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The dynamics of droplets in confined microfluidic geometries is a problem of

fundamental interest as such flow conditions occur in multiphase flows in porous

media, biological systems, microfluidics and material science applications. In this

thesis, we investigate computationally the dynamics of naturally buoyant droplets,

with constant surface tension, in cross-junctions and T-junctions constructed from

square microfluidic channels. A three-dimensional fully-implicit interfacial spectral

boundary element method is employed to compute the interfacial dynamics of the

droplets in the junctions and investigate the problem physics for a wide range of

flow rates, viscosity ratios and droplet sizes.

Our investigation reveals that as the flow rate or the droplet size increases,

the droplets show a rich deformation behavior as they move inside the microfluidic

devices. In the cross-junction, after obtaining a bullet-like shape before the flow

intersection, the droplet become very slender inside the junction (to accommodate

the intersecting flows), then it obtains an inverse-bullet shape as it exits the junction

which reverts to a more pointed bullet-like shape far downstream. In the T-junction,

the droplet obtains a skewed-bullet shape and a highly deformed slipper shape after

entering the flows intersection. The viscosity ratio also has strong effects on the

droplet deformation especially for high-viscosity droplets which do not have the time

to accommodate the much slower deformation rate during their channel motion. Our

results are in agreement with experimental findings, and provide physical insight on

the confined droplet deformation.
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Chapter 1

Introduction

In the present thesis we investigate computationally the dynamics of droplets in the

intersecting flows of microfluidic junctions. In particular, we consider cross-junctions

and T-junctions constructed from square microfluidic channels. The deformation

and displacements of droplets in confined microfluidic geometries subjected to in-

tersecting flows is a problem of considerable interest as such flow conditions occur in

multi-phase flows in porous media and biological systems. In our study, we consider

droplets with constant surface tension, which are naturally buoyant in the surround-

ing fluid of the microfluidic device. We closely investigate the problem physics for

a wide range of capillary numbers Ca, viscosity ratios λ and droplet sizes a.

A three-dimensional fully-implicit interfacial spectral boundary element method

is used to determine the droplet dynamics in the cross-junctions and T-junctions

used in our computations. We emphasize that this is a challenging computational

problem because it requires (i) a highly accurate stable numerical method to cap-

ture the interfacial evolution of the very deformed droplets at high flow rates and

large droplet sizes, and the close interaction between droplet and solid surfaces of

the microfluidic junctions, and (ii) an efficient algorithm for the complicated three-

dimensional geometries of the microfluidic junctions. In this chapter, we provide

a description of the motivation for our research, a review of the past and current

research, as well as an overview of our research on droplet dynamics in microfluidic

cross- and T-junctions, described in detail in the following two chapters.
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1.1 Droplet motion in microfluidic channels

The study of the dynamics of droplets has been a topic of extensive research for

several decades because they are encountered in a large number of physical and

chemical processes [42, 43]. There have been extensive experimental, theoretical

and computational studies on the behavior of droplets submerged in another fluid.

The growing interest in manipulation of microfluidic droplets is because of its appli-

cations in numerous areas ranging from direct contact heat/mass exchangers [30],

encapsulation of reactants with droplets acting as micro-reactors [39] and improved

drug delivery methods [49, 4]. The research on droplets include studies on formation

of droplets [46, 27, 50], droplet deformation [19, 31, 20], bursting [3], coalescence of

droplets [33, 53], adherence to solid boundaries [12, 13, 14] and splitting of droplets

[5, 7]. For a summary on the current research and applications of microfluidics,

the reader is referred to the review articles by Baroud, Gallaire and Dangla [2] and

Solvas and deMello [38].

Besides microfluidics, understanding the behavior of non-wetting droplets has

great importance in other industrial processes. In lubrication processes, lubricants

usually contain a small amount of immersed bubbles which alter the performance of

journal bearings and squeezing film dampers [37]. In enhanced oil recovery, foam is

generated within the underground porous media during the displacement of oil [34].

An accurate estimation of the wetting film thickness between droplets composing

the foam and the pore wall is desired in order to accurately predict the percentage

of recoverable oil. In coating processes, the wetting film thickness is also a direct

measure of the load for coating the inner surface of monolithic channels [21, 22]. The

physics of bubbles in microchannels is also essential in the operation design of fuel

cells, e.g. the removal of CO2 bubbles in the anode channel of a direct methanol fuel

cell (DMFC) [28]. Understanding how bubbles/drops affect the flow resistance in

microchannels is a concern for determining the pumping or energy requirement for

portable microfluidic devices involving two-phase flows, such as in a direct methanol

fuel cell [10].
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1.2 Review of past work

Considerable progress has been made in understanding the deformation a single

droplet in shear and extensional flows. Microfluidic cross-junctions are one most

commonly used for the generation of uniformly sized droplets [50, 46]. In the past

few decades there have been extensive studies on the splitting of droplets in a mi-

crofluidic cross-junction [9]. Tan et al. [41] designed a microfluidic cross-junction

with an expanding downstream section to generate uniformly sized droplets at con-

trolled rates, using flow rates of fluids to control the sizes of droplets generated. Liu

et al. [27] studied the formation of droplets at very low capillary numbers in different

microfluidic cross-junctions, constructed from rectangular channels of different as-

pect ratios, via Lattice-Boltzmann computations and found the importance of flow

rates, capillary number and channel geometry. Cubaud [9] used two cross-junctions

in series to experimentally study the formation of droplets of high viscosity fluid

in the first junction and the subsequent deformation and breakup of the droplet

formed in the second junction. He found the difference in velocity between the rear

and the front of the droplets in the second junction to be the reason of the defor-

mation and the subsequent breakup. Mulligan et al. investigated the scale-up of

microfluidic droplet generation rate by developing a single microfluidic chip consist-

ing of six flow-focusing devices in parallel [32]. Liu et al. reviewed interface tracking

techniques commonly employed in the modeling of microfluidic droplets [26]. Dupin

et al. used Lattice-Boltzmann computations to simulate a microfluidic flow focusing

device [16]. A review of droplet dynamics in complex flows can be found in the

review article by Cristini et al. [8].

Microfluidic T-junctions, along with cross-junctions, are one of the most com-

monly used devices for the production of uniformly sized droplets. T-junctions were

first used by Thorsen et al. for formation of droplets [44]. Garstecki et al. identified

a squeezing mechanism for the formation of drops for very low capillary numbers

and provided scaling relationships to predict the size of droplets produced [17]. De

Menech et al. used a phase field model to simulate the flow of two immiscible fluids
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and identified three distinct regimes of droplet formation: squeezing, dripping and

jetting [11]. Christopher et al. experimentally studied the effects of viscosity and

channel width ratios on droplet breakup in a T-junction and developed a scaling

model. There have been extensive studies on the formation and breakup of droplets

in microfluidic T-junctions [1, 25]. The critical parameter in certain microfluidic

applications is the shape of the particle being transported. In drug delivery applica-

tions the surface area and the local curvature of the particle affects the adsorption

of drugs [4]. Parameters like velocity, local curvature, surface area etc. are direct

functions of the shape of the droplet.

1.3 Overview of present research

Despite the plethora of studies, there is limited information available on the de-

formation of a single droplet without breakup in microfluidic junctions. This is

in contrast to the current knowledge of droplet formation in microfluidic junctions

[50, 46]. Gu et al. reviewed the progress in the formation and merging of droplets

in two-phase flow microfluidics [18]. The goal of this current study is to develop a

better understanding of the dynamics of droplets in a microfluidic junction without

interfacial breaking.

To address this issue, we study the dynamics of a single droplet as it moves

along a microfluidic cross-junction or T-junction. Our microfluidic junctions are

constructed from square microfluidic channels. We release the naturally buoyant

microfluidic droplets, smaller in size than the cross-sectional area of the square

channels comprising the junction, in the centerline of the horizontal main channel of

the junction, upstream of the flow intersection. A three-dimensional fully-implicit

spectral boundary element algorithm is used to compute the droplet deformation

and motion under Stokes flow conditions in the microfluidic junctions. We compute

the interfacial dynamics of the droplets from the time of its release until it reaches

well downstream the end of junctions. However, our main interest is on investi-

gating the interfacial dynamics near to the zone where the flow intersection occurs
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in the junctions. In our computations, both fluids are considered isothermal and

Newtonian. We investigate the effects of flow rate, droplet size and viscosity ratio

by determining the evolution of various geometric and physical parameters such as

lengths, surface area and curvatures of the droplet as well its velocity and additional

pressure difference due to the droplet presence.

We divide the discussion on the microfluidic cross-junctions and T-junctions

in two different chapters. Since we want the chapters to be self-containing, there

are some repetitions on the junction geometry and the employed computational

method in each of these chapters. Thus, each chapter discusses the mathematical

formulation of the problem, the junction geometry, the computational method used

and the results obtained from our computations in detail.

In chapter 2, we investigate computationally the dynamics of a droplet in the

intersecting flows of a microfluidic cross-junction device. Particularly, we consider

droplets with constant surface tension which are naturally buoyant in the surround-

ing fluid, and have size smaller than the cross-section of the square channels compris-

ing the cross-junction. Our work shows that droplet dynamics in the cross-junction

depends strongly on the flow rate in the channels, droplet size and viscosity ratio.

As the flow rate or the droplet size increases, the droplets show a rich deformation

behavior as it moves inside the microfluidic device. After obtaining a bullet-like

shape before the cross-junction, the droplet become very slender inside the junction

(to accommodate the intersecting flows), then it obtains an inverse-bullet shape

as it exits the cross-junction which reverts to a more pointed bullet-like shape far

downstream the cross-junction (due to the combined flow rates of all intersecting

channels). The viscosity ratio has also strong effects on the droplet deformation.

Increasing the droplet viscosity from small values up to λ = O(1), the droplet de-

formation increases monotonically owing to the higher inner hydrodynamic forces.

However, for high-viscosity droplets with λ = O(10), the droplet deformation de-

creases significantly inside the cross-junction because the droplet does not have the

time to accomodate the much slower deformation rate at high λ as it moves fast

inside the microfluidic device.
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In chapter 3, we investigate computationally the dynamics of a naturally buoy-

ant droplet with constant surface tension in the intersecting flows of a microfluidic

T-junction device. Our work shows that droplet dynamics in the T-junction depends

strongly on the flow rate in the channels, droplet size and viscosity ratio. As the flow

rate or the droplet size increases, the droplets show a rich deformation behavior as it

moves inside the microfluidic device. After obtaining a bullet-like shape before the

T-junction, the droplet takes the shape of a bullet skewed to one side (to accommo-

date the intersecting flow), and then it obtains a slipper shape with a very pointed

rear (skewed to one side)as it exits the flow intersection of the T-junction. Further

downstream, the T-junction the droplet tries to regain its shape and the rear of

the slipper shaped droplet becomes less pointed and finally exits the junction. The

viscosity ratio has strong effects on the droplet deformation. Increasing the droplet

viscosity from small values up to λ = O(1), the droplet deformation increases mono-

tonically owing to the higher inner hydrodynamic forces. However, for high-viscosity

droplets with λ = O(10), the droplet deformation decreases significantly inside the

T-junction because the droplet does not have the time to accommodate the much

slower deformation rate at high λ as it moves fast inside the microfluidic device.
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Chapter 2

Droplet dynamics in a microfludic

cross-junction

2.1 Introduction

The study of the dynamics of droplets has been a topic of extensive research for

several decades because they are encountered in a large number of physical and

chemical processes [42, 43]. There have been extensive experimental, theoretical

and computational studies on the behavior of droplets submerged in another fluid.

The growing interest in manipulation of microfluidic droplets is because of its appli-

cations in numerous areas ranging from direct contact heat/mass exchangers [30],

encapsulation of reactants with droplets acting as micro-reactors [39] and improved

drug delivery methods [49, 4]. The research on droplets include studies on formation

of droplets [46, 27, 50], droplet deformation [19, 31, 20], bursting [3], coalescence of

droplets [33, 53], adherence to solid boundaries [12, 13, 14] and splitting of droplets

[5, 7]. For a summary on the current research and applications of microfluidics,

the reader is referred to the review articles by Baroud, Gallaire and Dangla [2] and

Solvas and deMello [38].

Besides microfluidics, understanding the behavior of non-wetting droplets has

great importance in other industrial processes. In lubrication processes, lubricants

usually contain a small amount of immersed bubbles which alter the performance of

journal bearings and squeezing film dampers [37]. In enhanced oil recovery, foam is

generated within the underground porous media during the displacement of oil [34].

An accurate estimation of the wetting film thickness between droplets composing

the foam and the pore wall is desired in order to accurately predict the percentage
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of recoverable oil. In coating processes, the wetting film thickness is also a direct

measure of the load for coating the inner surface of monolithic channels [21, 22]. The

physics of bubbles in microchannels is also essential in the operation design of fuel

cells, e.g. the removal of CO2 bubbles in the anode channel of a direct methanol fuel

cell (DMFC) [28]. Understanding how bubbles/drops affect the flow resistance in

microchannels is a concern for determining the pumping or energy requirement for

portable microfluidic devices involving two-phase flows, such as in a direct methanol

fuel cell [10].

Microfluidic cross-junctions, along with T-junctions, are most commonly used

for the generation of uniformly sized droplets [50, 46]. Tan et al. [41] designed

a microfluidic cross-junction with an expanding downstream section to generate

uniformly sized droplets at controlled rates, using flow rates of fluids to control

the sizes of droplets generated. Liu et al. [27] studied the formation of droplets at

very low capillary numbers in different microfluidic cross-junctions, constructed from

rectangular channels of different aspect ratios, via Lattice-Boltzmann computations

and found the importance of flow rates, capillary number and channel geometry.

Cubaud [9] used two cross-junctions in series to experimentally study the formation

of droplets of high viscosity fluid in the first junction and the subsequent deformation

and breakup of the droplet formed in the second junction. He found the difference

in velocity between the rear and the front of the droplets in the second junction

to be the reason of the deformation and the subsequent breakup. Mulligan et al.

investigated the scale-up of microfluidic droplet generation rate by developing a

single microfluidic chip consisting of six flow-focusing devices in parallel [32]. Liu

et al. reviewed interface tracking techniques commonly employed in the modeling of

microfluidic droplets [26].

The deformation and displacements of droplets in confined microfluidic ge-

ometries when subjected to intersecting flows is a problem of considerable interest

as such flow conditions occur in multi-phase flows in porous media and biological

systems. Considerable progress has been made in understanding the deformation a

single droplet in shear and extensional flows. In the past few decades there have
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been extensive studies on the splitting of droplets in a microfluidic cross-junction [9].

Dupin et al. used Lattice-Boltzmann computations to simulate a microfluidic flow

focusing device [16]. A review of droplet dynamics in complex flows can be found in

the review article by Cristini et al. [8]. However, there is very limited information

available on the deformation of a single droplet without breakup in a microfluidic

junction. This is in contrast to the current knowledge of droplet formation in cross-

junctions [50, 46]. Gu et al. reviewed the progress in the formation and merging

of droplets in two-phase flow microfluidics [18]. The goal of this current study is

to develop a better understanding of the dynamics of droplets in a cross-junction

without interfacial breaking.

To address this issue, we study the dynamics of a single droplet moving along

the centerline of a microfluidic cross-junction. A three-dimensional spectral bound-

ary element algorithm is used to compute the droplet deformation and motion un-

der Stokes flow conditions in a microfluidic cross-junction. We provide a detailed

discussion of the junction geometry used in our computations in section 2.2.1. The

mathematical formulation of the problem and the boundary conditions are discussed

in section 2.2.2. The implicit interfacial spectral boundary-element method used in

our computations is discussed in detail in section 2.3. We discuss the results ob-

tained from our numerical calculations in section 2.4 . In particular, we study the

effects of flow rate, droplet size and viscosity ratio in three different subsections. A

summary of our results is presented in section 2.5.

2.2 Mathematical Formulation and Computational Method

2.2.1 Problem Description

A schematic diagram of the cross-junction employed in this work is shown in fig-

ure 2.1. The cross-junction is constructed from intersecting square microfluidic

channels. To facilitate our results description, we imagine that the main channel

is horizontal, as illustrated in figure 2.1. Thus the flow direction (i.e., the x-axis)

corresponds to the channel’s or droplet’s length, the z-direction will be referred as
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height while the y-direction will be referred as width (of the channel or the droplet).

Seeing the droplet from the positive y-axis, positive z-axis or negative x-axis, rep-

resents a front view, a top view or an upstream view, respectively. In addition,

we adopt the standard definition of geometric shapes (polygons). Thus we call the

droplet’s rear edge as convex when the radius of curvature at the middle of the rear

edge points inside the capsule (i.e., the local curvature is positive); in the opposite

case the edge shape is concave. In general, the half length lx of the horizontal main

channel of the junction along the x-axis is 9 units. The half lengths of the square

cross-section of the main channel, along the y and z-axes are ly and lz respectively,

with ly = lz = 1. The length of the vertical branch channels along the positive and

negative z-axis are four units each. The origin of the system is placed at the center

of the junction.

The droplet (fluid 1) with a density ρ1 and viscosity λµ is naturally buoyant

in the surrounding fluid (fluid 2) with density ρ2 and viscosity µ, as ρ1 = ρ2. The

surface tension γ is assumed to be constant throughout the surface of the droplet.

The undeformed spherical droplet, at the start of our computations, has a radius

a with volume V = 4

3
πa3. The surrounding fluid flows in to the junction towards

the junction center through the square cross sections at -x, -z and +z-axes. The

incoming flow of the surrounding fluid through the square cross sections at -x,

upstream of the droplet is the undisturbed flow of fluid through a square channel

with an average velocity of U . The flow of the fluid coming in through the square

cross sections of the vertical branch channels along the +z and -z axes is a fraction

q of the fluid flow through the main channel of the junction, i.e., the average

velocity of the fluid through each of the vertical channels is q U . At the start of our

computations, the spherical droplet is placed inside the horizontal channel upstream

of the flow intersection of the junction. Due to the symmetry of the flow and the

system, the droplet velocity in the direction of the y- and z-axes is zero. As the

droplet deforms, it moves along the x-axis which is the center-line of the junction.

Due to the presence of intersecting flows in the junctions the deformation varies by

a great margin to that of deformation of a single droplet in a straight channel, under
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similar external shear and other physical conditions.

The major parameters of interest in this study are the strength of flow rate in

the horizontal main channel, viscosity ratio and the size of droplets. Figure 2.2(a)

shows the three-dimensional figure of an undeformed droplet while figure 2.2(b)

shows a three-dimensional view of a cross-junction with the -y elements removed.

2.2.2 Fluid Dynamics

Due to the very small length scales involved with droplet flow in microfluidics junc-

tions, the Reynolds number is very small and the inertial terms in the Navier-Stokes

equations can be neglected. The flow is governed by Stokes equations

∇ · σ ≡ −∇p + µ∇2u = 0 (2.1)

and the continuity equation

∇ · u = 0 (2.2)

where σ is the stress tensor, p is the dynamic pressure and u is the velocity vector.

In this study, the system surface SB consists of droplet surface Sd, the solid

surface of the junction Ss, the fluid surfaces Sf of the junction’s inlets and the

outlet. At the droplet surface the velocity is continuous and there is an interfacial

stress jump owing to the surface tension. As the density of both fluids are same, the

contribution of gravity to the interfacial stress jump is zero and thus the boundary

conditions on the droplet surface are,

u1 = u2 and ∆f ≡ f2 − f 1 = γ∇ · n (2.3)

Here the subscripts designate quantities related to the fluids 1 and 2 respectively,

while n is the unit normal pointing from the droplet interface into fluid 2. The

boundary conditions on the rest surfaces are,

u = 0 on the solid boundary Ss, (2.4)

u = u∞ (2.5)

where u∞ is the undisturbed channel velocity far from the droplet.
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Figure 2.1: Schematic illustration of the geometry of cross-junction.

Figure 2.2: Three-dimensional figures of an undeformed droplet and the cross-

junction used in our computations.
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The undisturbed velocity profile for flow through a rectangular channel along

x-axis, far from the droplet, can be found in the book by Yih [51], which is,

u∞(x)

Υ
= (lz

2 − z2) +
∞∑

m=1

Bm cosh(
bmy

lz
) cos(

bmz

lz
), (2.6)

where

Υ = −
1

2µ
, bm =

(2m − 1)π

2
, and

Bm =
(−1)m4lz

2

bm
3 cosh( bmly

2

lz
)

(2.7)

while p is the dynamic pressure. The volumetric flow rate Q can be obtained by

integrating over the cross-section, which is,

Q

Υ
=

8lylz
3

3
+

∞∑
m=1

Bm(
2lz
bm

)
2

sinh(
bmly
lz

) sin(bm) (2.8)

In our study, the incoming flows through each of the vertical branch channels

is half as strong as the flow through the main horizontal channel. The velocity

profile from the main channel is copied to the branch channels and scaled after

accounting for the direction of flow. Far from the droplet, the average velocity of

the undisturbed flow is U = Q/(ly lz), while the maximum undisturbed velocity at

the centerline of the square channel is Umax/U ≈ 2.096.

In this study, if no scale is present, the horizontal channel’s half-height lz is

used as the length scale, the velocity is scaled with the average undisturbed velocity

U , and thus time is scaled with τf = lz/U . In addition the pressure us scaled with

Π = µU/lz.

Based on standard boundary integral formulation, the velocity at a point x0

on the system surface SB may be expressed as a surface integral of the force vector

f = n · σ and the velocity u over all points x on the boundary SB,

Ωu(x0) = −

∫
Sc

[S · (∆f − µ(1 − λ)T · u · n] (x)dS

−

∫
Ss∪Sf

(S · f − µT · u · n)(x)dS (2.9)
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where the coefficient Ω takes values 4πµ(1 + λ) and 4πµ for points x0 on the

surfaces Sd and Ss ∪ Sf respectively. The tensors S and T are the fundamental

solutions for the velocity and stress for the three-dimensional Stokes equations, i.e.,

known functions of the system surface SB [13]. More details on the definition of all

physical variables employed in this work may be found in the article by Kuriakose

and Dimitrakopoulos on the capsule motion inside a square microfludic channel [23].

2.3 Implicit Interfacial Spectral Boundary-Element Method

The boundary integral equation, eq.(2.9), was solved using our three-dimensional

fully-implicit interfacial spectral boundary-element method. The boundary is di-

vided into a number NE of surface elements, each of which is parametrized by

variables η and ξ on a square domain of [−1, 1]2. The geometry and physical vari-

ables are discretized using Lagrangian interpolation in terms of these parametric

variables. The number NB of basis points (ηi, ξi) chosen for interpolation are zeros

of orthogonal polynomial. Any point x on the geometry can be represented by

x(ξ, η) =
NB∑
i=1

NB∑
j=1

x(ξi, ηi)hi(ξ)hj(η) (2.10)

Similarly the physical variables u and f can be interpolated at any point x from

their values at the basis points.

Two types of points are used in solving the boundary integral equation by our

spectral element method, the collocation points x0 where the equation is required

to be satisfied and the basis points x where the physical variables u and f are

specified. The collocation points x0 are of Legendre-Gauss quadrature where the

points lie on the interior of the spectral elements. Thus, the boundary integral

equation is valid even at corners of singular elements. The basis points x are of

Legendre-Gauss-Lobatto quadrature and thus the physical variables are defined in

the interior and edges of the spectral elements. Further details on the discretization

of system surfaces can be found in these earlier papers [47, 15].

The transformation of the Stokes equations into boundary integral equations

and solution by an explicit time integration method has been a common method
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to determine the droplet shape as a function of time since the pioneering work of

Acrivos and coworkers [52, 36]. This results in a great reduction in computational

time as a three-dimensional problem can be described and solved using only two

curvilinear coordinates. However, the explicit time integration requires a time step

smaller than any time scale (numerical and physical) appearing in the problem. To

ensure stability the time step employed has to satisfy the following condition,

∆t < O(Ca ∆xmin) (2.11)

where ∆xmin is the minimum grid spacing in the computational problem [35, 54].

Dimitrakopoulos developed an efficient, fully-implicit time-integration algorithm for

interfacial dynamics in Stokes flow to avoid the computational cost associated with

small time steps [15]. This method is based on a mathematically rigorous combina-

tion of implicit schemes with the Jacobian-free three-dimensional Newton method

developed by Dimitrakopoulos and Higdon [13]. Both multi-step (one-stage) im-

plicit formulae (e.g. Euler and backward differentiation schemes) and multi-stage

diagonally implicit Runge-Kutta schemes are employed. By the combination of the

an implicit scheme with the Newton method, the interfacial algorithm preserves the

stability properties of the corresponding implicit formula, and hence permits the use

of very large time steps. In addition, sufficient accuracy can be easily achieved, even

with larger time steps, by employing high-order implicit schemes. In this work we

use a third-order diagonally implicit Runge-Kutta scheme (DIRK3) with a time step

∆t = 10−2. Owing to the fully-implicit nature of our algorithm and the high-order

DIRK3 scheme, even a larger time step ∆t = O(10−1) produces accurate results

without causing interfacial breaking.

By combining the implicit interfacial method with the spectral boundary-

element algorithm, the resulting algorithm exploits all the benefits of the spectral

methods, i.e., high-order interpolation with exponential convergence and numerical

stability with increasing number of spectral points, along with the versatility of the

boundary-element method, i.e., the ability to handle the most complicated geome-

tries. In addition, it is not affected by the disadvantage of the spectral methods
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used in volume discretization; namely the requirement to deal with dense systems,

because in boundary-integral formulations the resulting systems are always dense,

independent of the form of discretization. We note that the exponential convergence

in the numerical accuracy is evident at both the properties of a given shape, such

as the interfacial curvature, and the dynamic evolution of the interfacial shape. For

more details the reader is directed to the article by Dimitrakopoulos [15].

In our study, the horizontal main channel of the cross-junction is divided into

nine rows with four rows upstream and downstream of the junction. Each of the

vertical branch channels are two-rows long. Each row of the channels are represented

by four surface elements, with one element representing a side of the row. Thus the

solid walls of the cross-junction are divided into fifty elements. In addition the four

fluid surfaces for entrance and exit of fluids into the channel are represented by one

element each. The droplet surface is divided in a minimum of six elements by cube

projection, with each element corresponding to a side of the cube. Our method is

also capable of generating more surface elements on the droplet surface and more

than one elements per row for each channel side. In most of our computations,

we have used ten surface elements for capturing the droplet shape. However, for

handling complex shapes of the deformed droplets for high Ca we have used up to

22 surface elements with progressive splitting of an element at the tip of the droplet

into five elements. Such discretizations are not needed in most of the cases as the

method is accurate, as shown from our convergence runs.

In most of our computations, we utilized NB = 8 basis points on each element.

As we have NE number of surface elements and NB
2 points per spectral elements,

we finally have a system of 3NENB
2 algebraic equations. For verification of accuracy

of our results, we performed some runs with NB = 10 basis points for moderate and

high Ca and high droplet sizes a. The convergence runs showed that NB = 8 is

sufficient enough to capture the shape of the deformed droplets except for the cases

with large Ca (Ca = 0.4, 0.6).

In all our computations carried out in this chapter, we exploited two sym-

metry levels, y = 0 and z = 0. Exploiting these symmetries reduce the memory
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requirements for storage of the system by a factor of 42, the computational time for

calculating the system matrices by a factor of 22 and the solution time via direct

system solvers by factor of 82.

2.4 Results

The results obtained from the numerical computations are discussed in this section.

The study covers a wide range of flow rates, viscosity ratio and droplet size. The

computations are started with a spherical droplet which deforms as it moves down-

stream. In our computations, we fix any two of Ca, λ, a at Ca = 0.1, λ = 0.2,

a = 0.7 and vary the third one over a wide range to study its effects on droplet

deformation. At the beginning of all computations, the droplet is placed at the

center of the main channel at xc = −3.0 and starts moving downstream due to flow

initiation. We compute the droplet dynamics untill the droplet centroid reaches

xc = 8.0. However, we plot the results of our computations only when the droplet

centroid is in the range of xc = [-3.0,6.0] as our main focus is on the dynamics of

the droplet near the center of the junction where flow intersection occurs. Also we

plot the results as a function of the droplet centroid xc.

Three-dimensional shapes of a droplet at different locations xc are shown in

figure 2.3. The three-dimensional views presented here were derived from the actual

spectral grid by spectrally interpolating to NB = 14-16. The first shape shows the

undeformed droplet at the start of our computation with its centroid at xc = -3.0.

After the start of computation, the droplet starts flowing downstream and deforms

due to the hydrodynamic forces acting on it. The droplet assumes a bullet shape

with a pointed downstream tip and a flattened rear, as seen in the second shape of

figure 2.3, while still upstream of the zone of flow intersection. The droplet takes

the shape of a bullet as it tries to balance the hydrodynamic forces and the surface

tension forces. This can be explained by putting an observer at the center of the

droplet, assuming a static frame of reference for the observer. In this case, the fluid

is flowing upstream in the junction. With a spherical droplet the net surface tension
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Figure 2.3: Three-dimensional shapes of a droplet (plotted row-wise) with Ca =

0.4, λ = 0.2, a = 0.7, q = 0.5 in a cross-junction, as viewed slightly askew from the

−y-axis at xc = -3.0, -1.5, -0.45, -0.03, 0.51, 1.23, 2.1, 3.83, 5.58, 7.27.
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force is zero. The surface tension force acting at a point on the droplet surface is

inversely proportional to its radius of curvature and can be written as

Fγ ∼
γ

R
(2.12)

where R if the radius of curvature of the point on the droplet. As the tip of the

droplet becomes pointed and the rear becomes flatter, there is a net surface tension

force on the droplet

Fγ ∼ γ(
1

R1

−
1

R2

) (2.13)

where R1 and R2 are the radius of curvatures of the center of the tip and the rear

of the droplet. This quantity is positive as R1 is smaller than R2.

As the tip of the droplet enters the zone of flow intersection, its tip becomes

more pointed and the rear flatter as the droplet experiences a stronger hydrodynamic

force due to increased flow rate coming in through the vertical branch channels. This

can be observed in the third and fourth shapes in figure 2.3. As the droplet becomes

more pointed, its centroid moves further towards the rear due to the presence of the

long pointed tip and the short flattened rear. When the rear of the droplet is

in the zone of flow intersection, with the downstream tip just outside of it, the

droplet becomes very slender with a very pointed tip and a very flattened rear, as

shown in the fifth shape of figure 2.3. As the droplet moves further downstream,

with its tip now well outside the flow intersection while the rear is still in the flow

intersection, the rear of the droplet becomes very slender while downstream tip of

the droplet tries to regain its original shape. With this, now the droplet centroid

moves towards the downstream tip. This shape can be seen in the sixth shape in

figure 2.3. When the rear of the droplet reaches very close to the end of the flow

intersection, it becomes very flat and thin with with a concave shape, to accomodate

the flow coming in through the vertical branch channels. The concave rear appears

as the surface tension forces try to balance the even stronger hydrodynamic forces,

since now the radius of curvature of the rear becomes negative and thus the surface

tension forces on the droplet become

Fγ ∼ γ(
1

R1

+
1

R2

) (2.14)
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After the droplet exits the flow intersection downstream, its rear starts re-

gaining the flattened shape, as can be seen in the sixth shape of figure 2.3. The

elongation of the droplet is at its maximum slightly downstream of the center of the

junction. As the droplet moves further downstream, the droplet gradually regains

its bullet shape, though longer than its bullet shape upstream of the junction, due

to higher flow rate, and finally exits the junction.

2.4.1 Effect of flow rate

In this section, we collect our computational results studying the effects of varying

flow rates in the horizontal main channel. The flow rate in the vertical branch

channels is maintained constant at q = 0.5 in this series of computations. A spherical

droplet with viscosity ratio λ = 0.2 and size a = 0.7 is placed upstream of the

junction at xc = −3.0 and the capillary number Ca varies in the range [0.01-0.6].

From our computations we found that the droplet deformation depends strongly on

Ca with an increase in length and a decrease in its width.

Figure 2.4 shows the droplet lengths Lx along the flow direction as a function

of the droplet centroid position xc. It is observed from figure 2.4(a) that the total

length of the droplet Lx increases monotonically with an increase in flow rate. At

first, the length Lx increases slowly in the main upstream channel followed by a sharp

increase as the droplet enters the flow intersection. Lx reaches a maximum after the

droplet centroid xc goes past the flow intersection and then starts decreasing in the

downstream horizontal channel. For the cases with low flow rates, Lx decreases to

a steady state after crossing the flow intersection. This is similar to droplet defor-

mation reaching a steady state in low Reynold’s number flows in a straight square

channel [24, 48]. Lac et al.[24], in their study of droplets in a circular capillary,

found that beyond a critical capillary number droplets cannot attain steady state

shapes, owing to capillary instability. We also observed from our computations that

for high Ca, Lx does not reach steady state. In addition, for the range of Ca studied

in this chapter, none of the droplets break inside the junction channel.

We also divide the total droplet length Lx into two components, the upstream
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Figure 2.4: Droplet lengths along the flow direction as a function of the droplet

centroid xc for λ = 0.2, a = 0.7, q = 0.5 and capillary number Ca =

0.01, 0.1, 0.2, 0.4, 0.6. (a) Droplet length Lx. (b) Downstream droplet length Ld
x.

(c) Upstream droplet length Lu
x.
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and downstream droplet lengths, Lu
x and Ld

x, (calculated from the droplet centroid

xc to the rear and front tips of the droplet respectively), and plot them separately

in figure 2.4(b, c) as a function of the droplet centroid xc. It is observed that before

the droplet centroid crosses the center of the cross-junction, they exhibit different

behavior, while their behavior after that is similar. The upstream droplet length Lu
x

at first decreases then starts increasing till it reaches a maximum. This is because

of the appearance of a flattened rear and a pointed tip, as shown in figure 2.3,

which cause the droplet’s centroid to move backwards. The downstream length of

the droplet Ld
x increases, at first slowly and then rapidly till it reaches a maximum.

This can be attributed to the evolution of the pointed tip and the lengthening due

to increased flow through the vertical branch channels. After reaching a maximum,

both Lu
x and Ld

x decrease, and reach a steady state for low Ca.

In figure 2.5 (a) and (b) we plot Ly and Lz i.e., the droplet lengths along y-

and z-axes respectively as a function of droplet centroid xc. Ly and Lz both decrease

with an increase in flow rate as a result of the droplet becoming thinner and longer

to enable the fluid to flow through the channel. Ly and Lz both reach minimum

downstream of the junction and then start increasing. This is due to preservation of

the volume of the droplet as Lx reaches its maximum downstream of the junction. Lz

is lower than Ly which can be attributed to the additional squeezing of the droplets

along the z-direction by the flows coming in through the vertical branch channels.

We plot the surface area of the deformed droplet Sd, against the droplet cen-

troid xc, in figure 2.6. The surface areas of the deformed droplets Sd are scaled with

the undeformed surface area of the originally spherical droplet S0
d . It is observed

that the scaled surface area of the droplets increase monotonically with increasing

flow rate till it reaches a maximum downstream of the junction and then starts de-

creasing. With an increase in the flow rate, the hydrodynamic forces acting on the

droplet increase, making the droplet becoming thinner and longer, which in turn

increases the total surface area of the droplet.

The curvatures of the xz- and xy-profiles of the downstream tip of the droplets,

Cd
xz and Cd

xy, are plotted in figure 2.7 (a) and (b). The curvatures Cd
xz, C

d
xy are scaled
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0.01, 0.1, 0.2, 0.4, 0.6. (a) Curvature of the droplet xz-profile Cd
xz. (b) Curvature

of the droplet xy-profile Cd
xy. The curvatures are scaled with the curvature of the

undisturbed spherical shape.

25



with the curvatures of the undeformed spherical droplet Cd
xz,0, Cd

xy,0 respectively.

Both the curvatures increase with increasing flow rate owing to the formation of

the pointed downstream tip of the droplet. It is observed that the xz-curvature

is greater than the xy-curvature at all flow rates. This can be attributed to the

additional squeezing of the front tip of the droplet due to flow coming in through

the vertical branch channels. For both xz- and xy-profiles, the curvature reaches a

maximum when the droplet centroid is very near to the junction center and then

starts decreasing. This is because the front tip of the droplet becomes very thin when

the droplet is in the zone of flow intersection near to the center of the junction. It

is also observed that for high enough Ca, both xz- and xy-curvatures first decrease

to a minimum after the droplet is released in the junction and then start increasing.

For these cases with high Ca, the curvatures reach another minima after reaching

the maxima and then increase again. The final values for both Cu
xz and Cu

xy increase

with an increase in Ca.

Figure 2.8 shows the curvatures of the xz- and xy-profiles of the upstream

rear of the droplet, Cu
xz and Cu

xy, against the droplet centroid xc. The behavior of

the curvatures Cu
xz and Cu

xy for the rear of the droplet are more complicated than

the curvatures for the downstream tip of the droplet, Cd
xz and Cd

xy. As the droplet

deforms, while moving from through the channel, the rear of the droplet undergoes a

continual change in its shape. Unlike the Cd
xz and Cd

xy curvatures, for the downstream

tip of the droplet, the curvatures for the rear of the droplet Cu
xz and Cu

xy show different

behavior. Also the behavior of the curvature is heavily dependent on the Ca. For

small Ca (Ca = 0.01, 0.1), Cu
xz and Cu

xy show a small increase in its curvature after

the start of computations, while for Ca higher than that the curvatures decrease

from its initial value. The initial increase in curvatures, for small Ca, arises as the

droplet becomes elongated, with both the tip and the rear of the droplet becoming

more pointed, and then gradually becomes flatter. For the higher capillary numbers

considered in this study, the rear of the droplet tends to becomes flattened right

after the computations. Both Cu
xz and Cu

xy remain less than 1 till the tip of the

droplet enters the flow intersection near the center of the junction, after which their
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behavior become completely different. Cu
xz starts increasing significantly as the rear

of the droplet gets squeezed due to the flow coming in through the vertical branch

channels, which increases with an increase in the flow rate. Cu
xy starts decreasing with

an increased flow rate, as the hydrodynamic forces acting on the droplet increase

and to balance this force with the surface tension forces, the rear of the droplet

starts taking a concave shape, as explained before. With an increase in flow rate,

the rear of the droplet becomes more concave and Cu
xy becomes even more negative.

As the droplet leaves the flow intersection and gradually regains its bullet shape,

Cu
xz starts decreasing and Cu

xz starts to increase.

We plot the droplet velocity Ux and the additional pressure difference due to

the presence of the droplet ∆P+, against the droplet centroid xc, in figure 2.9(a)

and (b) respectively. We observe from figure. 2.9(b) that the final velocity attained

by the droplet at the end of the channel increases with Ca. This is due to stronger

hydrodynamic forces acting on the droplet with increased Ca. Similar behavior has

been observed by Wang and Dimitrakopoulos in their study of microfluidic droplets

in a straight rectangular channel [48]. As the droplet becomes thinner with an

increased flow rate, there is more space for the surrounding fluid to flow through

and hence the additional pressure difference decreases.

Figure 2.10 shows the plots of the minimum distance of the droplet from

the z = −lz wall of the junction h, plotted against the droplet centroid xc as the

droplet moves through the channel. At the start of our computations, after releasing

the droplet in the junction a slight increase of the gap thickness is observed which

is due to slight lengthening of the droplet from its original spherical shape. It is

followed by a slight decrease, just before the droplet centroid enters the junction, as

the droplet’s rear takes the shape of a disc as the front tip becomes thinner. The

minimum distance h then starts increasing to a maximum as the droplet becomes

progressively thinner under increased shear force due to additional flow through the

branch channels and then starts decreasing as the droplet gradually regains its bullet

shape.
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2.4.2 Effect of droplet size

In this section, we collect the results of our computations studying the effects of

droplet size on its dynamics in the microfluidic cross-junction. The spherical droplets

with viscosity ratio λ = 0.2 and capillary number Ca = 0.1 are placed upstream

of the junction at xc = −3.0, with the flow rates in the vertical branch channels

maintained constant at q = 0.5. The range of droplet sizes studied in this chapter

varies from moderately sized droplets with a = 0.5 to large droplets with a = 0.95.

From our computations we found that the droplet dynamics depends strongly as a

function of droplet size a.

Figure 2.11(a) shows the droplet lengths Lx along the flow direction, which is

the x-axis, plotted against the droplet centroid xc. We scale the the droplet length

Lx with its undisturbed value as it allows us to compare the deformation of droplets

of various sizes. As soon as we release a droplet, at its initial position with xc = −3.0,

the droplet moves along the centerline of the junction and its shape deforms, with

an increase in its length and decrease in width. The droplet takes the bullet shape

on deformation with a pointed downstream tip and a flatter rear. We observe

from the plots that the deformation of a droplet, till it enters the flow intersection,

depends on its size. For the moderately sized droplets (a = 0.5, 0.6, 0.7) the initial

deformation after being released is very small, while for the larger sized droplets

(a = 0.8, 0.9, 0.95) there is an instantaneous increase in their deformation. This is

because of the smaller surface area of the moderately sized droplets, which makes

the hydrodynamic forces acting on them small, as compared to the droplets larger in

size. We observe from the plots that for a moderately sized droplet (a = 0.5, 0.6, 0.7)

there is a very small decrease in its length when it is just about to enter the flow

intersection, which is due to the downstream tip of the droplet becoming a little

flatter due to the flow coming in through the vertical branch channels. In case

of the larger droplets the increase in their lengths is monotonic, as due to their

large size the hydrodynamic forces acting on them is big. The deformation of the

droplets increase considerably after they enter the flow intersection, as due to the
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Figure 2.11: Droplet lengths along the flow direction as a function of the droplet

centroid for λ = 0.2, Ca = 0.1, q = 0.5 and droplet size a = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95.

(a) Droplet length Lx/(2a). (b) Downstream droplet length Ld
x/a and (c) Upstream

droplet length Lu
x/a.
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flows coming in through the vertical branch channels the hydrodynamic forces acting

on the droplets increase. Lx reaches a maximum slightly downstream of the junction

and then starts decreasing. For all droplet sizes studied, the lengths of the droplet

Lx at the end of the junction is more than its undisturbed value at the start of

computations. It is to be noted that the droplet deformation, and thus its length

Lx, increases significantly with an increase in the droplet size. This is due to the

fact that due to the large size of the droplet, the effective capillary number acting

on the droplet becomes,

Caeff ∼
µU

γ
(
Lz

h
)n (2.15)

due to the stronger hydrodynamic forces in the small gap h, where Lz is the length

of the droplet along the z-axis. For the moderately sized droplets, the factor (Lz

h
)n

is not significantly greater than 1, while for the larger sized droplets the factor

is large as h, the distance of the droplet interface from the z = −lz wall of the

junction decreases with an increase in droplet size, as can be seen in figure 2.12.

This is because of the higher deformation of the larger sized droplets by becoming

thinner and longer to preserve its volume, while allowing the surrounding fluid to

flow through the channel.

We divide the total droplet length Lx into the droplet’s upstream length Lu
x

and the downstream length Ld
x (calculated from the droplet centroid to the rear

and front tips of the droplet) to explain the deformation of the front and rear parts

of the droplet. We show the downstream and upstream lengths of the droplets

in figure 2.11(b) and figure 2.11(c) respectively. The behavior of the downstream

droplet length Ld
x is very similar to that of Lx, while Lu

x first go to a minimum

before it starts increasing. This is due to the evolution of a pointed downstream

tip and a flatter rear during deformation of the droplet, which causes the droplet

centroid to move towards the rear of the droplet. With an increase in the droplet

size, the downstream length of the droplet Ld
x increases monotonically due to the

lengthening of the downstream portion of the droplet. After the slow initial increase,

Ld
x increases rapidly after it enters the flow intersection, due to the flow coming in

through the vertical branch channels, and reaches a maximum slightly downstream
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of the flow intersection. Ld
x decreases rapidly after reaching the maximum. For the

moderately sized droplets, Ld
x reach a steady state, which is only slightly higher

than its undisturbed value a, while for the larger droplets, the final values of Ld
x is

significantly higher.

From figure 2.11(c) we observe that before the droplet enters the flow inter-

section zone, Lu
x decreases to a minimum, which is due to the flattening of the rear

of the droplet. However, after the droplet enters the flow intersection, Lu
x increases

rapidly as the rear of the droplet gets elongated and reaches a maximum slightly

downstream of the flow intersection, similar to Ld
x. As the droplet gradually regains

its bullet shape Lu
x starts decreasing rapidly. Eventually Lu

x reaches a steady state

for the moderate droplet sizes which is lower than its undisturbed value. For the

very large droplet sizes (a = 0.9, 0.95), Ld
x remains higher than 1 as the deformation

and elongation in those cases is very high. It is also observed from figure 2.11(b)

and (c) that Ld
x is larger than Lu

x for all droplet sizes and at all points inside the

junction. This arises from the fact that the rear of the droplet is always flatter, and

hence shorter, than the front tip of the droplet.

In figure 2.12 (a) and (b) we plot Ly and Lz against the droplet centroid xc.

The final values of both Ly and Lz at xc = 6.0 decrease with an increase in droplet

size. However, the initial behavior of Ly and Lz, before the droplet enters the flow

intersection, are different. For all droplet sizes studied, after the droplet is released

in the horizontal main channel of the junction, Ly decreases continually till it reaches

a minimum slightly downstream of the junction and then starts increasing. On the

other hand Lz shows different behavior for different droplet sizes studied. For the

very large droplet sizes studied (a = 0.9, 0.95), there is a rapid decrease in Lz and

then a rapid increase before the droplet enters the flow intersection, while for the

smaller droplets, there is no significant decrease in Lz before it stars increasing before

reaching the flow intersection. This behavior again can be explained by considering

the high Caeff in the case of the larger droplets, which makes the droplets thinner

and longer, as soon they are released in the junction, to enable the surrounding

fluid to flow through the channel. The front tip of the droplet, before it enters the
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35



flow intersection, gets flattened due to the flow coming through the vertical branch

channels and hence Lz shows a sharp increase. For all droplet sizes studied, Lz is

always lower than the Ly, which can be attributed to the additional squeezing of

the droplets along the z-axis by the flows coming in through the vertical branch

channels.

In figure 2.13 we show the plots of droplet surface area against the droplet

centroid xc. The surface area Sd is scaled with the surface area of the undisturbed

spherical droplet S0
d . The droplet surface area is an important parameter as it gives

us a general indication about the deformation of the droplet inside the junction. It

is observed that Sd starts increasing after the droplet is released in the junction,

until it reaches reaches a maximum downstream of the flow intersection and then

starts decreasing. The rapid increase in Sd/S
0
d is due to the increased flow coming

in through the vertical branch channels. For the large droplets (a = 0.9, 0.95), there

is a small decrease in the droplet surface area before the front tip of the droplet

enters the flow intersection which corresponds to the flattening of the front tip and

a decrease in the droplet deformation. For all droplet sizes, the droplet deformation,

hence Sd/S
0
d , increases with an increase in the droplet size a at all xc. We also observe

that for the moderately sized droplets (a = 0.5, 0.6, 0.7, 0.8) the increase in Sd/S
0
d

at xc = 6.0 is not significant as compared to the droplets with a = 0.8, 0.9, 0.95.

The curvatures of the xz- and xy-profiles of the downstream tip of the droplets,

Cd
xz and Cd

xy, are plotted in figure 2.14 (a) and (b) respectively. The curvatures Cd
xz,

Cd
xy are scaled with the curvatures of the undeformed spherical droplet Cd

xz,0, C
d
xy,0

respectively. The final values attained by both Cd
xz and Cd

xy at xc = 6.0 increases

with an increase in the droplet size a. This is due to the formation of a pointed

downstream droplet tip on deformation. Both Cd
xz and Cd

xy start increasing after

the droplet is released in the junction upstream of the flow intersection. We ob-

serve that for all droplet sizes a, Cd
xy keeps on increasing till it reaches maximum

slightly downstream of the junction and then decreases to a steady state. For the

droplets with a = 0.5, 0.6, 0.7, 0.8, the curvatures show a slight decrease, after the

initial increase, before the droplet enters the flow intersection. This is due to the
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Figure 2.15: Curvatures of the upstream droplet tip as a function of droplet centroid

xc for λ = 0.2, Ca = 0.1, q = 0.5 and droplet size a = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95. (a)
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squeezing of the downstream tip of the droplet by the flow coming in through the

vertical branch channels. As there Cd
xy does not decrease before the droplet enters

the flow intersection zone, we note that the flow coming in through the vertical

branch channels do not effect the curvature of the xy-profile of the front tip of the

droplet, for all droplet sizes considered.

The upstream tip curvatures Cu
xz and Cu

xy show behavior different from the

downstream tip curvatures Cd
xz and Cd

xy. We observe, from the plots of figure 2.15(a)

and (b), that the final values of the upstream tip curvatures Cu
xz and Cu

xy, at xc = 6.0

decrease with an increase in droplet size. This is due to the larger deformation of

the larger droplets, which again is due to higher Caeff. Both Cu
xz and Cu

xy initially

show a decrease after the droplet is released in the junction, followed by an increase

to a maximum and then a subsequent decrease. We also observe that the maximum

value attained by Cu
xz during deformation increases with an increase in droplet size

while the maximum value of Cd
xy during deformation decreases with an increase in

droplet size. This increase in the maximum value of Cu
xz, with an increase in a,

is due to the squeezing of rear of the droplet by the flow coming in through the

vertical branch channels when it is in the flow intersection, which results a higher

deformation of the xz-profile of the droplet. The maximum value of Cd
xy decreases

with an increase in the droplet size as the rear of the droplet becomes flatter with

an increase in the droplet size a. The final values of the curvatures Cu
xz and Cu

xy are

less than 1 which is due to the flattening of the rear of the droplet as compared to

the undeformed spherical shape.

In figure 2.16(a) we plot the droplet velocity as a function of the droplet

centroid xc. Upon release, the droplet velocity decreases to a minimum before the

droplet enters the flow intersection zone and the increases sharply to a maximum

downstream of the flow intersection. This is followed by another small decrease to

a value which is higher than the initial velocity of the droplet, due to the additional

flow through the vertical channels. Ux reaches a steady state at xc = 6.0 the

moderately sized droplets with a = 0.5, 0.6, 0.7. We also observe that the droplets

with smaller size move faster inside the junction at all xc. Similar behavior has been
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observed in the case of a single droplet moving in a straight rectangular microfluidic

channel [48].

Figure 2.16(b) shows plots of additional pressure difference due to the presence

of the droplet as a function of the droplet centroid xc. From the plots we observe

that the initial and the final values of additional pressure difference are negative for

all droplet sizes. We also observe that the final value of ∆P + becomes more negative

with an increase in the droplet size a. This is a result of the higher deformation

of the droplet, and hence its lengthening, due to its small viscosity ratio, which in

turn blocks the flow less effectively causing ∆P+ to decrease. For all droplet sizes

studied in this chapter, ∆P+ is positive for a small range of xc. This positive ∆P+

occurs when the deformed droplet, a flat rear and a pointed front tip, is completely

within the flow intersection zone and thus blocks the flow of the surrounding fluid

much more efficiently causing ∆P+ to become positive.

Figure 2.17 shows the minimum distance of the droplet from the z=−lz wall of

the junction h, plotted against the droplet centroid xc as the droplet moves through

the channel. The minimum distance h reaches a maximum slightly downstream of

the junction and then starts decreasing. This is due to the droplet becoming longer

and thinner due to the incoming flows to the junction through the vertical branch

channels. The final values of the h decreases with an increase in the droplet size a.

2.4.3 Effect of viscosity ratio

In this section, we collect the results and study the effects of viscosity ratio on the

dynamics of a droplet with capillary number Ca = 0.1, droplet size a = 0.7 and flow

rate in branch channel q = 0.5. The range of viscosity ratio studied here range from

very low (λ = 0.01) to very high (λ = 20.0). It was observed from our computations

that the droplet dynamics varies strongly as a function of the viscosity ratio of the

fluids.

Figure 2.18(a) shows the droplet lengths Lx along the flow direction as a

function of the droplet centroid xc for different viscosity ratios. We also divide the

total droplet length Lx into the droplet’s upstream and downstream length, Lu
x and
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Ld
x, (calculated from the droplet centroid xc to the rear and the front tips of the

droplet respectively) and plot them separately in figure 2.18(b, c) as a function of

the droplet centroid xc. We observe from the plots of figure 2.18(a) that the droplet

length Lx depends upon the viscosity ratio λ. For all viscosity ratios λ studied, the

droplet length shows a small increase, followed by a small decrease to a minimum

before the droplet enters the flow intersection. After the minimum is reached, there

is a rapid increase in Lx to a maximum, as the droplet enters the flow intersection,

and then a sharp decrease as the droplet leaves the flow intersection. The initial

increase in droplet length, upstream of the flow intersection, is because of the initial

deformation of the droplet after being released in the horizontal main channel of

the junction while the decrease to minimum is due to shortening of of the droplet

with the front tip being flatter. The increase to the maximum, downstream of the

flow intersection, is because of the additional flow coming in through the vertical

branch channels. We observe that for λ = [0.01, 1], the maximum value of Lx at the

downstream of the junction increases with an increase in λ, while for λ = 10, 20 the

opposite happens. In the case of a single droplet in a rectangular straight channel,

it has been observed that the steady state deformation of the droplet, and hence

Lx, increases with an increase in λ due to an increase in higher inner hydrodynamic

forces [48]. However, deformation takes place slower for a droplet with a higher λ,

i.e., a more viscous droplet needs more time deforming from its initial shape. The

time needed for a droplet to deform can be expressed as,

τ ∼ (1 + λ)Ca τf (2.16)

In a cross-junction, when λ is small there is enough time for the droplet to deform

and hence the maximum Lx increases with an increase in λ. When λ = 10, 20,

the time needed by the droplet to deform to its maximum, in a cross-junction, is

significantly raised as the factor (1+λ) becomes dominant and hence we observe the

decrease in the maximum Lx with an increase in λ. In our study, the droplets do

not reach steady state at the end of the device, but if given enough time, the final

value of Lx will increase with an increase in λ.
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The downstream and upstream lengths of the droplet, Ld
x and Lu

x, show behav-

ior similar to Lx as can be seen from figure 2.18(b) and (c). We observe that, after

the droplet is released in the horizontal main channel of the junction, Ld
x shows a

sharp increase followed by a small decrease, while Lu
x shows a decrease to a minimum

before the droplet enters the flow intersection. This behavior of Ld
x and Lu

x is due

to the initial lengthening of the droplet with a pointed tip and a flat rear, followed

by flattening of the pointed front tip when the front tip is about to enter the flow

intersection zone. The maximum values attained by Ld
x and Lu

x are similar to the

maximum value attained by Lx and depends upon the viscosity ratio λ, hence the

time needed for deformation. We also observe that the downstream droplet length

Ld
x is greater than the upstream droplet length Lu

x for all viscosity ratios. The final

value of Ld
x at xc = 6 is greater than 1, while for Lu

x at xc = 6 it is smaller than 1,

which is due to the movement of the droplet centroid towards the rear of the droplet

owing to the pointed tip and the relatively flat rear of the droplet.

The plots for the droplet lengths along the y- and z-axes, Ly and Lz, are shown

in figure 2.19(a) and (b) respectively as a function of the droplet centroid xc. We

observe that Ly decreases monotonically for λ = [0.01, 1.0] till it reaches a minimum

downstream of the flow intersection and then starts increasing. For λ = [10, 20], Ly

decreases monotonically after the droplet is released in the horizontal main channel.

The minimum value of Ly decreases with an increase in λ for λ = [0.01, 1.0]. The

value of Ly for λ = 10 is lower than that for λ = 20. This again can be explained

by considering the time τ needed by the droplet to deform, as explained while

discussing the the plots of figure 2.18. The behavior of Lz is very similar to that

of Ly for λ = [0.01, 1.0]. For λ = [10, 20] Lz does have a minimum downstream of

the flow intersection which is due to the flow coming in through the vertical branch

channels, while Ly did not have any such minimum.

Figure 2.20 shows the plots of the surface area of the deformed droplet Sd

plotted against the droplet centroid xc for different viscosity ratios. The surface

area of the deformed droplet Sd is scaled with its undisturbed value S0
d . From the

plots we observe that Sd reaches a maximum downstream of the flow intersection
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and then starts decreasing. The maximum Sd reached by the droplet increases with

an increase in the viscosity ratio λ for λ = [0.01, 1.0], while for λ = [10, 20] the

opposite happens. For λ = [0.01, 1.0], Sd reaches a steady state at xc = 6. This

again can be explained by considering the time τ needed by the droplet to deform

from its undisturbed shape, which increases with an increase in viscosity ratio. The

final value of Sd increases with an increase in the viscosity ratio.

The curvatures of the xz- and xy-profiles of the downstream tip of the droplets,

Cd
xz and Cd

xy, are plotted in figure 2.21 (a) and (b) respectively. The curvatures Cd
xz,

Cd
xy are scaled with the curvatures of the undeformed droplet Cd

xz,0, C
d
xy,0 respectively.

From the plots of figure 2.21(a), we observe that Cd
xz shows a sharp increase to

a maximum when the droplet enters the flow intersection zone and then starts

decreasing. Again the maximum value of Cd
xz is dependent upon the viscosity ratio λ

of the fluids and increases with an increase in λ for λ = [0.01, 1], while for λ = [10, 20]

the opposite happens. This again can be explained by the time τ needed by a

droplet to deform to its steady state shape. For small to moderate viscosity ratio of

λ = [10, 20], there is enough time for the droplet to deform and hence the maximum

increases with an increase in λ, while for the very large viscosity ratio of λ = [10, 20]

the factor (1+λ) becomes more dominant and hence a droplet with λ = [10, 20]

needs a longer time to deform.

The behavior shown for the curvature Cd
xy of the xy-profile of the downstream

droplet tip is more complicated. While the behavior of Cd
xy is very similar to Cd

xz for

λ = [0.1, 10], it shows completely different behavior for λ = 0.01, 20. The curvature

Cd
xy stay less than 1 after the start of the computations till xc = 6.

Figure 2.22(a, b) shows the plots for curvatures Cu
xz and Cu

xy of the rear of the

droplet. The curvatures Cu
xz, C

u
xy are scaled with the curvatures of their undisturbed

values Cu
xz,0, C

u
xy,0 respectively. From figure 2.22(a) we observe that for λ = [0.1, 1],

Cu
xz decreases after the start of computations, followed by a sharp increase to a

maximum after the droplet leaves the flow intersection. There is no general trend

in behavior for the curvatures of the upstream rear of the droplet. For the very

small viscosity ratio of λ = 0.01, Cu
xz reaches a steady state, which is smaller than
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the values for λ = 0.01, after the droplet crosses the flow intersection. For the large

viscosity ratios of λ = 10, 20, the final value of Cu
xz,0 increases with an increase in λ.

No general trend in behavior, with respect to viscosity ratio, is observed from the

plots of Cu
xy shown in figure 2.22(b).

Figure 2.23(a) shows plots of droplet velocity Ux as a function of the droplet

centroid xc for the viscosity ratios studied. We observe that the the droplet velocity

Ux decreases with an increase in the viscosity ratio λ, for all values of xc. After the

droplet is released, Ux decreases till the droplet enters the flow intersection followed

by a rapid increase to a maximum and then a subsequent decrease after the droplet

exits the flow intersection. The rapid increase after the droplet enters the flow

intersection id due to the flow coming in through the vertical branch channels. The

influence of viscosity ratio λ on droplet velocity Ux is qualitatively similar to that

reported by Wang and Dimitrakopoulos in their study of droplets in rectangular

straight channels [48].

Figure 2.23(b) shows plots of additional pressure difference ∆P+ for different

viscosity ratios as a function of the droplet centroid xc. It is observed that the

additional pressure difference ∆P+ increases with an increase in the viscosity ratio.

This is because a stronger hydrodynamic force is needed for the deformation of a

droplet with higher viscosity ratio.

Figure 2.24 shows the plots of the minimum distance h as a function of the

droplet centroid xc. We observe that the minimum distance increases sharply to

a maximum when the droplet enters the flow intersection, which is followed by a

decrease. The maximum value reached by h depends on the viscosity ratio λ. For the

small to moderate viscosity ratios λ = [0.01, 1], the maximum reached increases with

an increase in the viscosity ratio λ. This again is because of the longer deformation

time needed by a droplet with higher viscosity ratio.
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2.5 Conclusion

In this chapter, we have investigated computationally the dynamics of microfluidic

droplets in a cross-junction comprising of square channels. In particular, we have

considered droplets with constant surface tension which are naturally buoyant in

the surrounding fluid, and have size smaller than the cross-section of the square

channels comprising the cross-junction. The study is motivated by a wide range

of applications including direct contact heat-mass exchangers, encapsulation of re-

actants with droplets as microreactors, drug delivery methods, coating processes,

and of course applications in energy, e.g. enhanced oil recovery processes and direct

methanol fuel cells.

To our knowledge, this is the first work to systematically study the dynamics

of droplets, without interfacial breaking, in a microfluidic cross-junction device. Our

investigations complement earlier studies on formation of droplets in a microfluidic

cross-junction and droplet motion in a straight rectangular microfluidic channel

[9, 27, 41, 48]. We summarize briefly some of the more important conclusions.

(i) Our computations investigating the effects of flow rates in the channels of

cross-junction, has revealed that the degree of interfacial deformation of the droplet,

and hence its dynamics, depends on the strengths of flows in the channels of the

cross-junction device. In general, upon release, the droplet takes the shape of a

bullet before of the flow intersection with a pointed downstream tip and a flattened

rear, so that to increase the restoring surface tension forces and thus balance the

deforming hydrodynamic forces. When the droplet enters the flow intersection of

the cross-junction device, its downstream tip becomes more pointed, and the rear

flatter than before, to accomodate the incoming flows through the branch channels.

When the droplet is completely in the zone of flow intersection, it becomes slender to

due to the stronger hydrodynamic forces of the additional flow through the vertical

branch channels. As the droplet moves further downstream, the droplet centroid

moves towards the tip of the droplet, as now its tail becomes pointed while the

downstream tip becomes relatively less pointed. At flow rates high enough, the rear
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of the droplet may take a concave shape to balance the very strong hydrodynamic

force with increased surface tension forces. As the droplet completely exits the

flow intersection, it gradually regains a more deformed bullet shape far downstream

owing to the higher total flow rate of all intersecting channels.

During this diverse interfacial evolution, the droplet lengths, tip curvatures, its

velocity and the additional pressure difference change extensively, depending upon

the droplet shape and location in the cross-junction device. We have monitored

these parameters during the interfacial evolution of the droplet and have provided

qualitative explanations.

(ii) Studying the effects of the droplet sizes on its dynamics, we observed that

the minimum distance of the droplet interface from the junction wall plays a sig-

nificant role in its interfacial evolution. The deformation of droplets with bigger

size increases significantly, as the effective capillary number Caeff acting on the

droplet increases. Before the flow intersection, the droplet develops a pointed down-

stream tip and a flattened rear. When the droplet is in the flow intersection of the

cross-junction device, the tip of the droplet becomes more pointed, while the rear

of droplet becomes very thin and wide due to incoming flows through the branch

channels. We do not observe a concave rear for any of the droplet sizes studied.

(iii) We found the viscosity ratio of the fluids to strongly effect the dynamics of

droplets in our cross-junction device. For low viscosity droplets, with λ up to O(1),

we found the droplet deformation to increase monotonically with an increase in vis-

cosity ratio, owing to higher inner hydrodynamic forces. However, for high-viscosity

droplets with λ = O(10), the droplet deformation decreases significantly inside the

cross-junction because the droplet does not have the time to accomodate the much

slower deformation rate at high λ as it moves fast inside the microfluidic device.

We note that, for high-viscosity droplets, the droplet deformation will eventually

increase as the viscosity ratio is increased in the straight channel far downstream

the cross-junction owing to higher inner hydrodynamic forces.

In addition, our study demonstrates the ability of our computational method

to determine the droplet dynamics in intersecting flows accurately. With further
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modification in geometry, even more complicated droplet dynamics may be accu-

rately predicted.
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Chapter 3

Droplet dynamics in a microfluidic

T-junction

3.1 Introduction

The study of the dynamics of droplets has been a topic of extensive research for

several decades because they are encountered in a large number of physical and

chemical processes [42, 43]. There have been extensive experimental, theoretical

and computational studies on the behavior of droplets submerged in another fluid.

The growing interest in manipulation of microfluidic droplets is because of its appli-

cations in numerous areas ranging from direct contact heat/mass exchangers [30],

encapsulation of reactants with droplets acting as micro-reactors [39] and improved

drug delivery methods [49, 4]. The research on droplets include studies on formation

of droplets [46, 27, 50], droplet deformation [19, 31, 20], bursting [3], coalescence of

droplets [33, 53], adherence to solid boundaries [12, 13, 14] and splitting of droplets

[5, 7]. For a summary on the current research and applications of microfluidics,

the reader is referred to the review articles by Baroud, Gallaire and Dangla [2] and

Solvas and deMello [38].

Besides microfluidics, understanding the behavior of non-wetting droplets has

great importance in other industrial processes. In lubrication processes, lubricants

usually contain a small amount of immersed bubbles which alter the performance of

journal bearings and squeezing film dampers [37]. In enhanced oil recovery, foam is

generated within the underground porous media during the displacement of oil [34].

An accurate estimation of the wetting film thickness between droplets composing

the foam and the pore wall is desired in order to accurately predict the percentage
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of recoverable oil. In coating processes, the wetting film thickness is also a direct

measure of the load for coating the inner surface of monolithic channels [21, 22]. The

physics of bubbles in microchannels is also essential in the operation design of fuel

cells, e.g. the removal of CO2 bubbles in the anode channel of a direct methanol fuel

cell (DMFC) [28]. Understanding how bubbles/drops affect the flow resistance in

microchannels is a concern for determining the pumping or energy requirement for

portable microfluidic devices involving two-phase flows, such as in a direct methanol

fuel cell [10].

Microfluidic T-junctions, along with cross-junctions, are one of the most com-

monly used devices for the production of uniformly sized droplets. T-junctions were

first used by Thorsen et al. for formation of droplets [44]. Garstecki et al. identified

a squeezing mechanism for the formation of drops for very low capillary numbers

and provided scaling relationships to predict the size of droplets produced [17]. De

Menech et al. used a phase field model to simulate the flow of two immiscible fluids

and identified three distinct regimes of droplet formation: squeezing, dripping and

jetting [11]. Christopher et al. experimentally studied the effects of viscosity and

channel width ratios on droplet breakup in a T-junction and developed a scaling

model. There have been extensive studies on the formation and breakup of droplets

in microfluidic T-junctions [1, 25]. The critical parameter in certain microfluidic

applications is the shape of the particle being transported. In drug delivery applica-

tions the surface area and the local curvature of the particle affects the adsorption

of drugs [4]. Parameters like velocity, local curvature and surface area are direct

functions of the shape of the droplet.

The deformation and displacements of droplets in confined microfluidic ge-

ometries when subjected to intersecting flows is a problem of considerable interest

as such flow conditions occur in multi-phase flows in porous media and biological

systems. Considerable progress has been made in understanding the deformation

a single droplet in shear and extensional flows. A review of droplet dynamics in

complex flows can be found in the review article by Cristini et al. [8]. However,

there is very limited information available on the deformation of a single droplet

59



without breakup in a microfluidic T-junction. The goal of this current study is to

develop a better understanding of the dynamics of droplets in a T-junction without

interfacial breaking.

To address this issue, we study the dynamics of a single droplet moving along

the centerline of a microfluidic T-junction. A three-dimensional spectral boundary

element algorithm is used to compute the droplet deformation and motion under

Stokes flow conditions in a microfluidic T-junction. We provide a detailed discussion

of the junction geometry used in our computations in section 3.2.1. The mathe-

matical formulation of the problem and the boundary conditions are discussed in

section 3.2.2. The implicit interfacial spectral boundary-element method used in our

computations is discussed in detail in section 3.3. We discuss the results obtained

from our numerical calculations in section 3.4 . In particular, we study the effects of

flow rate, droplet size and viscosity ratio in three different subsections. A summary

of our results is presented in section 3.5.

3.2 Mathematical Formulation and Computational Method

3.2.1 Problem Description

A schematic diagram of the T-junction employed in this work is shown in figure 3.1.

The T-junction is constructed from intersecting square microfluidic channels. To

facilitate our results description, we imagine that the main channel is horizontal,

as illustrated in figure 3.1. Thus the flow direction (i.e., the x-axis) corresponds

to the channel’s or droplet’s length, the z-direction will be referred as height while

the y-direction will be referred as width (of the channel or the droplet). Seeing

the droplet from the positive y-axis, positive z-axis or negative x-axis, represents a

front view, a top view or an upstream view, respectively. In addition, we adopt the

standard definition of geometric shapes (polygons). Thus we call the droplet’s rear

edge as convex when the radius of curvature at the middle of the rear edge points

inside the capsule (i.e., the local curvature is positive); in the opposite case the edge

shape is concave. In general, the half length lx of the horizontal main channel of the
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junction along the x-axis is 9 units. The half lengths of the square cross-section of

the main channel, along the y and z-axes are ly and lz respectively, with ly = lz =

1. The length of the vertical branch channel along the positive z-axis is four unit.

The origin of the system is placed at the center of the junction.

The droplet (fluid 1) with a density ρ1 and viscosity λµ is naturally buoyant

in the surrounding fluid (fluid 2) with density ρ2 and viscosity µ, as ρ1 = ρ2. The

surface tension γ is assumed to be constant throughout the surface of the droplet.

The undeformed spherical droplet, at the start of our computations, has a radius a

with volume V = 4

3
πa3. The surrounding fluid flows in to the junction towards the

junction center through the square cross sections at -x, and +z-axes. The incoming

flow of the surrounding fluid through the square cross sections at -x, upstream of the

droplet is the undisturbed flow of fluid through a square channel with an average

velocity of U . The flow of the fluid coming in through the square cross section

of the vertical branch channel along the +z-axis is a fraction q of the fluid flow

through the main channel of the junction, i.e., the average velocity of the fluid

through the vertical channel is q U . At the start of our computations the spherical

droplet is placed inside the horizontal channel upstream of the junction. Due to

the nonsymmetric nature of the system and the flow, unlike in a straight channel

or a cross junction, the droplet velocity along the and z-axis is nonzero. As the

droplet deforms, it moves downstream through the horizontal main channel. Due to

the presence of nonsymmetric intersecting flow, the droplet deformation varies by a

great margin to that of deformation of a single droplet in a straight channel or cross

junction, under similar external shear and other physical conditions.

The major parameters of interest in this study are the strength of flow rate in

the horizontal main channel, viscosity ratio and the size of droplets. Figure 3.2(a)

shows the three-dimensional figure of an undeformed droplet while figure 3.2(b)

shows a three-dimensional view of a cross junction with the -y elements removed.
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Figure 3.1: Schematic illustration of the geometry of T-junction.

Figure 3.2: Three-dimensional figures of an undeformed droplet and the T-junction

used in our computations.
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3.2.2 Fluid Dynamics

Due to the very small length scales involved with droplet flow in microfluidics junc-

tions, the Reynolds number is very small and the inertial terms in the Navier-Stokes

equations can be neglected. The flow is governed by Stokes equations

∇ · σ ≡ −∇p + µ∇2u = 0 (3.1)

and the continuity equation

∇ · u = 0 (3.2)

where σ is the stress tensor, p is the dynamic pressure and u is the velocity vector.

In this study, the system surface SB consists of droplet surface Sd, the solid

surface of the junction Ss, the fluid surfaces Sf of the junction’s inlets and the

outlet. At the droplet surface the velocity is continuous and there is an interfacial

stress jump owing to the surface tension. As the density of both fluids are same, the

contribution of gravity to the interfacial stress jump is zero and thus the boundary

conditions on the droplet surface are,

u1 = u2 and ∆f ≡ f2 − f 1 = γ∇ · n (3.3)

Here the subscripts designate quantities related to the fluids 1 and 2 respectively,

while n is the unit normal pointing from the droplet interface into fluid 2. The

boundary conditions on the rest surfaces are,

u = 0 on the solid boundary Ss, (3.4)

u = u∞ (3.5)

where u∞ is the undisturbed channel velocity far from the droplet.

The undisturbed velocity profile for flow through a rectangular channel along

x-axis, far from the droplet, can be found in the book by Yih [51], which is,

u∞(x)

Υ
= (lz

2 − z2) +
∞∑

m=1

Bm cosh(
bmy

lz
) cos(

bmz

lz
), (3.6)
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where

Υ = −
1

2µ
, bm =

(2m − 1)π

2
, and

Bm =
(−1)m4lz

2

bm
3 cosh( bmly

2

lz
)

(3.7)

while p is the dynamic pressure. The volumetric flow rate Q can be obtained by

integrating over the cross-section, which is,

Q

Υ
=

8lylz
3

3
+

∞∑
m=1

Bm(
2lz
bm

)
2

sinh(
bmly
lz

) sin(bm) (3.8)

In our study, the incoming flows through the vertical branch channel is half as

strong as the flow through the main horizontal channel. The velocity profile from

the main channel is copied to the branch channel and scaled after accounting for

the direction of flow. Far from the droplet, the average velocity of the undisturbed

flow is U = Q/(ly lz), while the maximum undisturbed velocity at the centerline of

the square channel is Umax/U ≈ 2.096.

In this study, if no scale is present, the horizontal channel’s half-height lz is

used as the length scale, the velocity is scaled with the average undisturbed velocity

U , and thus time is scaled with τf = lz/U .

Based on standard boundary integral formulation, the velocity at a point x0

on the system surface SB may be expressed as a surface integral of the force vector

f = n · σ and the velocity u over all points x on the boundary SB,

Ωu(x0) = −

∫
Sc

[S · (∆f − µ(1 − λ)T · u · n] (x)dS

−

∫
Ss∪Sf

(S · f − µT · u · n)(x)dS (3.9)

where the coefficient Ω takes values 4πµ(1 + λ) and 4πµ for points x0 on the

surfaces Sd and Ss ∪ Sf respectively. The tensors S and T are the fundamental

solutions for the velocity and stress for the three-dimensional Stokes equations, i.e.,

known functions of the system surface SB [13]. More details on physical variables

can be found in the article by Kuriakose and Dimitrkopoulos [23].
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3.3 Implicit Interfacial Spectral Boundary-Element Method

The boundary integral equation, Eq.(3.9), was solved using our three-dimensional

fully-implicit interfacial spectral boundary-element method. The boundary is di-

vided into a number NE of surface elements, each of which is parametrized by

variables η and ξ on a square domain of [−1, 1]2. The geometry and physical vari-

ables are discretized using Lagrangian interpolation in terms of these parametric

variables. The number NB of basis points (ηi, ξi) chosen for interpolation are zeros

of orthogonal polynomial. Any point x on the geometry can be represented by

x(ξ, η) =
NB∑
i=1

NB∑
j=1

x(ξi, ηi)hi(ξ)hj(η) (3.10)

Similarly the physical variables u and f can be interpolated at any point x from

their values at the basis points.

Two types of points are used in solving the boundary integral equation by our

spectral element method, the collocation points x0 where the equation is required

to be satisfied and the basis points x where the physical variables u and f are

specified. The collocation points x0 are of Legendre-Gauss quadrature where the

points lie on the interior of the spectral elements. Thus the boundary integral

equation is valid even at corners of singular elements. The basis points x are of

Legendre-Gauss-Lobatto quadrature and thus the physical variables are defined in

the interior and edges of the spectral elements. Further details on the discretization

of system surfaces can be found in these earlier papers [47, 15].

The transformation of the Stokes equations into boundary integral equations

and solution by an explicit time integration method has been a common method

to determine the droplet shape as a function of time since the pioneering work of

Acrivos and coworkers [52, 36]. This results in a great reduction in computational

time as a three-dimensional problem can be described and solved using only two

curvilinear coordinates. However, the explicit time integration requires a time step

smaller than any time scale (numerical and physical) appearing in the problem. To
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ensure stability the time step employed has to satisfy the following condition,

∆t < O(Ca ∆xmin) (3.11)

where ∆xmin is the minimum grid spacing in the computational problem [35, 54].

Dimitrakopoulos developed an efficient, fully-implicit time-integration algorithm for

interfacial dynamics in Stokes flow to avoid the computational cost associated with

small time steps [15]. This method is based on a mathematically rigorous combina-

tion of implicit schemes with the Jacobian-free three-dimensional Newton method

developed by Dimitrakopoulos and Higdon [13]. Both multi-step (one-stage) im-

plicit formulae (e.g. Euler and backward differentiation schemes) and multi-stage

diagonally implicit Runge-Kutta schemes are employed. By the combination of the

an implicit scheme with the Newton method, the interfacial algorithm preserves the

stability properties of the corresponding implicit formula, and hence permits the

use of very large time steps. In addition, sufficient accuracy can be easily achieved,

even with larger time steps, by employing high-order implicit schemes. In this work

we use a third-order diagonally implicit Runge-Kutta scheme (DIRK3) with ∆t =

10−2.

By combining the implicit interfacial method with the spectral boundary-

element algorithm, the resulting algorithm exploits all the benefits of the spectral

methods, i.e., high-order interpolation with exponential convergence and numerical

stability with increasing number of spectral points, along with the versatility of the

boundary-element method, i.e., the ability to handle the most complicated geome-

tries. In addition, it is not affected by the disadvantage of the spectral methods

used in volume discretization; namely the requirement to deal with dense systems,

because in boundary-integral formulations the resulting systems are always dense,

independent of the form of discretization. We note that the exponential convergence

in the numerical accuracy is evident at both the properties of a given shape, such

as the interfacial curvature, and the dynamic evolution of the interfacial shape. For

more details the reader is directed to the article by Dimitrakopoulos [15].

In our study, the horizontal main channel of the cross-junction is divided into
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nine rows with four rows upstream and downstream of the junction, while the vertical

branch channel is two-rows long. Each row of the channels are represented by four

surface elements, with one element representing a side of the row. Thus the solid

walls of the cross junction are divided into forty three elements. In addition the

three fluid surfaces for entrance and exit of fluids into the channel are represented

by one element each. The droplet surface is divided in a minimum of six elements by

cube projection, with each element corresponding to a side of the cube. Our method

is also capable of generating more surface elements on the droplet surface and more

than one elements per row for each channel side. In most of our computations,

we have used ten surface elements for capturing the droplet shape. However, for

handling complex shapes of the deformed droplets for high Ca we have used up to

22 surface elements with progressive splitting of an element at the tip of the droplet

into five elements. Such discretizations are not needed in most of the cases as the

method is accurate, as shown from our convergence runs.

In most of our computations, we utilized NB = 8 basis points on each element.

As we have NE number of surface elements and NB
2 points per spectral elements,

we finally have a system of 3NENB
2 algebraic equations. For verification of accuracy

of our results, we performed some runs with NB = 10 basis points for moderate and

high Ca and high droplet sizes a. The convergence runs showed that NB = 8 is

sufficient enough to capture the shape of the deformed droplets except for the case

with large Ca = 0.4.

In all our computations carried out in this chapter, we exploited the symmetry

level z = 0. Exploiting the symmetry reduce the memory requirements for storage

of the system by a factor of 4, the computational time for calculating the system

matrices by a factor of 2 and the solution time via direct system solvers by factor

of 8.
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3.4 Results

In this section, we discuss the results obtained from our numerical computations.

The study covers a wide range of flow rates, viscosity ratios and droplet sizes. The

computations are started with a spherical droplet which deforms as it moves down-

stream. Similar to our computations on cross-junction, in all our computations in

this chapter, we fix any two of Ca, λ, a at Ca = 0.1, λ = 0.2, a = 0.7 and vary

the third one over a wide range to study its effects on droplet deformation. At the

beginning of all computations, we place the droplet at the center of the horizontal

main channel of the T-junction device, at a position of xc = −3.0. After the start of

computations, the droplet deforms as it starts flowing downstream due to flow initi-

ation. We compute the droplet dynamics until the droplet centroid reaches xc = 8.0.

However, we plot the results of our computations only when the the droplet centroid

is in the range of xc=[-3.0,6.0] as our main focus is on the dynamics of the droplet

near the center of the T-junction where the flow intersection occurs. Also we plot

the results as a function of the droplet centroid xc.

The three-dimensional shapes of a droplet in a T-junction, at different loca-

tions of the droplet centroid xc, are shown in figure 3.3. The three-dimensional

views presented here were derived from the actual spectral grid by spectrally inter-

polating to NB = 14-16. The first shape in figure 3.3 shows the undeformed droplet

at the start of the computation, with its centroid at xc = −3.0. After the start of

computation, the droplet starts flowing downstream and deforms due to the hydro-

dynamic forces acting on it. The droplet assumes a bullet shape, similar to a droplet

in a cross-junction, with a pointed downstream tip and a flattened rear, while still

upstream of the flow intersection. The droplet takes the shape of a bullet as it tries

to balance the hydrodynamic forces and the surface tension forces. Again, this can

be explained by putting an observer at the center of the droplet, assuming a static

frame of reference for the observer. In this case the fluid is flowing upstream in the

junction. With a spherical droplet the net surface tension forces is zero. The surface

tension force acting at a point on the droplet surface is inversely proportional to its
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Figure 3.3: Three-dimensional shapes of a droplet (plotted row-wise) with Ca =

0.4, λ = 0.2, a = 0.7, q = 0.5 in a T-junction at xc = -3.0, -1.74, -0.53, -0.37, 0.12,

0.49, 0.90, 1.34, 1.57, 2.26, 3.4, 4.5, 4.9.
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radius of curvature and can be written as

Fγ ∼
γ

R
(3.12)

where R if the radius of curvature of the point on the droplet. As the tip of the

droplet becomes pointed and the rear flatter, there is a net surface tension force on

the droplet

Fγ ∼ γ(
1

R1

−
1

R2

) (3.13)

where R1 and R2 are the radius of curvatures of the center of the tip and the rear

of the droplet. This quantity is positive as R1 is smaller than R2.

When the tip of the droplet enters the flow intersection, with its rear still

upstream of the flow intersection, its rear becomes flatter, while its tip becomes

more pointed and skewed towards the z = −lz wall of the T-junction as the droplet

experiences a stronger hydrodynamic force due to flow coming in through the vertical

branch channel of the T-junction, as shown in the third shape of figure 3.3. This

causes the droplet centroid xc to move towards the rear of the droplet. As the drop

moves further inside the flow intersection, its tip becomes more pointed as seen in

the fourth shape of figure 3.3. The fifth shape of figure 3.3 shows the droplet, with

a very pointed tip and a highly flattened rear, when it is completely within the flow

intersection. As the droplet moves further downstream, with its rear is still inside

the flow intersection while its tip is outside, the droplet becomes bent, as shown in

the sixth shape of figure 3.3, to accommodate the flow through the vertical branch

channel. The droplet becoming bent is a direct result of the lack of symmetry of flow

around the xy-plane of the junction. We observe from the seventh shape of figure 3.3

that skewed tip of the droplet gradually starts moving away from the z = −lz wall

of the T-junction device while its rear becomes thinner, as the droplet moves further

downstream with its rear still inside the flow intersection. As the downstream tip

of the droplet starts moving towards the centerline of the horizontal main channel,

i.e., the x-axis, the rear of the droplet gradually becomes more pointed and skewed

towards the z = −lz wall of the junction, as seen from the eighth and ninth shapes of

figure 3.3. As the droplet completely exits the flow intersection the droplet assumes a
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slipper shape with a rear which is very pointed and skewed towards the z = −lz wall

of the T-junction, as seen in the tenth and eleventh shape of figure 3.3. Gradually

the droplet starts becoming less deformed, as it moves further away from the flow

intersection, with both its tip and rear becoming less pointed, as sees in the twelfth

and thirteenth shape of figure 3.3, and finally exit the junction.

3.4.1 Effect of flow rate

In this section, we collect the results of our computations studying the effects of

varying flow rates in the channels of our T-junction device. We vary the flow rate

in the horizontal main channel of the junction, while maintaining fraction of flow

rate in the vertical branch channel at q = 0.5. A spherical droplet with viscosity

ratio λ = 0.2 and size a = 0.7 is placed upstream of the junction at xc = −3.0 and

the capillary number Ca varies in the range [0.01-0.4]. From our computations we

found that the droplet deformation depends strongly on Ca.

Figure 3.4 shows the droplet lengths Lx along the flow direction as a function

of the droplet centroid position xc. We observe, from figure 3.4(a), that the droplet

length Lx increases with an increase in flow rate. After the droplet is released in the

horizontal main channel, at first Lx shows a small decrease, owing to the formation

of the bullet shape, followed by a slow increase as the droplet moves towards the flow

intersection. This is followed by a rapid increase in Lx after the droplet enters the

flow intersection of the T-junction device. Lx reaches a maximum after the droplet

centroid xc crosses the flow intersection and then rapidly starts decreasing as the

droplet moves in to the horizontal channel downstream of the flow intersection. For

the very small Ca = 0.01, Lx decreases to a steady state downstream of the flow

intersection. We also observed from our computations that for all other Ca, Lx does

not reach steady state by the time it reaches the end of out T-junction device. In

addition, for the range of Ca studied in this chapter, none of the droplets break

inside the junction channel.

We also divide the total droplet length Lx into two components, the upstream

and downstream droplet lengths, Lu
x and Ld

x, (calculated from the droplet centroid
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Figure 3.4: Droplet lengths along the flow direction as a function of the droplet

centroid xc for λ = 0.2, a = 0.7, q = 0.5 and capillary number Ca = 0.01, 0.1, 0.2, 0.4.

(a) Droplet length Lx. (b) Downstream droplet length Ld
x. (c) Upstream droplet

length Lu
x.
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xc to the rear and front tips of the droplet), and plot them separately in figure 3.4(b,

c) as a function of the droplet centroid xc. It is observed, from figure 3.4(b, c), that

before the droplet centroid crosses the center of the cross-junction, they exhibit

different behavior, whereas their behavior after that is similar. The upstream droplet

length Lu
x at first decreases, and then starts increasing till it reaches a maximum.

This initial decrease in Lu
x is because of the appearance of the flattened rear in the

bullet shaped droplet, as shown in the third shape of figure 3.3, which causes the

droplet’s centroid to move backwards. The downstream length of the droplet Ld
x

increases, at first slowly and then rapidly till it reaches a maximum, which is again

followed by a sharp decrease. This can be attributed to the evolution of the pointed

downstream tip in the bullet shaped droplet. The rapid increase in Lu
x and Ld

x is

due to the lengthening of the droplet by stronger hydrodynamic forces caused by

the additional flow through the vertical branch channel of the T-junction. After

reaching a maximum, both Lu
x and Ld

x start decreasing rapidly as the droplet moves

further downstream. The decrease in Ld
x is more rapid than that of Lu

x as the droplet

centroid xc moves towards the downstream tip of the droplet in the slipper shaped

droplet. In addition, we observe that the final value attained by Lu
x, at xc = 6.0, is

higher than the final value of Ld
x due to relative lengthening of the upstream portion

of the slipper shaped droplet. The final values of both Ld
x and Lu

x are greater than

1 for all Ca studied.

In figure 3.5 (a) and (b) we plot Ly and Lz, i.e., the droplet lengths along the

y- and z-axes respectively as a function of droplet centroid xc. We observe, from

figure 3.5(a,b), that Ly and Lz remain largely unchanged at the very small Ca = 0.01

as the droplet undergoes a very small deformation. For all other capillary numbers

studied, Ly starts decreasing slowly upstream of the flow intersection, followed by

a rapid decrease as the droplet enters the flow intersection. On the other hand, Lz

shows a small initial decrease, which is followed by another small increase before the

droplet enters the flow intersection. This is due to the formation of the bullet shape

and its shortening as the downstream tip of the droplet reaches the flow intersection.

Ly and Lz both decrease rapidly under increased hydrodynamic forces due to the
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Figure 3.5: Droplet lengths along the y- and z-axes as a function of the droplet

centroid xc for λ = 0.2, a = 0.7, q = 0.5 and capillary number Ca = 0.01, 0.1, 0.2, 0.4.

(a) Droplet length along the y-axis Ly/(2a). (b) Droplet length along the z-axis

Lz/(2a).
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additional flow coming in through the vertical branch channel of the droplet, as the

droplet enters the flow intersection, Ly and Lz both reach minimum downstream

of the junction and then start increasing again as the droplet tries to regain its

shape from the highly deformed slipper shape. For Ca = [0.1,0.4], Ly and Lz do not

reach steady states as the interfacial evolution of the droplet continues till it reaches

xc = 6.0.

We plot the surface area of the deformed droplet Sd, as a function of the

droplet centroid xc, in figure 3.6. The surface area of the deformed droplet Sd

is scaled with the undeformed surface area of the originally spherical droplet S0
d .

For Ca = 0.01, Sd remains largely unchanged as the droplet does not undergo any

appreciable deformation at such a low flow rate. For all other capillary numbers of

Ca = [0.01,0.4], it is observed that the surface area of the droplets increases with an

increase in the flow rate. After a small initial decrease in Sd, upstream of the flow

intersection, is followed by a rapid increase inside the flow intersection until it reaches

a maximum downstream of the junction. This rapid increase again is due to stronger

hydrodynamic forces acting on the droplet due to the flow coming in through the

vertical branch channel. With an increase in the flow rate, the hydrodynamic force

acting on the droplet increases making the slipper shaped droplet longer, which in

turn increases the total surface area of the droplet. As the slipper shaped droplet

tries to regain its shape, downstream of the flow intersection, Sd starts decreasing

rapidly. In addition, Sd does not reach a steady state by the time the droplet

centroid is at xc = 6.0, as the interfacial evolution of the interfacial evolution of the

droplet is still not completed.

The curvature of the xz-profile at the center of the downstream droplet tip,

Cd
xz is plotted in figure 3.7. The curvature Cd

xz is scaled with the curvature of the

undeformed spherical droplet Cd
xz,0. We observe from the plots that, after the flow

initiation, Cd
xz increases owing to the formation of the pointed downstream tip of the

droplet. This is followed by a rapid increase in Cd
xz as the downstream droplet tip

enters the flow intersection and becomes more pointed. The curvature Cd
xz reaches a

maximum when the droplet centroid is slightly downstream of the junction center.

75



1

1.02

1.04

1.06

1.08

1.1

-4 -2 0 2 4 6

S
d
/S

0 d

Xc

Ca increases

Ca = 0.01

0.40

Figure 3.6: Surface area of the droplet (scaled with its undisturbed value) Sd/S
0
d

as a function of the droplet centroid xc for λ = 0.2, a = 0.7, q = 0.5 and capillary
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After the downstream droplet tip exits the flow intersection and the droplet assumes

the slipper shape, Cd
xz starts decreasing as the downstream droplet tip gradually

becomes less pointed. The final value for Cu
xz increases with an increase in Ca.

Figure 3.8 shows the curvature of the xz-profile at the center of the rear of the

droplet, Cu
xz, as a function of the droplet centroid xc. The curvature Cu

xz is scaled

with the curvature of the undeformed spherical droplet Cu
xz,0. The behavior of the

curvature Cu
xz for the rear of the droplet is more complicated than the curvature of

the downstream droplet Cd
xz. As the droplet deforms, while moving from through the

main channel, the rear of the droplet undergoes a continual change in its shape. For

the small Ca = 0.01, Cu
xz stays very close to 1, as the droplet is largely undeformed.

For all other capillary numbers studied, Cu
xz shows a sharp initial decrease due to

the formation of the flattened rear in the bullet shaped droplet. As the droplet

moves into the flow intersection, the shape of the droplet changes from a bullet

to a bent bullet, as shown in 3.3. This change in shape is the reason behind the

rapid increase in Cd
xz, as seen in figure 3.8. However, after the formation of the

slipper shaped droplet the curvature at the center of the rear decreases rapidly, as

the center of the droplet rear becomes flat, while the pointed shape occurs near to

the edge of the droplet rear. The final value of Cd
xz, at xc = 6.0 decreases with an

increase in Ca, as the center of the droplet rear becomes more flattened, with the

edge becoming more pointed, to balance the stronger hydrodynamic forces with the

restoring surface tension forces.

We plot the droplet velocities, Ux and Uz, as a function of the droplet centroid

xc, in figure 3.9(a) and (b) respectively. After the start of computation, as the

droplet moves through the horizontal main channel, the droplet centroid deviates

from the centerline of the main channel. As the droplet enters the flow intersection

its velocity in the flow direction, Ux, increases significantly, as seen in figure. 3.9(a).

However, due to the incoming flow through the vertical branch channel, the droplet

also gets pushed towards the z = −lz wall of the T-junction. The magnitude of

droplet velocity along the z-axis, Uz, also increases after the droplet enters the flow

intersection, and starts decreasing as the droplet experiences a lateral migration
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towards the centerline as it leaves the flow intersection. Lateral migration has been

observed in the case of droplets and bubbles in wall bounded flows [47, 40, 29]. We

observe from figure. 3.9(a) that the droplet velocity along the flow direction Ux, at

all locations, increases with an increase in in the flow rate. The droplet velocity

along the z-axis Uz remains almost independent of the flow rate, before the droplet

centroid xc is well inside the flow intersection. The final value reached by Uz at

xc = 6.0 also increases with an increase in Ca.

Figure 3.10(a) shows the plots of the minimum distance h of the droplet from

the z = −lz wall of the junction, plotted as a function of the droplet centroid xc

as the droplet moves through the horizontal main channel of out T-junction device.

At the start of our computations, after releasing the droplet in the main channel

of the junction, we observe a slight increase in the minimum distance h. This

initial increase in h is due to the lengthening of the droplet, with a bullet shape,

which caused the droplet to become thinner due to volume preservation. This initial

increase is followed by rapid decrease in h to a minimum, at a position with the

droplet centroid xc downstream of the junction. This decrease to the minimum

occurs as the droplet enters the flow intersection and the droplet gets pushed towards

the −z wall of the junction by the flow coming through the vertical branch channel

along the z-direction, causing h to decrease. This also causes Zc to move towards the

z = −lz wall of the junction, away from the centerline of the horizontal main channel,

which explains its sharp decrease, as seen in figure 3.10(b). After the droplet passes

the flow intersection, there is a lateral migration of the droplet towards the centerline

of the junction with a decrease in deformation. The lateral migration of the droplet

is slow as compared to the fast displacement away from the centerline of the main

channel by the vertical flow through the branch channel. The final increase in h and

Zc, when the droplet centroid xc is well downstream of the flow intersection.

3.4.2 Effect of droplet size

In this section, we collect the results of our computations studying the effect of

droplet size on its dynamics in the microfluidic T-junction. The spherical droplets

81



0.05

0.1

0.15

0.2

0.25

0.3

0.35

-4 -2 0 2 4 6

h

Xc

Ca = 0.01

0.10

0.20

0.40

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-4 -2 0 2 4 6

Z
c

Xc

Ca = 0.01

0.10

0.20

0.40

Figure 3.10: Minimum distance of the droplet interface, from the z = −lz wall of the
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(a) Minimum distance h. (b) Droplet centroid position along the z-axis Zc.
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with viscosity ratio λ = 0.2 and capillary number Ca = 0.1 are placed upstream

of the junction at xc = −3.0, with the flow rate in the vertical branch channel

maintained constant at q = 0.5. The range of droplet sizes studied in this chapter

varies from moderately sized droplets with a = 0.5 to large droplets with a = 0.9.

From our computations we found that the droplet deformation varies strongly as a

function of droplet size a.

Figure 3.11(a) shows the droplet lengths Lx along the flow direction, which

is the x-axis, plotted against the droplet centroid xc. We scale the droplet lengths

Lx with undisturbed values 2a, thereby allowing us to compare the deformation of

droplets of various sizes. As soon as we release a droplet, at its initial position with

xc = −3.0, the droplet moves through the horizontal main channel of the junction

and its shape deforms, with an increase in its length and decrease in width. Initially

the droplet takes the shape of a bullet, with a pointed downstream tip and a flattened

rear. We observe from the plots that the droplet length Lx, till it enters the zone

of flow intersection, depends on its size. For the moderately sized droplets (a =

0.5, 0.6, 0.7), Lx shows a small decrease, before the downstream droplet tip enters

the flow intersection. For the large droplets (a = 0.8, 0.9), no such decrease in Lx is

observed. In case of the larger droplets, the increase in their lengths is monotonic, as

due to their large size the hydrodynamic forces acting on them is considerably large.

The deformation of the droplets increase considerably after they enter the zone of

flow intersection, as due to the flows coming in through the vertical branch channel

the hydrodynamic forces acting on the droplets increase significantly. Lx reaches a

maximum slightly downstream of the junction and then starts decreasing. For all

droplet sizes studied, the lengths of the droplet Lx at the end of the junction is more

than its undisturbed value at the start of computations. It is to be noted that the

droplet deformation, hence its length Lx increases significantly with an increase in

the droplet size. This is due to the fact that due to the large size of the droplets,

the effective capillary number acting on the droplet becomes,

Caeff ∼
µU

γ
(
Lz

h
)n (3.14)
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where Lz is the length of the droplet along the z-axis. For the moderately sized

droplets, the factor (Lz

h
)n is not significantly greater than 1, while for the larger

sized droplets the factor is large as h, the distance of the droplet interface from

the z = −lz wall of the junction decreases with an increase in droplet size, as can

be seen in figure 3.12. In addition, due to the lack of a branch channel in the -

z-direction, the droplet interface gets pushed further towards the z = −lz wall of

the junction. This results in a higher deformation of the larger sized droplets by

becoming thinner and longer to preserve its volume while allowing the surrounding

fluid to flow through the channel.

We divide the total droplet length Lx into the droplet’s upstream length Lu
x

and the downstream length Ld
x (calculated from the droplet centroid to the rear

and front tips of the droplet) to explain the deformation of the front and rear parts

of the droplet. We show the downstream and upstream lengths of the droplets in

figure 3.11(b) and figure 3.11(c) respectively. The behavior of Ld
x is very similar to

that of Lx,while Lu
x first go through at least one minimum before it starts increasing.

The initial increase in Ld
x is due to the evolution of a pointed downstream tip and

a flatter rear after the initiation of computation, which causes the droplet centroid

to move towards the rear of the droplet. With an increase in the droplet size, the

downstream length of the droplet Ld
x monotonically increases due to the lengthening

of the downstream portion of the droplet, caused by an increase in Caeff. Ld
x

increases rapidly after it enters the flow intersection, due to the additional flow

coming in through the vertical branch channels, and reaches a maximum slightly

downstream of the flow intersection. Ld
x starts decreasing rapidly after reaching the

maximum, as the droplet gradually becomes less deformed. The final value attained

by Lx at xc = 6 increases with an increase in droplet size a, as there is less space for

the surrounding fluid to flow through, causing the effective capillary number Caeff

to rise.

From figure 3.11(c) we observe that before the droplet enters the flow intersec-

tion zone, Lu
x show a small decrease to a minimum, which is due to the flattening of

the rear in the bullet shaped droplet, causing the droplet centroid to move towards
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the rear of the droplet. However after the droplet enters the flow intersection, Lu
x

increases rapidly as the droplet takes the bent bullet shape and then the slipper

shape, causing the rear of the droplet to elongate and the droplet centroid to move

towards the downstream tip of the droplet. Lu
x reaches a maximum slightly down-

stream of the flow intersection, similar to Ld
x. After reaching the maximum, Lu

x

starts decreasing slowly when the rear of the slipper shaped droplet starts becoming

less pointed. For all droplet sizes studied in this chapter, both Ld
x and Lu

x remain

higher than 1 by the time the droplet centroid reaches xc = 6.0. It is also observed

from figure 3.11(b) and (c) that Lu
x is larger than Ld

x at xc = 6.0, for all droplet

sizes studied. This arises from the fact that in the slipper sized droplet, the pointed

upstream portion of the droplet is longer, than the relatively less pointed front tip

of the droplet.

In figure 3.12 (a) and (b) we plot Ly and Lz against the droplet centroid xc.

The final values of both Ly and Lz at xc = 6.0 decrease with an increase in droplet

size. However the initial behavior of Ly and Lz, before the droplet enters the flow

intersection are different. For all droplet sizes studied, after the droplet is released

in the horizontal main channel of the junction, Ly decreases monotonically until it

reaches a minimum slightly downstream of the junction and then starts increasing

again. On the other hand Lz shows different behavior for different droplet sizes

studied. For the large droplet sizes studied (a = 0.8, 0.9), there is a small decrease

in Lz followed by a increase before the droplet enters the flow intersection. For

the smaller droplets with a = 0.5, 0.6, 0.7, Lz shows a small increase before the

droplet enters the flow intersection. This different initial behavior is because of

the fact that, in the case of the larger droplets, as soon they are released in the

junction, the droplet deforms immediately to enable the surrounding fluid to flow

through the channel. Also the front tip of the droplet, when it reaches the flow

intersection zone, becomes elongated due to the flow coming through the vertical

branch channel, causing the rear of the droplet to become flatter and wider and

hence Lz shows the rapid small increase. When the droplet is completely within

the flow intersection Lz decreases rapidly to a minimum and then starts increasing
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Figure 3.12: Droplet lengths along the y- and z-axes as a function of the droplet
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as the droplet moves downstream of the flow intersection. The rapid decrease is

due to the droplet becoming becoming slender as it takes up the bent droplet and

the slipper shape, while the increase afterwards is due to the droplet becoming less

deformed in the downstream channel.

In figure 3.13 we show the plots of droplet surface area against the droplet

centroid xc. The surface area Sd is scaled with the surface area of the undisturbed

spherical droplet S0
d . The droplet surface area is an important parameter as it gives

us a general indication about the deformation of the droplet inside the T-junction.

It is observed that Sd/S
0
d starts increasing as soon as the droplet is released in the

junction. For the moderate droplet sizes with a = 0.5, 0.6, 0.7, 0.8, Sd/S
0
d increases

monotonically until it reaches a maximum downstream of the flow intersection and

then starts decreasing. The rapid increase in Sd/S
0
d is due to the increased flow

coming in through the vertical branch channels. For the large droplet with a = 0.9,

there is a slight decrease in the droplet surface area before the front tip of the

droplet enters the flow intersection which corresponds to the flattening of the front

tip, before it enters the flow intersection, and a decrease in the droplet deformation.

For all droplet sizes the droplet surface area Sd/S
0
d increases with an increase in the

droplet size a, due to an increase in the effective capillary number Caeff, at all xc.

In addition, we observe that for the moderately sized droplets (a = 0.5, 0.6, 0.7) the

increase in Sd/S
0
d at xc = 6.0 is not significant as compared to the droplets with

a = 0.8, 0.9.

The curvature of the xz-profile at the center of the downstream droplet tip,

Cd
xz is plotted in figure 3.14. The curvature Cd

xz is scaled with the curvature of the

undeformed spherical droplet Cd
xz,0. The curvature Cd

xz increases with an increase in

the droplet size a. This is due to the formation of a pointed downstream droplet

tip on deformation, which becomes more pointed with an increase in the droplet

size a due to higher deformation caused by an increase in the effective capillary

number Caeff. Cd
xz starts increasing as soon as the droplet is released in the junction

upstream of the flow intersection. For the moderately sized droplets with a =

0.5, 0.6, 0.7, 0.8, Cd
xz shows a slight decrease, after the initial increase, before the
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droplet enters the flow intersection, due to the front tip of the droplet becoming less

pointed. Cd
xz starts decreasing as the droplet leaves the flow intersection. The final

value reached by Cd
xz at xc = 6.0 increases with an increase in the droplet size a.

Figure 3.15 shows the curvature of the xz-profile at the center of the droplet

rear, Cu
xz, as a function of the droplet centroid xc. The curvature Cu

xz is scaled with

the curvature of the undeformed spherical droplet Cu
xz,0. We observe, from the plots

of figure 3.15, that the final value of the upstream tip curvature Cu
xz, at xc = 6.0,

decreases with an increase in droplet size a. This is due to the higher deformation

of the larger droplets, which again is due to higher Caeff. Cu
xz initially shows a

sharp decrease after the droplet is released in the junction, followed by an increase

to a maximum and then a subsequent decrease after the droplet centroid passes the

flow intersection. The initial decrease in Cu
xz is due to the flattening of the rear of

the bullet shaped droplet after it is released upstream of the flow intersection. The

subsequent increase in Cu
xz is due to the rear of the droplet becoming more pointed,

as the droplet changes its shape from a bullet to a slipper. As in the slipper shaped

droplet the rear starts becoming more pointed, which occurs at the edge of the

droplet rear, the center of the droplet rear starts becoming flatter, causing Cu
xz to

drop.

We plot the droplet velocities, Ux and Uz, in figure 3.16(a) and (b) respectively.

We observe from figure. 3.16(a) that the droplet velocity along the flow direction,

Ux, decreases with an increase in the droplet size a, at all positions of the droplet

centroid xc. Upon release, the droplet velocity decreases to a minimum before the

droplet enters the flow intersection zone and then increases sharply to a maximum

downstream of the flow intersection, due to the additional flow through the vertical

branch channel. This is followed by a slow decrease to a value which is higher than

the initial velocity of the droplet.

The droplet velocity along the z-axis, Uz, remains almost independent of the

droplet size, before the droplet centroid enters the flow intersection, as seen from

figure 3.16(b). As the droplet enters the flow intersection, the magnitude of Uz

increases rapidly as the droplet gets pushed towards the z = −lz wall of the junc-
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tion. We observe that the droplets with larger size gets pushed slower towards the

z = −lz wall of the junction by the additional incoming flow through the vertical

branch channel. Uz decreases to a maximum as the droplet leaves the flow inter-

section. As the droplets become less deformed downstream of the flow intersection

and starts experiencing a lateral migration towards the centerline of the horizontal

main channel, the magnitude of Uz starts decreasing However Uz does not reach

any steady state by the time the droplet centroid reaches xc = 6.0, as the lateral

migration continues.

We plot the the minimum distance h of the droplet from the z = −lz wall of

the junction, as a function of the droplet centroid xc in figure 3.17(a). At the start

of our computations, after releasing the droplet in the main channel of the junction,

we observe a slight increase in the minimum distance h. This initial increase in h is

due to the initial lengthening of the droplet as it takes a bullet shape, which causes

the droplet to become thinner due to volume preservation. This initial increase is

followed by a rapid decrease to a minimum. This decrease to the minimum occurs as

the droplet enters the flow intersection and the droplet gets pushed towards the −z

wall of the junction by the flow coming through the vertical branch channel along

the z-direction, causing h to decrease. The final increase in h, when the droplet

centroid xc is well downstream of the flow intersection, happens as the droplet

becomes less deformed after crossing the flow intersection and slowly moves away

from the junction wall.

In figure 3.17(b) we plot the droplet centroid along z-axis Zc as a function of

the droplet centroid position along the flow direction xc. From the plots we observe

that, for all droplet sizes studies, Zc shows a sharp decrease when the droplet enters

the flow intersection, as a result of the droplet getting pushed towards the z = −lz

wall of the T-junction device, which causes Zc to move towards it. The slow increase

in Zc, after the droplet passes the flow intersection is a result of the lateral migration

of the droplet away from the z = −lz wall of the T-junction. We observe that

the droplets with larger size experiences a much smaller displpacement in the z-

direction, as compared to a droplet with smaller size. In addition, we observe that
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the difference in displacement of different sized droplets becomes pronounced only

after the droplet enters the flow intersection.

3.4.3 Effect of viscosity ratio

In this section, we collect the results and study the effects of viscosity ratio on the

dynamics of the droplets in the T-junction. The range of viscosity ratio studied

here range from very low (λ = 0.01) to very high (λ = 20) while keeping the other

parameters like capillary number Ca = 0.1, droplet size a = 0.7, flow rate in branch

channel q = 0.5 constant. It was observed from our computations that the droplet

dynamics varies strongly as a function of the viscosity ratio of the fluids.

Figure 3.18(a) shows the droplet lengths Lx along the flow direction as a

function of the droplet centroid xc for different viscosity ratios. We also divide the

total droplet length Lx into the droplet’s upstream and downstream length, Lu
x and

Ld
x, (calculated from the droplet centroid xc to the rear and the front tips of the

droplet) and plot them separately in figure 3.18(b, c) as a function of the droplet

centroid xc. We observe from the plots of figure 3.18(a) that the total length of the

droplet Lx shows behavior dependent upon the viscosity ratio λ. For all viscosity

ratios λ studied, the droplet length decreases to a minimum before the droplet enters

the flow intersection. After the minimum is reached, there is a rapid increase in Lx to

a maximum, as the droplet enters the flow intersection, and then a sharp decrease

as the droplet leaves the flow intersection. The initial decrease in droplet length

Lx, upstream of the flow intersection, is due to a shortening of the droplet, with a

pointed tip and flattened rear, after being released in the horizontal main channel of

the junction. The increase to the maximum, downstream of the flow intersection, is

because of higher deformation by the additional flow coming in through the vertical

branch channel. We observe that for λ = [0.01, 1], the maximum value of Lx reached

downstream of the junction increases with an increase with an increase in λ, while

for λ = 10, 20 the opposite happens. In the case of deformation of a single droplet

in a rectangular straight channel, it has been observed that the deformation of a

droplet, and hence Lx, increases with an increase in λ due to an increase in higher
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Figure 3.18: Droplet lengths along the flow direction as a function of the droplet cen-

troid xc for Ca = 0.1, a = 0.7, q = 0.5 and viscosity ratio λ = 0.01, 0.1, 0.5, 1, 10, 20.

(a) Droplet length Lx/(2a). (b) Downstream droplet length Ld
x/a. (c) Upstream

droplet length Lu
x/a.
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inner hydrodynamic forces [48]. However deformation takes place faster for a droplet

with a smaller λ, i.e., a less viscous droplet needs less time deforming from its initial

shape. The time needed for a droplet to deform can be expressed as,

τ ∼ (1 + λ)Caτf (3.15)

When λ is small there is enough time for the droplet to deform and hence the

maximum Lx increases with an increase in λ. When λ = 10, 20, the time needed

by the droplet to deform to its maximum is significantly raised as the factor (1+λ)

becomes dominant and hence we observe the decrease in the maximum Lx with an

increase in λ. In our study, the droplets do not reach steady state by the time

xc = 6, but if given enough time the final value of Lx will increase with an increase

in λ.

The downstream and upstream lengths of the droplet Ld
x, Lu

x, show behavior

different from each other, as can be seen from figure 3.18(b, c). We observe that,

after the droplet is released in the horizontal main channel of the junction, In general,

Ld
x shows a small increase, while Lu

x shows a small decrease before the droplet enters

the flow intersection. This behavior of Ld
x and Lu

x is due to the formation of a pointed

tip and a flattened rear, followed by a flattening of the pointed downstream tip when

the front tip is about to enter the flow intersection. Both Ld
x and Lu

x increase rapidly

when the droplet enters the flow intersection, and reach a maximum at a location

where the droplet centroid is downstream of the flow intersection. The maximum

values attained by Ld
x and Lu

x depends upon the viscosity ratio λ, hence the time

needed for deformation. Similar to Lx, for λ = [0.01, 1], the maximum values of

Ld
x and Lu

x increase with an increase with an increase in λ, while for λ = 10, 20

the opposite happens, as there is not enough time for the droplet to deform. In

addition, we observe that the downstream droplet length Ld
x is greater than the

upstream droplet length Lu
x for all viscosity ratios studied.

The plots for the droplet lengths along the y- and z-axes, Ly and Lz, are

shown in figure 3.19(a) and (b) respectively as a function of the droplet centroid

xc. In general, as compared to Lx, both Ly and Lz show complex behavior during
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the deformation of the droplet. Ly and Lz both decrease rapidly after the droplet

enters the flow intersection and reach a minimum. For λ = [0.01, 10] Ly reaches

a minimum downstream of the flow intersection and then starts increasing. For

λ = 20, Ly does not reach the minimum by the time the droplet centroid reaches

xc = 6.0, as there is not enough time for the droplet to deform. Similar to Ly, Lz

also reaches a minimum after the droplet centroid crosses the center of the junction

and starts increasing as the droplet gradually tries to regain its original shape. The

minimum value reached by Lz for λ = [0.01, 1.0] decreases with an increase in the

viscosity ratio, while for λ = [10, 20] it increases with the increase in viscosity ratio.

This behavior again can be explained by considering the time needed by a droplet

to deform, as explained before.

Figure 3.20 shows the plots of the surface area of the deformed droplet Sd

plotted against the droplet centroid xc for different viscosity ratios. The surface area

of the deformed droplet Sd is scaled with its undisturbed value S0
d . From the plots

we observe that Sd/S
0
d reaches a maximum downstream of the flow intersection and

then starts decreasing. The maximum value of Sd reached by the droplet increases

with an increase in the viscosity ratio λ for λ = [0.01, 1.0], while for λ = [10, 20] the

opposite happens. This again can be explained by considering the time τ needed by

the droplet to deform from its undisturbed shape, which increases with an increase

in viscosity ratio. For the range of viscosity ratio studied, Sd does not reach a steady

state at xc = 6.

The curvature of the xz-profile of the center of the downstream droplet tip,

Cd
xz, is plotted in figure 3.21. The curvature Cd

xz is scaled with the curvature of the

undeformed droplet Cd
xz,0. From the plots of figure 3.21, we observe that Cd

xz shows a

sharp increase to a maximum when the droplet enters the flow intersection and then

starts decreasing. Again, the maximum and the final values of Cd
xz is dependent upon

the viscosity ratio λ of the fluids and increase with an increase in λ for λ = [0.01, 1],

while they decrease for λ = [10, 20]. This can be explained considering the time

τ needed by a droplet to deform to its steady state shape. For small to moderate

viscosity ratio of λ = [0.01, 1], there is enough time for the droplet to deform and
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hence the maximum increases with an increase in λ, while for the very large viscosity

ratios of λ = [10, 20] the factor (1+λ) becomes more dominant and hence a droplet

with λ = [10, 20] needs more time to deform.

Figure 3.22 shows the plots for curvature Cu
xz of the center of the upstream

droplet rear. The curvature Cu
xz is scaled with the curvature of of the undisturbed

droplet Cu
xz,0. From figure 3.22, we observe that for all λ, Cu

xz decreases after the start

of computations, due to the formation of a bullet shape. This is followed by a sharp

increase to a maximum as the droplet shape gradually changes from that of a bullet

to a slipper. For λ = [0.01, 1], the maximum value of Cu
xz increases with an increase

in the viscosity ratio λ, while for λ = [10, 20] the maximum value of Cu
xz decreases

with an increase in λ. The final value of Cu
xz, at xc = 6.0, decreases with an increase

in viscosity ratio for λ = [0.01, 1], while for λ = [10, 20] it decreases with an increase

in λ. Downstream of the flow intersection, the rear of the slipper shaped droplet

maintains its pointed shape at the edge of the rear element. For the low viscosity

droplets with λ = [0.01, 1], as there is enough time for the droplet to deform, and

hence for the center of the rear to become much flatter, final value of Cu
xz decreases

with an increase rate. Due to a lack of enough time to deform and have a flattened

center at droplet rear, the final value of Cu
xz increases with an increase in viscosity

ratio for λ = [0.01, 1].

Figure 3.23(a) shows plots of droplet velocity along the flow direction, Ux, as

a function of the droplet centroid xc for the viscosity ratios studied. We observe

that the droplet velocity Ux decreases with an increase in the viscosity ratio λ,

at all values of xc. After the droplet is released, Ux decreases until the droplet

enters the flow intersection followed by a rapid increase to a maximum and then a

subsequent decrease after the droplet exits the flow intersection. The rapid increase

after the droplet enters the flow intersection is due to the flow coming in through the

vertical branch channel. The influence of viscosity ratio λ on droplet velocity Ux is

qualitatively similar to that reported by Wang and Dimitrakopoulos in their study

of droplets in rectangular straight channels [48]. In addition, we plot the droplet

velocity along the z-axis Uz as a function of the droplet centroid xc in figure 3.23(b).

103



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

-4 -2 0 2 4 6

C
u x
z
/C

u x
z
,0

Xc

λ increases

λ = 0.01
10.0

20.0

Figure 3.22: Curvature of the xz-profile of the center of the upstream droplet rear

(scaled with its undisturbed value) Cu
xz/C

u
xz,0 as a function of the droplet centroid xc

for Ca = 0.1, a = 0.7, q = 0.5 and viscosity ratio λ = 0.01, 0.1, 0.5, 1.0, 10.0, 20.0.

104



1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

-4 -2 0 2 4 6

U
x

Xc

λ increases

λ = 0.01

20.0

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

-4 -2 0 2 4 6

U
z

Xc

λ increases

λ = 0.01

20.0

Figure 3.23: Droplet velocities as a function of the droplet centroid xc for Ca = 0.1,

a = 0.7, q = 0.5 and viscosity ratio λ = 0.01, 0.1, 0.5, 1.0, 10.0, 20.0. (a) Droplet

velocity along the flow direction Ux. (b) Droplet velocity along the z-axis Uz.

105



As the droplet gets pushed towards the z = −lz wall of the junction by the additional

flow through the vertical branch channel in the flow intersection, we observe that

the magnitude of maximum velocity reached by droplet in the z-direction decreases

with an increase in the viscosity ratio. As the droplet begins its lateral migration

towards the centerline of the main channel, the velocity of lateral migration increases

with a decrease in viscosity ratio. In case of Uz as well the the final value reached

at xc = 6.0 decreases with an increase in the viscosity ratio λ.

Figure 3.24(a) shows the plots of the minimum distance h of the droplet inter-

face from the z = −lz wall of the T-junction, as a function of the droplet centroid xc.

We observe that the minimum distance increases to a maximum before the droplet

enters the flow intersection, which is followed by a decrease to a minimum. This

initial increase in h is due to the lengthening of the droplet on flow initiation. The

decrease to the minimum occurs as the droplet enters the flow intersection and the

droplet gets pushed towards the −z wall of the junction by the flow coming through

the vertical branch channel. After reaching the minimum, the minimum distance h

starts increasing slowly as the droplet gradually becomes less deformed downstream

of the flow intersection. The droplet centroid position along the z-axis, Zc, also

increases to a maximum before the droplet enters the flow intersection, as seen in

figure 3.24(b). After the droplet enters the flow intersection, Zc decreases rapidly to

a minimum as the droplet gets pushed towards the z = −lz wall of the T-junction.

This is followed by a slow increase in Zc as the droplet gradually starts regaining its

shape and starts its lateral migration towards the centerline of the horizontal main

channel.

3.5 Conclusion

In this chapter, we have investigated computationally the dynamics of microfluidic

droplets in a T-junction device comprising of square channels. In particular, we

have considered droplets with constant surface tension which are naturally buoyant

in the surrounding fluid, and have size smaller than the cross-section of the square
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channels comprising the cross-junction. The study is motivated by a wide range

of applications including direct contact heat-mass exchangers, encapsulation of re-

actants with droplets as microreactors, drug delivery methods, coating processes,

and of course applications in energy, e.g. enhanced oil recovery processes and direct

methanol fuel cells.

To our knowledge, this is the first work to systematically study the dynamics

of droplets, without interfacial breaking, in a microfluidic T-junction device. Our

investigation complement earlier studies on formation of droplets in a microfluidic

T-junction and droplet motion in a straight rectangular microfluidic channel [17,

44, 48]. We summarize briefly some of the more important conclusions.

(i) Our computations investigating the effects of flow rates in the channels of

the T-junction, has revealed that the degree of interfacial deformation of the droplet,

and hence its dynamics, depends strongly on the strengths of flows in the channels

of the T-junction device. In general, upon release, the droplet takes the shape of a

bullet after flow initiation with a pointed downstream tip and a flattened rear, so

that to increase the restoring surface tension forces and thus balance the deforming

hydrodynamic forces. As the droplet enters the flow intersection, the tip of the

bullet shaped droplet becomes skewed to accommodate the additional flow through

the vertical branch channel. The droplet takes the shape of a bent bullet when it is

well into the flow intersection As the droplet moves further downstream, the droplet

centroid moves towards the tip of the droplet, as the droplet becomes slipper shaped

with a very pointed rear, while the downstream tip becomes relatively flattened. As

the droplet completely exits the flow intersection, the rear of the slipper shaped

droplet becomes less pointed as it gradually tries to regain its shape and finally

exits the T-junction device.

During this diverse interfacial evolution, the droplet lengths, tip curvatures

and its velocity change extensively, depending upon the droplet shape and location

in the T-junction device. We have monitored these parameters during the interfacial

evolution of the droplet and have provided qualitative explanations.

(ii) Studying the effects of the droplet sizes on its dynamics, we observed that
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the minimum distance of the droplet interface from the junction wall plays a signif-

icant role in its interfacial evolution. The deformation of droplets with bigger size

increases significantly, as the effective capillary number Caeff acting on the droplet

increases. Before the flow intersection, the droplet develops a pointed downstream

tip and a flattened rear. When the droplet rear of the droplet enters and flows

through the flow intersection of the T-junction device, it gradually becomes more

pointed and skewed towards the z = −lz wall of the junction due to flow through

the vertical branch channel. The very pointed slipper shaped droplet is observed

only for when the droplet size is large.

(iii) We found the viscosity ratio of the fluids to strongly effect the dynamics

of droplets in our T-junction device. For low viscosity droplets, with λ up to O(1),

we found the droplet deformation to increase monotonically with an increase in

viscosity ratio, owing to higher inner hydrodynamic forces. However, for high-

viscosity droplets with λ = O(10), the droplet deformation decreases significantly

inside the T-junction because the droplet does not have the time to accommodate the

much slower deformation rate at high λ as it moves fast inside the microfluidic device.

We note that, for high-viscosity droplets, the droplet deformation will eventually

increase as the viscosity ratio is increased in the straight channel far downstream

the T-junction owing to higher inner hydrodynamic forces.

In addition, our study demonstrates the ability of our computational method

to determine the droplet dynamics in intersecting flows accurately. With further

modification in geometry, even more complicated droplet dynamics may be accu-

rately predicted.
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