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In the United States, transportation uses approximately 26% of the nation en-

ergy consumption, and contributes 27% to the total greenhouse gas emissions. Given

the important role of private transportation, it is urgent to develop effective and in-

novative quantitative methodologies to support public authority decision making.

Although a substantial body of the literature investigates household vehicle owner-

ship decisions - vehicle holding, type and usage; the majority of the existing studies

focuses on only one of these three decisions, is often limited to specific geographic

areas and is not calibrated with the most recent travel survey data available.

This dissertation proposes a modeling framework that is able to incorporate

all the three decisions simultaneously, and takes into account the correlation across

the discrete variable (vehicle holding) and the continuous variable (miles traveled).

In this integrated discrete-continuous choice model, a multinomial probit model is

used to estimate household vehicle holding decision, while a multinomial logit model

is adopted to estimate the vehicle type decision. The vehicle usage decision variable



is integrated with the discrete variables by adopting an unrestricted correlation pat-

tern between the discrete and the continuous variables. Since the problem has no

closed-mathematical form, I use estimation techniques based on Monte-Carlo sim-

ulations and numerical computation of multivariate normal probabilities to derive

the solutions.

Though a number of studies have demonstrated that unordered behavioral

models outperform the ordered mechanisms for vehicle holding decisions, those com-

parative studies were only conducted for the discrete decisions concerning vehicle

ownership. Therefore, an ordered discrete-continuous model structure is developed,

in which an ordered probit replace the multinomial probit for the vehicle holding

decisions. Both the unordered and ordered structures are estimated and validated

on the 2009 National Household Travel Survey data. Ordered models are in general

preferred to unordered models for the lower computational costs to derive the ana-

lytical solutions. However, results from operational data show that the unordered

discrete-continuous models always outperform the ordered ones in terms of both

statistical goodness of fit and predication capabilities.

The proposed modeling framework is then applied to the entire nation and a

system of national vehicle ownership models is derived. The models are calibrated

using the 2009 National Household Travel Survey data, each combining four regions

(Northeast, Midwest, South and West) and three area types (urban, suburban and

rural). In addition, the models are applied to the 2009 American Community Survey

data for six randomly selected counties/areas. The prediction results for the six

counties/areas demonstrate the prediction capability of the models calibrated. The



national models are valuable both for the national level (to evaluate federal policies)

and small areas (that lack local household travel survey data). The results also

demonstrate that the integrated discrete-continuous framework has good prediction

capabilities in modeling household vehicle ownership decisions.

Lastly, the dissertation estimates a discrete-continuous model for the Wash-

ington D.C. Metropolitan Area and analyzes the impact of improved bus and metro

services on household ownership and use decisions in that area. The 2009 National

Household Travel Survey data and the General Transit Feed Specification data are

integrated, and then both spatial and temporal measurements of transit services

are created on the Census Tract level. The results show that improved transit is

a significant factor in household vehicle ownership choices and that the proposed

methods are able to effectively predict changes in vehicle ownership and usage with

respect to the transit improvements.

In conclusion, the dissertation contributes to both the theoretical analysis

and the practical applications of the household vehicle ownership problem. The

results provide decision makers with advanced quantitative methods that are able

to effectively analyze policies, aiming at promoting greener travel behavior and at

mitigating energy consumption and emissions.
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Chapter 1

Introduction

1.1 Background and Motivation

Increasing mobility demand, especially in urban areas has resulted in growing

levels of motorization, congestion and pollution. Modern societies are still highly

dependent on private vehicles to satisfy demand for activities; while fastest growing

economies in the world are experiencing a rapid increase in motor vehicle ownership.

It is clear that vehicle demand has to be optimally managed and regulated in order

to reduce the adverse impacts of transportation.

In this context, the role of analysts and researchers is to expand the basic

knowledge of the problem, develop better analytical tools and support decision

makers in their strategic choices. Ultimately, the cost of information gathering

and modeling development is covered by cost savings resulting from better decision

making.

The importance of modeling household vehicle fleet choices has been recognized

for several decades now, though the urgency in terms of GHG emission and fossil

fuel energy dependence is definitively more recent [Vyas et al., 2012].

Car ownership models play an important role in transportation and land use

planning and are a critical component of Transportation Modeling Systems. In the

classical four-step forecasting model, the trip generation module uses the outputs
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from car ownership models (i.e., [Golob and Vanwissen, 1989]; [Kitamura, 2009]) as

its inputs. Furthermore, vehicle ownership greatly impacts mode choice (i.e., [Dis-

sanayake and Morikawa, 2010]), frequency of trips (i.e., [Kitamura, 2009]; [Shay and

Khattak, 2012], destination choice, trip timing, activity duration and trip chaining

properties (i.e., [Hatzopoulou et al., 2001]; [Roorda et al., 2009]; [Paleti et al., 2013].

Models for car ownership are of interests to both public agencies and private

organizations: a) The US Department of Energy, b) State Departments of Trans-

portation, c) auto industry, d) Local transit Agencies and e) World Bank (Train,

1979).

A number of agencies have implemented vehicle ownership into their regional

transportation models. The State of California has developed the Motor Vehicle

Stock, Travel and Fuel Forecast (MVSTAFF) model that uses a macroeconomic ap-

proach to modeling statewide motor vehicle holdings, vehicle miles travelled (VMT)

and total fuel consumption. Other model systems that include a car ownership

component are: the Maryland Statewide Transportation Model, the Coordinated

Travel-Regional Activity Based Modeling Platform (CT-RAMP) for the Atlanta

Region from Atlanta Regional Commission (2009), and the activity based model

from the Puget Sound Regional Council (2008), etc.

National governments use car ownership models to forecast tax revenues and

the regulatory impact of changes in the level of taxation (i.e., [Hayashi et al., 2001];

[Brnnlund and Nordstrm, 2004]; [Giblin and McNabola, 2009]). This type of model

systems examines the changes in the car market configuration, the life cycle CO2

emission from automobile transport and the tax revenues due to different taxation

2



policies [Hayashi et al., 2001]. It specifically determines the effect of the varying

weights of the tax components in the stages of: (a) car purchasing, (b) car owning,

and (c) car using to the changes in the car class and age mix and the car users’

driving pattern and behavior towards car class choice and decommissioning.

Vehicle ownership models are also used by policy makers to identify factors

that affect VMT, and therefore address the problems related to traffic congestion,

gas consumption and air pollution (i.e., [Dargay and Gately, 1997]; [Schipper, 2011]).

Models for car ownership growth in developing coutries are important for estimating

the implications on energy demand and price and on the global CO2 emissions

[Dargay and Gately, 1997].

1.2 Current Research Status

There is a substantial body of literature that has investigated household vehicle

ownership decisions of vehicle holding, type and usage. Unfortunately, the majority

of these studies analyzed the three decisions separately, due to the fact that vehi-

cle holding and type are discrete decisions while vehicle usage is continuous, and

therefore it is hard to integrate them in one framework.

Most of the early studies focused on vehicle holding and type choices. Ordered

discrete choice model (such as ordered logit and ordered probit) and unordered

discrete choice model (such as multinomial logit, multinomial probit and nested

logit) are the two major modeling structures that have been used for modeling

these two choices. The ordered models assume that a vehicle ownership decision

3



is a latent variable, whereas the unordered model is based on the random utility

maximization theory which assumes the households make decisions that provide the

highest utility.

As policy makers have started to pay more attention to problems associated

with car usage, a growing number of researchers in transportation are trying to

unify both discrete decisions (how many cars and their type) and continuous deci-

sions (amount of use) into one integrated modeling framework. Discrete-continuous

models, which were firstly developed in economics, are capable of dealing with prob-

lems where both discrete and continuous choices are involved. To the best of my

knowledge, three methods are available in the transportation literature to model

simultaneously vehicle ownership and usage.

The first category of these models is derived from the conditional indirect

utility function in the microeconomic theory. Roy’s identity property is applied

to estimate vehicle usage and the relationship between the discrete and continuous

choices. The method is consistent with utility maximization theory. It has a elegant

formulation and it is simple to implement. However, the interdependence between

the discrete and continuous parts is only captured by means of observed variables

and no correlations are accounted for the unobserved factors.

In 2005, Bhat [Bhat, 2005] developed a Multiple Discrete-Continuous Extreme

Value (MDCEV) model which jointly estimates the holding of multiple vehicle types

and miles for each vehicle type. The dependent variable in this model is the mileage

for each vehicle type category. Utility for each household is maximized subject to

a total mileage budget. Under the assumption that the error term is iid extreme

4



value distributed, the probability function simplifies to a closed form, and collapses

to Multinomial Logit (MNL) model for one-car household. The MDCEV model is

consistent with random utility maximization theory, and is able to capture trade-

offs among the usage of different types of vehicles. However, this model requires

finer classification of vehicles as one type of vehicle cannot be chosen twice by the

household. This type of model is limited by the assumption of fixed total mileage

budget for every household; this implies that it is not possible to predict changes

in the total number of miles in response to policy changes. Moreover, there is only

a single error term (represents the unobserved factors) that underlies both discrete

and continuous choices.

The third method is the Bayesian Multivariate Ordered Probit and Tobit

(BMOPT) model developed by Fang [Fang, 2008]. The BMOPT model is composed

of a multivariate ordered probit model for the discrete choices and a multivariate

Tobit model for the continuous choice. In the BMOPT model, household decisions

on the number of vehicles in one of the two categories (cars and trucks) considered

are estimated by means of ordered probit model. The multivariate Tobit model

is applied to estimate the household decisions on miles driven with each vehicle

type. The joint model is formulated with an unrestricted covariance matrix for the

discrete and continuous parts. This method is easier to implement than the RUM

based models, and can be applied to study policy implications. However, it cannot

handle a large number of vehicle categories and the ordered mechanism may not

perform as well as unordered mechanism in modeling car ownership models.

Two papers ( [Bhat and Pulugurta, 1998] and [Potoglou and Kanaroglou,
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2008]) have investigated the empirical performance of ordered and unordered mech-

anisms in modeling vehicle ownership. They provided strong evidence that the

appropriate mechanism is the unordered response mechanism for the vehicle hold-

ing choice. However, no studies in the literature have compared the performance

of discrete-continuous models under ordered and unordered mechanisms. There is

little evidence to demonstrate the superiority of one model to the other.

1.3 Research Objectives

The dissertation develops a comprehensive modeling framework for both dis-

crete and continuous decision variables in the context of household vehicle own-

ership; three main choices are considered: the number of vehicles, their type and

vintage, the annual mileage traveled. The model system accounts for a large num-

ber of vehicle classes and vintages overcoming the limitations of previous models.

Moreover, a flexible structure of the unobserved factors between the discrete and

continuous parts offers an integrated and elegant form for household decisions that

are naturally linked. In particular, the joint model allows the estimation of a full

variance-covariance matrix that captures both correlation amongst the alternatives

in the discrete models and between the number of cars owned and the correspondent

mileage in the continuous equation.

The research also compares the ordered discrete-continuous structure and

RUM-based unordered discrete-continuous structure in the context of joint mod-

els for vehicle holding and vehicle usage decisions. The ordered discrete-continuous

6



structure has a similar structure except that an ordered probit is used for the vehicle

holding sub-model. This comparative analysis is motivated by the fact that ordered

discrete-continuous models are relatively easier to estimate when compared to un-

ordered model structures; however, the assumption that vehicle ownership decisions

are measured by a single latent variable might affect the goodness of fit of the model

and its practical performance. The analysis is performed on data extracted from

the 2009 National Household Travel Survey (NHTS).

The study applies and validates the proposed modeling framework to both

local and national geographical levels. More specifically, the model is tested and

applied to a U.S. metropolitan area (Washington D.C. area) and to the entire na-

tion. The Washington metropolitan area is one of the largest metropolitan areas in

the U.S., has a diverse population and has recently adopted several Smart Growth

planning strategies. The modeling framework is extended to the four Census Re-

gions (Northeast, Midwest, South and West and three area types (urban, suburban

and rural) and applied to calculate rates of vehicle ownership and mileage traveled.

Several data are merged and used for model estimation and application, including

the National Household Travel Survey, the General Transit Feed Specifications data

and the American Community Survey.

The rest of the dissertation is organized as follows. Chapter 2 reviews the

literature on models for households vehicle ownership choices. The review out-

lines significant factors that influence vehicle holding, type and use decisions. In

particular, prior discrete-continuous frameworks that have been applied to vehicle

ownership modeling are reviewed in this chapter.
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Chapter 3 describes the methodological framework of the integrated discrete

continuous model developed in this study. This chapter firstly presents the discrete

choice sub-model, the continuous choice sub-model and the joint formulation. Then,

it explains the two estimation approaches developed for model estimation; the first

is based on simulation methods, while the second adopts numerical computation to

approximate choice probabilities. The second section of this chapter also presents

the ordered discrete continuous model which has a similar model structure except

for the adoption of an ordered mechanism for the discrete choice sub-model. Several

issues related to the normalization of the covariance matrix and endogeneity are

treated in this chapter.

Chapter 4 describes the datasets that have been collected and used for model

calibrations and applications, including the National Household Travel Survey data,

data on vehicle characteristics, US Census TIGER data, the General Transit Feed

Specifications data and the American Community Survey data.

Chapter 5 compares the unordered and ordered discrete-continuous models for

the Washington D.C. Metropolitan area. A number of variables including household

sociodemographic information, residential density and fuel cost are introduced in the

model formulation and their relative coefficients estimated. Both estimation and

application results are presented and general findings from the model comparisons

outlined.

Chapter 6 presents a system of models representative of the entire United

States; application results for randomly selected counties/areas are given and dis-

cussed. The national models are valuable both for the national planning level and

8



for small areas, especially those lacking local household travel survey data. The

results further validate the proposed integrated discrete-continuous framework for

modeling household vehicle ownership decisions.

Chapter 7 estimates household joint decisions on vehicle ownership and usage

with transit service indicators for the Washington D.C. area. The analysis develops a

method to integrate the household travel survey with geographic data, and generates

spatial and temporal measurements of transit service for the model estimation. The

results provide evidences on the impacts of improved bus and metro services on

household ownership and use decisions in the Washington D.C. Metropolitan area.

Chapter 8 concludes with a summary of the major findings and research con-

tributions. Future research directions for both methodological and applied aspects

of the problem treated in this dissertation are identified.
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Chapter 2

Literature Review of Vehicle Ownership Models

Models for predicting changes in the level of car ownership have been under

development since the 30s (e.g. [Wolff, 1938]; [Rudd, 1951]; [Tanner, 1958] as they

are essential to the transport planning process and are of interest to governments,

vehicle manufactures, environmental protection groups, public transport authorities,

and public transport operators.

Aggregate time series models have been widely used in very early modeling

attempts. A sigmoid-shape function is usually used to explain the development of

car ownership over time, and a growth function is related to income or gross domestic

product (GDP). The function increases slowly in the beginning (at low GDP per

capita), then rises steeply, and ends up approaching a saturation level. Examples

along this line are the work done by Tanner (e.g. [Tanner, 1983] ), [Button et al.,

1993], [Ingram and Liu, 1999], the National Road Traffic Forecasts (NRTF) in the

UK ( [Whelan et al., 2000], [Whelan, 2001]), [Dargay and Gately, 1999], etc. These

models have the lowest data requirements and can be used to predict the total

number of cars in future years, which in turn is a potential starting point for more

detailed analysis.

More recently, disaggregate car ownership models based on discrete choice

models became the dominant method to deal with the number of cars owned by a

10



household. Examples are the work by [Gunn et al., 1978], which have been later

implemented into the Dutch national model system (LMS) [HCG, 1989]. Similar

models have been developed by [Bhat and Pulugurta, 1998] and by [Rich and Nielsen,

2001]; real applications of static discrete methods include the model developed for

the city of Sydney ( [HCG, 2000]), and the model for the National Roads Traffic

Forecast (NRTF) in the UK ( [Whelan, 2001]).

Disaggregate model systems are also used to explain households’ choice of

car type given car ownership. There are many publications on vehicle type choice

models, such as [Berkovec, 1985], [Chandrasekharan et al., 1991], [Hensher et al.,

1992], [Mannering and Winston, 1985], [Manski and Sherman, 1980] and [Train,

1986].

Table 2.1 provides a summary of modeling approaches for vehicle ownership

existing in the literature.
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2.1 Review of Vehicle Holding Models

In Table 2.2 I summarize a number of vehicle holding models in the litera-

ture, in particular I describe the data source, the sample size, model type and the

dependent variables used for the analysis.

There are two types of discrete choice modeling structures that have been

used in the household vehicle ownership studies: ordered-response mechanism and

unordered-response mechanism. The ordered-response mechanism assumes that

household vehicle ownership is represented as an ordinal variable and the choice

is determined by a single latent variable which represents the propensity of the

household vehicle ownership decisions. Examples of the application of ordered-

response mechanism are [Kitamura, 1987], [Golob and Vanwissen, 1989], [Golob,

1990], [Kitamura and Bunch, 1992], [Bhat and Koppelman, 1993], [Kitamura et al.,

1999], [Hanly et al., 2000], [Chu, 2002], [Kim and Kim, 2004a] and [Cao et al.,

2007]. The unordered-response mechanism is based on the hypothesis that house-

hold vehicle ownership is represented as a nominal variable. It follows the random

utility maximization (RUM) principle which assumes that the household makes the

vehicle ownership decisions that provides the highest utility among all the possible

choices. Examples of the studies with unordered-response mechanism are [Man-

nering and Winston, 1985], [Train, 1986], [Bunch and Kitamura, 1990], [Hensher

et al., 1992], [Purvis, 1994], [Ryan and Han, 1999], [Whelan, 2007], [Potoglou and

Kanaroglou, 2008].

In the context of the comparison of the ordered and unordered mechanisms,
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there are two papers that explicitly investigate the empirical performance of the

two structures in modeling vehicle ownership decisions, (see [Bhat and Pulugurta,

1998] and [Potoglou and Kanaroglou, 2008]). [Bhat and Pulugurta, 1998] compared

the multinomial logit (MNL) models (represents unordered-response mechanism)

and the ordered logit (ORL) models (represents ordered-response mechanism) with

four datasets from Boston, Bay area, Puget Sound area and the Netherlands. The

two mechanisms were evaluated by comparing elasticity effects, measure of fit and

predictive performance. The results showed that the MNL model is able to capture

elasticity patterns across alternatives, while the ORL is more rigid in elasticity ef-

fects. Meanwhile, the MNL model outperforms the ORL model in several measures

of fit. The conclusion from this study is that the appropriate choice mechanism is

the unordered-response structure for vehicle ownership modeling. [Potoglou and Ka-

naroglou, 2008] evaluated the multinomial logit (MNL) model, ordered logit (ORL)

model and ordered probit (ORP) model for car ownership by using data from Bal-

timore, Dutch and Japan. The MNL, ORL and ORP models are compared with a

number of data fit measures and the results clearly demonstrate the superiority of

the MNL to the ordered ORL and ORP.

Those studies provided strong evidence that the appropriate mechanism is the

unordered response mechanism for the vehicle ownership models. It is important

to stress that the ordered and unordered models have been compared for vehicle

holding models only.

In terms of the attributes adopted in existing vehicle holding, they can be

classified into four categories: (1) information on the household, (2) information on

16



the household head or primary driver, (3) land-use factors and (4) other unclassified

information).

Significant explanatory variables of the household includes: household’s in-

come, household structure, number of household members (household size), number

of workers, number of adults, number of children, number of drivers (licensing hold-

ing) in the household. In terms of household income, usually the annual income

is used in the model. In some studies, the logarithmic transformation of the in-

come or the discretionary income (the amount of income left to the household after

subtracting taxes and normal expenses) enter the model specification.

The estimation results showed that most of the household socio-economic char-

acteristics have positive influence on car ownership. The positive coefficient of the

income variable indicates that, for instance, a household is more likely to own more

vehicles, with a higher household income. Same trends can be found in other at-

tributes, such as the number of household members, number of workers, number

of adults, number of children, and number of drivers in the household. All of the

coefficients have considerable t-statistics. Few studies analyzed household structure

variables, usually using the number of adults and the number of children in the

household.

Significant explanatory variables about the household head or primary driver

include: age, gender, education level and work status. The estimation results in the

previous researches indicate that a household is likely to own fewer vehicles with

older household head or female household head. With higher education level of the

household head, a household is more likely to own more vehicles. Only few studies

17



included household head’s work status in the utility function.

In terms of land use information, previous researches mainly use population

density, and location variables (urban, suburban, and rural). Estimation results

indicate that households in the area with high density or in urban area own fewer

vehicles. A few studies included the accessibility to transit as this variable is difficult

to obtain in many real cases.

Other variables, which do not belong to any of the three categories above,

include for example dummy variables describing parking availability and the pres-

ence of company cars. These variables were mainly used in European studies; were

parking space is limited and where the number of company cars can be significant.
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2.2 Review of Vehicle Type Models

Table 2.3 presents several vehicle type models, in particular it describes the

data source, the sample size, model type, vehicle classification and the dependent

variables.

The majority of the studies use multinomial logit model in the vehicle type

estimation. MNL is chosen in the most cases because we can take advantage of one

of the logit properties. An important property of the logit model is the indepen-

dence from irrelevant alternatives (IIA) property. That is, the ratios of probabilities

are necessarily the same no matter what other alternatives are in the choice set or

what the characteristics of other alternatives are. This IIA property has several

advantages, and one of them is that it is possible to estimate model parameters

consistently on a subset of alternatives for each sampled decision maker. This fact

is important because it saves computer time by estimating on a subset of alterna-

tives when the total number of alternatives is large. In the vehicle type models, the

combination of vehicle type choices increase exponentially with the number of vehi-

cles in the household, hence it is computational impossible to take account all the

alternatives. With the IIA property, multinomial logit model allows the modelers

to get consistent coefficients with the estimation on a subset of the alternatives.

21



T
a
b

le
2
.3

:
S

u
m

m
a
ry

o
f

ve
h

ic
le

ty
p

e
m

o
d

el
s

R
ef

er
en

ce
D

at
a

S
ou

rc
e

(Y
ea

r)
S

am
p

le
S

iz
e

M
o
d

el
T

y
p

e
V

eh
ic

le
C

la
ss

ifi
ca

ti
o
n

In
d

ep
en

d
en

t
V

a
ri

a
b

le
s

[L
av

e
an

d
T

ra
in

,
19

79
]

S
ev

en
U

S
ci

ti
es

(1
97

6)
54

1
n

ew
ca

r
b

u
y
-

er
s

M
N

L
su

b
su

b
co

m
p

a
ct

,
sp

o
rt

s,
su

b
co

m
p

a
ct

(A
a
n

d
B

),
co

m
p
a
ct

(A
a
n

d
B

),
In

te
rm

ed
i-

a
te

,
S

ta
n

d
a
rd

(A
a
n

d
B

)
L

u
x
u

ry

p
u

rc
h

a
se

p
ri

ce
/
in

co
m

e,
w

ei
g
h
t*

a
g
e,

H
H

m
em

b
er

,
ve

h
ic

le
[M

an
sk

i
an

d
S

h
er

m
an

,
19

80
]

U
S

(1
97

6)
12

00
si

n
g
le

-
ve

h
ic

le
o
r

tw
o-

v
eh

ic
le

h
ou

se
h

ol
d

s

M
N

L
C

h
o
se

n
a
lt

er
n

a
ti

ve
p

lu
s

2
5

a
lt

er
n

a
-

ti
ve

m
a
ke

s/
m

o
d

el
s/

v
in

ta
g
e

(r
a
n

d
om

ly
se

-
le

ct
ed

fr
o
m

6
0
0

ve
h

ic
le

ty
p

e)

p
u

rc
h

a
se

p
ri

ce
,

se
a
ts

,
ve

h
i-

cl
e

w
ei

g
h
t

a
n

d
a
g
e,

a
cc

el
er

a
ti

o
n

ti
m

e,
lu

g
g
a
g
e

sp
a
ce

,
sc

ra
p

p
a
g
e

ra
te

,
tr

a
n

sa
ct

io
n

-s
ea

rc
h

co
st

,
o
p

-
er

a
ti

o
n

co
st

[B
eg

gs
,

19
80

]
B

al
ti

m
or

e
(1

97
7)

32
6

h
ou

se
h

o
ld

s
M

N
L

5
cl

a
ss

es
(s

u
b

co
m

p
a
ct

,
co

m
p

a
ct

,
m

id
-s

iz
e,

fu
ll

-s
iz

e,
lu

x
u

ry
),

4
v
in

ta
g
e

(1
9
42

-1
9
7
1
,

1
9
7
2
-1

9
7
4
,

1
9
7
5
-1

9
7
6
,

1
9
7
7
)

p
u

rc
h

a
se

p
ri

ce
,

o
p

er
a
ti

n
g

co
st

,
w

h
ee

lb
a
se

,
”
d

ep
re

ci
a
te

d
lu

x
u

ry
”
,

a
g
e

o
f

ve
h

ic
le

,
in

co
m

e,
h

h
m

em
-

b
er

s,
d

is
ta

n
ce

to
p

a
rk

in
g

[H
o
ch

er
m

an
et

al
.,

19
83

]
H

ai
fa

u
rb

an
ar

ea
,

Is
ra

el
,

(1
97

9)

80
0

h
ou

se
h

o
ld

s
N

es
te

d
L

o
g
it

m
o
d

el
C

h
o
se

n
a
lt

er
n

a
ti

ve
s

p
lu

s
1
9

a
lt

er
n

a
-

ti
ve

m
a
ke

s/
m

o
d

el
s/

v
in

ta
g
es

(r
a
n

d
o
m

ly
se

le
ct

ed
fr

o
m

9
5
0

ve
h

ic
le

ty
p

es
)

p
u

rc
h

a
se

p
ri

ce
,

o
p

er
a
ti

n
g

co
st

,
en

g
in

e
si

ze
,

ve
h

ic
le

a
g
e,

in
co

m
e,

b
ra

n
d

lo
y
a
lt

y,
sa

m
e

m
a
ke

ca
rs

,
h

o
rs

ep
ow

er
to

w
ei

g
h
t

[M
an

n
er

in
g

an
d

W
in

st
on

,
19

85
]

U
S

(1
97

8-
19

80
)

38
42

si
n

g
le

-
ve

h
ic

le
o
r

tw
o-

v
eh

ic
le

h
ou

se
h

ol
d

s

N
L

C
h

o
se

n
a
lt

er
n

a
ti

v
e

p
lu

s
n

in
e

a
lt

er
n

a
-

ti
ve

m
a
ke

s/
m

o
d

el
s/

v
in

ta
g
es

(r
a
n

d
o
m

ly
se

le
ct

ed
fr

o
m

2
0
0
0

ve
h

ic
le

s)

p
u

rc
h

a
se

p
ri

ce
/
in

co
m

e,
o
p

er
a
ti

n
g

co
st

/
in

co
m

e,
la

g
g
ed

u
ti

li
za

ti
o
n

o
f

sa
m

e
v
eh

ic
le

o
r

sa
m

e
m

a
ke

[B
er

ko
v
ec

an
d

R
u

st
,

19
85

]
U

S
(1

97
8)

23
7

si
n

g
le

-
ve

h
ic

le
h

o
u

se
-

h
ol

d
s

N
es

te
d

L
o
g
it

m
o
d

el
u

p
p

er
le

ve
l:

ve
h

ic
le

a
g
e

g
ro

u
p

s
(n

ew
,
m

id
,

o
ld

),
lo

w
er

le
ve

l:
5

ve
h

ic
le

cl
a
ss

es
(s

u
b

-
co

m
p

a
ct

,
co

m
p

a
ct

,
in

te
rm

ed
ia

te
,

st
a
n

-
d

a
rd

,
lu

x
u

ry
/
sp

o
rt

s)

p
u

rc
h

a
se

p
ri

ce
,

o
p

er
a
ti

n
g

co
st

,
se

a
ts

,
ve

h
ic

le
a
g
e,

tu
rn

in
g

ra
d
iu

s
in

u
rb

a
n

,
h

o
u

se
p

ow
er

to
w

ei
g
h
t,

tr
a
n

sa
ct

io
n

[B
er

ko
v
ec

,
19

85
]

U
S

(1
97

8)
10

48
h

ou
se

h
o
ld

s
N

es
te

d
L

o
g
it

m
o
d

el
1
3
1

a
lt

er
n

a
ti

ve
s=

1
0

ye
a
rs

(1
9
6
9
-1

9
7
8
)

*
1
3

ve
h

ic
le

cl
a
ss

es
(d

o
m

es
ti

c
su

b
co

m
p

a
ct

,
co

m
p

a
ct

,
sp

o
rt

y,
in

te
rm

ed
ia

te
,

st
a
n

d
a
rd

,
lu

x
u

ry
,

p
ic

k
u

p
tr

u
ck

,
va

n
a
n

d
S

U
V

;
fo

r-
ei

g
n

su
b

co
m

p
a
ct

,
la

rg
er

,
sp

o
rt

s,
a
n

d
lu

x
-

u
ry

)
+

a
ll

m
o
d

el
s

b
ef

o
re

1
9
6
9

p
u

rc
h

a
se

p
ri

ce
,

se
a
ts

,
p

ro
p

o
rt

io
n

o
f

m
a
ke

s/
m

o
d

el
s

in
cl

a
ss

to
to

ta
l

m
a
ke

s/
m

o
d

el
s

22



R
ef

er
en

ce
D

at
a

S
ou

rc
e

(Y
ea

r)
S

am
p

le
S

iz
e

M
o
d

el
T

y
p

e
V

eh
ic

le
C

la
ss

ifi
ca

ti
o
n

In
d

ep
en

d
en

t
V

a
ri

a
b

le
s

[H
en

sh
er

an
d

L
e

P
la

st
ri

er
,

19
85

]

S
y
d

n
ey

(1
98

0)
40

0
h

ou
se

h
o
ld

s
N

es
te

d
L

o
g
it

H
o
ld

in
g
s:

C
h

o
ic

e
o
f

m
a
ke

/
m

o
d

el
/
v
in

ta
g
e

g
iv

en
fl

ee
t

si
ze

.
S

in
g
le

m
o
d

el
fo

r
a
ll

le
ve

ls
.

C
h

o
ic

e
se

t
is

ch
o
se

n
p

lu
s

2
re

-
p

o
rt

ed
a
lt

er
n

a
ti

ve
s.

T
ra

n
sa

ct
io

n
:

ch
o
ic

e
o
f
m

a
k
e/

m
o
d

el
/
v
in

ta
g
e

g
iv

en
fl

ee
t

si
ze

a
d

-
ju

st
m

en
t.

C
h

o
ic

e
se

t
is

ch
o
se

n
p
lu

s
1

o
r

2
a
lt

er
n

a
ti

ve
s

ra
n
d

o
m

ly
se

le
ct

ed
.

R
eg

is
tr

a
ti

o
n

ch
a
rg

e,
se

rv
ic

e
a
n

d
re

p
a
ir

ex
p

en
se

,
sa

le
s

ta
x

o
n

p
u

r-
ch

a
se

p
ri

ce
,

se
a
ts

,
fu

el
effi

ci
en

cy
,

w
ei

g
h
t,

lu
g
g
a
g
e

sp
a
ce

,
a
g
e

o
f

ve
-

h
ic

le
,

a
g
e,

p
a
ss

en
g
er

,
d

u
m

m
y

(¿
6
0
0

m
il

es
p

er
m

o
n
th

,
d

u
m

m
y

(u
se

fo
r

p
a
id

w
o
rk

)
[J

on
g,

19
96

]
D

u
tc

h
(O

ct
,

19
92

;
O

ct
19

93
)

P
an

el
,

3
2
4
1

re
-

sp
on

d
en

ts
N

es
te

d
lo

g
it

m
o
d

el
(d

ie
se

l
a
n

d
n

o
n

-d
ie

se
l

ca
rs

)

1
3
3

m
a
ke

/
m

o
d

el
co

m
b

in
a
ti

o
n

s;
a
b

o
u

t
1
0
0
0

m
a
ke

/
m

o
d

el
/
a
g
e-

o
f-

ca
r

co
m

b
in

a
-

ti
o
n

s
(b

et
te

r)
;

A
L

O
G

IT
;

2
0

a
lt

er
n

a
ti

ve
s

(t
h

e
ch

o
se

n
o
n

e
p

lu
s

1
9

ra
n

d
o
m

)

L
o
g

o
f

re
m

a
in

in
g

h
o
u

se
h

o
ld

in
-

co
m

e;
fi

x
ed

co
st

/
in

co
m

e;
fu

el
co

st
/
in

co
m

e;
d

u
m

m
y

fo
r

b
ra

n
d

lo
ya

lt
y,

en
g
in

e
si

ze
,

d
ie

se
l,

a
g
e

[K
it

am
u

ra
et

al
.,

19
99

]
C

al
if

or
n

ia
,

19
93

P
an

el
(F

ir
st

w
av

e)
,

4
7
4
7

h
ou

se
h

ol
d

s

M
N

L
m

o
d

el
F

o
u

r-
d

o
o
r

se
d

a
n

s,
tw

o
-d

o
o
r

co
u

p
es

,
V

a
n

s,
w

a
g
o
n

s,
sp

o
rt

s
ca

r,
S

U
V

s.
d

u
m

m
y

(s
a
m

e
ve

h
ic

le
ty

p
e)

,
A

g
e,

m
a
le

,
ed

u
ca

ti
o
n

,
em

p
lo

ye
d

,
co

m
-

m
u

te
r,

co
m

m
u

te
d

is
ta

n
ce

,
o
th

er
(s

a
m

e
a
s

th
e

ve
h

ic
le

h
o
ld

in
g

m
o
d

-
el

s)
[M

an
n

er
in

g
et

al
.,

20
02

]
U

S
(1

99
5)

65
4

h
o
u

se
h

o
ld

s
b

u
y
in

g
n

ew
ve

-
h

ic
le

s

N
es

te
d

L
o
g
it

m
o
d

el
C

h
o
se

n
a
lt

er
n

a
ti

ve
p

lu
s

9
a
lt

er
n

a
ti

ve
m

a
ke

s
a
n

d
m

o
d

el
s

(r
a
n

d
o
m

ly
se

le
ct

ed
fr

o
m

1
7
5

ve
h

ic
le

ty
p

es
)

p
u

rc
h

a
se

p
ri

ce
/
in

co
m

e,
p

a
ss

en
g
er

si
d

e
a
ir

b
a
g
,

h
o
rs

ep
ow

er
,

ve
h

ic
le

re
si

d
u

a
l

va
lu

e,
co

n
se

cu
ti

v
e

p
u
r-

ch
a
se

s
[C

h
o
o

an
d

M
ok

h
ta

ri
an

,
20

04
]

S
an

F
ra

n
ci

sc
o,

19
98

19
04

h
ou

se
h

o
ld

s
M

N
L

m
o
d

el
(L

IM
D

E
P

)
sm

a
ll

,
co

m
p

a
ct

,
m

id
-s

iz
e,

la
rg

e,
lu

x
u

ry
,

sp
o
rt

s,
m

in
iv

a
n

/
va

n
,

p
ic

k
u

p
,

S
U

V
o
b

je
ct

iv
e

m
o
b

il
it

y,
su

b
je

ct
iv

e
m

o
-

b
il

it
y,

tr
av

el
li

k
in

g
,

a
tt

it
u

d
es

,
p

er
so

n
a
li

ty
,

li
fe

st
y
le

,
d

em
o
g
ra

p
h

-
ic

s

23



The vehicle type classification methods in the literature mainly consists of five

different categories: (1) models that only consider very general classes of vehicles,

such as small car, compact car, large car, sporty car, etc; (2) models that consider

general classes and vintages of vehicles, such as small old car, large new car, etc; (3)

models that contain the chosen alternative and a number of randomly selected al-

ternatives from the total number of combinations of makes and models (i.e. Toyota,

Camry); (4) models that contain the chosen alternative and a number of randomly

selected alternatives from the total number of combination of make, model and vin-

tage (i.e. 2003 Honda Civic); (5) models that consider vehicle classes and vintages,

such as 2005 mid-size car, 2007 SUV, etc.

Table 2.4 reports vehicle classification schemes in terms of vehicle size, vehicle

function, or both. Most schemes for vehicle classification first group vehicle by size,

and then special categories such sports, pickup and SUV are added.

Table 2.4: Vehicle classification schemes
Source Vehicle Classification Basis
NHTS
(FHWA,
2009)

Automobile (including wagon), van, SUV,
pickup, other truck, RV, motorcycle, other

Function

NTS (BTS,
2009)

Subcompact car, compact car, intermedi-
ate car, full car, light pickup, large pickup,
small van, large van, small utility, large
utility

Size and func-
tion

EPA (2009) Cars: two-seater, sedan(minicompact,
subcompact, compact, mid-sized, large),
station wagon (small, midsize, larg);
Trucks: pickup (small and standard), van
(cargo and passenger), minivans, SUV,
special purpose vehicle

Size and func-
tion

Comsumer
Reports
(2009)

Convertible, small car, sedan, wagon,
SUV, minivan, pickup, sporty car

Size and func-
tion
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Three types of variables are mainly used in existing vehicle type models: (1)

vehicle characteristics, (2) household characteristics, and (3) other unclassified char-

acteristics. Purchasing price, operating cost, space and engine related variables are

usually found to be significant in vehicle type models.

2.3 Review of Discrete-Continuous Models

Discrete-continuous models have been investigated in marketing studies since

1980’s. Marketing researchers developed discrete-continuous models to determine

household purchase decisions for frequently purchased packaged goods by the im-

pact of marketing mix and demographic variables. Previous studies have predicted

one or more of the purchasing decisions by proposing relationships between the ob-

served choices of households and variables such as product price, price cuts, feature

advertisements, special displays and observed and unobserved household character-

istics [Chintagunta, 1993]. Chintagunta summarized a partial list of previous studies

dealing with household purchase behavior along with their important features (Table

2.5). Studies in marketing mainly focus on three different household purchase deci-

sions: (1) the timing of a purchase or the category purchase decision, (2) the brand

choice decision and (3) the purchase quantity decision. In transportation, discrete-

continuous models have also attracted researchers’ attention and recently have been

investigated in studying household decisions on vehicle ownership (discrete choice)

and vehicle use (continuous choice).
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Table 2.5: Selected empirical studies on purchase behavior (Chintagunta, 1993)
Preference Decisions Studied
[Guadagni and Little, 2008] Brand choice
[Neslin et al., 1985] Purchasing timing, Purchase quantity
[Krishnamurthi and Raj, 1988] Brand Choice, Purchase Quantity
[Tellis, 1987] Brand Choice, Purchase Quantity
[Jones and Landwehr, 1988] Brand Choice
[Gupta, 1988] Purchase Timing, Brand Choice,

Purchase Quantity
[Gupta, 1991] Purchase Timing
[Bucklin and Lattin, 1991] Purchase Incidence, Brand Choice
[Chiang, 1991] Purchase Incidence, Brand Choice
[Jain and Vilcassim, 1991] Purchase Timing
[Kamakura and Russell, 1989] Brand Choice
[Schmittlein et al., 1988] Purchase Timing

2.3.1 Model Derived from Conditional Indirect Utility Function

The earliest generation of models that have investigated vehicle ownership

choices with discrete-continuous models were derived from conditional indirect util-

ity function (e.g., [Mannering and Winston, 1985]; [Train, 1986]; [Hensher et al.,

1992]; [de Jong, 1989b], [de Jong, 1989a] and [de Jong, 1991]), which is based

on micro-economic theory. Originally developed by [Dubin and McFadden, 1984],

and [Hannemann, 1984], the basic concept is that the households choose the com-

bination of vehicle ownership and vehicle usage that gives the highest utility. Roy’s

identity is applied to estimate vehicle usage and the relationship between the two

modeling stages. Although based on single discreteness, this series of studies based

on the indirect utility function are able to capture the interdependence between the

vehicle holding and the corresponding mileage by means of observed variables. This

elegant formulation is consistent with economic theory and simple to implement.

Some terminologies of direct utility, indirect utility and Roy’s identity:
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• Direct utility function gives the utility that the consumer obtains at given

quantities of each good (U(x1, x2)).

• Indirect utility gives the utility that the consumer obtains at given prices and

income once he has chosen the quantities that maximize his (direct) utility

subject to the budget constraint for the given prices and income (Y (p1, p2, y)).

• It can be shown that a consumer’s preferences can be equivalently represented

by either a direct utility function or an indirect utility function.

• If the consumer is a utility maximizer, then he will purchase the quantities of

the two goods that solves the constrained maximization problem:

max U(x1, x2) or Y (p1, p2, y)

such that

y = p1x1 + p2x2

• Roy’s identity states that the demand for a good is equal to (the negative

of) the derivative of the indirect utility function with respect to the good’s

price divided by the derivative of the indirect utility function with respect to

income. That is:

x1 = −∂Y/∂p1
∂Y/∂y

x2 = −∂Y/∂p2
∂Y/∂y

• For deriving demand functions, it is much easier to work with a consumer’s

indirect utility function rather than with his direct utility function.
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Suppose the number of alternatives is J , the observed characteristics of each

alternative i is zi, the quantity of the good is x, the person’s income is y, other

observed characteristics of the person is s, and all unobserved factors is wi. The

price of the good is denoted as pi, which is the price per unit of x given that

alternative i is chosen.

The maximum utility that the person can obtain given that he has chosen

alternative i:

Yi = Yi(pi, y, zi, s, wi)

This is a conditional indirect utility function for alternative i. Conditional

indirect utility functions can be constructed for each alternative in the set J . Each of

these gives the maximum utility that the person can obtain if he chooses a particular

alternative.

The person will choose alternative i if and only if the conditional indirect

utility is higher for alternative i than for any other alternative:

Yi(pi, y, zi, s, wi) > Yj(pj, y, zj, s, wj)

for all j in J , j 6= i.

Consequently, the probability of alternative i being chosen is

Pi = Prob(Yi(pi, y, zi, s, wi) > Yj(pj, y, zj, s, wj))

for all j in J , j 6= i.

The indirect utility can be decomposed into observed and unobserved parts:

Yi(pi, y, zi, s, wi) = Vi(pi, y, zi, s) + ei
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Where ei is a function of unobserved variables wi and Vi is simply the difference

between ei and Yi. The form of choice model is derived by specifying a distribution

of ei. For example, if each ei is assumed to be distributed independently, identically

extreme value, then the choice probabilities are in logit form.

The demand for good x is determined from the conditional indirect utility

function using Roy’s identity. That is, the demand for x, given that alternative i is

chosen, is

xi =
∂Yi(pi, y, zi, s, wi)/∂p

∂Yi(pi, y, zi, s, wi)/∂y
= gi(pi, y, zi, s, wi)

Under certain forms of the conditional indirect utility function, the conditional

demand for xi and the observed utility Vi can be derived as linear functions of

income, price and other explanatory variables (Train, 1986).

2.3.2 Multiple Discrete-Continuous Extreme Value model

Multiple discrete-continuous extreme value (MDCEV) models, developed by

[Bhat, 2005] and further applied in [Bhat and Sen, 2006] and [Bhat et al., 2009]

are utility-based econometric models that jointly estimate the holding of multiple

vehicle types and the miles for each vehicle type. The dependent variable in this

model is the mileage for each vehicle type category. Utility for each household is

maximized subject to a total mileage budget. Under the assumption that the error

term is iid extreme value distributed, the probability function simplifies to an elegant

and compact closed form, and collapses to Multinomial Logit (MNL) model for one

car household.
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In MDCEV model, the utility accrued to a household is specified as the sum

of the utilities obtained from using each type of vehicle.

U =
K∑
j=1

ψ(xj)(mj + γj)
αj (2.1)

Where there are K different vehicle types that a household can potentially

own. mj is the annual mileage of use for vehicle type j (j = 1, 2, ..., K). ψ(xj) is

the baseline utility for vehicle type j, and γj αj are parameters. Ψ is a function of

observed characteristics, xj, associated with vehicle type j.

Eq. 2.1 is a valid utility function if ψ(xj) > 0 and 0 < αj ≤ 1 for all j. the

term γj determines if corner solutions are allowed (i.e., a household does not own

one or more vehicle types) or if only interior solutions are allowed (i.e., a household

is constrained by formulation to own all vehicle types).

the utility form is also able to accommodate a wide variety of situations char-

acterizing vehicle type preferences based on the values of ψ(xj) and αj (j = 1,2,

. . . , J).A high value of ψ(xj) for one vehicle type (relative to all other vehicle

types), combined with a value of aj close to 1, implies a high baseline preference

and a very low rate of satiation for vehicle type j.This represents the situation

when a household primarily uses only one vehicle type for all its travel needs (i.e., a

”homogeneity-seeking” household). On the other hand, about equal values of ψ(xj)

and small values of αj across the various vehicle types j represents the situation

where the household uses multiple vehicle types to satisfy its travel needs (i.e., a

”variety seeking” household).More generally, the utility form allows a variety of sit-

uations characterizing a household’s underlying behavioral preferences for different
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vehicle types.

a multiplicative random element is introduced to the baseline utility as follows:

ψ(xj, εj) = ψ(xj) · eεj (2.2)

Where εj captures the unobserved characteristics that impact the baseline utility

for vehicle type j. The exponential form for the introduction of random utility

guarantees the positivity of the baseline utility as long as ψ(xj) > 0. To ensure this

latter condition, ψ(xj) is parameterized further as exp(β′xj), which then leads to

the following form for the baseline random utility:

ψ(xj, εj) = exp(β
′
xj + εj) (2.3)

The overall random utility function then takes the following form:

U =
K∑
j=1

[exp(β
′
xj + εj)](mj + γj)

αj (2.4)

The satiation parameter, αj, in the above equation needs to be bounded be-

tween 0 and 1, as discussed earlier.To enforce this condition, αj is parameterized

as 1/[1 + exp(−δj)].Further, to allow the satiation parameters to vary across house-

holds, δj is specified as δj = θ
′
jyj, where yj is a vector of household characteristics

impacting satiation for the jth alternative, and θj is a corresponding vector of pa-

rameters.

Eq. 2.4 subject to the constraint that
∑K
j=1mj = M , Where M is the total

household motorized annual mileage.

Assuming that the εj terms are independently and identically distributed

across alternatives, and are distributed standard Gumbel,the probability that the
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household owns I of the K vehicle types (I ≤ 1) is

P (m∗i > 0 and m∗s = 0; i = 1, 2, ..., I and s = I + 1, ..., K)

= [
I∏
i=1

ci][
I∏
i=1

1

ci
][

∏I
i=1 e

Vi

(
∑K
j=1 e

Vj)I
](I − 1)! (2.5)

Where ci = ( 1−αi

m∗i+γi
) and Vj = β

′
xj + lnαj + (αj − 1)ln(m∗i + γi). In the case

when I = 1 for a particular household (i.e., only one vehicle type is chosen by the

household), the model collapses to the standard MNL structure.

[Bhat and Sen, 2006] conducted an application of MDCEV that models jointly

the decisions of holding multiple vehicle types (passenger car, SUV, pickup truck,

minivan and van) and the mileage for each type in an integrated model system;

data is extracted from the 2000 San Francisco Bay Area Travel Survey (BATS). In

this study the authors analyze changes in vehicle type and usage due to changes in

demographics, employment status, density and operating cost. Major conclusions

can be summarized as follows: (1) there is a higher preference to own and use SUVs

and minivans as the number of children in the household increases; (2) households

with more members or with mobility-challenged household members have a higher

preference for minivans; (3) households with more workers are less likely to prefer

minivans; (4) households with more men or located in less dense area prefer pickup

trucks; (5) vehicle operation cost has a negative effect on vehicle ownership and

usage for all vehicle types except for passenger cars; (6) households are very likely

to own passenger cars but put more miles on non-passenger cars (if available).

[Bhat et al., 2009] extended this study and formulated a nested model struc-

ture that includes a multiple discrete-continuous extreme value (MDCEV) compo-
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nent to analyze the choice of vehicle class/vintage and usage in the upper level and

a multinomial logit (MNL) component to analyze the choice of vehicle make/model

in the lower level. The model accommodates heteroscedasticity and/or error corre-

lation in both the multiple discrete-continuous component and the single discrete

choice component of the joint model using a mixing distribution. The joint model

also incorporates random coefficients in one or both components of the joint model.

Again, using BATS data, the study derived several important findings: (1) house-

hold with higher income or more workers have higher preference towards newer ve-

hicles and are less likely to use non-motorized transportation modes; (2) in terms of

built environment characteristics, households located in urban areas are less likely to

own/use large vehicles and more likely to use non-motorized transportation modes;

(3) the preference of vehicle holding and use also depends on the age, gender and

ethnicity of the household head; (4) households prefer vehicles with lower purchase

price and operating cost, bigger luggage and seating capacity, higher engine perfor-

mance and lower greenhouse gas emissions.

In conclusion, the MDCEV model recognizes multiple discreteness and is able

to handle a large number of vehicle types. It well captures the interdependence

between the vehicle type and the corresponding mileage and allows more complex

specification forms as heteroscedasticity and correlation. However, this model re-

quires finer classification of vehicles as one type of vehicle cannot be chosen twice

by the household. This type of models is limited by the assumption of fixed total

mileage budget for every household; this implies that it is not possible to predict

changes in the total number of miles in response to policy changes. Moreover, there
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is only a single error term underlies both discrete and continuous choices. Overall,

the MDCEV model is consistent with random utility, it is able to capture trade-offs

among the usage of different types of vehicles and can accommodate a large number

of vehicle classifications.

2.3.3 Bayesian Multivariate Ordered Probit and Tobit model

[Fang, 2008] developed the BMOPT (Bayesian Multivariate Ordered Probit

and Tobit) model, which is composed of a multivariate ordered probit model for the

discrete choices and a multivariate Tobit model for the continuous choice. Household

decisions on the number of vehicles in one of the two categories (cars and trucks)

considered are estimated by means of ordered probit model. The multivariate Tobit

model is applied to estimate the household decisions on miles driven with each

vehicle type. The joint model is formulated with an unrestricted covariance matrix

for the discrete and continuous parts.

Let two latent continuous variables y∗1 and y∗2 represent the preference levels for

holding cars and trucks, let latent variables y∗3 and y∗4 represent uncensored average

annual miles driven by cars and trucks. Indexing household by i, i = 1, ...N, the

system for discrete-continuous choice of the vehicles can be written as:

y∗1i = w
′

iβ11 + ln(di)
′
β12 + ε1i (2.6)

y∗2i = w
′

iβ21 + ln(di)
′
β22 + ε2i (2.7)

y∗3i = w
′

iβ31 + ln(di)
′
β32 + ε3i (2.8)

y∗4i = w
′

iβ41 + ln(di)
′
β42 + ε4i (2.9)
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where wi is a vector of characteristics for household i; di is an indicator of

residential density. The number of cars, y1i, and trucks, y2i, held by household i are

determined by the value of the corresponding latent utility y∗1i and y∗2i; specifically,

yj = 0, if y∗j ≤ α1, yj = 1, if α1 < y∗j ≤ α2, yj = 2 or more, if y∗j > α2, for j = 1, 2.

Average annual miles driven by cars y3 is observed only when a household holds at

least one car; that is,

y3 = y∗3, if y1 = 1 or 2 (2.10)

y3 = 0, if y1 = 0 (2.11)

The same logic applies to miles driven by trucks y4:

y4 = y∗4, if y2 = 1 or 2 (2.12)

y4 = 0, if y2 = 0 (2.13)

The whole system can then be written into a SUR (seemingly unrelated re-

gression) form:

y∗i = xiβ + εi (2.14)

The error structure is a multivariate normal with zero means and unrestricted

covariance matrix:

εi
i.i.d.∼ N(0,Σ)(2.15)

The likelihood function is given as following:

L(β,Σ; y1, y2, y3, y4) ∝
∏

i1i=0,y2i=0

f(y∗1i < α1, y
∗
2i < α1|β,Σ)
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×
∏

i1i=0,y2i=1

f(y∗1i < α1, α1 < y∗2i < α2, y4i = y∗4i|β,Σ)

×
∏

i1i=0,y2i=2

f(y∗1i < α1, y
∗
2i > α2, y4i = y∗4i|β,Σ)

×
∏

i1i=1,y2i=0

f(α1 < y∗1i < α2, y
∗
2i < α1, y3i = y∗3i|β,Σ)

×
∏

i1i=1,y2i=1

f(α1 < y∗1i < α2, α1 < y∗2i < α2, y3i = y∗3i, y4i = y∗4i|β,Σ)

×
∏

i1i=1,y2i=2

f(α1 < y∗1i < α2, y
∗
2i > α2, y3i = y∗3i, y4i = y∗4i|β,Σ)

×
∏

i1i=2,y2i=0

f(y∗1i > α2, y
∗
2i < α1, y3i = y∗3i|β,Σ)

×
∏

i1i=2,y2i=1

f(y∗1i > α2, α1 < y∗2i < α2, y3i = y∗3i, y4i = y∗4i|β,Σ)

×
∏

i1i=2,y2i=2

f(y∗1i > α2, y
∗
2i > α2, y3i = y∗3i, y4i = y∗4i|β,Σ)

The BMOPT model is convenient to implement, and can be applied to study

policy implications. It is able to handle a large number of vehicles, and captures the

interdependence (correlation) between the number of vehicles and the total miles

driven with each vehicle type considered, it also allows flexible specifications of

error terms. There are a few limitations in this model structure. Firstly, the com-

putation becomes intensive for a large number of vehicle categories, as the number

of equations to be estimated increases proportionally with the number of vehicle

types. Another concern is that the ordered mechanism may not perform as well

as unordered mechanism in modeling car ownership models ( [Bhat and Pulugurta,

1998]). Lastly, the same variables enter both discrete and continuous sub-model.

Overall, the model is well suited for predicting the changes in the number of vehicles

and miles traveled for each vehicle type.
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Chapter 3

Methodology

3.1 Unordered Discrete-Continuous Model

3.1.1 The Discrete Choice Sub-model

Discrete choice models forecast the outcome of a categorical dependent variable

Ydisc using some set of predictors. All k possible alternatives of Ydisc have a utility

(U0, U1, U2, ... Uk) that consists of one observable part (systematic utility, V) and

one non-observable part (error term ε). In my modeling framework, the observed

utility is decomposed into two parts (Vk and Vtk|k):

U0 = ε0

U1 = V1 + λVt1|1 + ε1

U2 = V2 + λVt2|2 + ε2

...

Uk = Vk + λVtk|k + εk

Where Vk is the utility of vehicle holding decision, which depends on factors

that vary over k and Vtk|k is the utility of vehicle type choice conditional on k,

which depends on factors that vary over tk|k. tk|k is the choice set containing all

the possible combinations of car types and vintages while λ is a parameter to be

estimated.
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I adopt a multinomial logit model for the vehicle type submodel; then the

probability of choosing a certain type of vehicle is:

Ptk|k =
exp(Vt′

k
|k)∑

tk

exp(Vtk|k)
(3.1)

Where t
′
k is the chosen alternative among total alternatives tk. The utility

that the household would obtain by its choice of vehicle type can be written as:

Jk = ln
∑
tk

exp(Vtk|k)

Therefore the utility of the discrete choice can be further written as:

U0 = ε0

U1 = XT
1 β1 + J1λ+ ε1

U2 = XT
2 β2 + J2λ+ ε2

...

Uk = XT
k βk + Jkλ+ εk

Where, X1, X2, ... Xk are the attributes in the utility functions; β1, β2, ...βk

are the parameters to be estimated; ε0, ε1, ... εk are the error terms. The second

part of utility Jk is also important because the choice of vehicle types affects the

household’s probability of choosing a certain number of vehicles.

The decision maker is assumed to be rational and to choose the alternative with

the biggest utility. In my econometric setting I adopt a probit model for the discrete

problem and therefore the error terms follow a multivariate normal distribution with

full, unrestricted, covariance matrix.
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For simplicity, let’s assume that:

Y = Ydisc

X = (X1, ..., Xk)

J = (J1, ..., Jk)

β = (β1, ..., βk)

ε = (ε0, ε1, ..., εk)

Σ := Covariance of the error term

The likelihood of one observation can be expressed as follow:

P (Y = y|X, J, β, λ,Σ) =
∫
Rk+1

I(XT
y βy +Jyλ+ εy > XT

j βj +Jjλ+ εj ∀j 6= y)φ(ε)dε

(3.2)

The functional indicator (I()) ensures that the observed choice is indeed the one

with the biggest utility. The subscript y indicates the predictors and coefficients of

the chosen alternative and the subscript j indicate the other alternatives.

Since only differences in utility matter, the choice probability can be equiv-

alently expressed as (k) - dimensional integrals over the differences between the

errors. Suppose we differentiate against alternative y, the alternative for which we

are calculating the probability. Define:

ε̃jy = εj − εy (3.3)

Ṽjy = (XT
j βj + Jjλ)− (XT

y βy + Jyλ) (3.4)

ε̃y = 〈ε̃1y, ..., ε̃ky〉 (3.5)

where the ”...” is over all alternatives except y
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Then :

P (Y = y) =
∫
Rk
I(Ṽjy + ε̃jy < 0 ∀j 6= y)φ(ε̃y)dε̃y (3.6)

which is a (k)-dimensional integral over all possible values of the error differences.

The difference between two normals is normal and the covariance of ε̃y can be easily

transferred from the covariance of ε ( [Train, 2009, p. 99]). Detailed explanation is

given in section 3.1.7.

3.1.2 The Continuous Choice Sub-model

Regression is adopted to model the continuous part of the modeling framework

or the decisions on the household vehicle mileage. In a regression, the dependent

variable Yreg is assumed to be a linear combination of a vector of predictors Xreg

plus some error term (εreg):

Yreg = XT
regβreg + εreg εreg ∼ N(0, σ2) (3.7)

Usually, regression is solved by using the Ordinary Least Square (OLS) estimator

[Weisberg, 2005], but the same problem can be expressed in the form of a likelihood

function to be maximized [McCulloch et al., 2008, p. 117]. Indeed, given βreg, Xreg

and σ2, the likelihood of observing yreg is given by the normal density function:

P (yreg|βreg, Xreg, σ
2) = φ(yreg|XT

regβreg, σ
2) (3.8)

The normal density is centered at ŷ = XT
regβreg and has variance σ2.
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3.1.3 The Integrated Discrete-Continuous Model

In discrete-continuous choice models, I want to model Y and Yreg jointly to capture

the correlation between them. In this framework, I allow the error term of the

regression to be correlated with the error terms of the utilities in the probit.

The specifications of the observable part of the utilities and of the regression’s ŷ

shall remain the same, while the error terms are assumed to follow an ”incremented”

normal distribution:

(ε̃1y, ε̃2y, ..., ε̃ky, εreg) ∼MN(0,Σk+1) (3.9)

Therefore, the probability of observing Y and Yreg is the product of the probability

of observing Y and the probability of observing Yreg conditional on observing Y

P (Y, Yreg) = P (Y )P (Yreg|Y ) (3.10)

or the product of the probability of observing Yreg and the probability of observing

Y conditional on observing Yreg

P (Y, Yreg) = P (Yreg)P (Y |Yreg) (3.11)

This is a general result about conditioning with random variables. [Rice, 2007,

p. 88] The probability can be written as a form of density function:

f(Y, Yreg) = f(Y )f(Yreg|Y ) (3.12)

or

f(Y, Yreg) = f(Yreg)f(Y |Yreg) (3.13)
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3.1.4 Estimation with Simulation - 1st Attempt

I initially tried to calculate the probability function with the equation (3.10)

as discussed in the last section, namely:

P (Y, Yreg) = P (Y )P (Yreg|Y ) (3.14)

This function consists of two parts: P (Y ) and P (Yreg|Y ). The probability of

probit (P (Y )) has integrals thus has no closed mathematical form. We could rely

on simulation as described in [Train, 2009, p. 117]:

P̂ (Y = y|X, J, β, λ,Σ) =
1

B

B∑
i=1

I(XT
y βy + Jyλ+ ε(i)y > XT

j βj + Jjλ+ ε
(i)
j ∀j 6= y)

(3.15)

Where ε(i) is a draw from a multivariate normal with mean 0 and variance Σ

and B is the number of simulations.

However, it is not clear which functional form can be given to the conditional

distribution f(Yreg|Y ). Considering that we have a sample of points from the condi-

tional distribution that can be used in order to estimate it, let’s assume the following:

ε(i) i = 1, ..., B Draws from the multivariate normal

distribution

ε(i|y) i = 1, ..., B∗ Subset of draws for which the biggest

utility in the probit simulation was the

observed Y

In other words, when we simulate the probit probability, we keep the error terms

that correspond to the regression whenever (conditional) the biggest utility is the
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one of the observed choice. We rely on the sample {ε(i|y)}B∗i=1 to estimate f(Yreg|Y ).

Consider the following illustrative example (3.1, where the chosen alternative

among ”Car”, ”Bus”, ”Bike” is ”Car”. We simulate the utilities B = 10 times:

Simulation #
Utilities 1 2 3 4 5 6 7 8 9 10

Car 9.5 8.2 9.5 7.3 10 1.2 4.8 1.4 6.1 7.4
Bus 2.7 1.7 1.7 4.6 4.2 5.8 5.2 4.6 8.1 8
Bike 9.2 8.6 8.9 2.3 8.3 5.5 3.7 9.5 8.5 3.5

Table 3.1: Illustration example

In that case we would use the error terms of the regression corresponding to

indexes 1,3,4 and 5 to estimate the density of the continuous variable.

To conclude, the problem of estimating the model likelihood reduces to collecting

the regression error terms when we compute the probit. Those error terms are the

product of the simulation and the problem reduces to a density estimation problem.

Interpretation of a density function

We know that the interpretation of a density function is that [Rice, 2007, p. 48]:

f(yreg)2δ ≈ P (yreg − δ < Yreg < yreg + δ) (3.16)

That is, the density of a random variable Yreg evaluated at yreg times the length

of a small interval (δ) is approximately equal to the probability that Yreg lies in this

interval centered in yreg. We can estimate the left hand side of this expression with
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random draws, then we estimate f(yreg) with:

p̂ = P̂ (yreg − δ < Yreg < yreg + δ) =
1

B∗

B∗∑
i=1

I
(
yreg − δ < XT

regβreg + εireg < yreg + δ
)

(3.17)

f(yreg) ≈
p̂

2δ
(3.18)

To name only a few problems that can arise, it is possible that p̂ = 0 and we need

to carefully select δ. However, this approximation is computable.

Kernel density estimation

Kernel density estimation uses a kernel, that is a density function whose

purpose is to ”weight” all the points in the sample is order to estimate the den-

sity [Parzen, 1962]:

f̂(x) =
1

B∗

B∗∑
i=1

Kh(xi − x) (3.19)

Where K(·) is a symmetric density function and

Kh(x) =
1

h
K(x/h) (3.20)

Note that Kh(·) is also a symmetric density function that is only a scale trans-

formation of K(·). We could use for instance a gaussian kernel (normal) in which

case we would not have the problem of estimating the density by 0. However, this

method is usually computationally expensive. A sample of 1,000 observations with

1,000 simulations each would require to compute the normal density one million

time (!) to estimate the likelihood only once. The problem of finding h remains.

The method described in the previous section happens to be the kernel density

estimation using a uniform kernel where h was referred to as δ
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• Large δ will give a biased estimate of the density

• Small δ will give a volatile estimate of the density

Possible simple approximation

There is little chance that we can derive the exact conditional distribution of

Yreg, but we may be able to find a known distribution that is a good approximation

for it. If a good distribution that can estimate the conditional distribution of Yreg

given Y can be found, then it is possible to:

• Find the MLE estimator of the parameter (θ) of this distribution;

• Apply it to the conditional residuals from the probit simulation;

• Estimate f(yreg|y) with f(yreg|θ̂mle).

I tested this idea with the 2009 NHTS data used for the real case study proposed in

this paper ( [U.S. Department of Transportation, 2009]). The conditional residuals

are those found at the maximum likelihood estimates:

We note that:

• Residuals appear to be normally distributed;

• The mean of the distribution of Yreg is approximately Xregβreg + µε(·|y)

• The variance of the distribution of Yreg is approximately σ2
ε(·|y)
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Figure 3.1: Distribution of conditional residuals

Where µε(·|y) and σ2
ε(·|y)

are the mean and variance of the conditional residuals.

Therefore, the computation of the conditional density of yreg is much more stable

than the estimation obtained with a uniform kernel and much faster than the one

issued by a Gaussian kernel.

In order to be able to estimate the conditional density, at least two conditional

residuals are needed. Obviously, the precision of the density estimation depends on

how well the discrete variables are predicted earlier in the simulation. However, given

that the normal assumption seems to be a good approximation, there is no reason to

believe that estimating it with few residuals will cause problems or will deteriorate

estimates. The following table describes the amount of successes I observed for the

probit, at convergence, for 1000 simulations:

min 1st quartile median mean 3rd quartile max
4 282.8 415 403.4 540 954.0
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Thus, at convergence, I always observe at least 2 successes; moreover, I do not

face the problem of estimating a zero probability for the probit or the problem of

lack of data for the regression density estimation.

The final Simulated Log Likelihood of the model is given by the following

formula:

SLL(β, βreg,Σ|Y, Yreg, X, J,Xreg) =

n∑
i=1

log
(
B∗i
B
× φ(yi,reg|XT

regβreg + µε(·|yi) , σ
2
ε(·|yi))

)
(3.21)

Where:

B∗i := number of success in ith probit simulation

3.1.5 Estimation with Simulation - Modified Approach

The method that introduced in the previous section is intuitive and math-

ematically feasible, however, there are two drawbacks: (1) That by assuming the

sup-sample of the error terms in regression is normally distributed may not reveal

the true distribution (2) The computational error in the estimation accumulates

with both the simulation in probit and re-sampling the error terms in regression.

These problems might result in bias of the estimated coefficients thus worse goodness

of fit.

Here I adopt the second form of the joint probability function (equation 3.11):

P (Y, Yreg) = P (Yreg)P (Y |Yreg) (3.22)

In a multivariate normal distribution, if (A,B) follow a multivariate normal

distribution with mean µ and variance Σ:
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µ =

[
µ1

µ2

]
(3.23)

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(3.24)

then (A|B = B1) follows a multivariate normal distribution with mean and

variance

µA = µ1 + Σ12Σ−1
22 (B1 − µ2) (3.25)

ΣA = Σ11 −Σ12Σ−1
22 Σ21 (3.26)

Back to the problem,[
ε̃y
εreg

]
∼ N (

[
0
0
,

[
Σdisc Σdisc,reg

Σreg,disc σ2

]
) (3.27)

P (Yreg) = φ(err|µ = 0, σ2 = σ2
reg) (3.28)

where err = Yreg − Ŷreg and

P (Y |Yreg) =
∫
Rk−1

I(Ṽjy + ε̃jy < 0 ∀j 6= y)ϕ(ε̃y)dε̃y (3.29)

where, ϕ(ε) is the density function of a multivariate distribution and

ε̃y ∼ N (0 +
Σdisc,reg

Σdisc

(err − 0), σ2
reg −

Σreg,discΣdisc,reg

Σdisc

) (3.30)

48



P̂ (Y |Yreg) =
1

B

B∑
i=1

I(Ṽjy + ε̃
(i)
jy < 0 ∀j 6= y) (3.31)

Where ε̃
(i)
jy is a draw from a multivariate normal with mean (0+

Σdisc,reg

Σdisc
(err−0)

and variance σ2
reg −

Σreg,discΣdisc,reg

Σdisc
and B is the number of simulations.

Then, the final Simulated Log Likelihood of the model is given by the following

formula:

SLL(β, βreg,Σ|Y, Yreg, X, J,Xreg) =

n∑
i=1

log
(
B∗i
B
× φ(yi,reg|XT

regβreg, σ
2
reg)

)
(3.32)

Where:

B∗i := number of success in ith probit simulation

3.1.6 Estimation with Numerical Computation

The modified estimation method with simulation greatly reduces the compu-

tational errors and bias because we know the exact distributions of P (Yreg) and

conditional probability P (Y |Yreg), however, the accuracy of the estimated coeffi-

cients is highly depended on the draws from the simulation and it has very high

computational cost when the number of draws increases.

In order to investigate the problems from the simulation, I also adopted a

numerical method to compute the multivariate normal probabilities, which is devel-

oped by [Genz, 1992]. Genz (1992) proposed a transformation of multivariate normal

probability function that simplifies the problem and places it into a form that allows
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efficient calculation using standard numerical multiple integration algorithms. The

method is explained in detail as following.

Numerical computation of multivariate normal probabilities ( [Genz,

1992])

Given the multivariate normal distribution function

F (a,b) =
1√

|Σ|(2π)m

∫ b1

a1

∫ b2

a2
...
∫ bm

am
e−

1
2
θtΣ−1θdθ(3.33)

where θ = (θ1, θ2, ..., θm)t and Σ is an m × m symmetric positive definite

covariance matrix.

A sequence of three three transformations are used to transform the original inte-

gral into an integral over a unit hyper-cube. This sequence begins with a Cholesky

decomposition transformation θ = Cy, where CCt is the Cholesky decomposi-

tion of the covariance matrix Σ. Now θtΣ( − 1)θ = ytCtC−tC−1Cy = yty, and

dθ = |C|dy = |Σ| 12dy. Since a ≤ θ = Cy ≤ b implies (ai −
∑i−1
j=1 cijyj)/cii ≤ yi ≤

(bi −
∑i−1
j=1 cijyj)/cii for i = 1, 2, ...,m, we have

F (a,b) =
1√

(2π)m)

∫ b′1

a′1

e−
y21
2

∫ b′2(y1)

a′2(y1)
e−

y22
2 ...

∫ b′m(y1,...,ym−1)

a′m(y1,...,ym−1)
e−

y2m
2 dy (3.34)

with a′i(y1, ..., yi−1) = (ai−
∑i−1
j=1 cijyj)/cii and b′i(y1, ..., yi−1) = (bi−

∑i−1
j=1 cijyj)/cii

Now each of the yi’s can be transformed separately using yi = Φ−1(zi), where

Φ(y) =
1√
2π

∫ y

−∞
e−

1
2
θ2dθ (3.35)
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This is the standard univariate normal distribution. After these transforma-

tions, F (a,b) becomes

F (a,b) =
∫ e1

d1

∫ e2(z1)

d2(z1)
...
∫ em(z1,...,zm−1)

dm(z1,...,zm−1)
dz (3.36)

with di(z1, ..., zi−1) = Φ((ai−
∑i−1
j=1 cijΦ

−1(zj))/cii) and ei(z1, ..., zi−1) = Φ((bi−

∑i−1
j=1 cijΦ

−1(zj))/cii).

The integrand in this form is much simpler than the original integrand. The

integration region is more complicated, however, and cannot be haandled directly

with standard numerical multiple integration algorithms. A solution to this problem

is to put the integral into a constant limit form using zi = di + wi(ei − di). After

this final set of transformations,

F (a, b) = (e1 − d1)
∫ 1

0
(e2 − d2)...

∫ 1

0
(em − dm)

∫ 1

0
d(w) (3.37)

with di = Φ((ai−
∑i−1
j=1 cijΦ

−1(dj+wj(ej−dj)))/cii) and ei = Φ((bi−
∑i−1
j=1 cijΦ

−1(dj+

wj(ej − dj)))/cii).

The innermost integral over wm can be done explicitly because dm and em have

no dependence on wm, so the complete sequence of transformations has reduced the

number of integration variables by one.

Estimate the discrete continuous model with numerical computation

Recall that the likelihood of one observation is:
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P (Y |Yreg) =
∫
Rk−1

I(Ṽjy + ε̃jy < 0 ∀j 6= y)ϕ(ε̃y)dε̃y (3.38)

After taking a few transformations:

P (Y |Yreg) =
∫
Rk−1

I(ε̃jy < −Ṽjy ∀j 6= y)ϕ(ε̃y)dε̃y

=
∫ −Ṽ1y
−∞

∫ −Ṽ2y
−∞

...
∫ −Ṽ(k−1)y

−∞
ϕ(ε̃y)dε̃y

This distribution function can be solved by Genz’s method described above,

thus no simulation is needed.

3.1.7 Normalization of Covariance Matrix

In the random utility maximization theory, the absolute level of utility is

irrelevant to both the decision maker’s behavior and the researcher’s model ( [Train,

2009]). If a constant is added to the utility of all alternatives, the alternative with

the highest utility does not change. In other words, ”Only differences in utility

matter” and ”The scale of the utility is arbitrary”.

The decision maker chooses the same alternative with Unj ∀j as with Unj + k

∀j for any constant k. The level of utility does not matter from the researcher’s

perspective either. The choice probability is Pni = Prob(Uni > Unj ∀j 6= i) =

Prob(Uni − Unj > 0 ∀j 6= i), which depends only on the difference in utility, not its

absolute level. When utility is decomposed into the observed and unobserved parts,

Pni = Prob(εnj − εni > Vni− Vnj ∀j 6= i), which also depends only on the difference.

The fact that only differences in utility matter has several implications for the

identification and specification of discrete choice models. In general it means that
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the only parameters that can be estimated (that is, are identified) are those that

capture differences across alternatives.

Similarly, the scale of the utility does not matter because the utility of each

alternative can be multiplied by a (positive) constant without changing which al-

ternative has the highest utility.

In logit and nested logit models, the normalization for scale and level occurs

automatically with the distributional assumptions that are placed on the error terms.

As a result, normalization does not need to be considered explicitly for these models.

With probit models, however, normalization for scale and level does not occur

automatically. The researcher must normalize the model directly.

Normalization of the model is related to parameter identification. A parameter

is identified if it can be estimated, and is unidentified if it cannot be estimated.

An example of an unidentified parameter is k in the utility specification Unj =

Vnj +k+ εnj. While the researcher might write utility in this way, an might want to

estimate k to obtain a measure of the overall level of utility, doing so is impossible.

The behavior of the decision maker is unaffected by k, and so the researcher cannot

infer its value from the choices that decision maker have made.

State directly, parameters that do not affect the behavior of decision makers

cannot be estimated. In an unnormalized model, parameters can appear that are

not identified; these parameters relate to the scale and level of utility, which do not

affect behavior. Once the model is normalized, these parameters disappear. The

difficulty arises because it is not always obvious which parameters relate to scale

and level. In the preceding example, the fact that k is unidentified is fairly obvious.
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In many cases, it is not at all obvious which parameters are identified.

In this study, the procedure proposed by [Train, 2009] has been applied to

normalize the probit model and assure that all parameters are identified.

The probit model has five alternatives, and utility is expressed as Unj = Vni +

εnj, j = 0, 1, ..., 4. The vector of errors is ε′n = 〈εn1, εn1, ..., εn4〉. It is normally

distributed with zero mean and a covariance matrix that can be expressed explicitly

as

Ω =


σ11 σ12 σ13 σ14 σ15
· σ22 σ23 σ24 σ25
· · σ33 σ34 σ35
· · · σ44 σ45
· · · · σ55

 (3.39)

Where the dots refer to the corresponding elements on the upper part of the

matrix. Note that there are 15 elements in this matrix, that is, 15 distinct σ’s

representing the variance and covariance among the five errors. In general, a model

with J alternatives has J(J + 1)/2 distinct elements in the covariance matrix of the

errors.

To take account of the fact that the level of utility if irrelevant, I take utility

differences. Following the procedure from [Train, 2009], I take differences with

respect to the first alternative. Define error differences as ε̃nj1 = εnj − εn1 for

j = 2, 3, 4, 5, and define the vector of error differences as ε̃n1 = 〈ε̃n21, ε̃n31, ε̃n41, ε̃n51〉.

Note that the subscript 1 in ε̃n1 means that the error differences are against the first

alternative, rather than that the errors are for the first alternative.

The covariance matrix for the vector of error differences takes the form
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Ω̃1 =


θ22 θ23 θ24 θ25
· θ33 θ34 θ35
· · θ44 θ45
· · · θ55

 (3.40)

Where the θ’s relate to the original σ’s as follows:

θ22 = σ22 + σ11 − 2σ12

θ33 = σ33 + σ11 − 2σ13

θ44 = σ44 + σ11 − 2σ14

θ55 = σ55 + σ11 − 2σ15

θ23 = σ23 + σ11 − σ12 − σ13
θ24 = σ24 + σ11 − σ12 − σ14
θ25 = σ25 + σ11 − σ12 − σ15
θ34 = σ34 + σ11 − σ13 − σ14
θ35 = σ35 + σ11 − σ13 − σ15
θ45 = σ45 + σ11 − σ14 − σ15

This matrix is obtained using the transformation matrix M1 as Ω̃1 = M1ΩM
′
1.

M1 =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1



Ω̃1 =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1




σ11 σ12 σ13 σ14 σ15
· σ22 σ23 σ24 σ25
· · σ33 σ34 σ35
· · · σ44 σ45
· · · · σ55




−1 −1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



=


σ22 + σ11 − 2σ12 σ23 + σ11 − σ12 − σ13 σ24 + σ11 − σ12 − σ14 σ25 + σ11 − σ12 − σ15

· σ33 + σ11 − 2σ13 σ34 + σ11 − σ13 − σ14 σ35 + σ11 − σ13 − σ15
· · σ44 + σ11 − 2σ14 σ45 + σ11 − σ14 − σ15
· · · σ55 + σ11 − 2σ15



55



To set the scale of the utility, one of the diagonal elements is normalized. The

top-left element of Ω̃1 is set to 1. This normalization for scale gives the following

covariance matrix:

Ω̃∗1 =


1 θ∗23 θ∗24 θ∗25
· θ∗33 θ∗34 θ∗35
· · θ∗44 θ∗45
· · · θ∗55

 (3.41)

The θ∗’s relate to the original σ’s as follows:

θ∗33 =
σ33 + σ11 − 2σ13
σ22 + σ11 − 2σ12

θ∗44 =
σ44 + σ11 − 2σ14
σ22 + σ11 − 2σ12

θ∗55 =
σ55 + σ11 − 2σ15
σ22 + σ11 − 2σ12

θ∗23 =
σ23 + σ11 − σ12 − σ13
σ22 + σ11 − 2σ12

θ∗24 =
σ24 + σ11 − σ12 − σ14
σ22 + σ11 − 2σ12

θ∗25 =
σ25 + σ11 − σ12 − σ15
σ22 + σ11 − 2σ12

θ∗34 =
σ34 + σ11 − σ13 − σ14
σ22 + σ11 − 2σ12

θ∗35 =
σ35 + σ11 − σ13 − σ15
σ22 + σ11 − 2σ12

θ∗45 =
σ45 + σ11 − σ14 − σ15
σ22 + σ11 − 2σ12

There are 9 elements in Ω̃∗1. These are the only identified parameters in the

model. This number is less than the 15 elements that enter Ω. Each θ∗ is a function

of the σ’s. Since there are 9 θ∗s and 15 σs, it is not possible to solve for all the σ’s

from estimated values of the θ∗’s. It is therefore not possible to obtain estimates of

all the σ’s.

56



In general, a model with J alternatives and an unrestricted covariance matrix

will have [(J − 1)J/2]− 1 covariance parameters when normalized, compared to the

J(J+1)/2 parameters when unnormalized. Only [(J−1)J/2]−1 are identified. This

reduction in the number of parameters is not a restriction. The reduction in the

number of parameters is a normalization that simply eliminates irrelevant aspects of

the original covariance matrix, namely the scale and level of utility. The 15 elements

in Ω allow for variance and covariance that is due simply to scale and level, which

has no relevance for behavior. Only the 9 elements in Ω̃∗1 contain information about

the variance and covariance of errors independent of scale and level. In this sense,

only the 9 parameters can be estimated.

3.2 Ordered Discrete-Continuous Model

3.2.1 The Discrete and Continuous Sub-models and the Integrated

Model

The ordered response structure uses latent variables to represent the vehicle

ownership propensity of the household, thus it is not consistent with utility max-

imization theory. Suppose two latent variables yd and yr represent the preference

levels for vehicle holding and vehicle usage (annual miles traveled). The ordered

discrete-continuous model can be written as:

yd = XT
d βd + εd

yr = XT
r βr + εr
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where, Xd and Xr are explanatory variables for the discrete choice and con-

tinuous choice, βd and βr are the coefficients to be estimated, εd and εr are the

error terms, respectively. The number of vehicles holding by the household (Y ) is

determined by the value of latent variable yd, specifically:

Y = 0 if yd < α1

Y = 1 if α1 < yd < α2

Y = 2 if α2 < yd < α3

...
Y = k − 1 if αk−1 < yd < αk
Y = k if αk < yd

Where α1, α2, ..., αk−1 and αk are the cut-points of the ordered probit equa-

tions. Similarly, in order to jointly to capture the correlation between the discrete

and continuous parts, I allow the error terms to be correlated. Thus, the error terms

follow a bivariate normal distribution:

(εd, εr) ∼ BN(0,Σ)

Therefore, the model is composed of an ordered probit model and a regression

with unrestricted correlation between the error terms.

3.2.2 Estimation with Numerical Computation

In the bivariate normal distribution, for example, if (X, Y ) follow a bivariate

normal distribution with mean (µx, µy) and covariance Σ, then (Y |X = x) follows

a normal distribution with mean µy + ρ(x− µx)σxσy and variance σ2
y(1− ρ2).

If Yd follows an ordered probit and Yr follows a regression with both error
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terms correlated, we can write, analytically, the likelihood of one observation:

P (Yd, Yr) = P (Yr)P (Yd|Yr)

or:

P (Yr, Yd) = P (Yd)P (Yr|Yd)

Both approaches are feasible but the first one use only the property mentioned

above, thus requires no numerical integration nor simulation. The second method

requires numerical integration. if:

ρ =
σ2
r,d

σrσd

Z = X t
dβd

err = Yr − Ŷr

Recall that αk is the k-th cut-point used in the ordered probit to discretize

the latent continuous variable, then :

P (Yr) = φ(err|µ = 0, σ2 = σ2
r)

and:

P (Yd|Yr) = P (αYd < Z + εd < αYd+1|Yr)

= P ((a = αYd − Z) < εd < (b = αYd+1 − Z)|Yr)

Conditional on the regression, the only effect is that the error term of the

ordered probit and its variance are:
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µcond = 0 + ρ(err − 0)σr
σd

σ2
cond = σ2

d(1− ρ2)

Thus the conditional probability is simply:

P (Yd|Yr) = Φ(b|µ = µcond, σ
2 = σ2

cond)− Φ(a|µ = µcond, σ
2 = σ2

cond)

And the likelihood can be written like this :

L = φ(err|µ = 0, σ2 = σ2
r)
(
Φ(b|µ = µcond, σ

2 = σ2
cond)− Φ(a|µ = µcond, σ

2 = σ2
cond)

)

3.3 Endogeneity

In a statistical model, a parameter or variable is said to be endogenous when

there is a correlation between the parameter or variable and the error term. Endo-

geneity can arise as a result of measurement error, autoregression with autocorre-

lated errors, simultaneity, omitted variables, and sample selection errors. Broadly, a

loop of causality between the independent and dependent variables of a model leads

to endogeneity.

For example, in a simple supply and demand model, when predicting the

quantity demanded in equilibrium, the price is endogenous because producers change

their price in response to demand and consumers change their demand in response

to price. In this case, the price variable is said to have total endogeneity once the

demand and supply curves are known. In contrast, a change in consumer tastes or

preferences would be an exogenous change on the demand curve.
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The problem of endogeneity occurs when the independent variable is correlated

with the error term in a regression model. This implies that the regression coefficient

in an Ordinary Least Squares (OLS) regression is biased, however if the correlation

is not contemporaneous, then it may still be consistent. There are many methods of

overcoming this, including instrumental variable regression and Heckman selection

correction.

In conclusion:

• An endogenous variable is one that is correlated with ε;

• An exogenous variable is one that is uncorrelated with ε.

Generally, Instrumental Variables (IV) estimation is used when the model

has endogenous variables. IV can thus be used to address the following important

threats to internal validity:

• Omitted variable bias from a variable that is correlated with explanatory vari-

ables (X) but is unobserved, so cannot be included in the regression;

• Simultaneous causality bias (endogenous explanatory variables; X causes Y ,

Y causes X);

• Errors-in-variables bias (X is measured with error)

Instrumental variables regression can eliminate bias from these three sources.

An instrumental variable, Z is uncorrelated with the disturbance ε but is

correlated with X. With this new variable, the IV estimator should capture only

the effects on Y of shifts in X induced by Z whereas the OLS estimator captures
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not only the direct effect of X on Y but also the effect of the included measurement

error and/or endogeneity. IV is not as efficient as OLS (especially if Z only weakly

correlated with X, i.e. when we have so-called ”weak instruments”) and only has

large sample properties (consistency).

In order for a variable, z, to serve as a valid instrument for x, the following

must be true

• The instrument must be exogenous (instrument exogeneity)

Cov(z, ε) = 0

• The instrument must be correlated with the endogenous explanatory variable

x (instrument relevance)

Cov(z, x) 6= 0

One computational method which can be used to calculate IV estimates is two-

stage least-squares (2SLS or TSLS). In the first stage, each endogenous covariate in

the equation of interest is regressed on all of the exogenous variables in the model,

including both exogenous covariates in the equation of interest and the excluded

instruments. The predicted values from these regressions are obtained. In the

second stage, the regression of interest is estimated as usual, except that in this

stage each endogenous covariate is replaced with the predicted values from its first

stage model from the first stage.

• Stage 1: Regress X on all the exogenous regressors: regress X on Z1, ..., Zm

using OLS; compute predicted values X̂
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• Stage 2: Regress Y on X̂ and other explanatory variables using OLS.

In this study, it should be noted that the cost variable in the continuous part

is estimated with an instrumental variable approach. This approach is required

because when the household chooses which vehicle(s) it owns, it effectively chooses

the operating cost of driving the selected vehicle(s) [Train, 1986]. The operating

cost (endogenous variable) is regressed on the exogenous variables; those include

household income, number of drivers, number of workers, owned or rental house,

dummy of urban area, urban size, age of the household head and the education level

of the household head. The predicted values from these regressions are obtained

and used as exogenous variables to explain the vehicle miles traveled.

3.4 Goodness of Fit Measures

In statistics, the coefficient of determination ρ2 is used in the context of statis-

tical models whose main purpose is the prediction of future outcomes on the basis

of other related information. ρ2 is most often seen as a number between 0 and 1.0,

used to describe how well a regression line fits a set of data. An ρ2 near 1.0 indicates

that a regression line fits the data well, while an ρ2 closer to 0 indicates a regression

line does not fit the data very well. It is the proportion of variability in a data set

that is accounted for by the statistical model. It provides a measure of how well

future outcomes are likely to be predicted by the model.

In this study, the log-likelihood values from different models cannot be di-

rectly compared because of the different model structure, number of parameters
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and number of observations. Therefore, we calculate the adjusted R2 as follows:

ρ2 = 1− LL(β̂)− npar
LL(0)

Where LL(β̂) is the log-likelihood value at convergence, LL(0) is the log-

likelihood value at zero, and npar is the number of parameters estimated in the

model.

A non-nested test has been also conducted for the ordered and unordered mod-

els. This test determines if the adjusted ρ2 of two non-nested models are significantly

different. I use the same method as in Bhat and Pulugurta (1998):

”If the difference in the adjusted ρ2 is τ , then the probability that this differ-

ence could have occurred by chance is no larger than

Φ
{
−[−2τLL(0) + (npar,2 − npar,1)]0.5

}

in the asymptotic limit. A small value of the probability of chance occurrence

indicates that the difference is statistically significant and that the model with the

higher value of adjusted likelihood ratio index is to be preferred.”
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Chapter 4

Data Sources

4.1 National Household Travel Survey (NHTS)

The main data sources used in this dissertation for car ownership modeling

are extracted from the 2009 National Household Travel Surveys (NHTS). NHTS

is conducted by the Federal Highway Administration (FHWA), the United States

Department of Transportation (U.S.DOT) and serves as the nation’s inventory of

daily travel. It collected travel data from a national sample of the civilian, non-

institutionalized population of the United States. NHTS is a microdata dataset,

which contains a total of 150,147 households, 351,275 persons, 309,163 vehicles and

1,167,321trips in the final 2009 NHTS dataset (FHWA, 2011).

The NHTS is conducted as a telephone survey, using Computer-Assisted Tele-

phone Interviewing (CATI) technology. The NHTS dataset includes all interviews

from the national sample and the Add-on partners. The weighting factors have been

adjusted to account for the oversampling in the Add-on areas.

States and MPOs have the unique opportunity to purchase samples of the

household travel survey when it is conducted, approximately every five to seven

years. These additional samples, along with random national samples collected in

the add-on area, are compiled into a cleaned geocoded database for ready application

to local planning and forecasting.
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The 2009 NHTS dataset include information on:

• Household data. Relationship between household members, income, housing

characteristics, and other socio-demographic information for each memebr of

the household and for the head of the household;

• Information on each household vehicle, including year, make, model, and es-

timates of annual miles traveled;

• Data about drivers, including information on travel as part of work.

• Data about one-way trips taken during a designated 24-hour period (the house-

hold’s travel day) including the time the trip began and ended, length of the

trip, composition of the travel party, mode of transportation, purpose of the

trip, and the specific vehicle used (if a household vehicle);

• Information to describe characteristics of the geographic areas in which the

sampled household and its workplace are located;

• Data on telecommuting;

• Public perceptions about the transportation system;

• Data on Internet usage; and

• The typical number of transit, walk and bike trips made over a period longer

than the 24-hour travel day.

The 2009 NHTS Data is organized into four different data files:
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• Household Record;

• Vehicle Record;

• Person Record;

• Travel Day Trip Record.

4.2 Vehicle Characteristics

The NHTS data does not contain the detailed vehicle information needed for

the estimation of the car type model. Vehicle characteristics are computed from

the Consumer Reports. Consumer Reports contains vehicle specification data for

models tested within the past 10 years; up to four model years are available and

classified by performance, crash protection, fuel economy, and specifications; market

value or price of each new or used car are also part of the dataset.

I collected all the vehicle specifications and price for each make, model and

year, including:

• Tested Model (i.e. 2003 SR5 4-door SUV 4WD, 4.0-liter V6, 4-speed automatic
(Toyota 4Runner))

• Price

• Seating (front, rear, third)

• Engine size

• Transmission (manual or automatic)

• Acceleration

• 0 to 30 mph, sec.

• 0 to 60 mph, sec.
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• 45 to 65 mph, sec.

• Quarter-mile, sec

• Quarter-mile, mph

• Emergency handling

• Braking

• Braking from 60 mph dry, ft.

• Braking from 60 mph wet, ft.

• Comfort/convenience

• Ride

• Noise

• Driving position

• Seat comfort

• Shoulder room, in

• Leg room, in

• Head room, in

• Controls and display

• Interior fit and finish

• Trunk/Cargo Area

• Luggage/cargo capacity, cu. ft.

• Climate System

• Fuel Economy (MPG)

• Cruising range, mi.

• Fuel capacity, gal.

• Fuel type

• Safety (Crash and rollover tests)

• Specifications

• Length, in.
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• Width, in.

• Height, in.

• Turning circle, ft.

• Curb weight, lb.

• Max. load, lb.

• Typical Towing capacity, lb.

4.3 U.S. Census TIGER/Line shapefiles

The U.S. Census TIGER/Line shapefiles contain the geographic extent and

boundaries of both legal and statistical entities. The 2009 data on Census Tract level

is obtained for the State of Maryland, Virginia and District of Columbia because

the main data source (NHTS data) was conducted in 2009 and was geo-referenced

on Census Tract level.

4.4 General Transit Feed Specification (GTFS)

The General Transit Feed Specification (GTFS) , which was originally de-

veloped by Google and Portland TriMet defines a common data format for public

transportation schedules and the associated geographic information. The GTFS is

an open format and it is composed of a series of text files; each file contains a partic-

ular aspect of the transit service: stops, routes, trips and other schedule data. The

GTFS data for the Washington D.C. Metropolitan area is obtained from the Wash-

ington Metropolitan Area Transit Authority (WMATA). The database consists of

the following files:
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• Agency: contains the transit agency id, name and website.

• Stops: individual locations where vehicles pick up or drop off passengers. The

data contains information on stop id, stop name, latitude and longitude and

stop location.

• Transit Routes: a route is a group of trips that are displayed to riders as a

single service. The data contains information of route id, route name, route

type (i.e., subway, rail and bus), etc.

• Trips for each route: a trip is a sequence of two or more stops that occurs at

a specific time. The data contain information on the trip id, trip name, trip

head sign, and the corresponding route id and service id.

• Stop times: times that a vehicle arrives at and departs from individual stops

for each trip.

• Calendar dates: specify when service starts and ends, as well as days of the

week when the service is available. The data contains information on the

service id and service dates.

• Shapes: rules for drawing lines on a map to represent a transit organizations

routes.

The data structure of GTFS is presented in Figure 4.1.
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Figure 4.1: Data Structure of GTFS Data

4.5 American Community Survey (ACS)

The American Community Survey (ACS) is an ongoing statistical survey by

the U.S. Census Bureau, sent to approximately 250,000 addresses monthly (or 3

million per year). It regularly gathers information previously contained only in the

long form of the decennial census. It is the largest survey other than the decennial

census that the Census Bureau administers.

Every 10 years since 1790, Congress has authorized the government to conduct

a national census of the U.S. population, as required by the U.S. Constitution. In

the twentieth century, the questions were divided between a short and long form.

Only a subset of the population was required to answer the long-form questions. The

most recent census consisted of a short form, which included basic questions about

age, sex, race, Hispanic origin, household relationship, and owner/renter status.

After the 2000 Census, the long form became the ACS and will continue to collect
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long-form-type information throughout the decade. The ACS includes not only

the basic short-form questions, but also detailed questions about population and

housing characteristics. It is a nationwide, continuous survey designed to provide

communities with reliable and timely demographic, housing, social, and economic

data every year [U.S. Census Bureau, 2013].

The primary benefit of ACS is that the data are being collected and will

be disseminated more frequently than the once-in-10-years decennial census Long

Form data. Data users will no longer need to rely on aging snapshot estimates

of population and housing characteristics. Instead, they will be able to use more

recently collected data whose accuracy and relevance will not depend on how closely

the analysis year conforms to the decennial census year. In addition, the increased

frequency of data releases will enable data users to analyze trends over shorter time

periods [Transportation Research Board, 2007].

Particularly, The American Community Survey (ACS) Public Use Microdata

Sample (PUMS) files show the full range of population and housing unit responses

collected on individual ACS questionnaires. The PUMS files contain records for a

subsample of ACS housing units and group quarters persons, with information on

the characteristics of these housing units and group quarters persons plus the people

in the selected housing units.

In terms of the geo-reference information, Region, Division, State, and Pub-

lic Use Microdata Areas (PUMAs) are the only geographic areas identified in the

ACS PUMS. Public Use Microdata Areas (PUMAs) are non-overlapping areas that

partition each state into areas containing about 100,000 residents and are the most
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detailed geographic areas available in the ACS PUMS files [U.S. Census, ].
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Chapter 5

Comparison of Unordered and Ordered Discrete-Continuous Models

5.1 Introduction

This comparison is motivated by the fact that ordered discrete-continuous

models (Fang, 2008) are relatively easier to estimate when compared to unordered

model structure; however the assumption that vehicle ownership decisions are mea-

sured by a single latent variable might affect the goodness of fit of the model and

its performance in model application and policy analysis.

In this chapter, I apply the unordered and ordered discrete-continuous models

for the Washington D.C. Metropolitan area with the 2009 NHTS and vehicle charac-

teristics data. I assume that the choice set of the vehicle holding sub-model includes

zero, one, two, three and four or more vehicles. The types of vehicle owned by each

household are categorized by classes and vintages. This classification is based on

the classes proposed in the 2009 National Household Travel Survey (NHTS) and in

the 2009 National Transportation Statistics (NTS); it is mainly based on vehicle

size, function, and brand loyalty (domestic or imported). Therefore, each household

is assumed to have a choice among 12 classes and 10 vintages; 120 alternatives are

in the final choice set for vehicle type and vintage sub-model. The twelve vehicle

classes are: (1) small domestic car; (2) compact domestic car; (3) mid-size domestic

car; (4) large domestic car; (5) luxury domestic car; (6) small import car; (7) mid-
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size import car; (8) large import car; (9) sporty car; (10) minivan/van; (11) pickup

trucks; (12) SUVs. The 10 vintages are pre-1999 and 2000 through 2008.

5.2 Data Statistics

The primary data source used in this case study is the 2009 National Household

Travel Survey (NHTS). The comparison analysis is restricted to the Washington

D.C. Metropolitan area, for which 1,420 observations in the dataset. Household

characteristics, land-use variables and information on each household vehicle, are

the main variables extracted from the original dataset. Table 5.1 lists the basic

statistics relative to the household sample. For the Washington D.C. Metropolitan

area, the average vehicle ownership per household is 1.87 in 2009. The percentage

of the households without a car is 7.28%, 26.72% own one vehicle, 43.49% own

two vehicles, 17.03% own three vehicles and 5.48% own four or more vehicles. The

average household income increases for household having up to two cars, but remains

stable for household with 3 or 4+ cars. The number of cars in the household is highly

associated with the number of adults and number of drivers in the family. About half

of the households who do not have a car do not own a house. The land use variables,

such as dummy of urban area, urban size, population density and housing density,

greatly influence the household car ownership decisions. The households with more

cars are generally located in less dense or more rural area. In the Washington

D.C. metropolitan area, the average age of the household head is around 55 years

old in 2009, which is somehow an indication of the aging society happening in
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western countries. Households with zero or one car have older household head. The

average education level in this area is college/bachelors degree; however, households

without a car have much lower education level. The average annual mileage traveled

by a household is around 20,000 miles per year. The mileage traveled increases

accordingly with the household car ownership.
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In terms of vehicle class and vintage (Figure 5.1 and Figure 5.2), for the house-

holds with only one car, about half of the vehicles are imported cars. Households

with more than one car own more vans. There are much more pickup trucks for the

households with three or more cars. The average age of the cars in the study area is

8.6 years old, the majority of the cars are between 4 and 10 years old. The house-

holds with more cars tend to hold older cars in average, since the average vehicle

age in 1-car and 2-car households is around 8 to 8.5 and more than 10 years old for

the 4+ car households.

The 2009 NHTS data does not include information on vehicle price, fuel

efficiency, seating, engine, and other vehicle characteristics by vehicle make and

model, which are important attributes for the analysis of factors associated to

vehicle type decisions. The vehicle characteristic data were obtained from the

ConsumerReports. ConsumerReports provide the vehicle specification data on

models tested within the past 10 years, having up to four model years by perfor-

mance, crash protection, fuel economy, and specifications. ConsumerReports also

indicates the sale price or the price of each new or used car. Then we aggregated all

the information we collected by 12 vehicle classes and 10 vintages. Therefore, there

are totally 120 alternatives (12 classes * 10 vintages), with detailed and aggregated

vehicle specification and price information.

78



Figure 5.1: Distribution of vehicle classes

Figure 5.2: Vehicle age profile
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5.3 Calibration of the Logsum

We first calibrate a multinomial logit model for the vehicle type submodel. The

number of alternatives for the vehicle type choice increases exponentially with the

number of vehicles in the household, for example, a family which has three cars would

have 1203 choices in total. Because of the large number of alternatives, estimation

of this model on the full set of alternatives is considered infeasible. We take the

advantage of IIA property of multinomial logit model. The vehicle type sub-model

is then estimated on a subset of alternatives which includes the households chosen

alternative and 20 alternatives randomly selected from the 120 alternatives. Tests

( [Train, 1986]) indicate that, once the number of alternatives exceeds a minimal

threshold, the estimated parameters are not sensitive to the number of alternatives

included in the choice set. Results from the class/vintage sub-model are reported

in Table 5.2.

The vehicle holding and vehicle type sub-models are then linked using a log-

sum variable derived from the calibration of the multinomial logit for the vehicle

type/vintage decisions.
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Generally households prefer vehicles with more shoulder room and bigger lug-

gage space; moreover, they are more likely to own a car type for which more choices

(make and model combinations) are available. The variable of difference of MPGs

is a proxy to test whether the households prefer cars with similar engine size or not.

The positive coefficient indicates that households with multiple cars have higher

tendency to own cars with different horsepower. However, when it comes to the

households with four or more cars, this factor becomes less significant. Households

with only one car do not prefer foreign cars, while two-car households prefer both

domestic cars. Households are in general holding older vehicles. Households are

more likely to own only one car if there are less than three members in the family,

whereas households with more than three members prefer to own SUVs. For the

two-car households, the ones with three or more household members prefer to own

one SUV/pickup/van rather than two autos. Similarly, the households with three

cars are more likely to own a pickup or a van. However, households with four or

more cars tend to own at least one pickup, but not SUVs or vans; they also have

higher tendency of owning a sporty car. The coefficients related to vehicle purchase

price are negative and significant; their magnitude is decreasing with the increase

of household income. The lower income group is more sensitive to the vehicle pur-

chase price, while higher income group are found to be less sensitive to vehicle price

(as expected). The logsum of the class/vintage submodel is then calculated and

included into the discrete continuous model.
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5.4 Estimation Results and Comparison

The unordered discrete-continuous (UDC) model with both simulation and

numerical computation and the ordered discrete-continuous (ODC) model have been

estimated with the 2009 NHTS data. Estimation results of the three models are

presented in Table 5.3.

All the estimated coefficients are significant and have the expected sign, with

only a few exceptions. Positive coefficients of household income indicate that house-

holds with higher income have higher tendency to own more vehicles and drive

more. The negative coefficient in the one-car household alternative means high-

income group are less likely to own only one car. In the unordered models, the

magnitude increases as the number of vehicles in the household increases. The co-

efficients of number of drivers in the household are very significant, indicating that

this factor has high effects on how many cars a household owns. This coefficient is

positive in the ordered structure, and also positive in the unordered structure with

an exception for the one-car households. The negative coefficient for one-car house-

hold alternative indicates that, the more drivers in the household, the less likely

they own only one car. Similarly, households with female household head are less

likely to own more cars.

Urban size is the size of urban area in which home address is located, in which

the lower value represents urban areas and the higher value represents rural areas.

Residential density is an indication of the built environment around the household

location. The coefficients of these two variables are significantly negative (with a
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few exceptions in the one-car household alternative) and have higher magnitude as

the households own more cars in the unordered structure. Both of the coefficients

in the ordered and unordered structures infer that the households located in highly

residential areas are more likely to own fewer cars and drive less while the households

located in a more rural area have higher probability of having more cars and drive

more.

The driving cost is measured by dollars per mile. As expected, the coefficient

of driving cost is significant and negative, indicating that higher driving cost induces

the households to drive less.
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The covariance matrices of the models are reported below. In the unordered

discrete-continuous models, the bottom line of the matrix explains the correlation

between the mileage traveled and the utilities of the vehicle holding alternatives. The

positive values mean higher demand on mileage usage increase the utility of owning

two or more cars in the household. In the ordered discrete-continuous models, the

correlation between the number of vehicles and mileage traveled is 0.5, which means

that the demand of vehicle usage increase the propensity of owning more cars.

Σ̂1 =


2.00 −1.14 −1.31 −1.30 −0.27
−1.14 1.63 0.37 0.76 0.10
−1.31 0.37 2.37 1.68 0.67
−1.30 0.76 1.68 1.36 0.46
-0.27 0.10 0.67 0.46 1.23



Σ̂2 =


2.00 −10.34 −10.24 −10.57 −0.73
−10.34 58.26 61.44 61.57 4.46
−10.24 61.44 68.64 67.11 5.21
−10.57 61.57 67.11 66.34 5.00
-0.73 4.46 5.21 5.00 1.25



Σ̂3 =

(
1.00 0.50
0.50 1.56

)

Σ̂4 =


2.00 3.31 3.95 3.43 1.48
3.31 12.89 5.69 4.64 2.38
3.95 5.69 11.67 12.19 3.43
3.43 4.64 12.19 36.93 4.56
1.48 2.38 3.43 4.56 1.24



5.5 Application Results and Comparison

The models estimated have been applied to test policy scenarios; the variables

of interest are density and driving cost. The following three scenarios have been
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tested:

• Household income: 10% decrease, 5% decrease, 5% increase and 10% increase

• Residential density: 50% decrease, 25% decrease, 25% increase and 50% in-

crease

• Driving cost: 50% decrease, 25% decrease, 25% increase and 50% increase

Results in Table 5.4 and Table 5.5 show the effects of those variables on both

vehicle holding and mileage traveled. It appears that results are consistent be-

tween ordered and unordered structures except for the ”household income” sce-

narios. There are slight effects on vehicle holding changes with respect to all the

scenarios, except that a 10% change of household income level in ordered discrete

continuous model will result in up to 4.23% change in vehicle holding stock. Changes

in fuel cost have great effects in increasing/reducing vehicle usage. For example, ve-

hicle usage will be reduced by around 17% - 20% when the driving cost is increased

by 50%. However, even when the density increased by 50% people only cut less than

6% in their car use. The observations from the ”density” scenarios are consistent

with the findings in the previous studies (i.e., [Fang, 2008]).
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5.6 Chapter Summary

In this chapter, both ordered and unordered models are applied to estimate a

joint model of household vehicle holding and mileage traveled on data extracted from

the 2009 NHTS and representative of the Washington metropolitan area. Variables

related to household characteristics, land use and driving cost have been estimated

for both datasets and result to significantly affect decisions regarding the number

of cars in the household and annual mileage driven. Although coefficients are not

directly comparable, the results from the model application to policy testing show

that both density and driving costs do not affect much the vehicle holding under

analysis. Changes in driving costs only marginally affect the number of cars but

greatly affect the AMT in households residing in the Washington metropolitan area.

In terms of the methodological comparison, the advantage of the ordered struc-

ture over the unordered is that it offers a closed mathematical form for the choice

probabilities and does not require simulations for the estimation, that are proven

to be quite difficult in probit model calibration. However, the unordered discrete-

continuous models always performs better in terms of goodness of fit statistics when

compared to ordered discrete-continuous models, which is consistent to previous

results obtained in the literature and related to vehicle holding decisions. Finally,

although the superiority of discrete-continuous unordered probit over ordered probit

might be case specific, this analysis confirms once again that the unordered struc-

ture is better suited for vehicle holding and use decisions even in the context of joint

discrete-continuous decisions.
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Figure 5.3: Application results from the unordered discrete continuous model
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Figure 5.4: Application results from the ordered discrete continuous model
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Chapter 6

National Model of Vehicle Ownership and Usage

6.1 Introduction

In the literature, there are a large number of studies that have developed

vehicle ownership models for large cities and metropolitan areas (See Chapter 2).

The majority of them are based on household travel survey data. However, very few

studies conducted such research for the entire U.S., especially in more recent years.

The barriers include the difficulties to capture demand levels for different population

segments across the nation, and the poor data sources for small cities/areas.

This chapter develops a series of vehicle ownership and usage models for the

entire United States, which is motivated by the lack of national vehicle ownership

models in the literature, and the needs to determine vehicle/driving demand in small

areas with limited data availability.

The models are estimated for four Census Regions (Northeast, Midwest, South

and West; Figure 6.1) and 3 area types (urbanized area, urban clusters and rural).

The categories are selected according to the U.S. Census definitions. Then the

models are applied to small areas using ACS PUMS data (2009 1-year estimate),

which is a new data source from the U.S. Census Bureau and was firstly implemented

in 2005. The idea developed in this chapter is inspired by the most recent studies on

model/data transferability and by the need to integrate different sources of data for
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transportation analysis. For example, Hu et al. (2007) combined the 2001 NHTS

data and 2000 census data to provide estimates of regional or local travel, including

vehicle trips (VT), vehicle miles of travel (VMT), person trips (PT), and person

miles of travel (PMT) by trip purpose and a number of demographics ( [Hu et al.,

2007]).

The NHTS data contains a wealth of nation’s daily travel information, how-

ever, it is not as rich as ACS data in terms of the sample size. The NHTS is

only conducted every 5-7 years whereas ACS is collected continuously. In fact, the

NHTS data were not recommended for analysis of categories smaller than the com-

bination of Census division, MSA size, and the availability of rail. In addition, some

metropolitan areas conduct their own household travel surveys, but many lack the

necessary resources to collect local data.

In this analysis, the entire NHTS data set and model estimations are performed

for 12 groups, composed by 4 Census Regions (Northeast, Midwest, South and West;

Figure 6.1) and 3 area types (urbanized area, urban clusters and rural). As defined

by the U.S. Census Bureau, urban areas are contiguous census block groups with

a population density of at least 1,000 /sq mi with any census block groups around

this core having a density of at least 500 /sq mi. Urban areas are delineated without

regard to political boundaries. The census has two distinct categories of urban areas.

Urbanized Areas have populations greater than 50,000, while Urban Clusters have

populations of less than 50,000 but more than 2,500. An urbanized area may serve

as the core of a metropolitan statistical area, while an urban cluster may be the

core of a micropolitan statistical area ( [U.S. Census, ]).
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In the NHTS data, Region, Division, State and the area type indicators are de-

rived from the household’s home address (confidential) and the U.S. Census bound-

ary files. On the other side, Region, Division, State, and Public Use Microdata

Areas (PUMAs) are the geographic areas identified in the ACS PUMS files.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/us_regions.jpg

Figure 6.1: United States Regions (Census Bureau)

6.2 Estimation Results with the NHTS Data

With the 2009 NHTS data, twelve discrete-continuous models for household

vehicle ownership and usage are estimated (combination of 4 Regions and 3 area

types), and the results are shown in Table 6.1. The explanatory variables in the

final model specification are: household annual income level, household size, number
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I:/Dissertation/dissertation/AliceLatexThesisNov2013/us_urban.jpg

Figure 6.2: United States Urban Area (Census Bureau)
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of workers in the household, dummy of having child(ren), dummy of owned home,

residential density, and driving cost ($/mile), which are common variables (except

density and cost) between NHTS and ACS data. Almost all of the coefficients are

significant at 95% level and have the expected signs, with only a few exceptions.

Although the magnitudes cannot be compared directly, it still can be seen that there

are diversities among different Regions and area types. The models are then applied

and validated; results are presented in the next section.

99



T
a
b

le
6
.1

:
E

st
im

a
ti

o
n

R
es

u
lt

s
o
f

N
a
ti

o
n

a
l

M
o
d

el
s

N
or

th
ea

st
M

id
w

es
t

S
o
u

th
W

es
t

U
rb

an
S

u
b

u
rb

a
n

R
u

ra
l

U
rb

a
n

S
u

b
u

rb
a
n

R
u

ra
l

U
rb

a
n

S
u

b
u

rb
a
n

R
u

ra
l

U
rb

a
n

S
u

b
u

rb
a
n

R
u

ra
l

D
ep

en
d

en
t

va
ri

ab
le

:
N

u
m

b
er

of
ca

rs

co
n

st
an

t

1
ca

r
-0

.1
03

0.
06

8
0
.3

0
9

-0
.0

0
3

-0
.2

0
7

0
.8

8
6

-0
.2

8
4

-0
.1

7
2

-0
.0

4
4

0
.3

1
3

0
.4

5
2

1
.0

1
4

2
ca

rs
-2

1.
33

6
-2

0.
63

1
-1

9
.7

8
-1

5
.9

1
8

-8
.6

2
8

-5
.1

5
7

-2
3
.6

0
2

-3
7
.9

25
-1

4
.0

8
6

-1
6
.5

8
4

-8
.0

3
-3

.2
8

3
ca

rs
-4

9.
13

2
-5

0.
86

4
-2

3
.2

7
8

-2
6
.8

4
8

-1
4
.9

9
5

-2
6
.4

7
5

-5
1
.8

4
3

-5
6
.6

95
-2

1
.2

4
2

-1
8
.6

0
1

-3
1
.8

3
3

-1
1
.1

7
7

4+
ca

rs
-4

6.
50

6
-5

2.
97

2
-7

6
.7

1
3

-3
8
.7

3
2

-1
9
.3

7
-2

0
.7

3
9

-5
3
.2

5
4

-1
2
9
.8

4
5

-2
1
.6

7
-3

6
.6

4
1

-4
0
.8

7
1

-1
5
.1

8
6

in
co

m
e

1
ca

r
0.

08
6

0.
08

4
0
.0

8
0
.0

7
4

0
.1

6
6

0
.0

3
1

0
.1

0
3

0
.1

1
3

0
.1

6
4

0
.0

6
5

0
.1

0
5

0
.0

8
9

2
ca

rs
0.

90
4

0.
95

3
0
.6

8
4

0
.8

1
1

0
.5

2
1

0
.2

7
4

1
.0

9
7

1
.6

0
8

0
.7

0
4

0
.7

2
9

0
.4

4
0
.2

7
9

3
ca

rs
1.

42
9

1.
37

0
.7

4
7

0
.8

2
9

0
.6

4
2

0
.5

1
6

1
.6

1
9

1
.9

0
6

0
.8

2
2

0
.7

4
9

1
.0

2
2

0
.4

0
1

4+
ca

rs
1.

03
0.

86
3

1
.1

2
5

0
.8

0
1

0
.5

5
9

0
.4

3
4

1
.6

6
8

2
.7

3
7

0
.6

5
8

0
.8

8
5

0
.9

9
7

0
.3

7

n
u

m
.

of
h

h
m

em
b

er
s

1
ca

r
0.

31
5

0.
34

3
0
.2

0
2

0
.2

8
6

0
.3

8
2

-0
.1

0
5

0
.2

5
7

0
.3

6
6

-0
.0

9
5

0
.1

5
4

0
.2

0
9

0
.1

2
1

2
ca

rs
3.

37
6

4.
13

5
4
.5

2
8

3
.2

8
9

1
.9

3
3

1
.3

8
7

3
.8

8
7
.2

1
1

2
.8

2
9

3
.3

1
2
.1

0
.8

9
7

3
ca

rs
5.

35
1

3.
88

4
.6

1
8

4
.1

5
2

1
.9

7
9

2
.2

4
5

5
.0

8
1

7
.7

8
6

3
.2

3
9

3
.5

2
8

3
.6

7
9

1
.3

6
3

4+
ca

rs
4.

51
2

5.
48

6
7
.6

5
9

3
.1

8
1

2
.6

0
7

2
.1

7
3

5
.8

8
8

1
4
.0

3
7

3
.0

9
6

4
.2

5
1

4
.0

8
9

1
.4

4
6

n
u

m
.

of
w

or
ke

rs

1
ca

r
0.

50
4

0.
59

5
0
.6

1
5

0
.5

9
2

0
.7

6
1
.0

2
7

0
.6

6
5

0
.5

2
6

-0
.1

7
0
.0

9
4

0
.3

2
8

0
.7

8
9

2
ca

rs
2.

36
7

2.
72

2
4
.4

5
7

3
.2

8
7

2
.0

7
1

2
.4

6
4

3
.7

5
8

5
.9

0
8

2
.4

7
9

2
.3

7
2

1
.5

4
8

1
.8

2
3

3
ca

rs
5.

74
5

8.
41

3
5
.0

0
8

4
.7

4
.1

5
6

6
.6

4
3

7
.1

3
2

8
.6

1
7

3
.3

5
3

2
.5

9
5

4
.6

4
4

3
.0

3
7

4+
ca

rs
4.

02
5

9.
49

5
9
.6

3
1

9
.8

1
3

5
.1

1
5
.9

8
2

7
.6

2
2

1
1
.4

4
7

4
.1

4
8

4
.7

4
8

5
.4

8
1

3
.3

3
9

ow
n

h
om

e

1
ca

r
0.

39
8

0.
33

1
0
.6

4
0
.5

4
3

0
.9

5
3

1
.1

1
7

0
.8

8
8

0
.6

0
3

0
.0

1
2

0
.4

0
6

0
.5

3
6

0
.5

7
9

100



2
ca

rs
6.

94
6

5.
59

7
7
.4

5
6

5
.1

8
9

3
.9

5
6

3
.9

5
6

7
.0

7
1

1
2
.5

9
1

5
.1

3
6

5
.1

4
6

2
.9

2
9

2
.3

5
7

3
ca

rs
6.

59
9

11
.1

92
8
.0

6
7

7
.7

6
3

3
.6

1
4

1
0
.0

7
4

1
0
.2

3
5

1
7
.3

7
2

5
.9

2
6

5
.5

4
5
.1

1
6

4
.2

2
2

4+
ca

rs
11

.2
89

3.
43

3
1
8
.0

6
9

0
.5

7
5

3
.1

8
8

7
.9

8
3

8
.2

1
4

3
0
.7

6
3

5
.3

5
7

8
.5

8
7

1
0
.4

8
6

6
.3

8
2

re
s.

D
en

si
ty

(1
,0

00
)

1
ca

r
-0

.0
63

-0
.1

6
-0

.1
9
7

-0
.0

5
9

-0
.0

8
9

0
.3

8
-0

.0
8
4

-0
.1

7
9

0
.2

7
5

-0
.0

4
9

-0
.2

3
9

-0
.3

2
2

2
ca

rs
-0

.6
2

-0
.7

21
-1

.4
2
4

-1
.2

6
8

-0
.6

2
6

-2
.7

1
8

-0
.5

9
4

-2
.5

7
4

-0
.9

9
1

-0
.5

8
9

-0
.9

6
9

-0
.7

9
8

3
ca

rs
-1

.1
71

-2
.9

48
-1

.4
7
7

-1
.3

0
5

-0
.8

4
3

-7
.7

4
7

-1
.1

9
4

-4
.3

5
8

-3
.7

5
8

-0
.6

0
7

-2
.6

2
-1

.9
9

4+
ca

rs
-1

.3
34

-0
.1

89
-1

.9
7
4

-2
.2

0
3

-1
.0

3
6

-5
.4

1
5

-1
.3

8
2

-4
.0

5
5

-4
.9

8
1

-0
.8

5
8

-4
.9

9
1

-2
.5

6
7

D
ep

en
d

en
t

va
ri

ab
le

:
A

M
T

(1
0k

)

co
n

st
an

t
0.

07
7

0.
13

6
0
.7

5
9

0
.3

4
2

0
.7

0
2

1
.3

1
9

0
.1

6
2

0
.3

5
4

0
.2

1
2

0
.2

1
6

0
.6

2
5

1
.3

2
8

in
co

m
e

0.
06

2
0.

07
2

0
.0

5
5

0
.0

6
0
.0

9
9

0
.0

5
1

0
.0

7
1

0
.0

8
7

0
.0

7
1

0
.0

6
9

0
.0

7
0
.0

5
4

n
u

m
.

of
h

h
m

em
b

er
s

0.
25

2
0.

25
5

0
.2

2
0
.1

6
6

0
.2

2
1

0
.1

5
4

0
.2

7
1

0
.2

3
0
.2

3
9

0
.3

8
7

0
.3

0
1

0
.1

8
3

n
u

m
.

of
w

or
ke

rs
0.

34
6

0.
42

7
0
.5

0
7

0
.4

8
8

0
.4

5
2

0
.6

2
7

0
.5

0
3

0
.5

0
1

0
.6

4
5

0
.4

2
5

0
.4

5
1

0
.5

3
3

ow
n

h
om

e
0.

21
8

0.
20

9
0
.4

2
8

0
.4

5
2

0
.4

6
8

0
.6

9
1

0
.5

6
6

0
.3

9
7

0
.5

8
8

0
.4

6
7

0
.4

0
9

0
.3

8
4

h
as

ch
il

d
(r

en
)

-0
.0

04
0.

16
5

0
.2

0
7

0
.1

6
8

0
.1

7
9

0
.3

2
8

0
.1

2
8

0
.4

0
6

0
.1

4
4

-0
.0

5
6

-0
.1

2
9

0
.0

8
6

re
s.

D
en

si
ty

(1
,0

00
)

-0
.0

41
-0

.1
07

-0
.1

4
4

-0
.0

3
9

-0
.0

1
7

-0
.8

7
5

-0
.0

4
8

-0
.1

3
9

-0
.1

0
2

-0
.0

4
5

-0
.1

8
6

-0
.2

2
7

d
ri

v
in

g
co

st
($

p
er

m
il

e)
-1

.1
37

-1
.1

75
-4

.3
5
1

-2
.7

3
2

-6
.7

0
6

-7
.1

8
4

-3
.6

6
1

-2
.9

9
6

-2
.0

5
1

-5
.1

0
5

-4
.4

1
8

-6
.0

4
8

L
og

-l
ik

el
ih

o
o
d

at
ze

ro
-9

15
3

-7
69

7
-8

7
8
9

-8
7
7
1

-8
8
7
1

-7
5
6
7

-9
3
8
5

-9
2
2
4

-7
8
4
0

-8
5
4
7

-6
5
7
6

-7
1
2
5

L
og

-l
ik

el
ih

o
o
d

at
co

n
v
er

-

ge
n

ce

-3
11

4
-2

47
6

-3
4
8
8

-3
3
9
6

-3
2
0
2

-3
8
3
8

-3
4
5
7

-3
5
8
0

-3
9
2
7

-3
5
1
7

-3
2
0
5

-3
8
3
6

N
u

m
b

er
of

p
ar

am
et

er
s

32
32

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

N
u

m
b

er
of

ob
se

rv
at

io
n

s
15

00
11

55
1
5
0
0

1
5
0
0

1
3
3
3

1
5
0
0

1
5
0
0

1
5
0
0

1
5
0
0

1
5
0
0

1
2
9
7

1
5
0
0

A
d

ju
st

ed
R

2
0.

65
6

0.
67

4
0
.6

0
0

0
.6

0
9

0
.6

3
5

0
.4

8
9

0
.6

2
8

0
.6

0
8

0
.4

9
5

0
.5

8
5

0
.5

0
8

0
.4

5
7

101



Σ̂NE,urban =


2.00 6.25 9.31 8.98 1.46
6.25 67.98 129.25 36.71 4.91
9.31 129.25 332.54 61.85 7.63
8.98 36.71 61.85 89.06 6.73
1.46 4.91 7.63 6.73 1.06



Σ̂NE,suburban =


2.00 8.59 12.58 11.78 1.48
8.59 72.33 128.74 89.07 6.09
12.58 128.74 377.38 60.82 8.79
11.78 89.07 60.82 204.98 8.20
1.48 6.09 8.79 8.20 1.10



Σ̂NE,rural =


2.00 5.05 5.69 10.59 1.43
5.05 82.50 84.65 104.52 6.84
5.69 84.65 89.30 105.84 7.35
10.59 104.52 105.84 332.62 11.36
1.43 6.84 7.35 11.36 1.18



Σ̂MW,urban =


2.00 7.37 8.53 9.69 1.51
7.37 78.10 89.20 68.67 6.54
8.53 89.20 117.14 53.37 7.55
9.69 68.67 53.37 161.23 7.96
1.51 6.54 7.55 7.96 1.16



Σ̂MW,suburban =


2.00 6.55 5.77 6.44 1.06
6.55 22.20 22.37 24.84 3.57
5.77 22.37 39.18 38.60 4.62
6.44 24.84 38.60 43.48 5.01
1.06 3.57 4.62 5.01 1.22



Σ̂MW,rural =


2.00 3.24 3.43 4.74 1.48
3.24 13.36 29.38 30.17 3.33
3.43 29.38 196.83 131.85 8.23
4.74 30.17 131.85 101.17 7.51
1.48 3.33 8.23 7.51 1.31



Σ̂S,urban =


2.00 5.93 16.64 12.20 1.51
5.93 97.61 30.17 118.66 6.13
16.64 30.17 190.82 125.52 10.84
12.20 118.66 125.52 199.50 9.69
1.51 6.13 10.84 9.69 1.22



Σ̂S,suburban =


2.00 8.87 12.80 19.90 1.59
8.87 290.51 215.82 359.41 9.16
12.80 215.82 262.21 292.96 11.42
19.90 359.41 292.96 881.16 18.09
1.59 9.16 11.42 18.09 1.28
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Σ̂S,rural =


2.00 −8.82 −1.84 −9.54 −0.35
−8.82 47.61 14.77 57.01 4.02
−1.84 14.77 45.22 7.22 5.11
−9.54 57.01 7.22 81.25 5.28
−0.35 4.02 5.11 5.28 1.32



Σ̂W,urban =


2.00 −0.60 −0.57 0.68 1.18
−0.60 24.59 25.61 24.81 3.01
−0.57 25.61 27.17 29.50 3.22
0.68 24.81 29.50 53.94 4.33
1.18 3.01 3.22 4.33 1.18



Σ̂W,suburban =


2.00 3.45 5.37 5.49 1.56
3.45 17.76 27.14 40.06 3.24
5.37 27.14 176.57 143.66 6.49
5.49 40.06 143.66 156.55 6.76
1.56 3.24 6.49 6.76 1.27



Σ̂W,rural =


2.00 4.98 7.11 8.01 1.29
4.98 13.83 21.37 24.18 3.07
7.11 21.37 40.02 41.96 4.48
8.01 24.18 41.96 48.89 5.03
1.29 3.07 4.48 5.03 1.29



6.3 Application with ACS Data for Local Counties/Areas

6.3.1 County/Area Descriptions

The estimated models are then applied for small areas with ACS PUMS data.

Six counties/areas are random selected, which are San Diego County in California

(Figure 6.3), Queens in New York (Figure 6.4), Nassau County in New York (Figure

6.5), PUMA 1900 area (5 counties) in Texas (Figure 6.6), Fairfax County in Virginia

(Figure 6.7) and Henrico County in Virginia (Figure 6.8):

• San Diego County, CA - West, Urban
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Although California has a large dataset from the statewide household travel

survey, it is still worth to examine the performance of the national models on

a metropolitan area with big cities; here we have selected San Diego County

to perform this analysis. The basic demographic information and sample size

from NHTS and ACS data are:

Total area: 4,525.52 mile2

Total population: 3,095,313 (2010 Census)

Population density: 680/mile2

ACS : 11653 obs.

NHTS: 3712 obs.

• Queens, NY - Northeast, Urban

Queens Borough is a highly populated area in New York City, which is

the most dense city in the U.S. People in this area may have different travel

behavior than those residing in other regions. Meanwhile, this area has many

immigrants from all around the world which may affect their travel choices as

well. Again, although the New York City has good household travel surveys,

it is still good to test the national models for this extremely dense area. The

basic demographic information and sample size from NHTS and ACS data

are:

Total area: 178.28 mile2

Total population: 2,272,771 (2010 Census)
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I:/Dissertation/dissertation/AliceLatexThesisNov2013/san_diego.jpg

Figure 6.3: Maps of San Diego County, CA
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Population density: 21,116/mile2

ACS : 6985 obs.

NHTS: 251 obs.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/queens.jpg

Figure 6.4: Map of Queens, NY

• Nassau County, NY - Northeast, Urban

Nassau County is located next to the east bounder of Queens in New York

and many households in this county have jobs in New York City. This county is
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still within the New York metropolitan area and this application is to validate

the different travel styles within the same metropolitan area but different

counties, thus validate the effectiveness of the national models. The basic

demographic information and sample size from NHTS and ACS data are:

Total area: 453 mile2

Total population: 1,339,532 (2010 Census)

Population density: 4,669/mile2

ACS : 4875 obs.

NHTS: 265 obs.

• PUMA 1900, TX - South, Rural

This area includes Hill County, Navarro County, Limestone County, Free-

stone County and Navarro County in Texas. This area is very scattered and

it is located at roughly the middle point between Austin and Dallas - two

big metropolitan areas in Texas. The 2009 NHTS only has less than 100 ob-

servations in this area, however ACS has around 900 observations. This is

a good example that local household travel survey is not available and the

national data sample has very limited observations. The basic demographic

information and sample size from NHTS and ACS data are:

Hill County, TX Total area: 986 mile2 Total population: 35,089 (2010

Census) Population density: 34/mile2
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I:/Dissertation/dissertation/AliceLatexThesisNov2013/nassau.jpg

Figure 6.5: Maps of Nassau County, NY
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Navarro County, TX Total area: 1,086 mile2 Total population: 47,735

(2010 Census) Population density: 18/mile2

Limestone County, TX Total area: 933 mile2 Total population: 23,384

(2010 Census) Population density: 23/mile2

Freestone County, TX Total area: 892 mile2 Total population: 19,816

(2010 Census) Population density: 21/mile2

Navarro County, TX Total area: 779 mile2 Total population: 17,866 (2010

Census) Population density: 57/mile2

ACS : 894 obs.

NHTS: 93 obs.

• Fairfax, VA - South, Urban

Fairfax County is located in the Washington DC metropolitan area and west

to the District of Columbia. It is one of the counties that have the highest

household income in the country. Many people live in the Fairfax County

commute to DC. The basic demographic information and sample size from

NHTS and ACS data are:

Total area: 407 mile2

Total population: 1,118,602 (2010 Census)

Population density: 2,738.5/mile2

ACS : 4033 obs.
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I:/Dissertation/dissertation/AliceLatexThesisNov2013/tx1900.jpg

Figure 6.6: Maps of PUMA Area 1900, TX
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NHTS: 205 obs.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/fairfax.jpg

Figure 6.7: Maps of Fairfax County, VA

• Henrico, VA - South, Urban

Henrico County is a portion of the Richmond Metropolitan area, surround-

ing the City of Richmond. Henrico is one of the oldest counties in the United

States. The basic demographic information and sample size from NHTS and

ACS data are:
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Total area: 245 mile2

Total population: 314,881 (2010 Census)

Population density: 1,323/mile2

ACS : 1274 obs.

NHTS: 379 obs.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/henrico.jpg

Figure 6.8: Map of Henrico County, VA

Figure 6.9 present some basic statistics from the ACS PUMS files. Fairfax

County has the highest average household vehicle ownership, whereas the average

number of vehicles per household in Queens is less than 1. Generally, the households

in Fairfax County and Nassau County have bigger household size, more workers and
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children and much higher income. On average, about three-quarters household own

their home, while half of the households in San Diego County and Queens rent their

home.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/asc_statistics.jpg

Figure 6.9: Data Statistics from American Community Survey
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6.3.2 Application Results

Figure 6.10 to Figure 6.15 presents the application results of the national mod-

els on vehicle ownership and usage. Generally, the models are able to replicate the

actual values in each county/area. The model slightly underestimates the average

vehicle ownership and mileage in San Diego County. For Queens, NY, the model

overestimates the portion of 0-car households thus it overestimates the average num-

ber of vehicle per household. Nevertheless, the prediction of mileage is close to the

actual value. The model slight underestimates the average household vehicle owner-

ship but overestimates the average annual mileage per household. The estimates for

the PUMA 1900 area in Texas are very close to the actual numbers, with the excep-

tion of small shifts in the share of the alternatives. The application results for the

Fairfax County shows that the model underestimates the share of 1-car households

but overestimates the share of 2-car households, and it overestimates the average

mileage for this county. The predictions for the Henrico County are fairly close to

the real values, both for the vehicle ownership and the annual mileage. Finally,

Figure 6.16 summarizes the application results for the six counties/areas.

6.4 Chapter Summary

This chapter develops a system of national vehicle ownership models - twelve

discrete-continuous models for the United States. The models are estimated using

2009 NHTS data for each combination of four regions (Northeast, Midwest, South

and West) and three area types (urban, suburban and rural). In addition, the
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Figure 6.10: Application results of San Diego County, CA
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Figure 6.11: Application results of Queens, NY
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Figure 6.12: Application results of Nassau County, NY
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Figure 6.13: Application results of PUMA area 1900, TX
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Figure 6.14: Application results of Fairfax County, VA
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Figure 6.15: Application results of Henrico County, VA
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Figure 6.16: Summary of applications for the six counties/areas
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model is applied to six counties/areas using the 2009 ACS PUMS data. Although

some deviations from the real values are observed, the integration of NHTS and

ACS data is valid, and the results from the six applications demonstrate the ability

of the national models in providing accurate estimates for various city/area types.

The national models are valuable planning tools both at the national level and for

small areas, especially those lacking local household travel survey data. The results

further validate the proposed discrete-continuous framework for modeling household

vehicle ownership decisions.
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Chapter 7

Measuring Transit Service Impacts on Vehicle Ownership and Usage

7.1 Introduction

A recent article published in the press by Addison [Addison, 2010] shows that

Americans scrapped 14 million cars in 2009, while they only bought 10.5 million

new ones. The 2009 drop was the first large decline in vehicle ownership registered

in the past 50 years. Although the recession probably played a major role, this

decline might be also due to the introduction of smart growth policies and the

consequent increase in urban density, the adoption of employer commute and flex-

work programs, the expansion of car sharing, the introduction of the Car Allowance

Rebate System (CARS), colloquially known as ”Cash for Clunkers”, and improved

rail connectivity and inter-modality. Addison also reported that the increase in the

use of public transit is one of the top ten reasons for the drop in car ownership

especially in large metropolitan areas . In February 2013, President Barack Obama

fleshed out plans to invest in public transportation and repair the nation’s aging

infrastructure. In fact, the administration has invested in more than 350 miles of

new rail and bus rapid transit, 45,621 buses, and 5,545 railcars [American Public

Transportation Association, 2013].

The effects of transit service level on car ownership has been examined in

a number of national studies, the U.S. ( [Deka, 2002], [Kim and Kim, 2004b], UK
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( [Cullinane, 1992], [Goodwin, 1993]), Australia ( [Hensher, 1998]), Canada ( [P. and

P., 1998]), The Netherlands ( [Kitamura, 1989]), Germany ( [Bratzel, 1999]), and

China ( [Cullinane, 2002], [Li et al., 2010]). More specifically, Kitamura ( [Kitamura,

1989]) investigated the causal relation between car ownership and transit use on

data obtained from the 1984 Dutch National Mobility Panel survey. The results

show that car use determines transit use, and that transit use does not determine

car use. Nevertheless, the current situation is very different from the 80s, when

the ”car boom” was taking place, the number of household with access to one or

more cars was limited, and fuel price was relatively low. Bunt and Joyce [Hensher,

1998] conducted a household survey to test the effectiveness of Vancouver’s SkyTrain

and its effect on car ownership patterns near the rapid transit stations. Statistics

from the survey show that the average car ownership is much lower for households

located near SkyTrain stations. Cullinane [Cullinane, 2002] found that good public

transport can deter car ownership based on an attitudinal survey in Hong Kong,

where public transport is plentiful and cheap and car use is low. Deka [Deka, 2002]

applied regression models to examine the relationship between transit availability

and auto ownership with travel survey data from Los Angeles. The conclusion is

that significant improvements will be needed in transit services to bring a slight

decrease in auto ownership among the general population. Kim and Kim [Kim and

Kim, 2004b] developed econometric models to predict the effect of accessibility to

public transit on automobile ownership and miles driven. Important findings in

their analysis are: (i) the number of licensed drivers is the primary determinant of

the number of automobiles owned, (ii) the presence of children is not a significant
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factor in automobile ownership and VMT, and (iii) VMT is affected more by transit

in multi-vehicle households than in one-vehicle households.

Recent studies provide evidence that good public transportation might en-

courage people to reduce vehicle ownership and use. However, very few studies

use advanced quantitative methods to investigate the relationship between public

transit service and vehicle ownership and use. Other difficulties include collecting

geographic data and quantifying the transit service level. Moreover, many metropoli-

tan areas are interested in improving public transportation in order to reduce traffic

congestion and in providing more efficient transportation systems ( [Washington

Metropolitan Area Transit Authority, 2012a], [Maryland Transit Administration, ]).

Therefore, it is crucial to explore the impact of public transportation on vehicle

ownership and use with advanced methods and accurate data based on geographic

information systems.

This chapter aims to investigate the effects of improved public transporta-

tion services on household vehicle ownership and use with the unordered discrete-

continuous models that proposed in Chapter 3. The analysis is conducted for the

Washington D.C. Metropolitan Area, which is a mix of urban and suburban areas

with a relatively good public transportation system for which further improvements

are foreseen. The information used for model estimation was obtained from different

sources. The 2009 National Household Travel Survey (NHTS) data with geographic

reference (U.S. Census Tract level) was kindly provided by the Federal Highway

Administration (FHWA), U.S. DOT, while the General Transit Feed Specification

(GTFS) data was obtained from the Washington Metropolitan Area Transit Au-
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thority (WMATA).

Different measurements for transit level of service are found in the literature.

The Local Index of Transit Availability (LITA) [Rood, 1998] measures the tran-

sit service intensity of an area with transit data and census data (demographic

information). Depending on the data availability, LITA scores can be computed

for any area unit. Transit Capacity and Quality as defined in the Service Manual

(TCQSM) [Transportation Research Board, 2003] also uses transit data and cen-

sus data but incorporates a service coverage measure to assess transit accessibility.

TCQSM offers a comprehensive guide for infrastructure enhancements specific to

public transportation systems. The Time-of-Day Tool (Polzin02) provides the rela-

tive value of transit service accessibility for each time period and requires data on

temporal distribution of travel demand in addition to transit and census data.

The method to measure transit service in this analysis is similar to the one

proposed by Keller [Keller, 2012]. The method mainly follows the TCQSM manual

and takes into account both spatial and temporal characteristics of the transit sys-

tem. Data on the temporal distribution of travel demand is not available so that

the transit service measurements are calculated on a yearly average level only.

7.2 Data Geo-Processing and Data Integration

7.2.1 Spatial Measurements of Transit Service

This section follows the TCQSM manual recommendations to calibrate the

coverage of public transportation services. In particular, a service buffer is created
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for each area surrounding a station to derive the area of usage for potential transit

users. The TCQSM ( [Transportation Research Board, 2003]) suggests a 0.25-mile

buffer around bus stops and a 0.5-mile buffer around rail stations. These buffers are

based on willingness to travel studies; buffers based on these distance ranges tend

to represent between 75 and 80 percent of all walking trips to a transit stop.

The GTFS data is firstly converted from .txt files to shapefiles for both transit

stations and routes, and then projected in ArcGIS along with Census TIGER files.

The buffer zones for the bus stops with radius 0.25-mile and metro routes with radius

0.5-mile are then created. The overlapped buffers are dissolved to eliminate double

counting. The coverage area is joined to the census tract zone and the percentage

of coverage is computed. The process is repeated for each stop/route and for each

census tract zone. The final variables that are produced in this process include (1)

percentage of bus stops coverage, (2) percentage of metro routes coverage, (3) total

length of bus routes, (4) total length of metro routes, and (5) total number of bus

stops. All the variables above are calibrated for each census tract in the Washington

D.C. Metropolitan area.

7.2.2 Temporal measurements of bus service

The data related to transit timetable in the GTFS files is utilized to calibrate

the temporal measurements of bus services. Firstly the GTFS files are merged with

the key IDs (see Figure 4.1). The merged data have information on the bus arrived

time for each route and stop for an entire day (24 hours). Then for each stop and
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for each route, the bus service duration and average headway is computed with data

mining techniques. Finally the average duration and headway are aggregated for

each census tract zone.

7.2.3 Transit service index (TSI)

The transit service index takes into account both spatial and temporal mea-

surements and it is calculated with the percent service coverage area, the average

service headway and the service duration. For each census tract zone, the TSI is

calculated as:

TSI = percent service coverage area
average service headway

× service duration

Table 7.1 presents some examples of TSI calibration from real data. In this

analysis, TSI is calculated for the bus service only. The reason of not including

metro service is because the time schedule of metro subways in the DC area is

comparatively rigid and does not create variation among different census tract zones.

Instead, the percent service coverage area is created as the measurement of transit

service.

Table 7.1: Sample calibration of TSI

Zone ID % coverage Service headway Service duration TSI

11001009204 100% 0.44 hr 7.83 hr 17.96

24033801309 6.68% 0.34 hr 4.03 hr 0.80

51177020104 0 0 hr 0 hr 0

11001001402 49.55% 0.38 hr 14.69 hr 19.19
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7.2.4 Data integration and final database

The final database consists of three components: NHTS data, GIS output and

vehicle characteristics. As shown in Figure 7.1, the data sets are linked with key IDs.

Specifically, the 2009 NHTS data includes household socio-economic information,

such as household income, household size, number of drivers, number of workers,

and land use characteristics around the household location, such as the residential

density of the census tract zone, the urbanization level, etc. The GIS output includes

data on bus stop coverage percentage, metro route coverage percentage, total length

of bus routes, total length of metro routes, total number of bus stops, transit service

index, average bus headway, and average bus service duration for each census tract

zone. The vehicle characteristic data includes purchase price, operating cost, fuel

economy, seating, performance, and other specifications for each vehicle type.

7.3 Estimation Results

Table 4 presents the parameter estimates of the joint vehicle ownership and

usage model; it should be noted that the model includes a logsum variable derived

from the vehicle type and vintage model in Table 5.2. The variables TSI, created

to represent bus and metro coverage percentage, are significant and have a negative

impact on household vehicle ownership and miles traveled. The variable ”TSI of

bus”dd is selected instead of other measures because it gives a more comprehensive

representation with respect to both spatial and temporal bus service information. In

terms of metro subways, the time schedule is comparatively rigid so that the metro
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Figure 7.1: Data structure of the final database
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service is measured using the percentage coverage only. With good accessibility of

bus and metro service, households tend to own fewer cars. The magnitudes of the

coefficients increase with the number of cars owned by the household, indicating that

the transit service level has greater impacts on multi-vehicle households. In partic-

ular, the coefficient of metro service coverage for 4-car household is significantly

greater than the one obtained for other alternatives. Coefficients of household in-

come are positive and significant; the value of the coefficients is larger for households

owning more cars. Households with higher income tend to own multiple cars and

drive more, and the higher their income, the more likely that they will own more

cars. Households with owned house are more likely to have higher mileage on their

vehicles. Households with more drivers own more vehicles and drive more. The

coefficients related to the number of drivers are significant except in the one-car al-

ternative. In terms of the characteristics of the household head, the dummy variable

”female household head” is significant except for the one-car household; the nega-

tive sign meaning that households with a female head tend to own fewer cars and to

drive less. The coefficients of residential density are significant and negative (except

for the one-car household), inferring that the households located in a more dense

area have lower probability of owning more cars and of driving less. The parameter

of driving cost is negative and significant, indicating that higher operational cost

induces households to drive less.

In addition to the coefficients of the variables, the covariance matrix between

the discrete and the continuous independent variables is estimated. In particular,

the bottom line of the matrix explains the correlation between the mileage traveled
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and the utility differences (with respect to the zero-car alternative) of the vehicle

ownership alternatives. The positive numbers mean that higher mileage usage in-

creases the utility of owning more cars; the magnitude of the correlation factors

increases with the number of household vehicles. The negative value found for the

correlation across mileage and zero-car alternative can be explained by the fact that

zero miles of very low mileages further decrease the difference in utility of owning a

car or not owning a car.

Table 7.2: Estimation results

Variable Coefficient Std. Err

Dependent variable: Number of cars

logsum (expected utility from vehicle type choice 0.430 0.011

alternative specific constant

1 car -3.161 0.193

2 cars -17.050 0.267

3 cars -22.913 0.219

4+ cars -27.934 0.178

household income level

1 car -0.090 0.021

2 cars 0.446 0.053

3 cars 0.490 0.054

4+ cars 0.440 0.052

number of drivers

1 car -0.038 0.197

2 cars 7.185 0.193

3 cars 7.982 0.193

4+ cars 7.791 0.183

gender of household head (female)

1 car 0.089 0.199

2 cars -2.350 0.189

3 cars -2.495 0.194

4+ cars -2.637 0.159

urban size

1 car -0.049 0.048

2 cars -0.071 0.115

3 cars -0.153 0.113

4+ cars -0.204 0.112

residential density (census tract level)

1 car 0.051 0.014
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2 cars -0.524 0.135

3 cars -0.704 0.150

4+ cars -0.549 0.151

TSI of bus

1 car 0.018 0.008

2 cars -0.103 0.038

3 cars -0.105 0.036

4+ cars -0.116 0.039

percentage coverage of metro routes

1 car 0.280 0.164

2 cars -2.212 0.267

3 cars -1.756 0.296

4+ cars -9.442 0.185

Dependent variable: Miles (10k)

constant 1.470 0.121

household income level 0.124 0.006

own home 0.372 0.107

gender of household head (female) -0.080 0.076

residential density (census tract level) -0.055 0.012

driving cost ($ per mile) -4.823 0.294

TSI of bus -0.025 0.004

percentage coverage of metro routes -0.324 0.159

Log-likelihood at zero -5880.231

Log-likelihood at convergence -3260.811

Number of parameters 41

Number of observations 1420

Adjusted ρ2 0.44

Note: Variables that are significant at 95% level or above are bolded.

Σ̂ =


2.00 −7.51 −7.43 −7.54 −0.68
−7.51 29.22 30.68 30.41 2.92
−7.43 30.68 35.04 33.67 3.55
−7.54 30.41 33.67 32.72 3.34
-0.68 2.92 3.55 3.34 1.23



In order to investigate the significant role of the transit service attributes,
the car ownership model is re-estimated without transit related variables. A log-
likelihood ratio test is conducted to test the significance of transit service variables
in the vehicle ownership model:

H0: Coefficients of transit service variables are not zero (full model)
H1: Coefficients of transit variables are zero (reduced model)
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degree of freedom (DOF) = 10

−2[LL(β̂1)− LL(β̂0)]
= −2[(−3349.812)− (−3260.811)]

= 178.002 > χ2
10,0.05 = 25.188

The test statistic is much larger than the Chi-square with 10 degrees of freedom

at the 95 percent confidence level. Therefore we reject the hypothesis that the

coefficients of transit service variables are zero and I conclude that the model could

not be reduced. The testing result confirms again the significant role of transit

service variables in vehicle ownership models.

7.4 Policy Analysis

The Washington Metropolitan area is developing a 30-year transit plan [Wash-

ington Metropolitan Area Transit Authority, 2012b], which aims to provide a long

term vision for future growth and to improve and expand transit service. The goal of

the regional plan is to seek solutions such as making pedestrian and rail connections

between lines to bypass bottlenecks, adding new rail lines through the downtown

core and improving surface transit. A recent announcement [Washington Metropoli-

tan Area Transit Authority, 2012a] from WMATA says that in 2013, $5 million will

be invested to provide customers with better bus service. One of the biggest efforts

is a new limited-stop MetroExtra route, which improves the transit system with

more frequent service, additional capacity, and expanded hours of operation. On
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the other hand, the metrorail ridership is expected to top 1 million daily rides by

2040 and the system’s core will be severely crowded [Johnson, 2011]. WMATA has

been looking at long-term strategies for expanding transit. The Purple Line [Mary-

land Transit Administration, ], which is a 16-mile transit line that will connect the

Red, Green and Orange lines of the metro system in the suburban area of Maryland,

can be seen as part of the long term plan. Meanwhile, a Beltway Metro Line is under

consideration.

Given the numerous investments foreseen for the public transportation system

in the Washington DC Metropolitan area, it is worth to examine the impacts of im-

proved transit services on household vehicle ownership and usage. In this chapter,

the model estimated in the previous section is applied to evaluate different policy

scenarios. I first analyze the effects of improved bus services; in this hypothetical

scenario every census tract zone has at least 50% bus stop coverage, 15-minute aver-

age headway and 6 peak hours duration (6:30AM - 9:30AM and 3:30PM - 6:30PM).

In the improved metrorail service scenario, the core area of Washington Metropoli-

tan area (urban size greater than 1 million) has at least 50 percent metro route

coverage.

The application results are presented in Table 7.3. The short-run impacts of

improved transit service generally reduce both vehicle ownership and miles traveled.

The average vehicle ownership is reduced by 2 percent in the improved bus service

scenario and 1.5 percent in the improved metro service scenario. The annual mileage

traveled decreases by about 8 percent with improved bus service and 1.6 percent

with improved metro service. Comparatively, the improved bus service has greater

135



impacts on reducing both the vehicle ownership and the mileage traveled.

It should be noted here that the NHTS data has limited number of households

in the DC and Maryland area due to the fact that neither of these regions are in

the NHTS add-on program. The predictions provided could be more accurate with

an increased number of observations available for model calibration.

Table 7.3: Policy analysis based on different improvement of the transit service

current Improved bus service Improved metro service

predicted %change predicted %change

0-car household 7.16% 7.17% 0.01% 7.17% 0.01%

1-car household 23.06% 26.05% 2.99% 24.60% 1.55%

2-car household 46.56% 44.32% -2.25% 44.84% -1.72%

3-car household 17.82% 17.19% -0.64% 19.44% 1.61%

4-car household 5.40% 5.28% -0.12% 3.95% -1.45%

Average vehicle ownership 1.91 1.87 -2.03% 1.88 -1.49%

Mileage 22231.70 20410.40 -8.19% 21879.50 -1.58%

7.5 Chapter Summary

The Washington Metropolitan area is a diverse region with both dense urban

areas and suburban areas. This region is also served by a good public transporta-

tion system that will undergo several improvement plans in the short and long term.

Given the raising interests on transit investments from both federal and state govern-

ments, as well as, the traffic concerns on the Beltway, it is important to understand

and quantify the relation between public transportation service and household ve-

hicle ownership and usage. In particular, this chapter has analyzed the impact of
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improved bus and metro services on household ownership and use decisions in the

Washington Metropolitan area.

This chapter proposes a methodology to integrate the household travel sur-

vey with geographic data. Specifically, the main data sources are the 2009 Na-

tional Household Travel Survey (NHTS) and the General Transit Feed Specification

(GTFS). Secondary data includes the 2009 Census TIGER shapefiles and vehicle

characteristics from the Consumer Reports. Both spatial and temporal measure-

ments of transit service are created based on the GTFS data and geographic infor-

mation data using data mining techniques. The transit service index is calculated

with these measurements and then integrated with the NHTS data, the GIS output

data and the vehicle characteristics into one database referenced at the census tract

level.

This chapter jointly estimates the household decisions on vehicle ownership

and usage with the integrated database; estimates are obtained for household social-

demographic attributes, land-use characteristics, vehicle characteristics and transit

service variables. The model is then applied to policy scenarios that accounts for

transit investments. The results obtained show that transit service generally reduces

both vehicle ownership and miles traveled. The average vehicle ownership is reduced

by 1.5 - 2.0 percent and the mileage decreases by about 1.6 - 8.0 percent respectively

with improved bus service and with improved metro service.
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Chapter 8

Conclusions and Future Research

8.1 Summary and Research Contributions

Vehicle ownership plays an important role in the overall transportation plan-

ning process, due to its impacts on the environment, energy consumption, economic

system and public health. In this dissertation, an integrated discrete-continuous

model is proposed to simultaneously estimate the household decisions on vehicle

holding, type and use. The model uses a multinomial probit model to estimate

household vehicle holding decisions and a multinomial logit model to estimate the

vehicle type. The vehicle usage decisions have been integrated into these discrete

models with an unrestricted correlation pattern between the discrete and the con-

tinuous parts. The dissertation also compares the outcomes of the ordered and

unordered discrete-continuous structures. Results obtained from the 2009 National

Household Travel Survey show that significant correlation exists between the vehicle

holding and use decisions. Therefore, significant estimation bias is expected when

ignoring correlations among these decisions and when assuming that they are inde-

pendent. The comparison results also indicate that unordered discrete-continuous

model outperforms the ordered structure in terms of the goodness of fit.

The second half of the dissertation focuses on the applications of the pro-

posed modeling framework and on the related policy analysis. The 2009 National
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Household Travel Survey data is the main data source to estimate household vehicle

ownership decisions across the United States. Twelve models are calibrated for the

four Census Regions of the United States (Northeast, Midwest, South and West)

and three area types (urban, suburban, rural). Due to the different demographic

profiles and area types (e.g., urban, rural, etc.), a number of sites are selected to

account for heterogeneity in regional locations and residential density levels. Then

the estimated models are applied to six randomly selected counties/areas, using the

2009 American Community Survey Public Use Microdata Sample. Results from the

six applications demonstrate the capability of the national models in providing ac-

curate estimates for the various city/area types selected, although small prediction

errors are found when comparing real data and estimates.

The proposed modeling framework is also applied with additional transit ser-

vice variables to analyze the impact of improved bus and metro services on house-

hold vehicle ownership and use decisions. In order to derive the transit variables,

the household travel survey data is integrated with transit data, namely the General

Transit Feed Specification (GTFS) data. In the analysis, spatial measurement, tem-

poral measurement and the combination of the two measurements of transit service

are computed in GIS. Results show that transit service variables are significant fac-

tors in household vehicle ownership choices and that the proposed methods are able

to effectively predict changes in vehicle ownership and usage due to transit service

improvements.

In conclusion, this dissertation contributes to both theoretical analysis and

practical applications of the household vehicle ownership problem:
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• An integrated discrete continuous choice model is developed to simultaneously

estimate the household choices on vehicle ownership (discrete), the types (dis-

crete) and annual mileage traveled (continuous).

- The model is able to include a large number of alternatives in both the

vehicle holding and the vehicle type choices.

- The model allows unrestricted correlations of the unobserved factors

between the discrete and continuous parts.

- The model accommodates flexible specifications.

- The model can be applied for policy analysis.

- The model can generate reasonable estimates of the coefficients.

- The covariance matrix explains well the correlations between the unob-

served factors from the utilities of the discrete choices and the demand function

of the continuous choice.

- The non-simulation approach provides a better model fit.

- The performance of the model would be improved if the information

about vehicle type choice is included.

• A comparison of unordered and ordered structures in discrete-continuous frame-

work is conducted with operational data. The results show that the unordered

discrete continuous model is more appropriate than the ordered discrete con-

tinuous model in estimating household vehicle ownership and usage decisions.

• A system of national models on household vehicle ownership choices is devel-
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oped with National Household Travel Survey data and American Community

Survey data. Applications for six randomly selected areas demonstrate that

the models are able to produce accurate estimates.

• The model is further applied using geographic data to study the impacts of

improved transit service on household vehicle ownership choices in the Wash-

ington D.C. metropolitan area.

8.2 Future Research

There are several future directions in this research that are worth further

investigation. The general ideas for improving the current research are summarized

as follows.

• First and foremost, it would be valuable to analyze the direct correlation

between vehicle type and vehicle usage, and estimate mileage for each vehicle

in the household in the future. Because the vehicle type could affect how

many miles the household travel with the vehicle, meanwhile, the demand for

vehicle mileage traveled also could be a key factor on the vehicle type choice.

For example, a family with both a compact car and a pick-up truck may travel

with the more fuel-efficient compact car on a daily basis and may only use the

pick-up truck when it must. A family member who drives 20,000 miles a year

for commuting may choose a vehicle with high MPG.

• Another limitation in the dissertation is that all of the coefficients in the

models are assumed to be constant and they do not vary over different groups
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of households. Therefore, random parameter approach could be integrated

into the framework to capture the taste variation among the population.

• The proposed framework is a static model and only provides short-run forecast-

ing results. It could be further extended into a dynamic discrete-continuous

model with a module to capture the household’s dynamic choices on vehi-

cle holding. For example, [Xu, 2011] developed a dynamic vehicle ownership

choice model which allows the estimation of the probability of buying a new

vehicle or postponing this decision; if the decision to buy is made, the model

further investigates the vehicle type choices. Dynamic models explicitly ac-

count for consumers’ expectations of future vehicle quality or market evolu-

tion, arising endogenously from their purchase decisions. By incorporating

this component into the discrete-continuous framework, the modeling results

would be able to provide the policy makers a reference for medium to long

term planning.

• In the dissertation, the error terms between the discrete and continuous parts

are assumed to be multivariate normal distributed. Although the correlations

are estimated with an unrestricted covariance matrix, this part can be im-

proved with a more flexible correlation pattern. For example, the copula mod-

els permit the combination of any univariate marginal distributions that need

not come from the same distributional family. They are very general, encom-

passing a number of existing multivariate models and providing a framework

for generating many more [Danaher and Smith, 2011].
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• Alternative fuel vehicles have drawn increasing attention, because of their

potential to reduce greenhouse-gas emissions and utilize renewable energy

sources. However, alternative fuel vehicles face barriers to adoption such as

lack of knowledge by potential adopters, low consumer risk tolerance, and high

initial purchase costs. A number of consumer incentives for purchasing alter-

native fuel vehicles have been put in place to address the market barriers. In

the future, it would be necessary to include the choice of the new-technology

vehicle types in the vehicle ownership modeling framework to investigate the

effectiveness of the policy incentives and address the solutions to overcome the

market barriers.

• In regional travel modeling and simulation, the combination of the number

of vehicles owned by a household, the type choice of the vehicles, and the

usage of the vehicles are important travel determinants of greenhouse gas

(GHG) emissions, fuel consumption, and pollutant emissions. The proposed

discrete-continuous model in this dissertation provides a good basis to forecast

vehicle fleet and the usage in response to changes in fuel prices, socio-economic

shifts and policy decisions. Therefore, another interesting future direction is

to integrate this modeling framework into the emissions/energy models (such

as MOVES [EPA, MOVES, ] and MOBILE6 [EPA, MOBILE6, ]) in order to

calculate greenhouse gas emission calculations.
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