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Abstract

There has been a proliferation of block-diagram environments for specifying and prototyping DSP sys-
tems. These include tools from academia like Ptolemy [6], and commercial tools like SPW from Cadence
Design Systems, and Cossap from Synopsys. The block diagram languages used in these environments are
usually based on dataflow semantics because various subsets of dataflow have proven to be good matches
for expressing and modeling signal processing systems. In particular, synchronous dataflow (SDF)[14] has
been found to be a particularly good match for expressing multirate signal processing systems [5].

One of the key problems that arises during synthesis from an SDF specification is scheduling. Past work on
scheduling [3] from SDF has focused on optimization of program memory and buffer memory. However,
in [3], no attempt was made for overlaying or sharing buffers. In this paper, we formally tackle the problem
of generating optimally compact schedules for SDF graphs, that also attempt to minimize buffering mem-
ory under the assumption that buffers will be shared. This will result in schedules whose data memory
usage is drastically lower than methods in the past have achieved. The method we use is that of lifetime
analysis; we develop a model for buffer lifetimes in SDF graphs, and develop scheduling algorithms that
attempt to generate schedules that minimize the maximum number of live tokens under the particular
buffer lifetime model. We develop several efficient algorithms for extracting the relevant lifetimes from
the SDF schedule. We then use the firstfit heuristic for packing arrays efficiently into memory. We report
extensive experimental results on applying these techniques to several practical SDF systems, and show
improvements that average 50% over previous techniques, with some systems exhibiting upto an 83%
improvement over previous techniques.

1 Introduction

Block diagram environments are proving to be increasingly popular for developing DSP systems.

The reasons for their popularity are many: block-diagram languages are visual and hence intuitive to use

for engineers naturally used to conceptualizing systems as block diagrams, block diagram languages pro-

mote software reuse by encapsulating designs as modular, reusable components, and finally, these lan-

guages can be based on models of computation that have strong formal properties, enabling easier and

faster development of bug-free programs. Block-diagram specifications also have the desirable property of
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not overspecifiying systems; this can enable a synthesis tool to exploit all of the concurrency and parallel-

ism available at the system level.

In a block-diagram environment, the user connects up various blocks drawn from a library to form

the system of interest. For simulation, these blocks are typically written in a high level language like C++.

For software synthesis, the technique typically used is that of threading: a schedule is generated, and the

code generator steps through this schedule and substitutes the code for each actor that it encounters in the

schedule. The code for the actor may be of two types: it may be the HLL code itself, obtained from the

actor in the simulation library. The overall code may now be compiled for the appropriate target. However,

this is not as efficient as having a separate library of actors containing hand-optimized code targeted for

software synthesis. For programmable DSPs, this means that the actors implement their functionality

through hand-optimized assembly language segments. The code-generator, after stitching together the code

for the entire system then simply assembles it and the resulting machine code can be run on the DSP.

For hardware synthesis, a similar approach can be taken, with blocks implementing their function-

ality in a hardware description language, like behavioral VHDL [11][27]. The generated VHDL descrip-

tion can then be used by a behavioral compiler to generate an RTL description of the system, that can be

further compiled into hardware using design compilers and layout tools.

High-level language compilers for DSPs have been woefully inadequate in the past [28]. This has

been because of the highly irregular architecture that many DSPs have, the specialized addressing modes

such as modulo addressing, bit-reversed addressing, and small number of special purpose registers. Tradi-

tional compilers are unable to generate efficient code for such processors. This situation might change in

the future, if DSP architectures converge to general-purpose architectures; for example, the C6 DSP from

TI, the newest DSP architecture from TI, is a VLIW architecture and has a fairly good compiler. Even so,

because of low power requirements, and cost constraints, the fixed-point DSP with the irregular architec-

ture is likely to dominate in embedded applications for the foreseeable future. Because of the shortcomings

of existing compilers for such DSPs, a considerable research effort has been undertaken to design better

compilers for fixed point DSPs [18][16].

Synthesis from block diagrams is useful and necessary when the block diagram becomes the

abstract specification rather than C code. Block diagrams also enable coarse grain optimizations based on

knowledge of the restricted underlying models of computation; these optimizations are frequently difficult

to perform for a traditional compiler. Since the first step in block diagram synthesis flows is the scheduling

of the block diagram, we consider in this paper scheduling strategies for minimizing memory usage. Since

the scheduling techniques we develop operate on the coarse-grain, system level description, these tech-
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niques are somewhat orthogonal to the optimizations that might be employed by tools lower in the flow.

For example, a behavioral compiler has a limited view of the code, often confined to basic blocks within

each block it is optimizing, and cannot make use of the global control and dataflow that our scheduler can

exploit. Similarly, a high-level language compiler is also usually only good at optimizing basic blocks

(where we use this term in a compiler sense), and does not have the global information that our scheduler

does. The techniques we develop in this paper are thus complementary to the work that is being done on

developing better compilers for DSPs [16][17][18]. In particular, the techniques we develop operate on the

graphs at a high enough level that particular architectural features of the target processor are largely irrele-

vant. We assume that the actor library that the code generator has access to consists of either hand-opti-

mized assembly code, or of specifications in a high-level language like C. If the latter, then we would have

to invoke a C compiler after performing the SDF optimizations and threading the code together. Even

though this might seemingly defeat the purpose of producing efficient code, since we are using a C com-

piler for a DSP (the compiler might not be very good as mentioned), studies have shown that for larger sys-

tems, C code produced this way compiles better than hand-written C for the entire system [8].

As already mentioned, dataflow is a natural model of computation to use as the underlying model

for a block-diagram language for designing DSP systems. The blocks in the language correspond to actors

in a dataflow graph, and the connections correspond to directed edges between the actors. These edges not

only represent communication channels, conceptually implemented as FIFO queues, but also establish pre-

cedence constraints. An actor fires in a dataflow graph by removing tokens from its input edges and pro-

ducing tokens on its output edges. The stream of tokens produced this way corresponds naturally to a

discrete time signal in a DSP system. In this paper, we consider a subset of dataflow called synchronous

dataflow (SDF) [14]. In SDF, each actor produces and consumes a fixed number of tokens, and these num-

bers are known at compile time. In addition, each edge has a fixed initial number of tokens, called delays.

2 Notation and background

 Fig. 1(a) shows a simple SDF graph. Each edge is annotated with the number of tokens produced

(consumed) by its source (sink) actor, and the “D” on the edge from actor  to actor  specifies a unit

delay. Each unit of delay is implemented as an initial token on the edge. Given an SDF edge , we denote

the source actor, sink actor, and delay of  by , , and . Also,  and 

Fig 1. An example of an SDF graph.
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denote the number of tokens produced onto  by  and consumed from  by . An SDF graph

is called homogenous if   for all edges .

A schedule is a sequence of actor firings. We compile an SDF graph by first constructing a valid

schedule — a finite schedule that fires each actor at least once, does not deadlock, and produces no net

change in the number of tokens queued on each edge. Corresponding to each actor in the schedule, we

instantiate a code block that is obtained from a library of predefined actors. The resulting sequence of code

blocks is encapsulated within an infinite loop to generate a software implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [3], efficient

algorithms are presented to determine whether or not a given SDF graph is consistent, and to determine the

minimum number of times that each actor must be fired in a valid schedule. We represent these minimum

numbers of firings by a vector , indexed by the actors in  (we often suppress the subscript if  is

understood). These minimum numbers of firings can be derived by finding the minimum positive integer

solution to the balance equations for , which specify that  must satisfy

, for every edge  in .

The vector , when it exists, is called the repetitions vector of .

3 Constructing memory-efficient loop structures

In [3], the concept and motivation behind single appearance schedules (SAS) has been defined

and shown to yield an optimally compact inline implementation of an SDF graph with regard to code size

(neglecting the code size overhead associated with the loop control). An SAS is one where each actor

appears only once when loop notation is used. Figure 2 shows an SDF graph, and valid schedules for it.

The notation  represents the firing sequence . Similarly,  represents the schedule loop

with firing sequence . Schedules 2 and 3 in figure 2 are single appearance schedules since actors

 appear only once. An SAS like the third one in Figure 2(b) is called flat since it does not have any

nested loops. In general, there can be exponentially many ways of nesting loops in a flat SAS.

e src e( ) e snk e( )

src e( ) snk e( )= e

qG G G

G q

prod e( )q src e( )( ) cns e( )q snk e( )( )= e G

q G

Fig 2. An example used to illustrate the interaction between scheduling SDF graphs and the memory require-
ments of the generated code.

20 10 1020
A B C

Valid Schedules

(1): ABCBCCC (2): A(2 (B(2 C)))

(3): A(2 B)(4 C) (4): A(2 (BC))(2 C)

(a)

(b)

2B BB 2 B 2C( )( )

BCCBCC

A B C, ,
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Scheduling can also have a significant impact on the amount of memory required to implement the

buffers on the edges in an SDF graph. For example, in Figure 2(b), the buffering requirements for the four

schedules, assuming that one separate buffer is implemented for each edge, are 50, 40, 60, and 50 respec-

tively.

4 Optimizing for buffer memory

We give priority to code-size minimization over buffer memory minimization; justification for this

may be found in [3][19]. Hence, the problem we tackle is one of finding buffer-memory-optimal SASs,

since this will give us the best schedule in terms of buffer-memory consumption amongst the schedules

that have minimum code size.

In [19] and [3], we developed a post-processing technique based on dynamic programming (called

DPPO), that generates an optimal loop hierarchy for any given SAS. The cost metric used for this approach

is that each edge is implemented as a separate buffer. We briefly review that technique here.

Given an SDF graph , a valid schedule , and an edge  in ,  denotes the

maximum number of tokens that are queued on  during an execution of . For example, if for fig. 1,

 and , then  and

. We define the buffer memory requirement of a schedule  by

, (EQ 1)  

where the summation is over all edges in . Thus, , and

.

The lexical ordering of a SAS , denoted , is the sequence of actors 

such that each  is preceded lexically by . Thus,

. Given an SDF graph, an order-optimal schedule is a SAS

that has minimum buffer memory requirement from among the valid SASs that have a given lexical order-

ing.

Suppose that  is a connected, delayless, acyclic SDF graph,  is valid SAS for ,

, and  is an order-optimal schedule for . If   con-

tains at least two actors, then it can be shown [19] that there exists a valid schedule of the form

 such that  and for some ,

 and . Furthermore, from the

order-optimality of , clearly,  and  must also be order-optimal.

G S e G e S,( )max_tokens

e S

S1 3A( ) 6B( ) 2C( )= S2 3A 2B( )( ) 2C( )= A B,( ) S1,( )max_tokens( ) 7=

A B,( ) S2,( )max_tokens( ) 3= S

bufmem S( ) e S,( )max_tokens∑≡

G bufmem S1( ) 7 6+ 13= =

bufmem S2( ) 3 6+ 9= =

S S( )lexorder A1 A2 … An, , ,( )

Ai A1 A2 … Ai 1–, , ,

2 3B( ) 5C( )( ) 7A( )( )lexorder B C A, ,( )=

G S G

lexorder S( ) A1 A2 … An, , ,( )= Soo G lexorder S( ),( ) G

SR iLBL( ) iRBR( )= bufmem SR( ) bufmem Soo( )= p 1 2 … n 1–( ), , ,{ }∈

lexorder BL( ) A1 A2… Ap, ,( )= lexorder BR( ) Ap 1+ Ap 2+ … An, , ,( )=

Soo iLBL( ) iRBR( )
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From this observation, we can efficiently compute an order-optimal schedule for  if we are given

an order-optimal schedule  for the subgraph corresponding to each proper subsequence

 of  such that (1).  and (2).  or . Given

these schedules, an order-optimal schedule for  can be derived from a value of ,  that mini-

mizes

, where

is the set of edges that “cross the split” if the schedule parenthesization is split between  and .

DPPO is based on repeatedly applying this idea in a bottom-up fashion to the given lexical order-

ing . First, all two actor subsequences , , ,  are examined

and the minimum buffer memory requirements for the edges contained in each subsequence are recorded.

This information is then used to determine an optimal parenthesization split and the minimum buffer mem-

ory requirement for each three actor subsequence ; the minimum requirements for the

two- and three-actor subsequences are used to determine the optimal split and minimum buffer memory

requirement for each four actor subsequence; and so on, until an optimal split is derived for the original -

actor sequence . An order-optimal schedule can easily be constructed from a recursive, top-

down traversal of the optimal splits [19].

In the th iteration of this bottom up approach, we have available the minimum buffer memory

requirement  for each subsequence  that has less than or equal to  members.

To compute the minimum buffer memory requirement  associated with an -actor subchain

, we determine a value of  that minimizes

, (EQ 2)  

where  for all  and , the memory cost at the split if we split the subsequence between

 and  is given by [19]

, (EQ 3)  

where gcd denotes the greatest common divisor, and

(EQ 4)  

is the set of edges that cross the split.

G

Sa b,

Aa Aa 1+ … Ab, , , lexorder S( )( ) b a–( ) n 2–( )≤ a 1= b n=

G x 1 x n<≤

bufmem S1 x,( ) bufmem Sx 1+ n,( ) TNSE e( )
e Es∈
∑+ +

Es e src e( ) A1 A2 … Ax, , ,{ }∈( )AND snk e( ) Ax 1+ Ax 2+ … An, , ,{ }∈( )( ){ }=

Ax Ax 1+

lexorder S( )( ) A1 A2,( ) A2 A3,( ) … An 1– An,( )

Ai Ai 1+ Ai 2+, ,( )

n

lexorder S( )( )

r

b p q,[ ] Ap Ap 1+ … Aq, , ,( ) r

b i j,[ ] r 1+

Ai Ai 1+ … Aj, , ,( ) k i i 1+ … j 1–, , ,{ }∈

b i k,[ ] b k 1+ j,[ ] ci j, k[ ]+ +

b x x,[ ] 0= x ci j, k[ ]

Ak Ak 1+

ci j, k[ ] TNSE e( )
e Es∈
∑ 

  GCD qG Ax( ) i x j≤ ≤( ){ }( )( )⁄=

Es e src e( ) Ai Ai 1+ … Ak, , ,{ }∈( )AND snk e( ) Ak 1+ Ak 2+ … Aj, , ,{ }∈( )( ){ }=



The shared buffer model

Shared Memory Implementations of Synchronous Dataflow Specifications Using Lifetime Analysis 

5 The shared buffer model

In this report, we develop scheduling techniques for minimizing buffer memory under a shared

buffer memory model. Buffer sharing for looped schedules can be done at many different levels of “granu-

larity”. At the finest level of granularity, we can model the buffer on the edge as it grows over the execu-

tion of the loop, and then falls as the sink node on that edge consumes the data. The maximum number of

live tokens would give the lower bound on how much memory would be required. An alternative model

would be at the coarsest level, where we assume that once the source actor for an edge  starts writing

tokens,  tokens immediately become live, and stay live until the number of tokens on the edge

becomes zero. In other words, even if there is one live token on the edge, we assume that an array of size

 has to be allocated and maintained until there are no live tokens. Figure 3 shows these two alter-

natives pictorially. Of-course, there are a number of granularities within these extremes, based on how

many levels of loop nests we consider. For instance, suppose we have the schedule fragment

, where actor  has one output edge (connecting to an actor  not in this sub-schedule)

on which it writes 1 token on each firing. At the finest level of granularity, the buffer on edge 

increases by one each time  fires. At the next level of granularity, we consider the 3 firings of  in the

innermost loop together, and model the increase by steps of 3. Going up by one more level, the increase

becomes steps of 6, and finally, at the coarsest level, we have an increase from 0 to 42 (=7*2*3*1) on the

first firing of .

In this paper, we assume the coarsest level of buffer modeling. The finer levels, although requiring

less memory theoretically, may be practically infeasible to achieve due to increased complexity of the

algorithms, and increased complexity of implementation in terms of maintaining pointers and memory

allocations.

e

TNSE e( )

TNSE e( )

A B C
3

D
5 5 2 3 5

2(5A 3B) 3(5C 3D)

A
A
A
A
A
B
B
B

Fine-grained model Coarse-grained model

AB AB

Fig 3. The fine-grained and coarse-grained models of buffer sharing.

7 5A2 2B3C( )( ) C D

CD

C C

C
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Initial tokens on edges can be handled very naturally in this model. An edge that has an initial

token will have a buffer that is live right at the beginning of the schedule. It may be live for the entire dura-

tion of the schedule if the buffer never has zero tokens. If the buffer does have zero tokens at some point,

then the buffer would be not be live for the portion of the schedule where the buffer has zero tokens.

Note that the best schedule under the non-shared buffering model is not necessarily the best sched-

ule under the shared model as shown in figure 4.

As a first cut heuristic, the following dynamic programming formulation is immediately obvious:

(EQ 5)  

where the last term is again the sum of the buffer costs crossing the cut. The term  is defined

differently under the shared buffer memory model; in fact, equation 5 is the definition! Of course,

 if   has only one actor.

The maximum of the left and right costs is taken based on the intuition shown in figure 5. Since the

buffers in the subgraph on the right side of the cut will cannot be live at the same time as the buffers in the

left side of the cut are live, and vice-versa, we only need the maximum of these two along with the buffers

crossing the cut. The right buffers are overlayed with the left ones.

The formulation in equation 5 is not optimal because it makes a worst case assumption that all

buffers crossing the cut are simultaneously live with all of the buffers on the left buffers and right buffers,

thus preventing any sharing between them. For example, consider the example in figure 6. For the given

A B C
3

D
5 5 2 3 5

2(5A 3B) 3(5C 3D)

5A
3B
5A
3B
5C
3D

5C
3D

...

15

30

15

10A 3(2B 5C 3D)

10A
2B
5C
3D
2B
5C
3D
2B
5C
3D

30

AB BC CD AB BC CD

10

10

10

15

15

15

10A 6B 15C 9D

AB BC CD

10A
6B
15C
9D

30
30

45

Shared-buffer cost = 45
Non-shared cost = 60

Shared-buffer cost = 55
Non-shared cost = 55

Shared-buffer cost = 75
Non-shared cost = 105

Fig 4. An example to show that the shared-buffer-optimal schedule is not the same as the non-
shared-buffer optimal schedule.

bufmem S1 n,( ) MIN1 x n≤ ≤ MAX bufmem S1 x,( ) bufmem Sx 1+ n,( ),( ) TNSE e( )
e Es∈
∑+

 
 
 

=

bufmem S( )

bufmem S( ) 0= S
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schedule, the top level partition occurs on edge , with a cost of 36. According to the formulation, the

total cost should be 36+MAX(b[A..D],b[E..F]). For b[A..D], the partition occurs on edge . Hence the

cost is given by 84+MAX(20,7) = 104. For b[E..F], we have b[E..F] = 8. Hence the total cost gets com-

puted as 36+MAX(104,8) = 140, while the actual cost is only 127.

Buffers with live tokens
crossing the cut

Buffers on right
side of the cut:
tokens cannot be
live at the same time
as buffers on the
left side of the cut

Buffers on left
side of the cut:
tokens cannot be
live at the same time
as buffers on the
right side of the cut

Fig 5. The intuition for a revised dynamic programming formulation.

A B C D E F
4 5 3 2 1 7 6 4 8 4

7(5A 4B) 6(7C D) 9(E 2F)

5A
4B

5A
4B
7C
D

7C
D
E
2F

20

84

7

36

8

127

DPPO will say

140.

E
2F

Fig 6. An example to illustrate the need for better accounting of costs.

DE

BC
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5.1 Factoring loops

One of the central observations for proving the optimality of DPPO under the non-shared model is

the following [19]:

Fact 1: Suppose that  is a valid schedule for an SDF graph , and suppose that

 is a schedule loop in  of any nesting depth such that

. Suppose also that  is any positive integer that divides

; let  denote the schedule loop ; and let  denote

the schedule that results from replacing  with  in . Then 

(a).  is a valid schedule for ; and

(b). . (  as defined by equation 1).

Unfortunately, this observation breaks down under the shared-buffer model, and we cannot auto-

matically assume that factoring will not make things worse. Indeed, consider the example in figure 7. In

figure 7 (a) and (b), there is no edge between actors  and . If we do not factor the schedule, as shown in

figure 7(a), we see that buffer profiles will be such that the buffers on the output edges of actor  will be

disjoint from the buffer on the input edges of actor . If we factor the schedule, as shown in figure 7(b),

these buffers will no longer be disjoint, thus preventing sharing. Moreover, no advantage is gained from

the factoring since the sizes of the input and output buffers do not decrease; factoring reduces the size of

buffers only on edges between the actors being merged. On the other hand, if there is an edge (or more)

between actors  and , as shown in figure 7 (c) and (d), then factoring can reduce the overall buffering

requirement if the reduction of the size of the buffer on edge  is more than the increase due to the

overlap of the input and output buffers. Since this depends on the actual parameters of the graph, we follow

a simple heuristic in the DPPO formulation above: we don’t factor a loop if there are no internal edges (that

S G

L m n1S1( ) n2S2( )… nkSk( )( )= S

1 i j k≤<≤( ) actors Si( )⇒ actors Sj( )∩ ∅= γ

n1 n2 … nk, , , L ′ γm γ 1–
n1S1( ) γ 1–

n2S2( )… γ 1–
nkSk( )( ) S ′

L L′ S

S′ G

bufmem S ′( ) bufmem S( )≤ bufmem

6A

6B

6A 6B 6 (A B)

A
B
A
B
..
A
B

6A 6B 6 (A B)

6A

6B

A
B
A
B
..
A
B

Fig 7. An example to illustrate that factoring can increase buffering requirement under the shared model.

(a) (b) (c) (d)

A B

B

A

A B

A B,( )



A precise dynamic programming formulation for chain structured graphs

Shared Memory Implementations of Synchronous Dataflow Specifications Using Lifetime Analysis 

is, edges whose terminal points are all actors that are being merged). We factor if there are internal edges,

even though this might sometimes be suboptimal (if the reduction of the buffer sizes on the internal edges

is less than the increase due to the overlap of the input and output buffers). Of-course, we could attempt to

compute this increase or decrease, but this would in general require us to do a partial memory allocation

using dynamic storage allocation techniques. This would greatly increase the complexity of the algorithms;

we choose to use the simpler approach of using the heuristic approach to determine whether to factor or

not.

6 A precise dynamic programming formulation for chain structured 
graphs

To improve the formulation given in equation 5, we need to keep better track of which buffers are

actually live with the cut-crossing buffers. We first develop a technique for chain-structured graphs, and

then extend this to arbitrary graphs.

Instead of having a single number as a cost, we define the cost to be a triple

Let the chain-structured graph consist of actors . Consider a schedule for the subgraph consisting

of actors . In the triple,  is the size of the buffers in this subgraph that can be live simulta-

neously (or overlap) with the buffer on the input edge to actor , the first actor in the subgraph. Similarly,

 is the size of the buffers that can overlap with the buffer on the output edge of actor . For example,

figure 6 makes this concept clearer.When we compute the cost for the subchain ), we report the cost

as . This is because the buffer on edge  can only overlap with the buffers  and ,

as shown in the figure. The cost for implementing  in isolation is 104. Now when the cost for

 is computed, the cost taken into consideration for the subchain  is 91, rather than 104,

and this will lead to the correct value of 127 being computed. Hence, for the precise formulation, we will

need to define exactly the rules for adding these triples.

6.1 Rules for adding triples

There are six cases to consider, based on the repetition counts of the left and right subgraphs in

relation to the repetition count of the overall loop under consideration. Consider the subgraph .

Define , where  is the repetition count of actor  in a complete period of the SDF

schedule for the entire graph. The overall structure of the dynamic programming algorithm remains the

same: we consider the cost of performing the partition at each  between  and  inclusive. Because of

left t right,cos,( )

x1 … xN, ,

xi … xj, , left

xi

right xj

ABCD

104 104 91, ,( ) DE BC CD

ABCD

ABCDEF ABCD

xi … xj, ,

gij gcd qi … qj, ,( )= qi xi

k i j 1–
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the bottom up computation, we already know the costs  and  for each such . We want to

determine

where  is the size of the buffer crossing the partition at , for the subchain of actors .

6.1.1 Case 1: 

For this case, we have

The reasoning for this made clearer by figure 8. Without loss of generality, we assume that  reflects the

cost by including . Denote the schedule for the subchain consisting of actors  as . Because of

the condition on the , the schedule loop containing the actors  is iterated only once in the

overall schedule loop containing the actors . In other words, . The buffer cross-

ing the split is from actor  to ; this buffer will overlap only with the right component of the cost of

. This means that the left part of the cost, the cost presented to anything that might come on the left side

of the schedule for actors , is going to remain the same as the left component of . Similarly, the

right component of the cost of  remains the same as the right component of . The central com-

ponent of , as shown in figure 8 will be given by  because, as

already mentioned, the split-crossing buffer only overlaps with the right component of  and the left

component of .

6.1.2 Case II: 

In this case, the schedule , and the buffer profile looks as shown in figure 9.

The cost is now given by

b i k,[ ] b k 1 j,+[ ] k

t1 t2 t3, ,( ) l1 l2 l3, ,( ) cij k( ) r1 r2 r3, ,( )+ +=

cij k( ) k xi … xj, ,

gik gij= gi k 1+( ) gij=

t1 l1= t2 max l2 l3 cij k( ) r1 cij k( ) r2,+,+,( )= t3 r3=

l2

l1 xi … xj, , Sij

gcd xi … xk, ,

xi … xj, , Sij SikS k 1+( )j=

xk xk 1+

Sik

xi … xj, , Sik

Sij S k 1+( )j

Sij max l2 l3 cij k( ) r1 cij k( ) r2,+,+,( )

Sik

S k 1+( )j

cij(k)

l3

l1
l2

Case 1

Fig 8. Buffer profiles for case 1.

r3

r1
r2

gik 2gij= gi k 1+( ) gij=

Sij 2Sik( ) S k 1+( )j( )=
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.

As we can see from figure 9, the buffer that will be on the left of the subchain consisting of  will

be on the edge entering , and since there are two invocations of  in , this buffer will overlap with

 or .

6.1.3 Case III: 

The buffer profile is as shown in figure 10. The costs are given by

cij(k)

l3

l1
l2

Case 2

l3

l1

Fig 9. Buffer profiles for case 2.

r3

r1
r2

t1 max l1 cij k( ) l2,+( )= t2 max l2 cij k( ) r1 cij k( )+,+( )= t3 r3=

xi … xj, ,

xi Sik Sij

l2 l1 cij k( )+

gik 2gij> gi k 1+( ) gij=

cij(k)

l3

l1
l2

Case 3

l3

l1

r3

r1
r2

Fig 10. Buffer profiles for case 3.

l3

l1
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The only difference from the previous case is that now the left component is unambiguously 

since during the second invocation of , the overlap of  with  occurs as shown in figure 10.

There are nine cases in all to be considered, since each of  and  has three possibilities

that lead to distinct costs. The other six cases can be analyzed in a similar way as for the three cases dealt

with above, and we omit their description.

The  operation on these tuples is defined simply by comparing each element in the tuple.

Hence, we can have incomparable tuples where some elements are smaller while some are larger. In such

cases, we will have to “carry” along all incomparable tuples until they can be eliminated. An example of

how incomparable tuples arise is shown in figure 11. The first schedule, which has the smaller right cost,

will be the preferred schedule provided that the schedule  is never nested in any schedule loop

of loop count more than 1. Otherwise, the other schedule will result in a lower cost. We follow the strategy

of simply recording both in the dynamic programming table, and resolving the issue when subgraphs of

four or more actors are considered. It is technically possible that there may be a multiplicative growth in

the number of incomparable tuples but this phenomenon has not been observed in practice. Of-course, we

can always impose a bound on the number of incomparable tuples that are retained, in order to keep space

and running time polynomially bounded.

Unfortunately, extending this procedure for arbitrary acyclic graphs has not proven to be possible.

Hence, for arbitrary graphs, we rely on the heuristic DPPO formulation described in section 5 to compute

the best loop nesting hierarchy for a given SAS.

t1 l2 cij k( )+= t2 max l2 cij k( ) r1 cij k( )+,+( )= t3 r3=

l2 cij k( )+

Sik l2 cij k( )

gik g k 1+( )j

MIN

5A

4B

6C

20
12

(20,32,12)

5A
2B
3C
2B
3C

20
6

(20,26,26)

A B C
4 5 3 2 1

Fig 11. Two schedules for the sub-chain shown. The costs are incomparable.

5A 4B 6C
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7 Generating single appearance schedules

In [3], it has been shown that for an arbitrary acyclic graph, a SAS could be derived from a topo-

logical sort of the graph. To be precise, the class of SASs for a delayless acyclic graph can be generated by

enumerating the topological sorts of the graph. We use the lexical ordering given by each topological sort

to derive a flat SAS (this is a schedule of the form , where the  are actors and 

are there repetitions. The lexical order  is the order given by the topological sort of the graph.).

This schedule then leads to a set of nesting hierarchies; the complete set of lexical orders and for each lex-

ical order, the set of nesting hierarchies, constitutes the entire set of SASs for the graph. Hence, we need a

method for generating the topological sort. As shown in [3], the general problem of constructing buffer-

optimal SASs under both models of buffering, namely the coarse shared buffer model, and the non-shared

model, is NP-complete. Thus, the methods for generating topological sorts are necessarily heuristic, and

not-optimal in general.

In [3], two methods have been developed: a bottom-up method based on clustering called

APGAN, and a top down method based on graph partitioning called RPMC. The heuristic rule-of-thumb

used in RPMC is to find a cut of the graph such that all edges cross in the same direction (enabling us to

recursively schedule each half without introducing deadlock), and such that size of the buffers crossing the

cut is minimized. While this rule is intuitively attractive for the non-shared buffer model, it is also attrac-

tive for the shared model since the cut-crossing buffers will not be disjoint, and cannot be shared. Hence, it

makes intuitive sense to minimize the size of these buffers, and RPMC is a reasonable heuristic to use even

under the shared buffer model.

The APGAN technique is based on clustering adjacent nodes together that communicate heavily,

so that these nodes will end up in the innermost loops of the loop hierarchy. For a broad subclass of SDF

systems, APGAN has been shown to construct SAS that provably minimize the non-shared buffer memory

metric over all SAS [3].

8 Creating the interval instances from a single appearance schedule

Given a SAS, we have to solve the problem of deriving the set of intervals corresponding to the

buffer lifetimes. These lifetimes could also be periodic; it would be desirable to represent the periodicity

implicitly, without having to physically create an interval for each occurrence. For allocating periodic

intervals, we assume that all instances of a particular lifetime are allocated at the same block of memory.

Hence, it suffices to allocate the first instance.

q1x1( ) q2x2( )… qnxn( ) xi qi

x1x2…xn



Creating the interval instances from a single appearance schedule

16 of 39 Shared Memory Implementations of Synchronous Dataflow Specifications Using Lifetime Analysis 

8.1 R-Schedules and the Schedule Tree

As shown in [19], it is always possible to represent any SAS for an acyclic graph as

(EQ 6)  

where  and  are SASs for the subgraph consisting of the actors in  and in , and  and  are

loop factors for iterating these schedules. In other words, the graph can be partitioned into a left subset and

a right subset so that the schedule for the graph can be represented as in equation 6. SASs having this form

are called R-schedules [19].

Given an R-schedule, we can represent it naturally as a binary tree; we call this the schedule tree.

The internal nodes of this tree will contain the loop-factor of the subschedule rooted at that node. The leaf

nodes will contain the actors, along with their residual loop-factor. Figure 12 shows schedule trees for the

SAS in figure 2. Note that a schedule tree is not unique since if there are loop factors of 1, then the split

into left and right subgraphs can be made at multiple places. In figure 12, the schedule tree for the flat SAS

in figure 2(b)(3) is based on the split . However, we could also take the split to be .

However, the split will not affect any of the computations we perform using the tree.

In order to compute things like the “start time” and “end time” of a buffer lifetime, we use the fol-

lowing abstract notion of time: each invocation of a leaf node in the schedule tree is considered to be one

schedule step, and corresponds to one unit of time. For example, the looped schedule  would be

considered to take 4 time steps. The first invocation of  would take place at time 0, and the last invoca-

tion of  begins at time 3 and ends at time 4.

8.2 Computing the duration times of buffer lifetimes

If  is a node of the schedule tree, then  is the (sub)tree rooted at node . If  is a sub-

tree, define  to be the root node of . The function , where  is the set of nodes in

the tree, and  is the set of positive integers, returns for a non-leaf node, the loop iterator value at that nest-

ing level, and returns 1 for a leaf node. The function  is used to compute the duration times, 

for all nodes  (i.e, loop nests) by depth-first-search on the tree:

iLSL( ) iRSR( )

SL SR SL SR iL iR

1

A 2

B 2C

Fig 12. Schedule trees for schedules in figure 2(b)(2) and (3).

1

A 1

2B 4C

TBC

A{ } B C,{ } A B,{ } C{ }

2 A 3B( )

A

3B

v subtree v( ) v T

root T( ) T loop :V Z→ V

Z

loop dur v( )

v
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where  ( ) is the right (left) child of node . For leaf nodes, . The numbers

beside the nodes in figure 13 show the result of the depth-first-search computation of the duration values.

The depth first search takes time .

8.3 Computing the start and end times of buffer lifetimes

The next task is to compute the start and stop times for each nested loop. This is also done using depth-

first-search (also taking time ), as shown by the pseudocode in figure 14. An example of a SAS

with the computed start and stop times is shown in figure 15.

The final task is to compute the lifetimes for the buffers. We introduce some notation first:

dur v( ) loop v( ) dur left v( )( ) dur right v( )( )+( )=

right v( ) left v( ) v dur v( ) 1=

7 (5A 2(2B 3C)) 3 (2D 3(E 2F))

For each node
v, loop(v) = loop
iterator value.

For a leaf node v,
loop(v) = 1

Fig 13. The binary tree representation of a SAS, along with the duration values for the nodes.

1

7 3

2D 35A 2

2B 3C E 2F1 1 1 1

4 11 6

2135

56

O V( )

O V( )

Fig 14. Pseudocode for the depth-first-search algorithm for computing start and stop times for all the
nested loops.

Procedure computeStartStopTimes(Tree* schedule) {
// Initialize

doComp(root,0)
}

Procedure doComp( , start) {

if (  doComp( , );

if (  doComp( , )

}

visited v( ) 0← v∀

v
start v( ) start stop v( ) start dur v( )+←;←

visited left v( )( )¬ left v( ) start

visited right v( )( )¬ right v( ) stop left v( )( )
visited v( ) 1←
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Definition 1: A parent of a pair of nodes  is any node that contains the nodes  as leaf nodes

rooted at that node.

Definition 2: The smallest parent of a pair of nodes  is the first node that contains nodes  as

leaf nodes rooted at that node, where first is measured from the leaf nodes.

Definition 3: The greatest parent of a pair of nodes  is the last node that contains nodes  as

leaf nodes rooted at that node such that all parents of this node have a value of unity.

Definition 4: The parent set of a pair of nodes  is the set of all parents of .

Fact 2: Every node in the parent set lies on the path from the smallest parent to the largest parent.

The smallest and greatest parents of a pair of leaf nodes correspond to the innermost and outermost

loops that contain the actors corresponding to the leaf nodes. The start time of the lifetime of a buffer on an

edge  is clearly the start time computed for the leaf node in the schedule tree, corresponding to actor

. The stop time of the buffer interval is first time is stops being live. Note that an interval can be periodic

and become live again later on. We are interested in the first time it stops being live since that quantity,

along with the periodicity parameters will completely characterize the interval. This stop time, however, is

not simply the stop time of the leaf node corresponding to the sink actor. The algorithm shown in figure 16

is used to compute the stop time, and it takes  time.

3

2 5E

1 1

2C 3D3B2A

[1,2] [2,3]
[0,1]

[0,2]

[8,9][0,8]

[0,27]

1

2F [27,28]

[0,28]

[3,4]

[2,4]

3(2(2A 3B 2C 3D) 5E) 2F

Fig 15. Start and stop times for each node computed using depth-first-search.

v1

v2

v3

v1 v2, v1 v2,

v1 v2, v1 v2,

v1 v2, v1 v2,

v1 v2, v1 v2,

u v,( )

u

O V E( )



Creating the interval instances from a single appearance schedule

Shared Memory Implementations of Synchronous Dataflow Specifications Using Lifetime Analysis 

8.4 Computing the periodicity parameters of buffer lifetimes

Given a schedule, the buffer on each edge in the SDF graph has a particular lifetime profile. This

profile can be periodic as shown in figure 17. The periodicity arises due to the nested loops. By periodic,

we mean that the lifetime is fragmented in a deterministic, predictable manner. More precisely, the times

during which the buffer is live can be described much more succinctly than by simply enumerating all the

occurrences of the live portions. It is useful to keep track of this periodicity in certain cases since two buff-

ers could have disjoint lifetimes that can be shared, as shown in figure 17 for buffers on edges  and

. If the buffer on an edge  is not disjoint with any other buffer, then any periodicity it has can be

ignored, and it can be considered to be live the entire time over all of its periods.

Procedure computeIntervalStopTime

foreach 
//find the least parent of (u,v) in scheduleTree

 // vleaf = leaf node corresponding to actor v

while ( )

if ( )

fi

end while
// stop(buffer(u,v)) sets the stop time of buffer(u,v)

end for

buffer u v,( )

leastParent findLeastParent u v,( )←
stopuv stop right leastParent( )( )←

tmp vleaf←
tmp right leastParent( )≠

left parent tmp( )( ) tmp=

stopuv stopuv dur right parent tmp( )( )( )–←

tmp parent tmp( )←

stop buffer u v,( )( ) stopuv←

Fig 16. Procedure for computing the earliest stop time of an interval.

2A3B 2C 3D2A 3B2C 3D5E 2A3B 2C3D 2A3B 2C 3D

AB

CD

AB AB AB

CD CD CD

Fig 17. A couple of periodic intervals corresponding to the schedule from figure 15.

Time

A B,( )

C D,( ) e
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For a buffer  on an edge  in the SDF graph, let the parent set be denoted as nodes

, with  is the smallest parent. For example, in figure 15, say there is an edge between actors 

and . The smallest and greatest parents are the nodes marked  and . The node  is also in the par-

ent set, and is on the path from  to . We represent a periodic lifetime of a buffer  by a triple consist-

ing of two tuples and an integer of the form

where  are the constants . Clearly, nodes in the parent set that have

 values of unity will not contribute to the periodicity; hence, those components can be eliminated.

This triple allows us to represent the buffer lifetime in the following way: buffer  is live for time intervals

for all combinations of . For example, for the buffer  in figure 17, we have

by inspection that , , , and .

Hence, buffer  is live during the intervals given by  for all combinations of

 and . The live intervals are , , , and .

During storage allocation, we will have to determine whether, at a time , a buffer  is live or not.

In essence, we have to determine whether the equation

(EQ 7)  

where the  are variables that range over  has a solution in . A solution, if it

exists, can be found easily because of the following obvious property on the . Let the  be sorted in

increasing order. Then, the following has to hold:

.

Given this observation, equation 7 can be solved by the algorithm in figure 18.

If  is not alive at time , we will need to determine when the next instance of its periodic interval

will occur again. This computation is needed to determine whether some other interval of a particular dura-

tion is completely disjoint with the set of intervals corresponding to . That is, determine whether some

other interval can be fitted into the same location that  might be assigned to. The starting time of the next

instance of the periodic interval is obtained simply by incrementing the “number” formed by the  in the

basis . For example, let  be , let 

be , and let  be . The number this represents is clearly

b U V,( )

v1
b … vn

b, , v1
b A

B v1 v3 v2

v1 v3 b

start v1
b( ) a1

b … an
b, ,( ) loop v1

b( ) … loop vn
b( ), ,( ), ,{ }

ai
b dur left vi

b( )( ) dur right vi
b( )( )+

loop

b

start v1
b( ) p1

ba1
b … pn

ban
b      start v1

b( ) p1
ba1

b … pn
ban

b dur b( )+ + + +,+ + +[ ]

pi
b 0 … loop vi

b( ) 1–, ,{ }∈ AB

start …( ) 0= dur AB( ) 2= a1
b … an

b, ,( ) 4 9,( )= loop …( ){ } 2 2,{ }=

AB 4x 9y 4x 9y 2+ +,+[ ]
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start v1
b( ) p1

ba1
b … pn

ban
b+ + + T start v1

b( ) p1
ba1

b … pn
ban

b dur b( )+ + + +≤ ≤

pi
b 0 … loop vi

b( ) 1–, ,{ } pi
b

pi
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b
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b loop vi

b( ) 1–( ) ai 1+
b≤ i 1 … n 1–, ,=

b T

b

b

ki

loop v1
b( ) … loop vn
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. The next time this buffer will be live again will be given by incrementing this

“number” by one, in the basis : . This gives 28 as the next starting time.

Given this method for testing whether a periodic buffer is live at a given time, we can easily test

whether two periodic buffers are disjoint, or whether they intersect. The test would take time  in the

worst case, where  is the set of actors in the SDF graph. The reason is that an SAS that has a schedule

tree of linear depth (i.e, a depth of ) would have a parent set of  nodes for any buffer between

actors in the innermost loop. Hence, in the procedure in figure 18, , and the test takes time

. However, on average, it is more likely that the schedule tree will have logarithmic depth; in such

cases, the running time of the testing procedure will be . The next step is to allocate the various

buffers to memory.

9 Dynamic Storage Allocation

Once we have all of the lifetimes, we have to do the actual assignment to memory locations of the

buffers. This assignment problem is called dynamic storage allocation (DSA) and is formally defined as:

Definition 5: Let  be the set of buffers. Let , the number of elements in . For each ,

 is the time at which it becomes live,  is the time at which it dies, and  is the size of buffer

. Note that the duration of a buffer is . Given the  values for each , and an inte-

ger , is there an allocation of these buffers that requires total storage of  units or less? By an allocation,

we mean a function  such that  for each , and if two

intervals  and  intersect (using the intersection test for periodic buffer lifetimes as described earlier)

then  or .

Define .

for i = n to 1 step -1

end for

if ( ), then  is live (the computed  are the solution)

else not live.

T' T start v1
b( )–←

ki min T'

ai
b

----- loop vi
b( ),

 
 
 

←

T' T' kiai
b–←

T' dur b( )< b ki

Fig 18. An algorithm to determine whether a periodic buffer is live at a particular time.
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The “dynamic” in DSA refers to the fact that many times, the problem is online in nature: the allo-

cation has to be performed as the intervals come and go. For SDF scheduling, the problem is not really

“dynamic” since the lifetimes and size of all the arrays that need to be allocated are known at compile time;

thus, the problem should perhaps be called static storage allocation. But we will use the term DSA since

this is consistent with the literature.

Theorem 1: [9] DSA is NP-complete, even if all the sizes are 1 and 2.

9.1 Some notation

An instance is a set of buffers. An enumerated instance is an instance with some ordering of the

buffers. For an instance, we have associated with it a weighted intersection graph (WIG)

 where  is the set of buffers, and  is the set of edges. There is an edge between two

buffers iff their lifetimes overlap in time. The graph is node-weighted by the sizes of the buffers. For any

subset of nodes , we define the weight of ,  to be the sum of the sizes  for all .

A clique is a subset of nodes such that there is an edge between every pair of nodes. The clique weight

(CW) is the weight of the clique. The maximum clique weight (MCW) in the WIG is the clique with the

largest weight, and is denoted . The MCW corresponds to the maximum number of values that are

live at any point. The chromatic number (CN), denoted , for  is the minimum  such that

there is a feasible allocation in definition 5.

First fit (FF) is the algorithm that performs allocation for an enumerated instance by assigning the

smallest feasible location to each interval in order. It does not reallocate intervals, and it does not consider

intervals not yet assigned. The pseudocode for this algorithm is shown in figure 19. In order to analyze the

running time, we observe that , and  for sparse SDF graphs, where  are the

node and edge sets for the SDF graph. Hence, building the weighted intersection graph takes  time

in the worst case (all buffers overlap with each other, schedule tree is of linear depth), and time

 if the schedule tree is of logarithmic depth. The foreach loop of the firstFit procedure

takes time  in the worst case if every buffer overlaps with every other buffer; hence, the

firstFit procedure has running time dominated by the buildIntersectionGraph step.

We refer the reader to [20] and references therein for a more detailed treatment of this very inter-

esting DSA problem. The study in [20] shows that in practice, firstfit is a good heuristic, and we use it in

our compiler framework here. In particular, the empirical study on random WIGs in [20] shows that order-

ing the buffers by durations gives the best results, followed by ordering using start times. Hence, in our

GB VB EB,( )= VB EB

U VB⊂ U w U( ) w v( ) u U∈

ω̃ GB( )

χ GB( ) GB K

N E= E O V( )= V E,

O V 3( )

O V 2 Vlog⋅( )

O V 2 V( )log⋅( )
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Procedure FirstFit(enumerated instance I)

G = buildIntersectionGraph(I)
Vector allocate //allocate is an array to contain the allocations

foreach interval i in I do
 //initial allocation at 0

foreach neighbor j of i from G
if (j appears before i in I)

fi
end for
sort( )

foreach allocation 

if  conflicts with 
//size(a) = size of interval with allocation a

fi
end for

end for

allocate i( ) 0←
neighborsAllocations  { }←

neighborsAllocations neighborsAllocations allocate j( ){ }∪←

neighborsAllocations

a neighborsAllocations∈
allocate i( ) a

allocate i( ) a size a( )+←

Fig 19. Pseudocode definition of the FirstFit heuristic.

Procedure buildIntersectionGraph(enumerated instance I)

sort I by start times

number of buffer lifetimes in I
// G is an adjacency list representation containing N rows
// and list pointer at each G(i)
Graph G

foreach i in {1,...,N}

while (start time of I(j) < end time of I(i))
if (lifetime(I(j)) overlaps lifetime(I(i)))

fi

end while
end for

N  ←

j i 1+←

G i( ) G i( ) j{ }∪←
G j( ) G j( ) i{ }∪←

j j 1+←
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experiments in section 10, we will apply firstfit on both ordering by start times (abbreviated ffstart), and

ordering by durations (ffdur).

It is clear that the MCW is a lower bound on the CN of an WIG. It is known that the CN can be as

much as 1.25 times the MCW for particular instances; however, it is not known whether 1.25 is a tight

upper bound. The MCW is thus a good lower bound to compare the performance of an allocation strategy

on a particular set of lifetimes. Given that the experiments on random instances in [20] show that ffdur

comes within 7% on average of the MCW, in practice, the CN is not much bigger than the MCW, certainly

not as much as 1.25 times as big. Hence, we use the MCW for comparison purposes in our experiments in

the next section.

While the MCW can be computed easily and exactly for an instance without periodic lifetimes,

computing it for instances with periodic buffer lifetimes is more difficult. Consider the case where all inter-

vals are non-periodic. Let  be the set of all times (i.e, schedule steps) where there is maximum overlap

of the intervals; that is, where the overlap amount is equal to the maximum clique weight. It is easy to see

that  must contain the start time of some interval. Hence, the maximum clique weight can be computed

easily by sorting the intervals by their starting times, and determining the overlap at each starting time.

Now suppose that some of the intervals are periodic. It is still the case that  will contain the

start time of at least one interval; however, this need not be the earliest start time. It could be the start time

of some periodic occurrence (greater than the earliest start time) of the interval (see figure 20). Hence, to

compute the maximum clique weight in this scenario, we would have consider start times of all occur-

rences of a periodic interval; this becomes a non-polynomial time algorithm and could potentially take a

long time if there are many periodic occurrences. Hence, in our experiments, we use two heuristics to com-

pute these values. The first heuristic gives an optimistic estimate; it only considers the earliest start time of

each interval, and it determines whether there is any overlap with other intervals at that time by using the

MT

MT

MT

1

1

1

1

1

1

1

15 5
5

MCW=CW=18 {

CW = 2
CW=8
CW=13

CW=16

Fig 20. An example that shows that the MCW can occur at a time that is not the earliest start time of any interval.
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algorithm of figure 18. This is an optimistic estimate since the maximum clique weight could occur at a

time that is not the earliest start time of any interval. The second heuristic gives a pessimistic estimate; it

simply ignores the periodicity of periodic intervals, and assumes that a periodic interval is live the entire

time between its earliest start time, and the last stop time (that is, the stop time of the last occurrence of the

interval).

10 Experimental Results

Figure 21 shows a flow chart representing the sequence in which these algorithms are applied We

have tested these algorithms on several practical benchmark examples, as well as on random graphs.

10.1 Practical systems

The practical examples are a number of one-sided filterbank structures [26] as shown in figure 22,

two-sided filterbanks [26], as shown in figure 23, and a satellite receiver example [24] as shown in figure

24. Another variation that occurs in practical systems are the rate change ratios; the figure 22 shows a fil-

terbank with 1/3, 2/3 rate changes; these are the changes that occur across actors  and  for instance.

SDF
Graph

Determine
topological
ordering
(RPMC or
APGAN)

DPPO
Build
schedule
tree

Compute
buffer widths,
durations,
start, stop times,
periods, and
period bounds

Build

graph
intersection

Storage
allocation
(first fit)

Fig 21. Flow chart showing the sequence in which the various algorithms are applied.

Fig 22. SDF graph for a one-sided filterbank of depth 4. The produced/consumed numbers not specified
are all unity.
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Other ratios that could be used include 1/2, 1/2, or 2/5, 3/5. Similarly, figure 23 shows a filterbank with 1/

2, 1/2 rate changes, for example, across actors  and . Again, these changes could be 2/3, 1/3, or 2/5, 3/5

for instance. Experimental data is summarized for these various parameters, as well as for filterbanks of

different depths, in table 1. The leftmost column contains the name of the example. The filterbank

“qmf23_2d”, for example, is a filterbank of depth 2, with 1/3, 2/3 rate changes. Similarly, “qmf235_5d” is

a filterbank of depth 5 with rate changes of 3/5 and 2/5. The depth 5, 3, and 2 filterbanks have 188, 44, and

20 nodes respectively. “nqmf23_4d” is the one-sided filterbank from figure 22. “satrec” is satellite receiver

example from [24]. The other examples included are “16qamModem”, an implementation of 16-QAM

modem, “4pamxmitrec”, a transmitter-receiver pair for a 4-PAM signal, “blockVox”, an implementation of

Fig 23. SDF graph for a two-sided filterbank. a) Depth 1 filterbank, b) Depth 3 filterbank. The produced/con-
sumed numbers not specified are all unity.
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a vocoder (a system that modulates a synthesized music signal with vocal parameters—for instance, Stevie

Wonder’s “Part-time lover” has a sequence at the end of the song using this type of effect), “overAddFFT”,

an implementation of an overlap-add FFT (where the FFT is applied on successive blocks of samples over-

lapped with each other), and “phasedArray”, an implementation of a phased array system for detecting sig-

nals. These examples are all taken from the Ptolemy system demonstrations [1].

The second column has the results of running RPMC and post-optimizing with DPPO on these

systems, assuming the non-shared model of buffering. This column gives us the basis for determining the

improvement with the shared model. In general, “(R)” refers to RPMC and “(A)” refers to APGAN. The

third column has the results of applying the new heuristic DPPO (called sdppo) post-optimization for

shared buffers on an RPMC generated schedule. The fourth and fifth columns contain optimistic (mco) and

pessimistic (mcp) estimates of the maximum clique weight for the schedule generated by sdppo (on the

RPMC generated schedule). The sixth and seventh columns contain the actual allocations achieved after

applying the firstfit ordered by durations, and firstfit ordered by start times heuristics. The eigth column

contains the BMLB [3] values for each system. Briefly, the buffer memory lower bound (BMLB) is a

lower bound on the total buffering memory required over all valid SASs, assuming the non-shared model

of buffering. The rest of the columns contain the results after applying these heuristics on APGAN-gener-

ated schedules. One each row, two numbers are shown in bold: the better DPPO result (RPMC or APGAN)

and the best shared implementation (between ffdur(R), ffstart(R), ffdur(A), ffstart(A)). The last column has

the percentage improvement over the non-shared implementation; this is computed as 

As can be seen, the improvements average more than 50%, and are dramatic in some cases, with up to 83%

improvement in the depth 5 filterbank of 1/2, 1/2 rate changes (the most common type of filterbank). It is

interesting to note that in [24], the methods of Ritz et. al. for shared-buffer scheduling achieve an alloca-

tion of more than 2000 units for “satrec”; in contrast, the methods in this paper achieve 991, an improve-

ment of more than 50%.

Table 1: Overall performance on practical examples

dppo
(R)

sdppo
(R)

mco
(R)

mcp
(R)

ffdur
(R)

ffstart
(R)

bmlb
dppo
(A)

sdppo
(A)

mco
(A)

mcp
(A)

ffdur
(A)

ffstart
(A)

% 
impr

.

nqmf23
_4d

209 132 120 139 132 133 75 314 242 237 258 264 240 36.8

qmf23_
2d

60 24 21 30 22 22 50 62 35 26 28 27 27 63.3

MIN dppo R( ) dppo A( ),( ) MIN ffdur R( ) ffstart R( ) ffdur A( ) ffstart A( ),,,( )–
MIN dppo R( ) dppo A( ),( )

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 100⋅
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It is also interesting to note that of the four possible combinations

( ), the combination of 

gives the best results the most often. Figure 25 shows a bar-graph of the improvement percentage from the

last column.

Another experiment was conducted to determine whether applying ffdur or ffstart on the sdppo

schedule gives better results than applying ffdur or ffstart on the dppo schedule. The maximum improve-

ment observed on these examples was about 8%. Hence, it is better to use the new DPPO heuristic for

shared buffers, although the improvement is not dramatic.

qmf23_
3d

173 63 54 90 63 64 116 188 104 74 90 78 78 63.6

qmf23_
5d

1271 498 489 645 492 502 512 1478 812 741 902 792 804 61.3

qmf12_
2d

36 12 9 9 9 9 34 34 16 11 12 12 11 73.5

qmf12_
3d

88 21 16 19 16 17 78 78 35 25 36 27 27 79.5

qmf12_
5d

434 72 56 72 58 63 342 342 142 103 165 113 113 83.0

qmf235
_2d

122 55 50 65 55 66 82 140 85 71 75 74 79 54.9

qmf235
_3d

492 240 220 285 240 248 192 660 431 380 392 382 394 51.2

qmf235
_5d

8967 5690 5560 6065 5690 6226 852 13716 9248 7477 7635 8125 8254 36.5

satrec 2480 1920 1680 1680 1691 1715 1542 1542 1200 960 960 991 1015 35.7

16qam
Modem

35 11 8 8 10 9 35 35 11 8 9 11 9 74.3

4pamx
mitrec

79 49 48 48 49 51 49 49 36 33 35 35 35 28.6

block-
Vox

472 194 193 193 197 199 409 409 138 130 147 135 135 67.0

overAd
dFFT

1476 832 768 768 832 833 1222 1222 704 514 514 514 577 57.9

phase-
dArray

2496 2075 2064 2064 2071 2072 2496 2496 2076 2064 2064 2071 2072 17.0

Table 1: Overall performance on practical examples

dppo
(R)

sdppo
(R)

mco
(R)

mcp
(R)

ffdur
(R)

ffstart
(R)

bmlb
dppo
(A)

sdppo
(A)

mco
(A)

mcp
(A)

ffdur
(A)

ffstart
(A)

% 
impr

.

RPMC sdppo APGAN sdppo+,+( ) ffdur ffstart,( )× RPMC sdppo ffdur+ +
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In order to determine whether RPMC and APGAN are generating good topological sorts, we

tested the results against the best allocation we could get by generating random topological sorts. We

applied the sdppo technique, and the firstfit heuristics on this random topological sort to determine the best

allocation. For the small graphs like “satrec” and “blockvox” (both with about 25 nodes), we found that it

took about 50 random trials to beat the best result generated by the better of RPMC and APGAN-generated

schedules. However, even after 1000 trials, the best random schedule resulted in an allocation of 980 for

satrec example, and an allocation of 193 for the blockVox example. The best RPMC/APGAN-based allo-

cations are 991 and 199 respectively. So even though we can generate better results just by random search,

we cannot improve upon RPMC/APGAN by much, and a lot of time has to be spent doing it.

The situation changes when the random schedules are evaluated for bigger graphs, like the

“qmf12_5d” and “qmd235_5d” examples (these have about 200 nodes). Here, after 100 trials, the best

allocations were 79 (qmf12_5d) and 8011 (qmf235_5d), compared to 58 and 5690 for the RPMC/APGAN

based allocations respectively. Since the running time for 100 trials was already several minutes long on a

Pentium II-based PC, we conclude that on bigger graphs, it will require a lot of time and compute power to

equal or beat the RPMC/APGAN schedules. Hence, we conclude that APGAN and RPMC are generating

topological sorts intelligently, and cannot be easily beaten by non-intelligent strategies such as generating

random schedules.

10.2 Homogenous graphs

Unlike previous loop scheduling techniques for buffer memory reduction, the techniques described

in this paper are also effective for homogenous SDF graphs. This is because of the allocation techniques;

0.0

20.0

40.0

60.0

80.0

100.0

1 3 5 7 9 11 13 15

Practical systems

Percentage improvement of shared over non-shared 
implementation

Fig 25. A bar-graph view of the improvement percentage of the best shared implementation versus the
best non-shared implementation.
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the sharing strategy can greatly reduce the buffer memory requirement in many cases. As an example, con-

sider the class of homogenous graphs (parametrized by  and ) shown in figure 26. This type of graph

(or close variants of it) arises frequently in practice. It is clear that no matter what the schedule is, there are

never more than  live tokens. Indeed, running the complete suite of techniques on this graph for any

 and  results in an allocation of  units. A non-shared implementation would require

 units instead. The savings are even more dramatic if, along the horizontal chains, vectors

or matrices are being exchanged instead of numerical tokens.

10.3 Random graphs

Figure 27 summarizes the results on randomly generated SDF graphs. The experiments were done

on 100 random SDF graphs having 20,50,100, and 150 nodes each (400 graphs in all). The chart in figure

27(a) shows the percentage by which the best shared implementation was more than the best non-shared

implementation averaged over the 100 graphs for each graph size. As can be seen, the improvement drops

off as the graphs get bigger, and is only on the order of 5% for 100 and 150 node graphs. This is in sharp

contrast to the performance on practical systems where even the smallest improvements were about 35%.

Hence, either random graphs do not appear to show the potential improvement that can result very well, or

the random graphs we generate do not correspond very well to practical systems. This is an area that needs

further exploration; however, it is hampered by the lack of a large collection of accepted benchmarks of

SDF graphs.

Charts in (b) and (c) show how much the allocation differed from the optimistic and pessimistic

estimates of the maximum clique weight; as can be seen, the deviation is only on the order of 2-4%. Note

that on average, the pessimistic estimate is greater than the allocation (by 1.5-5%) and the optimistic esti-

mate is less than the allocation (by 1.5-4%). The chart in (d) shows the average difference between the best

M N

M nodes

N nodes

Fig 26. A homogenous graph for which shared allocation techniques are highly beneficial.

M 1+

M N M 1+

M N 1–( ) 2M+
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allocation and the best sdppo estimate. This difference is less than 0.5% on average. Chart (e) shows the

difference between RPMC and APGAN; in particular, the average percentage by which the RPMC-gener-

ated schedule (post-optimized by sdppo, and allocated using the better of ffdur and ffstart) is better than the

APGAN-generated schedule. The difference is significant for larger graphs. Finally, chart (f) shows the
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percentage of times the RPMC-based allocation was better than the APGAN-based allocation; this varies

from 52-60%. In [3], we observed that RPMC was better than APGAN 66% of the times for non-shared

implementations. For shared implementations, the difference between these two is less evident.

11 Related work

11.1 Buffer sharing

11.1.1 Arbitrary schedules (not necessarily SAS)

Bhattacharyya developed a buffer sharing formulation in [4], using lifetime analysis and intersec-

tion graph construction, for arbitrary schedules (not necessarily SASs). Since non single appearance sched-

ules can be of exponential length, lifetime analysis and intersection graph construction has much higher

complexity in the formulation of [4]. Also, in [4], buffer sharing is not allowed at the fine granularity that

is allowed in this paper; for example, periodicity is not taken into account. Finally, no attempt is made in

[4] to drive the scheduling algorithm in such a way that the total (shared) allocated memory is minimized.

11.1.2 Sharing on flat single appearance schedules

Ritz et. al. [24] give an approach to minimizing buffer memory that operates only on flat SASs

since buffer memory reduction is tertiary to their goal of reducing code size and context-switch overhead

(defined roughly as the rate at which the schedule switches between various actors). We do not take con-

text-switch into account in our scheduling techniques because our primary concern is memory minimiza-

tion as avoiding off-chip memory is often a bottleneck in embedded systems implementations.

Flat SASs have a smaller context switch overhead then nested schedules do, especially if the code-

generation strategy used is that of procedure calls. Ritz et. al. formulate the problem of minimizing buffer

memory on flat SASs as a non-linear integer programming problem that chooses the appropriate topologi-

cal sort and proceeds to allocate based on that schedule. This formulation does not lead to any polynomial-

time algorithms, and on the satellite receiver example, yields an allocation that is more than 100% of the

allocation achieved by techniques developed in this paper. However, the techniques in this paper do not

take context-switch overhead into account (since we assume inline code generation, the effect of context

switches is arguably less significant), and are thus able to operate on a much larger class of SASs than the

class of flat SASs. Also, the techniques in this paper are all provably polynomial-time algorithms.

11.1.3 Buffer minimization by dynamic scheduling

Goddard and Jeffay argue that dynamic scheduling is better suited for reducing memory require-

ments of SDF graphs, and develop an earliest-deadline-first (EDF) type of dynamic scheduler [10]. They
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demonstrate their dynamic scheduling approach on the satellite receiver example from [23], and show that

the dynamic scheduling approach results in a total buffer memory requirement (assuming that each buffer

is implemented separately) of 1599, including the graph input and output buffers—these require 3 tokens

with the EDF scheduler [10]. They also do some calculations to show that a shared memory implementa-

tion under the EDF scheduler would result in a total requirement of about 1101 locations. Neglecting the

issue of input/output buffering for the moment, these requirements are more than that required by static

SASs: the non-shared buffer implementation requires 1542 locations, while the shared approach requires

991 locations.

However, the main advantage of dynamic scheduling in this case is the reduction of the input/out-

put buffering amount for the graph. The input buffer requirement of a graph (that is to be executed in real-

time on a DSP) comes about because the source actors are presumably connected to some outside source

that provides data periodically. Similarly, the output actors are connected to the outside world that reads

data periodically. These periods can usually be determined based on the sampling rate of the signals that

the DSP has to meet. Goddard and Jeffay determine that for the nested, static SAS that APGAN produces

for the satellite receiver, 2*1056 tokens would be required for the graph input buffers. Thus, they conclude

that the real buffering requirement of the static SAS is 1542+2112 = 3654 tokens. The 1056 comes about

because the total number of firings of the source actors  and  is 1056 in one complete period of the

SAS. Hence, they assume that since 1056 samples have to be processed by  in a complete period of the

SAS, that many samples have to be accumulated in order to execute the SAS correctly. This assumption

would be largely correct for a flat SAS since all invocations of actors  and  happen at once. In a nested

schedule, however, this is not necessarily true; there might be less time spent executing other actors in a

deeply nested loop before the source actor is executed again. Or put another way, the execution of the

source actors would be spread out much more over the period of the SAS if the source actors were in

nested loops. For instance, the APGAN schedule for the satellite receiver is

.

The firing sequence of the initial part of the schedule would be

.

Basically, there are only 44 invocations of  that happen mostly all at once (interspersed with 11 firings of

); there is then a computational delay until another 44 invocations take place and so on. In contrast, a flat

SAS would be something like . Here the firing sequence would be

 initially, followed by a long period of time where the other actors are executed. This execution time

A D

A

A D

24 11 4A( )B( )CGHI 11 4D( )E( )FKLM10 NSJTUP( )( ) QRV240W( )

AAAABAAAAB…AAAABCGHIDDDDE…DDDDEFKLMNSJTUP…NSJTUP…

A

B

1056A( ) 264B( ) 24C( )… 240W( )

A…A



Related work

34 of 39 Shared Memory Implementations of Synchronous Dataflow Specifications Using Lifetime Analysis 

could potentially span 1056 sample periods; hence, 1056 samples would need to be buffered at the inter-

face to  since  would not be fired all during that time. In the nested schedule, the invocations of  are

not spaced out by 1056 sample periods; they happen much more frequently than that. In order to precisely

determine how many samples would need to be buffered at the interface to , we would have to know rea-

sonably accurate execution times of each of the actors in the schedule, and the operating clock speed of the

processor that this would be implemented on. We believe that the input buffering required would be con-

siderably less than 1056 samples. We pointed out this observation in [19] for the CD-DAT rate-changing

example. We showed that our buffer-optimal SAS (optimized with the non-shared buffer metric) has an

input buffering requirement of about 11 tokens, while the flat SAS has a requirement of 65 tokens, assum-

ing some typical execution time values for the actors in the graph, and for a typical DSP in 1994. The total

period of the SAS for the CD-DAT example is 147 sample periods. Hence, for the CD-DAT example, the

input buffering is far less than 147 (less than 10%), and again, this is because the nesting allows the source

actor to fire more frequently than a flat schedule would.

The fact that a non-SAS can have a much smaller buffering requirement is not surprising given the

following result from [3]. Consider an edge . Suppose that , ,

, and . Then the minimum buffer size on edge  over all valid

schedules is given by  if   and  otherwise. The minimum buffer size

required over all valid SASs, in contrast, is given by the BMLB [3]:  if  , and  other-

wise. Hence, one can devise a greedy, data-driven scheduler that fires a sink actor on an edge in preference

to the source actor on that edge whenever both are fireable [3]. For a chain-structured graph, this will result

in an optimal schedule in terms of total buffer memory usage. For non-chain-structured graphs, this

approach will still result in a buffer memory requirement that is less than the best SAS. This data-driven,

greedy scheduler could be implemented as a dynamic scheduler so that we do not pay the penalty of storing

a very long schedule that can potentially result. However, it has been shown through experiments in [1]

that dynamic scheduling can be up to twice as slow as executing a static schedule. This allows a trade-off:

when there are ample cycles to meet throughput demands, but memory is highly restricted, one can use

dynamic scheduling so that the least amount of data storage is needed. If throughput demands are stringent,

and the overhead of dynamic scheduling is intolerable, one can use SAS optimized for buffer memory

usage.

11.1.4 Using n-appearance schedules

Sung et. al consider expanding the SAS to allow 2 or more appearances of some actors if the buff-

ering memory can be reduced [25]. They give heuristic techniques for performing this expansion and show

A A A
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A B, prd A B,{ }( ) a= cns A B,{ }( ) b=
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that the buffering can be reduced significantly by allowing an actor to appear more than once. This tech-

nique is useful since it allows one to trade-off buffering memory versus code size in a systematic way.

11.2 Improving on single-appearance schedules

SASs will give the least code size only if each actor in the schedule is distinct and has a distinct

codeblock that implements its functionality. In reality, however, many actors in the graph will be different

instantiations of the same basic actor, with different parameters perhaps. In this case, inline code generated

from a SAS is not necessarily code-size optimal since the different instantiations of a single actor could all

share the same code [25]. Hence, it might be profitable to implement procedure calls instead of inline code

for the various instantiations, so that code can be shared. The procedure call would pass the appropriate

parameters. A study of this optimization is done in [25] where the authors formulate precise metrics that

can be used to determine the gain or loss from implementing code sharing compared to the overhead of

using procedure calls. Clearly, all of the scheduling techniques mentioned in this paper can use this code-

sharing technique also, and our work is complimentary to this optimization.

12 Future directions

One of the weaknesses of the buffer sharing model used in this paper is the assumption that all out-

put buffers of an actor are live when the actor begins execution, and all input buffers are live until the actor

finishes execution. This means that an output buffer of an actor can never share an input buffer of that actor

under the model used in this paper. In reality, this may be an overly restrictive assumption; for instance, an

addition actor that adds two quantities will always produce its output after it has consumed its inputs.

Hence, the output result can occupy the space occupied by one of the inputs. We have formalized this idea,

and have devised another technique called buffer merging that merges input and output buffers by alge-

braically determining precisely how many output tokens are simultaneously live with input tokens (via a

formalism called the consume-before-produce (CBP) parameter). This technique is highly complimen-

tary to the approach taken by this paper, and is in effect, a dual of the lifetime analysis approach because

buffer merging works at the level of a single input/output edge pair, whereas the lifetime analysis approach

of this paper works on a global level where the buffering efficiency results from the topology of the graph

and the structure of the schedule. The buffer merging technique will be fully presented in a forthcoming

paper.

In order to produce code competitive to hand-coded implementations, there are many ways in

which additional optimization problems can be formulated. One particular problem that has not been

addressed is the issue of recognizing regularity that might occur in a graphical specifications. For instance,
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consider the fine-grained description of an FIR filter shown in figure 28. The threading approach of inline

code generation will generate code as shown in the figure, and clearly, this is not how a programmer would

implement this diagram. A hand-coded implementation of this would clearly use a loop to encapsulate the

alternating additions and multiplications, and would maintain the gain parameters and input data in arrays

that can be indexed by the loop variable.

In [2], we gave a dynamic programming algorithm that can organize loops optimally on a given

sequence of actor appearances. If we represent different instantiations of the same actor by the same label,

subscripted by instance numbers to differentiate between the various instances, then this algorithm can be

used to detect patterns over the labels that can be looped optimally. For instance, if the addition actors are

represented by the labels  and the gain actors are represented as , then if the schedule generated is

, then the algorithm would be able to generate the looped schedule

. Clearly, the ability to generate good, compact looped structures would depend on the gen-

erated schedule having a regular pattern, and an interesting direction for future study is to study scheduling

algorithms that generate schedules that preserve this sort of regularity. Regularity extraction has been

applied in the past to high level synthesis [21][22], and Keutzer [12] has applied pattern matching algo-

rithms from compiler design to silicon compilers; perhaps these techniques can be applied in the context of

SDF compilers.

In graphical languages, there may be graphical constructs that allow the designer to specify this

sort of regularity compactly. A notable example are higher-order functions proposed by Lee [15]. Higher-

order functions are graphical blocks that take other graphical blocks as inputs and produce graphical struc-

tures as outputs. The graphical structure is produced using simple rules for replicating and connecting the

input graphical blocks. Since the regularity has now been captured in a very compact description, the

scheduler can make use of this information to preserve this regularity, and not ignore it as is currently done

(by only considering the graph that results after all higher-order functions have been statically expanded

and removed from the graph). For instance, the “chain” actor is a higher-order function that creates one or

Fig 28. A SDF specification of an FIR filter at a fine-grained level and the generated code by a threading
technique.
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more instances of the named actor (it’s parameter) connected in a chain. This is implemented by replacing

the Chain actor with instances of the named actors statically. The replacement actor(s) are connected as

specified by parameters for the Chain actor; these parameters specify how the input edges of the named

block map to the input edges of the Chain actor and so on. A parameter called parameter_map determines

how parameters are generated for the instantiated actors. Figure 29 shows the graph for constructing the

fine-grained FIR description using the Chain actor. It would be interesting to implement scheduling tech-

niques that make use of the information encapsulated in higher-order functions. Certainly, generating large,

fine-grained descriptions of algorithms like the FFT or FIR filters is done best by using higher-order func-

tions since other ways of drawing these schematics are usually not scalable, are time-consuming, and are

hard-coded for a particular parameter (like the order of the FFT, or the length of the FIR filter). More gen-

erally, it would be useful to study scheduling techniques that can make use of the original hierarchy used in

the design since large designs are almost always hierarchical.

13 Conclusion

In this paper, we have developed a powerful SDF compiler framework that improves upon our pre-

vious efforts demonstrably. By incorporating lifetime analysis into all aspects of scheduling and allocation,

the framework is able to generate schedules and allocations that reuse buffer memory, thereby reducing the

overall memory usage. In particular, we have developed a model of buffer sharing that we call the coarse-

grained model. We gave a new dynamic programming formulation that post-processes flat SASs generated

by the APGAN or RPMC algorithms (developed in [3] and [19]) with the shared buffer cost as the cost

function to be minimized. We gave several algorithms for extracting the buffer lifetimes from this post-

processed SAS; these algorithms are all of polynomial running time in the size of the SAS. We formalized

the problem of memory allocation as that of dynamic storage allocation. We have presented extensive

experimental results on the performance of this suite of techniques, both on practical systems, and on ran-

= MAC

Chain actor

Fig 29. The MAC actor on the left is a hierarchical actor containing the subgraph of the gain and add actors. The
Chain actor takes the MAC actor as a parameter and generates the FIR structure shown in figure 28.
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domly generated SDF graphs. We have shown that the improvement over previous techniques, on practical

systems, averages more than 50%, with upto 83% improvement on some systems.
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