity experiments).  

Since nutrients were modeled in (gN), as opposed to (gC) for the other state variables, 

inputs from respiration and regeneration and losses from growth were first converted into 

nitrogen units using a standard stoichiometric ratio of 0.1761 based on Redfield 

stoichiometry and accounting for difference in weight between nitrogen and carbon 

(Redfield et al. 1963; Denman and Pena 1999). 

 

2.2.4  Sensitivity Analysis 

The classical sensitivity index, first developed by Tomovic and Karplus (1963), is 

the partial derivative of the model predictions, Yi, with respect to each model parameter, 

Pi.  Numerical estimates of parameter sensitivities for the NPZD model were estimated 

using PRISM, a program that performs Monte Carlo simulations with parameter values 

generated via Latin Hypercube sampling (Gardner and Trabalka 1985).  The data set of 

parameters and associated model predictions is obtained by iterative model simulations.  

The resulting data sets are then analyzed via linear regression of the predicted state 

variable value on the parameter values to estimate model sensitivities (Gardner et al. 

1983).  As long as the variance of the model parameters is small (i.e., ±1%), the slopes of 

the regressions are equal to the analytic estimates of the partial derivative (Gardner et al. 

1981).  For each of the sensitivity experiments outlined in the next section, the 
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normalized sensitivity index, Ui, was estimated by dividing the sum of squares of the 

regression by the total sum of squares multiplied by 100.  The value Ui ranges from zero 

to one hundred for all parameters regardless of the units with which they were measured 

(Gardner and Trabalka 1985; Gardner et al. 1990).  See Appendix B for additional details 

concerning this and other methods of sensitivity analysis. 

 

2.2.5  Experimental Treatments 

Previous studies on model behavior and sensitivities have shown that parameter 

sensitivities are dynamic and can change depending on the state of the model (e.g., top-

down/bottom-up control, threshold and saturation effects, nutrient status, etc.) at the time 

of the sensitivity analysis (Bartell et al. 1986; Bartell et al. 1988b; Fong et al. 1997; 

Klepper 1997; Pastres et al. 1997).  To address these issues and obtain a broad estimate of 

parameter-prediction dependencies, the sensitivity analysis was performed across a wide 

range of nutrient input, fish predation, and water exchange rates.  In all cases the 

sensitivity analysis was conducted after equilibrium was reached at 90-days. 

Treatment Series 1: Varying nutrient input rate (η).  Changes in nutrient state, 

from oligotrophic to eutrophic conditions, were investigated by progressively increasing 

the daily input of nutrients into the water column (Table 2.2).  The range of conditions 

considered approximate seasonal changes in ambient nutrient concentation that might be 

experienced in the Chesapeake Bay from variations in riverine input or exchange rate 

across the thermocline (Boynton et al. 1995; Boynton and Kemp 2000).   

Treatment Series 2: Varying water exchange rate (µ).  Losses due to mixing with 

the environment outside of the model domain, as might be experienced due to variations  
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Table 2.2.  The sensitivity experiments.  A. Three independent series of sensitivity 
analysis were performed varying only the nutrient addition (η), water exchange (µ) or 
fish predation rates (ν).  B.  Interactive effects were evaluated by two factorial 
experiments: (I) all combinations of η with µ (36 treatment combinations), and (II) all 
combinations of η with ν (24 treatment combinations).  100 Monte Carlo iterations were 
performed for each sensitivity experiment.  See text for additional details. 
 

 
 

A.  Independent effects 

η (gN m-3 day-1) µ (% day-1) ν (% day-1) 

0.00 0.00 0.00 

0.04 1.25 20.00 

0.08 2.50 40.00 

0.16 5.00 80.00 

0.32 10.00  

0.64 20.00  

B. Interactive effects (factorial experiments) 

I η x µ 

II η x ν 
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in advection and turbulence were reflected by changes in the water exchange rate, µ.  I 

varied this parameter from the baseline case representing a closed system to a range of 

exchange rates approximating residence times from 2.5 days to 320 days (Table 2). 

Treatment Series 3: Varying fish predation rate (ν).  Loss of zooplankton via fish 

predation is simulated as a linear loss term, ν.  Since fish predation is variable in space 

and time, I tested model sensitivity to a range of possible values from no predation to 

very high predation rates (80% loss rate day-1, Table 2.2).  This range reflects differing 

degrees of predation by larger/more numerous fish schools or additional losses to 

zooplankton from disease or cannibalism beyond that already accounted for by the 

natural mortality, Mz, parameter.  

Interactive Effects.  The interactive effects of the nutrient input rate, η, water 

exchange rate, µ, and fish predation rate, ν, were examined by two factorial experiments.  

The first series examined the interactive effects of the nutrient input rate, η, and the water 

exchange rate, µ .  Under these treatment combinations 36 scenarios were conducted over 

the range of values listed in Table 2.2 with the fish predation amount held constant at a 

value of (20%) to reflect average predation pressure on the zooplankton by fish and other 

external mechanisms.  The second series examined the interactive effects of the nutrient 

input rate, η, and the fish predation rate, ν.  Under these treatment combinations 30 

scenarios were conducted over the range of values listed in Table 2.2 with the water 

exchange rate set to zero to eliminate the effects of this treatment variable in this series of 

simulations.  
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2.3  Results  

Significant changes in the relationship between model parameters and predictions 

were produced by changes in the external drivers (i.e., nutrient addition, η, fish predation, 

ν, and water exchange, µ).  I will discuss these patterns of change in terms of the overall 

model performance, and then examine the direct and interactive effects of changes in the 

external drivers. 

 

2.3.1  General sensitivity dynamics 

The model state variables adjusted to changes in the external drivers by 

establishing a new equilibrium concentration after a short period of time.  Figure 2.2 

shows the model response for one combination of external drivers and Figure 2.3 shows 

the equilibrium concentration of each state variable over the range of treatment 

combinations for the two factorial experiments.  Enrichment with nutrients causes a 

bloom in P biomass and subsequent increases in Z and D biomass.  An increase in fish 

predation results in lower Z and D biomass and in higher P while an increase in the water 

exchange rate reduces the overall concentration levels of all the state variables, except N 

which tended to increase.  Under higher nutrient input levels the rate of growth of P, Z, 

and D were maximized causing N concentration to build up over time (data not shown).  

Parameter sensitivities were estimated once the model state variables adjusted to 

the new equilibrium (Figure 2.4).  For the purpose of this chapter, I define an “important” 

parameter as one whose sensitivity, U, explains greater than 10% of the variance in 

model output (i.e., % variance explained).  For example, in Figure 2.4, the parameters  
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Figure 2.2.  Temporal response of each state variable to a typical treatment combination.  
In most cases a new equilibrium is established after a short period of transient dynamics.  
Values on the right axis are for the nutrient state variable.  Case shown (η = 0.04 gN m-3 
day-1, µ = 2.5% day-1). 
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Figure 2.3.  Equilibrium concentration values for each state variable under the various 
treatment combinations.  The effects of increasing the water exchange and fish predation 
rates are shown in the left (A) and right panels (B), respectfully for each of the nutrient 
input treatment amounts.  Only the first four nutrient input treatments are shown because 
the dynamics saturate at higher nutrient input amounts for the P, Z, and D state variables.  
The N state variable at the higher nutrient input amounts shows a similar response as the 
(η = 0.16 gN m-3 day-1) nutrient input treatment except the mean concentration levels 
observed are elevated.  The dashed lines for the top two panels are scaled to the right 
hand axes for the N state variable graphs.
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Figure 2.4.  Graph showing sensitivity data for each parameter from a representative 
treatment combination.  Case shown (η = 0.04 gN m-3 day-1, µ = 2.5% loss day-1).  Only 
parameters explaining greater than 10% of the model variance were retained for further 
analysis. 
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Zmax, Az, Rz, was important for all the state variables while Kn would be important for only 

the N state variable.  The 10% criterion is deemed reasonable because typically three to 

five parameters exceed this value and explain most of the variance in model output for a 

particular state variable.  Only parameters identified as important for at least one set of 

treatment conditions were retained for further analysis. 

 

2.3.2  Sensitivity response to variation in external drivers (Independent effects) 

Parameter sensitivities may vary as a function of the external drivers (η, µ, or ν) 

and state variables (N, P, Z or D) being considered.  Table 2.3 illustrates the changes in 

sensitivities measured for each external driver, while holding the other drivers constant at 

baseline values (Table 2.2a).  The direct effect of the broad range of conditions examined 

shows that six parameters were consistently important: Zmax, Az, Rz under all conditions; 

No and Nd were each important in six of 12 cases; while Pmax was important in five of 12 

cases.  Although the prediction of N, P and D involves the specification of 5-10 

parameters, changes in Z required accurate determination of only three to four parameters 

(Table 2.3).  Changes in sensitivity exhibited four basic types of response over the broad 

ranges of conditions tested: positive, negative, no response and complex.  These patterns 

of response were summarized in Table 2.3 and discussed below for each of the external 

drivers.   

  The effect of variable nutrient input rates: Nutrient additions had a broad effect 

on patterns of parameter sensitivities.  For this treatment series, all of the parameters 

except one (i.e., Rp) were sensitive in at least one of the state variables.  The response  
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Table 2.3.  Sensitivity analysis for independent effects (see Table 2.2A).  Symbols 
indicate that increasing values of η, µ or ν resulted in significant sensitivities that either: 
increased (+), decreased (-), were unresponsive (=), or were complex (*)2.  Many 
parameters demonstrated a critical threshold to increasing values of η (not shown).  See 
text for additional details. 
 

Parm1  N  P  Z  D 

  η3 µ ν  η3 µ ν  η3 µ ν  η3 µ ν 

No          -  + *      - * = 

Nd  +        + *      - * = 

Pmax  * + +  =          =     

Rp     +             

Mp              = * + 

Sp      +   +         + 

Kc  -      =          =     

Kz  -      =          =     

Kn  + * +             

Zmax  -  - -  - - *  = - =  * * * 

Az  - - *  - - *  = - -  * *   

Rz  - - *  - * *  = - *  * * - 

Mz          -  -     

Ppref              -  - 
 
1Only parameters with sensitivities greater than 10% are shown.  See Table 1.1 for 
parameter definitions.  
2Complex sensitivities were those that demonstrated a non-consistent response to 
variations in the external drivers.  All of the parameters in this classification responded 
positively at first and then declined except for the No and Nd parameters which had the 
opposite response.   
3For the η treatment series the results were combined for the (η x µ), and the (η x ν) 
factorial baseline cases.    
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(e.g., positive, negative) of a parameter to increasing nutrients often changed between 

state variables.  For example, the Zmax, Az, and Rz parameters became less sensitive with 

increasing nutrients in the N and P state variables, were unresponsive in the Z state 

variable, and in the D state variable responded positively at first and then decreased.  The 

parameters with the strongest response to nutrient additions were the Nd (N), Sp (P), and 

Zmax (D) parameters (data not shown).  While none of the parameters in the Z state 

variable responded very strongly to changes in the rate of nutrient additions the Az (Z) 

parameter was the most sensitive.  Many of the parameters sensitive to nutrient additions 

also exhibited a threshold response where the parameter either became sensitive (e.g., Kz, 

Kc, Pmax) or insensitive (e.g., Zmax, Az, Rz) above the (η = 0.16 gN m-3 day-1) treatment 

level. 

The effect of variable water exchange rates: Increasing the water exchange rate 

resulted in fewer parameters exhibiting sensitivity than the increases in the nutrient input 

rate listed above.  Only eight out of 14 parameters were sensitive in at least one of the 

state variables.  The Kc and Kz parameters were no longer sensitive for any of the state 

variables and the Pmax parameter became insensitive for the P and D state variables.  

Although the parameters exhibited a variety of responses to changing exchange rates, no 

examples of a threshold response were observed.  The strongest responses in the N and P 

state variables were from the Pmax and Zmax parameters respectively and the Az parameter 

had the strongest response in the Z and D state variables (data not shown).  All of the 

sensitive parameters in the D state variable had a complex (i.e., curvilinear response) to 

increases in the water exchange rate (Table 2.3). 
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The effect of variable fish predation rates: The sensitivity dynamics observed 

when the fish predation rate was increased were very similar to the other two treatment 

series.   A majority of the parameters sensitive for this series of experiments were also 

sensitive for the other two treatment series (e.g., Kn, Zmax, Rz).  The Rp parameter in the N 

state variable was the only parameter sensitive solely in the fish predation series.  Some 

parameters were sensitive in only the nutrient input and predation series (e.g., Mz, Ppref) 

while the Nd (P) parameter was the only one sensitive for the water exchange and fish 

predation series.  The parameters with the strongest response to increases in the fish 

predation rate were the Zmax parameter in the N and P state variables, the Az parameter in 

the Z state variable and the No parameter in the D state variable (data not shown). 

 

2.3.3  Simultaneous variation of external drivers (Factorial experiments) 

 The previous sections described how the parameter sensitivities changed as a 

function of increases in the magnitude of the external drivers.  In the following sections I 

examine the interactive effects by two factorial experiments (Table 2.2b), the combined 

changes in the nutrient input and water exchange rates (η x µ) and nutrient input and fish 

predation rates (η x ν).  These experiments provide important insights into the domain 

over which each parameter affects model predictions.  Tables 2.4-2.5 and Figures 2.5-2.6 

illustrate the patterns observed for each experiment and are discussed below. 

Overall sensitivity patterns: Consideration of all treatment combinations identified 

15 sensitive parameters with 11 parameters common to both experiments (Table 2.4).  

The parameters with the highest average sensitivity were Pmax (N), Zmax (P), Az (Z), and 
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Table 2.4.  Results for the factorial series of sensitivity experiments (Table 2.2B).  Sensitivities of each state variable are shown for the 
two factorial experiments: (A) nutrient input verses water exchange (η x µ), and (B) nutrient input versus fish predation (η x ν).   The 
average sensitivity over all the treatment combinations (mean), the min/max sensitivity values (range) and the frequency of sensitivity 
values > the 10% cutoff criterion for sensitive parameters (f) is displayed. 
 

A.  η x µ State Variables 

Nutrient (N) Phytoplankton (P) Zooplankton  (Z) Detritus (D) 
Parm1 

mean (range) f mean (range) f mean (range) f mean (range) f 

Zmax 14 (0-38) 0.47 21 (3-47) 0.50  36 (12-40) 1.00 18 (0-50) 0.50 
Az 13 (0-35) 0.50  14 (0-37) 0.50  46 (26-49)  1.00  13 (0-32)  0.56 
Rz 7 (0-22) 0.39   5 (0-15) 0.19  17 (15-24) 1.00  10 (1-19) 0.47 

Pmax 18 (3-49) 0.64  9 (0-21) 0.42     8 (0-19) 0.42 
Kz 14 (0-42) 0.42  15 (0-36)  0.42     9 (0-24) 0.42 
Kc 7 (0-21) 0.33  9 (0-22)  0.42     12 (1-26) 0.42 
Nd 7 (0-69) 0.17 5 (0-42) 0.08  4 (0-25) 0.17 
No    5 (1-41)  0.11     4 (0-30) 0.17 
Kn 16 (0-38) 0.58           
Sp    7 (0-47)  0.17       
Mp          11 (0-27) 0.56 

1 Only parameters with sensitivities greater than 10% are shown.  See Table 2.1 for parameter definitions. 
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Table 2.4 (cont’d).  Results for the factorial series of sensitivity experiments (Table 2.2B).  Sensitivities of each state variable are 
shown for the two factorial experiments: (A) nutrient input verses water exchange (η x µ), and (B) nutrient input versus fish predation 
(η x ν).   The average sensitivity over all the treatment combinations (mean), the min/max sensitivity values (range) and the frequency 
of sensitivity values > the 10% cutoff criterion for sensitive parameters (f) is displayed. 
 

B.  η x ν State Variables 

 
 

Phytoplankton (P)  Zooplankton (Z) Detritus (D) 
Pm1 

mean (range)  f mean (range) f mean (range) f mean (range) f

Zmax 11 (0-43) 0.33  12 (0-44) 0.33  29 (0-40) 0.96  11 (0-48) 0.29 
Az 8 (0-33) 0.33  8 (0-34) 0.25  36 (0-50) 0.96  6 (0-21) 0.21 
Rz 5 (1-20) 0.25  3 (0-14) 0.04  15 (0-22) 0.96  6 (0-14) 0.29 
Nd 18 (0-70) 0.33  6 (0-35) 0.13     4 (0-24) 0.17 

Pmax 20 (3-40) 0.71 11 (2-22) 0.50  9 (0-18) 0.50
Kz 14 (0-35) 0.50  19 (0-38) 0.50     13 (0-27) 0.50 
Kc 9 (0-21) 0.50  11 (0-24) 0.50     15 (2-26) 0.50 
Sp    21 (1-89) 0.42     10 (4-34) 0.30 
No    6 (1-39) 0.17     6 (0-32) 0.17 
Mz       5 (0-15) 0.25    
Rp 4 (1-12) 0.17          
Kn 16 (0-41) 0.50          
Rd          4 (0-14) 0.08 

Ppref          1 (0-14) 0.04 
Mp          17 (0-43) 0.75 
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Table 2.5.  The degree of interaction observed between treatment factors for each 
factorial experiment (η x µ, η x ν).  Illustrated is the frequency (percentage) that the 
sensitivity results seen along one of the treatment axes (η, µ, ν) for each parameter will be 
indicative of the sensitivity dynamics when the other factor is varied.  A higher 
percentage indicates less interaction and consistency of results across the other treatment 
series.  A low probability signifies a significant interaction with the other treatment 
series.  Significant interactions at the (p=0.01) probability level were identified through 
Chi-square analysis and are marked in bold.   
 
Pm1  N  P  Z  D 

  η2 µ ν  η2 µ ν η2 µ ν  η2 µ ν
No      --  10      0/0 10 10
Nd  80/ 80 10          0/0 10 10

Pmax  57/ 83 83  50/ 90 10      50/4 90 10
Rp  --  78             
Mp              47/7 80 67 
Sp      80/ 73 89      --/65  61 
Kc  60/ 80 10  50/ 90 10      50/4 90 10
Kz  50/ 90 10  50/ 90 10      50/4 90 10
Kn  50/ 90 10             

Zmax  50/ 77 78  47/ 80 78  100/ 10 95  47/6 80 83 
Az  53/ 87 78  47/ 80 78  100/ 10 95  40/7 67 83 
Rz  --  67  43/ 77 94  100/ 10 95  50/6 77 72 
Mz          --  0     

Ppref              --/75  83 
Rd              --/90  89 

 

1Only parameters with sensitivities greater than 10% are shown.  See Table 2.1 for 
parameter definitions.  
2Since the nutrient treatment series, η, appears in both factorial experiments, there are two 
probability values, the first percentage is for the (η x µ) series and the second value is for 
the (η x ν) series. 
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Figure 2.5.  Contour plots of the effects of nutrient input (η, x axis) and water exchange 
(µ, y axis) on the sensitivity of selected parameters for each state variable.  Each row of 
plots represents a single state variable (A-C = N, D-F = P, G-I = Z, J-L = D).  The Zmax 
parameter is represented in each state variable (plots A, D, G, J).  Parameters were 
chosen to illustrate the various types of patterns (e.g., uniform, isolated, threshold, 
gradients) observed over the state space covered by the treatment combinations and to 
allow comparison between the two factorial experiments (see Figure 2.6). 
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Figure 2.6.  Contour plots of the effects of nutrient input (η, x axis) and fish predation (ν, 
y axis) on the sensitivity of selected parameters for each state variable.  Each row of plots 
represents a single state variable (A-C = N, D-F = P, G-I = Z, J-L = D).  The Zmax 
parameter is represented in each state variable (plots A, D, G, J).  Parameters were 
chosen to illustrate the various types of patterns (e.g., uniform, isolated, threshold, 
gradients) observed over the state space covered by the treatment combinations and to 
allow comparison between the two factorial experiments (see Figure 2.5).  

Fig. 6. 

Nutrient INput Rate (gN/m3/day)

0.0 0.2 0.4 0.6

Fi
h

P

0

20

40

60

80

0 
10 
20 
30 
40 
50 

Zmax(D)

Zmax(N) Pmax(N)

Kz(P)

Nd(N)

Kc(D)

Az(Z) Rz(Z)

Sp(P)

Mp(D)

J K L

G I

D E F

H
A

A B C

Zmax(P)

Zmax(Z)

Fi
sh

 P
re

da
tio

n 
R

at
e 

(%
 lo

ss
/d

ay
) 



53

 

 

  
Zmax (D) for experiment I (η x µ) and Pmax (N), Sp (P),  Az (Z), and Mp (D) for experiment II 

(η x ν).  Some parameters were highly sensitive for a narrow range of conditions while 

other parameters were consistently sensitive over a broad range of treatment 

combinations.  Only the Zmax, Az, Rz, parameters were sensitive for all the state variables 

and for both experiments. 

Interactive and Non-interactive parameters: The overall sensitivity patterns 

described in Table 4 were expanded upon in Figure 2.5 and 2.6 to illustrate the full range 

of sensitivity dynamics and to highlight interactive and non-interactive parameters.  From 

visual inspection of Figures 2.5 and 2.6, it can be seen that most parameters exhibit some 

degree of interaction effect due to the simultaneous variation in the drivers for the two 

factorial experiments (i.e., dynamics changed due to variations in one or both of the 

drivers).  For example, the Nd (N) parameter (Figure 2.6, C) was unresponsive to the 

amount of fish predation but highly responsive to the level of nutrient inputs.  The Kc (D) 

parameter (Figure 2.6, K) was also unresponsive to the fish predation level but showed a 

threshold effect to nutrient inputs.  The Az (Z) parameter had an opposite response in that 

fish predation had a strong impact on sensitivity dynamics while, in many cases, changes 

in nutrient inputs had no impact (Figure 2.6, H).  Some parameters also had interactive 

effects to both treatment factors such as the Pmax (N) and Zmax (P) parameters (Figure 2.5, 

B and D). 

The degree of interaction observed between treatment factors for each factorial 

experiment was determined through frequency and Chi-Square analysis based on a 
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probability function (see Appendix C for additional information) the results of which are 

shown in Table 2.5.  A higher percentage indicates less interaction and consistency of 

results across that treatment series and a low probability signifies a significant 

interaction.  Those parameters which failed the χ2 test at the (P = 0.01) level, indicating a 

low level of predictability and a significant interaction effect, are highlighted in bold.   

The analysis showed that many of the parameters could be predicted based on the 

sensitivity results observed in the control series.  This was especially true for changes in 

the water exchange rate (µ) and fish predation rate (ν) which demonstrated no significant 

interactions except for the Mz (Z) parameter.  Sensitivity dynamics (i.e., sensitive or non-

sensitive) stayed consistent across the series allowing prediction based on only the 

dynamics seen in the control case.  In contrast, changes in the nutrient input rate (η) 

resulted in significant interactions in many of the cases (e.g., Pmax, Kc, Kz), which will 

complicate efforts to predict the sensitivity dynamics based on only the control cases.  

The predictability of parameters to changes in η, were sometimes impacted by the other 

factor (µ or ν) and reflects the slightly different baseline conditions between the two 

factorial experiments. 

 

2.3.4  Dominant model parameters 

Another way to examine trends in parameter sensitivity due to variations in the 

external drivers is to identify and examine the interactions between the most sensitive 

parameters for each treatment combination.  An analysis of this type highlights which 

parameter, and its associated process, dominates for a given set of conditions and how 

parameters change importance under the changing environmental conditions simulated in 
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the model.  These often complicated, internal model dynamics are described below for 

each of the external drivers and are illustrated in Table 2.6. 

Nutrient input effects: The amount of nutrients entering the model system caused  

dramatic shifts in dominant parameters which give insight into the internal model 

dynamics.  Under the low nutrient input conditions (η = 0.0-0.04 gN m-3 day-1) N 

availability is mainly controlled through regenerative processes and diffusive exchange 

across the thermocline.  Under these conditions only low biomass levels of P and Z were 

supported and the parameter sensitivities reflect an ecosystem that is nutrient and grazer 

limited as indicated by the importance of the nutrient (No) and grazer (Zmax, Az) related 

processes.  N and P were both controlled by Zmax, either through direct grazing or the 

regeneration of nutrients from grazing processes, while the Z state variable is mainly 

influenced by internal growth processes as reflected by the sensitivity to the feeding 

efficiency (Az).  The low overall biomass in the ecosystem leaves the D compartment 

starved for biomass input and thus controlled by Z grazing (Zmax) and the supply of 

nutrients to the system (No).   

Intermediate levels of η (0.08-0.16 gN m-3 day-1) creates a more productive 

ecosystem that is less impacted by Z predation and input of N from below the 

thermocline.  The increased biomass of P leads to an increased demand on nutrients 

increasing model sensitivity to the Kn and Sp parameters which regulate how rapidly 

nutrients are removed from the water column.  The Kc and Kz parameters also become 

important as P growth starts to become limited due to self-shading effects.  The D state 

variable is now sensitive to the input of P biomass (Kc) rather than the input from Z 

biomass (Zmax).   
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Table 2.6.  Parameter ranking as a function of treatment combination for each factorial 
experiment and state variable.  Only the most sensitive parameter for a given treatment 
combination is shown.  Additional information on selected cases are discussed further in 
the text. 
 

A.  η x µ  B.  η x ν 

µ (% loss/day)  ν (% loss/day) 

State Variable 
 
η  

(gN/m3/day) 0 1.25 2.5 5 10 20  0 20 40 80 

N            
0.0 Zmax Zmax Az Az Pmax Pmax  Zmax Zmax Kn Pmax 
0.04 Zmax Zmax Zmax Zmax Zmax Pmax  Zmax Zmax Kn Pmax 
0.08 Kn Kn Kn Zmax Zmax Kn  Kn Kn Kn Pmax 
0.16 Kz Kz Kz Kn Pmax Kn  Kz Kz Kz Kz 
0.32 Nd Kz Kz Kz Kz Kz  Nd Kz Nd Kz 
0.64 Nd Nd Kz Kz Kz Kz  Nd Nd Nd Nd 

P            
0.0 Zmax Zmax Zmax Zmax Nd Nd  Zmax Zmax No No 

0.04 Zmax Zmax Zmax Zmax Zmax Nd  Sp Zmax Az Sp 
0.08 Sp Sp Zmax Zmax Zmax Zmax  Sp Sp Sp Sp 
0.16 Kz Kz Kz Sp Zmax Zmax  Kz Kz Kz Kz 
0.32 Kz Kz Kz Kz Kz Kz  Kz Kz Kz Kz 
0.64 Kz Kz Kz Kz Kz Kz  Kz Kz Kz Kz 

Z            
0.0 Az Az Az Az Az Az  Az Az Az Rz 

0.04 Az Az Az Az Az Az  Az Az Az Rz 
0.08 Az Az Az Az Az Az  Az Az Az Rz 
0.16 Az Az Az Az Az Az  Az Az Az Rz 
0.32 Az Az Az Az Az Az  Az Az Az Rz 
0.64 Az Az Az Az Az Az  Az Az Az Rz 

D            
0.0 No No Rz Az No No  Ppref Rz Mp Mp 

0.04 Zmax Zmax Zmax Zmax Zmax Mp  Zmax Zmax Zmax Mp 
0.08 Zmax Zmax Zmax Zmax Zmax Az  Zmax Zmax Sp Mp 
0.16 Kc Kc Kc Zmax Zmax Az  Kc Kc Kz Kz 
0.32 Kc Kc Kc Kc Kc Kc  Kc Kc Kz Kz 
0.64 Kc Kc Kc Kc Kc Kc  Kc Kc Kz Kz 
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At high levels of η (0.32-0.64 gN m-3 day-1) input a number of significant changes 

occur.  P biomass is now limited by self-shading effects and, despite further nutrient 

additions, is unable to increase in biomass.  Nutrients build-up in the ecosystem and the 

dynamics shift from nutrient-limitation to light-limitation.  The most sensitive parameters 

for the P and D state variables are now the depth of the water column, Kz and the light 

attenuation coefficient for phytoplankton self-shading, Kc as these parameters control 

how many phytoplankton can be produced at a given light intensity.  Since zooplankton 

were unable to control the phytoplankton due to saturated feeding at these high P biomass 

levels, Z is still mainly controlled by internal processes (Az).  Due to the build-up of 

nutrients, the N state variable is now sensitive to the flux of nutrients across the 

thermocline (Nd). 

Water exchange effects: The changes in parameter sensitivities due to increases in 

the water exchange rate were primarily dependent on the nutrient status of the ecosystem.  

Under the low nutrient input cases (η = 0.0-0.04 gN m-3 day-1), the biomass in all the state 

variables was reduced by the increased flushing due to the higher water exchange rate but 

the largest impact seemed to result from the decrease in Z predation from the loss of 

zooplankton from the system.  The reduction in Z grazing shifted both the P and N 

dominant process from Zmax to Nd and Pmax respectfully as these state variables became 

controlled by the supply of nutrient rather than predation and regenerated material.  The Z 

biomass, under most conditions, was dominated by the zooplankton feeding efficiency, 

Az, while the sensitivity of the D parameters were more complicated due to interactions 

between the input of new material from physical (No) and biological (Rz, Az, Zmax, Mp) 

sources. 
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With the addition of more nutrients (η = 0.08-0.16 gN m-3 day-1) there is now 

greater biomass and higher P and Z growth rates.  As the water exchange rate is 

increased, N goes from control by phytoplankton uptake (Kn), to zooplankton control 

(Zmax) and then back to phytoplankton control (Kn).  P goes from phytoplankton (Sp) 

control back to zooplankton control (Zmax) whereas D is controlled mainly by 

zooplankton process (Zmax, Az) across the range of water exchange rates.  The overall 

impact of the higher exchange rate was to remove nutrients and biomass from the system 

which shifted the model from the early stages of light-limitation and P control into a 

more nutrient-limited state controlled mainly by Z processes. 

At higher nutrient addition rates (η = 0.32-0.64 gN m-3 day-1) the effects of the 

water exchange rate become masked by excess biomass in the system and the dominance 

of the P parameters.  The N state variable was controlled by the thermocline exchange 

rate, Nd, when the water exchange rate was low.  The Kz parameter then takes over at 

higher water exchange rates.  With such high nutrient input rates there were always 

excess nutrients resulting in a physically driven system, first by internal inputs and then 

by external losses as the exchange rate increases.  P is controlled directly through the 

depth parameter, Kz, whereas D is controlled indirectly through the self-shading 

coefficient for the phytoplankton, Kc. 

Fish predation effects: The impact of changing the fish predation rate was largely 

determined by the level of nutrients entering the system which in turn affected the level 

of phytoplankton biomass available to support zooplankton production.  With the 

baseline case (η = 0.00 gN m-3 day-1) there was no fish predation and no external nutrient 

inputs.  Under these conditions, Z can have their greatest impact on the other state 
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variables.  As a result, the dynamics were dominated by the Z parameters Zmax, Az, and 

Ppref.  When the fish predation rate was increased the system went from being Z 

dominated to N and P dominated.  N became controlled by P growth (Kn, Pmax) while P 

were limited by the amount of N below the thermocline, No.  D was dominated by inputs 

from P losses (Mp) instead of Z related grazing and growth terms (Ppref, Rz).  The 

zooplankton go from being internally regulated by their feeding efficiency (Az) to 

regulation by losses due to respiration, Rz.   

When nutrients were increased (η = 0.16 gN m-3 day-1) the P, N, and D state 

variables were no longer controlled by Z even under the low fish predation treatments.  

Here the P and N biomass values were largely controlled by the Kz parameter indicating 

that the system is light-limited.  The D state variable is mainly controlled by the Kc and 

Kz parameters which limit the potential amount of P biomass available as input to the D 

state variable.   

At higher nutrient addition rates (η = 0.64 gN m-3 day-1) and for all predation rates 

considered, the N state variable was controlled by the diffusion rate across the 

thermocline, Nd, as opposed to the depth of the water column, Kz.  The excess in N, along 

with P growth limitation from self-shading, effectively de-coupled N from P control.  

The dominant processes for the P, Z and D state variables remain unchanged from the 

previous nutrient input series. 

 

2.4  Discussion 

The identification of parameters and processes that most affect model predictions 

is a key step in the development, calibration, and testing of any model (Gardner et al. 
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1981; Oreskes et al. 1994; Caswell 2000).  Because parameters may be poorly known or 

may affect feedbacks and non-linear interactions, cursory inspection of model equations 

will not provide useful insight for determining parameter-prediction dependencies.  

Sensitivity analysis, through the systematic variation of input parameters and comparison 

with corresponding predictions, is a critical tool that should be universally employed 

during all stages of model development, testing, and application.  

Useful ecosystem models must be capable of considering a broad range of 

environmental drivers and internal conditions.  Consequently, a sensitivity analysis 

should be conducted over the widest practical range of conditions.  For pelagic ecosystem 

models, variations in predator/prey dynamics, nutrient pulses, and water exchange rate 

are all important processes to consider.  The wide variability of parameter values reported 

in the literature for these models also requires an equally extensive analysis.  Parameters 

that are insensitive under a wide range of conditions are unlikely to be a concern for 

model development and application (Gardner et al. 1982).  However, high uncertainty 

combined with high sensitivity will identify parameters of concern (Gardner and O’Neill 

1983; Gardner et al. 1990).  Model development and testing must focus on these 

parameters and conditions in order to improve model precision and the reliability of 

predictions.  The results reported here illustrate the importance of these analyses for the 

NPZD model. 

 

2.4.1  Sensitivity Dynamics 

The sensitivity analysis of the NPZD model for each treatment combination 

showed that only three to five of 28 parameters were important for any fixed set of 
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conditions.  When results were combined over all scenarios a much larger parameter set 

(i.e., 17 parameters) was found to be sensitive for at least one set of conditions.  The most 

sensitive parameters for each state variable and experiment were the Pmax (N, Exp I, II), Az 

(Z, Exp I, II), Zmax (P and D, Exp I), Sp (P, Exp II), and Mp (D, Exp II) parameters (see 

Table 4).  Had I limited the analysis to only one set of conditions, as is sometimes done in 

sensitivity analysis, a number of potentially important parameters would have been 

overlooked.    

Most parameters were sensitive over a narrow set of conditions.  Only the 

zooplankton maximum grazing rate, Zmax, and assimilation efficiency, Az, parameters 

where sensitive over most of the treatment combinations tested.  Increased precision in 

the estimates of these two parameters will most improve the precision of model 

predictions for the model.  Other broadly sensitive parameters were the Nd, Pmax, Kz, and 

Kc parameters.  These parameters were sensitive for many cases in the N, P, and D state 

variables, playing a major role in the dynamics of the NPZD model.   

The Rf, In, Io, Kw, k, Sd, and Fd parameters were never sensitive despite the broad 

range of environmental conditions considered.  Under the conditions tested, parameter 

values, and model structure, these parameters had little influence on the model dynamics.  

To reduce model complexity, unimportant parameters, such as those above, could be 

eliminated or combined with other parameters and processes.  For the remaining 

parameters, the sensitivity results were variable depending on the conditions being 

simulated and the state variable being considered.   
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2.4.2  Response to changing environmental conditions 

The changing environmental conditions simulated (i.e., increases in productivity 

from higher nutrient inputs, greater top-down control from increases in fish predation and 

higher mixing losses from an increased water exchange rate) should impact the model 

and the parameter sensitivities in different ways.  I anticipated finding different parameter 

groupings that would change depending on the treatment series but the actual trends 

observed were very complicated with few patterns.  Only key parameters were able to be 

identified for each treatment series and state variable.  These key parameters were: (1) the 

Nd (for N), Sp (for P), Az (for Z), and Zmax (for D) parameters for the nutrient input series; 

(2) Pmax (for N), Zmax (for P), and Az (for Z, D) parameters for the water exchange rate 

series; and (3) the Zmax (for N, P), Az (for Z), and No (for D) parameters for the fish 

predation series.  As before, the Zmax and Az parameters dominated the sensitivity 

dynamics. 

The factorial design allowed me to examine interactions between the 

simultaneous variation of the nutrient input rate with each of the other two drivers.  In the 

absence of significant interactions, simple main effects (i.e., the edges of the factorial) 

would be adequate for predicting if a parameter would remain sensitive or insensitive.  

Many parameters within the water exchange rate and fish predation rate treatment series 

met these conditions (see Table 2.5).  However, the nutrient input rate parameters 

displayed significant interactions due to a pronounced threshold effect.  These results 

suggest that my NPZD model will be more predictable to changes in the water exchange 

and fish predation rate than changes in the nutrient input rate under this particular set of 

parameter values. 
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The factorial design also provided valuable insight into the internal dynamics of 

my model.  Through the identification of the most sensitive parameter for each treatment 

combination the interactions between parameters was exposed.  For instance, over the 

course of the nutrient input treatment series, the dominant parameters shifted from those 

associated with nutrient limitation and biological control (i.e., Zmax, Kn, Sp) under low 

nutrient conditions to those associated with light limitation and physical control (i.e., Kz, 

Kc) under high nutrient conditions.  This was due to the increase in phytoplankton 

biomass and nutrients combined with the inability of the zooplankton to regulate the 

phytoplankton at the higher nutrient input rates.  Section 3.4 describes additional 

examples which reveal interesting internal model dynamics.  

 

2.4.3  State variable effects on sensitivity results  

The level of sensitivity for most parameters was dependent on the state variable 

(i.e., N, P, Z, or D) being considered.  High sensitivities usually occurred when a 

parameter was present in the equation for that state variable.  Some parameters were only 

sensitive for one or two state variables (e.g., Kn, Sp, Mz, Mp).  Parameters with limited 

sensitivity can provide a powerful tool for understanding the complex interactions 

between state variables.  For example, why was the natural mortality rate for 

phytoplankton, Mp, only sensitive in the D compartment while the sinking rate for 

phytoplankton, Sp, was sensitive in both the P and D state variables?  Both parameters 

have the same value (i.e., 10% loss day-1) and appear in the same equation (i.e., P) with 

the same structure (i.e., first order loss term) yet have different sensitivity dynamics.  A 

probable reason for the sensitivity of the Sp parameter in the D state variable is that under 
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low nutrient conditions the D compartment is “starved” for material and any process that 

affects how much new material is available for recycling is critical.  The dynamics 

related to the Mp parameter occur because this parameter is a direct input to the D 

compartment while for P, it occurs as one of several loss terms (Eq. 1). 

 

2.4.4  Model structure and form effects on sensitivity results  

Choices in model structure and form play a signification role in determining 

model sensitivities.  For several parameters (e.g., Kz) there was a threshold effect with 

increasing nutrient input.  This sudden change in sensitivity was associated with an 

equally sudden switch from nutrient-limitation to light-limitation as represented in the 

photosynthesis equation (see Eq. 1).  In this equation, phytoplankton growth was limited 

by the minimum value from either the nutrient or light function as opposed to a 

multiplicative function where both processes can simultaneously limit phytoplankton 

growth.  The formulation employed in Eq. 1 has the effect of removing the non-limiting 

process from the model dynamics (i.e., the model no longer sees that part of the 

equation).  Both functions are used in the literature (Cullen et al. 1993; Haney and 

Jackson 1996; Denman and Pena 1999) so investigation of this and other possible 

threshold effects (e.g., minimum feeding concentration for the Ivlev function) warrant 

further attention for their potential impact on parameter sensitivity and model dynamics. 

Other effects of model structure on parameter sensitivity include the types of 

functional responses employed (e.g., linear, quadratic, saturating), number of feedbacks, 

and types of processes modeled.  For example, this model does not include temperature 

effects which are often parameterized with a Q10 formulation.  Other studies have found 
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this parameter to be highly important (e.g., Bartell et al. 1988b; Pastres et al. 1997) and 

had I included a temperature related parameter I probably would have found similar 

results.  Another example includes the type of functional response utilized.  My 

simulations would be quite different if I had formulated the phytoplankton so they were 

not limited by self-shading effects as has been done in other models (e.g., Franks and 

Chen 1996; Kemp et al. 2001).  The plateau seen in many of the parameter sensitivities at 

the higher nutrient concentrations would probably not exist.  

 

2.4.5  Comparison of sensitivity results between studies 

The comparison of the results of sensitivity analyses for different studies can be 

problematic.  Even though the ecosystem is the same (i.e., a pelagic ecosystem) the 

model formulations may differ in scope and detail; parameter values vary depending on 

the location and species simulated; and the technique for performing the sensitivity 

analysis if often different.  Several studies have addressed this latter problem by 

comparing the performance of different sensitivity techniques (Hamby 1995; Homma and 

Saltelli 1996).  Although no standardized method has emerged, a range of methods 

appear to give similar results (Hamby 1995).   

Comparisons between studies are also difficult when parameter sensitivities are 

analyzed for transient rather than equilibrium conditions.  Although analysis of transients 

are important, cross-model comparisons are complicated by the dynamic changes in 

parameter sensitivities that may occur over a seasonal cycle or from changes in food-web 

structure (e.g., Bartell et al. 1988b; Fong et al. 1997; Klepper 1997; Pastres et al. 1997).  

An additional difficulty with comparing sensitivity studies is that the response variable 
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for the sensitivity analysis often differs.  I was interested in parameter sensitivities 

relative to the equilibrium biomass concentration.  Other studies have also used this 

response variable (e.g., Bax 1985; Fasham 1995; Druon and Fevre 1999), but alternative 

endpoints are possible including carbon export dynamics, primary and secondary 

production rates, and patterns of phytoplankton growth and decline (e.g., Bartell et al. 

1988a; Fasham et al. 1990; McGillicuddy et al. 1995). 

Despite these difficulties, several generalizations are possible.  I showed the 

parameters affecting Z also affected the equilibrium values for all the state variables 

under a wide range of conditions.  Many studies have also found that the dynamics of Z 

play a major role in the flow of energy directly via predation or indirectly through 

excretion and fecal pellet production (McGillicuddy et al. 1995; Frost 1997; Edwards et 

al. 2000; Edwards 2001; Halvorsen et al. 2001).  A surprising result was that the 

quadratic mortality term for the zooplankton was not sensitive for a majority of the cases.  

Other studies (Steele and Henderson 1992a; Edwards and Brindley 1999; Murray and 

Parslow 1999; Kemp et al. 2001) have found the mortality term to be important in 

controlling the dynamics of these simple ecosystem models.  One possible explanation is 

the population levels for Z never reached a high enough value to overcome the effects of 

the Z growth rate and assimilation efficiency.  This is further supported by the fact that 

the only time the quadratic mortality term was important was when the fish predation rate 

was low allowing the Z biomass to achieve their highest values.  If the quadratic mortality 

term was parameterized with a lower value (i.e., weaker control of biomass) or if there 

were conditions where the Z could achieve higher population levels (i.e., higher 

assimilation efficiency, lower losses from excretion, lower grazing saturation) then a 
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more prominent role should be expected for the mortality term.   

Some parameters, like the half-saturation constant for Z grazing, k, and the 

parameters related to photosynthesis (e.g. Io, In), where never sensitive although other 

studies have found them to be important (e.g., Druon and Fevre 1999).  A possible reason 

for my results was that the light intensity for my simulations was greater than the half-

saturation constant for light extinction.  Under saturated light conditions small variations 

in the half-saturation constant will have no measurable effect on model output.  The 

fluctuations in P biomass caused by the treatment combinations did cause the self-

shading parameter to be important under the high biomass cases.  If simulations would 

have been run over the course of a year, with variations in light intensity, then the half-

saturation constant for light uptake most likely would have been important especially 

during times of low light intensity.  The same can be said for the Z half-saturation 

constant for grazing, since for a majority of the cases the P equilibrium value was much 

higher than the half-saturation constant value.  These examples all highlight the need to 

use caution when interpreting results of sensitivity experiments and especially when 

comparing between models with different parameter values, structures and endpoints.    

 

2.5  Conclusions 

Sensitivity analysis (in the strictest sense) is the partial derivative of the state 

variable with respect to the parameter (Tomovic 1963).  Whether this derivative is 

estimated analytically or numerically, it represents a single point within the larger domain 

of all possible parameter-prediction relationships.  Consequently, I used sets of factorial 

experiments that varied model conditions to estimate parameter-prediction relationships 
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across a broad range of conditions.   

The results of these experiments have shown that:  1) only two to three parameters 

are usually required to “explain” predictions if environmental conditions (i.e., model 

drivers) are well-defined; 2) although many different parameters may be sensitive when 

the domain of possible environmental conditions are explored, only a few parameters 

were consistently important across all experiments; and 3) interactive effects among 

parameters were revealed by the systematic variation of environmental conditions.   

The information provided by a comprehensive sensitivity analysis is also useful 

for the analysis of model structure.  Shifts in parameter sensitivity, including threshold 

effects, indicate an associated shift in process-prediction dependencies.  Dominant 

parameters under a particular set of conditions are often not applicable to a new set of 

conditions.  Such shifts may be easily verified by empirical observations to verify the 

validity of a particular model formulation.  The failure to obtain empirical verification 

may mean that alternative model formulations are warranted.   

The analysis of parameter sensitivities can also be used to reveal where model 

simplification may be possible.  Parameters, and associated processes, that are never 

important may indicate unneeded model complexity.  Alternative functional forms with 

fewer parameters may be substituted without loss of predictive power (Gardner et al. 

1982).  The tedious process of model calibration should focus on sensitive parameters, 

but with the caveat that such calibration may not be suitable if environmental conditions 

(and associated parameters sensitivities) are significantly altered.   

Based on the analysis reported here, the newly developed NPZD model behaves 

in a manner consistent with what would be expected as a result of changes in nutrient 
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additions, predation pressure, and water exchange rate.  Enrichment with nutrients causes 

a bloom in P biomass and subsequent increases in Z and D biomass.  An increase in fish 

predation results in lower Z and D biomass and in higher P while an increase in the water 

exchange rate reduces the overall concentration levels of all the state variables, except N 

which tended to increase (see Figure 2.3).   The most sensitive parameters have been 

identified and their range in sensitivities characterized.  The results also provide insight 

into the internal dynamics of the model for this particular set of parameter values and 

experimental conditions (see discussion in section 2.3.4). 

Based on this knowledge, a number of possible future directions are possible.  

The results from this analysis are primarily limited the particular values used for each of 

the model parameters.  These parameters can however vary over a wide range of values.  

One potential way to extend the applicability of my results is to conduct an uncertainty 

analysis to understand how parameter variability changes when the parameters are varied 

over a realistic range.  Other papers have used this technique to gain additional insights 

into model dynamics (Gardner and O’Neill 1983; Dale et al. 1988; Gardner et al 1990; 

Rose et al. 1991). 

  I can use the sensitivity results to make more efficient future efforts at model 

development, calibration and testing.  Some of the identified non-sensitive parameters 

could be combined with other parameters or processes to remove unnecessary parameters 

to reduce computation time and errors due to parameter estimation.  Efforts at calibration 

will be facilitated by knowing which parameters are likely to cause a change in a 

particular state variable with only a minimal change in the parameter value (i.e., the 

sensitive parameters).  Many of the parameters used in my model have a wide range of 
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possible values reported in the literature.  Parameters which are highly variable and also 

highly sensitive need careful attention since errors in the estimation of these parameters 

can drastically impact the observed model dynamics. 

Through the sensitivity analysis, I discovered that the top-down control by 

zooplankton is rather weak in my model, allowing phytoplankton to increase rapidly with 

only a minimal amount of nutrient addition.  Stronger top-down control by the 

zooplankton was prevented by the low growth rate of the zooplankton (reflected in the 

Zmax parameter) combined with high losses from respiration (Rz parameter) and self-

regulation due to the quadratic mortality term (Mz parameter).  If I wish to simulate a 

system where there is increased coupling between phytoplankton and zooplankton I will 

have to alter some of these terms so that the zooplankton can achieve higher biomass 

concentrations.  Additional changes are possible, based on insights gained from the 

sensitivity analysis, but these will be largely driven by the focus of future experiments. 

In summary, sensitivity analysis should be performed during all stages of model 

formulation, development and application (Gardner et al. 1981; Caswell 2000).  The 

existence of efficient Monte Carlo techniques allows this analysis to be efficiently 

explored for most ecosystem models.  Sensitivity analysis enables the identification of 

the most sensitive parameters for a particular parameter set or environmental conditions.  

Through my analysis I was able to investigate parameter behavior under a wide range of 

environmental conditions which should aid in the extrapolation of the model dynamics 

and behavior to other conditions outside of the experimental domain.  The volume of data 

produced however, continues to be a bottle-neck, making the analysis of results awkward 

and difficult to explore.  Opportunities for the application of advanced analysis 
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techniques (e.g., Beres and Hawkins 2001) should be explored to make the benefits of 

sensitivity analysis universally available.  
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Chapter 3 
 

A novel grid-based method for simulating idealized turbulence 
in aquatic systems 

 

 

 
Abstract 

Algorithms based on Fickian diffusion are often used to represent or parameterize 

turbulent mixing in spatially-explicit ecosystem models.  These methods, however, suffer 

from a number of limitations including the accelerated smoothing/elimination of existing 

concentration gradients and an inability to represent the heterogeneity generated by scale-

dependent mixing.  I developed a computationally efficient and statistically accurate 

method for simulating idealized two-dimensional turbulence in aquatic systems which 

avoids these problems.  Based on a “seeded eddy” model developed for particle systems, 

I have adapted the technique for a gridded framework while still preserving the cascade 

of turbulent energy from broad- to fine-scales.  Results from tracer decay studies showed 

that this method reproduces the velocity spectrum of homogeneous isotropic turbulence 

and accurately represents the spreading rate of particles from scale-dependent turbulent 

mixing.  The technique is extremely fast and preserves concentration gradients down to 

the resolution of the simulation domain thereby allowing the simulation of realistic 

concentration gradients over a broad range of scales.  These attributes make the method 

ideal for incorporation into spatially-explicit ecosystem models for the theoretical and 

applied investigation of physical-biological interactions over a range of scales, especially 

where the preservation of spatial patterns is important.
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3.1  Introduction 

Turbulence plays a prominent role in structuring physical and biological 

interactions in aquatic ecosystems.  Physical processes are affected through the alteration 

of mixing, flushing, and mass transfer rates (Gargett 1989), the breakdown of large-scale 

concentration gradients (Okubo 1980), the transfer of variability from large to small 

scales (Ottino 1990), and the regulation of exchanges between interfaces such as the air-

sea, pynocline, and benthic boundary layers (Hopfinger 1987).  For organisms in the 

aquatic environment, turbulence affects a wide range of ecological processes at scales of 

individuals, populations, communities, and ecosystems.  Some of these include; feeding 

rates (Kiorboe and Saiz 1995), uptake kinetics (Lazier and Mann 1989), predator-prey 

interactions (Hwang et al. 1994), encounter rates (Rothschild and Osborn 1988), 

aggregation and disaggregation processes (Squires and Yamazaki 1995), species selection 

(Margalef 1978), and ecosystem productivity (Nixon 1988).  Together, these turbulence- 

mediated, physical and biological processes interact in complex ways to influence 

resource availability (e.g., nutrients), distribution of physical (e.g., temperature) and 

biological (e.g., phytoplankton) properties and ultimately ecosystem structure (Mackas et 

al. 1985; Weber et al. 1986; Powell 1989; Kiorboe 1993). 

Turbulence in the aquatic environment is the result of unstable flows from forces 

moving water over large domains (e.g., tides, currents, upwelling, etc.).  These flows 

create a cascade of energy and variance from large-scale structures down to ever-

decreasing scales (Richardson 1922; Kolmogorov 1941).  Large scale swirls and eddies 

break down into smaller swirls and eddies and eventually into random chaotic motions.  

Finally, at the finest scales (i.e., centimeter scale), the turbulent energy is dissipated into 
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heat (Batchelor 1967).  The large eddies are responsible for a majority of the stirring 

associated with turbulent mixing and are often inhomogeneous and anisotropic (Garrett 

1989).  As eddies breakdown into smaller structures, this cascade of turbulent energy 

becomes more spatially uniform and independent of orientation (Richardson 1922).  The 

behavior of the turbulent mixing and associated eddies can then be statistically described 

by the idealized theory of homogeneous, isotropic turbulence (Batchelor 1967).  

Numerous comprehensive reviews of aquatic turbulence and associated parameters are 

available (see especially Tennekes and Lumley 1972; Landahl and Mollo-Christensen 

1986; Hopfinger 1987; Yamazaki and Osborn 1988; Gargett 1989; Ottino 1990; Sanford 

1997). 

The dominant role that turbulence often plays in the physical environment has led 

to substantial research to incorporate turbulence, and the mixing it facilitates, into aquatic 

ecosystem models.  The chaotic nature of turbulent flows makes it difficult to simulate 

directly (Tennekes and Lumley 1972; Yamazaki et al. 1991).  Often it is easier to 

simulate turbulence with an appropriate statistical approximation (Holloway 2004).  For 

example, rather than solve the non-linear terms of the Navier-Stokes equations, the 

turbulence may be parameterized as a Fickian diffusion or random walk process (Okubo 

1980; Steele and Henderson 1992; Visser 1997).  An alternative approach is to represent 

the flow directly rather than simulate the associated physics.  For instance, prescribed 

flow fields or multifractal maps may be used to characterize a fully developed turbulent 

flow field (Dyke and Roberston 1985; Powell and Okubo 1994; Abraham 1998; 

Marguerit et al. 1998; Mariani et al. 2005).  Since each method has its limitations, the use 

of one method over another will depend on the application of the model, the desired level 
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of accuracy, the computational costs, the type of simulation method (e.g., Eulerian, 

Lagrangian), and the temporal and spatial scale of the model domain, process, or species 

being studied (Chen and Annan 2000; James 2002; Umlauf and Burchard 2005).     

Fickian diffusion methods are often used to parameterize turbulent mixing (i.e., 

turbulent diffusion) in spatially-explicit aquatic ecosystem models.  Originally developed 

to describe molecular diffusive processes, Fickian diffusion methods assume that 

turbulence can be modeled as a diffusive random process with the rate of the mixing 

governed by the strength of the turbulence (Okubo 1980).  The approach has been very 

successful in addressing a number of important questions related to the impact of mixing 

processes on ecosystem dynamics and in understanding observed spatial patterns in 

aquatic systems.  Some of these include analyzing factors that regulate phytoplankton 

blooms (Kierstead and Slobodkin 1953), interpreting and understanding observed 

concentration gradients of physical and biological variables in the aquatic environment 

(Wroblewski and O'Brien 1976; Steele and Henderson 1992), and simulating animal 

movement processes (Grunbaum 1994).  There is also a large body of theory which has 

been developed based upon Fickian diffusion methods (Okubo 1980) and the approach 

has been expanded to similar areas such as reaction-diffusion (Gurney et al. 1998), 

cellular automata (Wolfram 1986), and random walk models (Durrett and Levin 1994). 

There are, however, a number of problems with extrapolating the Fickian 

diffusion approach to the scales at which turbulent processes dominate (i.e., meters to 

kilometer scales).  The primary concern is that the rate of mixing caused by turbulence is 

dependent on the scale of the problem (i.e., scale-dependent diffusion) and the Fickian 

diffusion approach assumes the same mixing rate regardless of scale, which can over- or 
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underestimate the true mixing rates occurring in natural systems (Okubo 1980, Petrovskii 

1999).  Another issue is that the Fickian diffusion approach models turbulent mixing as a 

diffusive process which will result in gradients or patterns becoming smeared or 

dissipated thereby tending to eliminate spatial concentration gradients over time or to 

prevent the generation of pattern that occurs during turbulent mixing (Abraham 1998).        

A novel technique for simulating idealized two-dimensional turbulence in aquatic 

systems which is free from many of the limitations of traditional Fickian diffusion 

methods is presented in this chapter.  Based on a seeded eddy model developed for 

Lagrangian particle systems, (Dyke and Robertson 1985; Abraham 1998) I have adapted 

the technique to work within a gridded Eulerian framework while still preserving the 

cascade of turbulent energy from broad- to fine-scales.  This new method, the Eulerian 

seeded eddy model (ESEM), is theoretically based, computationally efficient, and 

statistically accurate.  Results from tracer decay studies are used to demonstrate that the 

ESEM method reproduces the velocity spectrum of homogeneous isotropic turbulence 

and accurately models the spreading rate of particles from scale-dependent turbulent 

mixing.  Because the ESEM is extremely fast and exhibits no numerical diffusion, this 

method allows the simulation of realistic concentration gradients over a broad range of 

scales.   

 

3.2  Methods 

3.2.1  Simulation Platform  

As part of my dissertation research efforts investigating the use of spatially-

explicit simulation models, I developed a spatial lattice framework (SLS) for simulating 
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spatial effects in aquatic systems (Figure 3.1).  My approach has been to embed a fine-

scale aquatic ecosystem model that simulates the dynamics of nutrients, phytoplankton, 

zooplankton, and detritus (see Chapter 1) within a gridded aquatic landscape with 

exchanges among grid cells controlled by sets of difference equations.  The bulk flow of 

constituents and organisms past a fixed point are recorded, analogous to a Eulerian 

framework, and rules are used to establish exchange of material, energy, and/or 

organisms between adjacent grid sites.   

The SLS simulation platform was ideal for investigating one of the main focus 

areas of my dissertation: how processes and patterns translate across spatial and temporal 

scales and how the spatial distribution of resources and organisms influences these 

processes and patterns.  To study these biological and physical interactions within a 

spatially explicit framework, I needed a way to simulate realistic cell-to-cell physical 

exchanges.  I also planned to compare the spatial patterns produced by the model 

simulations to field data that were spatially extensive (30-50 km) but also had fine spatial 

resolution (30 m).  Over these spatial scales, turbulence is a dynamic process with 

numerous swirls and eddies, so any technique had to be capable of reproducing a range of 

mixing scenarios typical of the natural environment while also preserving fine-scale 

concentration gradients.   

Since my simulation platform was based on a Eulerian framework, at fine spatial  

resolutions, I was limited in the types of methods to incorporate realistic turbulent mixing 

effects.  Circulation models for the system of study (i.e., Chesapeake Bay) could not 

produce realistic turbulent flows and preserve fine-scale pattern (i.e., less than 100 m) at 

the scales of interest (e.g., Cerco and Cole 1993; Hood et al. 1999).  The use of 
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Figure 3.1. Schematic showing the Spatial Lattice System (SLS).  The developed system 
had to be capable of reproducing physical (e.g., turbulence, advection, diffusion) and 
biological (predator-prey dynamics, fish movement) exchanges typical of the natural 
environment while handling a range of mixing and or physical forcing scenarios which 
would allow results to be extrapolated to natural systems such as the Chesapeake Bay.  
Panel A illustrates the biological component of the SLS which is inserted into each grid-
cell of the simulation framework.  In future experiments, I plan on using a nutrient-
phytoplankton-zooplankton-detritus ecosystem model.  Panel B illustrates the physical 
component of the SLS which consists of routines to approximate diffusive and turbulent 
mixing.  The turbulent mixing routine is the subject of this chapter.  Panel C illustrates 
the application of the SLS to a section of the Chesapeake Bay. 
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multifractal maps to produce statistically accurate flow fields was possible (Marguerit et 

al. 1998) but since I wished to study the “dynamic” interaction between turbulent mixing 

and biological processes and its effect on spatial patterns in aquatic systems, the static 

nature of this method would not be very satisfactory.  Another method would be to 

parameterize the mixing as a Fickian diffusion process.  With this method, fine-grids can 

be simulated, but because it is a diffusion-based process within a grid-based system, 

concentration gradients are not accurately represented through time (see Appendix D).   

 

3.2.2  Eulerian seeded eddy model (ESEM) 

Because there was no satisfactory method to incorporate realistic mixing effects 

without resorting to complex three-dimensional hydrodynamic equations or 

oversimplifications of the physical environment, I developed an approach that used 

seeded eddies and multifractals to represent turbulent mixing processes in aquatic 

systems (Abraham 1998; Seuront et al. 1999).  These methods are conceptually based on 

Komologorov’s equilibrium theory of turbulence (Kolmogorov 1941) and have been 

applied by Dyke in the simulation of offshore turbulent dispersion using seeded eddies 

(Dyke and Robertson 1985).   

The basic concept is that mixing energy is injected at large scales and then 

cascades to smaller scales until it is eventually dissipated by heat.  The input and 

dissipation of energy is assumed to be in equilibrium and can be viewed as a series of 

nested eddies.  At the largest scales there is a parent eddy that recursively breaks into four 

daughter eddies that also break up into four smaller eddies until the field is filled with 

nested eddies of decreasing size (Figure 3.2).  The papers by Seuront et al. (1999) and 
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Lovejoy et al. (2001) provide an overview of these methods and some recent 

applications.   

The seeded eddy model described above, however, was developed for use in 

particle (i.e., Lagrangian) systems where the location of material is known exactly.  To 

make this method applicable to my system I modified the technique to work within a 

gridded (i.e., Eulerian) framework where concentration gradients between grid cells must 

be averaged.  My method uses the same basic mechanics used by Abraham (1998) with 

modifications to allow application within a grid-based system.  A schematic of the steps 

involved with the method is described below and illustrated in Figure 3.3.   

First a distribution of eddies is created based on the dimensions of the simulation 

domain.  Since the method uses multifractal generation techniques to create the 

distribution of eddies, the simulation domain must be a power of two (e.g., 16 x 16 

simulation domain equals 24).  For this chapter, I used a 1024x1024 gridded map which is 

equal to 210 cells on each side.  The exponent, in this case 10, sets the number of map  

levels (n).  The number of eddies at each map level (E(n)) is then determined as follows:    

 

E(n) = 4(n-1)               (Eq. 1) 

 

At the largest scale (i.e., map level 1) there would be one “parent” eddy which 

fills up the entire simulation domain.  At the next scale down (i.e., map level 2) there 

would be four eddies with each eddy taking up one-fourth of the simulation domain.  This 

is repeated until the highest map level is reached.  The radius for each eddy at a particular 

map level (R(n)) is determined as follows: 
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R(n) = L/2n                     (Eq. 2) 

 

Where  

 

L = Length of the simulation domain  
 

 

At each map level there are four times the number of eddies compared to the 

previous level and the radius is half of the previous level.  To conserve energy as the 

eddies decrease in size and increase in number, the velocity (V(n)) of each eddy (E(n)) 

relative to that of the largest eddy (E(1)) is calculated as follows: 

 

V(n) = (E(1)/E(n))1/3                    (Eq. 3) 

 

Equation 3 is based on the turbulent cascade of energy in the inertial subrange of 

turbulence (Kundu 1990; Moum 1996; Sanford 1997).  Since the largest eddy is 

providing all the energy, the smaller eddy velocities are scaled to the velocity of the 

largest eddy.  For example, eddies at map level (3) would have a velocity which was 

(0.63) that of the eddy at map level (1).   

The scaled velocity of each eddy is then converted into a rotation frequency based 

on the time-step and desired turbulence intensity for a particular scenario.  The rotation 

frequency determines the duration of time, measured in the time-step of the model, 

between the start of a rotation cycle for eddies of a given radius.  For example, eddies
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Figure 3.2. Conceptual diagram showing the cascade of turbulent energy from broad- to 
fine-scales within the multifractal and seeded-eddy framework.  At each scale, large 
eddies break up into space-filling, sub-eddies until eventual dissipation into heat.  
Diagram is adapted from Seuront et al. (1999). 
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Figure 3.3. Schematic of the steps and routines used to generate turbulent mixing using 
the turbulence generation method described in this chapter for use in an Eulerian 
simulation domain.  See text for additional details. 
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with a radius of 128 cells will begin a rotational cycle every 322 time-steps (see also 

appendix E).  Table 1 summarizes the parameters associated with the eddy distribution at 

each map level.  Each eddy is then given a random location on the map and a random 

spin direction.  For a 1024x1024 map, the method will create a distribution of 350,000 

eddies of various sizes to be tracked during a particular simulation (Figure 3.4).  

The next issue which had to be addressed was how to rotate the eddies within a 

gridded framework.  When a particular eddy rotates a given distance, the outside of the 

eddy travels farther than the inside.  Figure 3.5a illustrates this effect for square eddies 

within a Eulerian framework.  In this example, the eddy has an overall radius of five 

cells.  If the eddy is broken up into five sub-eddies (radius of 1, 2, 3, 4, and 5 cell widths) 

and rotated one-eight of a turn, the outer edge (radius) will have traveled five cells and  

the inner edge will have traveled only one cell distance.  A typical solution to account for 

the changes in rotation speed would be to use different velocities depending on the 

location within the eddy (i.e., sub-radius five will move five times faster than sub-radius 

one).   

Within my framework, however, material cannot move more than one cell width 

in a time-step to maintain the conservation of mass.  Using the example above, when the 

outer part of the circle has rotated one cell width, the rest of the circle will have rotated 

less than one cell width (i.e., some fraction of 100%).  Since material within a Eulerian 

framework is averaged between grid cells, using this approach has the inherent problem 

of numerical diffusion (see Appendix D).  Due to the large number of eddies (i.e., 

350,000) and the number of times each eddy rotates during a typical simulation, the 

amount of error introduced can become quite large.  In the initial development of my  
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Table 3.1. Summary of parameters associated with eddies at a particular map level.  The 
values are based on a simulation domain of 1024x1024 cells.  See text for additional 
details. 
 

Map 
Level 

(n) 

Eddy 
Number 

Radius 
(cells) 

Scaled 
Velocity 
(unitless) 

Rotation 
Frequency 
(cycles/dt) 

1 1 512 1.00 512 
2 4 256 0.79 406 
3 16 128 0.63 322 
4 64 64 0.50 256 
5 256 32 0.40 204 
6 1,024 16 0.32 163 
7 4,096 8 0.25 128 
8 16,384 4 0.20 102 
9 65,536 2 0.16 81 
10 262,144 1 0.13 66 
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Figure 3.4. Examples of the eddy distribution at various map levels shown by tracing the 
outer edge of each eddy.  Only map levels 2-7 are shown for a 1024x1024 map (A= 
radius (256) with 4 eddies; B = radius (128) with 16 eddies; C = radius (64) with 64 
eddies; D = radius (32) with 256 eddies; E = radius (16) with 1,024 eddies; and F = radius 
(8) with 4,096 eddies). 
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Figure 3.5. Illustration of the eddy rotation algorithm used to move each eddy.  Example 
shown is for an eddy with a radius of five cells, undergoing a quarter turn rotation, for 
(A) a conceptual realization of circular movement within a gridded framework with 
square eddies, and (B) the modified routine which had to be developed to prevent 
excessive smearing of materials due to numerical diffusion errors present when using the 
conceptual framework.  See text for additional details.   
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 method I found this approach created excessive smearing and artificial spreading of 

substances which prevented realistic concentration gradients from being achieved. 

To overcome the potential numerical errors a routine was developed to allow each 

eddy to rotate sequentially from the outer edge.  The routine works by only fluxing 

material between cells within an eddy, when the amount of material to be fluxed is 

exactly 100 percent.  For example, the outer ring of cells of the eddy would be rotated 

one grid-cell distance while all inner cells would remain stationary.  In the next time-step 

the outer ring would again rotate along with the next inner ring of cells.  This process 

would be incrementally repeated until the inner-most radius was reached (see Figure 

3.5b).  The method creates a slight temporal delay but results in no numerical diffusion 

errors, a key attribute of the ESEM method. 

Eddy movement (i.e., rotation) within the ESEM method is done sequentially 

rather than concurrently as in natural systems.  The complexity of the eddy field within 

the simulation framework (i.e., over 350,000 individual eddies) and the requirement that 

material cannot flux more than one-grid cell prevent the simultaneous movement of 

eddies within the simulation domain.  Each eddy instead completes its rotational cycle 

independently which precludes dynamics such as accelerated or inhibited movement due 

to the simultaneous interaction of multiple eddies.  Material transported by the eddies can 

however move large distances within a time-step due to the movement caused by 

multiple eddies sequentially affecting the trajectory of a particular particle. 

In summary, the ESEM method requires three separate movement routines to 

work properly (Figure 3.3).  The first movement routine determines when to rotate each 

individual eddy.  If I was trying to simulate an idealized turbulent cascade starting from a 
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large (i.e., parent) eddy breaking up into smaller eddies which then break up into smaller 

eddies and so on, I would rotate each eddy level in sequence.  In natural systems, with 

fully developed turbulence, there is a field of interacting eddies of different sizes, with 

new eddies being added and others dissipating into heat.  To reproduce this field of 

eddies I gave each eddy a random start time to begin rotating.  Once an eddy starts 

rotating it continues to rotate until it reaches one full revolution.  To conserve rotational 

momentum, after a full rotation, the eddy remains dormant a prescribed length of time 

(i.e., rotation frequency) determined by the size of the eddy as described in equation 3 

above.  As a result, larger eddies are active more often than smaller eddies because the 

smaller eddies take less time to complete a full rotation.  For example, from Table 1, an 

eddy with a radius of four cells would begin a rotation cycle every 102 time-steps and 

take 32 steps to complete a rotation while an eddy with a radius of one cell would begin a 

rotation cycle every 66 time-steps and take eight time-steps to complete a rotation.  In a 

simulation containing 700 time-steps an eddy having a radius of four would have 

completed six revolutions while an eddy with a radius of one would have completed nine 

revolutions.   

The second movement routine controls the movement of the sub-radii found 

within each eddy.  As described above, the inner part of each circle has less distance to 

travel than the outer part.  Once an eddy starts rotating, it continues to rotate from the 

outer most ring down to the inner most ring.  This movement routine keeps track of 

where in the rotation cycle (i.e., sub-radii) each eddy is currently located.  Using the 

example above with an eddy of radius four, the outermost ring would move one cell each 

time-step (32 cells total), the next sub-radius would move one cell every second time-step 
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(24 cells total), the next sub-radius would move one cell every third time-step (16 cells 

total) and the inner-most radius would move one cell every fourth time-step (8 cells 

total). 

The third and final movement routine controls how often to call the turbulent 

mixing sub-routine.  This is controlled by the turbulence intensity and the time-step.  At a 

given time-step, the method has an intrinsic turbulence intensity.  If the routine were 

called at each time-step this would be the maximum turbulence intensity for that time-

step.  By measuring the instantaneous velocity fluctuations (see appendix E) a turbulence 

intensity can be calculated.  If this intensity is too high for planned simulations the 

frequency at which the sub-routine is called can be adjusted to achieve the correct 

turbulence intensity.  If the intensity is too low, then the time-step can be shortened to 

achieve the desired intensity, keeping in mind that shorter time steps increase the 

computational cost.  Through adjustments in the time-step or the frequency at which the 

turbulent mixing sub-routine is called, a wide range of turbulence intensities can be 

simulated. 

 

3.2.3 Subgrid Diffusive Mixing 

As with other turbulent simulation methods in Eulerian based platforms, mixing 

processes below the resolution of the simulation domain (i.e., grainsize or cellsize) have 

to be addressed.  These subgrid-scale mixing processes are often parameterized as 

random exchanges between adjacent cells.  In my simulation platform, I employ a similar 

approach and approximate (i.e., parameterize) subgrid-scale mixing processes based on 

Fick’s law, which states that the rate of transfer of matter will be proportional to the 
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difference in concentration between two finite volumes.  Therefore, the flux (J) = -

D(dC/dx) where D is the diffusivity and C is the concentration of matter (Okubo 1980).  

Rearranging the equation and substituting for the concentration difference, the following 

formulation can be used to solve for the transfer probability (k) between two volumes or 

adjacent grid cells (Fischer et al., 1979): 

 

k = D (dt) / (dx)2         (Eq. 4) 

 

Where  

 

k = Transfer probability 

D = Diffusivity coefficient (i.e., eddy diffusivity) 

dt = duration of time (i.e., time-step of model) 

dx = width of the volume (i.e., grainsize of simulation domain) 

 

With this formulation it is possible to calculate a transfer probability between two 

grid cells based on the specification of a diffusion coefficient.  Since the grainsize of my 

simulations was 100m, I calculated a transfer probability based on a value which would 

produce a -5/3 spectral slope over the inertial sub-range for a passively mixed tracer.  

This value was found to be 700 cm2/sec and is within the range of values found in natural 

systems at the 100m scale (Okubo 1980).  Using equation 4 with a value of 700 cm2/sec 

for the eddy diffusivity, 100 m for the width of the volume (i.e., grainsize) and 1,344 s for 
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the duration of time (i.e., time-step of the model) the transfer probability can be 

calculated as follows: 

 

K700 = 700 cm2/sec (1,344s) / (10,000cm)2 = 0.9408 % loss per cell side 

per time-step 

 

In my simulation platform, material within a cell is exchanged with the four 

adjacent cells.  This will result in a total flux from each cell per time-step of 3.7632 

percent.  Experiments testing the accuracy of this method to approximate diffusive 

mixing gave good agreement with the analytical solution to the diffusion equation for the 

evolution of a concentration gradient over time (data not shown).  

 

3.2.4  Experimental Treatments 

Three experiments were conducted to demonstrate the robustness of the ESEM 

method at simulating idealized two-dimensional homogeneous turbulence.  Turbulent 

mixing has several key characteristics: mixing time, instantaneous velocity spectrum, and 

particle spreading rate (Fischer et al. 1979; Okubo 1980; Garrett 1989; Sanford 1997) 

which I attempted to reproduce and validate through a series of experiments described 

below.   

In all experiments I used a 1024x1024 simulation domain with a pixel size (i.e., 

grainsize) of 100 m.  This allowed examination of the robustness of the technique over a 

wide range of scales, from 100 m to 100 km, where the use of homogeneous, isotropic, 

steady-state turbulence to simulate turbulent mixing would be appropriate.  The time-step 
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employed was set at 22.4 min to achieve a turbulence intensity of 10 cm/s for the 

simulations.  See Appendix E for a description of the process used to set the turbulence 

intensity and Table 3.2 for descriptive statistics for the mean and variability of the 

turbulence intensity (Urms) of the simulation method.  The value used for simulations is 

within the range found for turbulence intensity over these spatial scales (Middleton 

1985).  The map boundaries were wrapped to prevent edge effects and simulations were 

not initiated until one full turbulence cascade was complete (approximately eight days) so 

that all eddies would have had a chance to begin their rotational cycles.  The maximum 

and minimum eddy radii were 512 pixels and one pixel respectfully.  Per the procedure 

described in section 3.2.2, over 350,000 eddies of various sizes were generated and 

randomly placed on the map.  I replicated each experiment 10 times utilizing a different 

random distribution of eddies to understand the degree to which the seeding of the eddy  

field will affect the results of each experiment.  When spectral analysis was utilized I 

sampled multiple locations on the map which allowed an ensemble spectral slope to be 

calculated (see Appendix F for details on the spectral analysis technique). 

Experiment #1-Rate of Pattern Breakdown: A key characteristic of turbulence is 

that it acts to accelerate the breakdown of scalar and concentration gradients through 

mixing caused by eddies within the turbulent field (Fischer et al. 1979; Okubo 1980).  

The rate at which turbulent mixing breaks down gradients is a function of the turbulent 

mixing intensity.  When a scalar or gradient is subjected to turbulent mixing the initial 

pattern (i.e., variance) found within the field should be transferred to smaller and smaller 

scales where it is acted until by diffusive mixing until the pattern is eventually dissipated 

to background levels.  In the first experiment, to determine if the method is capable of 
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Table 3.2. Descriptive statistics for the mean and variability of the turbulence intensity 
(Urms) of the simulation method.  For each map replication, the RMS was calculated for 
10,000 particles after one solution-step.  This was repeated for 100 solution-steps to 
determine the variability within a map over-time as eddies cycle on and off.  The grand 
mean is the average RMS value of the ten replications.  See Appendix E for additional 
details. 
 

Map 
Replication 

(#) 

Mean 
 

Min 
 

Max 
 

Std Err 
 

 
CV 

1 1.33 1.13 1.56 0.012 9.27 
2 1.34 0.87 1.54 0.013 9.87 
3 1.41 1.01 1.64 0.015 10.71 
4 1.34 0.96 1.54 0.019 14.09 
5 1.33 1.09 1.52 0.011 8.63 
6 1.29 1.05 1.51 0.013 10.33 
7 1.34 0.98 1.57 0.018 13.66 
8 1.37 1.06 1.56 0.010 7.62 
9 1.39 1.14 1.72 0.017 12.07 
10 1.29 0.88 1.50 0.013 9.72 

Grand Mean = 1.34 
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mixing a substance at an appropriate rate for a given mixing intensity, I measured the 

length of time for the method to remove the initial variance from a passive scalar 

variable.  Similar to Abraham’s (1998) approach, for a scalar variable I used a cosine 

function to create pattern within the simulated domain at the largest scale possible, the 

width of the map.  After initialization of the map with the cosine function, I ran 

simulations for 20 days and measured the rate at which the pattern was altered by the 

turbulence mixing routine.  Twice per day, 90 evenly spaced transects along the length of 

the map were saved and then statistically analyzed for changes in variance.   

Experiment #2- Instantaneous Velocity Fluctuations: A second important 

characteristic of turbulent mixing is the velocity spectrum of the turbulence field of 

eddies.  The velocity spectrum measures the eddy size distribution of turbulence intensity 

at a given instant (Garrett 1989).  Since the turbulent field is made up of eddies of all 

different sizes, superimposed on one another, some areas of the turbulent field will 

undergo more rapid mixing than other areas.  This field as a whole, however, should be 

correlated to some degree with the various length scales of the eddies and is often found 

to have a spectral slope of -1.67 over the inertial sub-range of turbulent mixing (Kundu 

1990).   

For the second experiment, I measured the instantaneous velocity fluctuations at 

various locations on the map, over the course of a simulation, to determine the correlation 

structure of the overall turbulence field produced by the ESEM method.  The velocity 

fluctuations were measured by calculating the distance that individual particles, along a 

transect, moved after several simulation time-steps.  This analysis was performed on 50 

evenly spaced transects with a length of 512 grid cells.  Because the spectral analysis 
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requires the transect length to be a power of two, and since the simulation domain was 

1024x1024 grid cells, a length of 512 was the largest possible dimension that could be 

analyzed to avoid potential edge effects.  The 50 transects were then broken up into 

north-south and east-west velocity components and the ensemble spectral slope, β, was 

calculated.  The analysis was repeated at 20 additional time-points over the course of a 

three-day simulation.  This high intensity sampling was performed to understand how the 

velocity fluctuations change during the simulation as eddies within the turbulent field 

begin and end their respective rotational cycles.   

 Experiment #3 – Scale Dependent Diffusion: The third characteristic of turbulent 

mixing that I tested was the ability of the ESEM to reproduce the spreading rate of a 

patch due to scale-dependent diffusion.  Spreading of a patch, defined as a substance with 

an elevated concentration above a background level for that substance (e.g., nutrient 

concentration, phytoplankton biomass), subjected to turbulent mixing should accelerate 

over time as the patch grows larger.  For example, when a patch is small it can be 

transported whole by eddies larger than the width of the patch and only eddies smaller 

than the width of the patch will cause it to increase in size.  As the patch increases in size 

more and more eddies will be able to cause the patch to increase in size and thus increase 

the rate of spread (Okubo 1976; Okubo 1980).  Fickian diffusion based methods are 

limited to constant linear rates of spread which diminishes their utility for addressing 

environmental (e.g., pollution transport) and biological issues (e.g., bloom dynamics, 

chemical signaling) where the time evolution of concentration gradients is important.  

For the third experiment, I measured the rate of spread of a patch subjected to the 

eddy field within the ESEM to determine if the method was capable of reproducing scale-
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dependent mixing.  I initialized the center of the simulation grid with a square patch 

consisting of 1000 particles (i.e., one particle per grid cell) and then recorded the 

movement of each particle over the course of a simulation.  The variance and average 

displacement (RMS, mean squared radius of all particles) of the patch after each time-

step was calculated.  Since the center of the patch changed over time, the RMS was 

calculated from a center location determined by the average coordinates for each particle 

in the patch.  Simulations were run for seven days, which was long enough to calculate 

spreading rates and to prevent edge effects from affecting particle travel.  The RMS value 

was calculated similar to the methodology employed in Appendix B to determine the 

turbulence intensity. 

 

3.3  Results 

The series of simulations indicated that the overall performance of the ESEM was 

excellent.  As seen in Figure 3.6, panel A, the turbulence generation routine was capable 

of realistically mixing a cosine pattern over a 20-day simulation.  The cosine pattern was 

transformed from a uniform pattern, with only variability at the largest scale (i.e., the 

scale of the map), to a well-mixed pattern, with very little evidence of the initial pattern.  

As the pattern is mixed, the characteristic swirls and eddies of turbulence are evident over 

a range of scales.   

Because the ESEM method produces no numerical errors, the maps in the Figure 

3.6, panel A series become increasingly pixilated over time.  As a result the ESEM 

method will accumulate variance over time rather than dissipate variance as is seen in 

natural systems through fine-scale diffusive mixing processes.  The ESEM method must 
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therefore be coupled with a subgrid-scale mixing routine to accurately simulate the 

mixing of concentration gradients over time.   

To simulate subgrid diffusive mixing (i.e., mixing below the grainsize of the 

simulation platform) within my simulation domain I coupled the ESEM method with a 

Fickian diffusion routine to produce the realistic fine-grained patterns shown Figure 3.6, 

panel B.  The exchange rate between the grid cells was calibrated to an eddy diffusivity 

value of 700 cm2/sec and was chosen through a series of experiments (data not shown) 

where the eddy diffusivity was varied between 100 cm2/sec and 1000 cm2/sec, values 

which bracket those typically seen in natural systems at the 100 m scale (Okubo 1980).  

The 700 cm2/sec value produced the most realistic change in variance with scale for a  

passively mixed tracer over the inertial subrange and was able to reproduce/maintain a     

-5/3 spectral slope over this range during the 20-day simulation (see Figure 3.7 panel B). 

Since Fickian diffusion methods are sometimes used to parameterize turbulent 

mixing processes at the scale of the simulation domain I conducted an experiment using 

only the Fickian diffusion method employed above as a comparison to the mixing 

dynamics produced by the ESEM method.  To provide an accurate comparison I 

calibrated the eddy diffusivity value so that by the end of the simulation the variance 

removed from the cosine pattern by the Fickian diffusion routine would be roughly equal 

to that removed by the ESEM method with subgrid mixing.  The eddy diffusivity value 

chosen was 1.25 x 106 cm2/sec and is typical of values at the 100 km scale (Okubo 1980).  

The simulation dynamics are shown in Figure 3.6, panel C.  As can be seen, the initial 

cosine pattern was gradually reduced to mean levels but without any of the intricate 

spatial patterns observed in panels A and B. 
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Figure 3.6.  The series of panels illustrate the mixing effects of the turbulence generation 
and Fickian diffusion routines on a map initialized with a cosine function.  The 
simulation domain is 1024x1024 pixels with a pixel width of 100 m with values from one 
to zero and a corresponding color range from red to blue.  The simulation was run for 20-
days with snapshots of the pattern taken a five-day intervals.  The panel A series shows 
the breakdown of the pattern using only the ESEM method without the incorporation of 
any subgrid diffusive mixing.  Panel B incorporates subgrid diffusive mixing (i.e., eddy 
diffusivity) at a value of 700 cm2/sec which is within the range found at the 100m scale 
for natural systems (100-1000 cm2/sec).  Panel C shows the breakdown of the pattern 
using only Fickian diffusion to approximate turbulent mixing effects at the scale of the 
simulation domain (i.e., a value of 1.25 x 106 cm2/sec).  See text for additional details. 
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Figure 3.7.  Panel A follows a representative transect near the middle of the simulation 
domain at each snapshot in time over the 20-day simulation represented in Figure 6.  
Panel B characterizes the change in the pattern over the simulation domain as represented 
by the change in spectral signature calculated from a composite spectral analysis of 90 
evenly spaced transects across the simulation domain.  The lines correspond to 
simulations utilizing only the ESEM method (green line), the ESEM method plus subgrid 
diffusive mixing (red line), and only diffusive mixing parameterized to approximate 
turbulent mixing at the scale of the simulation domain (black line). 
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At the level of individual transects across the simulation domain, Figure 3.7, 

panel A, illustrates the effect of the turbulent mixing under the three cases illustrated in 

Figure 3.6.  The larger eddies can cause rapid mixing as seen in the sharp changes in 

value along the transect line (e.g., T=5) for the green and red lines.  The smaller eddies 

are also acting to mix the pattern and their impact is more evident as the simulation 

progresses due to the continual breakdown of the large-scale pattern into smaller 

fragments.  As the simulation progresses, the impact of the subgrid diffusive mixing is 

clearly seen in the “smoothing” of the transects (red line).  If the simulations were 

conducted over longer time periods the case with subgrid diffusive mixing would 

eventually reach mean (i.e., the equilibrium condition) as represented by a flat horizontal  

line with no evidence of the previous pattern.  The simulation without any subgrid mixing 

would remain well homogenized and approximate a random noise pattern (green line).  

For the simulation with only Fickian diffusion (black line), the cosine pattern gradually 

flattens over time toward the mean level without the sharp gradients seen in the other two 

cases.   

In panel B of Figure 3.7, the change in variance as a function of scale is 

statistically shown through the use of spectral analysis.  An analysis of the initial pattern 

(i.e., T=0) shows the slope is dominated by variance at the broadest scales.  Over the 

simulation, the mixing caused this large-scale variance to decline with a corresponding 

transfer of variance to finer scales (i.e., the turbulence is injecting small-scale variability).  

This result is a flattening of the spectral slope, β (green line).  If the simulation were 

allowed to run long-enough, the spectral slope will become uniformly flat with equal 

variance at all scales (i.e., β =0).  In natural systems, this variance is dissipated by 
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diffusive processes which necessitated the inclusion of subgrid diffusive mixing to the 

ESEM method.  When this is done, the small scale variance is indeed removed as seen in 

the red line.  The diffusive mixing removed the small scale variance and reproduced the 

5/3 spectral slope typically observed in natural conditions.  Without the ESEM method, 

and using only Fickian diffusion to simulate turbulent mixing, the variance at the largest 

scales is maintained over the course of the simulation (black line).   

 

3.3.1  Breakdown of a passive tracer 

The rate at which turbulent mixing breaks down concentration gradients is a 

function of the turbulent mixing intensity.  For the simulations I used a turbulent mixing 

intensity of 10 cm/s, to correspond to the value used in Abraham (1998) for mid-latitude 

systems.  For a given turbulence intensity a mixing time can be calculated which is the 

time necessary to transfer the variance from the largest scales down to the smallest scales.  

At a turbulence intensity of 10cm/s the mixing time should be approximately 15 days in 

aquatic systems for fully developed two-dimensional homogeneous turbulence (Klein and 

Hua 1990).   

Figure 3.8 shows the change in variance of the initial cosine function over the 20-

day simulation for each map series represented in Figure 3.6 and 3.7.  In the case where 

no subgrid mixing was added the variance remained relatively constant over the duration 

of the simulation.  In the case with subgrid mixing set to 700 cm2/sec the variance 

generally decreases with time and by the end of the 20-day simulation almost all of the 

variance has been removed.  This is in general agreement with the time scales necessary 

to transfer variance from large- to fine-scales in natural systems of similar size and  
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Figure 3.8.  Shows the change in variance over the 20-day simulation for each map series 
represented in Figure 6.  The variance was calculated from 90 evenly spaced transects 
across the simulation domain at one day intervals.  The lines correspond to simulations 
utilizing only the ESEM method (green line), the ESEM method plus subgrid diffusive 
mixing (red line), and only diffusive mixing parameterized to approximate turbulent 
mixing at the scale of the simulation domain (black line). 

0 11 22
0.00

0.05

0.10

0.15
Va

ria
nc

e

Time (Days)



104

 

mixing intensity as that used in my simulations (Klein and Hua 1990).  In the case with 

only Fickian diffusive processes (i.e., without the ESEM), the variance also decreases 

with time but at a exponential rate with is faster at first and then slower than the case with 

the ESEM and subgrid diffusive mixing.  The value used in my simulations to 

approximate turbulent mixing with Fickian diffusion was calibrated to give the same final 

variance over a 20-day simulation as seen in the case with the ESEM and subgrid 

diffusive mixing.   

 
 
3.3.2 Instantaneous velocity spectrum 
 

For experiment two, my goal was to confirm that the method accurately 

reproduced the velocity spectrum for fully developed, homogeneous, isotropic 

turbulence.  The velocity spectrum measures the degree to which velocity fluctuations at 

different scales are correlated.  According to theory, the spectrum of the spatial 

distribution of instantaneous velocity fluctuations should have a spectral slope (β) of        

-1.67 (Kundu 1990).  This value captures the structure of the turbulence created by the 

rotation and interaction of the range of eddy sizes present within the turbulent field within 

the inertial sub-range. 

To estimate the instantaneous velocity fluctuations, I measured the displacement 

of a line of particles within the simulation domain after three solution-steps of the 

turbulence routine.  The recorded displacement was broken into an (X) and (Y) 

component and then analyzed through spectral analysis to obtain the spectral slope.  

Figure 3.9 shows the analysis of one example transect.  For this example, the β was 1.68 

which agrees well with the empirical prediction.   
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I also wanted to measure changes in β over the course of a simulation as the 

various eddies underwent their rotational cycles and determine how the spectral slope 

changed when different eddy fields were utilized.  Table 3.3 shows the result of this 

analysis.  As evidenced in the low coefficient of variation (max CV was 4.8%) within 

each map replication, the spectral slope remained fairly consistent over the course of a 

simulation.  When different eddy fields are used (i.e., map replication) β ranged from 

1.66 to 1.77 with an average value of 1.72.  While the average spectral slope of all the 

map replications was slightly higher than the expected value of 1.68, all of the individual  

eddy distributions produced velocity fluctuations which were close to the expected value 

and should be capable of simulating a realistic turbulence field and associated correlation 

structure. 

 

3.3.3  Spreading rate of a patch 

In addition to the breakdown of concentration gradients, as seen in Figure 3.6 and 

3.7, turbulent mixing also causes a patch to increase in size as eddies disperse parts of the 

patch away from the patch edge.  This advection causes an increase in the variance of the 

patch with time as well as dilution (i.e., breakup and diffusion) of the patch with non-

patch material.  Figure 3.10 shows the spreading of a patch caused by the turbulence 

generation routine over a seven-day simulation.  Notice how the patch becomes 

asymmetrical at first and then begins to break-up into smaller patches and fragments.  

For the third experiment, I calculated the change in the patch size, as measured by 

the RMS, of the scenario illustrated in Figure 3.10.  I also tested the impact of changing 

the eddy distribution on the spreading rate by running nine additional experiments with a 
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different random number (i.e., a different eddy field).  The results of the analysis are 

shown in Figure 3.11.  For these experiments and analysis the simulation were conducted 

using the case without any subgrid mixing added.  Because the analysis required the 

tracking of individual particles, the addition of subgrid mixing would have greatly 

complicated the calculation of the RMS value (see Appendix E).  Over the time scales of 

the analysis (i.e., seven days) the added spreading caused by subgrid diffusive mixing 

was minor to the spreading caused by the ESEM turbulent mixing routine (see Figure 3.6,  

T=5 series) indicating that the use of the ESEM method without subgrid diffusive mixing 

was appropriate.    

In Figure 3.11, panel A, the RMS values generally increased with time. The 

overall increase was approximately linear with each line having periods of accelerated or 

decreased changes in spreading rate over the course of the simulation.  The variations in 

the spreading rate could have been caused by a number of factors such as the various 

eddies switching on and off; from the patch undergoing mixing by eddies larger 

(accelerated spreading) or smaller (no spreading) than the patch; and by the patch being 

mixed so that it wraps onto itself (decrease in spreading rate).  The wide range in RMS 

values between experiments is probably due to there being only one patch on the map 

which will tend to emphasize the importance of the random placement of the eddies, 

especially the larger ones which are fewer in number.  In the previous experiments, I 

sampled multiple locations on the map which allowed integration of the entire eddy field 

and hence less variance between replications. 
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Figure 3.9.  Velocity fluctuations and subsequent spectral analysis for a representative 
transect.  For each map replication, the displacement of simulated particles was recorded 
after three time-steps, for 41 evenly spaced transects one-half the length of the map.  
Figure A and B show the number of map pixels traveled in the (X) and (Y) direction for 
one representative transect.  Figure C is the composite spectral analysis and resulting 
slope of the individual transects for all 41 transects.  This analysis was repeated for 20 
additional time-points for each map replication, the results of which are shown in Table 
3.3.  See text for additional details. 
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Table 3.3. Descriptive statistics for the mean and variability of the spectral slope of the 
instantaneous velocity fluctuations.  For each map replication, the composite spectral 
slope was calculated from 82 evenly spaced transects (one-half the map length).  This 
was repeated 20 times over the course of a simulation and then averaged to develop the 
descriptive statistics shown for each map replication.  The grand mean is the average 
composite spectral slope over the ten replications.   
 

Map 
Replication 

(#) 

Composite  
Spectral  

Slope 
 

Min 
 

Max 
 

Std Err 
 

 
CV 

1 1.67 1.53 1.79 0.018 4.79 
2 1.77 1.59 1.83 0.011 2.88 
3 1.76 1.62 1.83 0.011 2.75 
4 1.72 1.63 1.82 0.012 3.20 
5 1.66 1.58 1.75 0.011 2.99 
6 1.70 1.61 1.77 0.010 2.69 
7 1.74 1.61 1.84 0.014 3.52 
8 1.77 1.62 1.88 0.013 3.38 
9 1.69 1.60 1.83 0.015 3.93 
10 1.68 1.61 1.79 0.011 3.04 

Grand Mean = 1.72 
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Figure 3.10.  Sequence of pictures showing the spreading dynamics associated with a 
patch of particles over a seven-day simulation.  The map (10,485 km2) was initialized 
with 14,641 particles in a square pattern (146 km2) in the center of the map.  Only days 
one through five are shown.  See text for additional details.
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Figure 3.11.  Panel A illustrates the change in patch size, as measured by RMS, over a 
seven-day simulation.  Each line represents a simulation initialized with a different eddy 
distribution with an initial patch size the same as in Figure 3.10.  Panel B is the change in 
variance with time for the average of the RMS values from Panel A. 
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In fully developed turbulence, the variance in the size of the patch should increase 

according to the square of the displacement with time because as the patch grows in size 

more and more eddies will be capable of increasing the size of the patch (Okubo 1980).  

When the RMS value is converted to variance the patch did show a non-linear increase 

with time as would be expected in natural systems undergoing turbulent mixing (Figure 

3.11, panel B).  Since I was limited to seven days (i.e., to prevent edge effects) in which 

to conduct the simulations, additional experiments will be necessary to determine if the 

variance does continue to accelerate with time and if the relationship holds under 

different initial patch sizes.  The ability to simulate scale-dependent mixing is a key 

benefit of the ESEM method over the simulation of turbulent mixing via only Fickian 

diffusion methods. 

   

3.4  Discussion 

There are a limited number of options available for simulating the effects of 

turbulent mixing within aquatic ecosystem models.  Some of these include the direct 

simulation of turbulence through complex hydrodynamic simulations involving the 

equations of motion (e.g., Halloway 1986; James 1996; Vested et al. 1996; Kantha and 

Clayson 2000; Walters 2005.), the use of prescribed flow fields, multifractal maps or 

statistical approximations (e.g., Aref 1984; Marguerit et al. 1998; Van Dan et al. 1999; 

Lopez et al. 2001; Reigada et al. 2003; Halloway 2004), or the use of Fickian diffusion 

and random walk methods to parameterize the turbulent mixing as a diffusive, random 

process (e.g. Okubo 1980; Powell and Okubo 1994; Visser 1997; Riddle 1998; Brentnall 

et al. 2003).  For my planned dissertation experiments, I required a turbulence generation 
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method which could simulate the dynamic nature of turbulent mixing, over a wide range 

of scales, while also preserving fine-scale concentration gradients.  These constraints 

limit the applicability of existing turbulent mixing simulation methods to address my 

particular needs. 

To overcome the limitations of the methods above, I developed the ESEM to 

simulate idealized two-dimensional turbulence in aquatic systems.  Based on a seeded 

eddy model developed for particle systems, I adapted the technique for a Eulerian 

framework while preserving the cascade of turbulent energy from broad- to fine-scales 

(Dyke and Roberston 1985; Abraham 1998).  Results from the three experiments reported 

here demonstrate the adequacy of this method for simulating steady-state turbulent 

mixing over scales ranging from 100 m to 100 km.  The ESEM method was capable of 1) 

reproducing the velocity spectrum of homogeneous, isotropic, turbulence; 2) accurately 

reproducing the spreading rate of particles from scale-dependent turbulent mixing and 3) 

breaking down large-scale concentration gradients over realistic time-frames while 

maintaining realistic small-scale gradients.  Together, these capabilities give my method 

the advantage of being able to introduce realistic fluid effects within a Eulerian 

framework without having to resort to complex hydrodynamic models or 

oversimplifications of turbulent mixing with Fickian based diffusion methods. 

 

3.4.1  Benefits of the ESEM method 

Fickian diffusion methods are often used to parameterize turbulent mixing effects 

in aquatic ecosystem models, either as a replacement for the direct simulation of turbulent 

mixing via Navier-Stokes equations or to parameterize mixing effects below the grid 
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resolution of hydrodynamic models (e.g., Okubo 1980; Steele and Henderson 1992; 

McGillicuddy et al. 1995; Franks and Chen 2001; Brentnall et al. 2003; Patel et al. 2004).  

One reason for the popularity of the approach is that Fickian diffusion methods are fairly 

simple to incorporate into grid-based systems and there is an extensive theory developed 

based on their use.  There are some limitations, however, with using Fickian diffusion 

and related random walk methods to approximate turbulent mixing in aquatic ecosystem 

models.  These include high computational cost of fine grids, numerical diffusion, an 

inability to inject spatial heterogeneity during the mixing process and an inability to 

incorporate scale-dependent diffusion (i.e., variable eddy diffusivity).  In the next 

sections, I discuss how the ESEM method is capable of overcoming these critical 

limitations and can become a viable replacement for traditional Fickian diffusion 

methods used to parameterize turbulent mixing effects in aquatic ecosystem models. 

Preservation of fine-scale concentration gradients: The benefit of the ESEM 

method is that it is able to inject spatial heterogeneity during mixing and to preserve these 

fine-scale concentration gradients during the mixing process.  Since Fickian diffusion 

methods are based on approximating turbulent mixing as a diffusive process, any 

concentration gradients within the turbulent field will be randomly mixed over time, 

resulting in mixing but also the eventual loss of any concentration gradients.  Studies 

have shown that the mixing caused by a turbulent field will inject pattern (i.e., 

heterogeneity) into concentration gradients (Abraham 1998). The mixing acts to break up 

large-scale gradients and transfer that pattern to finer and finer scales until eventual 

dissipation by diffusive processes once the gradients are thoroughly mixed.  Fickian 

diffusion methods are unable to inject the necessary spatial pattern at short and 
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intermediate time scales and can give misleading results when trying to interpret 

observed spatial patterns in aquatic systems.  

The ESEM method is able to preserve concentration gradients and inject spatial 

variability since the full spectrum of eddies, present within a turbulent field, is also 

present within the turbulence generation routine through the generation of a space-filling 

field of eddies.  Although the ESEM is a simple representation of a complex physical 

process, the method reproduces the velocity spectrum of turbulence and generates the 

characteristic swirls caused by turbulent mixing.  It is these swirls that act to break down 

the concentration gradients and inject variability from large to fine scales as opposed to 

the random mixing of Fickian diffusion methods which are unable to generate variability 

and actually artificially destroy gradients which may be present. 

 The ESEM method has the same limitations as other grid-based turbulence 

generation methods.  The method must be coupled with a Fickian diffusion routine to 

approximate mixing effects below the grid resolution of the simulation domain.  Without 

this coupling the ESEM method retains all of the original variance of the initial pattern 

and there is no mechanism to dissipate the concentration gradients as happens in natural 

systems through random diffusive mixing (see Figure 3.6, panel A).  When combined 

with a Fickian diffusion routine the ESEM method is able to realistically dissipate the 

variance over appropriate time-scales (see Figure 3.6, panel B) without removing the 

pattern introduced by the ESEM turbulence generation routine.  In high resolution 

simulations, with grid sizes on the order of centimeter to meter scales, realistic mixing 

should be achieved since the parameterization of the Fickian diffusion fluxes would 

correspond to the true diffusive fluxes occurring in the natural environment.  When 
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Fickian diffusion methods are used to simulate turbulent mixing processes at larger scales 

(see Figure 3.6, panel C), problems can arise since it is not possible to simulate the 

heterogeneity which is introduced during the mixing process (see Figure 3.6, panel A and 

B). 

Ability to incorporate scale-dependent diffusion: Another potential problem with 

using Fickian diffusion methods to approximate turbulent mixing effects in aquatic 

systems is that the mixing intensity has to be set for the whole simulation domain.  In 

natural systems, when concentration gradients (e.g., patches of a substance) undergo 

mixing within a turbulent field, the rate of breakdown in the gradients or spreading of the 

substance is dependent on scale (Okubo 1980; Petrovskii 1999).  For example, when a 

patch is small (i.e., smaller than most of the eddies present in the turbulent field) most of 

the eddies will simply move the patch around without much mixing while eddies 

substantially smaller than the patch will only be capable of small-scale mixing within the 

patch, similar to diffusive mixing.  As a patch grows larger it will interact with more of 

the eddies within the eddy field causing accelerated mixing, especially the larger eddies 

with greater velocities (Okubo 1980).  Each patch is therefore subject to its own unique 

turbulent mixing intensity based on the local eddy field.  Fickian diffusion methods 

cannot have a variable “eddy diffusivity” parameter, although recent advances are 

helping to minimize this impact especially for Lagrangian systems (Ross and Sharples 

2004).  Depending on the scale at which the eddy diffusivity parameter is set, the 

spreading rate of small patches will be overestimated while those of large patches will be 

underestimated.  In addition, the spreading rate of the substance will be linear with time 
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rather than non-linear as the patch grows larger and interacts with additional eddies 

within the turbulent field.   

With the ESEM method, the turbulence intensity will vary according to the local 

eddy field around a particle, patch, or concentration gradient.  The overall turbulence 

intensity is set globally based on averaging the velocity fluctuations over the whole 

simulation domain (see Appendix E).  Once set, each of the eddy sizes rotates with its 

own velocity and frequency of rotation.  Since I are explicitly simulating the movement 

of each eddy within the turbulence field, the ability to simulate scale-dependent mixing 

effects is inherent within the ESEM technique.  I verified this property by simulating the 

spreading rate and variance of a single patch (see Section 3.3.3) and found that the 

spreading rate was variable through time due to periods of accelerated spreading and 

sometimes periods of reducing spreading.  While unexpected, these dynamics seem 

accurate because as the simulated patch was being broken apart, it was sometimes mixed 

onto itself causing a reduction in the spreading rate.  The overall variance of the patch did 

accelerate with time as would be expected by a patch undergoing turbulent mixing and 

interacting with larger and more energetic eddies.  My method is especially powerful 

when simulating multiple patches or gradients which span many scales.  To my 

knowledge, the ability to simulate scale-dependent diffusion within an Eulerian 

framework is currently not possible except with the direct simulation of turbulent mixing.  

Thus, the ESEM represents a significant improvement over the use of Fickian diffusion 

methods to approximate turbulent mixing effects. 

Elimination of numerical diffusion: Another inherent problem with Fickian 

diffusion methods, especially within a Eulerian, or grid-based framework, is numerical 
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diffusion (see Appendix D).  These methods exchange material between adjacent cells 

through a flux parameter which is often based on an eddy diffusivity parameter.  When 

this parameter is scaled to represent turbulent mixing at broad scales the amount fluxed 

between grid cells with each time-step can be large.  Material within each grid cell is 

assumed to be uniformly mixed so any material moved will travel farther than the true 

distance based on the flux parameter, causing an accelerated rate of spreading (i.e., 

numerical diffusion).  Reducing the effects of numerical diffusion, within grid-based 

systems is an active area of research and many techniques have been devised to minimize 

its impact on concentration gradients (e.g., James 1996; Vested et al. 1996; James 2002).  

Most involve schemes where the simulation grid is subdivided or the simulation time-step 

is altered.  Many of these schemes are highly technical and involve high computational 

cost and therefore may not be feasible for high-resolution grids or theoretical studies. 

The ESEM method avoids many of the limitations above because it greatly 

reduces numerical diffusion effects.  Through the use of the unique eddy movement 

methodology I was able to completely eliminate numerical diffusion at scales larger than 

the grid resolution.  The effects of numerical diffusion are eliminated by allowing the 

eddies to rotate at prescribed frequencies, starting from the outside of the circle and then 

moving inward.  It was necessary to allow a slight temporal delay in the rotation of each 

eddy and in the cycling of the eddies between periods of rotation and non-rotation but the 

introduced temporal delay had a negligible effect on the ability to accurately approximate 

turbulent mixing effects.  I was able to preserve the proper cascade of turbulent energy 

from broad- to fine-scales with the benefit of simulating realistic concentration gradients 

down to the grid resolution of the simulation platform.  Since I am approximating the 
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turbulent mixing as a field of eddies rather than the direct numerical simulation of 

turbulence, either through Navier-Stokes equations or diffusive flux based equations, the 

ESEM offers substantial numerical efficiency in addition to the ability to preserve fine-

scale concentration gradients.   

The ESEM method does however still require the use of a Fickian diffusion 

routine to simulate subgrid-scale mixing so the method is not entirely free of numerical 

diffusion errors.  These errors are limited to the grainsize of the simulation platform, 

which in my case was 100m.  This will result in much less artificial spreading than the 

use of Fickian diffusion to simulate turbulent mixing at larger scales within the 

simulation domain.   The advantage of the ESEM method is that it can be used to 

simulate turbulent mixing effects at these larger scales where it is inappropriate to use 

Fickian diffusion based routines. 

 

3.4.2  Limitations, assumptions and potential improvements 

The ESEM, as presently formulated, is designed to simulate idealized (i.e., 

statistical) two-dimensional homogeneous, isotropic turbulence which is in equilibrium 

with the surrounding environment.  When applied to this type of environment, the ESEM 

is capable of simulating turbulent mixing but the method does have a number of 

limitations and assumptions which will limit its applicability to other situations or types 

of turbulent mixing.   

The primary assumption is that the turbulence is in steady-state, meaning that the 

input of energy (i.e., variance) is equal to the output of energy.  The method is unable to 

simulate the development or decay of turbulent mixing (e.g., going from laminar flow to 
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turbulent flow) and associated eddies.  The eddies in the simulation domain are static and 

do not undergo intensification, decay or movement.  The method should only be applied 

in situations where a fully developed turbulent field is of interest.   

The ESEM method, as currently formulated, is limited to homogeneous and 

isotropic turbulence.  This means that the turbulence is space-filling with respect to 

eddies and contains a full spectrum of eddy sizes so that the energy spectrum follows that 

predicted by a -5/3 spectral signature (Kolmogorov spectrum).  Often in natural systems, 

turbulence is not isotropic and has “intermittency” so that the energy within the turbulent 

field is not uniform (Holloway 1986).  Such intermittency has a number of implications 

for physical and biological coupling within aquatic systems such as predator/prey 

interactions, chemical signaling, and shear effects (Seuront and Schmitt 2005).  I was 

unable to incorporate the effects of intermittency within the current formulation but do 

not see any limitations to adding this feature at a future time. 

The method is only capable of simulating two-dimensional turbulence in its 

current configuration.  Since the eddies also interact sequentially (i.e., the eddies take 

turns rotating within each time-step) and are stationary, the simulation of convergence or 

divergence (e.g., upwelling or downwelling) effects are not possible.  Unfortunately, the 

incorporation of stratification and boundary layers effects are not possible with the 

current formulation of the ESEM method.  The inclusion of these potentially critical 

dynamics will not be possible without major revisions in the way the method simulates 

the movement of the eddies.  Currently, there are no plans to address these limitations or 

to explicitly include a third dimension within the simulation platform.   
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The ESEM method is also based on seeded eddies and multifractals which 

introduce some additional constraints.  The simulation domain must be a power of two.  

This is normally not a problem except at larger map sizes as the interval between 

simulation domains increases exponentially (e.g., 128, 256, 512, 1024, 2048, etc.).  The 

eddy diameters and size also change in prescribed intervals based on theory (Seuront et 

al. 1999) which is typically not a problem unless irregular eddy distributions and size 

classes are to be utilized.  Finally, the simulation domain must be configured as a square 

array limiting applications to situations where a regular grid is necessary. 

   

3.4.3  Applications of the ESEM 

Even with the assumptions and limitations mentioned above, the ESEM method 

should have numerous applications for turbulent mixing and ecosystem dynamics in 

aquatic systems.  The main advantage of the method is its ability to introduce realistic 

fluid effects within an Eulerian framework without many of the problems inherent with 

Fickian diffusion methods or turbulent mixing parameterizations. The method can 

simulate turbulent mixing effects over a range of scales (i.e., meters to tens of kilometers) 

and in many key aspects the method reproduces statistically accurate turbulent mixing.   

The technique is extremely flexible in that a wide range of cases, both theoretical 

and natural, can be considered.  For example, the length of the turbulent cascade can be 

changed.  A full cascade is typically simulated (i.e., from a parent eddy down to the grain 

size of the map) but this cascade can be truncated at one or both ends to simulate 

conditions where a full turbulent cascade might not apply (e.g., such as where there is an 

upper to lower limit to the eddy sizes within the turbulent field).   
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There are also a wide range of turbulence intensities possible with alterations in 

the time-step or frequency with which the turbulence generation routine is called.  Since, 

a random number routine is used to initialize the eddy field, determine the direction of 

rotation for each eddy, and eddy rotation start times, Monte Carlo replications are 

possible.  With this capability the effects of the eddy field and the experimental treatment 

can be investigated systematically.  The simulation domain, while not flexible with 

respect to geometry, can be configured with wrapped or reflecting boundaries for 

additional options for simulation conditions.   

Hydrodynamic models, with routines to simulate fully dynamic turbulence are 

capable of simulating turbulence directly down to the resolution of the simulation grid.  

These models have been very useful in studying turbulent mixing effects on physical and 

biological processes (e.g., McGillicuddy et al. 1995; Franks and Chen 2001; Patel et al. 

2004; Grieco et al. 2005; Proehl et al. 2005).  The problem with these models is with the 

grid size and the parameterization (e.g., eddy diffusivity) of turbulent mixing below the 

grid resolution.  This has been done typically with a Fickian diffusion approximation 

which is best suited for simulating mixing effects at fine spatial or long temporal scales.  

Hydrodynamic models often lack the resolution necessary (e.g., typically down to km 

scales) to reach the scales where random mixing processes dominate (i.e., less than meter 

scales).  The ESEM method is a potential bridge to connect these two domains.  One 

application might be to use the ESEM method to simulate intermediate scales (meters to 

kilometers) through linkages with a hydrodynamic model.  If the need for accurate, 

dynamic flow fields is not necessary then the ESEM method can be used to replace 
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complex hydrodynamic models with the added advantage that with the computational 

savings, finer grid resolutions can be utilized. 

The ESEM method also has potential application to theoretical and applied 

studies involving the investigation of turbulent mixing effects on species interactions and 

spatial patterns in aquatic systems.  To date, these studies have been largely limited to 

approximating turbulent mixing with Fickian diffusion based methods or the use of static 

methods such as multifractal maps to approximate turbulent fields (e.g., Steele and 

Henderson 1992; Petrovskii 1999; James 2002; Petrovskii et al. 2002; Ghosal and 

Mandre 2003; Reigada et al. 2003; Vilar et al. 2003).  Potential applications include the 

investigation of critical patch size dynamics (e.g., “KISS” dynamics), nutrient and 

pollution transport/mixing studies, and the role of physical and biological dynamics in the 

maintenance of spatial patterns in aquatic systems.  All of these applications depend on 

the ability to maintain accurate concentration gradients, to simulate scale-dependent 

diffusion effects on the spreading and transport of a substance, and to approximate the 

effects of turbulent mixing in a robust dynamic manner.   The ability to couple the ESEM 

method with ecosystem models to investigate physical-biological interactions within a 

spatially-explicit framework is another key attribute of the method.  As an example, in 

Chapter 4, I couple the ESEM simulation platform to a nutrient-phytoplankton-

zooplankton-detritus (NPZD) ecosystem model to gain a better understanding of what 

processes may be responsible for the observed patterns of nutrients, phytoplankton and 

zooplankton within the Chesapeake Bay ecosystem. 
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3.5  Conclusion 

In this chapter, I developed a novel technique for simulating idealized two-

dimensional turbulence in aquatic systems which is free from many of the limitations 

inherent with using Fickian diffusion methods to approximate turbulent mixing in aquatic 

systems.  Based on a seeded eddy model developed for particle systems, I adapted the 

technique to work within a gridded framework while still preserving the cascade of 

turbulent energy from broad- to fine-scales.  The technique is theoretically based, 

computationally efficient, and statistically accurate.  The advantages of this technique are 

that it is extremely fast, exhibits no numerical diffusion, can simulate scale-dependent 

mixing and preserves fine-scale concentration gradients.  These attributes make the 

method ideal for incorporation into spatially-explicit ecosystem models for the theoretical 

and applied investigation of physical-biological interactions over a range of scales, 

especially where the preservation of spatial patterns is important.  
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Chapter 4 
 

Response of an NPZD pelagic ecosystem model to spatially and 
temporally varying nutrient input 

 
 
 

Abstract 

Spatial and temporal variability of nutrient input is a major driver of ecosystem 

productivity in estuarine systems.  I used a spatially-explicit NPZD (nutrient, 

phytoplankton, zooplankton, detritus) ecosystem model to investigate how patterns of 

nutrient input are affected by and interact with physical and biological processes during 

transit through an estuary.  Multifractal map generation techniques were used to create 

large (30 km2) spatially-extensive patterns of nutrient input to the pelagic water column.  

A factorial design was then used to vary the mean nutrient concentrations, turbulent 

mixing and diffusion, and biological processing of the NPZD model.  Results were 

recorded by taking transects across the simulation domain of changes in the mean levels 

and pattern of model state variables and a suite of ecosystem parameters.  Statistical 

analysis shows that the mean nutrient level is a better predictor of ecosystem dynamics 

than the level of variability in the nutrient input signal.  Changes in spatial patterns were 

strongly controlled by the variability present in the nutrient input maps and physical 

mixing processes.  Biologically induced pattern formation was observed under elevated 

nutrient conditions but patterns were rapidly dissipated by turbulent mixing and diffusion.  

The ability of this framework to isolate physical and biological processes with a spatially-

explicit NPZD model provides new insight for understanding the nonlinear response to 

changing spatial patterns within estuarine ecosystems. 
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4.1  Introduction 

Nutrient loading, primarily in the form of nitrogen, is a major driver of ecosystem 

function in estuarine systems (Boynton et al. 1982; Nixon and Pilson 1983).  Numerous 

studies have documented changes in nutrient levels and subsequent alteration in key 

ecosystem properties including changes in nutrient and carbon cycling (Ward 1996), 

nutrient and carbon export to the benthic community (Kemp et al. 1999), production and 

respiration (Boynton et al. 1982), and trophic transfer (Glibert 1998).  These nutrient 

induced “bottom-up” effects interact in complex ways to alter patterns of species 

abundances (Venrick 1982), primary and secondary productivity (Postma et al. 1984) and 

ultimately the value of ecosystems for human use (e.g., fisheries yield).  Excess nutrients 

in estuarine systems can lead to eutrophication often with negative impacts such as 

harmful algal blooms, hypoxia, loss of habitat, and alteration in community composition 

(Ryther and Dunstan 1971; Cloern 2001; Nixon 1995; Malone et al. 1996; Murdoch et al. 

1998). Consequently, management of nutrient input levels has become a critical issue for 

most North American estuarine systems (Rosenberg 1995; Bricker et al. 1999). 

Nutrient inputs to estuarine systems typically vary in time and space (Boynton et 

al. 1995).   The effect of nutrient variability on biotic processes depends on both the 

direct effects of the nutrient concentration gradients, which may overwhelm the nutrient 

uptake or the assimilation capacity of the ecosystem, or on indirect effects produced from 

the coupled dynamics of multiple trophic levels (D'Elia et al. 1986; Diaz and Rosenberg 

1995; Kemp et al. 2001).  Nutrient variability will also interact with the physical 

environment through diffusive and turbulent mixing processes (Kierstead and Slobodkin 
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1953; Haury et al. 1978) to influence observed biomass distributions (Gower et al. 1980).  

Because of these interacting and often non-linear dynamics, characterization of the 

effects caused by spatial heterogeneity of nutrient inputs may be required to predict 

changes in population and ecosystem dynamics. 

The Chesapeake Bay is one of many estuarine systems around the US which is 

heavily impacted by elevated nutrient levels (Boynton and Kemp 2000; NRC 200; Kemp 

et al. 2005).  In this system there have been a number of recent efforts undertaken to gain 

a greater understanding of factors affecting ecosystem productivity and the spatial 

distribution of resources and organisms.  Long-term efforts have included the Chesapeake 

Bay LMER project called Trophic Interactions in Estuarine Systems (TIES) and the 

Multiscale Experimental Ecosystem Research Center (MEERC).  Both efforts collected 

extensive data on ecosystem properties and responses of those systems to changes in 

nutrient inputs.  While a great deal has been learned from these studies (Petersen et al. 

1997; Petersen et al. 2003), it is difficult to tease apart many of the interacting drivers and 

processes which can affect an ecosystem’s response to nutrient variations (e.g., changes 

in temperature, light levels, water depth, species composition, predation pressure, mixing, 

etc). 

This chapter presents results from simulation studies designed to elucidate some 

of the controlling physical and biological processes which may be responsible for 

determining how spatial and temporal patterns of nutrient inputs affect key ecosystem 

properties and biomass distributions.  I developed a spatially-explicit simulation platform 

which incorporates an NPZD (nutrient, phytoplankton, zooplankton, detritus) ecosystem 

model coupled with a novel technique for simulating mixing effects to represent the 
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biological and physical interactions occurring within an idealized estuarine ecosystem 

representative of the Chesapeake Bay.  Multifractal map generation techniques were used 

to generate spatially-extensive patterns of nutrient input (~30 km2 regions) of the pelagic 

water column with a spatial resolution (i.e., grain size) of 30 m.  A complete factorial 

design was used to independently vary the concentration levels and heterogeneity of 

nutrients to simulate conditions ranging from oligotrophic to eutrophic and from fine-

scale to broad-scale patterns of nutrient patchiness.  Treatment effects on key ecosystem 

properties and biomass distributions were statistically analyzed for changes in mean 

concentrations and variability of spatial pattern.  The relative influences of physical and 

biological processes on the resulting spatial patterns of model state variables (e.g., 

nutrient, phytoplankton, zooplankton, detritus) were also investigated through the 

sequential variation of each model component.  This suite of experimental treatments was 

designed to reveal pattern-process relationships in the Chesapeake Bay.   

 

4.2  Methods 

4.2.1  Simulation Platform  

A spatial lattice framework (SLS) was developed to simulate spatial effects in 

aquatic systems and to extrapolate results from fine-grained experiments to the scales of 

natural ecosystems.  The approach I developed utilizes a gridded aquatic landscape with 

exchanges among grid sites controlled by sets of difference equations.  The bulk flow of 

constituents and organisms past a fixed point were recorded and rules were used to 

establish exchange of material, energy, and/or organisms between adjacent grid sites.  

The advantage of this approach is that the solution technique is fast and efficient, 
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allowing large spatial extents to be simulated at fine resolution.  Because the method is 

flexible, it is relatively easy to consider different biological and physical components 

within the simulation framework.  The framework also allows for the sequential 

consideration of processes—while holding other key variables constant—to evaluate the 

relative impact of biological and physical variables on model response.  Please see 

Chapter 1 for additional information about the simulation platform. 

Biological Component: A fine-scale aquatic ecosystem model was embedded 

within each grid cell of the SLS platform simulating the dynamics of nutrients, 

phytoplankton, zooplankton, and detritus within the upper water column.  The model was 

calibrated to the stratified summer conditions of the Chesapeake Bay with rate constants 

based on values published for similar models and environmental conditions.  The model 

was adjusted to insure stable dynamics (i.e., no oscillations or predator/prey cycles) and 

equilibrium biomass and concentration levels that might be observed during the summer 

months in the Chesapeake Bay.  While the model has not been tested against independent 

field data, a sensitivity analysis of the model indicated that it adequately represents many 

of the key biological processes, interactions, and responses occurring in estuarine 

systems.  For a complete description of the model, equations, parameter values, and 

sensitivity analysis please see Chapter 2. 

Physical Component: Since the simulation platform was based on a Eulerian 

framework at fine spatial resolutions, I was limited in the types of methods that could 

incorporate realistic physical mixing between adjacent biological models at larger scales.  

Complex flow patterns are a particular challenge because the full equations of motion are 

not considered by the SLS.  To avoid these limitations, a seeded eddy model developed 
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for particle systems (Dyke and Robertson 1985; Abraham 1998) was adapted for the SLS 

to simulate idealized turbulence mixing within the simulation domain.  The technique is 

theoretically based, computationally efficient, statistically accurate and simulates scale-

dependent mixing while preserving fine-scale concentration gradients.  When combined 

with a diffusive mixing routine to simulate subgrid mixing, this method has the added 

advantage of being able to introduce realistic fluid effects without having to resort to 

complex hydrological models or oversimplifications of turbulent mixing.  Additional 

information about the physical mixing component of the platform can be found in 

Chapter 3.   

  

4.2.2  Multifractal Map Generation 

Multifractal map generation techniques were used to create realistic, spatially-

extensive patterns of nutrient input to the simulated estuarine system.  A special program 

was developed using the mid-point displacement method (Saupe 1998) to generate a 

series of two-dimensional maps of spatially varying nutrient inputs.  The algorithm can 

simulate a range of structures from nearly random to strongly correlated spatial structures 

that are similar to those observed in natural systems.  Because the mid-point displacement 

method allows the spatial patterns to be varied independently of the mean concentration 

levels, this method was ideally suited to the simulation I wished to perform.  Variations 

in H control the correlation structure of the maps with high H values producing “smooth” 

maps and low H values producing “rough” maps.  This allows a wide range of maps to be 

produced which different degrees of “patchiness” through changes in H value.  Examples 

of generated maps can be found in the results section. 
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4.2.3  Simulation Domain and Parameters 

The simulation domain was configured to approximate a stationary section of the 

pelagic mesohaline Chesapeake Bay.  The dimensions were 30 km on a side and within 

the domain was a gridded-framework of one million individual square cells of 30 m.  

These dimensions were selected to approximate the width of the Chesapeake Bay and to 

correspond in resolution to data collected for the TIES program.  This configuration also 

allowed examination of changes in the simulated spatial distributions of model state 

variables over a range of scales covering three orders of magnitude.  Table 4.1 provides a 

summary of the simulation parameters with additional information about these 

parameters and the simulation domain described below.    

Rather than a stationary simulation domain, material within the domain was 

advected from north to south to reflect a flow through system typical of net estuarine 

transport.  Constituents (i.e., nutrients and biomass variables) entered the northern edge 

of the domain (i.e., map), traveled down the map and then were exported at the southern 

edge of the domain.  To approximate the fixed boundaries of a shoreline, the western and 

eastern edges of the map were configured to have reflecting boundaries.  By utilizing a 

flow-through simulation I was able to evaluate the combined effects of changes in spatial 

and temporal patterns of nutrient inputs, follow individual transects as they move through 

the simulation domain, examine temporal changes in the state variables and better 

approximate dynamics within an estuarine environment (see Figure 4.1).  A fixed-frame 

simulation platform did not allow this flexibility. 
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Table 4.1.  Description and nominal values of key simulation parameters.  See text for 
additional details. 

Description Value Units 

Simulation Domain Extent ~30 km2 
Simulation Domain Grainsize 30 m 
Cell Number 1024 per side 
Simulation Length 11 days 
Time-step 5 min 
Residual advection velocity 3.3 cm/sec 
Turbulence Intensity ~1.0 cm/sec 
Eddy Diffusivity 50 cm2/sec 
Residence Time Cell 15 min 
Residence Time Map ~11 days 
Transects Along Map 21 unitless 
Spacing Between Transects 1.44 km 
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Figure 4.1.  Schematic showing the flow through system utilized to simulate an idealized 
estuarine ecosystem.  Nutrient input maps are fed into the simulation domain at the 
northern boundary which then interacts with the various physical and biological 
components until exiting the system at the southern edge.  Changes in the mean and 
pattern of selected variables are measured at 21 locations down the simulation domain. 

Nutrient Input Maps

Biological 
and 

Physical 
Interactions

Analyze Mean and Spatial Pattern 
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The advection speed for the simulations was set at 3.3 cm/s.  For a substance to 

traverse the length of the map took approximately 11 days.  This residual advection 

velocity was set to allow adequate time for physical and biological dynamics to occur 

before being advected beyond the model domain.  As material moves through the model 

domain it interacts with the biological components of the model and is mixed by the 

physical processes of diffusion and turbulence.  The turbulence intensity was set at 1.0 

cm/s, which is within the range of turbulence intensities found in the Chesapeake Bay 

(Petersen et al. 1998).  The scale of turbulent mixing was limited to the resolution of the 

grid with subgrid mixing determined by an eddy diffusivity of 50 cm2/sec.  This value is 

also within the range found in aquatic environments at the grain size of the model (Okubo 

1980).  These parameters describing turbulent and diffusive mixing were held constant 

for all scenarios that included these physical processes.  The solution step (i.e., time-step) 

used to solve the differential equations for the model state variables and to regulate the 

advection, turbulence, and diffusion routines was set to five minutes.  The simulations 

were started after the nutrient inputs maps had completed one cycle through the 

simulation domain which allowed adequate time to initialized the model before the start 

of each experiment.  

The initial values for the four state variables (i.e., nutrient, N, phytoplankton, P, 

zooplankton, Z, detritus, D) of the biological model are as follows: N = 0.0043 gN/m3, P 

= 0.22 gC/m3, Z = 0.02 gC/m3, D = 0.08 gC/m3.  These values were determined by 

conducting a non-spatial simulation of the model without any external nutrient inputs and 

allowing the simulation to run until equilibrium conditions were achieved.  These initial 

values then became the input values for the P, Z, and D state variables at the top of the 
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simulation domain (i.e., uniform input values across the width of the simulation domain).  

For the N state variable, I generated multifractal nutrient maps and used these spatial 

patterns as input to the simulation domain.   

 

4.2.4  Experimental Design 

Multifractal map generation techniques were used to create input maps with 

realistic, spatially-extensive nutrient patterns (see section 4.2.2).  The concentration 

levels and heterogeneity of these nutrient input maps where varied to simulate a range of 

conditions from oligotrophic to eutrophic and to vary the spatial distributions of nutrient 

input (Figure 4.2).  Three levels of mean nutrient input were simulated: low (0.01 

gN/m3), medium (0.1 gN/m3), or high (1.0 gN/m3) ambient nutrient concentration.  The 

spatial heterogeneity (i.e., patchiness) of each map was also varied over three levels from 

low (H=0.99), med (H=0.60) and high (H=0.01) levels of patchiness.  Variations in H 

control the correlation structure of the maps with high H values producing “smooth” 

maps and low H values producing “rough” maps.  Variation in the mean level of nutrients 

and the spatial variation of nutrient levels allowed these two effects to be systematically 

and independently evaluated. 

A series of model cases were run varying the physical and biological processes in 

the SLS.  The various combinations are as follows: Case A (control) was simply the 

nutrient input map (no biology or physical mixing); Case B (Control + Diffusion); Case 

C (Control + Turbulence); Case D (Control + Diffusion + Turbulence); Case E (Control + 

Biology); Case F (Control + Biology + Diffusion); Case G (Control + Biology + 

Turbulence); Case H (Control + Biology + Diffusion + Turbulence).  Case A, the  
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Figure 4.2.  Nutrient input maps used in the model simulations.  The maps shown all have 
the same mean nutrient concentration but differ in the amount of patchiness present (i.e., 
H level).  The color scale goes from low (blue) to high (red) values.  Three mean nutrient 
levels for the input maps were utilized for each H level. 

(H = 0.99) (H = 0.01) 
H Level (Patchiness) 

(H = 0.60) 

Nutrient Input Maps 
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“control case”, provides a baseline to which the effects of the various treatments (changes 

in nutrient level, level of patchiness, and model structure) can be compared.  Cases B-D 

test the impacts of the physical components of the model without any biological effects; 

Case E tests the biological component without any physical effects; while Case H is the 

full model with all biological and physical processes active.  Thus, there are 72 treatment 

combinations for the full factorial (three nutrient level treatments x three patchiness level 

treatments x eight model cases, Table 4.2).   

 

4.2.5  Statistical Analysis 

Model predictions for each treatment combination were evaluated by transects 

across the width of the simulation domain at 21 equally spaced locations, roughly 1.4 km 

apart.  Samples were repeated every 12 hours resulting in 22 replicates for each transect 

over the 11-day simulation (a total of 21 x 22 = 462 transects).  The mean concentration 

of each state variable (i.e., N, P, Z, D) and a suite of six ecosystem parameters were 

recorded for each transect.  These included phytoplankton and zooplankton growth rates, 

phytoplankton and zooplankton production amounts and the amount of total biomass 

transferred to higher trophic levels and the benthos.   

As a measure of the spatial variability (i.e., patchiness) the Proc Spectral routine 

of SAS (SAS 2001) was used to conduct a spectral analysis of each transect collected for 

the four state variables.  The method works by dividing the data series into a range of 

sines and cosines of decreasing periods where the amplitude gives the intensity of 

variability at a particular period.  The spectrum is created by graphing the log of the 

spectral density (the variance at each frequency) versus the log of the frequency or wave  
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Table 4.2.  Description of the experimental treatments utilized in the model simulations.  
A 3x3x8 factorial design was employed to vary the nutrient input level, H level, and 
model case over a range of conditions to simulate oligotrophic to eutrophic conditions, 
high levels to low levels of patchiness, and the interaction of biological and physical 
processes.  See text for additional details. 
 
 

Nutrient Input Level 
(gN m-3 day-1) 

H Level 
(Patchiness) 

Model Case 
(Physical/Biological Properties) 

0.01 0.01 A - (Input Map) 
0.1 0.66 B - (Input Map + Diffusion) 
1.0 0.99 C - (Input Map + Turbulence) 

  D - (Input Map + Diffusion + Turbulence)  
  E - (Biology)  

  F - (Biology + Diffusion)  
  G - (Biology + Turbulence)  

  H - (Biology + Diffusion + Turbulence)  
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number.  From these spectra I calculated a spectral slope (i.e., Beta) by conducting a 

linear regression of the spectrum.   

A General Linear Model (GLM) of SAS (SAS 2001) was used to statistically 

identify the effects of different treatment combinations (i.e., nutrient level, H level, model 

case) on the mean levels of the variables measured by each transect (i.e., changes in 

ecosystem parameters or in the level of patchiness).  These data and methods of analysis 

allow three questions to be investigated: 

 

Question 1: Does patchiness in nutrient inputs affect ecosystem function? 

Question 2: Does patchiness in nutrient inputs affect spatial distributions?  

Question 3: Can biological dynamics overcome the influence of physical mixing? 

 

The questions above were chosen because of their direct relevance to the 

management of estuarine ecosystems many of which are now suffering from excess 

nutrient inputs (Turner and Rabalais 1994; Howarth et al. 1996).  Through the proposed 

studies I hoped to gain a better understanding of the nonlinear response of estuarine 

systems to changing spatial patterns, the identification of conditions under which spatial 

dynamics-interactions are important, and what processes may be responsible for the 

observed spatial patterns found in estuarine systems such as Chesapeake Bay. 
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4.3  Results 

4.3.1  Qualitative response to experimental treatments  

The spatial dynamics of the model simulations are illustrated in Figures 4.3-4.5.  

The characteristic patterns produced by variation in the nutrient level entering the 

simulation domain (via the multifractal input maps) are illustrated in Figure 4.3 for each 

state variable (N, P, Z, D).  Elevated nutrient levels produced phytoplankton blooms 

followed by gradual declines once nutrients become exhausted.  Elevated phytoplankton 

concentrations enabled higher zooplankton and detritus levels.  These responses were 

spatially lagged, becoming more pronounced in size and transported further down the 

simulation domain with higher nutrient levels (see A-D of Figure 4.3).  Changes caused 

by variations in H (i.e., pattern) under medium nutrient levels are illustrated in Figure 4.4.  

Decreases in H caused finer spatial patterns to be evident for all four state variables with 

little impact on mean biomass concentrations as was seen in Figure 4.3. 

 Changes caused by variations in model case (i.e., presence or absence of 

diffusion, turbulence or biotic processes) for a given nutrient and H is illustrated in 

Figure 4.5.  Highlighted in the physical series (cases A-D) is the effect of mixing on the 

pattern of input defined by the multifractal maps.  The E-H cases include the added 

effects of biological dynamics as represented by the phytoplankton state variable.  Both 

Case A (no mixing, no biology) and E (biology but no mixing) are reference cases against 

which the effects of mixing and biology were compared.  Diffusive mixing tends to 

smooth out spatial pattern and turbulence adds additional heterogeneity.  With both 

processes operating and intermediate pattern between these two extremes is created (see 

Figure 4.5). 
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Figure 4.3.  A snapshot of typical ecosystem dynamics for the nutrient (N), phytoplankton 
(P), zooplankton (Z), and detritus (D) state variables under the three nutrient input levels 
tested.  The patchiness level is medium (H = 0.60) and the model case is the full model 
with all physical and biological processes active.  The color scale (range) is set to 
maximize the observed pattern within each map as follows (gm-3): 
Nutrient Input Level High (N:0.0-0.015, P:0.4-0.46, Z:0.55-0.065, D:0.16-0.18);  
Nutrient Input Level Medium (N:0.0-0.015, P:0.4-1.20, Z:0.55-0.095, D:0.16-0.30); 
Nutrient Input Level Low (N:0.0-0.020, P:0.4-7.00, Z:0.55-0.155, D:0.16-1.10). 
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Figure 4.4.  A snapshot of typical ecosystem dynamics for the nutrient (N), phytoplankton 
(P), zooplankton (Z), and detritus (D) state variables under the three H levels tested.  The 
nutrient level is medium (0.1) and the model case is the full model with all physical and 
biological processes active.  The color scale (range) is set to maximize the observed 
pattern within each map as follows (gm-3): (N:0.0-0.015, P:0.4-1.20, Z:0.55-0.095, 
D:0.16-0.30). 
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Figure 4.5.  A snapshot illustrating the impact of the model case on concentration and 
spatial pattern.  Figures A-D highlight the physical effects (i.e., control series, no 
biology) while figures E-H highlight the additional effects of biological dynamics (i.e., 
biology series).  For the control series the nutrient state variable is used as a tracer and the 
phytoplankton state variable is highlighted for the biology series.  The nutrient input (0.1) 
and H (0.66) level are both set to medium.  The color scale (range) is set to maximize the 
observed pattern within each map as follows (gm-3): (N:0.0-0.2, P:0.4-1.20). 
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4.3.2  Mean Effects 

A primary question of this chapter was to determine if the patchiness generated by 

changes in the H of the nutrient input maps (see Figure 4.4) would result in significant 

changes to the mean level of each state variable (i.e., N, P, Z, D) and a suite of six 

ecosystem parameters (i.e., phytoplankton and zooplankton growth rates, phytoplankton 

and zooplankton production amount and the amount of total biomass transferred to higher 

trophic levels and the benthos).  Table 4.3 shows the results of the GLM analysis for 

change in mean phytoplankton biomass at three representative locations corresponding to 

the start, middle, and end of the simulation.   

The nutrient level treatment was highly significant (P < 0.0001) for all three 

locations, accounting for increasing levels of the variation with distance.  The effects of 

H (the spatial pattern of nutrient input) and model case did not have a significant effect 

on mean phytoplankton levels over a majority of the treatment combinations (data not 

shown).  When H level or case level were found to be significant the amount of variation 

associated with these variables was always small (i.e., a low R2).  These results are 

consistent for each of the other nine response variables tested and over the 21 map 

locations (data not shown).  

 

4.3.3  Pattern Effects 

The second question addressed was whether the spatial distributions of the model 

state variables would be significantly affected by the experimental treatments.  The 

impact of experimental treatments on spatial patterns was assessed by spectral analysis 

which provides a means of measuring the change in variance (i.e., patchiness) with scale  
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Table 4.3.  Results of GLM for the main effects of nutrient level, H level, and model case 
on the mean concentration found at location 1, 11, and 21 of the phytoplankton state 
variable.  At each location there were 22 replications for each of the nutrient, H and 
model case (3x3x4 factorial).  Only the nutrient treatment was found to be significant 
(Pr>F) and important (R-Square) over the conditions tested. 
 
 

 

Location 1 

Effect2 df F Value Pr > F R-Square 

Nutrient Level 1 395.18 <.0001 0.33 
Patchiness Level 1 0.62 0.4316 <.01 
Model Case1  3 0.08 0.9716 <.01 

     
Location 11     

Effect2 df F Value Pr > F R-Square 

Nutrient Level 1 35815.6 <.0001 0.97 
Patchiness Level 1 0.04 0.8499 <.01 
Model Case1 3 0.79 0.4992 <.01 

     
Location 21     

Effect2 df F Value Pr > F R-Square 

Nutrient Level 1 16709.9 <.0001 0.97 
Patchiness Level 1 1.08 0.2999 <.01 
Model Case1  3 0.17 0.9171 <.01 
1Only 4 model cases were run (E-H) 
2MSE = 0.003943, 0.0696, 0.0950, for location 1,11, and 21  
  respectively with 786 df 
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(section 4.2.5).  The results indicated that a “break” in the spectral signature occurred at 

approximately the one kilometer scale.  Figure 4.6 illustrates this impact for a series of 

model cases without (A-D) and with (E-H) biological dynamics.  Turbulence 

preferentially caused the variance to increase while diffusion caused the variance to 

decrease at scales less than one kilometer.  Due to the way the spectral analysis is 

calculated (i.e., with more data points at finer frequencies), the observed flattening in the 

relationship between variance and frequency biases the estimation of the spectral slope 

when calculated over the full spectral signature.  Therefore, I calculated the spectral slope 

on only the linear part of the line roughly corresponding to data to the left of the scale 

break. 

Table 4.4 illustrates the general results of the GLM analysis of the change in the 

mean spectral slope of phytoplankton biomass at map location 11 (mid-way down the 

simulation domain).  The sum of squares for each treatment (biology, diffusion, and 

turbulence and their interaction terms) are separately defined in Table 4.4.  The results 

show that H, diffusion, and turbulence were all significant at P < 0.001 and also 

explained a large fraction of the total variation in simulation results (R2 > 0.1).  These 

effects were consistent across the other state variables (i.e., N, Z, D) and map locations 

(data not shown).  Variation in nutrient levels and biology were statistically significant, 

but the effect of these variables declined with distance (data not shown).  All of the other 

treatment variables were almost always non-significant. 

Figure 4.7 illustrates the changes in variance explained (i.e., the R2 estimated 

from the partial sums of squares) for each of the treatments and state variables through 

time.  Most of the variability was attributed to changes in H and the processes of  
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Table 4.4.  Results of GLM for the main and interaction effects of nutrient level, H level, 
and model case on the mean spectral slope for the phytoplankton state variable at map 
location 11.  For this location there were 22 replications for each of the nutrient, H and 
model cases (3x3x8 factorial).   
 
 

 

Spectral Slope 

Effect1 df F Value Pr > F R-Square 

Nutrient Level 1 13.55 0.0002 <0.01
H Level 1 6014.9 <.0001 0.59
Model Case 7  

Biology (1) 2.79 0.0951 <0.01
Diffusion (1) 929.04 <.0001 0.09

Turbulence (1) 1588.27 <.0001 0.16
Biology*Diffusion (1) 0.61 0.434 <0.01

Biology*Turbulence (1) 1.13 0.2872 <0.01
Diffusion*Turbulence (1) 1.94 0.1644 <0.01

Biology*Diffusion*Turbulence (1) 1.09 0.297 <0.01
1MSE = 0.1085 for the Spectral slope variable with 1574 df 
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Figure 4.6.  Series of graphs illustrating the impact of the model case on spatial pattern at 
three locations down the simulation domain.  Pattern is measured as the average spectral 
signature of 22 transects at each location.  Figures A-D highlight the physical effects (i.e., 
control series, no biology) while figures E-H highlight the additional effects of biological 
dynamics (i.e., biology series).  For the control series the nutrient state variable is used as 
a tracer and the phytoplankton state variable is highlighted for the biology series.  The 
nutrient input and H levels are set to medium (0.1) and low (0.01) respectively. 
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Figure 4.7.  Amount of variance explained (i.e., partial r-squared) in the spectral slope 
response variable for each of the main treatment effects in each state variable and map 
location down the simulation domain.  The model case has been broken out into three 
sub-levels (i.e., Biology, Diffusion, Turbulence).  See text for additional details. 
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diffusion and turbulence.  Over time the initially high importance of H declines and is 

replaced by increased importance of turbulence and diffusion.  These physical mixing 

processes are approximately equally important in controlling pattern formation within the 

simulation framework.  Across all the conditions tested neither biology nor nutrient input 

statistically affected patterns measured by spectral analysis. 

 

4.3.4  Trophic Effects/Physical and biological interactions 

The third question addressed was whether the spatial distributions of the model 

state variables could overcome the influence of the physical mixing processes as seen in 

the previous section.  To evaluate, I examined the change in spectral slope as a function 

of H and nutrient level.  The full model case was run (with all physical and biological 

processes operating) as these conditions would most closely match dynamics occurring in 

natural systems.   

Figure 4.8 highlights representative results of the analysis which focused on the 

endpoints of the H and nutrient level treatments (i.e., high and low nutrient level and high 

and low H level).  Illustrated are changes in the spectral slope over time for each state 

variable with a control line corresponding to the equivalent model case without any 

biological processes (i.e., only physical processes).  The difference between the control 

line spectral slope and the state variable line spectral slope, identify potential areas where 

biological dynamics are affecting the simulated patterns as opposed to physical processes.   

The greatest difference between the control line and the lines for the state 

variables (and hence impact of biological processes on spatial patterns) was found in 

Figures 4.8c and 4.8d.  These are the high nutrient cases.  This decoupling is strongly  
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Figure 4.8.  Series of graphs illustrating the change in spectral slope for each state 
variable and map location across nutrient input and H levels under the full model case 
(i.e., full model with all processes included).  The dotted back line is the corresponding 
control case with the biological dynamics turned off.  Nutrient level for each graph is as 
follows (A=0.01, B=0.01, C=1.0, D=1.0).  H level for each graph is as follows: (A=0.01, 
B=0.99, C=0.01, D=0.99).   
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evident by the dramatic decreases and increases in the spectral slopes of the state 

variables which sometimes deviated from the control line together (Figure 4.8d) and 

sometimes in separate directions (Figure 4.8c) with changes in the H level of the map.  

By the end of the simulation (i.e., bottom of the map) all of the state variables were 

tracking the control signal in that they had similar spectral slopes.  Under the low nutrient 

combinations (Figure 4.8a and 4.8b) there was little separation between the spectral 

slopes of the control and state variable lines indicating that their distributions were 

largely controlled by the pattern generated through the physical mixing processes 

operating in the model.  Overall, the spectral slope tended to increase with time.  

 

4.4  Discussion 

4.4.1  Simulation Platform and Overall Model Dynamics 

Previous studies have found that spatial and temporal heterogeneity in nutrient 

input is a key factor affecting ecosystem productivity and biomass distributions in 

estuarine systems (Baird et al. 1995; Smith and Kemp 1995; Yeager et al. 2005).  It is, 

therefore, critical to understand how nutrient inputs are processed and, in turn, affect 

biomass distributions within these ecosystems.  The complex effects of mixing (e.g., 

turbulent mixing, advection, stratification), biological uptake, and environmental forcing 

(e.g. temperature, solar radiation) on ecosystem response in time and space can be 

difficult to determine.  My simulation platform allows these physical-biological 

interactions to be separately examined within a spatially-explicit framework, limiting the 

impact of confounding factors usually present in field studies or experimental 

ecosystems. 
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 The simulation platform (SLS) is coupled to an NPZD (nutrient, phytoplankton, 

zooplankton, detritus) ecosystem model and physical transport/mixing routines that 

simulate advection, idealized turbulent mixing, and diffusive processes.  When forced 

with multifractal maps, that represented spatial variation in nutrient input, spatially-

extensive patterns of ecosystem dynamics and interaction were generated.  Similar 

studies are possible with existing coupled biophysical ecosystem models (e.g., Wang et 

al. 2006) but it is the combined integrated use of the various components (i.e., nutrient 

input maps, physical mixing routines, biological models, statistical analysis) that make 

my approach unique and attractive as a potential alternative, to assess change at fine 

scales and broad extents.   

Despite the simplicity of the SLS, I was able to simulate spatial dynamics within 

an idealized estuarine ecosystem over a broad range of nutrient input scenarios from 

oligotrophic to eutrophic and from fine-scale to broad-scale patchiness.  The biological 

model responded appropriately to elevated nutrient levels as demonstrated by the uptake, 

bloom, predation, and decay dynamics of the N, P, Z and D state variables (see Figure 4.3 

and 4.4).  The magnitude (i.e., mean concentrations) and separation in space of the 

responses were typical of what might be expected for estuarine ecosystems under similar 

nutrient and environmental conditions.  The physical processes operating in the SLS were 

also able to capture the general aspects of turbulent mixing (i.e., increased heterogeneity) 

and diffusion (i.e., decreased heterogeneity) which are typically operating in estuarine 

systems over a 30 m to 30 km scale range (see Figure 4.5 and 4.6).  Given these 

encouraging results I believe that the SLS can address the questions posed regarding the 

effects of heterogeneity of nutrient input on ecosystem function and spatial patterns.  
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4.4.2  Question 1: Does patchiness in nutrient inputs affect ecosystem function? 

A central purpose of these simulations was determination of the effect of the 

spatial pattern (i.e. patchiness) of nutrient inputs on ecosystem behavior. Nutrient input 

levels are, of course, a key driver of ecosystem dynamics (Kemp et al. 2005).  I wished to 

investigate whether the variability of nutrient inputs (i.e., changes in mean levels) or the 

heterogeneity of nutrient inputs (holding mean level constant) had equivalent effects on 

simulated estuarine ecosystem response.  Specifically, would local variability have no 

lasting broad-scale effect, or would this variability propagate through time and space, 

significantly changing ecosystem dynamics?  The experiments reported here provided 

insight into the conditions under which these changes in the level and heterogeneity of 

nutrients can be examined.   

Over the range of conditions reported here there was no significant effect of 

patchiness of nutrient input on ecosystem function.  None of the mean values for the four 

state variables and suite of six ecosystem variables (i.e., phytoplankton and zooplankton 

growth rates, phytoplankton and zooplankton production amount and the amount of total 

biomass transferred to higher trophic levels and the benthos) were sensitive to changes in 

the degree of patchiness of nutrient inputs.  No significant effects were found even under 

optimal conditions of varying the level of patchiness under the highest nutrient levels or 

at locations where rapid growth was occurring.  Only changes in nutrient input level 

(independent of patchiness) were found to have a significant impact on mean levels of the 

state variables and ecosystem variables.  This result was expected since the nutrient input 
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level was varied over three orders of magnitude allowing higher production and 

corresponding greater changes to biomass production and ecosystem dynamics.   

Numerous studies, both empirical and modeling, have described the effect of 

nutrient input levels on ecosystem dynamics (D'Elia et al. 1986; Chen et al. 2000; Kemp 

et al. 2001).  Many of these studies reported change as a function of variation in the mean 

level of nutrient input.  Although my results produced similar changes in biomass, 

primary and secondary productivity, and export to higher trophic levels and to the 

benthos, my research is the first to attempt to isolate the effects of spatial heterogeneity in 

nutrient inputs on estuarine ecosystem dynamics.  Within a given nutrient input level 

however, changes in the pattern of nutrient input produced no significant differences in 

mean levels over the conditions tested in the simulations. 

The lack of a spatial effect was surprising because others studies have found that 

the patchiness of inputs does affect ecosystem dynamics especially phytoplankton 

blooms, predator/prey interactions, feeding, and survival dynamics (Denman and Powell 

1984; Strass 1992; Abbot 1993).  The different outcome could be due to the analysis 

method I employed.  In my simulations, I tested for change by averaging across a transect 

at selected locations down the simulation domain.  Nutrient input values along the 

transect may vary widely, yet average to a constant mean level, obscuring the relationship 

between spatial patterns and model response.  Averaging by horizontal transects would 

underestimate the impact of large patches traveling down the simulation domain.   

Another complication which may obscure potential response could be due to the 

type of simulation framework employed. Because the model domain was designed to be 

an open flow-through system any differences in patchiness were either rapidly mixed 
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(through turbulence), diluted (through diffusion) or ephemeral in nature (removed by 

nutrient uptake by phytoplankton) and thus, did not have any lasting impacts.  Under the 

conditions simulated, there were no means of creating patterns fixed in space or persistent 

in time via differences in depth, convergence and divergence zones, frontal zone, and 

behavior dynamics.  These unconsidered effects can have a pronounced effect on 

ecosystem properties (Okubo 1986; Franks 1992; Hood et al. 1999; Roman et al. 2005). 

Given the caveats, results indicate that the heterogeneity of nutrient inputs, in a 

flow-through open system, will not of itself cause persistent changes in ecosystem 

dynamics.  Even though changes in the pattern of nutrient inputs resulted in changes in 

the distributions (i.e., spatial patterns) of the state variables in the model, it may only be 

necessary to know the mean level of nutrients entering the estuary to predict ecosystem 

response.  The wide range of conditions tested within our simulation framework, 

consisting of over a three fold nutrient loading, a wide range of patchiness levels, and 

idealized mixing processes, suggests that these results may be robust.  Additional 

experiments would be necessary to ensure that the issues discussed in the previous 

paragraphs do not invalidate my preliminary results presented here.   

 

4.4.3  Question 2: Does patchiness in nutrient inputs affect spatial distributions?  

Material and organisms in the aquatic environment are rarely uniform across 

space, but tend to be patchy in nature (Hardy and Gunther 1935; Mackas et al. 1985).  

This patchiness is caused by a number of physical and biological processes which interact 

at a number of scales to influence ecosystem dynamics (Denman and Powell 1984).  I 

wished to investigate whether heterogeneity of the nutrient input signal would also affect 
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the patchiness of other components of the ecosystem, e.g., the nutrient, phytoplankton, 

zooplankton, and detritus distributions.  Impacts of spatial heterogeneity on spatial 

patterns in natural systems may have important local effects ranging from predator/prey 

dynamics to species survival (Lasker 1975; Harris 1980).  I did not address these higher 

trophic levels effects in this Chapter. 

Changes in pattern in the SLS were measured by spectral analysis of the spatial 

distribution of biomass of each state variable.  Spectral analysis calculates the change in 

variance with scale.  The slope of this relationship, estimated by linear regression, 

provides a convenient summary of variation with scale in aquatic systems (Platt and 

Denman 1975; Weber et al. 1986).  The estimation of the spectral slope is simple as long 

as the relationship remains linear.  However, non-linearity or break-points in the spectral 

slope are often present requiring estimation of the slope for only a portion of the data.  I 

calculated the spectral slope for data on the left side of the break (see Figure 4.6), the 

region dominated by effects at scales > 1 km. 

Over the conditions tested within the SLS, there were highly significant effects of 

the three treatment variables (nutrient level, H, and model case) on the mean spectral 

slope of the model state variables (N, P, Z, D).  When the model case treatments were 

broken out further there were additional significant effects due to the biology, diffusion, 

and turbulence sub-treatments (see Table 4).  These results suggest that the model state 

variables were not only responding to differences in pattern caused by variations in H 

(which is expected) but also to differences caused by the physical and biological 

processing of the nutrient input signal.   
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Physical mixing processes played a dominant role in affecting the mean spectral 

slope of the model state variables.  Mixing caused by the turbulence and diffusion 

processes operating in the model tended to become more important with time (Figure 

4.7).  Turbulence and diffusion both decrease variance but do so in different ways.  

Turbulence breaks up (i.e., mixes) any gradients and then diffusion acts to smooth out the 

remaining pattern (Okubo 1980; Abraham 1998).  In my simulations, this may be the 

case, with turbulence rapidly breaking up the pattern and becoming less important with 

time, and diffusion smoothing out the patchiness created by the turbulence and hence 

becoming more important with time (i.e., increased surface area).    

Other studies have found similar results indicating the importance of physical 

mixing effects on spatial patterns of scalar (e.g., temperature) and biomass distributions 

such as phytoplankton and zooplankton (Denman and Platt 1976; Gower et al. 1980).  My 

results seem intuitive given the transient nature of biological interactions especially in a 

flow-through system like my simulation domain where nutrients are depleted over time.  

Even with the strong diffusion and turbulence signal, H was also found to significantly 

impact the spatial patterns of the state variables.  H has its strongest impact early in the 

simulation and still accounted for approximately 50% of the explained variance in the 

model by the end of the simulation.  This is probably attributed to the state variables 

responding to the pattern created by the input maps at the start of the simulation before 

turbulence, through the breakdown of concentration gradients and diffusion through the 

smoothing of concentration gradients, have a chance to alter patterns created by the 

nutrient input maps.  Likewise, the brief importance of biological dynamics early in the 
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simulation is due to initial processing of the input signal, through high growth rates, 

before the mixing processes can dominate the pattern formation in the ecosystem.  

The various levels of spatial heterogeneity (H) of nutrient input provides the 

baseline conditions (i.e., pattern and spectral slope) upon which the biological and 

physical processes can be compared.  In the absence of any biological and physical 

processes, the spectral slopes of the input map are unchanged with time and range from a 

slope of –1.0 under low H to a slope of –3.0 under the high H (data not shown).  Adding 

only diffusive mixing causes the slope to increase with time while adding turbulent 

mixing causes the spectral slope to decrease with time.  These isolated effects are 

consistent with previous studies indicating that diffusive processes cause a “reddening” 

of the spectral signature while turbulent mixing causes a “whitening” of the spectral 

signature (Steele and Henderson 1981; Abraham 1998).  These changes are caused by the 

injection of variability through turbulent mixing which in the absence of diffusive mixing 

will tend to accumulate variance causing the spectral slope to decrease.  In contract, 

diffusive mixing without turbulent mixing will tend to decrease variance through time 

through the dissipation of concentration gradients causing the spectral slope to increase.  

When both diffusion and turbulence are operating at the same time (i.e., the full physical 

model) the overall spectral slope tends to increase with time and may even reach an 

equilibrium condition at longer time-scales.  My physical mixing signal is higher, 

(trending toward 4.2.2) than that predicted from the theoretical -5/3 Kolmogorov slope 

but similar in magnitude to spectral slopes calculated for passive tracers conducted in 

other studies (TIES data unpublished, Denman 1976).  
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4.4.4  Question 3: Can biological dynamics overcome the influence of physical mixing? 

Pattern in aquatic systems is often controlled by physical mixing processes 

(Denman and Powell 1984), and much of the pattern variability in the SLS simulations 

was also driven by the same physical processes.  As part of my simulation studies I was 

interested in identifying specific conditions where biological dynamics might be able to 

impact the spatial patterns seen in the model state variables.  To investigate these 

interactions further I examined how the spectral slope might change under natural 

conditions as approximated under the full model case with all biological and physical 

processes operating.  Figure 4.8 compares the spectral slope due physical mixing 

(diffusion and turbulence) with the corresponding case with biological processes included 

for each state variable.  Deviation from the control line indicates zones were biological 

processes affect observed patterns.   

Under low nutrient input levels the spectral slope of the model state variables 

almost always followed that of the physical mixing signal (i.e., control signal).  The 

growth rates under these conditions are typically too low to support any type of biological 

induced pattern generation.  Any growth that does occur quickly maps onto the signal 

created by the physical mixing processes.  Under low nutrient input and H levels, the 

nutrient state variable did have a slight deviation from the control line for the second half 

of the simulation which may indicate the influence of regenerative processes from the 

other state variables as the system winds down.  Under high H the zooplankton and 

detritus state variables responded slower to the control signal than did the phytoplankton 

and nutrient state variables.  This is probably due to the time that it takes for the 

zooplankton to respond to the phytoplankton pattern which is in turn responding to the 
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nutrient input signal.  The phytoplankton are able to respond more quickly to the control 

signal. 

Biological alteration of the control signal was most prevalent under the high 

nutrient input treatments but this response was typically transient in nature.   Usually by 

the end of the simulation the pattern of all the state variables matched that of the physical 

mixing signal.  The biological signal was strongest under the higher nutrient input levels 

likely due to enhanced growth and predator-prey dynamics.  Changes in the level of 

patchiness under high nutrient conditions had a dramatic impact on the types of changes 

seen in the model state variables.  Under high H all of the state variables behaved in a 

similar manner while under low H each state variable had a different dynamic trajectory, 

an effect possibly due to smaller patch size of the low H maps.  The large patches of the 

high H level maps may alter the dynamics which in previous studies have often been 

characterized as having their greatest influence at small scales (Lovejoy et al. 2001; 

Seuront et al. 2002).  These results seem to indicate that biological dynamics will have 

their greatest impact on biomass distributions under conditions of high nutrients and a 

high degree of patchiness (i.e., low H level).  My interpretation is that the biological 

interactions do not have the power to change broad scale patterns and instead impact 

fragmented patterns to a greater extent by enhancing the initial patterns present and 

adding additional biological induced variance.  My results seem to suggest that the 

zooplankton distributions were less impacted by physical processes (see Figure 4.8c).  

Further analysis would be necessary to understand this observation within the context of 

these simulations. 
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4.4.5  Management Implications 

Previous studies examining spatial patterns within the Chesapeake Bay indicate a 

system characterized by heterogeneous populations and nutrient inputs both in time and 

space.  Understanding ecosystem response to nutrient variability is also important for the 

management of these systems, especially for management issues that are often dependent 

not only on mean levels of nutrient inputs but also their pattern in space and time (e.g., 

harmful algal blooms, hypoxia, and fisheries production). 

My results indicate that heterogeneity in nutrient inputs is likely to have a 

relatively short-term effect. Any pulses in nutrients, as were approximated by the SLS 

simulations, were rapidly mixed and dispersed and subsequently drawn down by 

biological uptake and growth processes.  Thus, any initial patterns rapidly disappear 

leaving little time for alterations in ecosystem processes.  Therefore, knowledge of the 

mean level is of primary concern for predicting ecosystem response to changing nutrient 

inputs.  This has implications for the management of estuarine ecosystems related to the 

timing of nutrient releases (e.g., sewage treatment plants) or the design of sampling 

programs (e.g., characterizing nutrient fields) 

The SLS simulations also indicate that the pattern of nutrient inputs can impact 

the spatial distributions of organisms such as phytoplankton and zooplankton.  Under 

high nutrient conditions changes in the level of patchiness impacted the spatial 

distributions of these key resources.  The phytoplankton and zooplankton state variables 

were able to decouple their distributions from the underlying physical dynamics.  While 

this may not impact ecosystem dynamics there could be smaller scale impacts that affect 

the likelihood of a phytoplankton bloom or the resource field available for fish predation.  
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Given the transient nature of these dynamics, efforts at predicting the spatial distributions 

of these resources should focus on characterizing the underlying physical field.   

 

4.5  Conclusion 

In this chapter I presented the application of a novel simulation framework (SLS) 

for addressing issues of pattern, scale, and physical-biological interactions within aquatic 

ecosystems.  The platform utilizes a spatially-explicit nutrient-phytoplankton-

zooplankton-detritus ecosystem model, realistic physical mixing techniques, and 

multifractal map generation techniques to investigate how patterns of nutrient input are 

affected by and interact with physical and biological processes during transit through an 

estuary.  A factorial design was used to vary the concentration levels and heterogeneity of 

nutrients to simulate a spectrum of conditions ranging from oligotrophic to eutrophic and 

from fine-scale to broad-scale patterns of patchiness.   

 Results indicate that variations in the pattern of the nutrient input maps did not 

result in significant changes in mean levels of key ecosystem variables.  The mean 

nutrient level is a better predictor of ecosystem dynamics than the level of variability in 

the nutrient input signal.  The spatial patterns observed in the state variables, however, 

were strongly controlled by the nutrient input maps and physical mixing processes.  The 

template pattern provided by the nutrient input maps is rapidly mixed through the 

physical mixing processes resulting in a general increase in the spectral slope with time.  

Biologically induced pattern formation was seen under some treatment combinations 

especially under high nutrient input conditions, but tended to be transient in nature, 

eventually merging with the physical mixing signal by the end of the simulation.  When a 
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biological signal is present, the degree of patchiness affects the individual response of the 

various state variables causing deviations under low patchiness levels and coherence 

under high patchiness levels.   

Identification of conditions under which spatial dynamics-interactions are 

important will aid the extrapolation of experimental results to the broader-scales of 

natural systems where spatial heterogeneity is a key component.  The simulation 

framework used in this chapter allows the separation of effects due to physical and 

biological processes through the sequential elimination of processes thereby allowing one 

to gain a better understanding of the controlling processes on ecosystem productivity, 

biological dynamics, and spatial patterns in aquatic systems.  This “spatial and temporal 

decomposition” provides a rigorous means of evaluating the range over which 

experimental results may be reliably extrapolated.  
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Appendix A:  Model state variable and parameter descriptions 

 

Listed below is a description of the state variables and parameters shown in Table 

1.1 and a brief explanation of why a particular value was chosen for the simulations. 

 

State Variables 

 

N = The amount of dissolved inorganic nitrogen (gN) in the water column per cubic 

meter.  The nitrogen components are for ammonia, nitrite and nitrate.  Other sources of 

nitrogen are not modeled (e.g., urea).  The initial value used for the simulations was 

based on equilibrium values. 

 

P  = The amount of phytoplankton biomass (gC) in the water column per cubic meter.  

The phytoplankton compartment consists mainly of a range of size classes from 

flagellates to diatoms aggregated together.  The initial value used for the simulations was 

based on equilibrium values. 

 

Z  = The amount of zooplankton biomass (gC) in the water column per cubic meter.  The 

zooplankton compartment consists mainly of micro and macro zooplankton species.  The 

initial value used for the simulations was based on equilibrium values. 

 

D  = The amount of particulate material (gC) in the water column per cubic meter.  This 

compartment is meant to approximate a microbial loop and to consist of both living and 
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non-living material (i.e., dead phytoplankton and zooplankton, bacteria, protozoan).  The 

initial value used for the simulations was based on equilibrium values. 

 

Parameters 

 

No = The concentration of dissolved inorganic nitrogen below the mixed layer.  The 0.30 

gN m-3 value used is within the range found for sub-thermocline nitrogen values in the 

mainstem of the Chesapeake Bay during the summer months (Kemp et al. 1990).  This 

pool supplies all the nitrogen inputs to the model when there are no external nutrient 

inputs and is assumed to be unaffected by the other processes occurring in the model. 

 

Nd =  The diffusion rate across the thermocline.  This parameter is highly variable and 

can be parameterized with a wide range of values depending on the stability of the 

thermocline or the amount of turbulence in the mixed layer.  Edwards and Brindley 

(1999), based on a mixed layer depth of 12.5 m found a range of values (0.0008-0.13 day-

1) from the literature.  I chose a value of 0.02 day-1 which can be converted into a vertical 

eddy diffusivity with the following equation: Diffusivity = percent flux * ((deltaX)2 / 

(deltaT)).  Using a deltaX of 5 m and a deltaT of 86,400 sec, you obtain a vertical 

diffusivity of 5.8x10-6 cm2 sec-1 which is within the range found for stratified interior 

conditions (Sanford 1997) and similar to other values used in models parameterized to 

the Chesapeake Bay (Johnson et al. 1993).  The value was set at the low range to simulate 

the stratified conditions in the summer months and using this value and the dissolved 
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nitrogen concentration below the mixed layer results in a maximum nitrogen input to the 

mixed layer of 0.006 gN day-1 assuming no nitrogen is present in the mixed layer. 

 

Rf  = The respiratory losses for fish is the fraction of the zooplankton biomass that is 

removed by fish predation and then recycled directly back to the nutrient compartment.  

The parameter represents excretion components lost from the fish during movement and 

feeding within the model domain and was arbitrarily set at 0.10 day-1. 

 

Pmax = The maximum phytoplankton growth rate under non-limiting conditions and 

optimal temperature.  I chose a growth rate of 2.8 day-1 similar to a value used by Fasham 

et al. (1990) and within the range (0.14-8.11 day-1) reported for natural populations in 

marine and coastal areas (Parsons et al. 1984). 

 

Rp = The respiratory losses for phytoplankton is the proportion of biomass loss each day 

due to cell maintenance and respiration.  A wide range of values is found in the literature 

so I used the common value of 0.05 day-1 found in many models of this type. 

 

Mp = The mortality losses for phytoplankton is the proportion of biomass lost each day 

due to natural mortality such as cell senescence.  Many values can be used for this 

parameter depending on if other mortality factors are included (e.g., predation, starvation, 

etc).  Since I have separated zooplankton predation from this term, a low natural 

mortality rate of 0.05 day-1 seemed appropriate and consistent with values used in other 

models. 
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Sp = The sinking losses for phytoplankton is the proportion of biomass lost each day due 

to the loss of phytoplankton from the water column from sinking and mixing below the 

thermocline.  I used a value of 0.05 day-1 which, when combined with a mixed layer 

depth of 5 m, gives a sinking rate of 0.25 m day-1.  The value used is within the range 

found for natural mixed assemblage communities (Bienfang 1981).  

 

In = The light half-saturation constant is the intensity of light that is one-half the amount 

needed to give maximum productivity.  I chose a value of 10 E m-2 d-1 to correspond 

roughly to half of the surface light intensity so that in the absence of self-shading and 

light attenuation effects, the phytoplankton could grow near their light saturated maximal 

values.  Kirk (1994) reports values for this parameter for marine microalgae in the range 

of (4.32-70.7 E m-2 d-1). 

 

Io = The surface light intensity after correcting for reflectance due to the water surface.  

The value of 26 E m-2 d-1 reflects an actual surface intensity of 52 E m-2 d-1 which is 

within the range of values reported for the Chesapeake Bay (Harding et al. 1986). 

 

Kc = The attenuation of light in the water column due to phytoplankton biomass.  The 

value 0.4 m2 g-1 was taken from Edwards and Brindley (1996) and falls within the range 

found in the literature (0.3-1.2 m2 g-1). 
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Kw = The attenuation of light in the water column due to non-living particulate and 

dissolved material.  A value of 0.2 m-1 was used so that with equilibrium phytoplankton 

concentrations (0.38 gC m-3) the total light attenuation (Kd) coefficient would be 0.352 m-

1 which falls within the range (0.1-3.0 m-1) typical for coastal waters (Lorenzen 1972) and 

found in the Chesapeake Bay (Harding et al. 1986). 

 

Kz = The depth of the mixed layer in the Chesapeake Bay over the summer stratification 

period.  I used a value of 5 m and assumed that this is a typical mixed layer depth in the 

mesohaline regions of the Chesapeake Bay based on a range of values reported from 

cruises in Harding et al. (1985).  

 

Kn = The nutrient half-saturation constant is the concentration of nitrogen that will give 

half of the maximum nutrient uptake rate. A value of 0.02 gN m-3 was used which falls 

within the range of values reported for large and small phytoplankton (Eppley et al. 1969; 

Goldman and Glibert 1983). 

 

Zmax = The maximum zooplankton ingestion rate of phytoplankton biomass under optimal 

temperature and prey densities.  Edwards and Brindley (1996) report a range for this 

value of (0.6-1.4 day-1) from other marine biogeochemical models.  I chose a mean value 

of 1.0 day-1 which is also the value used by several other models (Fasham et al. 1990; 

Doney et al. 1996; Denman and Pena 1999) 
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Az = The assimilation efficiency reflects the proportion of consumed phytoplankton 

biomass that is converted into zooplankton biomass.  Typical values for this parameter 

range from (0.7-0.9 day-1).  Several models (Dadou et al. 1996; Denman and Pena 1999; 

Druon and Fevre 1999) use a value of 0.7 day-1 which is the value I decided to use for my 

simulations. 

 

Rz = The respiratory losses for zooplankton is the fraction of zooplankton biomass that is 

lost due to excretion and respiration.  The value used in the simulations (0.25 day-1) is 

within the wide range of values (0.05-0.80 day-1) found in the literature (Fasham et al. 

1990; Edwards and Brindley 1996; Druon and Fevre 1999). 

 

Mz = The mortality losses for zooplankton reflect the amount of biomass lost due to 

natural and density dependent mortality factors (e.g., starvation, cannibalism).  This 

parameter is a quadratic function of biomass and was given a value of 1.0 day-1 (gC m-3)-1 

after Edwards and Brindley (1996) who also found a range of (0.25-2.0) for this 

parameter in the literature.  Using this parameter value translates into a loss rate equal to 

the zooplankton biomass value, which under equilibrium zooplankton densities, becomes 

a loss rate of 0.056 day-1.  The implications of using this particular parameter value and 

formulation is that the zooplankton biomass can never exceed 1.0 gC m-3 assuming there 

are no other loss terms for the zooplankton. 

 

k =  The half-saturation constant for zooplankton grazing represents the concentration of 

phytoplankton or detritus that will result in a grazing rate that is one-half the maximal 
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value.  A value of  0.10 gC m-3 was used based on similar values by Evans and Parslow 

(1985) and Armstrong (1994).  The parameter is the same for both phytoplankton and 

detritus. 

 

Ppref  = The preference for phytoplankton over detritus by zooplankton.  A value of 0.5 

will give equal preference.  In my simulations I used a value of 0.7 to give phytoplankton 

a higher preference over detrital material similar to Loukos et al. (1997) and Fasham 

(1995).  

 

Rd = The remineralization rate of detrital material into dissolved inorganic nitrogen due to 

bacteria decompositional processes.  A rate of 0.05 or 0.1 day-1 has typically been used in 

other NPZD models (Fasham 1995; Doney et al. 1996; Edwards 2001) but rates as high 

as 0.2 and 0.3 day-1 are also used (Dadou et al. 1996; Kemp et al. 2001).  I chose a value 

of 0.2 day-1 for my simulations to reflect the higher decomposition rates occurring during 

the summer months in the Chesapeake Bay. 

 

Sd = The sinking loss rate for detritus is the proportion of biomass lost each day due to 

the loss of detritus from the water column from sinking and mixing below the 

thermocline.  I used a value of 0.05 day-1 to correspond to the value used for the 

phytoplankton sinking rate.  When combined with a mixed layer depth of 5 m this value 

gives a sinking rate of 0.25 m day-1.  A higher sinking rate, as is often used in other 

models, is probably warranted especially considering that the detrital material also 
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consists of fecal pellets and dead zooplankton (Fasham et al. 1990; Druon and Fevre 

1999; Edwards 2001; Fennel et al. 2001) 

 

Fd  = The unassimilated losses from fish is the fraction of the zooplankton biomass that is 

removed by fish predation and then is recycled back to the detrital compartment.  The 

parameter represents mostly unassimilated zooplankton biomass and some fecal pellet 

production that occurs during fish movement and feeding within the model domain.  The 

parameter was arbitrarily set at 0.40 day-1.  An alternative pathway for this variable 

would be to have this material exported from the model as if often done with other 

studies (Fasham et al. 1990; Edwards 2001) due to rapid sinking associated with fish 

fecal material providing little time for remineralization.  

 

External Drivers (Sensitivity Experiments) 

 

η  = The nutrient input rate is the amount of nutrient input to the model from outside 

sources.  For the sensitivity experiments, a range of values (0.0-0.64 gN m-3 day-1) were 

utilized to force the model to go from an oligotrophic to a eutrophic state as described in 

section (2.2.5).  

 

µ  = The water exchange rate represents the amount of material that is lost from the 

model domain due to dilution effects with the surrounding water.  The loss affects all the 

state variables equally.  For the sensitivity treatments, I used a range of values (0.0-0.20 
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day-1) to simulate changes in the size or amount of flushing occurring in the model as 

described in section (2.2.5). 

 
ν  = The fish predation rate for zooplankton is the proportion of zooplankton biomass that 

is removed by fish predation.  This parameter was used as a treatment variable in my 

sensitivity experiments and was varied from (0.0-0.80 day-1) to simulate a gradient in the 

degree of top-down control as described in section (2.2.5). 
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Appendix B:  Sensitivity Analysis 

 

There are numerous techniques available to conduct a sensitivity analysis on 

model simulation results (e.g., Brylinsky 1972; Rose and Swartzman 1981; Dale et al. 

1988; Hakanson 2000; for recent reviews see Hamby 1995; Homma and Saltelli 1996).  

Most of the methods can be categorized under two headings, relative and global.  A 

relative sensitivity analysis is the technique most often seen in the literature and is 

sometimes called individual parameter perturbation experiments.  With this technique 

parameters are systematically increased or decreased over a predetermined range (e.g., 

+/- 10%), with the subsequent change in model output recorded.  Global sensitivity 

analysis is similar to a relative sensitivity analysis except that the parameters are varied 

over the whole range found in the literature for a particular parameter.  While useful for a 

number of applications, these methods of sensitivity analysis can lead to an incomplete 

picture of the relationship between sensitive parameters.  Since only one parameter at a 

time is varied there is no way to understand the interactions between model parameters 

and previous studies have also demonstrated that when there are large errors in all 

parameters, nonlinear and higher order effects dominate the outcome and seriously limit 

the applicability of results (Gardner et al. 1980a; Gardner et al. 1980b; Gardner et al. 

1981).  Sensitivity analysis is most powerful when the parameter errors are small and 

each parameter contributes independently to prediction error. 

An alternative to the above types of sensitivity analysis is a method developed by 

Gardner and Trabalka (1985).  With this method, Latin hypercube sampling is used to 

simultaneously vary all parameters by +/- 1% of their default value giving an unbiased 
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indication of a model’s sensitivity to a minimal change in parameter value while also 

taking into account the interactive effects of the other parameters.  The benefits of this 

method are that it greatly reduces the number of simulations needed, allows for extensive 

replication through Monte Carlo analysis, and provides an unbiased estimation of 

parameter importance with only a minimal change in parameter value.  The technique has 

been used to address a wide range of issues which include: plankton productivity (Bartell 

et al. 1988a), toxicological effects (O’Neill et al. 1983), top-down and bottom-up controls 

on productivity (Bartell et al. 1988b) and forest development (Dale et al. 1988).  The 

method is even more powerful when combined with other complementary analysis 

techniques like uncertainty and error analysis (Gardner et al. 1980a; Gardner et al. 1980b; 

Gardner et al. 1981; Gardner 1984; Bartell et al. 1986; Gardner et al. 1990; Rose et al. 

1991). 

Each sensitivity analysis conducted in chapter 2 followed the steps outlined in 

Figure. B.1.  First, an input file is created which contains all of the baseline values for 

each of the parameters to be varied in the sensitivity analysis.  This file also specifies the 

range that the parameters will be varied (0-100 percent), the type of sampling distribution 

from which to take values (normal, log, uniform, exponential) and the number of 

replications (should be at least 100).  Second, the file from step one is input into a 

program (i.e., PRISM) that uses a Latin hypercube sampling algorithm to generate 

random parameter sets based on the input file specifications (Gardner et al. 1983).  For 

chapter 2, the specifications were to vary each of the parameters by 1% over a normal 

distribution and to create 100 independent parameter sets.  Third, the generated output 

file from the PRISM program, containing the 100 distributions for each of the  
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Figure B.1.  Schematic showing the steps involved in conducting a sensitivity analysis for 
each of the treatment combinations.  
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parameters, is sequentially read in by the simulation model.  Fourth, at the end of each 

simulation run the partial derivatives for the four state variables and the input parameter 

values for that particular simulation are saved to a separate file.  Fifth, this output file is 

then read in by another program which calculates the actual sensitivities for each 

parameter, along with, other statistics such as mean, max, min, coefficient of variation, 

and parameter correlations. 

 



177

 

Appendix C:  Chi-Square Analysis 

 

The degree of interaction observed between the treatment factors for each 

factorial experiment (η x ν and η x µ) was determined through frequency and Chi-Square 

analysis.  I wanted to determine if the sensitivity dynamics (i.e., if a parameter was 

sensitive or non-sensitive) seen when only one of the treatments is varied, while the other 

is held at the baseline value, would be predictive of the dynamics over the range of non-

baseline treatment combinations.  My null hypothesis was that the sensitivity dynamics 

seen along the edges of the factorial experiment (i.e., control cases, direct effects) are 

sufficient to predict the sensitivity dynamics over the rest of the factorial treatment 

combinations.  Deviation from this prediction shows sensitivity dynamics cannot be 

predicted from the direct effects alone and that an interaction exists between the two 

treatment axes within the factorial experiment.  The degree of interaction was 

characterized by the frequency that the null hypothesis was proven to be correct which 

was then converted to a probability with the following calculation:  

 

Probability = (observed / expected) * 100 

 

where expected is the total number of treatment combinations (i.e., cases) exclusive of the 

control cases and observed is the number of cases where the results in the control cases 

matched the results seen in the non-control cases.   

The above calculation is repeated for each of the individual treatment 

combinations along a particular treatment axis.  Two examples are illustrated below 

(C.1) 
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where the values shown in the table are the sensitivity values for each treatment 

combination.  The control values are highlighted in dark gray bold whereas light gray is 

used to highlight treatment combinations where the sensitivity dynamics were 

successfully predicted by the corresponding non-control case.  The number of times that a 

control case successfully predicts the non-control cases is summed over all the control 

cases to calculate the overall probability for that treatment series.  Higher probably values 

correspond to higher predictive capability and a lower degree of interaction between the 

main and indirect effects.  The probability values are shown in Table 2.5 for each 

parameter and each treatment (η, ν, µ).  Since the nutrient treatment series, η, appears in 

both factorial experiments, there are two probability values, the first percentage is for the 

(η x µ) series and the second value is for the (η x ν) series.   

 

Example 1: Factorial experiment (η x ν), parameter (Kz), phytoplankton state variable (P) 

 

 Fish Predation (ν) 
Nutrient 
Input (η) 
 

 
0 

 
20 

 
40 

 
80 

0 1.0 0.3 0.9 1.0 
0.04 1.7 0.9 0.6 1.5 
0.08 1.9 1.3 0.9 1.4 
0.16 37.0 36.4 35.4 37.6 
0.32 37.0 36.4 35.4 37.6 
0.64 37.0 36.4 35.4 37.6 

 

 

 

 

Fish Predation      Expected = 18 
Treatment (ν)      Observed = 18 

     Probability = 100% 
 
1st series (times correct)  = 3 
2nd series (times correct) = 3 
3rd series times correct)  = 3 
4th series (times correct)  = 3 
5th series (times correct)  = 3  
6th series (times correct)  = 3  
              Total  = 18 out of 18 
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 Fish Predation (ν) 
Nutrient 
Input (η) 
 

 
0 

 
20 

 
40 

 
80 

0 1.0 0.3 0.9 1.0 
0.04 1.7 0.9 0.6 1.5 
0.08 1.9 1.3 0.9 1.4 
0.16 37.0 36.4 35.4 37.6 
0.32 37.0 36.4 35.4 37.6 
0.64 37.0 36.4 35.4 37.6 

 

 Example 2: Factorial experiment (η x µ), parameter (Zmax), Nutrient state variable (N) 

 

 Water Exchange (µ) 
Nutrient 
Input (η) 
 

 
0 

 
1.25 

 
2.5 

 
5 

 
10 

 
20 

0 37.6 34.7 32.1 24.1 0.0 0.0 
0.04 32.8 35.3 36.6 37.5 35.8 0.5 
0.08 20.1 23.5 26.0 28.8 30.0 9.3 
0.16 3.5 2.9 2.6 11.4 13.9 10.4 
0.32 4.7 3.4 2.6 1.9 1.4 0.9 
0.64 4.9 3.2 1.9 1.0 0.6 0.3 

 

 

 Water Exchange (µ) 
Nutrient 
Input (η) 
 

 
0 

 
1.25 

 
2.5 

 
5 

 
10 

 
20 

0 37.6 34.7 32.1 24.1 0.0 0.0 
0.04 32.8 35.3 36.6 37.5 35.8 0.5 
0.08 20.1 23.5 26.0 28.8 30.0 9.3 
0.16 3.5 2.9 2.6 11.4 13.9 10.4 
0.32 4.7 3.4 2.6 1.9 1.4 0.9 
0.64 4.9 3.2 1.9 1.0 0.6 0.3 

 

Nutrient Input       Expected = 20 
Treatment (η)       Observed = 8 

      Probability = 40% 
 
1st series (times correct)   = 2 
2nd series (times correct)  = 2 
3rd series (times correct)   = 2 
4th series (times correct)   = 2 
                Total  =  8 out of 20 

Nutrient Input    Expected = 30 
Treatment (η)    Observed = 15 
Probability = 50% 
 
1st series (times correct)   = 2 
2nd series (times correct)  = 2 
3rd series (times correct)  = 2 
4th series (times correct)  = 3 
5th series (times correct)  = 2 
6th series (times correct)  = 4 
            Total  = 15 out of 30

Water Exchange   Expected = 30 
Treatment (µ)      Observed = 23 
Probability = 77% 
 
1st series (times correct)  = 3 
2nd series (times correct) = 4 
3rd series (times correct)  = 4 
4th series (times correct)  = 2 
5th series (times correct)  = 5 
6th series (times correct)  = 5 
              Total  = 23 out of 30 
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Probability values (i.e., frequency values) were then tested for significance at the 

(p=0.01) level by comparing observed verses expected results based on a one-tailed chi-

squared distribution with one degree of freedom.  The chi-squared value for each 

treatment series was calculated with the following equation: 

 

χ2 = (observed – expected)2 / expected 

 

where observed and expected are defined as in C.1 with χ2 based on a (2x2) contingency 

table consisting of (observed/expected) and (sensitive/non-sensitive) for each axis of the 

table.  Chi-square values exceeding the value for a one-tailed chi-squared distribution (χ 2 

= 6.63) with one degree of freedom (number rows-1 * number columns-1) are indicated 

in bold in Table 2.5 (actual χ2 values are not shown) for each of the sensitive parameters 

from both factorial experiments. 

 For the examples shown above the Chi-squared values would be 0.00 (ν) and 7.20 

(η) for example 1 and 1.63 (µ) and 7.50 (η) for example 2.  The nutrient input rate (η) for 

each example does exhibit an interaction effect, indicating that changes in this variable 

alter the sensitivity dynamics over those seen in the baseline nutrient input case.  The fish 

predation rate (ν) and water exchange rate (µ) on the other hand, did not have an 

interaction effect, which should allow the baseline case sensitivities to predict the 

sensitivity dynamics in the non-baseline cases with some degree of accuracy. 

(C.2) 
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Appendix D:  Numerical Diffusion  

 

Numerical diffusion refers to the error introduced into grid-based (i.e., Eulerian) 

simulation frameworks when concentration gradients are averaged between grid cells.  

Numerical diffusion occurs because it is not possible to represent a particle or calculate a 

concentration between grid points.  The assumption which has to be implemented for 

these systems is that anything not fluxed 100% to the next grid cell is assumed to be 

uniformly mixed between the grid points.  What this means in practice is that anything 

fluxed into an adjacent cell is automatically transported to the center of that cell resulting 

in an accelerated spreading rate of a particle or a concentration gradient (i.e., numerical 

diffusion). 

For example, if there is a series of five grid cells which are 100 m in diameter 

(Figure D.1).  The left-most cell is filled with a substance while the rest of the cells are 

empty.  There is an external flux (e.g., such as from an external turbulence field) applied 

to the system which will move everything in each cell to the right at a rate of 20 m per 

second.  Under these conditions, to completely empty the cell of material should take five 

seconds.  If the time-step of the simulation is fixed at one second intervals then the 

equivalent flux out of the cell would be 20 percent of the material at each time-step.  

Because the grid cell distance is 100 m, at each time-step, the 20 percent of the 

material which is fluxed into the cell is assumed to be uniformly mixed within that cell 

rather than at the leftmost edge.  At the next time-step, the material which is now in the 

second cell is fluxed to the third cell when there should be no material in that cell until at 

least the sixth time-step since it would take at least five time-steps to travel the distance  
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Figure D.1.  Diagram illustrating the effects of numerical diffusion within grid-based 
simulation frameworks.  Panel A shows the idealized transport of a substance subjected 
to a 20 percent flux rate each time-step without numerical diffusion errors.  Each arrow 
represents the next time-step.  Panel B shows how the transport would be changed due to 
numerical diffusion error.  See text for additional details. 

A 

B 
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of a grid cell.  With each additional time-step the material gets transported farther and 

farther. 

After five time-steps, instead of having 100 percent of the material in the second 

cell there is material in all five cells.  While the error from the numerical diffusion 

decreases exponentially away from the original cell (i.e., 20% of 20% of 20% and so on) 

this artificial spreading can be a problem in cases where accurate concentration gradients 

or the precise location of objects are required.  

Numerical diffusion errors can be minimized through various means.  One 

method is to increase the time-step of the simulation so more material is fluxed for a 

given time-step.  The grid size can also be reduced so there is less distance to travel 

between grid cells.  For some applications, the opposite approach can be taken where the 

time-step is decreased or the grid size increased to minimize the amount of material 

which is fluxed.  Other methods use complicated numerical and grid-solutions (e.g., 

James 1996; Vested et al. 1996; James 2002) and while all of these methods can help to 

alleviate some of the error introduced through numerical diffusion there unfortunately is 

no way to eliminate numerical diffusion errors within an Eulerian simulation framework. 
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Appendix E:  Turbulence Intensity Calculation 

 

The turbulence intensity is an important measure of how rapidly a turbulent field 

will stir (i.e., mix) a substance contained within that field.  Before I could apply the 

turbulence generation routine it was necessary to calculate the intrinsic turbulence 

intensity of the field of eddies within the simulation framework and also to determine 

how changes in the eddy distribution would influence the value obtained.  Once the 

intrinsic turbulence intensity was determined I could then adjust the time-step or the 

frequency in which I call the turbulence generation routine to approximate a range of 

turbulence intensities which might be of interest to real-world applications.  

For the turbulence intensity calculation I used a map size of 1024x1024 cells, a 

grain size of 100m and a time-step of 10min.  I ran the turbulence simulation routine until 

the turbulent field was fully developed (approximately 512 calls to the turbulence 

generation routine) and then seeded the map with 10,000 evenly spaced particles within 

the simulation domain.  After one time-step (i.e., one call of the turbulence generation 

routine) the displacement of each particle was recorded.  The displacement of each 

particle was then converted into a RMS (i.e., root mean squared error) value for the 

whole map at that time-point based on the following calculations: 

 

U(RMS) = sqrt ((Sum(D)2) / N) / DeltaT   (Eq. E1) 

 

where 
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N = the number of particles seeded on the map 

D = distance traveled for each particle = sqrt (x2-x1)2 + (y2-y1)2 

   X1 and Y1 are the initial x and y coordinates of each particle 

   X2 and Y2 are the final x and y coordinates of each particle 

  DeltaT = time-step of the model 

 

The RMS value was then calculated for 100 subsequent time-steps (spaced five 

time-steps apart, resetting the particles after each time-step) to determine the variability 

in the RMS value as the various eddies complete and start their rotational cycles.  An 

average RMS value and other descriptive statistics (i.e., min, max, standard error and 

coefficient of variation) was then calculated based on these 100 time-points.  This whole 

experiment was repeated 10 times using a different random eddy distribution with a final 

grand mean calculated based on all 1,000 RMS values.  

As shown in Table 3.2, the overall RMS value was found to be 1.34 based on the 

10 eddy distributions tested which means for every solution-step (each time the 

turbulence generation routine is called) the average distance traveled by a particle within 

the simulation domain is 1.34 pixels.  The mean varied from 1.29 to 1.41 between the 

different eddy distributions.  The variability is caused by the eddies cycling on and off 

over the course of a simulation and can be seen in the coefficient of variation (CV) within 

each map replication, which ranged from 7.62 to 14.09 percent.  For each map snapshot, 

the number of pixels traveled by an individual particle could be as high as four or five 

pixels or as low as zero pixels but, as the grand mean value indicates, is typically around 

one or two pixels. 
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For my planned simulations, I wished to obtain a turbulence intensity of 10 cm/s.  

Each cell in the domain was set at a size of 100 m which meant that for each solution-step 

a particle, on average, would move 134 m distance.  This translates into an intrinsic 

turbulence intensity of 22.3 cm per solution-step.  To achieve the desired turbulence 

intensity of 10cm/s this meant that each solution-step (i.e., time-step) would have to be 

1,340 sec or 22.4 min.  The frequency at which the turbulence generation routine was 

called, which in this case is once per time-step, could also have been changed if for some 

reason the time-step or cell size were constrained to a set value. 
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Appendix F:  Spectral Analysis 

 

Spectral analysis is a linear statistical technique in which the variance around the 

mean of a data series is broken up into contributing frequencies (Platt and Denman 1975).  

Spectral diagrams are an important and extensively-used method because they enable 

partitioning of the total variance in a data series among contributions having different 

characteristic length scales (Weber et al. 1986).  In my experiments I used spectral 

analysis to identify the spatial patterns of key variables within the simulation domain.  

The method is appealing because it allowed partioning of the data into component 

wavenumbers to expose the underlying pattern, to show how the variance of the dataset 

changed with scale, and to reveal persistent patterns in the data.   

The method works by dividing the data series into a range of sines and cosines of 

decreasing wavelengths where the amplitude gives the intensity of variability at each 

scale.  The spectrum is created by graphing the log of the spectral density (i.e., the 

variance of the amplitude squared) versus the log of the wavenumber.  From the velocity 

spectrum a spectral slope can be calculated (i.e., Beta).  Spectra are often described in 

terms of color, analogous to wavelength characteristics of visible light, such that “white” 

spectra (flat slope) indicate that variance is constant across length scales, “red” spectra 

(negative slope) indicate the relative importance of large length scales, and “blue” spectra 

(positive slope) indicate dominance of processes acting over small length scales (Ripa et 

al. 1999).  There is a large literature illustrating how changes in spectral pattern can be 

related to changes in physical and biological processes.  For a good review of the 

application of spectral analysis for addressing terrestrial and aquatic questions in ecology 
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please see Platt and Denman (1975).  A recent review by Franks (2005) highlights some 

of the pitfalls with using spectral analysis for the analysis of biological data, especially 

for understanding plankton patchiness over the inertial subrange of three-dimensional 

isotropic turbulence. 

For the analysis in chapters 3 and 4, I utilized the Proc Spectral routine contained 

within the SAS statistical software package.  Before analysis I detrended each transect 

and conducted a spectral analysis on an ensemble sample which allowed combination of 

transects obtained from the simulation domain into one composite spectral slope.  

Creating a composite spectral slope is a very powerful means of bringing out persistent 

patterns in the data and allows the creation of variance and confidence estimates around 

the spectral slope data. 
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Appendix G:  Computer Code 

 
 The information in this appendix contains the computer code used to create the 
SLS simulation framework.  The computer language used for the platform is FORTRAN 
95 and after compilation with an appropriate compiler, will run on a Windows or DOS 
based operating system.  All of the necessary input files, modules, subroutines, functions, 
and main program necessary to create and executable file is included.  Please note 
however, that the code was developed over many years and contains variables or sections 
which may no longer be in use or may have parameter names which differ from those 
listed in the dissertation.  I have attempted to remove as much of this code as possible 
without removing key parts of the current operating sections.  Parameter values listed are 
for illustrative purposes only and do not correspond to any particular experiment 
conducted as part of this dissertation.  No guarantees are implied to the accuracy of 
experiments conducted with the computer code provided.  Unfortunately, it was not 
possible to provide a flowchart or a user manual for this version of the SLS framework as 
it is still undergoing active development.  This code should only be considered a beta 
version or “proof of concept”. 

 
 
 

Modules 
 
The variables contained in the 3 modules to follow are globally declared and used in 
multiple subroutines.  This provides consistency among subroutines and allows a variable 
to be declared only once. 
 
 
MODULE global_variables 
 
        IMPLICIT NONE 
 
INTEGER :: boundary_input,visual_switch 
REAL, ALLOCATABLE :: Nutinput(:,:) 
REAL :: Nut_input_amount 
INTEGER :: AdvectionFreq 
REAL :: Init(4) 
INTEGER :: NutInputFreq 
INTEGER ::  map_location 
INTEGER :: map_input 
INTEGER :: output_dimension, circle_dimension 
INTEGER :: Nut_chapter_switch,stat_switch 
INTEGER :: map_save 
 
Real :: time, t, interval,tt 
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INTEGER :: counter 
INTEGER :: tmax,numrow,numcol,zzzz !direction of advection 
INTEGER :: flag,iseed_input 
REAL :: DT 
 
REAL :: CN, Ppref, Io, M !depth (now spatial) 
REAL :: Dk, Kn    !No(now spatial) 
REAL :: Pmax, Sp, Rp, Mp, Kw, Kc, Ik 
REAL :: Zmax, Az, Rz, Mz, k3 , Pz 
REAL :: Rd, Sd 
REAL :: Nutrient, Light, Kd, Drate, Prate, Dgraz, Pgraz 
REAL ::  Input, Regeneration, Remineralization 
REAL :: Uptake, PhytoSink, PhytoResp, PhytoMort, PhytoPred 
REAL :: ZooResp, ZooMort, ZooPred 
REAL :: NaturalMort, ZooFecal, Remineralize, DetritalSink, DetritalPred 
REAL :: Nnew,Dnew 
REAL, ALLOCATABLE :: N(:,:), P(:,:), Z(:,:), D(:,:) 
REAL, Allocatable :: Pnew(:,:),Znew(:,:), 
BiomassOut(:,:),PredOut(:,:),PhytoGrowth(:,:),ZooGrowth(:,:) 
REAL :: Fz, Ff, BiomassOutNew, PredOutNew, FishResp, FishFecal 
 
REAL :: No,Kz 
!REAL, ALLOCATABLE :: No(:,:), depth(:,:) 
REAL :: diffcoeff(4) 
REAL :: advcoeff(4) 
REAL :: turcoeff(4) 
REAL ::  SumN, SumP,SumZ, SumD 
REAL :: Ntotal,Ptotal,Ztotal,Dtotal 
REAL, ALLOCATABLE :: Nmax(:), Pmax(:), Zmax(:), Dmax(:) 
REAL, ALLOCATABLE :: Nmin(:), Pmin(:), Zmin(:), Dmin(:) 
REAL, ALLOCATABLE :: Nave(:), Pave(:), Zave(:), Dave(:) 
REAL, ALLOCATABLE ::  Nvar(:), Pvar(:), Zvar(:) ,Dvar(:) 
REAL, ALLOCATABLE ::  Nsd(:), Psd(:), Zsd(:) ,Dsd(:) 
REAL, ALLOCATABLE ::  Ncv(:), Pcv(:), Zcv(:) ,Dcv(:) 
INTEGER :: Mapsize 
REAL, ALLOCATABLE :: Nmap(:,:,:), Pmap(:,:,:), Zmap(:,:,:), Dmap(:,:,:) 
REAL, Allocatable :: Narraymin(:),Narraymax(:),Parraymin(:),Parraymax(:) 
REAL, Allocatable :: Zarraymin(:),Zarraymax(:),Darraymin(:),Darraymax(:) 
REAL :: Nmapmax, Nmapmin, Pmapmax, Pmapmin, Zmapmax, Zmapmin, Dmapmax, 
 Dmapmin 
 
INTEGER :: maxlevel_input, fractalinit,stateinit 
Real :: hclump_input,meanzoo_input,xxsd_input 
INTEGER :: scaleviz,nutpipe,nutconst,nutslug 
REAL  :: nutpipevalue,nutconstamount,advectionswitch 
INTEGER :: visualization 
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INTEGER ::  xlocation, ylocation, nut_spot 
REAL :: coorangle, direction,meanturn, newangle,cv_input,threshold 
INTEGER :: ylocationcoor,pred_spot,return_freq,fishend, transectlocation 
REAL :: return_freq2 
REAL :: nut_amount,nut_move,nut_angle 
REAL :: pred_amount,pred_move,pred_angle 
INTEGER :: nut_radius,pred_radius, nut_frequency, pred_frequency,disturbance 
REAL  :: cos_map_max, depth_max, pool_max,nutconst_max 
INTEGER :: depth_input, pool_input,nutconst_input 
INTEGER :: DT_trigger, file_save_freq, 
 stat_counter,simlength,nut_spike_freq,first_nut_spike 
REAL :: simtime 
INTEGER :: TurbulentFreq,max_radius,min_radius 
INTEGER :: FileSaveFreq, StartNutSpike, EndNutSpike, NutSpikeFreq, StartFishPred, 
 EndFishPred,&FishPredFreq, StartNutMove, EndNutMove, NutMoveFreq, 
 StartFishMove, EndFishMove, FishMoveFreq 
REAL :: xlocation_fish, ylocation_fish, x_location_fish, y_location_fish 
REAL :: x_new_fish, y_new_fish 
REAL :: angle_fish, distance_fish 
INTEGER :: counter_fish 
 
REAL :: xlocation_nut, ylocation_nut, x_location_nut, y_location_nut 
REAL :: x_new_nut, y_new_nut 
REAL :: angle_nut, distance_nut 
INTEGER :: counter_nut 
Integer :: nutradius 
Real :: NutSlugAmount 
Integer :: Fishradius 
REAL ::  FishExt,Fishfood 
INTEGER :: nut_input,counter2, stat_counter2 
REAL :: nut_max 
INTEGER :: MzSwitch 
REAL :: linmort,quadmort 
INTEGER :: nrep, nval,nval2 
INTEGER :: StartSen, EndSen, SenFreq 
INTEGER :: senflag,senswitch 
INTEGER, ALLOCATABLE :: xcenter(:),ycenter(:),rotation(:),& 
                  circlesize(:),starttime(:),freqswitch(:) 
INTEGER, ALLOCATABLE ::  
 cascade_switch(:),cascade_trigger(:),radius_stop_location(:) 
INTEGER :: totalcir 
INTEGER :: diff_switch,adv_switch,file_switch,min_radius2,x1_input,x2_input,turran 
INTEGER :: y1_input,y2_input,line_init,tur_switch,repetition,radius_flag,tur_trigger 
INTEGER :: turmove_flag,bio_switch 
REAL :: ratelimit 
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END MODULE 
 
 
MODULE map_variables 
   IMPLICIT NONE 
 
    INTEGER :: maptype_input, wrap_input 
 
END MODULE 
 
 
MODULE sensitivity 
    implicit none 
 
     REAL :: parm(10000)       !keeps an array of the values 
      INTEGER :: np 
 
END MODULE 
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Input Files 
 
The SLS platform uses two input files to read in commonly used model parameters and 
constants.  These two files should be read in as external text files.  By using input files 
these model parameters and constants can be changed without the need to recompile the 
code of the SLS platform. 

 
 
! This file contains all of the constants used for the NPZD model (Biology Subroutine) 
!  This file must be called inputpar.dat 
 
0.1761  ! CN (converts gC to gN) (unitless) 
0.020               ! Kn (half-saturation constant for nitrogen uptake) (gN/m3) 
2.8                ! Pmax (maximum phytoplankton growth rate) (gC/gC/d) 
0.05                ! Rp (respiratory losses from phytoplankton) (%/d) 
0.05                ! Mp (mortality losses from phytoplankton) (%/d) 
0.05                ! Sp (sinking losses from phytoplankton) (%/d) 
10.0                ! Ik (half-saturation constant for photosynthesis) (E/m2/day) 
5.0                ! Kz (depth of the mixed layer) (m) 
26.0                ! Io (surface light intensity) (E/m2/d) 
0.4                ! Kc (self-shading effects of phytoplankton) (m2/gC) 
0.2                ! Kw (extinction coefficient for light attenuation (/m) 
1.0                ! Zmax (maximum ingestion(growth) rate) (gC/gC/d) 
0.70                ! Az (assimilation efficiency) (%/d) 
0.25                ! Rz (respiratory losses from zooplankton) (%/d) 
0.25                ! Pz (higher predator losses from zooplankton (%/d) 
0.7                ! Ppref  (preference for phytoplankton over detritus) (unitless) 
0.10                ! k3 (half-saturation constant for grazing rate (gC/m3) 
0.20                ! Rd (remineralization rate of detritus into nitrogen) (%/d) 
0.05                ! Sd (sinking rate of detritus out of the mixed layer (%/d) 
0.20                ! Mz (linear mortality coeff) 
1.0                ! Mz (quadratic mortality coeff) 
0.1                ! Fz (excretion losses for fish) (%/d) 
0.4                ! Ff (combined fecal and unassimilated losses for fish) (%/day) 
 
 
!This file contains commonly used simulation parameters used by some or all of the 
model subroutines and main program 
!  This file must be called input.dat 
 
2        !Simulation length (# days), divide by DT to get number of time steps 
1024    !Numrow 
1024    !Numcol 
10        !Map level, have to coordinate with size of map (6=64x64 map) 
2          !Visualization (1=on 2=off) 
5 !Xcale for visualization (1=(0-.01,2=(0-.1),3=(0-1),4=(0-10), 5=min/max) 
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1          !Granularity for contour graphs 
1 !Pick y coordinate for transect (bottom to top counting) 
-513341332      !Random number seed input value 
1          !Type of initialization (1=multifractal init, 2=regular init, 3=cos init) 
1 !Which multifractal init(1=n,2=p,3=z,4=d) 
1          !Advection switch  (1=user input constant ,2=correlation) 
4          !Direction of advection (1=SW,2=W,3=NW,4=S,5=N,6=SE,7=E,8=NE) 
1          !Autocorrelation line, 1=fixed, 2=max whole sim 3=max each step 
2          !Maptype for multifractal  1=gradient 2=regmultifractal 
1          !Wrapped boundaries or not  1=wrapped boundaries  2=not wrapped 
1          !Type of depth initialization (1=reg,2=multifract,3=cos) 
1          !Type of nutrient pool initialization(1=reg,2=multifract,3=cos) 
1          !Type of constant nutrient input init(1=reg,2=multifract,3=cos) 
144      !Frequency of file saving  (based on DT) 
60000  !Start of nutrient spike (based on DT) 
60000  !End of nutrient spike (based on DT) 
10000  !How often spike within time-frame above (ex: every 10 DT) 
10000  !Start of fish predation (based on DT) 
70000  !End of fish predation (based on DT) 
10000  !How often fish predate within time-frame above 
70000  !Start of nutrient movement (based on DT) 
70000  !End of nutrient movement (based on DT) 
70000  !How often move nutrients within time-frame above 
70000  !Start of fish movement (based on DT) 
70000  !End of fish movement (based on DT) 
10000  !How often move fish within time-frame above 
5          !Size of spot (1=spot,10=uniform,2-9 decreasing size,11=very small) nut 
1          !Size of spot (1=spot,10=uniform,2-9 decreasing size)  fish 
2          !Type of zooplankton mortality (1=linear, 2=quadratic) 
2          !Type of zooplankton pred functional response (1=MM, 2=Holling3) 
1          !Number of repetitions for the sensitivity analysis (set to 1 if not performing one) 
80        !# of parameters for sen analysis * how often output (set to 4 if only want at end) 
2          !Flag for spatial or temporal sensitivity analysis (1=spatial, 2=temporal) 
3          !Switch for sensitivity (only for temporal sensitivity analysis) 
2          !Diffusion switch(2=off) 
2          !Advection switch(2=off) 
1          !File save switch(2=off) 
1          !Value for minimum radius (cannot be greater than numrow/4) 
1          !Switch for random or prescribed turbulence (1=random 2=prescribed) 
60        !Xlocation for first eddy of prescribed 
70        !Xlocation for second eddy of prescribed 
64        !Ylocation for first eddy 
64        !Ylocation for second eddy 
4          !Line initialization (1=line,2=spots,3=one spot,4=blank) need reg init also 
2          !Switch to turn turbulence on and off(2=off) 
1          !Switch to turn radius keeping on/off (2=off)-inside circle moves faster than out 
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2      !Switch to turn move timing on and off (2=off)=big/small circles move same) 
2      !Switch to turn off biology (2=off) 
4          !Boundary cond(1=abs,2=reflecting,3=wrapped 4=nut chapter) only for diffusion 
3          !Set nut input map flag (only for nut chapter) 1=multifracta,2=uniform,3=none 
3          !Determines freq of advection (DT)-nut chapter-want advection heading south 
3          !Determines frequency of input for nut map (DT) has to be same as advec freq 
1          !Nutrient chapter switch (if turn on =1) then normal stats are turned off 
2          !Switch to turn on or off stats for (sd,cv,var) (1=on,2=off) 
14        !Turbulence freq 
1          !Min_radius 
256      !Max_radius 
1          !Start of map file saving 
0.02 !Initial value for N  
0.03 !Initial value for P 
0.056   !Initial value for Z 
0.160   !Initial value for D 
0.01146     !Diffusion N 
0.01146     !Diffusion P 
0.1146 !Diffusion Z          
0.1147 !Diffusion D 
1.00           !Advection N 
1.00           !Advection P 
1.00           !Advection Z 
1.00           !Advection D 
1.0             !Turbulence N 
1.0             !Turbulence P 
1.0             !Turbulence Z 
1.0             !Turbulence D 
0.99           !Clumping on multifractal maps 
0.33           !Cv for multifractal map (do not exceed 33%-(0-.33)) 
0.0             !Diffusion rate across thermocline 
0.30           !Concentration of N below thermocline 
60.0           !Correlation angle for advection 
1.0             !Max for cos init 
1.0             !Max depth for cos init 
1.0             !Max for nutrient pool cos init 
1.0             !Max for nutrient constant input cos init 
10.0           !Correlation angle for spot movement nut 
0.0             !Distance to move spot each instance nut 
10.0           !Correlation angle for spot movement fish 
0.0             !Distance to move spot each instance fish 
0.0             !Amount of nutrient input per event (gN/m3) per DT 
0.0             !Amount of fish predation per event (gC/m3) removed per DT 
0.003472   !DT time-step of model 
1.0             !Mean value for the nutrient input map (for nut input chapter) 
0.002         !Mean value for nutrient input map (mean value outside simulation domain) 
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0.380         !Mean phyto input value due to advection enters top of map 
0.056          !Mean zoo input value due to advection enters top of map 
0.160          !Mean detrital input value due to advection enters top of map 
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Main Program 
 
Below is the code for the main program of the SLS platform.  This program reads in the 
input files and calls the various subroutines responsible for all of the processes included 
within the platform, and controls the outer time loop of the simulation platform. 
 
 
PROGRAM SLS 
 
       USE global_variables 
         IMPLICIT NONE 
 
         INTEGER :: irep,iii 
 
! Read in initial conditions from (input.dat) and (inputpar.dat) files 
         CALL initval 
 
! Open files which will store simulation output 
         CALL fileopen 
 
! Open up files for the sensitivity analysis if needed (set nrep to 1 if don't want sensitivity 
analysis) 
         IF (nrep .ne. 1) THEN 
         open (41, FILE='pr2in.dat',STATUS='old') 
         open (42, FILE='pr3in.dat',STATUS='unknown') 
         END IF 
 
! Begin outer loop of simulation (depends on number of repetitions for sensitivity 
analysis) 
 
! If not doing sensitivity analysis this loop will disappear-done only once 
        DO irep = 1, nrep 
 
! Read in the input values from the sensitivity analysis data file if necessary 
         IF (nrep .ne. 1) THEN 
                CALL prism_Rd(irep) 
         END IF 
 
! Create map initialization and initialize movement routines 
         CALL mapinit 
            call nutmove 
            call fishmove 
 
! Initialize counters and arrays 
         counter = 0 
         stat_counter = 0 
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         counter_nut = 0 
         counter_fish = 0 
            map_location = 1 
 
          Nmax=0.0 
          Nmin=0.0 
          Pmax=0.0 
          Pmin=0.0 
          Zmax=0.0 
          Zmin=0.0 
          Dmax=0.0 
          Dmin=0.0 
          Nvar=0.0 
          Pvar=0.0 
          Zvar=0.0 
          Dvar=0.0 
          Nsd=0.0 
          Psd=0.0 
          Zsd=0.0 
          Dsd=0.0 
          Ncv=0.0 
          Pcv=0.0 
          Zcv=0.0 
          Dcv=0.0 
          Nave=0.0 
          Pave=0.0 
          Zave=0.0 
          Dave=0.0 
 
! If running turbulence create distribution of eddies and save 
   IF (tur_switch .eq. 1) THEN    !done so that don't get deallocation error when       
   CALL eddy_generation(numcol,iseed_input) 
              END IF 
 
 
! Time loop of the simulation 
 
         DO WHILE (counter .LE. tmax) 
 
                 simtime = float(counter)*DT 
              write (70,*) 'day=', simtime 
                         
! Calculates spot movement-input, fish movement-input, and how often save files 
          call switches(irep) 
 
! Contains the biological interactions 
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   IF (bio_switch .eq. 1) THEN 
           CALL biology 
   END IF 
 
! Calculates turbulent movement 
                        IF (tur_switch .eq. 1) THEN 
                         DT_trigger = ABS(MOD(counter,TurbulentFreq)) 
                   IF (DT_trigger .eq. 0) THEN 
             CALL      
     turbulentmixing(counter,max_radius,min_radius) 
                                        END IF 
                 END IF 
 
! Calculates advective movement 
                        IF (adv_switch .eq. 1) THEN 
                  DT_trigger = ABS(MOD(counter,AdvectionFreq)) 
                  IF (DT_trigger .eq. 0) THEN 
                          CALL advect(N,advcoeff(1),1) 
                   CALL advect(P,advcoeff(2),2) 
                   CALL advect(Z,advcoeff(3),3) 
                   CALL advect(D,advcoeff(4),4) 
                  END IF 
    END IF 
 
! Calculates diffusive movement 
   IF (diff_switch .eq. 1) THEN 
                  CALL diffusion(N,diffcoeff(1)) 
                  CALL diffusion(P,diffcoeff(1)) 
                  CALL diffusion(Z,diffcoeff(1)) 
                  CALL diffusion(D,diffcoeff(1)) 
    END IF 
 
! Calculates map nutrient input frequency (only for nut input chapter) 
! Only do this if running nutrient input map 
   IF (map_input .ne. 3) THEN 
                  DT_trigger = ABS(MOD(counter,NutInputFreq)) 
                  IF (DT_trigger .eq. 0) THEN 
! Wraps map to beginning if reaches end 
                                 IF (map_location .gt. numrow) THEN 
                                     map_location = 1 
                                 END IF 
! Read map location and input as nutrient map starting at the northern edge 
                          N(1:numcol,numcol) = Nutinput(1:numcol,map_location) 
                          map_location = map_location + 1 
                 END IF 
   END IF 
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! Updates loop (based on DT) and counter 
                 counter = counter + 1 
 
  END DO 
 
!End of simulation timeloop 
 
 
! If running sensitivity analysis write key outputs to prism file-this file will be input into 
prism 3 
! for temporal sensitivity analysis-linked with how often save files 
 
         IF (nrep .ne. 1) THEN 
                CALL Prism_out(irep) 
         END IF 
 
  END DO         ! end prism loop 
 
! Close open files and deallocate arrays 
        CALL cleanup 
 
 
END PROGRAM 
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Data Input Routines 
 
This subroutine reads in the data provided in the two input files and assigns the value to 
the corresponding model variable. 
 
 
 
SUBROUTINE initval 
 
! Reads in data from input file 
! Input file is separated into (integer) and (real) data 
 
        USE global_variables 
        USE map_variables 
        IMPLICIT NONE 
 
        INTEGER :: iii,fileposition 
        INTEGER :: UserDataInteger(100) 
        REAL :: UserDataReal(100) 
        REAL :: UserInput(100) 
 
       OPEN (20, FILE='input.dat', STATUS='old') 
       OPEN (21, FILE='inputpar.dat', STATUS='old') 
 
! Integer data input 
        iii=1 
        DO fileposition=iii,64 
         READ (20,FMT=*) UserDataInteger(iii) 
         iii=iii+1 
        END DO 
 
! Real data input 
        iii=1 
        DO fileposition=iii,37 
         READ (20,FMT=200) UserDataReal(iii) 
         iii=iii+1 
        END DO 
        200 format (F6.6) 
 
! Read data from second input file (inputpar.dat) 
        iii=1 
        DO fileposition=iii,23 
                READ (21,FMT=300) UserInput(iii) 
                iii=iii+1 
        END DO 
        300 format (F6.6) 
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        CLOSE (20) 
        CLOSE (21) 
 
! Use data to initialize simulation variables 
 
! Integer input data 
 
simlength = UserDataInteger(1)               
numrow = UserDataInteger(2)                  
numcol = UserDataInteger(3)                  
maxlevel_input = UserDataInteger(4)          
visualization = UserDataInteger(5)           
scaleviz = UserDataInteger(6)                
granular = UserDataInteger(7)                
ylocationcoor = UserDataInteger(8)           
iseed_input = UserDataInteger(9)             
fractalinit = UserDataInteger(10)            
stateinit = UserDataInteger(11)              
advectionswitch = UserDataInteger(12)        
zzzz = UserDataInteger(13)                   
transectlocation = UserDataInteger(14)       
maptype_input = UserDataInteger(15)          
wrap_input = UserDataInteger(16)             
depth_input = UserDataInteger(17)            
pool_input = UserDataInteger(18)             
nut_input = UserDataInteger(19)              
FileSaveFreq = UserDataInteger(20)           
StartNutSpike = UserDataInteger(21)          
EndNutSpike = UserDataInteger(22)            
NutSpikeFreq = UserDataInteger(23)           
StartFishPred = UserDataInteger(24)         
EndFishPred = UserDataInteger(25)           
FishPredFreq = UserDataInteger(26)           
StartNutMove  = UserDataInteger(27)          
EndNutMove  = UserDataInteger(28)            
NutMoveFreq = UserDataInteger(29)            
StartFishMove  = UserDataInteger(30)          
EndFishMove  = UserDataInteger(31)            
FishMoveFreq = UserDataInteger(32)           
nutradius = UserDataInteger(33)           
Fishradius = UserDataInteger(34)         
MzSwitch = UserDataInteger(35) 
M = UserDataInteger(36) 
nrep = UserDataInteger(37) 
nval = UserDataInteger(38) 
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senflag = UserDataInteger(39) 
senswitch = UserDataInteger(40) 
diff_switch = UserDataInteger(41) 
adv_switch = UserDataInteger(42) 
file_switch = UserDataInteger(43) 
min_radius2 = UserDataInteger(44) 
turran = UserDataInteger(45) 
x1_input = UserDataInteger(46) 
x2_input = UserDataInteger(47) 
y1_input = UserDataInteger(48) 
y2_input = UserDataInteger(49) 
line_init = UserDataInteger(50) 
tur_switch = UserDataInteger(51) 
radius_flag = UserDataInteger(52) 
turmove_flag = UserDataInteger(53) 
bio_switch = UserDataInteger(54) 
boundary_input = UserDataInteger(55) 
map_input = UserDataInteger(56) 
AdvectionFreq = UserDataInteger(57) 
NutInputFreq = UserDataInteger(58) 
Nut_chapter_switch = UserDataInteger(59) 
stat_switch = UserDataInteger(60) 
TurbulentFreq = UserDataInteger(61) 
min_radius = UserDataInteger(62) 
max_radius = UserDataInteger(63) 
map_save = UserDAtaInteger(64) 
 
DT = UserDataReal(32) !DT for simulation 
tmax = INT(float(simlength)/DT)       
circle_dimension = INT(numcol/min_radius)**1.82 
output_dimension = INT(tmax/FileSaveFreq) + 10 
 
! Allocate arrays based on simulation length and mapsize 
 
call allocation 
 
N = UserDataReal(1)  
P = UserDataReal(2)  
Z = UserDataReal(3)  
D = UserDataReal(4)  
 
! Real input data 
 
diffcoeff(1) = UserDataReal(5)  
diffcoeff(2) = UserDataReal(6)  
diffcoeff(3) = UserDataReal(7)  
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diffcoeff(4) = UserDataReal(8)  
advcoeff(1) = UserDataReal(9)  
advcoeff(2) = UserDataReal(10)  
advcoeff(3) = UserDataReal(11)  
advcoeff(4) = UserDataReal(12)  
turcoeff(1) = UserDataReal(13)  
turcoeff(2) = UserDataReal(14) 
turcoeff(3) = UserDataReal(15)  
turcoeff(4) = UserDataReal(16)  
hclump_input =  UserDataReal(17)   
cv_input =   UserDataReal(18)   
Dk = UserDataReal(19)  
No = UserDataReal(20)  
coorangle = UserDataReal(21)  
cos_map_max = UserDataReal(22)  
depth_max = UserDataReal(23)  
pool_max = UserDataReal(24)   
nut_max = UserDataReal(25 
angle_nut = UserDataReal(26)        
distance_nut = UserDataReal(27)    
angle_fish = UserDataReal(28)       
distance_fish = UserDataReal(29)    
NutSlugAmount = UserDataReal(30)    
FishExt = UserDataReal(31)          
Nut_input_amount = UserDataReal(33) 
Init(1) = UserDataReal(34)   
Init(2) = UserDataReal(35)   
Init(3) = UserDataReal(36)   
Init(4) = UserDataReal(37)  
 
CN = UserInput(1)    
Kn = UserInput(2)    
Pmax = UserInput(3)    
Rp = UserInput(4)    
Mp = UserInput(5)    
Sp = UserInput(6)    
Ik = UserInput(7)    
Kz = UserInput(8)    
Io = UserInput(9)    
Kc = UserInput(10)    
Kw = UserInput(11)    
Zmax = UserInput(12)    
Az= UserInput(13)    
Rz = UserInput(14)    
Pz = UserInput(15)    
Ppref = UserInput(16)   
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k3 = UserInput(17)    
Rd = UserInput(18)    
Sd = UserInput(19)    
linmort = UserInput(20)    
quadmort = UserInput(21)    
 
IF (MzSwitch .eq. 1) THEN 
             Mz = linmort                         
END IF 
IF (MzSwitch .eq. 2) THEN 
             Mz = quadmort                         
END IF 
 
Fz = UserInput(22) 
Ff = UserInput(23) 
 
 
END SUBROUTINE  
 



206

 

NPZD Module 
 
The equations and solution technique associated with the NPZD model utilized in the 
dissertation chapters is contained within the biology subroutine below.  Initial values for 
the state variables and constants are obtained from the two input files. 
 
 
 
SUBROUTINE biology 
 
 
        USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: j,k 
 
! Loop over map and solve Eulers method based on the DT 
 
 DO j = 1, numrow 
  DO k = 1, numcol 
 
 
! Functions 
 
Nutrient = N(j,k) / (Kn + N(j,k)) 
Kd = Kw + Kc*P(j,k) 
Light = LOG((In + Io)/(In + Io*EXP(-Kd*Kz))) / (Kd*Kz) 
ratelimit = MIN(Nutrient,Light) 
PhytoGrowth(j,k) = Pmaxg*ratelimit*P(j,k) 
Drate = ((1-Ppref)*D(j,k)) / ((Ppref*P(j,k)) + ((1-Ppref)*D(j,k))) 
Prate = (Ppref*P(j,k)) / ((Ppref*P(j,k)) + ((1-Ppref)*D(j,k))) 
Dgraz = Zmax*((Drate*D(j,k))**M / ((k3**M) + ((Prate*P(j,k)) + (Drate*D(j,k)))**M)) 
Pgraz = Zmax*((Prate*P(j,k))**M / ((k3**M) + ((Prate*P(j,k)) + (Drate*D(j,k)))**M)) 
 
 
!For numerical stability 
 
IF (Dgraz .lt. 0.0) THEN 
 Dgraz = 0.0 
END IF 
 
IF (Pgraz .lt. 0.0) THEN 
 Pgraz = 0.0 
END IF 
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! Inflows/Outflows 
 
 
! Zooplankton State Variable 
 
ZooGrowth(j,k) = (Pgraz + Dgraz)*Az*Z(j,k) 
ZooResp = Rz*Z(j,k) 
ZooMort = Mz*(Z(j,k)**MzSwitch) 
ZooPred = Pz*Z(j,k) 
FishResp = ZooPred*Fz       
FishFecal = ZooPred*Ff      
 
 
! Nutrient State Variable 
 
Input = Dk*(No-N(j,k)) 
Regeneration = ((Rp*P(j,k)) + (Rz*Z(j,k)) + Fz*ZooPred)*CN 
Remineralization = (Rd*D(j,k))*CN 
Uptake = PhytoGrowth(j,k)*CN 
 
 
! Phytoplankton State Variable 
 
PhytoSink = Sp*P(j,k) 
PhytoResp = Rp*P(j,k) 
PhytoMort = Mp*P(j,k) 
PhytoPred = Pgraz*Z(j,k) 
 
 
! Detritus State Variable 
 
NaturalMort = ((Mp*P(j,k)) + (Mz*(Z(j,k)**MzSwitch))) 
ZooFecal = (1-Az)*(Dgraz + Pgraz)*Z(j,k) 
Remineralize = Rd*D(j,k) 
DetritalSink = Sd*D(j,k) 
DetritalPred = Dgraz*Z(j,k) 
 
 
! New Growth 
 
Nnew = (Input + Regeneration + Remineralization - Uptake) * DT 
Pnew(j,k) = (PhytoGrowth(j,k) - PhytoSink - PhytoResp - PhytoMort - PhytoPred) * DT 
Znew(j,k) = (ZooGrowth(j,k) - ZooResp - ZooMort - ZooPred) * DT 
Dnew = (NaturalMort + ZooFecal + FishFecal - Remineralize - DetritalSink - 
DetritalPred) * DT 
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! Updated Growth 
 
N(j,k) = N(j,k) + Nnew 
P(j,k) = P(j,k) + Pnew 
Z(j,k) = Z(j,k) + Znew 
D(j,k) = D(j,k) + Dnew 
 
IF (N(j,k) .lt. 0.0) THEN 
 N(j,k) = 0.0 
END IF 
 
IF (P(j,k) .lt. 0.0) THEN 
 P(j,k) = 0.0 
END IF 
 
IF (Z(j,k) .lt. 0.0) THEN 
 Z(j,k) = 0.0 
END IF 
 
IF (D(j,k) .lt. 0.0) THEN 
 D(j,k) = 0.0 
END IF 
 
 
  END DO 
 END DO 
 
END SUBROUTINE 
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Turbulent Mixing Modules 
 
These subroutine conduct the calculations necessary to implement turbulent mixing 
between the grid cells of the SLS platform.  See chapter 3 for additional information on 
each of the various components utilized. 
 
 
 
SUBROUTINE eddy_generation(maplength,iseed) 
 
! This routine creates the initial distribution of eddies and saves them in an array for 
future use 
 
 USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: i,j,k 
        REAL :: ran1, ratio 
        INTEGER :: eddy_level, eddy_radius 
        INTEGER :: iseed, maplength 
 
! Determine the number of eddies to generate based on the mapsize 
! For this routine the mapsize must be a power of 2 
! Always generate a full cascade starting at (r=1/4 mapsize) down to (r=1 pixel) 
! Can truncate the cascade in the next subroutine by specifying the max/min radius 
! Eddy sizes will decrease by 1/2 with each cascade level 
! Since the eddies at each size will be space filling the number of eddies 
! at each level goes up by 4 raised to the level 
 
       eddy_level = 0 
       totalcir = 0 
        eddy_radius = maplength/4 
 
      DO WHILE (eddy_radius .GE. 1) 
         eddy_level = eddy_level + 1 
        eddy_radius = eddy_radius/2 
      totalcir = totalcir + 4**eddy_level 
      END DO 
 
! Allocate storage arrays based on the total number of eddies 
! Declare these variables outside of this subroutine so that don't have to pass huge arrays) 
! totalcir variable also needs to be declared externally 
 
       ALLOCATE (xcenter(totalcir),ycenter(totalcir),rotation(totalcir),& 
                  circlesize(totalcir),starttime(totalcir),freqswitch(totalcir)) 
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        ALLOCATE 
(cascade_switch(totalcir),cascade_trigger(totalcir),radius_stop_location(totalcir)) 
 
! Give each eddy a random X,Y center except the (X) center can be wrapped (left and 
right) and the 
! (Y) center has to be within the simulation domain (can't go over the top and bottom 
edge) 
! Each eddy is also given a random rotation, and a starttime for rotation 
! Eddies in arrays are arranged from the largest circles down to the smallest 
 
      k = 0 
       eddy_radius = maplength/4 
 
        DO i = 1, eddy_level 
      DO j = 1, 4**i     !loop for the number of eddies in that level 
               k = k + 1 
               circlesize(k) = eddy_radius      !assign an eddy radius 
 
! Initialize the (Y) coordinate to (1,1) to force the routine to pick a random location for 
each new circle 
 
                ycenter(k) = 1 
 
! Keep on randomly creating (Y) circle centers till condition is meet 
 
                 DO WHILE (ycenter(k) .LE. eddy_radius .OR. ycenter(k) .GE. 
(maplength-eddy_radius)) 
                 ycenter(k) = Int(ran1(iseed) * float(maplength-1)) + 1 
                 END DO 
 
! Randomly choose an (X) center 
 
                        xcenter(k) = Int(ran1(iseed) * float(maplength-1)) + 1 
 
! Randomly choose a rotation 
! Routine produces value between (0-1) + 1 = 1 and 2 (1=clockwise, 2=counterclockwise) 
 
                 rotation(k) = Int(ran1(iseed) * float(2)) + 1 
 
! Randomly choose a start time based on an interval determined by the largest eddy 
 
                        starttime(k) = Int(ran1(iseed) * float(maplength/4-1)) + 1 
 
! Determine frequency of oration based on the largest eddy and a 1/3 scaling of energy 
dissipation rate 
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                       ratio = (float(eddy_radius)/float(maplength/4)) 
          freqswitch(k) = Int((ratio**0.333)*float(maplength/4)) 
      END DO 
          eddy_radius = eddy_radius/2 
     END DO 
 
END SUBROUTINE 
 
 
 
SUBROUTINE turbulentmixing(timestep,maxradius,minradius) 
 
! This subroutine determines which eddies to rotate can contains a call to the subroutine 
! which does the actual rotation of the eddy.  The routine can be called each timestep or at 
! some frequency of the basic timestep 
! Only cycle through the circles specified by the maxradius and minradius user inputs 
! This will allow partial turbulent cascades to be simulated 
 
  USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: i, j 
        INTEGER :: timestep, maxradius, minradius 
 
!loop over all the circles 
        DO i = 1, totalcir 
!check for random starttime 
 
         IF (timestep .ge. starttime(i) .and. circlesize(i) .le. maxradius .and. 
circlesize(i) .ge. minradius) THEN 
!if trigger=0 then start cascade 
!reset the radius stop location for that circle to the outer edge 
                 IF (cascade_switch(i) .eq. 0) THEN 
                        cascade_trigger(i) = ABS(MOD((timestep-    
   starttime(i)),freqswitch(i))) 
                              radius_stop_location(i) = circlesize(i) 
                        END IF 
 
!start cascade if trigger condition is met 
!reset cascade switch so that cascade will go down to a radius of 1 
!reset temporary radius counter to edge of circle each time 
                        IF (cascade_trigger(i) .eq. 0) THEN 
                                cascade_switch(i)=1 
                                j=circlesize(i) 
 
!cascade inward till reach radius stop location 
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                                DO WHILE (j .GE. radius_stop_location(i)) 
 
!Call turbulence movement routine (needs the x and y center, rotation, temporary location 
on circle(j) 
!Also needs turbulence exchange rate (typically will be 1.0) 
!This routine does all the number crunching 
 
                                 CALL 
turbulence_move(turcoeff(1),j,xcenter(i),ycenter(i),rotation(i),N,numcol) 
                                        CALL 
turbulence_move(turcoeff(2),j,xcenter(i),ycenter(i),rotation(i),P,numcol) 
                                        CALL 
turbulence_move(turcoeff(3),j,xcenter(i),ycenter(i),rotation(i),Z,numcol) 
                                        CALL 
turbulence_move(turcoeff(4),j,xcenter(i),ycenter(i),rotation(i),D,numcol) 
 
!reduce temporary location on circle by 1 
                                 j=j-1 
 
!cascade has reached the innermost radius so exit and start a new cascade trigger check 
cycle 
                                        IF (j .eq. 0) THEN 
                                            cascade_switch(i) = 0 
                                        END IF 
 
                                END DO 
 
!decrease radius stop location by 1 
                                radius_stop_location(i) = radius_stop_location(i) - 1 
 
                     END IF 
            END IF 
    END DO 
 
END SUBROUTINE 
 
 
SUBROUTINE turbulence_move(turrate,r,x,y,dir,map,sidelength) 
 
! This routine does all the numerical processing for the turbulence movement.  Each call 
!will only move one ring of cells of a specific radius for a specific circle 
! The method has complete conservation of material 
! Map is the state variable of interest that you want to simulate should be a global 
!variable and declared outside of the routine 
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  USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: i,r,x,y,dir 
        REAL :: Past, Future, turrate 
        INTEGER :: xloc,yloc 
        INTEGER :: rplus1,rminus1 
        INTEGER :: xloc_past,yloc_past 
        INTEGER :: sidelength 
        REAL :: map(sidelength,sidelength) 
 
! The code is broken down into clockwise and counterclockwise movement routines 
! Code also allows for wrapped boundaries which makes more complicated 
! Routine is very efficient because only have to store one piece of information 
! It just gets swapped between past, present, and future 
 
! Always start the circle at the top left edge and recode variables to reduce complication 
 
       xloc = x-r 
       yloc = y-r 
       rplus1=r+r+1 
       rminus1=r+r-1 
 
! Check for edge position (left edge and top) 
 
       IF (xloc .lt. 1) xloc = numcol+xloc 
      IF (yloc .lt. 1) yloc = numcol+yloc 
 
! Set the temporary past variable 
 
        yloc_past = yloc + 1 
 
! Check for edge 
 
    IF (yloc_past .gt. numcol) yloc_past = yloc_past-numcol 
 
! Set the real past variable 
 
       past = map(xloc,yloc_past) * turrate 
 
! Now simulate movement of cells around circle 
! Have employed a cell swap routine-very efficient 
! Only works because cells are moved in sequence 
 
     IF (dir .eq. 1) THEN   !clockwise (to the right) 
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         DO i = 1,rplus1    !across top 
          future = map(xloc,yloc) * turrate 
         map(xloc,yloc) = (map(xloc,yloc) - future) + past 
      past = future 
     xloc=xloc+1 
              IF (xloc .gt. numcol) xloc = xloc-numcol     !Check for edge 
        END DO 
 
    DO i = 1,rminus1    !down righ side 
    future = map(xloc,yloc) * turrate 
      map(xloc,yloc) = (map(xloc,yloc) - future) + past 
    past = future 
     yloc=yloc+1 
       IF (yloc .gt. numcol) yloc = yloc-numcol     !Check for edge 
       END DO 
 
    DO i = 1,rplus1    !along bottom 
   future = map(xloc,yloc) * turrate 
    map(xloc,yloc) = (map(xloc,yloc) - future) + past 
     past = future 
    xloc=xloc-1 
     IF (xloc .lt. 1) xloc = numcol+xloc          !Check for edge 
       END DO 
 
   DO i = 1,rminus1    !up left side 
    future = map(xloc,yloc) * turrate 
    map(xloc,yloc) = (map(xloc,yloc) - future) + past 
      past = future 
   yloc=yloc-1 
     IF (yloc .lt. 1) yloc = numcol+yloc          !Check for edge 
      END DO 
 
     ELSE    !turn counter-clockwise (to the left) same code as above except in 
opposite direction 
 
 
    xloc = x-r 
    yloc = y-r 
 
   IF (xloc .lt. 1) xloc = numcol+xloc 
   IF (yloc .lt. 1) yloc = numcol+yloc 
    xloc_past = xloc + 1 
     IF (xloc_past .gt. numcol) xloc_past = xloc_past-numcol 
    past= map(xloc_past,yloc) * turrate 
 
    DO i = 1,rplus1    !down left side 
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     future = map(xloc,yloc) * turrate 
     map(xloc,yloc) = (map(xloc,yloc) - future) + past 
      past = future 
     yloc=yloc+1 
    IF (yloc .gt. numcol) yloc = yloc-numcol    !Check for edge 
       END DO 
 
    DO i = 1,rminus1    !along bottom 
     future = map(xloc,yloc) * turrate 
    map(xloc,yloc) = (map(xloc,yloc) - future) + past 
    past = future 
    xloc=xloc+1 
     IF (xloc .gt. numcol) xloc = xloc-numcol    !Check for edge 
       END DO 
 
    DO i = 1,rplus1    !up right side 
     future = map(xloc,yloc) * turrate 
     map(xloc,yloc) = (map(xloc,yloc) - future) + past 
    past = future 
     yloc=yloc-1 
     IF (yloc .lt. 1) yloc = numcol+yloc         !Check for edge 
      END DO 
 
    DO i = 1,rminus1    !along top 
     future = map(xloc,yloc) * turrate 
     map(xloc,yloc) = (map(xloc,yloc) - future) + past 
     past = future 
      xloc=xloc-1 
   IF (xloc .lt. 1) xloc = numcol+xloc         !Check for edge 
      END DO 
 
 
     END IF 
 
END SUBROUTINE  
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Diffusion Module 
 
This subroutine does the calculations necessary to implement diffusive mixing between 
the grid cells of the SLS platform.  It is based on Fickian diffusion methods.  The 
different cases allow various boundary conditions to be simulated 
 
 
! This routine calculates the diffusive losses based on an eddy diffusivity 
! An eddy diffusivity value is transformed into a percent loss flux in one direction 
! based on the time-step and the grainsize 
! This value is then multiplied by 4 to get the loss that would occur in 4 directions which 
! then becomes the value for the diffusion coefficient used as input to the model !
 and passed to this subroutine 
! Losses only occur to the adjacent 4 cells because exchanges are based on a grid system 
 
! Numerical constraint !!!!!!!!! 
!      The percent loss per time-step in one direction should not exceed (0.2 = 20%) so that 
!! the total flux  passed to this routine does not exceed 80%.  This is to ensure that 
!!! the spread of a passive substance resembles a normal distribution.   
 
 
       USE global_variables 
       IMPLICIT NONE 
 
       INTEGER :: i,j,xxx,yyy,north,east,south,west,totval 
         REAL :: diff 
        REAL :: Yvalues(numrow,numcol), v(numrow,numcol) 
 
! Multiply entire Yvalues matrix by loss (percent per time-step) due to diffusion in the 4 
cardinal directions 
! Put these values into a separate v matrix and subtract from the original values 
! Divide v matrix by 4 to get the loss in each direction (will be the same) 
! Need the v matrix so that can update all the values at one time 
 
 
      v=0 
        v = diff * (Yvalues) 
         Yvalues = (Yvalues - v) 
         v = v/4 
 
! Determine location on map 
! Use location to determine what case to run 
 
! Outer select case gives the boundary conditions based on an input file 
!       case 1 = reflecting, case 2 = absorbing, case 3 = wrapped , case 4 = nutinput chapter 
 (modified absorbing,wrapped) 
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! Update sequence for v (from the north, from the south, from the west, from the east) 
! Yvalues(i,j) = Yvalues(i,j) + v(i,j+1) + v(i,j-1) + v(i-1,j) + v(i+1,j) 
!                               (from N)   (from S)    (from W)   (from E) 
 
         SELECT CASE (boundary_input) 
 
CASE (1)   !absorbing boundaries 
 
! Upper left corner 
  Yvalues(1,numcol) = Yvalues(1,numcol) + v(1,numcol-1) +             
  v(2,numcol) 
! Upper right corner 
  Yvalues(numrow,numcol) = Yvalues(numrow,numcol) +              
  v(numrow,numcol-1) + v(numrow-1,numcol) 
! Lower left corner 
  Yvalues(1,1) = Yvalues(1,1) + v(1,2) +  v(2,1) 
! Lower right corner 
  Yvalues(numrow,1) = Yvalues(numrow,1) + v(numrow,2) +             
  v(numrow-1,1) 
! Do just the top edge of map 
 DO i=2,numrow-1 
         Yvalues(i,numcol) = Yvalues(i,numcol) +  v(i,numcol-1) + v(i-1,numcol) + 
 v(i+1,numcol) 
 END DO 
! Do just the bottom edge 
        DO i=2,numrow-1 
         Yvalues(i,1) = Yvalues(i,1) + v(i,2) +  v(i-1,1) + v(i+1,1) 
        END DO 
! Do just the left side 
        DO j=2,numcol-1 
         Yvalues(1,j) = Yvalues(1,j) + v(1,j+1) + v(1,j-1) +  v(2,j) 
        END DO 
! Do just the right side 
        DO j=2,numcol-1 
         Yvalues(numrow,j) = Yvalues(numrow,j) + v(numrow,j+1) + v(numrow,j-1) + 
 v(numrow-1,j) 
        END DO 
! Do just the interior of the map 
        DO i=2,numrow-1 
                DO j=2,numcol-1 
                 Yvalues(i,j) = Yvalues(i,j) + v(i,j+1) + v(i,j-1) + v(i-1,j) + v(i+1,j) 
                END DO 
        END DO 
 
CASE (2)   !reflecting boundaries 
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! Upper left corner 
 Yvalues(1,numcol) = Yvalues(1,numcol) + v(1,numcol) + v(1,numcol-1) + 
 v(1,numcol) + v(2,numcol) 
! Upper right corner 
 Yvalues(numrow,numcol) = Yvalues(numrow,numcol) + v(numrow,numcol) + 
 v(numrow,numcol-1) + v(numrow-1,numcol) + v(numrow,numcol) 
! Lower left corner 
 Yvalues(1,1) = Yvalues(1,1) + v(1,2) + v(1,1) + v(1,1) + v(2,1) 
! Lower right corner 
 Yvalues(numrow,1) = Yvalues(numrow,1) + v(numrow,2) + v(numrow,1) + 
 v(numrow-1,1) + v(numrow,1) 
! Do just the top edge of map 
 DO i=2,numrow-1 
         Yvalues(i,numcol) = Yvalues(i,numcol) + v(i,numcol) + v(i,numcol-1) + v(i-1
 ,numcol) + v(i+1,numcol) 
 END DO 
! Do just the bottom edge 
        DO i=2,numrow-1 
         Yvalues(i,1) = Yvalues(i,1) + v(i,2) + v(i,1) + v(i-1,1) + v(i+1,1) 
        END DO 
! Do just the left side 
        DO j=2,numcol-1 
         Yvalues(1,j) = Yvalues(1,j) + v(1,j+1) + v(1,j-1) + v(1,j) + v(2,j) 
        END DO 
! Do just the right side 
        DO j=2,numcol-1 
         Yvalues(numrow,j) = Yvalues(numrow,j) + v(numrow,j+1) + v(numrow,j-1) + 
 v(numrow-1,j) + v(numrow,j) 
        END DO 
! Do just the interior of the map 
        DO i=2,numrow-1 
                DO j=2,numcol-1 
                 Yvalues(i,j) = Yvalues(i,j) + v(i,j+1) + v(i,j-1) + v(i-1,j) + v(i+1,j) 
                END DO 
        END DO 
 
CASE (3)   !wrapped boundaries 
 
! Do the corners of the map first 
!upper left corner 
 Yvalues(1,numcol) = Yvalues(1,numcol) + v(1,1) + v(1,numcol-1) + 
 v(numrow,numcol) + v(2,numcol) 
!upper right corner 
 Yvalues(numrow,numcol) = Yvalues(numrow,numcol) + v(numrow,1) + 
 v(numrow,numcol-1) + v(numrow-1,numcol) + v(1,numcol) 
!bottom left corner 
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 Yvalues(1,1) = Yvalues(1,1) + v(1,2) + v(1,numcol) + v(numrow,1) + v(2,1) 
!bottom right corner 
 Yvalues(numrow,1) = Yvalues(numrow,1) + v(numrow,2) + v(numrow,numcol) 
 + v(numrow-1,1) + v(1,1) 
! Do just the top edge of map 
 DO i=2,numrow-1 
  Yvalues(i,numcol) = Yvalues(i,numcol) + v(i,1) + v(i,numcol-1) + v(i-
1,numcol) + v(i+1,numcol) 
 END DO 
! Do just the bottom edge 
        DO i=2,numrow-1 
               Yvalues(i,1) = Yvalues(i,1) + v(i,2) + v(i,numcol) + v(i-1,1) + v(i+1,1) 
        END DO 
! Do just the left side 
        DO j=2,numcol-1 
             Yvalues(1,j) = Yvalues(1,j) + v(1,j+1) + v(1,j-1) + v(numrow,j) + v(2,j) 
        END DO 
! Do just the right side 
        DO j=2,numcol-1 
                Yvalues(numrow,j) = Yvalues(numrow,j) + v(numrow,j+1) + v(numrow,j-1) + 
v(numrow-1,j) + v(1,j) 
        END DO 
! Do just the interior of the map 
        DO i=2,numrow-1 
                DO j=2,numcol-1 
                 Yvalues(i,j) = Yvalues(i,j) + v(i,j+1) + v(i,j-1) + v(i-1,j) + v(i+1,j) 
                END DO 
        END DO 
 
CASE (4) !wrapped boundaries (W-E), absorbing (N-S) 
 
! Do the corners of the map first 
!upper left corner 
 Yvalues(1,numcol) = Yvalues(1,numcol)  + v(1,numcol-1) + 
 v(numrow,numcol) + v(2,numcol) 
!upper right corner 
 Yvalues(numrow,numcol) = Yvalues(numrow,numcol) +  v(numrow,numcol-1) 
+ v(numrow-1,numcol) + v(1,numcol) 
!bottom left corner 
 Yvalues(1,1) = Yvalues(1,1) + v(1,2) + v(numrow,1) + v(2,1) 
!bottom right corner 
 Yvalues(numrow,1) = Yvalues(numrow,1) + v(numrow,2) + v(numrow-1,1) 
 + v(1,1) 
! Do just the top edge of map 
 DO i=2,numrow-1 
         Yvalues(i,numcol) = Yvalues(i,numcol) +   v(i,numcol-1) + v(i-1,numcol) + 
 v(i+1,numcol) 
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 END DO 
! Do just the bottom edge 
        DO i=2,numrow-1 
         Yvalues(i,1) = Yvalues(i,1) + v(i,2) + v(i-1,1) + v(i+1,1) 
        END DO 
! Do just the left side 
        DO j=2,numcol-1 
             Yvalues(1,j) = Yvalues(1,j) + v(1,j+1) + v(1,j-1) + v(numrow,j) + v(2,j) 
        END DO 
! Do just the right side 
        DO j=2,numcol-1 
                Yvalues(numrow,j) = Yvalues(numrow,j) + v(numrow,j+1) + v(numrow,j-1) + 
v(numrow-1,j) + v(1,j) 
        END DO 
! Do just the interior of the map 
        DO i=2,numrow-1 
                DO j=2,numcol-1 
                 Yvalues(i,j) = Yvalues(i,j) + v(i,j+1) + v(i,j-1) + v(i-1,j) + v(i+1,j) 
                END DO 
        END DO 
 
         END SELECT 
END SUBROUTINE 
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Advection Modules 
 
These subroutines move material between grid cells based on a correlated random walk 
methodology.  The routines are extremely flexible allowing complex patterns of 
movement.  These routines are also used to simulate spatially and temporally variable 
nutrient inputs and fish predation. 
 
 
SUBROUTINE advectmovement 
         USE global_variables 
 IMPLICIT NONE 
 
! Pick a random angle deviation (this will determine how correlated the values are 
! Small (SD) will give a small turning radius 
! Pick a random distance 
! Do not allow negative values so take the absolute value of the returned result 
! The (gauss) function returns a value between (-6 and 6) which are normally distributed 
!  most of the values fall between (-2 and 2) roughly 95% 
!  so a (SD) of (180) will give the occasional 360 degree turn 
!  pick an (SD) which is the same as the turning radius that you want 
!  well at least where you want most of the values to fall 
 
           meanturn = 0.0 
          newangle = (Gauss (0.0,1.0,iseed_input) * coorangle) + meanturn 
 
! Add the new angle to the old angle from outside of the loop 
                 
 direction = direction + newangle 
 
! If past (360) start a new circle 
                 
 direction = circle(direction) 
 
 IF (direction .ge. 332.5 .and. direction .le. 360.0) THEN 
             zzzz = 5 
            END IF 
             
 IF (direction .ge. 0.0 .and. direction .lt. 22.5) THEN 
             zzzz = 5 
            END IF 
 
             IF (direction .ge. 22.5 .and. direction .lt. 67.5) THEN 
             zzzz = 8 
            END IF 
 
             IF (direction .ge. 67.5 .and. direction .lt. 112.5) THEN 
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             zzzz = 7 
            END IF 
 
             IF (direction .ge. 112.5 .and. direction .lt. 157.5) THEN 
             zzzz = 6 
            END IF 
 
             IF (direction .ge. 157.5 .and. direction .lt. 202.5) THEN 
             zzzz = 4 
            END IF 
 
             IF (direction .ge. 202.5 .and. direction .lt. 247.5) THEN 
             zzzz = 1 
            END IF 
 
             IF (direction .ge. 247.5 .and. direction .lt. 292.5) THEN 
             zzzz = 2 
            END IF 
 
             IF (direction .ge. 292.5 .and. direction .lt. 332.5) THEN 
              zzzz = 3 
            END IF 
 
END SUBROUTINE 
 
 
 
SUBROUTINE advect(Yvalues,adrate,signal) 
 
        USE global_variables 
        IMPLICIT NONE 
 
        REAL :: adrate, Yvalues(numrow,numcol) 
        REAL :: scratchmatrix(numrow,numcol) 
        INTEGER :: j,k 
        INTEGER :: directionarray(8) 
        INTEGER :: signal 
        DATA directionarray/1,2,3,4,5,6,7,8/    ! 1=upperleft,3=upperright, etc 
 
!user supplied switch on advection=number tells how often to switch advection 
! use spot movement routine 
 
        scratchmatrix=0 
        scratchmatrix = adrate * (Yvalues) 
        Yvalues = (Yvalues - scratchmatrix) 
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        DO j=1,numrow 
            DO k=1,numcol 
 
                 SELECT CASE (directionarray(zzzz)) 
 
                 CASE (1) !Southwest 
                        IF (j .eq. numrow .and. k .eq. numcol ) THEN  !bottom right corner 
                          Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(1,1) 
                        ELSE IF (j .eq. numrow) THEN  !bottom 
                           Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(1,k+1) 
                        ELSE IF (k .eq. numcol) THEN  !right 
                            Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j+1,1) 
                        Else    !all other places 
                         Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j+1,k+1) 
                        END IF 
 
                     CASE (2) !West 
                        IF (j .eq. numrow) THEN   !bottom of map 
                            Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(1,k) 
                        Else   !all other places 
                            Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j+1,k) 
                        END IF 
 
                     CASE (3) !Northwest 
                        IF (j .eq. numrow .and. k .eq. 1) THEN   !left corner 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(1,numcol) 
                        ELSE IF (k .eq. 1) THEN  !left 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j+1,numcol) 
                        ELSE IF (j .eq. numrow) Then  !bottom 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(1,k-1) 
                        ELSE  !all other places 
                         Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j+1,k-1) 
                        END IF 
 
                        CASE (4) !South 
                        IF (k .eq. numcol) THEN  !bottom of map     !right edge of map 
                              !put in modification so that if goes off edge it gets absorbed 
                              !adds value from (Init)-mean level outside of simulation domain from  
   north 
                                Yvalues(j,k) = Init(signal) 
                              ! Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j,1) 
                       Else   !all other places 
                             Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j,k+1) 
                        END IF 
 
                     CASE (5) !North 
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                        IF (k .eq. 1) THEN  !left edge of map 
                              Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j,numcol) 
                        Else   !all other places 
                              Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j,k-1) 
                        END IF 
 
                     CASE (6) !Southeast 
                        IF (j .eq. 1 .and. k .eq. numcol) THEN  !upper right corner 
                              Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(numrow,1) 
                        ELSE IF (j .eq. 1) THEN  !top edge of map 
                              Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(numcol,k+1) 
                        ELSE IF (k .eq. numcol) THEN  !right edge of map 
                              Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j-1,1) 
                        ELSE !all other places 
                           Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j-1,k+1) 
                        END IF 
 
                     CASE (7) !East 
                        IF (j .eq. 1) THEN !top of map 
                           Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(numrow,k) 
                        Else  !all other places 
                         Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j-1,k) 
                        END IF 
 
                     CASE (8) !Northeast 
                        IF (j .eq. 1 .and. k .eq. 1) THEN  !upper left corner 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(numrow,numcol) 
                        ELSE IF (j .eq. 1) THEN  !top side of map 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(numrow,k-1) 
                        ELSE IF (k .eq. 1) THEN  !left side of map 
                                Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j-1,numcol) 
                        ELSE  !all other places 
                             Yvalues(j,k) = Yvalues(j,k) + scratchmatrix(j-1,k-1) 
                        END IF 
 
                     CASE DEFAULT 
                 END SELECT 
 
       END DO 
 END DO 
 
END SUBROUTINE 
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Multifractal Map Generation Routines 
 
These routines generate the multifractal maps utilized in chapter 4.  A wide variety of 
map can be generated from low correlation to high correlation as well as map 
approximating environmental gradients.  The routine is adapted from the citation below 
and modified to interface with the SLS platform. 
 
 
Subroutine hfract(maxlevel,hclump,meanmap,cv,mapout,iseed_map) 
 
!   program written from algorithm MidPointFM2D in the  
!     Science of Fractal Images, M.F. Barnsley, R. L. Devaney 
!     B. B. Mandelbrot, H.-O. Peitgen, D. Saupe, and R. F. Voss 
!     Springer-Verlag 
 
! maxprm = length of a side-needs to be a multiple of 2 
! maxlevel = gives different sized maps-powers of 2 
! not sure what maxcurd means at this point 
 
INTEGER,PARAMETER :: maxprm = 2048 
!INTEGER,PARAMETER :: maxlevel = 5    !gives and 8 sided map 2x2x2 
!INTEGER,PARAMETER :: iseed_map = -12345678 
 
! maxprm = 4 so that it gives a 16 cell map 
       INTEGER maxlevel, iseed_map 
       integer N, icnt, i, j, aa, bb 
       real X(0:maxprm,0:maxprm) 
       real xmin, xmax, xmean, xsd 
       logical addition 
       real :: hclump, meanmap 
       REAL :: Xnorm(0:2**maxlevel,0:2**maxlevel) 
       Real :: XXmean,cv,xxsd,Xnormave, Xnormmin,Xnormmax,XXtotal 
       REAL :: mapout(1:2**maxlevel,1:2**maxlevel) 
 
       xxsd = cv * meanmap 
       N = 2**maxlevel 
       if (N .gt. maxprm) stop 
       addition = .true. 
 
!  call 2d multi-fractal generator 
       call mpfm2d (X, addition, iseed_map,hclump,maxlevel) 
 
!  initialize statistics 
       xmin = 1e30 
       xmax = -1e30 
       xmean = 0.0 
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       xsd = 0.0 
       icnt = 0 
 
!  obtain statistics  
       do i = 0,N 
         do j = 0,N 
            if (X(i,j) .lt. xmin) xmin = X(i,j) 
            if (X(i,j) .gt. xmax) xmax = X(i,j) 
            xmean = xmean + X(i,j) 
            xsd = xsd + X(i,j)*X(i,j) 
            icnt = icnt+1 
         enddo 
       enddo 
       xsd = sqrt((xsd - (xmean*xmean)/icnt) / (icnt-1)) 
       xmean = xmean / icnt 
 
200    format (/10x,'Hfract Summary'/10x,'Mean =    ',g12.6  & 
        /10x,'St.dev. = ',g12.6 /10x,'Minimum = ',g12.6      & 
        /10x,'Maximum = ',g12.6) 
 
   !read in truncated array to Xnorm check on mean value 
          Xnorm = X(0:N,0:N) 
          Xnormave = SUM(Xnorm)/((N+1)*(N+1)) 
   !subtract out mean 
          Xnorm = Xnorm - xmean 
          Xnormave = SUM(Xnorm)/((N+1)*(N+1)) 
          Xnormmax = MAXVAL(Xnorm) 
          Xnormmin = MINVAL(Xnorm) 
   !divide by SD 
           Xnorm = Xnorm/xsd 
          Xnormave = SUM(Xnorm)/((N+1)*(N+1)) 
          Xnormmax = MAXVAL(Xnorm) 
          Xnormmin = MINVAL(Xnorm) 
   !re-normalize for mean of map 
           Xnorm = Xnorm*xxsd + meanmap 
           XXmean = SUM(Xnorm)/((N+1)*(N+1)) 
            Xnormmax = MAXVAL(Xnorm) 
            Xnormmin = MINVAL(Xnorm) 
            XXtotal = SUM(Xnorm) 
    !remove any negative numbers 
    DO aa = 0,N 
    DO bb = 0,N 
         IF (Xnorm(aa,bb) .lt. 0.0) then 
             Xnorm(aa,bb) = 0.0 
         END IF 
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    END DO 
    END DO 
 
            XXmean = SUM(Xnorm)/((N+1)*(N+1)) 
            Xnormmax = MAXVAL(Xnorm) 
            Xnormmin = MINVAL(Xnorm) 
            XXtotal = SUM(Xnorm) 
        mapout = Xnorm(1:2**maxlevel,1:2**maxlevel) 
 
        END subroutine 
 
 
Subroutine mpfm2d (X, addition, iseed,H,maxlevel2) 
          USE map_variables 
     
    !   USE parmlist 
    !   USE fracblock 
    !   USE mapblock 
INTEGER,PARAMETER :: maxprm = 2048 
INTEGER :: maxlevel2 
      real :: H 
       real X(0:maxprm,0:maxprm) 
       integer N, DD, d, iseed 
       logical addition 
      integer :: maptype,wrap 
      REAL :: sigma,delta 
     Real :: southwest 
     Real ::southeast 
     Real ::northwest 
     Real ::northeast 
 
     southwest = 15.0 
     southeast = 15.0 
     northwest = 9.0 
     northeast = 9.0 
      sigma = 1   !indicates amount of variance(SD) 
      maptype = maptype_input          !1=gradient ! don't want gradient 
      wrap = wrap_input            !2=no wrapped boundaries want wrapped boundaries 
    !  addition = 0 !turn random additions off 
! 
       N = 2**maxlevel2 
       delta = sigma 
       X(0,0) = 0.0 
       X(0,N) = 0.0 
       X(N,0) = 0.0 
       X(N,N) = 0.0 
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       if (maptype .eq. 1) then    !multifractal map with a gradient 
         X(0,0) = southwest 
         X(0,N) = southeast 
         X(N,0) = northwest 
         X(N,N) = northeast 
       endif 
! 
       DD = N 
       d = N / 2 
! 
       do is = 1, maxlevel2 
!  going from grid type I to type II 
         delta = delta * 0.5**(0.5 * H) 
         do ix = d, N-d, DD 
            do iy = d, N-d, DD 
               X(ix,iy) = f4(delta, X(ix+d,iy+d), X(ix+d,iy-d),   & 
                  X(ix-d,iy+d), X(ix-d,iy-d),sigma) 
            enddo 
         enddo 
!  displace other points also if needed 
         if (addition) then 
            do ix = 0, N, DD 
              do iy = 0, N, DD 
                 X(ix,iy) = X(ix,iy) + delta * Gauss(0.0,sigma,iseed) 
              enddo 
            enddo 
         endif 
!  going from grid type II to type I 
         delta = delta * 0.5**(0.5*H) 
!  interpolate and offset boundary grid points 
         do ix = d, N-d, DD 
            X(ix,0) = f3(delta, X(ix+d,0), X(ix-d,0), X(ix,d),sigma) 
            X(ix,N) = f3(delta, X(ix+d,N), X(ix-d,N), X(ix,N-d),sigma) 
            X(0,ix) = f3(delta, X(0,ix+d), X(0,ix-d), X(d,ix),sigma) 
            X(N,ix) = f3(delta, X(N,ix+d), X(N,ix-d), X(N-d,ix),sigma) 
            if (wrap .eq. 1) then     ! if want wrapped boundaries 
               X(ix,N) = X(ix,0) 
               X(N,ix) = X(0,ix) 
            endif 
         enddo 
!  interpolate and offset inter grid points 
         do ix = d, N-d, DD 
            do iy = DD, N-d, DD 
               X(ix,iy) = f4 (delta, X(ix,iy+d), X(ix,iy-d),   & 
                      X(ix+d,iy), X(ix-d,iy),sigma) 
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            enddo 
         enddo 
         do ix = DD, N-d, DD 
            do iy = d, N-d, DD 
               X(ix,iy) = f4(delta, X(ix,iy+d), X(ix,iy-d),    & 
                  X(ix+d,iy), X(ix-d,iy),sigma) 
            enddo 
         enddo 
!  displace other points also if needed 
         if (addition) then 
            do ix = 0, N, DD 
               do iy = 0, N, DD 
                  X(ix,iy) = X(ix,iy) + delta * Gauss(0.0,sigma,iseed) 
               enddo 
            enddo 
            do ix = d, N-d, DD 
               do iy = d, N-d, DD 
                  X(ix,iy) = X(ix,iy) + delta * Gauss(0.0,sigma,iseed) 
               enddo 
            enddo 
          endif 
          DD = DD / 2 
          d = d / 2 
       enddo 
       return 
       end 
!  statement function definition 
      REAL function f3(delta,x0,x1,x2,sigma) 
           REAL  delta,x0,x1,x2 
           Real sigma 
           INTEGER iseed 
           iseed = -12345678 
          f3 = (x0+x1+x2) / 3 + delta * Gauss(0.0,sigma, iseed) 
          return 
      end 
 
REAL function f4(delta,x0,x1,x2,x3,sigma) 
            REAL delta,x0,x1,x2,x3 
             Real sigma 
           INTEGER iseed 
           iseed = -12345678 
          f4 = (x0+x1+x2+x3) / 4 + delta * Gauss(0.0,sigma,iseed) 
          return 
      end 
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Sensitivity Analysis Routines 
 
These routines conduct the sensitivity analysis utilized in chapter 2.  Output from these 
routines is then input into a separate program to calculate the estimated sensitivity values 
(not shown).  The routines listed allow for spatial and temporal sensitivity analysis to be 
conducted.  Only a temporal sensitivity analysis at day 90 was conducted in chapter 2.  
These routines are adapted from methods developed by Gardner and Trabalka (1985) and 
is used with permission. 
 
 
SUBROUTINE Prism_rd(irep) 
 
        USE sensitivity 
        USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: ii,izz,ndum,jj,j,irep,loop,loopcounter,iii,jjj 
        INTEGER :: niter,nseed 
        CHARACTER(LEN =   60) :: attl 
        CHARACTER(LEN =   15) :: pnam(10000)        !keeps an array of the names 
        CHARACTER(LEN= 3)  :: timepoint(130)        !maximum size map or number of  
   time-points 
 
        DATA timepoint /'001','002','003','004','005','006','007','008','009','010', & 
                        '011','012','013','014','015','016','017','018','019','020', & 
                        '021','022','023','024','025','026','027','028','029','030', & 
                        '031','032','033','034','035','036','037','038','039','040', & 
                        '041','042','043','044','045','046','047','048','049','050', & 
                        '051','052','053','054','055','056','057','058','059','060', & 
                        '061','062','063','064','065','066','067','068','069','070', & 
                        '071','072','073','074','075','076','077','078','079','080', & 
                        '081','082','083','084','085','086','087','088','089','090', & 
                        '091','092','093','094','095','096','097','098','099','100', & 
                        '101','102','103','104','105','106','107','108','109','110', & 
                        '111','112','113','114','115','116','117','118','119','120', & 
                        '121','122','123','124','125','126','127','128','129','130'/ 
 
! re-write header information 
!! nval = 4     !number of output variables interested in  !hard wired 
        IF (irep .eq. 1) THEN                
! np = number or parameters, ndum = ***, niter = number of iterations 
!  nseed = random number seed  !nval = number of output parameters 
                read (41,103) attl 
                write (42,103) attl 
        103     format (a60) 
                read (41,*) np, ndum, niter, nseed 
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                write (42,*) np, nval, niter, nseed 
           !!     PRINT *, np, nval, niter, nseed 
 
! read in parameter names 
                read (41,105) (pnam(j),j=1,np) 
        105     format (5(2x,a10)) 
 
! map outputs into parameter vector 
! flag to only output sensitivity at end of simulation 
 
        IF (nval .eq. 4) THEN 
 
                IF (senswitch .eq. 1) THEN 
                  pnam(np+1) = ' Nave' 
                  pnam(np+2) = ' Pave' 
                  pnam(np+3) = ' Zave' 
                  pnam(np+4) = ' Dave' 
                END IF 
 
                IF (senswitch .eq. 2) THEN 
                  pnam(np+1) = ' Npatch' 
                  pnam(np+2) = ' Ppatch' 
                  pnam(np+3) = ' Zpatch' 
                  pnam(np+4) = ' Dpatch' 
                END IF 
 
               IF (senswitch .eq. 3) THEN 
                  pnam(np+1) = ' Nbiomass' 
                  pnam(np+2) = ' Pbiomass' 
                  pnam(np+3) = ' Zbiomass' 
                  pnam(np+4) = ' Dbiomass' 
                END IF 
 
               IF (senswitch .eq. 4) THEN 
                  pnam(np+1) = ' Narea' 
                  pnam(np+2) = ' Parea' 
                  pnam(np+3) = ' Zarea' 
                  pnam(np+4) = ' Darea' 
                END IF 
 
               IF (senswitch .eq. 5) THEN 
                  pnam(np+1) = ' Ncir' 
                  pnam(np+2) = ' Pcir' 
                  pnam(np+3) = ' Zcir' 
                  pnam(np+4) = ' Dcir' 
                END IF 
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        Else 
 
 IF (senswitch .eq. 1) THEN 
 
                      loopcounter = 0 
                      loop = (nval/4)       ! nval = total number of point (10 output * 4 parameters) 
                      DO iii = 1, 4          !hardwired for the number of output parameters 
                        DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
 
                       IF (iii .eq. 1) THEN 
                pnam(np+loopcounter) = 'Nave'//timepoint(jjj) 
          END IF 
 
          IF (iii .eq. 2) THEN 
                pnam(np+loopcounter) = 'Pave'//timepoint(jjj) 
          END IF 
 
          IF (iii .eq. 3) THEN 
                       pnam(np+loopcounter) = 'Zave'//timepoint(jjj) 
          END IF 
 
           IF (iii .eq. 4) THEN 
                pnam(np+loopcounter) = 'Dave'//timepoint(jjj) 
          END IF 
                   
  END DO 
          END DO 
       END IF 
 
 
       IF (senswitch .eq. 2) THEN 
 
                      loopcounter = 0 
                      loop = (nval/4)       ! nval = total number of point (10 output * 4 parameters) 
                      DO iii = 1, 4          !hardwired for the number of output parameters 
                         DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
 
                         IF (iii .eq. 1) THEN 
                pnam(np+loopcounter) = 'Npatch'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 2) THEN 
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                pnam(np+loopcounter) = 'Ppatch'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 3) THEN 
                pnam(np+loopcounter) = 'Zpatch'//timepoint(jjj) 
            END IF 
 
             IF (iii .eq. 4) THEN 
                       pnam(np+loopcounter) = 'Dpatch'//timepoint(jjj) 
            END IF 
                  END DO 
          END DO 
       END IF 
 
 
      IF (senswitch .eq. 3) THEN 
 
                      loopcounter = 0 
                      loop = (nval/4)       ! nval = total number of point (10 output * 4 parameters) 
                      DO iii = 1, 4          !hardwired for the number of output parameters 
                         DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
 
                         IF (iii .eq. 1) THEN 
                pnam(np+loopcounter) = 'Nbiomass'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 2) THEN 
                pnam(np+loopcounter) = 'Pbiomass'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 3) THEN 
                pnam(np+loopcounter) = 'Zbiomass'//timepoint(jjj) 
            END IF 
 
             IF (iii .eq. 4) THEN 
                       pnam(np+loopcounter) = 'Dbiomass'//timepoint(jjj) 
            END IF 
                  END DO 
          END DO 
       END IF 
 
 
      IF (senswitch .eq. 4) THEN 
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                      loopcounter = 0 
                      loop = (nval/4)       ! nval = total number of point (10 output * 4 parameters) 
                      DO iii = 1, 4          !hardwired for the number of output parameters 
                         DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
 
                         IF (iii .eq. 1) THEN 
                pnam(np+loopcounter) = 'Narea'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 2) THEN 
                pnam(np+loopcounter) = 'Parea'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 3) THEN 
                pnam(np+loopcounter) = 'Zarea'//timepoint(jjj) 
            END IF 
 
             IF (iii .eq. 4) THEN 
                       pnam(np+loopcounter) = 'Darea'//timepoint(jjj) 
            END IF 
                  END DO 
          END DO 
       END IF 
 
 
      IF (senswitch .eq. 5) THEN 
 
                      loopcounter = 0 
                      loop = (nval/4)       ! nval = total number of point (10 output * 4 parameters) 
                      DO iii = 1, 4          !hardwired for the number of output parameters 
                         DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
 
                         IF (iii .eq. 1) THEN 
                pnam(np+loopcounter) = 'Ncir'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 2) THEN 
                pnam(np+loopcounter) = 'Pcir'//timepoint(jjj) 
            END IF 
 
            IF (iii .eq. 3) THEN 
                pnam(np+loopcounter) = 'Zcir'//timepoint(jjj) 
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            END IF 
 
             IF (iii .eq. 4) THEN 
                       pnam(np+loopcounter) = 'Dcir'//timepoint(jjj) 
            END IF 
                  END DO 
          END DO 
       END IF 
 
END IF 
 
                izz = INT((np+nval)/5) 
                        IF (izz .gt. 0) THEN  !write parameter names 
                                do jj = 1,izz 
                                        write (42,105) (pnam(j),j=(jj-1)*5+1,jj*5) 
                                end do 
                        END IF 
                write (42,105) (pnam(j),j=(izz*5)+1,np+nval) 
        END IF 
 
        ! read in parameters 
 
        read (41,*) ii              !should be positioned in file at the iteration number 
        IF (ii .ne. irep) THEN 
             !!   PRINT *, '      Error -- prism read out of order' 
             !!   PRINT *, '      Stopping execution' 
                stop 
        END IF 
        read (41,*) (parm(j),j=1,np) 
   !!     write (6,*) (parm(j),j=1,np)   
        ! map parameters to model 
 
Kn = parm(1)   
Pmax = parm(2)   
Rp = parm(3)    
Mp = parm(4)    
Sp = parm(5)     
Ik = parm(6)    
Kz = parm(7)  
Io = parm(8)     
Kc = parm(9)     
Kw = parm(10)     
Zmax = parm(11)   
Az= parm(12)     
Rz = parm(13)     
Mz = parm(14)    
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Pz = parm(15)    
Ppref = parm(16)  
k3 = parm(17)   
Rd = parm(18)     
Sd = parm(19)     
Dk = parm(20) 
No = parm(21) 
N = parm(22) 
P = parm(23) 
Z = parm(24) 
D = parm(25) 
diffcoeff(1) = parm(26)  
return 
end 
 
 
 
 
SUBROUTINE Prism_out(irep) 
 
        USE global_variables 
        USE sensitivity 
        implicit none 
 
        INTEGER :: iz,j,jj,irep,loop,loopcounter,iii,jjj 
 
        !output the results of prism2 to file to be input to prism 3 
        !   irep = number of the simulation 
        !   np = number of input parameters 
        !   nval = number of output parameters 
 
!Spatial Sen Analysis  !only output at end of simulation and along a given map axis 
        IF (senflag .eq. 1) THEN 
 
        loopcounter = 0 
        loop = (nval/4)       ! nval2 = total number of pixels along a given dimension *  
    number of output parameters 
                               ! example (10 cells * 4 parameters) = 40 
        DO iii = 1, 4          !hardwired for the number of output parameters 
                DO jjj = 1, loop       !number of output points 
 
 
 
                        loopcounter = loopcounter + 1       !does sensitivity analysis only on the  
       cell means 
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                       IF (iii .eq. 1) THEN 
              parm(np+loopcounter) = Nmap(stat_counter,jjj,ylocationcoor) 
          END IF 
 
          IF (iii .eq. 2) THEN 
              parm(np+loopcounter) = Pmap(stat_counter,jjj,ylocationcoor) 
          END IF 
 
          IF (iii .eq. 3) THEN 
              parm(np+loopcounter) = Zmap(stat_counter,jjj,ylocationcoor) 
          END IF 
 
           IF (iii .eq. 4) THEN 
              parm(np+loopcounter) = Dmap(stat_counter,jjj,ylocationcoor) 
            END IF 
 
                END DO 
        END DO 
 
 
        END IF 
 
!Temporal Sensitivity Analysis 
IF (senflag .eq. 2) THEN 
 
 
        IF (nval .eq. 4) THEN     !Output only at end of simulation 
 
                IF (senswitch .eq. 1) THEN 
                        parm(np+1) = Nave(stat_counter) 
          parm(np+2) = Pave(stat_counter) 
          parm(np+3) = Zave(stat_counter) 
          parm(np+4) = Dave(stat_counter) 
                END IF 
 
        Else 
 
                IF (senswitch .eq. 1) THEN 
                          loopcounter = 0 
          loop = (nval/4)       ! nval = total number of point (10 output * 4   
     parameters) 
          DO iii = 1, 4          !hardwired for the number of output parameters 
                   DO jjj = 1, loop       !number of output points 
 
                          loopcounter = loopcounter + 1 
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                         IF (iii .eq. 1) THEN 
                  parm(np+loopcounter) = Nave(jjj) 
            END IF 
 
            IF (iii .eq. 2) THEN 
                  parm(np+loopcounter) = Pave(jjj) 
            END IF 
 
            IF (iii .eq. 3) THEN 
                         parm(np+loopcounter) = Zave(jjj) 
            END IF 
 
             IF (iii .eq. 4) THEN 
                  parm(np+loopcounter) = Dave(jjj) 
              END IF 
 
                  END DO 
          END DO 
                END IF 
        END IF 
END IF 
 
 write (42,'(1x,i5)') irep              ! prints out a line for each replication 
        iz = INT((np + nval)/5)   !how many times to perform output 
 
        ! output parameter variables in 5 columns 
 
        if (iz .gt. 0) then 
                do jj = 1,iz 
                        write (42,'(5(2x,g12.6))') (parm(j),j=(jj-1)*5+1,jj*5) 
                end do 
        end if 
        write (42,'(5(2x,g12.6))') (parm(j),j=(iz*5)+1,np+nval) 
        return 
        end 
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File Saving and Statistical Analysis Routines 
 
These routines save simulation output for data analysis with 3rd party statistical analysis 
programs (e.g., SAS, EXCEL, AXUM).  The routines are also set up to conduce real-time 
analysis of selected state variables for common statistical measures (e.g., mean, variance, 
CV, etc). 
 
 
 
SUBROUTINE stats 
 
         USE global_variables 
         IMPLICIT NONE 
 
         REAL :: xmin,xmax 
         INTEGER :: iii,i,j 
 
         stat_counter = stat_counter + 1 
 
!This section contains the statistics for the nut input chapter 
IF (Nut_chapter_switch .eq. 1) THEN 
 
! Saves entire nutrient input map once at beginning of the simulation 
! Reproduces map exactly starting from the top and going down 
!   so bottom of map (last lines in file will be what is input first) 
 
If (map_input .ne. 3) then 
 
IF (stat_counter .eq. 1) THEN 
    Write (44) numcol 
    Write (44) numrow 
    Write (44) counter 
    Write (44) Nutinput 
 END IF 
 
End IF 
 
write (70,*) 'counter=', counter 
Write (40) numcol 
Write (40) numrow 
Write (40) counter 
Write (40) N 
 
Write (41) numcol 
Write (41) numrow 
Write (41) counter 
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Write (41) P 
 
Write (42) numcol 
Write (42) numrow 
Write (42) counter 
Write (42) Z 
 
Write (43) numcol 
Write (43) numrow 
Write (43) counter 
Write (43) D 
 
Write (46) numcol 
Write (46) numrow 
Write (46) counter 
Write (46) Pnew 
 
Write (47) numcol 
Write (47) numrow 
Write (47) counter 
Write (47) Znew 
 
Write (48) numcol 
Write (48) numrow 
Write (48) counter 
Write (48) BiomassOut 
 
Write (49) numcol 
Write (49) numrow 
Write (49) counter 
Write (49) PredOut 
 
Write (50) numcol 
Write (50) numrow 
Write (50) counter 
Write (50) PhytoGrowth 
 
Write (51) numcol 
Write (51) numrow 
Write (51) counter 
Write (51) ZooGrowth 
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!This section contains stats calculated for regular simulations 
 
Else 
 
! initialize statistical arrays at the beginning of each time-step 
         Ntotal=0.0 
         Ptotal=0.0 
         Ztotal=0.0 
         Dtotal=0.0 
 
         SumN=0.0 
         SumP=0.0 
         SumZ=0.0 
         SumD=0.0 
 
         Nmax(stat_counter)=MAXVAL(N) 
         Nmin(stat_counter)=MINVAL(N) 
         Pmax(stat_counter)=MAXVAL(P) 
         Pmin(stat_counter)=MINVAL(P) 
         Zmax(stat_counter)=MAXVAL(Z) 
         Zmin(stat_counter)=MINVAL(Z) 
         Dmax(stat_counter)=MAXVAL(D) 
         Dmin(stat_counter)=MINVAL(D) 
 
 
!Calculates the max and min over the whole simulation 
!Used for creating line and contour graphs calculate at end of simulation 
        Nmapmax = MAXVAL(Nmax) 
        Nmapmin = MINVAL(Nmin) 
        Pmapmax = MAXVAL(Pmax) 
        Pmapmin = MINVAL(Pmin) 
        Zmapmax = MAXVAL(Zmax) 
        Zmapmin = MINVAL(Zmin) 
        Dmapmax = MAXVAL(Dmax) 
        Dmapmin = MINVAL(Dmin) 
 
! Calculate max,min, and average 
         Ntotal=SUM(N) 
         Nave(stat_counter)=(Ntotal/(numrow*numcol)) 
 
         Ptotal=SUM(P) 
         Pave(stat_counter)=(Ptotal/(numrow*numcol)) 
 
         Ztotal=SUM(Z) 
         Zave(stat_counter)=(Ztotal/(numrow*numcol)) 
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         Dtotal=SUM(D) 
         Dave(stat_counter)=(Dtotal/(numrow*numcol)) 
 
! Only do this if want variance, cv, and sd calculated 
         IF (stat_switch .eq. 1) THEN 
 
!Sum of all the Y's squared ,am using the computational formula 
         SumN = SUM(N * N) 
         SumP = SUM(P * P) 
         SumZ = SUM(Z * Z) 
         SumD = SUM(D * D) 
         Mapsize = numrow * numcol 
 
! Calculate the Variance 
         Nvar(stat_counter) = SumN - ((Ntotal*Ntotal)/Mapsize) 
         Pvar(stat_counter) = SumP - ((Ptotal*Ptotal)/Mapsize) 
         Zvar(stat_counter) = SumZ - ((Ztotal*Ztotal)/Mapsize) 
         Dvar(stat_counter) = SumD - ((Dtotal*Dtotal)/Mapsize) 
 
! Prevents round off error 
         IF (Nvar(stat_counter) .lt. .0001) THEN 
                Nvar(stat_counter) = 0.00000000000000 
         END IF 
 
         IF (Pvar(stat_counter) .lt. .0001) THEN 
                Pvar(stat_counter) = 0.00000000000000 
         END IF 
 
         IF (Zvar(stat_counter) .lt. .0001) THEN 
                Zvar(stat_counter) = 0.00000000000000 
         END IF 
 
         IF (Dvar(stat_counter) .lt. .0001) THEN 
                Dvar(stat_counter) = 0.00000000000000 
         END IF 
 
 ! Calculate the SD 
         Nsd(stat_counter)  = SQRT(ABS(Nvar(stat_counter))) 
         Psd(stat_counter)  = SQRT(ABS(Pvar(stat_counter))) 
         Zsd(stat_counter)  = SQRT(ABS(Zvar(stat_counter))) 
         Dsd(stat_counter)  = SQRT(ABS(Dvar(stat_counter))) 
 
 ! Calculate the CV 
         Ncv(stat_counter) = (Nsd(stat_counter)*100)/Nave(stat_counter) 
         Pcv(stat_counter) = (Psd(stat_counter)*100)/Pave(stat_counter) 
         Zcv(stat_counter) = (Zsd(stat_counter)*100)/Zave(stat_counter) 
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         Dcv(stat_counter) = (Dsd(stat_counter)*100)/Dave(stat_counter) 
 
         END IF 
 
! Write stats to output file 
    IF (file_switch .eq. 1) THEN 
         WRITE (30,FMT=*) Nmax(stat_counter),Nmin(stat_counter),Nave(stat_counter),  
& 
                         Nvar(stat_counter),Nsd(stat_counter),Ncv(stat_counter) 
         WRITE (31,FMT=*) Pmax(stat_counter),Pmin(stat_counter),Pave(stat_counter),  
& 
                         Pvar(stat_counter),Psd(stat_counter),Pcv(stat_counter) 
         WRITE (32,FMT=*) Zmax(stat_counter),Zmin(stat_counter),Zave(stat_counter),  
& 
                         Zvar(stat_counter),Zsd(stat_counter),Zcv(stat_counter) 
         WRITE (33,FMT=*) Dmax(stat_counter),Dmin(stat_counter),Dave(stat_counter),  
& 
                         Dvar(stat_counter),Dsd(stat_counter),Dcv(stat_counter) 
         WRITE (50,*) Nutrient, Light, Drate, Prate, Dgraz, Pgraz, Kd, ratelimit 
    END IF 
 
END IF 
 
END SUBROUTINE 
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General Model Subroutines 
 
 
 
!This routine determines when to call the various subroutines within the SLS based on a 
predetermined frequency. 
 
SUBROUTINE switches(irep) 
 
       USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: irep 
 
! Calculate map statistics and save output 
 
        If (simtime .ge. map_save) then 
               DT_trigger = ABS(MOD(counter,FileSaveFreq)) 
               IF (DT_trigger .eq. 0) THEN 
                         CALL stats 
               END IF 
        END If 
 
 ! Calculate external nutrient addition 
 ! need to check if a spot or an area 
               IF (counter .gt. StartNutSpike .and. counter .lt. EndNutSpike) THEN 
                        DT_trigger = ABS(MOD(counter,NutSpikeFreq)) 
                        IF (DT_trigger .eq. 0) THEN 
                              call nutspot 
                                                           !this is done so that the nutrient pulse isn't   
     confounded 
                        END IF                              !with the time-step of the model 
               END IF                                       !if were in biology would get fractionated by  
      the DT 
                                                            !could leave in but would have to divide the value  
     wanted by DT 
                                                            !to get the real value 
 
! Calculate fish predation 
! need to check for a spot or an area 
               IF (counter .gt. StartFishPred .and. counter .lt. EndFishPred) THEN 
                        DT_trigger = ABS(MOD(counter,FishPredFreq)) 
                        IF (DT_trigger .eq. 0) THEN 
                               call fishspot 
                        END IF 
               END IF                 
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! Calculate nutrient spot movement 
                IF (counter .gt. StartNutMove .and. counter .lt. EndNutMove) THEN 
                        DT_trigger = ABS(MOD(counter,NutMoveFreq)) 
                        IF (DT_trigger .eq. 0) THEN 
                                CALL nutmove 
                        END IF 
               END IF            
 
! Calculate fish predation movement 
               IF (counter .gt. StartFishMove .and. counter .lt. EndFishMove) THEN 
                        DT_trigger = ABS(MOD(counter,FishMoveFreq)) 
                        IF (DT_trigger .eq. 0) THEN 
                         CALL fishmove 
                        END IF 
               END IF            
 
END SUBROUTINE 
 
 
 
!This routine allocates the dimensions of all the arrays based on the mapsize and the 
simulation length 
 
SUBROUTINE allocation 
        USE global_variables 
        IMPLICIT NONE 
 
 ! Dimensions arrays according to the input provided by the user 
 
  ALLOCATE(N(numrow,numcol)) 
  ALLOCATE(P(numrow,numcol)) 
  ALLOCATE(Z(numrow,numcol)) 
  ALLOCATE(D(numrow,numcol)) 
         ALLOCATE(Nutinput(numrow,numcol)) 
  ALLOCATE(Pnew(numrow,numcol)) 
  ALLOCATE(Znew(numrow,numcol)) 
         ALLOCATE(BiomassOut(numrow,numcol)) 
  ALLOCATE(PredOut(numrow,numcol)) 
 ALLOCATE(PhytoGrowth(numrow,numcol)) 
 ALLOCATE(ZooGrowth(numrow,numcol)) 
 ALLOCATE(Ntransect(numrow),Ptransect(numrow),Ztransect(numrow), 
  Dtransect(numrow)) 
 ALLOCATE(Nautocorr(numrow/2),Pautocorr(numrow/2),Zautocorr(numrow/2), 
  Dautocorr(numrow/2)) 
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  ALLOCATE(Nmap(visual_switch,numrow,numcol)) 
  ALLOCATE(Pmap(visual_switch,numrow,numcol)) 
  ALLOCATE(Zmap(visual_switch,numrow,numcol)) 
  ALLOCATE(Dmap(visual_switch,numrow,numcol)) 
 ALLOCATE(Nmax(output_dimension),Pmax(output_dimension), 
   Zmax(output_dimension),Dmax(output_dimension)) 
 ALLOCATE(Nmin(output_dimension),Pmin(output_dimension), 
   Zmin(output_dimension),Dmin(output_dimension)) 
 ALLOCATE(Nave(output_dimension),Pave(output_dimension), 
   Zave(output_dimension),Dave(output_dimension)) 
  ALLOCATE (Nvar(output_dimension), Pvar(output_dimension), & 
                  Zvar(output_dimension) ,Dvar(output_dimension)) 
  ALLOCATE (Nsd(output_dimension), Psd(output_dimension),& 
                  Zsd(output_dimension) ,Dsd(output_dimension)) 
  ALLOCATE (Ncv(output_dimension), Pcv(output_dimension), & 
                  Zcv(output_dimension) ,Dcv(output_dimension)) 
 ALLOCATE (Narraymin(output_dimension),Narraymax(output_dimension),& 
                   Parraymin(output_dimension),Parraymax(output_dimension)) 
  ALLOCATE (Zarraymin(output_dimension),Zarraymax(output_dimension),& 
                   Darraymin(output_dimension),Darraymax(output_dimension)) 
 
END SUBROUTINE 
 
 
 
 
! This routine opens all the files which will be read or saved to during a simulation 
SUBROUTINE fileopen 
 
 USE global_variables 
        IMPLICIT NONE 
 
        OPEN (30, FILE='Nstats.dat', STATUS='unknown') 
        OPEN (31, FILE='Pstats.dat', STATUS='unknown') 
        OPEN (32, FILE='Zstats.dat', STATUS='unknown') 
        OPEN (33, FILE='Dstats.dat', STATUS='unknown') 
        OPEN (34, FILE='NPZDtrans.dat', STATUS='unknown') 
 
        OPEN (40, FILE='Nmap.dat', STATUS='unknown',form='unformatted') 
        OPEN (41, FILE='Pmap.dat', STATUS='unknown',form='unformatted') 
        OPEN (42, FILE='Zmap.dat', STATUS='unknown',form='unformatted') 
        OPEN (43, FILE='Dmap.dat', STATUS='unknown',form='unformatted') 
        OPEN (44, FILE='Ninputmap.dat', STATUS='unknown',form='unformatted') 
 
        OPEN (46, FILE='Pnewmap.dat', STATUS='unknown',form='unformatted') 
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        OPEN (47, FILE='Znewmap.dat', STATUS='unknown',form='unformatted') 
        OPEN (48, FILE='BiomassOut.dat', STATUS='unknown',form='unformatted') 
        OPEN (49, FILE='PredOut.dat', STATUS='unknown',form='unformatted') 
 OPEN (50, FILE='PhytoGrowth.dat', STATUS='unknown',form='unformatted') 
 OPEN (51, FILE='ZooGrowth.dat', STATUS='unknown',form='unformatted') 
 
        OPEN (52, FILE='rates.dat', STATUS='unknown') 
        OPEN (70, FILE='junk.dat', STATUS='unknown') 
         
 Write (70,*) 'contains time data' 
 
END SUBROUTINE 
 
 
!This routine closes all files which were opened during a simulation and deallocates 
arrays 
 
SUBROUTINE cleanup 
 
  USE global_variables 
        IMPLICIT NONE 
 
Endfile(40) 
Endfile(41) 
Endfile(42) 
Endfile(43) 
Endfile(44) 
Endfile(46) 
Endfile(47) 
Endfile(48) 
Endfile(49) 
Endfile(50) 
Endfile(51) 
 
! Close all opened files 
         CLOSE(30) 
         CLOSE(31) 
         CLOSE(32) 
         CLOSE(33) 
         CLOSE(34) 
         CLOSE(50) 
 CLOSE(51) 
 CLOSE(52) 
         CLOSE(70) 
     
! Removes allocated space from memory 
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        DEALLOCATE(N,P,Z,D) 
         DEALLOCATE (Pnew,Znew,BiomassOut,PredOut,PhytoGrowth,ZooGrowth) 
        DEALLOCATE (Nmap,Pmap,Zmap,Dmap) 
         DEALLOCATE(Nutinput) 
        DEALLOCATE(Nmax,Pmax,Zmax,Dmax) 
        DEALLOCATE(Nave,Pave,Zave,Dave) 
        DEALLOCATE(Nmin,Pmin,Zmin,Dmin) 
       DEALLOCATE(Nvar,Pvar,Zvar,Dvar) 
       DEALLOCATE(Nsd,Psd,Zsd,Dsd) 
        DEALLOCATE(Ncv,Pcv,Zcv,Dcv) 
       DEALLOCATE (xcenter,ycenter,rotation,& 
                  circlesize,starttime,freqswitch) 
         DEALLOCATE (cascade_switch,cascade_trigger,radius_stop_location) 
 
END SUBROUTINE 
 

 
 

This subroutine initializes the simulation domain and other spatial variables.  The 
initialization can also vary by state variable in the NPZD model. 
 
SUBROUTINE mapinit 
 
       USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: xx,yy 
 
! Flag to turn on and off multifractal initialization 1=turn on 
       IF (fractalinit .eq. 1) THEN 
 
         IF (stateinit .eq. 1) THEN 
       Call hfract(maxlevel_input,hclump_input,N(1,1),cv_input,N,iseed_input) 
         END IF 
         IF (stateinit .eq. 2) THEN 
       Call hfract(maxlevel_input,hclump_input,P(1,1),cv_input,P,iseed_input) 
         END IF 
         IF (stateinit .eq. 3) THEN 
       Call hfract(maxlevel_input,hclump_input,Z(1,1),cv_input,Z,iseed_input) 
         END IF 
         IF (stateinit .eq. 4) THEN 
       Call hfract(maxlevel_input,hclump_input,D(1,1),cv_input,D,iseed_input) 
         END IF 
       END IF 
 
       IF (fractalinit .eq. 3) THEN   !Cosine gradient 
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           DO xx = 1,numrow 
           DO yy = 1,numcol 
         IF (stateinit .eq. 1) THEN 
         N(xx,yy) = cos_map_max * ((1-COS((2*3.14*yy)/numcol))/2) 
         END IF 
         IF (stateinit .eq. 2) THEN 
         P(xx,yy) = cos_map_max * ((1-COS((2*3.14*yy)/numcol))/2) 
         END IF 
         IF (stateinit .eq. 3) THEN 
         Z(xx,yy) = cos_map_max * ((1-COS((2*3.14*yy)/numcol))/2) 
         END IF 
         IF (stateinit .eq. 4) THEN 
         D(xx,yy) = cos_map_max * ((1-COS((2*3.14*yy)/numcol))/2) 
         END IF 
           END DO 
           END DO 
       END IF 
 
!Done to create map for nutrient input chapter 
        !Takes initial value for nutrients and creates a separate nutrient input map 
        !  the same size as the simulation domain 
 
                IF (map_input .eq. 1) THEN 
          Call 
hfract(maxlevel_input,hclump_input,Nut_input_amount,cv_input,Nutinput,iseed_input) 
         END IF 
 
                IF (map_input .eq. 2) THEN 
          Call 
hfract(maxlevel_input,hclump_input,Nut_input_amount,cv_input,Nutinput,iseed_input) 
          Nutinput = Nut_input_amount        !sets the generated map to the map  
  mean 
         END IF 
 
                IF (map_input .eq. 3) THEN 
                        !default so that no map is created 
         END IF 
 
END SUBROUTINE 
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General Model Functions 
 
!The following functions are used in various subroutines to do special calculations 
 
 
 
FUNCTION circle(angle) 
 
        REAL :: angle 
         circle = angle 
         IF (angle .gt. 360.0) THEN 
             circle = (angle - 360.0) 
         END IF 
         IF (angle .lt. 0.0) THEN 
             circle = (angle + 360.0) 
         END IF 
 
END 
 
 
! Function will round a real number then convert it to an integer 
        ! location is the real representation of the number 
        ! round returns the integer representation of the number 
        ! If the number is negative it will round up (for example) 
                ! -3.876 will round to -4 
                ! -3.212 will round to -3 
 
Function round(location) 
        REAL :: location 
        INTEGER :: round 
 
 IF (location .lt. 0.0) THEN 
             round = INT(location - 0.5) 
 ELSE 
             round = INT(location + 0.5) 
 END IF 
END 
 
 
! Function will take a distance and an angle and convert it into an (x distance) use (trig) 
functions 
 
Function convert_x(length, angle) 
        REAL :: length, angle, conver 
    !    PRINT *,length, angle 
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        ! First quadrant 
        IF (angle .gt. 0.0 .and. angle .lt. 90.0) THEN 
                conver = angle * 0.0175                      ! conversion to radians 
           convert_x = length * COS(conver)             ! x location 
        END IF 
 
        ! Second quadrant 
        IF (angle .gt. 90.0 .and. angle .lt. 180.0) THEN 
                conver = angle - 90.0                        ! quadrant modification 
                conver = conver * 0.0175                     ! conversion to radians 
              cosine = -SIN(conver)                        ! quadrant modification 
           convert_x = length * cosine                  ! x location 
        END IF 
 
        ! Third quadrant 
        IF (angle .gt. 180.0 .and. angle .lt. 270.0) THEN 
                conver = angle - 180.0                       ! quadrant modification 
                conver = conver * 0.0175                     ! conversion to radians 
              cosine = -COS(conver)                        ! quadrant modification 
          convert_x = length * cosine                  ! x location 
        END IF 
 
        ! Fourth quadrant 
        IF (angle .gt. 270.0 .and. angle .lt. 360.0) THEN 
                conver = angle - 270.0                       ! quadrant modification 
                conver = conver * 0.0175                     ! conversion to radians 
              cosine = SIN(conver)                         ! quadrant modification 
           convert_x = length * cosine                  ! x location 
        END IF 
 
END 
 
 
! Function will take a distance and an angle and convert it into an (y distance) use (trig) 
functions 
 
Function convert_y(length, angle) 
 
        REAL :: length, angle, conver 
 
     !   PRINT *, length, angle 
 
        ! First quadrant 
        IF (angle .gt. 0.0 .and. angle .lt. 90.0) THEN 
                conver = angle * 0.0175     ! conversion to radians 
           convert_y = length * SIN(conver)      ! y location 
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        END IF 
 
        ! Second quadrant 
        IF (angle .gt. 90.0 .and. angle .lt. 180.0) THEN 
                conver = angle - 90.0                           ! quadrant modification 
                conver = conver * 0.0175                        ! conversion to radians 
              sine = COS(conver)                              ! quadrant modification 
           convert_y = length * sine                       ! y location 
        END IF 
 
        ! Third quadrant 
        IF (angle .gt. 180.0 .and. angle .lt. 270.0) THEN 
                conver = angle - 180.0                          ! quadrant modification 
                conver = conver * 0.0175                        ! conversion to radians 
              sine = -SIN(conver)                             ! quadrant modification 
           convert_y = length * sine                       ! y location 
        END IF 
 
        ! Fourth quadrant 
        IF (angle .gt. 270.0 .and. angle .lt. 360.0) THEN 
                conver = angle - 270.0                          ! quadrant modification 
                conver = conver * 0.0175                        ! conversion to radians 
              sine = -COS(conver)                             ! quadrant modification 
           convert_y = length * sine         ! y location 
        END IF 
 
END 
 
 
! creates a normal number by summing 12 uniform random numbers 
! creates a number between (-6 and 6) 
! 95% of the numbers fall between 0 and 2 in a normal distribution 
 
       function Gauss(xm, xs, iseed) 
       real xm, xs, sume 
       sume = 0.0 
       do i = 1,12 
           sume = sume + ran1(iseed) 
       enddo 
       Gauss = (sume - 6.0) * xs + xm 
       return 
       end 
 
 
    real function ran1 (idum) 
!  returns a uniform random deviate between 0.0 and 1.0.   
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!  Set IDUM to any negative value to initialize or reinitialize 
!    the sequence. 
!  (C) Copr. 1986-92 Numerical Recipes Software  
! 
      integer idum, ia, im, iq, ir, ntab, ndiv 
      real am, eps, rnmx 
      parameter (ia=16807, im=2147483647, am=1./im, iq=127773, ir=2836, & 
     &   ntab=32, ndiv=1+(im-1)/ntab, eps=1.2e-7, rnmx=1.-eps) 
      integer j, k, iv(ntab), iy 
      save iv, iy 
      data iv /ntab*0/, iy /0/ 
! 
      if (idum .le. 0 .or. iy .eq. 0) then 
        idum = max(-idum,1) 
        do j = ntab+8, 1, -1 
          k = idum / iq 
          idum = ia * (idum - k*iq) - ir*k 
          if (idum .lt. 0) idum = idum + im 
          if (j .le. ntab) iv(j) = idum 
        enddo 
! 
        iy = iv(1) 
      endif 
! 
      k = idum / iq 
      idum = ia * (idum - k*iq) - ir*k 
      if (idum .lt. 0) idum = idum+im 
      j = 1 + iy / ndiv 
      iy = iv(j) 
      iv(j) = idum 
      ran1 = min(am*iy, rnmx) 
! 
      return 
      end 
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Misc Model Subroutines (Prototype) 
 
The following subroutines were not used in the chapters presented in the final dissertation 
but were used in preliminary experiments investigating the effects of spatial and temporal 
heterogeneity in nutrient input and fish predation on spatial patterns and biological 
dynamics.  Some of these routines are still in development but are included here as 
addition code which may be useful for studies involving these key ecosystem forcing 
functions. 
 
 
SUBROUTINE nutmove 
 
        USE global_variables 
        IMPLICIT NONE 
 
! Local variables 
        REAL :: ran_dir, ran_angle, mean_angle 
 
!Functions 
        INTEGER :: round 
        REAL :: ran1, Gauss, circle 
        REAL :: convert_x, convert_y 
 
        counter_nut = counter_nut + 1 
        IF (counter_nut .eq. 1) THEN 
 
! Pick a random location for the predation starting location 
            !   xlocation_nut = ran1(iseed_input) * numrow 
            !   ylocation_nut = ran1(iseed_input) * numcol 
 
! Set up for center of map-for sensitivity chapter 
             xlocation_nut = numrow/2 
             ylocation_nut = numcol/2 
 
! Pick a random direction (outside of main loop) 
! Random number between (0-1) 
! Use the ran1 function 
! (iseed)=random seed number used to initialize the routine 
! ran_dir gives a percent of 360 based on the random number generated 
                ran_dir = ran1(iseed_input) * 360 
 
      Else 
 
! Main Loop 
! Pick a random angle deviation (this will determine how correlated the values are to one 
another) 
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! Small (SD) will give a small turning radius 
! Pick a random distance 
! Do not allow negative values so take the absolute value of the returned result 
 
! The (gauss) function returns a value between (-6 and 6) which are normally distributed 
!  most of the values fall between (-2 and 2) roughly 95% 
!  so a (SD) of (180) will give the occasional 360 degree turn 
!  pick an (SD) which is the same as the turning radius that you want 
!      well at least where you want most of the values to fall 
 
! Need to initialize predation pressure so that it doesn't keep that pressure 
! at that spot over the whole simulation period 
 
     !!   nut_predation = 0.0 
 
! Set mean_angle to (0.0) so that angle has no bias but could set to other values to give a 
bias 
        mean_angle = 0.0 
 
! Calculate a new random angle based on standard deviation 
        ran_angle = (Gauss (0.0,1.0,iseed_input) * angle_nut) + mean_angle 
 
! Add the new angle to the old angle from outside of the loop 
        ran_dir = ran_dir + ran_angle 
 
! If past (360) start a new circle 
        ran_dir = circle(ran_dir) 
 
! Based on angle (ran_dir) and (distance) determine the new map location (absolute units 
!from the original position)  --used trigonometry functions and convert to Cartesian 
!coordinates 
! There is an error in the (Y) direction in Cartesian coordinates 
        x_location_nut = convert_x(distance_nut,ran_dir) 
        y_location_nut = convert_y(distance_nut,ran_dir) 
 
! Round and make an integer value 
! Also convert to grid coordinates for the (units only) as the (X) units are already correct 
!  The grid command counts down in the (Y) direction as opposed to up in Cartesian 
coordinates 
 
!  Need to place a negative in front of the value for (Y) 
        x_new_nut = round(x_location_nut) 
        y_new_nut = -(round(y_location_nut)) 
 
! Move to the new position 
        xlocation_nut = xlocation_nut + x_new_nut 
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        ylocation_nut = ylocation_nut + y_new_nut 
 
! Need to check for the map edge (for wrapped boundaries) need to wrap the location 
        IF (xlocation_nut .gt. numcol) THEN 
          xlocation_nut = xlocation_nut - numcol 
        END IF 
 
        IF (xlocation_nut .lt. 1) THEN 
              xlocation_nut = numcol + xlocation_nut 
        END IF 
 
        IF (ylocation_nut .gt. numrow) THEN 
             ylocation_nut = ylocation_nut - numrow 
        END IF 
 
        IF (ylocation_nut .lt. 1) THEN 
            ylocation_nut = numrow + ylocation_nut 
        END IF 
 
        END If 
 
END SUBROUTINE 
 
 
 
 
SUBROUTINE fishmove 
 
        USE global_variables 
        IMPLICIT NONE 
 
! Local variables 
        REAL :: ran_dir, ran_angle, mean_angle 
 
!Functions 
        INTEGER :: round 
        REAL :: ran1, Gauss, circle 
        REAL :: convert_x, convert_y 
 
 
     counter_fish = counter_fish + 1 
        IF (counter_fish .eq. 1) THEN 
 
! Pick a random location for the predation starting location 
               ! xlocation_fish = ran1(iseed_input) * numrow 
               ! ylocation_fish = ran1(iseed_input) * numcol 
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                xlocation_fish =  numrow/2 
             ylocation_fish =  numcol/2 
 
 
! Pick a random direction (outside of main loop) 
! Random number between (0-1) 
! Use the ran1 function 
! (iseed)=random seed number used to initialize the routine 
! ran_dir gives a percent of 360 based on the random number generated 
                ran_dir = ran1(iseed_input) * 360 
 
      Else 
 
! Main Loop 
! Pick a random angle deviation (this will determine how correlated the values are to one 
another) 
! Small (SD) will give a small turning radius 
! Pick a random distance 
! Do not allow negative values so take the absolute value of the returned result 
 
! The (gauss) function returns a value between (-6 and 6) which are normally distributed 
!  most of the values fall between (-2 and 2) roughly 95% 
!  so a (SD) of (180) will give the occasional 360 degree turn 
!  pick an (SD) which is the same as the turning radius that you want 
!      well at least where you want most of the values to fall 
 
! Need to initialize predation pressure so that it doesn't keep that pressure 
! at that spot over the whole simulation period 
 
     !!   fish_predation = 0.0 
 
! Set mean_angle to (0.0) so that angle has no bias but could set to other values to give a 
bias 
        mean_angle = 0.0 
 
! Calculate a new random angle based on standard deviation 
        ran_angle = (Gauss (0.0,1.0,iseed_input) * angle_fish) + mean_angle 
 
! Add the new angle to the old angle from outside of the loop 
        ran_dir = ran_dir + ran_angle 
 
! If past (360) start a new circle 
        ran_dir = circle(ran_dir) 
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! Based on angle (ran_dir) and (distance) determine the new map location (absolute units 
!from the original position)  --used trigonometry functions and convert to Cartesian 
!coordinates 
! There is an error in the (Y) direction in Cartesian coordinates 
        x_location_fish = convert_x(distance_fish,ran_dir) 
        y_location_fish = convert_y(distance_fish,ran_dir) 
 
! Round and make an integer value 
! Also convert to grid coordinates for the (units only) as the (X) units are already correct 
!  The grid command counts down in the (Y) direction as opposed to up in Cartesian 
coordinates 
!  Need to place a negative in front of the value for (Y) 
        x_new_fish = round(x_location_fish) 
        y_new_fish = -(round(y_location_fish)) 
 
! Move to the new position 
        xlocation_fish = xlocation_fish + x_new_fish 
        ylocation_fish = ylocation_fish + y_new_fish 
 
! Need to check for the map edge (for wrapped boundaries) need to wrap the location 
        IF (xlocation_fish .gt. numcol) THEN 
          xlocation_fish = xlocation_fish - numcol 
        END IF 
 
        IF (xlocation_fish .lt. 1) THEN 
              xlocation_fish = numcol + xlocation_fish 
        END IF 
 
        IF (ylocation_fish .gt. numrow) THEN 
             ylocation_fish = ylocation_fish - numrow 
        END IF 
 
        IF (ylocation_fish .lt. 1) THEN 
            ylocation_fish = numrow + ylocation_fish 
        END IF 
 
        END If 
 
END SUBROUTINE 
 
 
 
SUBROUTINE Nutspot 
 
 USE global_variables 
        IMPLICIT NONE 
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        INTEGER :: iii, jjj, map_area,spot_radius_round 
        INTEGER :: ylocation_new, xlocation_new, new_loc_y, new_loc_x 
        REAL :: spot_area, spot_radius, spot_diameter, spot_distance 
 
! Check for a spot, radius, or uniform effect 
! If equal to 1 = spot (values = 2-9 = are circles of different radius) 
        IF (nutradius .eq. 1 .or. nutradius .eq. 10) then 
 
                IF (nutradius .eq. 1) THEN        !nutrient spot effect 
                        N(ylocation_nut,xlocation_nut) = N(ylocation_nut,xlocation_nut) +  
  NutSlugAmount 
                END IF 
 
                IF (nutradius .eq. 10) THEN       !uniform nutrient addition 
                        N = N + NutSlugAmount 
                END IF 
 
        Else 
 
! Decide on size of spot 
 
! Minimum mapsize = 16x16 below this will get errors because will be less than one cell 
! Spotsize will exceed the resolution of the grid 
 
! Draw a circle around the selected point on the map 
        SELECT CASE (nutradius) 
                CASE (2)  ! (1/2 the area of the map) 
                       map_area = 2 
                CASE (3)  ! (1/4 the area of the map) 
                       map_area = 4 
                CASE (4)  ! (1/8 the area of the map) 
                       map_area = 8 
                CASE (5)  ! (1/16 the area of the map) 
                       map_area = 16 
                CASE (6)  ! (1/32 the area of the map) 
                       map_area = 32 
                CASE (7)  ! (1/64 the area of the map) 
                       map_area = 64 
                CASE (8)  ! (1/128 the area of the map) 
                       map_area = 128 
                CASE (9)  ! (1/256 the area of the map) 
                       map_area = 256 
                case (11) 
                       map_area = 512 
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   END SELECT 
 
! Now calculate the area of the circle based on the mapsize 
        spot_area = ((numrow * numcol)/(map_area)) 
! Calculate the radius of the circle 
        spot_radius = SQRT(spot_area/3.14159) 
! Round radius up to the nearest whole number 
        spot_radius_round = INT(spot_radius + 0.5) 
! Calculate diameter of the circle 
        spot_diameter = spot_radius_round * 2 
 
! Loop over square which encompasses circle 
        DO iii = 1, (spot_diameter + 1)        !down columns (Y) 
            DO jjj = 1, (spot_diameter + 1)  !across rows (X) 
 
! Initialize location from value outside of subroutine (old location on map) 
         ylocation_new = ylocation_nut 
                xlocation_new = xlocation_nut 
 
! Find location within square 
                new_loc_y = (iii-(spot_radius_round + 1)) 
                new_loc_x = (jjj-(spot_radius_round + 1)) 
                spot_distance = SQRT(Real((new_loc_y * new_loc_y) + (new_loc_x * 
new_loc_x))) 
 
! Check to see if location falls within circle 
! If it does then make this the new location 
                IF (spot_distance .le. spot_radius) THEN 
 
                 ylocation_new = ylocation_new + new_loc_y 
                        xlocation_new = xlocation_new + new_loc_x 
 
! Need to check for the map edge (for wrapped boundaries) need to wrap the location 
 
                 IF (xlocation_new .gt. numcol) THEN 
                         xlocation_new = xlocation_new - numcol 
                 END IF 
 
                 IF (xlocation_new .lt. 1) THEN 
                         xlocation_new = numcol + xlocation_new 
                 END IF 
 
                 IF (ylocation_new .gt. numrow) THEN 
                         ylocation_new = ylocation_new - numrow 
                 END IF 
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                 IF (ylocation_new .lt. 1) THEN 
                         ylocation_new = numrow + ylocation_new 
                 END IF 
 
! Create effect at location 
                        N(ylocation_new,xlocation_new) = N(ylocation_new,xlocation_new) + 
NutSlugAmount 
               END IF 
 
           END DO 
 END DO 
     end if 
 
END SUBROUTINE 
 
 
 
 
SUBROUTINE fishspot 
 
 USE global_variables 
        IMPLICIT NONE 
 
        INTEGER :: iii, jjj, map_area,spot_radius_round, i, j 
        INTEGER :: ylocation_new, xlocation_new, new_loc_y, new_loc_x 
        REAL :: spot_area, spot_radius, spot_diameter, spot_distance 
 
! Check for a spot, radius, or uniform effect 
! If equal to 1 = spot (values = 2-9 = are circles of different radius) 
        IF (fishradius .eq. 1 .or. fishradius .eq. 10) then 
 
                IF (fishradius .eq. 1) THEN        !nutrient spot effect 
                        Z(ylocation_fish,xlocation_fish) = Z(ylocation_fish,xlocation_fish) -  
  FishExt 
 
                         Fishfood = FishExt         !!!!!!!!!!!!!!!!! 
                        IF (Z(ylocation_fish,xlocation_fish) .lt. 0.0) THEN 
                                Z(ylocation_fish,xlocation_fish) = 0.0 
                                 Fishfood = FishExt - (FishExt - Z(ylocation_fish,xlocation_fish))                           
 END IF 
 
                END IF 
 
                IF (fishradius .eq. 10) THEN       !uniform fish addition 
                        Z = Z - FishExt 
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                        Fishfood = FishExt 
 
                        DO i = 1,numcol 
                        DO j = 1,numrow 
                         IF (Z(i,j) .LT. 0.0) THEN                           !check for zero values 
                                        Z(i,j) = 0.0 
                                        Fishfood = FishExt - (FishExt - Z(i,j)) 
                                END IF 
                        END DO                     !allows to keep track of bioenergetics 
                        END DO                     !can allow movement based on food supply 
                                                   !array operation not sure if will work 
                END IF 
 
        Else 
 
! Decide on size of spot 
 
! Minimum mapsize = 16x16 below this will get errors because will be less than one cell 
! Spotsize will exceed the resolution of the grid 
 
! Draw a circle around the selected point on the map 
        SELECT CASE (fishradius) 
                CASE (2)  ! (1/2 the area of the map) 
                       map_area = 2 
                CASE (3)  ! (1/4 the area of the map) 
                       map_area = 4 
                CASE (4)  ! (1/8 the area of the map) 
                       map_area = 8 
                CASE (5)  ! (1/16 the area of the map) 
                       map_area = 16 
                CASE (6)  ! (1/32 the area of the map) 
                       map_area = 32 
                CASE (7)  ! (1/64 the area of the map) 
                       map_area = 64 
                CASE (8)  ! (1/128 the area of the map) 
                       map_area = 128 
                CASE (9)  ! (1/256 the area of the map) 
                       map_area = 256 
   END SELECT 
 
! Now calculate the area of the circle based on the mapsize 
        spot_area = ((numrow * numcol)/(map_area)) 
! Calculate the radius of the circle 
        spot_radius = SQRT(spot_area/3.14159) 
! Round radius up to the nearest whole number 
        spot_radius_round = INT(spot_radius + 0.5) 
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! Calculate diameter of the circle 
        spot_diameter = spot_radius_round * 2 
 
! Loop over square which encompasses circle 
        DO iii = 1, (spot_diameter + 1)        !down columns (Y) 
            DO jjj = 1, (spot_diameter + 1)  !across rows (X) 
 
! Initialize location from value outside of subroutine (old location on map) 
         ylocation_new = ylocation_fish 
                xlocation_new = xlocation_fish 
 
! Find location within square 
                new_loc_y = (iii-(spot_radius_round + 1)) 
                new_loc_x = (jjj-(spot_radius_round + 1)) 
                spot_distance = SQRT(Real((new_loc_y * new_loc_y) + (new_loc_x * 
new_loc_x))) 
 
! Check to see if location falls within circle 
! If it does then make this the new location 
                IF (spot_distance .le. spot_radius) THEN 
 
                 ylocation_new = ylocation_new + new_loc_y 
                        xlocation_new = xlocation_new + new_loc_x 
 
! Need to check for the map edge (for wrapped boundaries) need to wrap the location 
 
                 IF (xlocation_new .gt. numcol) THEN 
                         xlocation_new = xlocation_new - numcol 
                 END IF 
 
                 IF (xlocation_new .lt. 1) THEN 
                         xlocation_new = numcol + xlocation_new 
                 END IF 
 
                 IF (ylocation_new .gt. numrow) THEN 
                         ylocation_new = ylocation_new - numrow 
                 END IF 
 
                 IF (ylocation_new .lt. 1) THEN 
                         ylocation_new = numrow + ylocation_new 
                 END IF 
 
! Create effect at location 
                        Z(ylocation_new,xlocation_new) = Z(ylocation_new,xlocation_new) -  
  FishExt 
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                        Fishfood = FishExt 
 
                        IF (Z(ylocation_new,xlocation_new) .lt. 0.0) THEN 
                                Z(ylocation_new,xlocation_new) = 0.0 
                                Fishfood = FishExt - (FishExt - Z(ylocation_new,xlocation_new)) 
                        END IF 
 
               END IF 
 
           END DO 
 END DO 
 
     end if 
 
END SUBROUTINE 
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	 Appendix A:  Model state variable and parameter descriptions
	Listed below is a description of the state variables and parameters shown in Table 1.1 and a brief explanation of why a particular value was chosen for the simulations.
	State Variables
	N = The amount of dissolved inorganic nitrogen (gN) in the water column per cubic meter.  The nitrogen components are for ammonia, nitrite and nitrate.  Other sources of nitrogen are not modeled (e.g., urea).  The initial value used for the simulations was based on equilibrium values.
	P  = The amount of phytoplankton biomass (gC) in the water column per cubic meter.  The phytoplankton compartment consists mainly of a range of size classes from flagellates to diatoms aggregated together.  The initial value used for the simulations was based on equilibrium values.
	Z  = The amount of zooplankton biomass (gC) in the water column per cubic meter.  The zooplankton compartment consists mainly of micro and macro zooplankton species.  The initial value used for the simulations was based on equilibrium values.
	D  = The amount of particulate material (gC) in the water column per cubic meter.  This compartment is meant to approximate a microbial loop and to consist of both living and non-living material (i.e., dead phytoplankton and zooplankton, bacteria, protozoan).  The initial value used for the simulations was based on equilibrium values.
	Parameters
	No = The concentration of dissolved inorganic nitrogen below the mixed layer.  The 0.30 gN m-3 value used is within the range found for sub-thermocline nitrogen values in the mainstem of the Chesapeake Bay during the summer months (Kemp et al. 1990).  This pool supplies all the nitrogen inputs to the model when there are no external nutrient inputs and is assumed to be unaffected by the other processes occurring in the model.
	Nd =  The diffusion rate across the thermocline.  This parameter is highly variable and can be parameterized with a wide range of values depending on the stability of the thermocline or the amount of turbulence in the mixed layer.  Edwards and Brindley (1999), based on a mixed layer depth of 12.5 m found a range of values (0.0008-0.13 day-1) from the literature.  I chose a value of 0.02 day-1 which can be converted into a vertical eddy diffusivity with the following equation: Diffusivity = percent flux * ((deltaX)2 / (deltaT)).  Using a deltaX of 5 m and a deltaT of 86,400 sec, you obtain a vertical diffusivity of 5.8x10-6 cm2 sec-1 which is within the range found for stratified interior conditions (Sanford 1997) and similar to other values used in models parameterized to the Chesapeake Bay (Johnson et al. 1993).  The value was set at the low range to simulate the stratified conditions in the summer months and using this value and the dissolved nitrogen concentration below the mixed layer results in a maximum nitrogen input to the mixed layer of 0.006 gN day-1 assuming no nitrogen is present in the mixed layer.
	Rf  = The respiratory losses for fish is the fraction of the zooplankton biomass that is removed by fish predation and then recycled directly back to the nutrient compartment.  The parameter represents excretion components lost from the fish during movement and feeding within the model domain and was arbitrarily set at 0.10 day-1.
	Pmax = The maximum phytoplankton growth rate under non-limiting conditions and optimal temperature.  I chose a growth rate of 2.8 day-1 similar to a value used by Fasham et al. (1990) and within the range (0.14-8.11 day-1) reported for natural populations in marine and coastal areas (Parsons et al. 1984).
	Rp = The respiratory losses for phytoplankton is the proportion of biomass loss each day due to cell maintenance and respiration.  A wide range of values is found in the literature so I used the common value of 0.05 day-1 found in many models of this type.
	Mp = The mortality losses for phytoplankton is the proportion of biomass lost each day due to natural mortality such as cell senescence.  Many values can be used for this parameter depending on if other mortality factors are included (e.g., predation, starvation, etc).  Since I have separated zooplankton predation from this term, a low natural mortality rate of 0.05 day-1 seemed appropriate and consistent with values used in other models.
	Sp = The sinking losses for phytoplankton is the proportion of biomass lost each day due to the loss of phytoplankton from the water column from sinking and mixing below the thermocline.  I used a value of 0.05 day-1 which, when combined with a mixed layer depth of 5 m, gives a sinking rate of 0.25 m day-1.  The value used is within the range found for natural mixed assemblage communities (Bienfang 1981). 
	In = The light half-saturation constant is the intensity of light that is one-half the amount needed to give maximum productivity.  I chose a value of 10 E m-2 d-1 to correspond roughly to half of the surface light intensity so that in the absence of self-shading and light attenuation effects, the phytoplankton could grow near their light saturated maximal values.  Kirk (1994) reports values for this parameter for marine microalgae in the range of (4.32-70.7 E m-2 d-1).
	Io = The surface light intensity after correcting for reflectance due to the water surface.  The value of 26 E m-2 d-1 reflects an actual surface intensity of 52 E m-2 d-1 which is within the range of values reported for the Chesapeake Bay (Harding et al. 1986).
	Kc = The attenuation of light in the water column due to phytoplankton biomass.  The value 0.4 m2 g-1 was taken from Edwards and Brindley (1996) and falls within the range found in the literature (0.3-1.2 m2 g-1).
	Kw = The attenuation of light in the water column due to non-living particulate and dissolved material.  A value of 0.2 m-1 was used so that with equilibrium phytoplankton concentrations (0.38 gC m-3) the total light attenuation (Kd) coefficient would be 0.352 m-1 which falls within the range (0.1-3.0 m-1) typical for coastal waters (Lorenzen 1972) and found in the Chesapeake Bay (Harding et al. 1986).
	Kz = The depth of the mixed layer in the Chesapeake Bay over the summer stratification period.  I used a value of 5 m and assumed that this is a typical mixed layer depth in the mesohaline regions of the Chesapeake Bay based on a range of values reported from cruises in Harding et al. (1985). 
	Kn = The nutrient half-saturation constant is the concentration of nitrogen that will give half of the maximum nutrient uptake rate. A value of 0.02 gN m-3 was used which falls within the range of values reported for large and small phytoplankton (Eppley et al. 1969; Goldman and Glibert 1983).
	Zmax = The maximum zooplankton ingestion rate of phytoplankton biomass under optimal temperature and prey densities.  Edwards and Brindley (1996) report a range for this value of (0.6-1.4 day-1) from other marine biogeochemical models.  I chose a mean value of 1.0 day-1 which is also the value used by several other models (Fasham et al. 1990; Doney et al. 1996; Denman and Pena 1999)
	Az = The assimilation efficiency reflects the proportion of consumed phytoplankton biomass that is converted into zooplankton biomass.  Typical values for this parameter range from (0.7-0.9 day-1).  Several models (Dadou et al. 1996; Denman and Pena 1999; Druon and Fevre 1999) use a value of 0.7 day-1 which is the value I decided to use for my simulations.
	Rz = The respiratory losses for zooplankton is the fraction of zooplankton biomass that is lost due to excretion and respiration.  The value used in the simulations (0.25 day-1) is within the wide range of values (0.05-0.80 day-1) found in the literature (Fasham et al. 1990; Edwards and Brindley 1996; Druon and Fevre 1999).
	Mz = The mortality losses for zooplankton reflect the amount of biomass lost due to natural and density dependent mortality factors (e.g., starvation, cannibalism).  This parameter is a quadratic function of biomass and was given a value of 1.0 day-1 (gC m-3)-1 after Edwards and Brindley (1996) who also found a range of (0.25-2.0) for this parameter in the literature.  Using this parameter value translates into a loss rate equal to the zooplankton biomass value, which under equilibrium zooplankton densities, becomes a loss rate of 0.056 day-1.  The implications of using this particular parameter value and formulation is that the zooplankton biomass can never exceed 1.0 gC m-3 assuming there are no other loss terms for the zooplankton.
	k =  The half-saturation constant for zooplankton grazing represents the concentration of phytoplankton or detritus that will result in a grazing rate that is one-half the maximal value.  A value of  0.10 gC m-3 was used based on similar values by Evans and Parslow (1985) and Armstrong (1994).  The parameter is the same for both phytoplankton and detritus.
	Ppref  = The preference for phytoplankton over detritus by zooplankton.  A value of 0.5 will give equal preference.  In my simulations I used a value of 0.7 to give phytoplankton a higher preference over detrital material similar to Loukos et al. (1997) and Fasham (1995). 
	Rd = The remineralization rate of detrital material into dissolved inorganic nitrogen due to bacteria decompositional processes.  A rate of 0.05 or 0.1 day-1 has typically been used in other NPZD models (Fasham 1995; Doney et al. 1996; Edwards 2001) but rates as high as 0.2 and 0.3 day-1 are also used (Dadou et al. 1996; Kemp et al. 2001).  I chose a value of 0.2 day-1 for my simulations to reflect the higher decomposition rates occurring during the summer months in the Chesapeake Bay.
	Sd = The sinking loss rate for detritus is the proportion of biomass lost each day due to the loss of detritus from the water column from sinking and mixing below the thermocline.  I used a value of 0.05 day-1 to correspond to the value used for the phytoplankton sinking rate.  When combined with a mixed layer depth of 5 m this value gives a sinking rate of 0.25 m day-1.  A higher sinking rate, as is often used in other models, is probably warranted especially considering that the detrital material also consists of fecal pellets and dead zooplankton (Fasham et al. 1990; Druon and Fevre 1999; Edwards 2001; Fennel et al. 2001)
	Fd  = The unassimilated losses from fish is the fraction of the zooplankton biomass that is removed by fish predation and then is recycled back to the detrital compartment.  The parameter represents mostly unassimilated zooplankton biomass and some fecal pellet production that occurs during fish movement and feeding within the model domain.  The parameter was arbitrarily set at 0.40 day-1.  An alternative pathway for this variable would be to have this material exported from the model as if often done with other studies (Fasham et al. 1990; Edwards 2001) due to rapid sinking associated with fish fecal material providing little time for remineralization. 
	External Drivers (Sensitivity Experiments)
	η  = The nutrient input rate is the amount of nutrient input to the model from outside sources.  For the sensitivity experiments, a range of values (0.0-0.64 gN m-3 day-1) were utilized to force the model to go from an oligotrophic to a eutrophic state as described in section (2.2.5). 
	µ  = The water exchange rate represents the amount of material that is lost from the model domain due to dilution effects with the surrounding water.  The loss affects all the state variables equally.  For the sensitivity treatments, I used a range of values (0.0-0.20 day-1) to simulate changes in the size or amount of flushing occurring in the model as described in section (2.2.5).
	ν  = The fish predation rate for zooplankton is the proportion of zooplankton biomass that is removed by fish predation.  This parameter was used as a treatment variable in my sensitivity experiments and was varied from (0.0-0.80 day-1) to simulate a gradient in the degree of top-down control as described in section (2.2.5).
	 Appendix B:  Sensitivity Analysis
	There are numerous techniques available to conduct a sensitivity analysis on model simulation results (e.g., Brylinsky 1972; Rose and Swartzman 1981; Dale et al. 1988; Hakanson 2000; for recent reviews see Hamby 1995; Homma and Saltelli 1996).  Most of the methods can be categorized under two headings, relative and global.  A relative sensitivity analysis is the technique most often seen in the literature and is sometimes called individual parameter perturbation experiments.  With this technique parameters are systematically increased or decreased over a predetermined range (e.g., +/- 10%), with the subsequent change in model output recorded.  Global sensitivity analysis is similar to a relative sensitivity analysis except that the parameters are varied over the whole range found in the literature for a particular parameter.  While useful for a number of applications, these methods of sensitivity analysis can lead to an incomplete picture of the relationship between sensitive parameters.  Since only one parameter at a time is varied there is no way to understand the interactions between model parameters and previous studies have also demonstrated that when there are large errors in all parameters, nonlinear and higher order effects dominate the outcome and seriously limit the applicability of results (Gardner et al. 1980a; Gardner et al. 1980b; Gardner et al. 1981).  Sensitivity analysis is most powerful when the parameter errors are small and each parameter contributes independently to prediction error.
	An alternative to the above types of sensitivity analysis is a method developed by Gardner and Trabalka (1985).  With this method, Latin hypercube sampling is used to simultaneously vary all parameters by +/- 1% of their default value giving an unbiased indication of a model’s sensitivity to a minimal change in parameter value while also taking into account the interactive effects of the other parameters.  The benefits of this method are that it greatly reduces the number of simulations needed, allows for extensive replication through Monte Carlo analysis, and provides an unbiased estimation of parameter importance with only a minimal change in parameter value.  The technique has been used to address a wide range of issues which include: plankton productivity (Bartell et al. 1988a), toxicological effects (O’Neill et al. 1983), top-down and bottom-up controls on productivity (Bartell et al. 1988b) and forest development (Dale et al. 1988).  The method is even more powerful when combined with other complementary analysis techniques like uncertainty and error analysis (Gardner et al. 1980a; Gardner et al. 1980b; Gardner et al. 1981; Gardner 1984; Bartell et al. 1986; Gardner et al. 1990; Rose et al. 1991).
	Each sensitivity analysis conducted in chapter 2 followed the steps outlined in Figure. B.1.  First, an input file is created which contains all of the baseline values for each of the parameters to be varied in the sensitivity analysis.  This file also specifies the range that the parameters will be varied (0-100 percent), the type of sampling distribution from which to take values (normal, log, uniform, exponential) and the number of replications (should be at least 100).  Second, the file from step one is input into a program (i.e., PRISM) that uses a Latin hypercube sampling algorithm to generate random parameter sets based on the input file specifications (Gardner et al. 1983).  For chapter 2, the specifications were to vary each of the parameters by 1% over a normal distribution and to create 100 independent parameter sets.  Third, the generated output file from the PRISM program, containing the 100 distributions for each of the 
	Figure B.1.  Schematic showing the steps involved in conducting a sensitivity analysis for each of the treatment combinations. 
	 parameters, is sequentially read in by the simulation model.  Fourth, at the end of each simulation run the partial derivatives for the four state variables and the input parameter values for that particular simulation are saved to a separate file.  Fifth, this output file is then read in by another program which calculates the actual sensitivities for each parameter, along with, other statistics such as mean, max, min, coefficient of variation, and parameter correlations.



