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In the United States, transportation uses approximately 26% of the nation en-
ergy consumption, and contributes 27% to the total greenhouse gas emissions. Given
the important role of private transportation, it is urgent to develop effective and in-
novative quantitative methodologies to support public authority decision making.
Although a substantial body of the literature investigates household vehicle owner-
ship decisions - vehicle holding, type and usage; the majority of the existing studies
focuses on only one of these three decisions, is often limited to specific geographic
areas and is not calibrated with the most recent travel survey data available.

This dissertation proposes a modeling framework that is able to incorporate
all the three decisions simultaneously, and takes into account the correlation across
the discrete variable (vehicle holding) and the continuous variable (miles traveled).
In this integrated discrete-continuous choice model, a multinomial probit model is
used to estimate household vehicle holding decision, while a multinomial logit model

is adopted to estimate the vehicle type decision. The vehicle usage decision variable



is integrated with the discrete variables by adopting an unrestricted correlation pat-
tern between the discrete and the continuous variables. Since the problem has no
closed-mathematical form, I use estimation techniques based on Monte-Carlo sim-
ulations and numerical computation of multivariate normal probabilities to derive
the solutions.

Though a number of studies have demonstrated that unordered behavioral
models outperform the ordered mechanisms for vehicle holding decisions, those com-
parative studies were only conducted for the discrete decisions concerning vehicle
ownership. Therefore, an ordered discrete-continuous model structure is developed,
in which an ordered probit replace the multinomial probit for the vehicle holding
decisions. Both the unordered and ordered structures are estimated and validated
on the 2009 National Household Travel Survey data. Ordered models are in general
preferred to unordered models for the lower computational costs to derive the ana-
lytical solutions. However, results from operational data show that the unordered
discrete-continuous models always outperform the ordered ones in terms of both
statistical goodness of fit and predication capabilities.

The proposed modeling framework is then applied to the entire nation and a
system of national vehicle ownership models is derived. The models are calibrated
using the 2009 National Household Travel Survey data, each combining four regions
(Northeast, Midwest, South and West) and three area types (urban, suburban and
rural). In addition, the models are applied to the 2009 American Community Survey
data for six randomly selected counties/areas. The prediction results for the six

counties/areas demonstrate the prediction capability of the models calibrated. The



national models are valuable both for the national level (to evaluate federal policies)
and small areas (that lack local household travel survey data). The results also
demonstrate that the integrated discrete-continuous framework has good prediction
capabilities in modeling household vehicle ownership decisions.

Lastly, the dissertation estimates a discrete-continuous model for the Wash-
ington D.C. Metropolitan Area and analyzes the impact of improved bus and metro
services on household ownership and use decisions in that area. The 2009 National
Household Travel Survey data and the General Transit Feed Specification data are
integrated, and then both spatial and temporal measurements of transit services
are created on the Census Tract level. The results show that improved transit is
a significant factor in household vehicle ownership choices and that the proposed
methods are able to effectively predict changes in vehicle ownership and usage with
respect to the transit improvements.

In conclusion, the dissertation contributes to both the theoretical analysis
and the practical applications of the household vehicle ownership problem. The
results provide decision makers with advanced quantitative methods that are able
to effectively analyze policies, aiming at promoting greener travel behavior and at

mitigating energy consumption and emissions.
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Chapter 1
Introduction

1.1 Background and Motivation

Increasing mobility demand, especially in urban areas has resulted in growing
levels of motorization, congestion and pollution. Modern societies are still highly
dependent on private vehicles to satisfy demand for activities; while fastest growing
economies in the world are experiencing a rapid increase in motor vehicle ownership.
It is clear that vehicle demand has to be optimally managed and regulated in order
to reduce the adverse impacts of transportation.

In this context, the role of analysts and researchers is to expand the basic
knowledge of the problem, develop better analytical tools and support decision
makers in their strategic choices. Ultimately, the cost of information gathering
and modeling development is covered by cost savings resulting from better decision
making.

The importance of modeling household vehicle fleet choices has been recognized
for several decades now, though the urgency in terms of GHG emission and fossil
fuel energy dependence is definitively more recent [Vyas et al., 2012].

Car ownership models play an important role in transportation and land use
planning and are a critical component of Transportation Modeling Systems. In the

classical four-step forecasting model, the trip generation module uses the outputs



from car ownership models (i.e., [Golob and Vanwissen, 1989]; [Kitamura, 2009]) as
its inputs. Furthermore, vehicle ownership greatly impacts mode choice (i.e., [Dis-
sanayake and Morikawa, 2010]), frequency of trips (i.e., [Kitamura, 2009]; [Shay and
Khattak, 2012], destination choice, trip timing, activity duration and trip chaining
properties (i.e., [Hatzopoulou et al., 2001]; [Roorda et al., 2009]; [Paleti et al., 2013].

Models for car ownership are of interests to both public agencies and private
organizations: a) The US Department of Energy, b) State Departments of Trans-
portation, ¢) auto industry, d) Local transit Agencies and e) World Bank (Train,
1979).

A number of agencies have implemented vehicle ownership into their regional
transportation models. The State of California has developed the Motor Vehicle
Stock, Travel and Fuel Forecast (MVSTAFF) model that uses a macroeconomic ap-
proach to modeling statewide motor vehicle holdings, vehicle miles travelled (VMT)
and total fuel consumption. Other model systems that include a car ownership
component are: the Maryland Statewide Transportation Model, the Coordinated
Travel-Regional Activity Based Modeling Platform (CT-RAMP) for the Atlanta
Region from Atlanta Regional Commission (2009), and the activity based model
from the Puget Sound Regional Council (2008), etc.

National governments use car ownership models to forecast tax revenues and
the regulatory impact of changes in the level of taxation (i.e., [Hayashi et al., 2001];
[Bronlund and Nordstrm, 2004]; [Giblin and McNabola, 2009]). This type of model
systems examines the changes in the car market configuration, the life cycle CO,
emission from automobile transport and the tax revenues due to different taxation
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policies [Hayashi et al., 2001]. It specifically determines the effect of the varying
weights of the tax components in the stages of: (a) car purchasing, (b) car owning,
and (c) car using to the changes in the car class and age mix and the car users’
driving pattern and behavior towards car class choice and decommissioning.
Vehicle ownership models are also used by policy makers to identify factors
that affect VMT, and therefore address the problems related to traffic congestion,
gas consumption and air pollution (i.e., [Dargay and Gately, 1997]; [Schipper, 2011]).
Models for car ownership growth in developing coutries are important for estimating
the implications on energy demand and price and on the global C'O, emissions

[Dargay and Gately, 1997].

1.2 Current Research Status

There is a substantial body of literature that has investigated household vehicle
ownership decisions of vehicle holding, type and usage. Unfortunately, the majority
of these studies analyzed the three decisions separately, due to the fact that vehi-
cle holding and type are discrete decisions while vehicle usage is continuous, and
therefore it is hard to integrate them in one framework.

Most of the early studies focused on vehicle holding and type choices. Ordered
discrete choice model (such as ordered logit and ordered probit) and unordered
discrete choice model (such as multinomial logit, multinomial probit and nested
logit) are the two major modeling structures that have been used for modeling

these two choices. The ordered models assume that a vehicle ownership decision



is a latent variable, whereas the unordered model is based on the random utility
maximization theory which assumes the households make decisions that provide the
highest utility.

As policy makers have started to pay more attention to problems associated
with car usage, a growing number of researchers in transportation are trying to
unify both discrete decisions (how many cars and their type) and continuous deci-
sions (amount of use) into one integrated modeling framework. Discrete-continuous
models, which were firstly developed in economics, are capable of dealing with prob-
lems where both discrete and continuous choices are involved. To the best of my
knowledge, three methods are available in the transportation literature to model
simultaneously vehicle ownership and usage.

The first category of these models is derived from the conditional indirect
utility function in the microeconomic theory. Roy’s identity property is applied
to estimate vehicle usage and the relationship between the discrete and continuous
choices. The method is consistent with utility maximization theory. It has a elegant
formulation and it is simple to implement. However, the interdependence between
the discrete and continuous parts is only captured by means of observed variables
and no correlations are accounted for the unobserved factors.

In 2005, Bhat [Bhat, 2005] developed a Multiple Discrete-Continuous Extreme
Value (MDCEV) model which jointly estimates the holding of multiple vehicle types
and miles for each vehicle type. The dependent variable in this model is the mileage
for each vehicle type category. Utility for each household is maximized subject to
a total mileage budget. Under the assumption that the error term is iid extreme
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value distributed, the probability function simplifies to a closed form, and collapses
to Multinomial Logit (MNL) model for one-car household. The MDCEV model is
consistent with random utility maximization theory, and is able to capture trade-
offs among the usage of different types of vehicles. However, this model requires
finer classification of vehicles as one type of vehicle cannot be chosen twice by the
household. This type of model is limited by the assumption of fixed total mileage
budget for every household; this implies that it is not possible to predict changes
in the total number of miles in response to policy changes. Moreover, there is only
a single error term (represents the unobserved factors) that underlies both discrete
and continuous choices.

The third method is the Bayesian Multivariate Ordered Probit and Tobit
(BMOPT) model developed by Fang [Fang, 2008]. The BMOPT model is composed
of a multivariate ordered probit model for the discrete choices and a multivariate
Tobit model for the continuous choice. In the BMOPT model, household decisions
on the number of vehicles in one of the two categories (cars and trucks) considered
are estimated by means of ordered probit model. The multivariate Tobit model
is applied to estimate the household decisions on miles driven with each vehicle
type. The joint model is formulated with an unrestricted covariance matrix for the
discrete and continuous parts. This method is easier to implement than the RUM
based models, and can be applied to study policy implications. However, it cannot
handle a large number of vehicle categories and the ordered mechanism may not
perform as well as unordered mechanism in modeling car ownership models.

Two papers ( [Bhat and Pulugurta, 1998] and [Potoglou and Kanaroglou,



2008]) have investigated the empirical performance of ordered and unordered mech-
anisms in modeling vehicle ownership. They provided strong evidence that the
appropriate mechanism is the unordered response mechanism for the vehicle hold-
ing choice. However, no studies in the literature have compared the performance
of discrete-continuous models under ordered and unordered mechanisms. There is

little evidence to demonstrate the superiority of one model to the other.

1.3 Research Objectives

The dissertation develops a comprehensive modeling framework for both dis-
crete and continuous decision variables in the context of household vehicle own-
ership; three main choices are considered: the number of vehicles, their type and
vintage, the annual mileage traveled. The model system accounts for a large num-
ber of vehicle classes and vintages overcoming the limitations of previous models.
Moreover, a flexible structure of the unobserved factors between the discrete and
continuous parts offers an integrated and elegant form for household decisions that
are naturally linked. In particular, the joint model allows the estimation of a full
variance-covariance matrix that captures both correlation amongst the alternatives
in the discrete models and between the number of cars owned and the correspondent
mileage in the continuous equation.

The research also compares the ordered discrete-continuous structure and
RUM-based unordered discrete-continuous structure in the context of joint mod-

els for vehicle holding and vehicle usage decisions. The ordered discrete-continuous



structure has a similar structure except that an ordered probit is used for the vehicle
holding sub-model. This comparative analysis is motivated by the fact that ordered
discrete-continuous models are relatively easier to estimate when compared to un-
ordered model structures; however, the assumption that vehicle ownership decisions
are measured by a single latent variable might affect the goodness of fit of the model
and its practical performance. The analysis is performed on data extracted from
the 2009 National Household Travel Survey (NHTS).

The study applies and validates the proposed modeling framework to both
local and national geographical levels. More specifically, the model is tested and
applied to a U.S. metropolitan area (Washington D.C. area) and to the entire na-
tion. The Washington metropolitan area is one of the largest metropolitan areas in
the U.S., has a diverse population and has recently adopted several Smart Growth
planning strategies. The modeling framework is extended to the four Census Re-
gions (Northeast, Midwest, South and West and three area types (urban, suburban
and rural) and applied to calculate rates of vehicle ownership and mileage traveled.
Several data are merged and used for model estimation and application, including
the National Household Travel Survey, the General Transit Feed Specifications data
and the American Community Survey.

The rest of the dissertation is organized as follows. Chapter 2 reviews the
literature on models for households vehicle ownership choices. The review out-
lines significant factors that influence vehicle holding, type and use decisions. In
particular, prior discrete-continuous frameworks that have been applied to vehicle

ownership modeling are reviewed in this chapter.
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Chapter 3 describes the methodological framework of the integrated discrete
continuous model developed in this study. This chapter firstly presents the discrete
choice sub-model, the continuous choice sub-model and the joint formulation. Then,
it explains the two estimation approaches developed for model estimation; the first
is based on simulation methods, while the second adopts numerical computation to
approximate choice probabilities. The second section of this chapter also presents
the ordered discrete continuous model which has a similar model structure except
for the adoption of an ordered mechanism for the discrete choice sub-model. Several
issues related to the normalization of the covariance matrix and endogeneity are
treated in this chapter.

Chapter 4 describes the datasets that have been collected and used for model
calibrations and applications, including the National Household Travel Survey data,
data on vehicle characteristics, US Census TIGER data, the General Transit Feed
Specifications data and the American Community Survey data.

Chapter 5 compares the unordered and ordered discrete-continuous models for
the Washington D.C. Metropolitan area. A number of variables including household
sociodemographic information, residential density and fuel cost are introduced in the
model formulation and their relative coefficients estimated. Both estimation and
application results are presented and general findings from the model comparisons
outlined.

Chapter 6 presents a system of models representative of the entire United
States; application results for randomly selected counties/areas are given and dis-

cussed. The national models are valuable both for the national planning level and



for small areas, especially those lacking local household travel survey data. The
results further validate the proposed integrated discrete-continuous framework for
modeling household vehicle ownership decisions.

Chapter 7 estimates household joint decisions on vehicle ownership and usage
with transit service indicators for the Washington D.C. area. The analysis develops a
method to integrate the household travel survey with geographic data, and generates
spatial and temporal measurements of transit service for the model estimation. The
results provide evidences on the impacts of improved bus and metro services on
household ownership and use decisions in the Washington D.C. Metropolitan area.

Chapter 8 concludes with a summary of the major findings and research con-
tributions. Future research directions for both methodological and applied aspects

of the problem treated in this dissertation are identified.



Chapter 2

Literature Review of Vehicle Ownership Models

Models for predicting changes in the level of car ownership have been under
development since the 30s (e.g. [Wolff, 1938]; [Rudd, 1951]; [Tanner, 1958] as they
are essential to the transport planning process and are of interest to governments,
vehicle manufactures, environmental protection groups, public transport authorities,
and public transport operators.

Aggregate time series models have been widely used in very early modeling
attempts. A sigmoid-shape function is usually used to explain the development of
car ownership over time, and a growth function is related to income or gross domestic
product (GDP). The function increases slowly in the beginning (at low GDP per
capita), then rises steeply, and ends up approaching a saturation level. Examples
along this line are the work done by Tanner (e.g. [Tanner, 1983] ), [Button et al.,
1993], [Ingram and Liu, 1999], the National Road Traffic Forecasts (NRTF) in the
UK ( [Whelan et al., 2000], [Whelan, 2001]), [Dargay and Gately, 1999], etc. These
models have the lowest data requirements and can be used to predict the total
number of cars in future years, which in turn is a potential starting point for more
detailed analysis.

More recently, disaggregate car ownership models based on discrete choice

models became the dominant method to deal with the number of cars owned by a
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household. Examples are the work by [Gunn et al., 1978], which have been later
implemented into the Dutch national model system (LMS) [HCG, 1989]. Similar
models have been developed by [Bhat and Pulugurta, 1998] and by [Rich and Nielsen,
2001]; real applications of static discrete methods include the model developed for
the city of Sydney ( [HCG, 2000]), and the model for the National Roads Traffic
Forecast (NRTF) in the UK ( [Whelan, 2001]).

Disaggregate model systems are also used to explain households’ choice of
car type given car ownership. There are many publications on vehicle type choice
models, such as [Berkovec, 1985], [Chandrasekharan et al., 1991], [Hensher et al.,
1992], [Mannering and Winston, 1985], [Manski and Sherman, 1980] and [Train,
1986].

Table 2.1 provides a summary of modeling approaches for vehicle ownership

existing in the literature.

11



"SOAT)RULIO)C POUSISSe {7
sn{d uesoyd St jos 20107)) ‘seseydind

ININ | O[OIUOA MOU 10] [9POUL /ORI JO HDTOTD sployssnoy 9g. (¢861) SN (6861 “Aare)oIN]
age
uoTssaI39y pue NN | -Sn ‘e8ejura/ssepd ‘Ajrjuenb odTYaA sproyeasnoy G601 (8L6T) SN [986T ‘ureiy]
o[
suoryenbs g-gTSE 9esn O[IIYAA | -I9A GG ‘SPIOYLSNOY L7, (8L6T) SN (9861 ‘Surtouuely]

N30T pajseN

o010 od Ay
o[oryeA ‘(g ‘g ‘T ‘0) oo10D ZIS-190]

sp[otesnot 00

(086T) Loup4g

[G86T ‘To11y
-se[d o] pue IoysuoH]

20100 od Ay

130T pejsoN | opPIeA ‘(€ ‘G ‘T ‘0) Lywenb oprgop Spoyesnoy gy(1 (8261) SN (6861 ‘0onoy10g]]
sproy (6861

NS0T PoIsON 90100 9dA) O[OIYDA | -OSNOY O[OIYOA-O[SUIS /€T (8L6T) SN | ‘asmy pue oosoxIeg]
UOISSOI301 [epour uor) [G86T ‘uogs

STO Ppue 30T PIjsoN

-RZI[IIN ‘90101 odA) ‘9o101d Ajryuenb

SPIOYPSNOY ZTSE

(0861-8L6T) SN

-urp\ pue Suriouuey]

‘ome auo mgwoﬂ:u@h

‘ome ouo Furppe ‘one ouo Furoe[d (G261
NN | -oI ‘uorjoesuRI) OU UOMID(] 9IIOD sployesnot 697 | -€L6I) 09osURI] UeG [G86T ‘AarenoIN]
(6,61)

N30T pajsoN

odA) oIy ‘uorjorsuely,

Sp[OTesnOT (08

‘[oelIs] ‘eare urqIn eJIRH

[e86T “Te 10 uewIOYDOY]

NS0T PoIsON

20100 9d A} 9[OIYA ‘9010 9ZIS-199[

sp[otesnoY 16T

(086T) Aoup4g

[T86T “Te 30 10ysULY]

INIA 901070 9d A} S[OTYIA sproyasnoy 9g¢ (226T7) a10tUTITRYg (0861 ‘s83ag]
SOTOIYPA OM) PUR JIIYAA U0 Surpioy SPIOT[ASTOT] J[OIOA-0MY [086T

TININ | sproyesnoy ur sootoyd odA) 9[IYaA | 10  J[PIeA-o[8uls  (0ZT (926T) SN | ‘wewroyg pue Isuely]
TNIN 20101]d 9d A} 9[2IYoA SIOAN( IBD MAU T§HG (9L6T) Se13ID G UAASS [6,6T ‘ureiy, pue aaer]
PPOIN pouIurex;] s9oIoy)) ozig ordureg (1eax ) @01mog eyeq 9OULIOFY

sjepout dISIoUMO S]OTeA Jo Arewiming :1°g 9[qel,

12



"ININ

90100 odA) 9[OIYPA

SP[OTESNO F06T

RGET ‘0osIOURI] URS

(7005
‘URLIRNOJN pue 00t

[epour 31307 PajsaN

901010
odAy opIypp (((eoueury ‘oses]) 1sed
-uou ‘ysen) odA} uorysmboe o[oryoA

SP[OTESNOT F69

(g66T) SN

[200Z T 90 Suruuey]

[oPOUI 1401 POIOPIN

(+€ ‘2 ‘1 ‘0) £39uwenb opryeA

sproyesnoy
000S-000F Moqe ‘[pued

(9661-€661) (SAHE) SN

[000g ‘T 10 AueH]

(foured) 110100 oTUIRUAD

Ayyuenb oporyoa

Y 00z ‘47070 ‘foued

(€661-2861) Loamg
aunjrpuadxsy Araaeq ‘30

6661
‘Aloyery pue Aedre(]

UOTSSOIOT
STO “ININ ‘[Ppowt yqoJ,
‘Tepowr  j1qoxd  paIspi)

oSN J[OIYOA
¢ ‘o010 odA) oPIYoA g ‘TeAlIp Iod
pue raquewr proyesnoy Iad S[OIYsA

Jo wmy pue ‘Ppour Furp[oy APIYIA T

sproyesnoy
LPLY ‘(oaem 3s1) [oueq

€661 "BIUIONR))

[666T ‘T8 10 eanureyry]]

V801 pe1epI0 pue TNV

(¥ ‘e ‘¢ ‘T ‘0) Aymyuenb oporoA

LOST ‘2T8T ‘00S€ ‘G99€

(L861) yomQ
(1661 ‘0661 ‘I661) SN

(8661
‘eymsnng pue jeyd]

[Ppouwt

uorjyenbs [RINIONIYG

d[oTYeA JO odA) Aq osn 9[OTyoA

sployesuoy LjLf

(€661) eruioge))

[266T “Te 30 qo[on)]

UOTSSOIS0Y ‘H30[
poiseN ‘uorjounj prezey

Aouarorgoe [of
pue o3eIjowoey] [enuUy ‘9d1oyo odA)

OPIoA  ‘monRIMp  SUIP[OT  OIYIA

sjuepuodsal T§g¢ ‘[Purd

(66T
PO T66T ‘PO) wmd

[966T ‘Suor]

UOTSSOIZO1

STSE pue S0 PojsoN

9Sn PUR 92107D d[OIYoA
OTWRUA(] ‘OSN O[OIPA J1)e1S ‘901070
xXru-odA) pue 9010yd 9[IIYdA O11eIG

L6TT ‘1GTT ‘S6CT ‘FH¥T

(GR6T-T86T) Aoup4g

[c66T “Te 10 Toysuo]

1101 PAIOPIN

‘Z ‘T ‘0 9ZIS 109 UdM)I( 9II0TD

SP[OTESNOY 6117

(8861-G86T) UM

[066T ‘qoron)]

Nqo1J PA1apIQ

Ayryuenb oporyoa

(L86T
-F861) ‘HH S09 ‘Pued

198 eIR(] [oURJ
AIqOTN TRUONRN YN

(2661
‘oung pue eInue)ry|

13



yoroxdde poseq-emdoo

LINA pue uonismboe odA) o[d1ypA

Sployesnoy (00‘CT

(000g) OIsueL] weg

[600g ‘e %0 nssidg]

preoxdde paseq-emdoo

LINA Afrep
pue 8010y POOYIOQUSIOU [RIJUSPISSI

sployesnoy (00‘GT

(000g) ooswueL] Ueg

[600g ‘nampy pue yeyq]

"ININ-AHODAIN

[opou/oyew

9[IOYPA ‘osn pure o3ejura /odL) o[oToA

sployesnoy (000‘GT

(000g) 09sURL] UeS

[600g ‘e 10 Yeyg]

AIDAN pue (31qoT, pue
11QOIJ POIOPI() 9JCLIRATY

(AIDAIN pue

N uwersoded) LJOIWE | LIONE) 98esn pue 9d101D S[OI[2A SPIOYeSNOY 66ZE (VD ‘100¢) SLHN [800¢ ‘Buey]
[opOUI 9I098-D13e)S €00Z ‘VSN

pue  9qoxd  papIQ (+¢ 7 ‘¢ ‘g ‘T ‘0) Lmywenb opryea SPIOYoSTOY 89T | “RIWIONTR)) WIY}I0N [200z ‘e 10 0eD)]
[A9] TOTjRINYES [)IM (1661) SIN

[epour 180] [eIIYDIRISIF]

(+€ “z ‘1 ‘0) Lyryuenb opryoa

umoudun

pue  (9661-1L61) N

(2002 ‘we[oy]

([opowr onfea swoIIXo

SNONUIIU0)DIDIISIP

ordrynur 98esn pue Jurpioy adA) 91y Sproyesno 0osTOURIJ UR ‘ueg pue e

[duyu) ATDAN p (p[oy odAy oA pIoYesnoy (0GE (000g) ooswuRL] RS (9007 ‘wog pue ter]
[PAT

uorjeInjes Yjm [opout
NS0T  POXI[N Orueud(]

(+2 “+1) provesnoy
Aq PosSn IO pOUMO SIBD JO ISQUITLN

Spoyesnoy 00g‘9 ‘rPued

(100z-2561) £oamg
aunjrpuadxsy Arwe ‘3N

[c00z ‘Sueny]

14



2.1 Review of Vehicle Holding Models

In Table 2.2 I summarize a number of vehicle holding models in the litera-
ture, in particular I describe the data source, the sample size, model type and the
dependent variables used for the analysis.

There are two types of discrete choice modeling structures that have been
used in the household vehicle ownership studies: ordered-response mechanism and
unordered-response mechanism. The ordered-response mechanism assumes that
household vehicle ownership is represented as an ordinal variable and the choice
is determined by a single latent variable which represents the propensity of the
household vehicle ownership decisions. Examples of the application of ordered-
response mechanism are [Kitamura, 1987], [Golob and Vanwissen, 1989], [Golob,
1990], [Kitamura and Bunch, 1992|, [Bhat and Koppelman, 1993], [Kitamura et al.,
1999], [Hanly et al., 2000], [Chu, 2002], [Kim and Kim, 2004a] and [Cao et al.,
2007]. The unordered-response mechanism is based on the hypothesis that house-
hold vehicle ownership is represented as a nominal variable. It follows the random
utility maximization (RUM) principle which assumes that the household makes the
vehicle ownership decisions that provides the highest utility among all the possible
choices. Examples of the studies with unordered-response mechanism are [Man-
nering and Winston, 1985], [Train, 1986], [Bunch and Kitamura, 1990], [Hensher
et al., 1992], [Purvis, 1994], [Ryan and Han, 1999], [Whelan, 2007], [Potoglou and
Kanaroglou, 2008|.

In the context of the comparison of the ordered and unordered mechanisms,
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there are two papers that explicitly investigate the empirical performance of the
two structures in modeling vehicle ownership decisions, (see [Bhat and Pulugurta,
1998] and [Potoglou and Kanaroglou, 2008]). [Bhat and Pulugurta, 1998] compared
the multinomial logit (MNL) models (represents unordered-response mechanism)
and the ordered logit (ORL) models (represents ordered-response mechanism) with
four datasets from Boston, Bay area, Puget Sound area and the Netherlands. The
two mechanisms were evaluated by comparing elasticity effects, measure of fit and
predictive performance. The results showed that the MNL model is able to capture
elasticity patterns across alternatives, while the ORL is more rigid in elasticity ef-
fects. Meanwhile, the MNL model outperforms the ORL model in several measures
of fit. The conclusion from this study is that the appropriate choice mechanism is
the unordered-response structure for vehicle ownership modeling. [Potoglou and Ka-
naroglou, 2008] evaluated the multinomial logit (MNL) model, ordered logit (ORL)
model and ordered probit (ORP) model for car ownership by using data from Bal-
timore, Dutch and Japan. The MNL, ORL and ORP models are compared with a
number of data fit measures and the results clearly demonstrate the superiority of
the MNL to the ordered ORL and ORP.

Those studies provided strong evidence that the appropriate mechanism is the
unordered response mechanism for the vehicle ownership models. It is important
to stress that the ordered and unordered models have been compared for vehicle
holding models only.

In terms of the attributes adopted in existing vehicle holding, they can be

classified into four categories: (1) information on the household, (2) information on
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the household head or primary driver, (3) land-use factors and (4) other unclassified
information).

Significant explanatory variables of the household includes: household’s in-
come, household structure, number of household members (household size), number
of workers, number of adults, number of children, number of drivers (licensing hold-
ing) in the household. In terms of household income, usually the annual income
is used in the model. In some studies, the logarithmic transformation of the in-
come or the discretionary income (the amount of income left to the household after
subtracting taxes and normal expenses) enter the model specification.

The estimation results showed that most of the household socio-economic char-
acteristics have positive influence on car ownership. The positive coefficient of the
income variable indicates that, for instance, a household is more likely to own more
vehicles, with a higher household income. Same trends can be found in other at-
tributes, such as the number of household members, number of workers, number
of adults, number of children, and number of drivers in the household. All of the
coefficients have considerable t-statistics. Few studies analyzed household structure
variables, usually using the number of adults and the number of children in the
household.

Significant explanatory variables about the household head or primary driver
include: age, gender, education level and work status. The estimation results in the
previous researches indicate that a household is likely to own fewer vehicles with
older household head or female household head. With higher education level of the

household head, a household is more likely to own more vehicles. Only few studies
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included household head’s work status in the utility function.

In terms of land use information, previous researches mainly use population
density, and location variables (urban, suburban, and rural). Estimation results
indicate that households in the area with high density or in urban area own fewer
vehicles. A few studies included the accessibility to transit as this variable is difficult
to obtain in many real cases.

Other variables, which do not belong to any of the three categories above,
include for example dummy variables describing parking availability and the pres-
ence of company cars. These variables were mainly used in European studies; were

parking space is limited and where the number of company cars can be significant.
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2.2 Review of Vehicle Type Models

Table 2.3 presents several vehicle type models, in particular it describes the
data source, the sample size, model type, vehicle classification and the dependent
variables.

The majority of the studies use multinomial logit model in the vehicle type
estimation. MNL is chosen in the most cases because we can take advantage of one
of the logit properties. An important property of the logit model is the indepen-
dence from irrelevant alternatives (ITA) property. That is, the ratios of probabilities
are necessarily the same no matter what other alternatives are in the choice set or
what the characteristics of other alternatives are. This ITA property has several
advantages, and one of them is that it is possible to estimate model parameters
consistently on a subset of alternatives for each sampled decision maker. This fact
is important because it saves computer time by estimating on a subset of alterna-
tives when the total number of alternatives is large. In the vehicle type models, the
combination of vehicle type choices increase exponentially with the number of vehi-
cles in the household, hence it is computational impossible to take account all the
alternatives. With the ITA property, multinomial logit model allows the modelers

to get consistent coefficients with the estimation on a subset of the alternatives.
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The vehicle type classification methods in the literature mainly consists of five
different categories: (1) models that only consider very general classes of vehicles,
such as small car, compact car, large car, sporty car, etc; (2) models that consider
general classes and vintages of vehicles, such as small old car, large new car, etc; (3)
models that contain the chosen alternative and a number of randomly selected al-
ternatives from the total number of combinations of makes and models (i.e. Toyota,
Camry); (4) models that contain the chosen alternative and a number of randomly
selected alternatives from the total number of combination of make, model and vin-
tage (i.e. 2003 Honda Civic); (5) models that consider vehicle classes and vintages,
such as 2005 mid-size car, 2007 SUV, etc.

Table 2.4 reports vehicle classification schemes in terms of vehicle size, vehicle
function, or both. Most schemes for vehicle classification first group vehicle by size,

and then special categories such sports, pickup and SUV are added.

Table 2.4: Vehicle classification schemes

Source Vehicle Classification Basis
NHTS Automobile (including wagon), van, SUV, Function
(FHWA, pickup, other truck, RV, motorcycle, other
2009)
NTS (BTS, Subcompact car, compact car, intermedi- Size and func-
2009) ate car, full car, light pickup, large pickup, tion
small van, large van, small utility, large
utility
EPA (2009) Cars:  two-seater, sedan(minicompact, Size and func-

subcompact, compact, mid-sized, large), tion
station wagon (small, midsize, larg);
Trucks: pickup (small and standard), van
(cargo and passenger), minivans, SUV,
special purpose vehicle

Comsumer Convertible, small car, sedan, wagon, Size and func-
Reports SUV, minivan, pickup, sporty car tion
(2009)
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Three types of variables are mainly used in existing vehicle type models: (1)
vehicle characteristics, (2) household characteristics, and (3) other unclassified char-
acteristics. Purchasing price, operating cost, space and engine related variables are

usually found to be significant in vehicle type models.

2.3 Review of Discrete-Continuous Models

Discrete-continuous models have been investigated in marketing studies since
1980’s. Marketing researchers developed discrete-continuous models to determine
household purchase decisions for frequently purchased packaged goods by the im-
pact of marketing mix and demographic variables. Previous studies have predicted
one or more of the purchasing decisions by proposing relationships between the ob-
served choices of households and variables such as product price, price cuts, feature
advertisements, special displays and observed and unobserved household character-
istics [Chintagunta, 1993]. Chintagunta summarized a partial list of previous studies
dealing with household purchase behavior along with their important features (Table
2.5). Studies in marketing mainly focus on three different household purchase deci-
sions: (1) the timing of a purchase or the category purchase decision, (2) the brand
choice decision and (3) the purchase quantity decision. In transportation, discrete-
continuous models have also attracted researchers’ attention and recently have been
investigated in studying household decisions on vehicle ownership (discrete choice)

and vehicle use (continuous choice).
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Table 2.5: Selected empirical studies on purchase behavior (Chintagunta, 1993)

Preference Decisions Studied

[Guadagni and Little, 2008] Brand choice

[Neslin et al., 1985] Purchasing timing, Purchase quantity

[Krishnamurthi and Raj, 1988] Brand Choice, Purchase Quantity

[Tellis, 1987] Brand Choice, Purchase Quantity

[Jones and Landwehr, 1988] Brand Choice

[Gupta, 1988| Purchase Timing, Brand Choice,
Purchase Quantity

[Gupta, 1991] Purchase Timing

[Bucklin and Lattin, 1991] Purchase Incidence, Brand Choice

[Chiang, 1991] Purchase Incidence, Brand Choice

[Jain and Vilcassim, 1991] Purchase Timing

[Kamakura and Russell, 1989] Brand Choice

[Schmittlein et al., 1988] Purchase Timing

2.3.1 Model Derived from Conditional Indirect Utility Function

The earliest generation of models that have investigated vehicle ownership
choices with discrete-continuous models were derived from conditional indirect util-
ity function (e.g., [Mannering and Winston, 1985]; [Train, 1986]; [Hensher et al.,
1992]; [de Jong, 1989b], [de Jong, 1989a] and [de Jong, 1991]), which is based
on micro-economic theory. Originally developed by [Dubin and McFadden, 1984],
and [Hannemann, 1984], the basic concept is that the households choose the com-
bination of vehicle ownership and vehicle usage that gives the highest utility. Roy’s
identity is applied to estimate vehicle usage and the relationship between the two
modeling stages. Although based on single discreteness, this series of studies based
on the indirect utility function are able to capture the interdependence between the
vehicle holding and the corresponding mileage by means of observed variables. This
elegant formulation is consistent with economic theory and simple to implement.

Some terminologies of direct utility, indirect utility and Roy’s identity:
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Direct utility function gives the utility that the consumer obtains at given

quantities of each good (U(xzy,x2)).

Indirect utility gives the utility that the consumer obtains at given prices and
income once he has chosen the quantities that maximize his (direct) utility

subject to the budget constraint for the given prices and income (Y (p1, p2,y)).

It can be shown that a consumer’s preferences can be equivalently represented

by either a direct utility function or an indirect utility function.

If the consumer is a utility maximizer, then he will purchase the quantities of

the two goods that solves the constrained maximization problem:

max U(xq,x2) or Y (p1,p2,Y)

such that

Y = p1x1 + P2Ta

e Roy’s identity states that the demand for a good is equal to (the negative
of) the derivative of the indirect utility function with respect to the good’s
price divided by the derivative of the indirect utility function with respect to

income. That is:

- _8Y/8p1
T Ty /oy
Ty — _(9Y/8p2

2T Y /oy

e For deriving demand functions, it is much easier to work with a consumer’s
indirect utility function rather than with his direct utility function.
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Suppose the number of alternatives is J, the observed characteristics of each
alternative 7 is z;, the quantity of the good is x, the person’s income is y, other
observed characteristics of the person is s, and all unobserved factors is w;. The
price of the good is denoted as p;, which is the price per unit of x given that
alternative 7 is chosen.

The maximum utility that the person can obtain given that he has chosen

alternative ¢:
}/; - }/;(pu Y, %, S, wl)

This is a conditional indirect utility function for alternative ¢. Conditional
indirect utility functions can be constructed for each alternative in the set J. Each of
these gives the maximum utility that the person can obtain if he chooses a particular
alternative.

The person will choose alternative ¢ if and only if the conditional indirect

utility is higher for alternative ¢ than for any other alternative:

Yi(pi, y, 21, 8,wi) > Y;(pj, 9, 25, 5, 0;)
for all jin J, j # 1.
Consequently, the probability of alternative ¢ being chosen is
Py = Prob(Yi(pi, y, zi, 8, wi) > Yj(pj, Y, 25, $,05))
for all j in J, j # 1.

The indirect utility can be decomposed into observed and unobserved parts:

}/i(piaywzia SJwi) - ‘/i(qu,y7zi,5) té
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Where ¢; is a function of unobserved variables w; and V; is simply the difference
between e; and Y;. The form of choice model is derived by specifying a distribution
of e;. For example, if each e; is assumed to be distributed independently, identically
extreme value, then the choice probabilities are in logit form.

The demand for good z is determined from the conditional indirect utility
function using Roy’s identity. That is, the demand for x, given that alternative ¢ is

chosen, is

a}/;(pw Y, Zi, S, wz)/ap o
8}/;(}?1, Y, zi, S, wz)/ay —

Ty = (pi7y7zi787wi)

Under certain forms of the conditional indirect utility function, the conditional
demand for x; and the observed utility V; can be derived as linear functions of

income, price and other explanatory variables (Train, 1986).

2.3.2  Multiple Discrete-Continuous Extreme Value model

Multiple discrete-continuous extreme value (MDCEV) models, developed by
[Bhat, 2005] and further applied in [Bhat and Sen, 2006] and [Bhat et al., 2009]
are utility-based econometric models that jointly estimate the holding of multiple
vehicle types and the miles for each vehicle type. The dependent variable in this
model is the mileage for each vehicle type category. Utility for each household is
maximized subject to a total mileage budget. Under the assumption that the error
term is iid extreme value distributed, the probability function simplifies to an elegant
and compact closed form, and collapses to Multinomial Logit (MNL) model for one

car household.
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In MDCEV model, the utility accrued to a household is specified as the sum

of the utilities obtained from using each type of vehicle.
K
U ijz:l@b(ﬂfj)(mj + )% (2.1)

Where there are K different vehicle types that a household can potentially
own. my; is the annual mileage of use for vehicle type j (j = 1,2,..., K). ¥(z;) is
the baseline utility for vehicle type j, and 7, «; are parameters. VU is a function of
observed characteristics, x;, associated with vehicle type j.

Eq. 2.1 is a valid utility function if ¢(z;) > 0 and 0 < «; < 1 for all j. the
term +y,; determines if corner solutions are allowed (i.e., a household does not own
one or more vehicle types) or if only interior solutions are allowed (i.e., a household
is constrained by formulation to own all vehicle types).

the utility form is also able to accommodate a wide variety of situations char-
acterizing vehicle type preferences based on the values of ¢ (z;) and «o; (j = 1,2,

., J).A high value of ¢(x;) for one vehicle type (relative to all other vehicle
types), combined with a value of a; close to 1, implies a high baseline preference
and a very low rate of satiation for vehicle type j.This represents the situation
when a household primarily uses only one vehicle type for all its travel needs (i.e., a
"homogeneity-seeking” household). On the other hand, about equal values of ¢(z;)
and small values of «; across the various vehicle types j represents the situation
where the household uses multiple vehicle types to satisfy its travel needs (i.e., a

?variety seeking” household).More generally, the utility form allows a variety of sit-

uations characterizing a household’s underlying behavioral preferences for different
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vehicle types.

a multiplicative random element is introduced to the baseline utility as follows:
V() €5) = U(x;) - €9 (2.2)

Where €; captures the unobserved characteristics that impact the baseline utility
for vehicle type j. The exponential form for the introduction of random utility
guarantees the positivity of the baseline utility as long as ¢(x;) > 0. To ensure this
latter condition, ¢(z;) is parameterized further as exp(f8'z;), which then leads to

the following form for the baseline random utility:
U(wj,€) = exp(Bx; + €;) (2.3)

The overall random utility function then takes the following form:

U =3 lexp(B z; + )] (m; + ;)™ (2.4)

K
j=1

The satiation parameter, «;, in the above equation needs to be bounded be-
tween 0 and 1, as discussed earlier.To enforce this condition, «; is parameterized
as 1/[1 + exp(—d;)].Further, to allow the satiation parameters to vary across house-
holds, ¢; is specified as d; = H;yj, where y; is a vector of household characteristics
impacting satiation for the jth alternative, and 60; is a corresponding vector of pa-
rameters.

Eq. 2.4 subject to the constraint that Zszl m; = M, Where M 1is the total
household motorized annual mileage.

Assuming that the €; terms are independently and identically distributed

across alternatives, and are distributed standard Gumbel,the probability that the
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household owns I of the K vehicle types (I <1) is

Pm;>0andm:=0; i=1,2,...,Tands=1+1,...,K)

~ [l Ly My o

i=1 Ci (Zngl Vi)l

Where ¢; = (nl;fy) and V; = B'x; + Ina; + (a; — 1)In(m} + ;). In the case

(1 —1)! (2.5)

when [ = 1 for a particular household (i.e., only one vehicle type is chosen by the
household), the model collapses to the standard MNL structure.

[Bhat and Sen, 2006] conducted an application of MDCEV that models jointly
the decisions of holding multiple vehicle types (passenger car, SUV, pickup truck,
minivan and van) and the mileage for each type in an integrated model system;
data is extracted from the 2000 San Francisco Bay Area Travel Survey (BATS). In
this study the authors analyze changes in vehicle type and usage due to changes in
demographics, employment status, density and operating cost. Major conclusions
can be summarized as follows: (1) there is a higher preference to own and use SUVs
and minivans as the number of children in the household increases; (2) households
with more members or with mobility-challenged household members have a higher
preference for minivans; (3) households with more workers are less likely to prefer
minivans; (4) households with more men or located in less dense area prefer pickup
trucks; (5) vehicle operation cost has a negative effect on vehicle ownership and
usage for all vehicle types except for passenger cars; (6) households are very likely
to own passenger cars but put more miles on non-passenger cars (if available).

[Bhat et al., 2009] extended this study and formulated a nested model struc-
ture that includes a multiple discrete-continuous extreme value (MDCEV) compo-
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nent to analyze the choice of vehicle class/vintage and usage in the upper level and
a multinomial logit (MNL) component to analyze the choice of vehicle make/model
in the lower level. The model accommodates heteroscedasticity and/or error corre-
lation in both the multiple discrete-continuous component and the single discrete
choice component of the joint model using a mixing distribution. The joint model
also incorporates random coefficients in one or both components of the joint model.
Again, using BATS data, the study derived several important findings: (1) house-
hold with higher income or more workers have higher preference towards newer ve-
hicles and are less likely to use non-motorized transportation modes; (2) in terms of
built environment characteristics, households located in urban areas are less likely to
own/use large vehicles and more likely to use non-motorized transportation modes;
(3) the preference of vehicle holding and use also depends on the age, gender and
ethnicity of the household head; (4) households prefer vehicles with lower purchase
price and operating cost, bigger luggage and seating capacity, higher engine perfor-
mance and lower greenhouse gas emissions.

In conclusion, the MDCEV model recognizes multiple discreteness and is able
to handle a large number of vehicle types. It well captures the interdependence
between the vehicle type and the corresponding mileage and allows more complex
specification forms as heteroscedasticity and correlation. However, this model re-
quires finer classification of vehicles as one type of vehicle cannot be chosen twice
by the household. This type of models is limited by the assumption of fixed total
mileage budget for every household; this implies that it is not possible to predict
changes in the total number of miles in response to policy changes. Moreover, there
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is only a single error term underlies both discrete and continuous choices. Overall,
the MDCEV model is consistent with random utility, it is able to capture trade-offs
among the usage of different types of vehicles and can accommodate a large number

of vehicle classifications.

2.3.3 Bayesian Multivariate Ordered Probit and Tobit model

[Fang, 2008] developed the BMOPT (Bayesian Multivariate Ordered Probit
and Tobit) model, which is composed of a multivariate ordered probit model for the
discrete choices and a multivariate Tobit model for the continuous choice. Household
decisions on the number of vehicles in one of the two categories (cars and trucks)
considered are estimated by means of ordered probit model. The multivariate Tobit
model is applied to estimate the household decisions on miles driven with each
vehicle type. The joint model is formulated with an unrestricted covariance matrix
for the discrete and continuous parts.

Let two latent continuous variables yj and y; represent the preference levels for
holding cars and trucks, let latent variables y3 and y} represent uncensored average
annual miles driven by cars and trucks. Indexing household by 7, i = 1, ...N, the

system for discrete-continuous choice of the vehicles can be written as:

Vi = Wb+ In(dy) B + e (2.6)
Ya: = Wi Pa1 + In(d;) Bag + €ai (2.7)
Vi = WA + In(dy) B + 3 (2.8)
i = WiBu + In(dy) Bas + e (2.9)
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where w; is a vector of characteristics for household i; d; is an indicator of
residential density. The number of cars, ¥y;, and trucks, y»;, held by household ¢ are
determined by the value of the corresponding latent utility y;, and ¥3;; specifically,
yi =0,ifyr <aq,y; =1, if an <y < g, y; =2 or more, if yj > ay, for j =1, 2.
Average annual miles driven by cars ys3 is observed only when a household holds at

least one car; that is,

ys =Yz, 1f y1=1or2 (2.10)
ys =0, if y1 =0 (2.11)

The same logic applies to miles driven by trucks y;:
y1=yi, if yp=1or2 (2.12)

ys=0, if y2=0 (2.13)

The whole system can then be written into a SUR (seemingly unrelated re-

gression) form:

yi =x0+¢€ (2.14)

The error structure is a multivariate normal with zero means and unrestricted

covariance matrix:

e "~ N(0,)(2.15)

The likelihood function is given as following:

LB, Sy1, 92, u3,9a) < I Fluh; < ou, 95 < anlB, %)

11,=0,y2,=0
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X H flyns < an, a1 <y < g, yai = Yyl B, %)
11;=0,y2;,=1

x JI  flyl < a1,ys; > a2, 54 = 44l 5, 2)

11;=0,y2,=2

x H flon <yh; < ag,ys; < ar, Yz = Yl 8, %)
11;=1,y2,=0

X H floa <y < ag, 00 <y < Qo Ysi = Vi, Yai = Ys |5, )
113=1,y2;=1

x H flon <yiy < ao,ys; > o, Ysi = Yzgs Yai = Yl 5, 2)

11;=1,y2,=2

X H Fh > ao,y5; < a1, Y30 = Y36, 5)
11;=2,y2;=0

x JI  fi > ae, o0 < s < o2,ys0 = Yss Yai = Uil 5, %)

11;=2,y2,=1

x I Fis > o, s > s, ysi = y5i, ya = vl 8, 2)

117=2,Y2,=2

The BMOPT model is convenient to implement, and can be applied to study
policy implications. It is able to handle a large number of vehicles, and captures the
interdependence (correlation) between the number of vehicles and the total miles
driven with each vehicle type considered, it also allows flexible specifications of
error terms. There are a few limitations in this model structure. Firstly, the com-
putation becomes intensive for a large number of vehicle categories, as the number
of equations to be estimated increases proportionally with the number of vehicle
types. Another concern is that the ordered mechanism may not perform as well
as unordered mechanism in modeling car ownership models ( [Bhat and Pulugurta,
1998]). Lastly, the same variables enter both discrete and continuous sub-model.
Overall, the model is well suited for predicting the changes in the number of vehicles

and miles traveled for each vehicle type.
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Chapter 3
Methodology

3.1 Unordered Discrete-Continuous Model

3.1.1 The Discrete Choice Sub-model

Discrete choice models forecast the outcome of a categorical dependent variable
Yiise using some set of predictors. All k£ possible alternatives of Yy, have a utility
(Ug, Uy, Us, ... Uy) that consists of one observable part (systematic utility, V) and
one non-observable part (error term €). In my modeling framework, the observed

utility is decomposed into two parts (V; and Vi, i)

UOZEO
U =Vi+AVyn+ea

Uy =V + AV, 2 + €

U, =V + )\‘/;k“f + €

Where Vj. is the utility of vehicle holding decision, which depends on factors
that vary over k and V,, |, is the utility of vehicle type choice conditional on £,
which depends on factors that vary over tgx|k. |k is the choice set containing all
the possible combinations of car types and vintages while \ is a parameter to be

estimated.
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I adopt a multinomial logit model for the vehicle type submodel; then the

probability of choosing a certain type of vehicle is:

exp(Vy, k)

> exp(Vii)

tk

Pk = (3.1)

Where t;; is the chosen alternative among total alternatives t;. The utility

that the household would obtain by its choice of vehicle type can be written as:

Jp=1In Z QIP(Wk\k)

173

Therefore the utility of the discrete choice can be further written as:

UOIEO
U1:X1T51+J1/\+61

Uy = XTI B+ oA+ &

U = X! Be + JxA + e

Where, X, Xs, ... X are the attributes in the utility functions; £y, Ba, ...k
are the parameters to be estimated; ¢y, €1, ... € are the error terms. The second
part of utility J; is also important because the choice of vehicle types affects the
household’s probability of choosing a certain number of vehicles.

The decision maker is assumed to be rational and to choose the alternative with
the biggest utility. In my econometric setting I adopt a probit model for the discrete
problem and therefore the error terms follow a multivariate normal distribution with
full, unrestricted, covariance matrix.
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For simplicity, let’s assume that:

Y = Yise

X = (X1, ..., Xp)
J=(J1, 0 Ji)
B = (B, Br)

€ = (€, €1, .., €k)

Y := Covariance of the error term

The likelihood of one observation can be expressed as follow:

PY =yl X, JBNE) = [ I8, + I +e, > X[ B+ Tidte; Vi # y)o(e)de

(3.2)

The functional indicator (I()) ensures that the observed choice is indeed the one
with the biggest utility. The subscript y indicates the predictors and coefficients of
the chosen alternative and the subscript j indicate the other alternatives.

Since only differences in utility matter, the choice probability can be equiv-
alently expressed as (k) - dimensional integrals over the differences between the
errors. Suppose we differentiate against alternative y, the alternative for which we

are calculating the probability. Define:

gjy = Ej — Ey (33)
‘7jy = (XJ‘TBJ' + Jj)‘) - (Xgﬁy + Jy)‘) (3-4)
&) = (Eiys .. Ery) (3.5)

7

where the ”...” is over all alternatives except y
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Then :

PY =y) = [ 1V +&, <0 V) #9)(E)d, (3.6)

which is a (k)-dimensional integral over all possible values of the error differences.
The difference between two normals is normal and the covariance of €, can be easily
transferred from the covariance of e ( [Train, 2009, p. 99]). Detailed explanation is

given in section 3.1.7.

3.1.2 The Continuous Choice Sub-model

Regression is adopted to model the continuous part of the modeling framework
or the decisions on the household vehicle mileage. In a regression, the dependent
variable Y, is assumed to be a linear combination of a vector of predictors X4

plus some error term (€e4):

Yieg = X, oBreg + €reg €reg ~ N(0,0%) (3.7)

reg

Usually, regression is solved by using the Ordinary Least Square (OLS) estimator
[Weisberg, 2005], but the same problem can be expressed in the form of a likelihood
function to be maximized [McCulloch et al., 2008, p. 117]. Indeed, given B,ey, Xyeq

and o2, the likelihood of observing y,., is given by the normal density function:

P(yreg|6reg7 Xrega 02) = ¢<y7’eg|XZ;gﬂreg7 02) (38)

2

The normal density is centered at y = XTTegBreg and has variance o~.
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3.1.3 The Integrated Discrete-Continuous Model

In discrete-continuous choice models, I want to model Y and Y., jointly to capture
the correlation between them. In this framework, I allow the error term of the

regression to be correlated with the error terms of the utilities in the probit.

The specifications of the observable part of the utilities and of the regression’s
shall remain the same, while the error terms are assumed to follow an ”incremented”

normal distribution:

(€1y7 ggy, ceny gkyy Ereg) ~ MN(O, Ek—‘rl) (39)

Therefore, the probability of observing Y and Y., is the product of the probability

of observing Y and the probability of observing Y., conditional on observing ¥
PY, Yieg) = P(Y)P (YY) (3.10)

or the product of the probability of observing Y., and the probability of observing

Y conditional on observing Y.,

P(Y,Yreg) = P(Yreg) P(Y[Yieg) (3.11)

This is a general result about conditioning with random variables. [Rice, 2007,

p. 88] The probability can be written as a form of density function:

f(YYreq) = fF(Y) f(YieglY) (3.12)
f(Y7 Y;eg) = f(Yreg)f(YD/reg) (313)
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3.1.4 Estimation with Simulation - 1st Attempt

[ initially tried to calculate the probability function with the equation (3.10)

as discussed in the last section, namely:
P(Y,Yreq) = P(Y)P(Yreg|Y) (3.14)

This function consists of two parts: P(Y') and P(Y,.,|Y). The probability of
probit (P(Y')) has integrals thus has no closed mathematical form. We could rely

on simulation as described in [Train, 2009, p. 117]:

1 ; i .
21X B, + I A+ ) > X8+ Td+ ) Vi)

=1

P(Y =y|X,J,8,\,3) =
(3.15)
Where ¢ is a draw from a multivariate normal with mean 0 and variance

and B is the number of simulations.

However, it is not clear which functional form can be given to the conditional
distribution f(Y,¢4]Y). Considering that we have a sample of points from the condi-

tional distribution that can be used in order to estimate it, let’s assume the following:

..., B | Draws from the multivariate normal
distribution

, ..., B¥ | Subset of draws for which the biggest
utility in the probit simulation was the

observed Y

In other words, when we simulate the probit probability, we keep the error terms
that correspond to the regression whenever (conditional) the biggest utility is the
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one of the observed choice. We rely on the sample {e1¥)}5" to estimate f(V,c,]Y).

Consider the following illustrative example (3.1, where the chosen alternative

among ”"Car”, "Bus”, "Bike” is "Car”. We simulate the utilities B = 10 times:

Simulation #
Utilities 1 2 3 4 5 6 7 8 9 10

Car 95 82 95 73 10 12 48 14 6.1 74

Bus 27 1.7 1.7 46 42 58 52 46 81 8
Bike 9.2 8.6 89 23 83 55 37 9.5 85 35

Table 3.1: Illustration example

In that case we would use the error terms of the regression corresponding to

indexes 1,3,4 and 5 to estimate the density of the continuous variable.

To conclude, the problem of estimating the model likelihood reduces to collecting
the regression error terms when we compute the probit. Those error terms are the

product of the simulation and the problem reduces to a density estimation problem.

Interpretation of a density function

We know that the interpretation of a density function is that [Rice, 2007, p. 48]:

f(y"’EQ)Q(S ~ P(yreg —0< Y?“eg < Yreg + 5) (316)

That is, the density of a random variable Y, evaluated at y,., times the length
of a small interval (§) is approximately equal to the probability that Y., lies in this

interval centered in y,.,. We can estimate the left hand side of this expression with
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random draws, then we estimate f(y,.,) with:

B*
(3.17)
p
Flares) ~ 2 (318)

To name only a few problems that can arise, it is possible that p = 0 and we need

to carefully select . However, this approximation is computable.

Kernel density estimation
Kernel density estimation uses a kernel, that is a density function whose
purpose is to "weight” all the points in the sample is order to estimate the den-

sity [Parzen, 1962]:
1 &

> Kp(x; — ) (3.19)

fo)= 53

Where K(-) is a symmetric density function and

Kn(z) = iK@/h) (3.20)

Note that Kp(-) is also a symmetric density function that is only a scale trans-
formation of K(-). We could use for instance a gaussian kernel (normal) in which
case we would not have the problem of estimating the density by 0. However, this
method is usually computationally expensive. A sample of 1,000 observations with
1,000 simulations each would require to compute the normal density one million
time (!) to estimate the likelihood only once. The problem of finding h remains.
The method described in the previous section happens to be the kernel density
estimation using a uniform kernel where h was referred to as o
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e Large ¢ will give a biased estimate of the density

e Small ¢ will give a volatile estimate of the density

Possible simple approximation
There is little chance that we can derive the exact conditional distribution of
Y,eq, but we may be able to find a known distribution that is a good approximation
for it. If a good distribution that can estimate the conditional distribution of Y.,

given Y can be found, then it is possible to:
e Find the MLE estimator of the parameter () of this distribution;
e Apply it to the conditional residuals from the probit simulation;

e Estimate f(yreg|y) with f(yreg|émle)'

I tested this idea with the 2009 NHTS data used for the real case study proposed in
this paper ( [U.S. Department of Transportation, 2009]). The conditional residuals
are those found at the maximum likelihood estimates:

We note that:
e Residuals appear to be normally distributed;

e The mean of the distribution of Yreg is approximately X egSBreg + fecw)

e The variance of the distribution of Yreg is approximately o7,
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Analysis of conditional residuals, final model at MLE, NHTS 2000
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Figure 3.1: Distribution of conditional residuals

Where i1y and 062(,@) are the mean and variance of the conditional residuals.
Therefore, the computation of the conditional density of y,., is much more stable
than the estimation obtained with a uniform kernel and much faster than the one

issued by a Gaussian kernel.

In order to be able to estimate the conditional density, at least two conditional
residuals are needed. Obviously, the precision of the density estimation depends on
how well the discrete variables are predicted earlier in the simulation. However, given
that the normal assumption seems to be a good approximation, there is no reason to
believe that estimating it with few residuals will cause problems or will deteriorate
estimates. The following table describes the amount of successes I observed for the

probit, at convergence, for 1000 simulations:

min  1°% quartile median mean 37 quartile max

4 282.8 415 403.4 540 954.0
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Thus, at convergence, I always observe at least 2 successes; moreover, I do not
face the problem of estimating a zero probability for the probit or the problem of
lack of data for the regression density estimation.

The final Simulated Log Likelihood of the model is given by the following
formula:

SLL(ﬁ, ﬁrega Z|Y7 K“ega X7 J7 Xreg) =

Zlog(

Tegﬁf‘eg + :ue( lv) 5 6( lyi) )) (321>

Where:

B} := number of success in i'* probit simulation

3.1.5 Estimation with Simulation - Modified Approach

The method that introduced in the previous section is intuitive and math-
ematically feasible, however, there are two drawbacks: (1) That by assuming the
sup-sample of the error terms in regression is normally distributed may not reveal
the true distribution (2) The computational error in the estimation accumulates
with both the simulation in probit and re-sampling the error terms in regression.
These problems might result in bias of the estimated coefficients thus worse goodness
of fit.

Here I adopt the second form of the joint probability function (equation 3.11):
P(Y.Yyey) = P(Yreg) P(YVicy) (3.22)

In a multivariate normal distribution, if (A4,B) follow a multivariate normal
distribution with mean g and variance 3::
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]
=2 =

Y =
o1 Y22

(3.24)

(3.23)

then (A|B = By) follows a multivariate normal distribution with mean and

variance
Ha = p1+ 21222_21(31 — p2)

Ya=31 — 212350 T

Back to the problem,

€ 0 Eisc 2J'L’scre
3l [ )

)
€reg 0 reg,disc g

P(Y,ey) = dlerr|p =0, o =o? )

reg

~

where err = Y,y — Y,y and

P Yoeg) = [ 1T+ 8y <0 V5 # 9)0(@)de,

where, ¢(€) is the density function of a multivariate distribution and

reg
Edisc 2disc
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



. 1 &
P(Y[Yreq) = ZI V}y + Egy <0 Vj#y) (3.31)
1:1

Z:dzsc ,reg (

Where €; ) is a draw from a multivariate normal with mean (0+ err—0)

disc

) )
2 reg.dise®dise:res gnd B ig the number of simulations.

and variance o,,, — S

Then, the final Simulated Log Likelihood of the model is given by the following
formula:

SLL(B7 Brega Z|Y’ }/rega X’ J’ Xreg) -

Z log ( X7 Breg, 0 Eeg)> (3.32)

Where:

B? := number of success in ' probit simulation

3.1.6 Estimation with Numerical Computation

The modified estimation method with simulation greatly reduces the compu-
tational errors and bias because we know the exact distributions of P(Y,.,) and
conditional probability P(Y'|Y,¢,), however, the accuracy of the estimated coeffi-
cients is highly depended on the draws from the simulation and it has very high
computational cost when the number of draws increases.

In order to investigate the problems from the simulation, I also adopted a
numerical method to compute the multivariate normal probabilities, which is devel-
oped by [Genz, 1992]. Genz (1992) proposed a transformation of multivariate normal

probability function that simplifies the problem and places it into a form that allows
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efficient calculation using standard numerical multiple integration algorithms. The

method is explained in detail as following.

Numerical computation of multivariate normal probabilities ( [Genz,
1992])
Given the multivariate normal distribution function

F(a b) e—%9t2_19d6<333)

o b L
E| ar Jaz  Jam
where 6 = (01,6s,...,0,,)" and X is an m X m symmetric positive definite

covariance matrix.

A sequence of three three transformations are used to transform the original inte-
gral into an integral over a unit hyper-cube. This sequence begins with a Cholesky
decomposition transformation # = Cy, where CC" is the Cholesky decomposi-
tion of the covariance matrix ¥. Now #'X( — 1)§ = y!C*C~'C~'Cy = y'y, and

df = |C|dy = \E\%dy. Since a < § = C'y < b implies (a; — Z;;ll cijyi)/ci < yi <

(b — X020 cijyy) /cii for i = 1,2, ..., m, we have
1 b, ) B H@ieeymet) 42,
F(a,b) = 7/ I e—y%../ T gy (3.34)
v/ (2m)m) Jai @l (1Y —1)

with @} (y1, ..., yi1) = (@i—X021 ¢iy;) /¢ and U (y1, .., i) = (=32 cijy) /i

Now each of the ,;’s can be transformed separately using y; = ®(2;), where

()= /_ g (3.35)



This is the standard univariate normal distribution. After these transforma-

tions, F'(a,b) becomes

em (21, 2m—1)
F(a,b) / / / dz (3.36)
d1 d2(z1 Zm—l)

m -----

with di(Zl, ceey Zi—l) = @((az— i‘:l cijéfl(zj))/cii) and 61‘(21, PN Zi—l) = (I)((bz—

7=1

=1 @ (%)) /ea)-

The integrand in this form is much simpler than the original integrand. The
integration region is more complicated, however, and cannot be haandled directly
with standard numerical multiple integration algorithms. A solution to this problem
is to put the integral into a constant limit form using z; = d; + w;(e; — d;). After

this final set of transformations,

1 1 1
Fa,b) = (e — dy) /O (3 — dy)... /0 (em — dum) /O d(w) (3.37)
with d; = ®((a; Z; L Ci @ (d+w;i(ej—d;))) /i) and e; = P((b; Z; Lo @ d+
wj(e; — dy)))/cii)-
The innermost integral over w,, can be done explicitly because d,, and e,, have
no dependence on w,,, so the complete sequence of transformations has reduced the

number of integration variables by one.

Estimate the discrete continuous model with numerical computation

Recall that the likelihood of one observation is:
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P Yoeg) = [ 15+, <0 V) # 9)0l&,)d8, (3.38)

After taking a few transformations:
P(Y|Y,eq) = /kal I(&, < _‘7jy Vi # y)p(€y)déy

_Vly _‘7231 —‘7(k—1)y _ —
= /_ /_ /_ ©(€,)dE,

This distribution function can be solved by Genz’s method described above,

thus no simulation is needed.

3.1.7 Normalization of Covariance Matrix

In the random utility maximization theory, the absolute level of utility is
irrelevant to both the decision maker’s behavior and the researcher’s model ( [Train,
2009]). If a constant is added to the utility of all alternatives, the alternative with
the highest utility does not change. In other words, ”"Only differences in utility
matter” and ”The scale of the utility is arbitrary”.

The decision maker chooses the same alternative with U,,; Vj as with U,; + k
Vj for any constant k. The level of utility does not matter from the researcher’s
perspective either. The choice probability is P,; = Prob(U,; > U,; Vj # 1) =
Prob(U,; — Uy,; > 0Vj # i), which depends only on the difference in utility, not its
absolute level. When utility is decomposed into the observed and unobserved parts,
P,; = Prob(e,; — €n; > Vi — Vyj Vi # i), which also depends only on the difference.

The fact that only differences in utility matter has several implications for the
identification and specification of discrete choice models. In general it means that
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the only parameters that can be estimated (that is, are identified) are those that
capture differences across alternatives.

Similarly, the scale of the utility does not matter because the utility of each
alternative can be multiplied by a (positive) constant without changing which al-
ternative has the highest utility.

In logit and nested logit models, the normalization for scale and level occurs
automatically with the distributional assumptions that are placed on the error terms.
As a result, normalization does not need to be considered explicitly for these models.

With probit models, however, normalization for scale and level does not occur
automatically. The researcher must normalize the model directly.

Normalization of the model is related to parameter identification. A parameter
is identified if it can be estimated, and is unidentified if it cannot be estimated.

An example of an unidentified parameter is k in the utility specification U,; =
Vi +k+€,;. While the researcher might write utility in this way, an might want to
estimate k£ to obtain a measure of the overall level of utility, doing so is impossible.
The behavior of the decision maker is unaffected by k, and so the researcher cannot
infer its value from the choices that decision maker have made.

State directly, parameters that do not affect the behavior of decision makers
cannot be estimated. In an unnormalized model, parameters can appear that are
not identified; these parameters relate to the scale and level of utility, which do not
affect behavior. Once the model is normalized, these parameters disappear. The
difficulty arises because it is not always obvious which parameters relate to scale

and level. In the preceding example, the fact that k is unidentified is fairly obvious.
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In many cases, it is not at all obvious which parameters are identified.

In this study, the procedure proposed by [Train, 2009] has been applied to
normalize the probit model and assure that all parameters are identified.

The probit model has five alternatives, and utility is expressed as U,; = V,,; +
€nj, J = 0,1,...,4. The vector of errors is €, = (€u1,€n1, .-, €na). It is normally
distributed with zero mean and a covariance matrix that can be expressed explicitly

as

011 012 013 014 O15
022 023 024 025

Q= : : 033 034 O35 (339)
: : © 044 Oy5
055

Where the dots refer to the corresponding elements on the upper part of the
matrix. Note that there are 15 elements in this matrix, that is, 15 distinct o’s
representing the variance and covariance among the five errors. In general, a model
with J alternatives has J(J +1)/2 distinct elements in the covariance matrix of the
erTors.

To take account of the fact that the level of utility if irrelevant, I take utility
differences. Following the procedure from [Train, 2009], T take differences with
respect to the first alternative. Define error differences as €,;1 = €,; — €,1 for
J =2,3,4,5, and define the vector of error differences as €,1 = (€n21, €131, €41, €ns1)-
Note that the subscript 1 in €,; means that the error differences are against the first
alternative, rather than that the errors are for the first alternative.

The covariance matrix for the vector of error differences takes the form

o4



~N ‘933 034 935
0y = o o (3.40)
955

Where the 6’s relate to the original o’s as follows:

O = 099 + 011 — 20719

033 = 033 + 011 — 2013

O4s = O4q + 011 — 2014

Os5 = 055 + 011 — 20715
o3 = 093 + 011 — 012 — 013
oy = 094 + 011 — 012 — 014
o5 = 095 + 011 — 012 — 015
O34 = 034 + 011 — 013 — 014
O35 = 035 + 011 — 013 — 015

045 = 045 + 011 — 014 — 015

This matrix is obtained using the transformation matrix M; as Ql = MiQMj.

jo}i

-1 1 0 O
-1 0 1 0
-1 0 0 1
-1 0 0 O

022 + 011 — 2012

-1 10 0 0
-1 01 0 0
Mi=1 1901 0
-1 0 0 0 1

011 012 013 014 O15

0 1 0 0 0
0 022 023 024 025 0 1 0 0
0 033 034 035 0 0 1 0
1 744 045 0 0 0 1

755 1 0 0 0

023+ 011 — 012 —013 024+ 011 —012 — 014 O25 +011 — 012 — 015
033 + 011 — 2013 034+ 011 —013 — 014 035+ 011 —013 — 015
: 044+ 011 — 2014 045 + 011 — 014 — 015

055 + 011 — 2015
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To set the scale of the utility, one of the diagonal elements is normalized. The
top-left element of € is set to 1. This normalization for scale gives the following

covariance matrix:

1 0 034 0o
a;=| 0 s O G5 (3.41)
44 45

The 6*’s relate to the original ¢’s as follows:

« _ O33+ 011 — 20713
33 =

02 + 011 — 2012
« Oy ton—20uy
a4 =

092 + 011 — 20712
055 + 011 — 20715
092 + 011 — 20712
023 + 011 — 012 — 013

* p—
055 -

«
s 092 + 011 — 20712
05, = 024+ 011 — 012 — 014
092 + 011 — 2012
03, — 025 + 011 — 012 — 015
092 + 011 — 2012
61, = 034+ 011 — 013 — 014
029 + 011 — 2012
0z, — 035+ 011 — 013 — 015
022 + 011 — 2012
g — 045 + 011 — 014 — 015
45

092 + 011 — 20719

There are 9 elements in QT. These are the only identified parameters in the
model. This number is less than the 15 elements that enter €2. Each 6* is a function
of the ¢’s. Since there are 9 #*s and 15 os, it is not possible to solve for all the o’s
from estimated values of the 6*’s. It is therefore not possible to obtain estimates of
all the o’s.
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In general, a model with J alternatives and an unrestricted covariance matrix
will have [(J —1).J/2] — 1 covariance parameters when normalized, compared to the
J(J+1)/2 parameters when unnormalized. Only [(J—1)J/2]—1 are identified. This
reduction in the number of parameters is not a restriction. The reduction in the
number of parameters is a normalization that simply eliminates irrelevant aspects of
the original covariance matrix, namely the scale and level of utility. The 15 elements
in ) allow for variance and covariance that is due simply to scale and level, which
has no relevance for behavior. Only the 9 elements in QF contain information about
the variance and covariance of errors independent of scale and level. In this sense,

only the 9 parameters can be estimated.

3.2 Ordered Discrete-Continuous Model

3.2.1 The Discrete and Continuous Sub-models and the Integrated

Model

The ordered response structure uses latent variables to represent the vehicle
ownership propensity of the household, thus it is not consistent with utility max-
imization theory. Suppose two latent variables y; and y, represent the preference
levels for vehicle holding and vehicle usage (annual miles traveled). The ordered

discrete-continuous model can be written as:
Ya = X Ba+ €

yr:X?Br‘Fer
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where, Xy and X, are explanatory variables for the discrete choice and con-

tinuous choice, B3 and 3, are the coefficients to be estimated, e¢; and €, are the

error terms, respectively. The number of vehicles holding by the household (Y) is

determined by the value of latent variable y,, specifically:

Y =0 if yg<o
Y =1 if o < Yqg < Qg
Y =2 if ap < Yg < Q3
Y=k—1 if oap1<yq<ay
Y =k if o< Yd
Where a1, as, ..., ap_1 and «4 are the cut-points of the ordered probit equa-

tions. Similarly, in order to jointly to capture the correlation between the discrete

and continuous parts, I allow the error terms to be correlated. Thus, the error terms

follow a bivariate normal distribution:

(€q,€.) ~ BN(0,%)

Therefore, the model is composed of an ordered probit model and a regression

with unrestricted correlation between the error terms.

3.2.2 Estimation with Numerical Computation

In the bivariate normal distribution, for example, if (X,Y’) follow a bivariate

normal distribution with mean (4., it,,) and covariance 3, then (Y|X = z) follows

a normal distribution with mean p, + p(z — 1;) 2 and variance o2(1—p?).

If Y, follows an ordered probit and Y, follows a regression with both error
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terms correlated, we can write, analytically, the likelihood of one observation:

P(Yq,Yy) = P(Y;)P(Ya]Y)

or:
P(Y;,Yq) = P(Yo) P(Y;|Ya)
Both approaches are feasible but the first one use only the property mentioned

above, thus requires no numerical integration nor simulation. The second method

requires numerical integration. if:

2
ar,d

p: oroq
Z:Xéﬁd
err =Y, —ffr

Recall that ay is the k-th cut-point used in the ordered probit to discretize

the latent continuous variable, then :

P(¥;) = ¢lerr|u = 0,0 = 0?)

r

and:

P(}/dnfr) = P(Oéyd < Z4e< Oéyd+1|yr)

= P((CL = Qy, — Z) < €g < (b = Qy,+1 — Z)lY;)

Conditional on the regression, the only effect is that the error term of the
ordered probit and its variance are:
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feona = 0+ p(err — O)g—;
2

Ocond — 0-3(1 - p2)

Thus the conditional probability is simply:
P<Yd’Y;‘> = q)(b‘:u = Heond; o’ = UZond) - CD(CL‘IU = Heond; o = Ugond)

And the likelihood can be written like this :

L= ¢(6TT’M =0, 0% = U?) (q)<b|ﬂ = Mecond, o® = Ugond) - q)<a|ﬂ = Mcond, o’ = O-gond))

3.3 Endogeneity

In a statistical model, a parameter or variable is said to be endogenous when
there is a correlation between the parameter or variable and the error term. FEndo-
geneity can arise as a result of measurement error, autoregression with autocorre-
lated errors, simultaneity, omitted variables, and sample selection errors. Broadly, a
loop of causality between the independent and dependent variables of a model leads
to endogeneity.

For example, in a simple supply and demand model, when predicting the
quantity demanded in equilibrium, the price is endogenous because producers change
their price in response to demand and consumers change their demand in response
to price. In this case, the price variable is said to have total endogeneity once the
demand and supply curves are known. In contrast, a change in consumer tastes or

preferences would be an exogenous change on the demand curve.
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The problem of endogeneity occurs when the independent variable is correlated
with the error term in a regression model. This implies that the regression coefficient
in an Ordinary Least Squares (OLS) regression is biased, however if the correlation
is not contemporaneous, then it may still be consistent. There are many methods of
overcoming this, including instrumental variable regression and Heckman selection
correction.

In conclusion:

e An endogenous variable is one that is correlated with e;

e An exogenous variable is one that is uncorrelated with e.

Generally, Instrumental Variables (IV) estimation is used when the model
has endogenous variables. IV can thus be used to address the following important

threats to internal validity:

e Omitted variable bias from a variable that is correlated with explanatory vari-

ables (X) but is unobserved, so cannot be included in the regression;

e Simultaneous causality bias (endogenous explanatory variables; X causes Y,

Y causes X);

e Errors-in-variables bias (X is measured with error)

Instrumental variables regression can eliminate bias from these three sources.
An instrumental variable, Z is uncorrelated with the disturbance e but is
correlated with X. With this new variable, the IV estimator should capture only
the effects on Y of shifts in X induced by Z whereas the OLS estimator captures
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not only the direct effect of X on Y but also the effect of the included measurement
error and/or endogeneity. IV is not as efficient as OLS (especially if Z only weakly
correlated with X, i.e. when we have so-called ”weak instruments”) and only has
large sample properties (consistency).

In order for a variable, z, to serve as a valid instrument for x, the following

must be true

e The instrument must be exogenous (instrument exogeneity)

Cov(z,¢) =0

e The instrument must be correlated with the endogenous explanatory variable
x (instrument relevance)

Cov(z,x) #0

One computational method which can be used to calculate IV estimates is two-
stage least-squares (2SLS or TSLS). In the first stage, each endogenous covariate in
the equation of interest is regressed on all of the exogenous variables in the model,
including both exogenous covariates in the equation of interest and the excluded
instruments. The predicted values from these regressions are obtained. In the
second stage, the regression of interest is estimated as usual, except that in this
stage each endogenous covariate is replaced with the predicted values from its first

stage model from the first stage.

e Stage 1: Regress X on all the exogenous regressors: regress X on 21, ..., Z,,

~

using OLS; compute predicted values X
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e Stage 2: Regress Y on X and other explanatory variables using OLS.

In this study, it should be noted that the cost variable in the continuous part
is estimated with an instrumental variable approach. This approach is required
because when the household chooses which vehicle(s) it owns, it effectively chooses
the operating cost of driving the selected vehicle(s) [Train, 1986]. The operating
cost (endogenous variable) is regressed on the exogenous variables; those include
household income, number of drivers, number of workers, owned or rental house,
dummy of urban area, urban size, age of the household head and the education level
of the household head. The predicted values from these regressions are obtained

and used as exogenous variables to explain the vehicle miles traveled.

3.4 Goodness of Fit Measures

In statistics, the coefficient of determination p? is used in the context of statis-
tical models whose main purpose is the prediction of future outcomes on the basis
of other related information. p? is most often seen as a number between 0 and 1.0,
used to describe how well a regression line fits a set of data. An p? near 1.0 indicates
that a regression line fits the data well, while an p? closer to 0 indicates a regression
line does not fit the data very well. It is the proportion of variability in a data set
that is accounted for by the statistical model. It provides a measure of how well
future outcomes are likely to be predicted by the model.

In this study, the log-likelihood values from different models cannot be di-

rectly compared because of the different model structure, number of parameters
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and number of observations. Therefore, we calculate the adjusted R? as follows:

A

o LL(ﬁ) — Npar

2
—1
P LL(0)

A

Where LL(/) is the log-likelihood value at convergence, LL(0) is the log-
likelihood value at zero, and n,ar is the number of parameters estimated in the
model.

A non-nested test has been also conducted for the ordered and unordered mod-
els. This test determines if the adjusted p? of two non-nested models are significantly
different. I use the same method as in Bhat and Pulugurta (1998):

"If the difference in the adjusted p? is 7, then the probability that this differ-

ence could have occurred by chance is no larger than
® {~[~2rLL(0) + (Mpar2 — Mpar1)]"" |

in the asymptotic limit. A small value of the probability of chance occurrence
indicates that the difference is statistically significant and that the model with the

higher value of adjusted likelihood ratio index is to be preferred.”
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Chapter 4
Data Sources

4.1 National Household Travel Survey (NHTS)

The main data sources used in this dissertation for car ownership modeling
are extracted from the 2009 National Household Travel Surveys (NHTS). NHTS
is conducted by the Federal Highway Administration (FHWA), the United States
Department of Transportation (U.S.DOT) and serves as the nation’s inventory of
daily travel. It collected travel data from a national sample of the civilian, non-
institutionalized population of the United States. NHTS is a microdata dataset,
which contains a total of 150,147 households, 351,275 persons, 309,163 vehicles and
1,167,321trips in the final 2009 NHTS dataset (FHWA, 2011).

The NHTS is conducted as a telephone survey, using Computer-Assisted Tele-
phone Interviewing (CATI) technology. The NHTS dataset includes all interviews
from the national sample and the Add-on partners. The weighting factors have been
adjusted to account for the oversampling in the Add-on areas.

States and MPOs have the unique opportunity to purchase samples of the
household travel survey when it is conducted, approximately every five to seven
years. These additional samples, along with random national samples collected in
the add-on area, are compiled into a cleaned geocoded database for ready application

to local planning and forecasting.
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The 2009 NHTS dataset include information on:

Household data. Relationship between household members, income, housing
characteristics, and other socio-demographic information for each memebr of

the household and for the head of the household;

Information on each household vehicle, including year, make, model, and es-

timates of annual miles traveled;

Data about drivers, including information on travel as part of work.

Data about one-way trips taken during a designated 24-hour period (the house-
hold’s travel day) including the time the trip began and ended, length of the
trip, composition of the travel party, mode of transportation, purpose of the

trip, and the specific vehicle used (if a household vehicle);

Information to describe characteristics of the geographic areas in which the

sampled household and its workplace are located;

Data on telecommuting;

Public perceptions about the transportation system:;

Data on Internet usage; and

The typical number of transit, walk and bike trips made over a period longer

than the 24-hour travel day.

The 2009 NHTS Data is organized into four different data files:
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Household Record;

Vehicle Record;

Person Record;

Travel Day Trip Record.

4.2 Vehicle Characteristics

The NHTS data does not contain the detailed vehicle information needed for
the estimation of the car type model. Vehicle characteristics are computed from
the Consumer Reports. Consumer Reports contains vehicle specification data for
models tested within the past 10 years; up to four model years are available and
classified by performance, crash protection, fuel economy, and specifications; market
value or price of each new or used car are also part of the dataset.

I collected all the vehicle specifications and price for each make, model and
year, including:

e Tested Model (i.e. 2003 SR5 4-door SUV 4WD, 4.0-liter V6, 4-speed automatic
(Toyota 4Runner))

e Price

Seating (front, rear, third)
e Engine size
e Transmission (manual or automatic)

Acceleration

0 to 30 mph, sec.

0 to 60 mph, sec.
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45 to 65 mph, sec.
Quarter-mile, sec
Quarter-mile, mph
Emergency handling

Braking

Braking from 60 mph dry, ft.
Braking from 60 mph wet, ft.
Comfort/convenience

Ride

Noise

Driving position

Seat comfort

Shoulder room, in

Leg room, in

Head room, in

Controls and display

Interior fit and finish
Trunk/Cargo Area
Luggage/cargo capacity, cu. ft.
Climate System

Fuel Economy (MPG)
Cruising range, mi.

Fuel capacity, gal.

Fuel type

Safety (Crash and rollover tests)
Specifications

Length, in.
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e Width, in.

Height, in.

Turning circle, ft.

Curb weight, Ib.

Max. load, Ib.

Typical Towing capacity, Ib.

4.3 U.S. Census TIGER/Line shapefiles

The U.S. Census TIGER /Line shapefiles contain the geographic extent and
boundaries of both legal and statistical entities. The 2009 data on Census Tract level
is obtained for the State of Maryland, Virginia and District of Columbia because
the main data source (NHTS data) was conducted in 2009 and was geo-referenced

on Census Tract level.

4.4 General Transit Feed Specification (GTFS)

The General Transit Feed Specification (GTFES) , which was originally de-
veloped by Google and Portland TriMet defines a common data format for public
transportation schedules and the associated geographic information. The GTFS is
an open format and it is composed of a series of text files; each file contains a partic-
ular aspect of the transit service: stops, routes, trips and other schedule data. The
GTFS data for the Washington D.C. Metropolitan area is obtained from the Wash-
ington Metropolitan Area Transit Authority (WMATA). The database consists of

the following files:
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Agency: contains the transit agency id, name and website.

Stops: individual locations where vehicles pick up or drop off passengers. The
data contains information on stop id, stop name, latitude and longitude and

stop location.

Transit Routes: a route is a group of trips that are displayed to riders as a
single service. The data contains information of route id, route name, route

type (i.e., subway, rail and bus), etc.

Trips for each route: a trip is a sequence of two or more stops that occurs at
a specific time. The data contain information on the trip id, trip name, trip

head sign, and the corresponding route id and service id.

Stop times: times that a vehicle arrives at and departs from individual stops

for each trip.

Calendar dates: specify when service starts and ends, as well as days of the
week when the service is available. The data contains information on the

service id and service dates.

Shapes: rules for drawing lines on a map to represent a transit organizations

routes.

The data structure of GTFS is presented in Figure 4.1.
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I:/Dissertation/dissertation/AlicglatexThesisNov2013/GTSF_strucH

Figure 4.1: Data Structure of GTFS Data

4.5 American Community Survey (ACS)

The American Community Survey (ACS) is an ongoing statistical survey by
the U.S. Census Bureau, sent to approximately 250,000 addresses monthly (or 3
million per year). It regularly gathers information previously contained only in the
long form of the decennial census. It is the largest survey other than the decennial
census that the Census Bureau administers.

Every 10 years since 1790, Congress has authorized the government to conduct
a national census of the U.S. population, as required by the U.S. Constitution. In
the twentieth century, the questions were divided between a short and long form.
Only a subset of the population was required to answer the long-form questions. The
most recent census consisted of a short form, which included basic questions about
age, sex, race, Hispanic origin, household relationship, and owner/renter status.

After the 2000 Census, the long form became the ACS and will continue to collect
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long-form-type information throughout the decade. The ACS includes not only
the basic short-form questions, but also detailed questions about population and
housing characteristics. It is a nationwide, continuous survey designed to provide
communities with reliable and timely demographic, housing, social, and economic
data every year [U.S. Census Bureau, 2013].

The primary benefit of ACS is that the data are being collected and will
be disseminated more frequently than the once-in-10-years decennial census Long
Form data. Data users will no longer need to rely on aging snapshot estimates
of population and housing characteristics. Instead, they will be able to use more
recently collected data whose accuracy and relevance will not depend on how closely
the analysis year conforms to the decennial census year. In addition, the increased
frequency of data releases will enable data users to analyze trends over shorter time
periods [Transportation Research Board, 2007].

Particularly, The American Community Survey (ACS) Public Use Microdata
Sample (PUMS) files show the full range of population and housing unit responses
collected on individual ACS questionnaires. The PUMS files contain records for a
subsample of ACS housing units and group quarters persons, with information on
the characteristics of these housing units and group quarters persons plus the people
in the selected housing units.

In terms of the geo-reference information, Region, Division, State, and Pub-
lic Use Microdata Areas (PUMASs) are the only geographic areas identified in the
ACS PUMS. Public Use Microdata Areas (PUMAS) are non-overlapping areas that
partition each state into areas containing about 100,000 residents and are the most
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detailed geographic areas available in the ACS PUMS files [U.S. Census, |.
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Chapter 5
Comparison of Unordered and Ordered Discrete-Continuous Models

5.1 Introduction

This comparison is motivated by the fact that ordered discrete-continuous
models (Fang, 2008) are relatively easier to estimate when compared to unordered
model structure; however the assumption that vehicle ownership decisions are mea-
sured by a single latent variable might affect the goodness of fit of the model and
its performance in model application and policy analysis.

In this chapter, I apply the unordered and ordered discrete-continuous models
for the Washington D.C. Metropolitan area with the 2009 NHTS and vehicle charac-
teristics data. I assume that the choice set of the vehicle holding sub-model includes
zero, one, two, three and four or more vehicles. The types of vehicle owned by each
household are categorized by classes and vintages. This classification is based on
the classes proposed in the 2009 National Household Travel Survey (NHTS) and in
the 2009 National Transportation Statistics (NTS); it is mainly based on vehicle
size, function, and brand loyalty (domestic or imported). Therefore, each household
is assumed to have a choice among 12 classes and 10 vintages; 120 alternatives are
in the final choice set for vehicle type and vintage sub-model. The twelve vehicle
classes are: (1) small domestic car; (2) compact domestic car; (3) mid-size domestic

car; (4) large domestic car; (5) luxury domestic car; (6) small import car; (7) mid-
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size import car; (8) large import car; (9) sporty car; (10) minivan/van; (11) pickup

trucks; (12) SUVs. The 10 vintages are pre-1999 and 2000 through 2008.

5.2 Data Statistics

The primary data source used in this case study is the 2009 National Household
Travel Survey (NHTS). The comparison analysis is restricted to the Washington
D.C. Metropolitan area, for which 1,420 observations in the dataset. Household
characteristics, land-use variables and information on each household vehicle, are
the main variables extracted from the original dataset. Table 5.1 lists the basic
statistics relative to the household sample. For the Washington D.C. Metropolitan
area, the average vehicle ownership per household is 1.87 in 2009. The percentage
of the households without a car is 7.28%, 26.72% own one vehicle, 43.49% own
two vehicles, 17.03% own three vehicles and 5.48% own four or more vehicles. The
average household income increases for household having up to two cars, but remains
stable for household with 3 or 44 cars. The number of cars in the household is highly
associated with the number of adults and number of drivers in the family. About half
of the households who do not have a car do not own a house. The land use variables,
such as dummy of urban area, urban size, population density and housing density;,
greatly influence the household car ownership decisions. The households with more
cars are generally located in less dense or more rural area. In the Washington
D.C. metropolitan area, the average age of the household head is around 55 years

old in 2009, which is somehow an indication of the aging society happening in
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western countries. Households with zero or one car have older household head. The
average education level in this area is college/bachelors degree; however, households
without a car have much lower education level. The average annual mileage traveled
by a household is around 20,000 miles per year. The mileage traveled increases

accordingly with the household car ownership.
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In terms of vehicle class and vintage (Figure 5.1 and Figure 5.2), for the house-
holds with only one car, about half of the vehicles are imported cars. Households
with more than one car own more vans. There are much more pickup trucks for the
households with three or more cars. The average age of the cars in the study area is
8.6 years old, the majority of the cars are between 4 and 10 years old. The house-
holds with more cars tend to hold older cars in average, since the average vehicle
age in 1-car and 2-car households is around 8 to 8.5 and more than 10 years old for
the 4+ car households.

The 2009 NHTS data does not include information on vehicle price, fuel
efficiency, seating, engine, and other vehicle characteristics by vehicle make and
model, which are important attributes for the analysis of factors associated to
vehicle type decisions. The vehicle characteristic data were obtained from the
Consumer Reports. Consumer Reports provide the vehicle specification data on
models tested within the past 10 years, having up to four model years by perfor-
mance, crash protection, fuel economy, and specifications. Consumer Reports also
indicates the sale price or the price of each new or used car. Then we aggregated all
the information we collected by 12 vehicle classes and 10 vintages. Therefore, there
are totally 120 alternatives (12 classes * 10 vintages), with detailed and aggregated

vehicle specification and price information.
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B (2) compact domestic car
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Figure 5.1: Distribution of vehicle classes
Average vehicle age
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Figure 5.2: Vehicle age profile
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5.3 Calibration of the Logsum

We first calibrate a multinomial logit model for the vehicle type submodel. The
number of alternatives for the vehicle type choice increases exponentially with the
number of vehicles in the household, for example, a family which has three cars would
have 120 choices in total. Because of the large number of alternatives, estimation
of this model on the full set of alternatives is considered infeasible. We take the
advantage of ITA property of multinomial logit model. The vehicle type sub-model
is then estimated on a subset of alternatives which includes the households chosen
alternative and 20 alternatives randomly selected from the 120 alternatives. Tests
( [Train, 1986]) indicate that, once the number of alternatives exceeds a minimal
threshold, the estimated parameters are not sensitive to the number of alternatives
included in the choice set. Results from the class/vintage sub-model are reported
in Table 5.2.

The vehicle holding and vehicle type sub-models are then linked using a log-
sum variable derived from the calibration of the multinomial logit for the vehicle

type/vintage decisions.
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Generally households prefer vehicles with more shoulder room and bigger lug-
gage space; moreover, they are more likely to own a car type for which more choices
(make and model combinations) are available. The variable of difference of MPGs
is a proxy to test whether the households prefer cars with similar engine size or not.
The positive coefficient indicates that households with multiple cars have higher
tendency to own cars with different horsepower. However, when it comes to the
households with four or more cars, this factor becomes less significant. Households
with only one car do not prefer foreign cars, while two-car households prefer both
domestic cars. Households are in general holding older vehicles. Households are
more likely to own only one car if there are less than three members in the family,
whereas households with more than three members prefer to own SUVs. For the
two-car households, the ones with three or more household members prefer to own
one SUV /pickup/van rather than two autos. Similarly, the households with three
cars are more likely to own a pickup or a van. However, households with four or
more cars tend to own at least one pickup, but not SUVs or vans; they also have
higher tendency of owning a sporty car. The coefficients related to vehicle purchase
price are negative and significant; their magnitude is decreasing with the increase
of household income. The lower income group is more sensitive to the vehicle pur-
chase price, while higher income group are found to be less sensitive to vehicle price
(as expected). The logsum of the class/vintage submodel is then calculated and

included into the discrete continuous model.
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5.4 Estimation Results and Comparison

The unordered discrete-continuous (UDC) model with both simulation and
numerical computation and the ordered discrete-continuous (ODC) model have been
estimated with the 2009 NHTS data. Estimation results of the three models are
presented in Table 5.3.

All the estimated coefficients are significant and have the expected sign, with
only a few exceptions. Positive coefficients of household income indicate that house-
holds with higher income have higher tendency to own more vehicles and drive
more. The negative coefficient in the one-car household alternative means high-
income group are less likely to own only one car. In the unordered models, the
magnitude increases as the number of vehicles in the household increases. The co-
efficients of number of drivers in the household are very significant, indicating that
this factor has high effects on how many cars a household owns. This coefficient is
positive in the ordered structure, and also positive in the unordered structure with
an exception for the one-car households. The negative coefficient for one-car house-
hold alternative indicates that, the more drivers in the household, the less likely
they own only one car. Similarly, households with female household head are less
likely to own more cars.

Urban size is the size of urban area in which home address is located, in which
the lower value represents urban areas and the higher value represents rural areas.
Residential density is an indication of the built environment around the household

location. The coefficients of these two variables are significantly negative (with a
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few exceptions in the one-car household alternative) and have higher magnitude as
the households own more cars in the unordered structure. Both of the coefficients
in the ordered and unordered structures infer that the households located in highly
residential areas are more likely to own fewer cars and drive less while the households
located in a more rural area have higher probability of having more cars and drive
more.

The driving cost is measured by dollars per mile. As expected, the coefficient
of driving cost is significant and negative, indicating that higher driving cost induces

the households to drive less.
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The covariance matrices of the models are reported below. In the unordered
discrete-continuous models, the bottom line of the matrix explains the correlation
between the mileage traveled and the utilities of the vehicle holding alternatives. The
positive values mean higher demand on mileage usage increase the utility of owning
two or more cars in the household. In the ordered discrete-continuous models, the
correlation between the number of vehicles and mileage traveled is 0.5, which means

that the demand of vehicle usage increase the propensity of owning more cars.

200 —1.14 —131 —1.30 —0.27
—1.14 163 037 0.76 0.10
S, =] —1.31 037 237 168 0.67
~1.30 0.76 1.68 1.36 0.46
-0.27 0.10 0.67 0.46 1.23

2.00 -10.34 -10.24 —-10.57 —-0.73
—10.34 58.26 61.44 61.57 4.46
So=| —10.24 6144 6864 67.11 5.21
—-10.57 6157 67.11 66.34  5.00
-0.73 4.46  5.21 5.00 1.25

¢ _ ( 1.00 050
371 0.50 1.56
2.00 3.31 3.95 343 148
3.31 12.80 5.69 4.64 2.38
S,=1 395 5.69 11.67 12.19 3.43

3.43 4.64 1219 36.93 4.56
1.48 2.38 3.43 4.56 1.24

5.5 Application Results and Comparison

The models estimated have been applied to test policy scenarios; the variables
of interest are density and driving cost. The following three scenarios have been
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tested:

e Household income: 10% decrease, 5% decrease, 5% increase and 10% increase

e Residential density: 50% decrease, 25% decrease, 25% increase and 50% in-

crease

e Driving cost: 50% decrease, 25% decrease, 25% increase and 50% increase

Results in Table 5.4 and Table 5.5 show the effects of those variables on both
vehicle holding and mileage traveled. It appears that results are consistent be-
tween ordered and unordered structures except for the ”household income” sce-
narios. There are slight effects on vehicle holding changes with respect to all the
scenarios, except that a 10% change of household income level in ordered discrete
continuous model will result in up to 4.23% change in vehicle holding stock. Changes
in fuel cost have great effects in increasing/reducing vehicle usage. For example, ve-
hicle usage will be reduced by around 17% - 20% when the driving cost is increased
by 50%. However, even when the density increased by 50% people only cut less than
6% in their car use. The observations from the ”density” scenarios are consistent

with the findings in the previous studies (i.e., [Fang, 2008]).
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5.6 Chapter Summary

In this chapter, both ordered and unordered models are applied to estimate a
joint model of household vehicle holding and mileage traveled on data extracted from
the 2009 NHTS and representative of the Washington metropolitan area. Variables
related to household characteristics, land use and driving cost have been estimated
for both datasets and result to significantly affect decisions regarding the number
of cars in the household and annual mileage driven. Although coefficients are not
directly comparable, the results from the model application to policy testing show
that both density and driving costs do not affect much the vehicle holding under
analysis. Changes in driving costs only marginally affect the number of cars but
greatly affect the AMT in households residing in the Washington metropolitan area.

In terms of the methodological comparison, the advantage of the ordered struc-
ture over the unordered is that it offers a closed mathematical form for the choice
probabilities and does not require simulations for the estimation, that are proven
to be quite difficult in probit model calibration. However, the unordered discrete-
continuous models always performs better in terms of goodness of fit statistics when
compared to ordered discrete-continuous models, which is consistent to previous
results obtained in the literature and related to vehicle holding decisions. Finally,
although the superiority of discrete-continuous unordered probit over ordered probit
might be case specific, this analysis confirms once again that the unordered struc-
ture is better suited for vehicle holding and use decisions even in the context of joint

discrete-continuous decisions.
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Figure 5.3: Application results from the unordered discrete continuous model
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Figure 5.4: Application results from the ordered discrete continuous model
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Chapter 6
National Model of Vehicle Ownership and Usage

6.1 Introduction

In the literature, there are a large number of studies that have developed
vehicle ownership models for large cities and metropolitan areas (See Chapter 2).
The majority of them are based on household travel survey data. However, very few
studies conducted such research for the entire U.S., especially in more recent years.
The barriers include the difficulties to capture demand levels for different population
segments across the nation, and the poor data sources for small cities/areas.

This chapter develops a series of vehicle ownership and usage models for the
entire United States, which is motivated by the lack of national vehicle ownership
models in the literature, and the needs to determine vehicle/driving demand in small
areas with limited data availability.

The models are estimated for four Census Regions (Northeast, Midwest, South
and West; Figure 6.1) and 3 area types (urbanized area, urban clusters and rural).
The categories are selected according to the U.S. Census definitions. Then the
models are applied to small areas using ACS PUMS data (2009 1-year estimate),
which is a new data source from the U.S. Census Bureau and was firstly implemented
in 2005. The idea developed in this chapter is inspired by the most recent studies on

model /data transferability and by the need to integrate different sources of data for
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transportation analysis. For example, Hu et al. (2007) combined the 2001 NHTS
data and 2000 census data to provide estimates of regional or local travel, including
vehicle trips (VT), vehicle miles of travel (VMT), person trips (PT), and person
miles of travel (PMT) by trip purpose and a number of demographics ( [Hu et al.,
2007]).

The NHTS data contains a wealth of nation’s daily travel information, how-
ever, it is not as rich as ACS data in terms of the sample size. The NHTS is
only conducted every 5-7 years whereas ACS is collected continuously. In fact, the
NHTS data were not recommended for analysis of categories smaller than the com-
bination of Census division, MSA size, and the availability of rail. In addition, some
metropolitan areas conduct their own household travel surveys, but many lack the
necessary resources to collect local data.

In this analysis, the entire NHTS data set and model estimations are performed
for 12 groups, composed by 4 Census Regions (Northeast, Midwest, South and West;
Figure 6.1) and 3 area types (urbanized area, urban clusters and rural). As defined
by the U.S. Census Bureau, urban areas are contiguous census block groups with
a population density of at least 1,000 /sq mi with any census block groups around
this core having a density of at least 500 /sq mi. Urban areas are delineated without
regard to political boundaries. The census has two distinct categories of urban areas.
Urbanized Areas have populations greater than 50,000, while Urban Clusters have
populations of less than 50,000 but more than 2,500. An urbanized area may serve
as the core of a metropolitan statistical area, while an urban cluster may be the

core of a micropolitan statistical area ( [U.S. Census, |).
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In the NHTS data, Region, Division, State and the area type indicators are de-
rived from the household’s home address (confidential) and the U.S. Census bound-
ary files. On the other side, Region, Division, State, and Public Use Microdata

Areas (PUMAS) are the geographic areas identified in the ACS PUMS files.

I:/Dissertation/dissertation/AlicelLatexThesisNov2013/us_regions. jpg

Figure 6.1: United States Regions (Census Bureau)

6.2 Estimation Results with the NHTS Data

With the 2009 NHTS data, twelve discrete-continuous models for household
vehicle ownership and usage are estimated (combination of 4 Regions and 3 area
types), and the results are shown in Table 6.1. The explanatory variables in the

final model specification are: household annual income level, household size, number
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Figure 6.2: United States Urban Area (Census Bureau)
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of workers in the household, dummy of having child(ren), dummy of owned home,
residential density, and driving cost ($/mile), which are common variables (except
density and cost) between NHTS and ACS data. Almost all of the coefficients are
significant at 95% level and have the expected signs, with only a few exceptions.
Although the magnitudes cannot be compared directly, it still can be seen that there
are diversities among different Regions and area types. The models are then applied

and validated; results are presented in the next section.
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200 6.25 931 898 146
6.25 67.98 129.25 36.71 4.91
S NBarban = | 931 129.25 332.54 61.85 7.63
8.98 36.71 61.85 89.06 6.73
146 491 763 6.73 1.06

200 8539 1258 11.78 148
8.59 7233 128.74 89.07 6.09
i)NEﬁubwban = | 12.58 128.74 377.38 60.82 8&.79
11.78 89.07 60.82 204.98 8.20
1.48  6.09 8.79 8.20 1.10

2.00 5.05 5.69 10.59 1.43
5.05 8250 84.65 104.52 6.84
iNEmml =] 5.69 84.65 89.30 105.84 7.35
10.59 104.52 105.84 332.62 11.36
143 6.84 735 11.36 1.18

200 7.37 853  9.69 151
7.37 7810 89.20 68.67 6.54
S MWarban = | 853 89.20 117.14 53.37 7.55
9.69 68.67 53.37 161.23 7.96
151 654 755 7.96 1.16

2.00 6.55 5.77 6.44 1.06
6.50 22.20 22.37 24.84 3.57
ZA)MWMZ,WM = | 5.77 2237 39.18 38.60 4.62
6.44 24.84 38.60 43.48 5.01
1.06 3.57 4.62 5.01 1.22

2.00 3.24 343 474 148
3.24 13.36 29.38 30.17 3.33
S MWaeura = | 3.43 29.38 196.83 131.85 8.23
474 30.17 131.85 101.17 7.51
148 333 823 751 131

2.00 593 16.64 1220 1.51
5.93 97.61 30.17 118.66 6.13
f)swm” = | 16.64 30.17 190.82 125.52 10.84
12.20 118.66 125.52 199.50 9.69
1.51  6.13 10.84 9.69 1.22

200 887 1280 1990 1.59
8.87 290.51 215.82 359.41 9.16
ﬁ)gsubmban = | 12.80 215.82 262.21 292.96 11.42
19.90 359.41 292.96 881.16 18.09
1.59 916 1142 18.09 1.28
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200 —882 —-1.84 —-9.54 —-0.35
—8.82 47.61 14.77 57.01 4.02
igmml =| —1.84 14.77 4522 722 5.11
—9.54 57.01 7.22 8125 5.28
—-0.35 4.02 5.11 528 1.32

2.00 —-0.60 —0.57 0.68 1.18
—0.60 24.59 25.61 24.81 3.01
ZA]W,Mban = | —0.57 25.61 27.17 29.50 3.22
0.68 2481 29.50 53.94 4.33
1.18  3.01 322 433 1.18

2.00 345 5.37 549 1.56
) 3.45 17.76 27.14 40.06 3.24
YW, suburban, = | 9.37 27.14 176.57 143.66 6.49

5.49 40.06 143.66 156.55 6.76
1.56 3.24 6.49 6.76  1.27

2.00 4.98 7.1 801 1.29
4.98 13.83 21.37 24.18 3.07
Swowar = | 711 21.37 40.02 41.96 4.48
8.01 24.18 41.96 48.89 5.03
129 3.07 448 503 1.29

6.3 Application with ACS Data for Local Counties/Areas

6.3.1 County/Area Descriptions

The estimated models are then applied for small areas with ACS PUMS data.
Six counties/areas are random selected, which are San Diego County in California
(Figure 6.3), Queens in New York (Figure 6.4), Nassau County in New York (Figure
6.5), PUMA 1900 area (5 counties) in Texas (Figure 6.6), Fairfax County in Virginia

(Figure 6.7) and Henrico County in Virginia (Figure 6.8):

e San Diego County, CA - West, Urban
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Although California has a large dataset from the statewide household travel
survey, it is still worth to examine the performance of the national models on
a metropolitan area with big cities; here we have selected San Diego County

to perform this analysis. The basic demographic information and sample size

from NHTS and ACS data are:
Total area: 4,525.52 mile?
Total population: 3,095,313 (2010 Census)
Population density: 680/mile?
ACS : 11653 obs.

NHTS: 3712 obs.

Queens, NY - Northeast, Urban

Queens Borough is a highly populated area in New York City, which is
the most dense city in the U.S. People in this area may have different travel
behavior than those residing in other regions. Meanwhile, this area has many
immigrants from all around the world which may affect their travel choices as
well. Again, although the New York City has good household travel surveys,
it is still good to test the national models for this extremely dense area. The
basic demographic information and sample size from NHTS and ACS data

are:
Total area: 178.28 mile?

Total population: 2,272,771 (2010 Census)
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I:/Dissertation/dissertation/AlicelLatexThesisNov2013/san_diegq

. JPg

Figure 6.3: Maps of San Diego County, CA
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Population density: 21,116 /mile?
ACS : 6985 obs.

NHTS: 251 obs.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/queens. jpg

Figure 6.4: Map of Queens, NY

e Nassau County, NY - Northeast, Urban

Nassau County is located next to the east bounder of Queens in New York

and many households in this county have jobs in New York City. This county is
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still within the New York metropolitan area and this application is to validate
the different travel styles within the same metropolitan area but different
counties, thus validate the effectiveness of the national models. The basic

demographic information and sample size from NHTS and ACS data are:
Total area: 453 mile?
Total population: 1,339,532 (2010 Census)
Population density: 4,669 /mile?
ACS : 4875 obs.

NHTS: 265 obs.

PUMA 1900, TX - South, Rural

This area includes Hill County, Navarro County, Limestone County, Free-
stone County and Navarro County in Texas. This area is very scattered and
it is located at roughly the middle point between Austin and Dallas - two
big metropolitan areas in Texas. The 2009 NHTS only has less than 100 ob-
servations in this area, however ACS has around 900 observations. This is
a good example that local household travel survey is not available and the
national data sample has very limited observations. The basic demographic

information and sample size from NHTS and ACS data are:

Hill County, TX Total area: 986 mile* Total population: 35,089 (2010

Census) Population density: 34/mile?
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I:/Dissertation/dissertation/AlicelLatexThesisNov2013/nassau. j
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Figure 6.5: Maps of Nassau County, NY
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Navarro County, TX Total area: 1,086 mile? Total population: 47,735

(2010 Census) Population density: 18/mile?

Limestone County, TX Total area: 933 mile? Total population: 23,384

(2010 Census) Population density: 23/mile?

Freestone County, TX Total area: 892 mile? Total population: 19,816

(2010 Census) Population density: 21/mile?

Navarro County, TX Total area: 779 mile? Total population: 17,866 (2010

Census) Population density: 57/mile?
ACS : 894 obs.

NHTS: 93 obs.

e Fairfax, VA - South, Urban

Fairfax County is located in the Washington DC metropolitan area and west
to the District of Columbia. It is one of the counties that have the highest
household income in the country. Many people live in the Fairfax County
commute to DC. The basic demographic information and sample size from

NHTS and ACS data are:
Total area: 407 mile?
Total population: 1,118,602 (2010 Census)
Population density: 2,738.5/mile?

ACS : 4033 obs.

109



I:/Dissertation/dissertation/AlicelLatexThesisNov2013/tx1900. jy

bg

Figure 6.6: Maps of PUMA Area 1900, TX
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NHTS: 205 obs.

I:/Dissertation/dissertation/AlicelLatexThesisNov2013/fairfax. jpg

Figure 6.7: Maps of Fairfax County, VA

e Henrico, VA - South, Urban

Henrico County is a portion of the Richmond Metropolitan area, surround-
ing the City of Richmond. Henrico is one of the oldest counties in the United
States. The basic demographic information and sample size from NHTS and

ACS data are:
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Total area: 245 mile?

Total population: 314,881 (2010 Census)
Population density: 1,323 /mile?

ACS : 1274 obs.

NHTS: 379 obs.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/henrico. jpg

Figure 6.8: Map of Henrico County, VA

Figure 6.9 present some basic statistics from the ACS PUMS files. Fairfax
County has the highest average household vehicle ownership, whereas the average
number of vehicles per household in Queens is less than 1. Generally, the households

in Fairfax County and Nassau County have bigger household size, more workers and
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children and much higher income. On average, about three-quarters household own
their home, while half of the households in San Diego County and Queens rent their

home.

I:/Dissertation/dissertation/AliceLatexThesisNov2013/asc_statistics. jpg

Figure 6.9: Data Statistics from American Community Survey
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6.3.2 Application Results

Figure 6.10 to Figure 6.15 presents the application results of the national mod-
els on vehicle ownership and usage. Generally, the models are able to replicate the
actual values in each county/area. The model slightly underestimates the average
vehicle ownership and mileage in San Diego County. For Queens, NY, the model
overestimates the portion of 0-car households thus it overestimates the average num-
ber of vehicle per household. Nevertheless, the prediction of mileage is close to the
actual value. The model slight underestimates the average household vehicle owner-
ship but overestimates the average annual mileage per household. The estimates for
the PUMA 1900 area in Texas are very close to the actual numbers, with the excep-
tion of small shifts in the share of the alternatives. The application results for the
Fairfax County shows that the model underestimates the share of 1-car households
but overestimates the share of 2-car households, and it overestimates the average
mileage for this county. The predictions for the Henrico County are fairly close to
the real values, both for the vehicle ownership and the annual mileage. Finally,

Figure 6.16 summarizes the application results for the six counties/areas.

6.4 Chapter Summary

This chapter develops a system of national vehicle ownership models - twelve
discrete-continuous models for the United States. The models are estimated using
2009 NHTS data for each combination of four regions (Northeast, Midwest, South

and West) and three area types (urban, suburban and rural). In addition, the
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Figure 6.10: Application results of San Diego County, CA
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Figure 6.11: Application results of Queens, NY
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Figure 6.12: Application results of Nassau County, NY
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Figure 6.13: Application results of PUMA area 1900, TX
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Figure 6.14: Application results of Fairfax County, VA
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Figure 6.15: Application results of Henrico County, VA
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Figure 6.16: Summary of applications for the six counties/areas
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model is applied to six counties/areas using the 2009 ACS PUMS data. Although
some deviations from the real values are observed, the integration of NHTS and
ACS data is valid, and the results from the six applications demonstrate the ability
of the national models in providing accurate estimates for various city/area types.
The national models are valuable planning tools both at the national level and for
small areas, especially those lacking local household travel survey data. The results
further validate the proposed discrete-continuous framework for modeling household

vehicle ownership decisions.
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Chapter 7
Measuring Transit Service Impacts on Vehicle Ownership and Usage

7.1 Introduction

A recent article published in the press by Addison [Addison, 2010] shows that
Americans scrapped 14 million cars in 2009, while they only bought 10.5 million
new ones. The 2009 drop was the first large decline in vehicle ownership registered
in the past 50 years. Although the recession probably played a major role, this
decline might be also due to the introduction of smart growth policies and the
consequent increase in urban density, the adoption of employer commute and flex-
work programs, the expansion of car sharing, the introduction of the Car Allowance
Rebate System (CARS), colloquially known as ”Cash for Clunkers”, and improved
rail connectivity and inter-modality. Addison also reported that the increase in the
use of public transit is one of the top ten reasons for the drop in car ownership
especially in large metropolitan areas . In February 2013, President Barack Obama
fleshed out plans to invest in public transportation and repair the nation’s aging
infrastructure. In fact, the administration has invested in more than 350 miles of
new rail and bus rapid transit, 45,621 buses, and 5,545 railcars [American Public
Transportation Association, 2013].

The effects of transit service level on car ownership has been examined in

a number of national studies, the U.S. ( [Deka, 2002], [Kim and Kim, 2004b], UK
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( [Cullinane, 1992], [Goodwin, 1993]), Australia ( [Hensher, 1998]), Canada ( [P. and
P., 1998]), The Netherlands ( [Kitamura, 1989]), Germany ( [Bratzel, 1999]), and
China ( [Cullinane, 2002], [Li et al., 2010]). More specifically, Kitamura ( [Kitamura,
1989]) investigated the causal relation between car ownership and transit use on
data obtained from the 1984 Dutch National Mobility Panel survey. The results
show that car use determines transit use, and that transit use does not determine
car use. Nevertheless, the current situation is very different from the 80s, when
the ”car boom” was taking place, the number of household with access to one or
more cars was limited, and fuel price was relatively low. Bunt and Joyce [Hensher,
1998] conducted a household survey to test the effectiveness of Vancouver’s SkyTrain
and its effect on car ownership patterns near the rapid transit stations. Statistics
from the survey show that the average car ownership is much lower for households
located near SkyTrain stations. Cullinane [Cullinane, 2002] found that good public
transport can deter car ownership based on an attitudinal survey in Hong Kong,
where public transport is plentiful and cheap and car use is low. Deka [Deka, 2002]
applied regression models to examine the relationship between transit availability
and auto ownership with travel survey data from Los Angeles. The conclusion is
that significant improvements will be needed in transit services to bring a slight
decrease in auto ownership among the general population. Kim and Kim [Kim and
Kim, 2004b] developed econometric models to predict the effect of accessibility to
public transit on automobile ownership and miles driven. Important findings in
their analysis are: (i) the number of licensed drivers is the primary determinant of
the number of automobiles owned, (ii) the presence of children is not a significant
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factor in automobile ownership and VMT, and (iii) VMT is affected more by transit
in multi-vehicle households than in one-vehicle households.

Recent studies provide evidence that good public transportation might en-
courage people to reduce vehicle ownership and use. However, very few studies
use advanced quantitative methods to investigate the relationship between public
transit service and vehicle ownership and use. Other difficulties include collecting
geographic data and quantifying the transit service level. Moreover, many metropoli-
tan areas are interested in improving public transportation in order to reduce traffic
congestion and in providing more efficient transportation systems ( [Washington
Metropolitan Area Transit Authority, 2012a], [Maryland Transit Administration, |).
Therefore, it is crucial to explore the impact of public transportation on vehicle
ownership and use with advanced methods and accurate data based on geographic
information systems.

This chapter aims to investigate the effects of improved public transporta-
tion services on household vehicle ownership and use with the unordered discrete-
continuous models that proposed in Chapter 3. The analysis is conducted for the
Washington D.C. Metropolitan Area, which is a mix of urban and suburban areas
with a relatively good public transportation system for which further improvements
are foreseen. The information used for model estimation was obtained from different
sources. The 2009 National Household Travel Survey (NHTS) data with geographic
reference (U.S. Census Tract level) was kindly provided by the Federal Highway
Administration (FHWA), U.S. DOT, while the General Transit Feed Specification
(GTFS) data was obtained from the Washington Metropolitan Area Transit Au-
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thority (WMATA).

Different measurements for transit level of service are found in the literature.
The Local Index of Transit Availability (LITA) [Rood, 1998] measures the tran-
sit service intensity of an area with transit data and census data (demographic
information). Depending on the data availability, LITA scores can be computed
for any area unit. Transit Capacity and Quality as defined in the Service Manual
(TCQSM) [Transportation Research Board, 2003] also uses transit data and cen-
sus data but incorporates a service coverage measure to assess transit accessibility.
TCQSM offers a comprehensive guide for infrastructure enhancements specific to
public transportation systems. The Time-of-Day Tool (Polzin02) provides the rela-
tive value of transit service accessibility for each time period and requires data on
temporal distribution of travel demand in addition to transit and census data.

The method to measure transit service in this analysis is similar to the one
proposed by Keller [Keller, 2012]. The method mainly follows the TCQSM manual
and takes into account both spatial and temporal characteristics of the transit sys-
tem. Data on the temporal distribution of travel demand is not available so that

the transit service measurements are calculated on a yearly average level only.

7.2 Data Geo-Processing and Data Integration

7.2.1 Spatial Measurements of Transit Service

This section follows the TCQSM manual recommendations to calibrate the

coverage of public transportation services. In particular, a service buffer is created
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for each area surrounding a station to derive the area of usage for potential transit
users. The TCQSM ( [Transportation Research Board, 2003]) suggests a 0.25-mile
buffer around bus stops and a 0.5-mile buffer around rail stations. These buffers are
based on willingness to travel studies; buffers based on these distance ranges tend
to represent between 75 and 80 percent of all walking trips to a transit stop.

The GTFS data is firstly converted from .txt files to shapefiles for both transit
stations and routes, and then projected in ArcGIS along with Census TIGER files.
The buffer zones for the bus stops with radius 0.25-mile and metro routes with radius
0.5-mile are then created. The overlapped buffers are dissolved to eliminate double
counting. The coverage area is joined to the census tract zone and the percentage
of coverage is computed. The process is repeated for each stop/route and for each
census tract zone. The final variables that are produced in this process include (1)
percentage of bus stops coverage, (2) percentage of metro routes coverage, (3) total
length of bus routes, (4) total length of metro routes, and (5) total number of bus
stops. All the variables above are calibrated for each census tract in the Washington

D.C. Metropolitan area.

7.2.2 Temporal measurements of bus service

The data related to transit timetable in the GTFS files is utilized to calibrate
the temporal measurements of bus services. Firstly the GTFS files are merged with
the key IDs (see Figure 4.1). The merged data have information on the bus arrived

time for each route and stop for an entire day (24 hours). Then for each stop and
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for each route, the bus service duration and average headway is computed with data
mining techniques. Finally the average duration and headway are aggregated for

each census tract zone.

7.2.3 Transit service index (TSI)

The transit service index takes into account both spatial and temporal mea-
surements and it is calculated with the percent service coverage area, the average
service headway and the service duration. For each census tract zone, the TSI is

calculated as:

TS]’ _ percent service coverage area

, X service duration
average service headway

Table 7.1 presents some examples of TSI calibration from real data. In this
analysis, TSI is calculated for the bus service only. The reason of not including
metro service is because the time schedule of metro subways in the DC area is
comparatively rigid and does not create variation among different census tract zones.

Instead, the percent service coverage area is created as the measurement of transit

service.
Table 7.1: Sample calibration of TSI
Zone 1D % coverage Service headway Service duration TSI
11001009204 100% 0.44 hr 7.83 hr 17.96
24033801309 6.68% 0.34 hr 4.03 hr 0.80
51177020104 0 0 hr 0 hr 0
11001001402 49.55% 0.38 hr 14.69 hr 19.19
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7.2.4 Data integration and final database

The final database consists of three components: NHTS data, GIS output and
vehicle characteristics. As shown in Figure 7.1, the data sets are linked with key IDs.
Specifically, the 2009 NHTS data includes household socio-economic information,
such as household income, household size, number of drivers, number of workers,
and land use characteristics around the household location, such as the residential
density of the census tract zone, the urbanization level, etc. The GIS output includes
data on bus stop coverage percentage, metro route coverage percentage, total length
of bus routes, total length of metro routes, total number of bus stops, transit service
index, average bus headway, and average bus service duration for each census tract
zone. The vehicle characteristic data includes purchase price, operating cost, fuel

economy, seating, performance, and other specifications for each vehicle type.

7.3 Hstimation Results

Table 4 presents the parameter estimates of the joint vehicle ownership and
usage model; it should be noted that the model includes a logsum variable derived
from the vehicle type and vintage model in Table 5.2. The variables TSI, created
to represent bus and metro coverage percentage, are significant and have a negative
impact on household vehicle ownership and miles traveled. The variable ”TSI of
bus”dd is selected instead of other measures because it gives a more comprehensive
representation with respect to both spatial and temporal bus service information. In

terms of metro subways, the time schedule is comparatively rigid so that the metro
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Figure 7.1: Data structure of the final database
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service is measured using the percentage coverage only. With good accessibility of
bus and metro service, households tend to own fewer cars. The magnitudes of the
coefficients increase with the number of cars owned by the household, indicating that
the transit service level has greater impacts on multi-vehicle households. In partic-
ular, the coefficient of metro service coverage for 4-car household is significantly
greater than the one obtained for other alternatives. Coefficients of household in-
come are positive and significant; the value of the coefficients is larger for households
owning more cars. Households with higher income tend to own multiple cars and
drive more, and the higher their income, the more likely that they will own more
cars. Households with owned house are more likely to have higher mileage on their
vehicles. Households with more drivers own more vehicles and drive more. The
coefficients related to the number of drivers are significant except in the one-car al-
ternative. In terms of the characteristics of the household head, the dummy variable
”female household head” is significant except for the one-car household; the nega-
tive sign meaning that households with a female head tend to own fewer cars and to
drive less. The coefficients of residential density are significant and negative (except
for the one-car household), inferring that the households located in a more dense
area have lower probability of owning more cars and of driving less. The parameter
of driving cost is negative and significant, indicating that higher operational cost
induces households to drive less.

In addition to the coefficients of the variables, the covariance matrix between
the discrete and the continuous independent variables is estimated. In particular,

the bottom line of the matrix explains the correlation between the mileage traveled
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and the utility differences (with respect to the zero-car alternative) of the vehicle
ownership alternatives. The positive numbers mean that higher mileage usage in-
creases the utility of owning more cars; the magnitude of the correlation factors
increases with the number of household vehicles. The negative value found for the
correlation across mileage and zero-car alternative can be explained by the fact that
zero miles of very low mileages further decrease the difference in utility of owning a

car or not owning a car.

Table 7.2: Estimation results

Variable Coefficient  Std. Err
Dependent variable: Number of cars

logsum (expected utility from vehicle type choice 0.430 0.011
alternative specific constant

1 car -3.161 0.193
2 cars -17.050 0.267
3 cars -22.913 0.219
44 cars -27.934 0.178
household income level

1 car -0.090 0.021
2 cars 0.446 0.053
3 cars 0.490 0.054
44 cars 0.440 0.052
number of drivers

1 car -0.038 0.197
2 cars 7.185 0.193
3 cars 7.982 0.193
44 cars 7.791 0.183
gender of household head (female)

1 car 0.089 0.199
2 cars -2.350 0.189
3 cars -2.495 0.194
44 cars -2.637 0.159
urban size

1 car -0.049 0.048
2 cars -0.071 0.115
3 cars -0.153 0.113
44 cars -0.204 0.112
residential density (census tract level)

1 car 0.051 0.014
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2 cars

3 cars

4+ cars
TSI of bus
1 car

2 cars

3 cars

4+ cars

1 car
2 cars
3 cars
4+ cars

percentage coverage of metro routes

-0.524 0.135
-0.704 0.150

-0.549 0.151
0.018 0.008
-0.103 0.038
-0.105 0.036
-0.116 0.039
0.280 0.164
-2.212 0.267
-1.756 0.296
-9.442 0.185

Dependent variable: Miles (10k)

constant 1.470 0.121
household income level 0.124 0.006
own home 0.372 0.107
gender of household head (female) -0.080 0.076
residential density (census tract level) -0.055 0.012
driving cost ($ per mile) -4.823 0.294
TSI of bus -0.025 0.004
percentage coverage of metro routes -0.324 0.159
Log-likelihood at zero -5880.231
Log-likelihood at convergence -3260.811
Number of parameters 41
Number of observations 1420
Adjusted p? 0.44

Note: Variables that are significant at 95% level or above are bolded.

2.00
~751
Y= | —7.43
—7.54
-0.68

—7.51
29.22
30.68
30.41
2.92

—7.43
30.68
35.04
33.67
3.55

—7.54
30.41
33.67
32.72
3.34

—0.68
2.92
3.5
3.34
1.23

In order to investigate the significant role of the transit service attributes,
the car ownership model is re-estimated without transit related variables. A log-
likelihood ratio test is conducted to test the significance of transit service variables

in the vehicle ownership model:

Hy: Coefficients of transit service variables are not zero (full model)
Hy: Coefficients of transit variables are zero (reduced model)
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degree of freedom (DOF) = 10
—2[LL(B") — LL(B°)]
= —2[(—3349.812) — (—3260.811)]

The test statistic is much larger than the Chi-square with 10 degrees of freedom
at the 95 percent confidence level. Therefore we reject the hypothesis that the
coefficients of transit service variables are zero and I conclude that the model could
not be reduced. The testing result confirms again the significant role of transit

service variables in vehicle ownership models.

7.4 Policy Analysis

The Washington Metropolitan area is developing a 30-year transit plan [Wash-
ington Metropolitan Area Transit Authority, 2012b], which aims to provide a long
term vision for future growth and to improve and expand transit service. The goal of
the regional plan is to seek solutions such as making pedestrian and rail connections
between lines to bypass bottlenecks, adding new rail lines through the downtown
core and improving surface transit. A recent announcement [Washington Metropoli-
tan Area Transit Authority, 2012a] from WMATA says that in 2013, $5 million will
be invested to provide customers with better bus service. One of the biggest efforts
is a new limited-stop MetroExtra route, which improves the transit system with

more frequent service, additional capacity, and expanded hours of operation. On
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the other hand, the metrorail ridership is expected to top 1 million daily rides by
2040 and the system’s core will be severely crowded [Johnson, 2011]. WMATA has
been looking at long-term strategies for expanding transit. The Purple Line [Mary-
land Transit Administration, |, which is a 16-mile transit line that will connect the
Red, Green and Orange lines of the metro system in the suburban area of Maryland,
can be seen as part of the long term plan. Meanwhile, a Beltway Metro Line is under
consideration.

Given the numerous investments foreseen for the public transportation system
in the Washington DC Metropolitan area, it is worth to examine the impacts of im-
proved transit services on household vehicle ownership and usage. In this chapter,
the model estimated in the previous section is applied to evaluate different policy
scenarios. I first analyze the effects of improved bus services; in this hypothetical
scenario every census tract zone has at least 50% bus stop coverage, 15-minute aver-
age headway and 6 peak hours duration (6:30AM - 9:30AM and 3:30PM - 6:30PM).
In the improved metrorail service scenario, the core area of Washington Metropoli-
tan area (urban size greater than 1 million) has at least 50 percent metro route
coverage.

The application results are presented in Table 7.3. The short-run impacts of
improved transit service generally reduce both vehicle ownership and miles traveled.
The average vehicle ownership is reduced by 2 percent in the improved bus service
scenario and 1.5 percent in the improved metro service scenario. The annual mileage
traveled decreases by about 8 percent with improved bus service and 1.6 percent

with improved metro service. Comparatively, the improved bus service has greater
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impacts on reducing both the vehicle ownership and the mileage traveled.
It should be noted here that the NHTS data has limited number of households
in the DC and Maryland area due to the fact that neither of these regions are in

the NHTS add-on program. The predictions provided could be more accurate with

an increased number of observations available for model calibration.

Table 7.3: Policy analysis based on different improvement of the transit service

current | Improved bus service | Improved metro service
predicted  %change | predicted  %change
0-car household 7.16% 7.17% 0.01% 7.17% 0.01%
1-car household 23.06% | 26.05% 2.99% 24.60% 1.55%
2-car household 46.56% | 44.32% -2.25% 44.84% -1.72%
3-car household 17.82% | 17.19% -0.64% 19.44% 1.61%
4-car household 5.40% 5.28% -0.12% 3.95% -1.45%
Average vehicle ownership 1.91 1.87 -2.03% 1.88 -1.49%
Mileage 22231.70 | 20410.40  -8.19% | 21879.50 -1.58%

7.5 Chapter Summary

The Washington Metropolitan area is a diverse region with both dense urban
areas and suburban areas. This region is also served by a good public transporta-
tion system that will undergo several improvement plans in the short and long term.
Given the raising interests on transit investments from both federal and state govern-
ments, as well as, the traffic concerns on the Beltway, it is important to understand
and quantify the relation between public transportation service and household ve-

hicle ownership and usage. In particular, this chapter has analyzed the impact of
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improved bus and metro services on household ownership and use decisions in the
Washington Metropolitan area.

This chapter proposes a methodology to integrate the household travel sur-
vey with geographic data. Specifically, the main data sources are the 2009 Na-
tional Household Travel Survey (NHTS) and the General Transit Feed Specification
(GTFS). Secondary data includes the 2009 Census TIGER shapefiles and vehicle
characteristics from the Consumer Reports. Both spatial and temporal measure-
ments of transit service are created based on the GTFS data and geographic infor-
mation data using data mining techniques. The transit service index is calculated
with these measurements and then integrated with the NHTS data, the GIS output
data and the vehicle characteristics into one database referenced at the census tract
level.

This chapter jointly estimates the household decisions on vehicle ownership
and usage with the integrated database; estimates are obtained for household social-
demographic attributes, land-use characteristics, vehicle characteristics and transit
service variables. The model is then applied to policy scenarios that accounts for
transit investments. The results obtained show that transit service generally reduces
both vehicle ownership and miles traveled. The average vehicle ownership is reduced
by 1.5 - 2.0 percent and the mileage decreases by about 1.6 - 8.0 percent respectively

with improved bus service and with improved metro service.
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Chapter 8
Conclusions and Future Research

8.1 Summary and Research Contributions

Vehicle ownership plays an important role in the overall transportation plan-
ning process, due to its impacts on the environment, energy consumption, economic
system and public health. In this dissertation, an integrated discrete-continuous
model is proposed to simultaneously estimate the household decisions on vehicle
holding, type and use. The model uses a multinomial probit model to estimate
household vehicle holding decisions and a multinomial logit model to estimate the
vehicle type. The vehicle usage decisions have been integrated into these discrete
models with an unrestricted correlation pattern between the discrete and the con-
tinuous parts. The dissertation also compares the outcomes of the ordered and
unordered discrete-continuous structures. Results obtained from the 2009 National
Household Travel Survey show that significant correlation exists between the vehicle
holding and use decisions. Therefore, significant estimation bias is expected when
ignoring correlations among these decisions and when assuming that they are inde-
pendent. The comparison results also indicate that unordered discrete-continuous
model outperforms the ordered structure in terms of the goodness of fit.

The second half of the dissertation focuses on the applications of the pro-

posed modeling framework and on the related policy analysis. The 2009 National
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Household Travel Survey data is the main data source to estimate household vehicle
ownership decisions across the United States. Twelve models are calibrated for the
four Census Regions of the United States (Northeast, Midwest, South and West)
and three area types (urban, suburban, rural). Due to the different demographic
profiles and area types (e.g., urban, rural, etc.), a number of sites are selected to
account, for heterogeneity in regional locations and residential density levels. Then
the estimated models are applied to six randomly selected counties/areas, using the
2009 American Community Survey Public Use Microdata Sample. Results from the
six applications demonstrate the capability of the national models in providing ac-
curate estimates for the various city/area types selected, although small prediction
errors are found when comparing real data and estimates.

The proposed modeling framework is also applied with additional transit ser-
vice variables to analyze the impact of improved bus and metro services on house-
hold vehicle ownership and use decisions. In order to derive the transit variables,
the household travel survey data is integrated with transit data, namely the General
Transit Feed Specification (GTFS) data. In the analysis, spatial measurement, tem-
poral measurement and the combination of the two measurements of transit service
are computed in GIS. Results show that transit service variables are significant fac-
tors in household vehicle ownership choices and that the proposed methods are able
to effectively predict changes in vehicle ownership and usage due to transit service
improvements.

In conclusion, this dissertation contributes to both theoretical analysis and

practical applications of the household vehicle ownership problem:
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e An integrated discrete continuous choice model is developed to simultaneously
estimate the household choices on vehicle ownership (discrete), the types (dis-

crete) and annual mileage traveled (continuous).

- The model is able to include a large number of alternatives in both the

vehicle holding and the vehicle type choices.

- The model allows unrestricted correlations of the unobserved factors

between the discrete and continuous parts.
- The model accommodates flexible specifications.
- The model can be applied for policy analysis.
- The model can generate reasonable estimates of the coefficients.

- The covariance matrix explains well the correlations between the unob-
served factors from the utilities of the discrete choices and the demand function

of the continuous choice.
- The non-simulation approach provides a better model fit.

- The performance of the model would be improved if the information

about vehicle type choice is included.

e A comparison of unordered and ordered structures in discrete-continuous frame-
work is conducted with operational data. The results show that the unordered
discrete continuous model is more appropriate than the ordered discrete con-

tinuous model in estimating household vehicle ownership and usage decisions.

e A system of national models on household vehicle ownership choices is devel-
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oped with National Household Travel Survey data and American Community
Survey data. Applications for six randomly selected areas demonstrate that

the models are able to produce accurate estimates.

e The model is further applied using geographic data to study the impacts of
improved transit service on household vehicle ownership choices in the Wash-

ington D.C. metropolitan area.

8.2 Future Research

There are several future directions in this research that are worth further
investigation. The general ideas for improving the current research are summarized

as follows.

e First and foremost, it would be valuable to analyze the direct correlation
between vehicle type and vehicle usage, and estimate mileage for each vehicle
in the household in the future. Because the vehicle type could affect how
many miles the household travel with the vehicle, meanwhile, the demand for
vehicle mileage traveled also could be a key factor on the vehicle type choice.
For example, a family with both a compact car and a pick-up truck may travel
with the more fuel-efficient compact car on a daily basis and may only use the
pick-up truck when it must. A family member who drives 20,000 miles a year

for commuting may choose a vehicle with high MPG.

e Another limitation in the dissertation is that all of the coefficients in the
models are assumed to be constant and they do not vary over different groups
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of households. Therefore, random parameter approach could be integrated

into the framework to capture the taste variation among the population.

The proposed framework is a static model and only provides short-run forecast-
ing results. It could be further extended into a dynamic discrete-continuous
model with a module to capture the household’s dynamic choices on vehi-
cle holding. For example, [Xu, 2011] developed a dynamic vehicle ownership
choice model which allows the estimation of the probability of buying a new
vehicle or postponing this decision; if the decision to buy is made, the model
further investigates the vehicle type choices. Dynamic models explicitly ac-
count for consumers’ expectations of future vehicle quality or market evolu-
tion, arising endogenously from their purchase decisions. By incorporating
this component into the discrete-continuous framework, the modeling results
would be able to provide the policy makers a reference for medium to long

term planning.

In the dissertation, the error terms between the discrete and continuous parts
are assumed to be multivariate normal distributed. Although the correlations
are estimated with an unrestricted covariance matrix, this part can be im-
proved with a more flexible correlation pattern. For example, the copula mod-
els permit the combination of any univariate marginal distributions that need
not come from the same distributional family. They are very general, encom-
passing a number of existing multivariate models and providing a framework

for generating many more [Danaher and Smith, 2011].
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e Alternative fuel vehicles have drawn increasing attention, because of their
potential to reduce greenhouse-gas emissions and utilize renewable energy
sources. However, alternative fuel vehicles face barriers to adoption such as
lack of knowledge by potential adopters, low consumer risk tolerance, and high
initial purchase costs. A number of consumer incentives for purchasing alter-
native fuel vehicles have been put in place to address the market barriers. In
the future, it would be necessary to include the choice of the new-technology
vehicle types in the vehicle ownership modeling framework to investigate the
effectiveness of the policy incentives and address the solutions to overcome the

market barriers.

e In regional travel modeling and simulation, the combination of the number
of vehicles owned by a household, the type choice of the vehicles, and the
usage of the vehicles are important travel determinants of greenhouse gas
(GHG) emissions, fuel consumption, and pollutant emissions. The proposed
discrete-continuous model in this dissertation provides a good basis to forecast
vehicle fleet and the usage in response to changes in fuel prices, socio-economic
shifts and policy decisions. Therefore, another interesting future direction is
to integrate this modeling framework into the emissions/energy models (such
as MOVES [EPA, MOVES, | and MOBILE6 [EPA, MOBILEG, |) in order to

calculate greenhouse gas emission calculations.
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