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The present study examines the six eIF4E cognates in zebrafish. In addition 

to the prototypical translation initiation factor eIF4E, eukaryotes have evolved 

eIF4E variants with distinct characteristics, some of which negatively regulate 

the recruitment of specific mRNAs. Metazoan eIF4E family members fall into 

three classes, with Class I containing the canonical translation initiation factor 

eIF4E-1. eIF4E-1 binds eIF4G to initiate translation, a process inhibited by 

eIF4E binding proteins such as the 4E-BPs and other eIF4E interactive 

proteins. Analysis of eIF4E sequences from the twenty fish genomes currently 

available, as well as those of echinoderm, tunicate and cephalocordate, has 

allowed a glimpse of the origins and evolution of the eIF4E family in 

vertebrates. All deuterostomes have one representative from each class of 

eIF4Es. Early deuterostomes such as sea urchins, tunicates, and lancelets 



 
 

have only one from each class; eIF4E-1, eIF4E-2 and eIF4E-3. The 

distribution of the subclasses of eIF4E-1 is consistent with the duplication of 

Class I prior to the teleost specific whole genome duplication, probably at one 

of the whole genome duplications at ~550 (1R) and 500 (2R) mya. Evidence 

of the duplication of Class I eIF4Es can be seen in elephant shark 

(Callorhinchus milii), coelacanth (Latimeria chalumnae) and basal ray-finned 

fish (Lepisosteus oculatus), which have eIF4E-1A, -1B, and -1C. eIF4E-1B 

has neofunctionalized to become a tissue specific regulator of mRNA 

recruitment. It has been retained in tetrapods, but lost in higher teleosts. 

eIF4E-1C, appears to have retained function as a prototypical initiation factor. 

A duplication of Class II eIF4Es occurred prior to the emergence of the 

tetrapod branch, becoming eIF4E-2A and -2B. The genes proximal to the 

eIF4E-2A locus appear to be conserved across teleosts and tetrapods, the 

eIF4E-2B genetic loci are more variable, suggesting that eIF4E-2A is the 

ancestral form. eIF4E-2B is retained by amphibians and teleosts, but has 

been lost in coelacanth and amniotes. Although 88 % identical, eIF4E-2B can 

be distinguished from eIF4E-2A by its ability to bind trimethyl GTP (TMG) and 

to complement a S. cerevisiae strain conditionally deficient in eIF4E. This 

study has shown that duplication within the different classes of eIF4E 

occurred early in vertebrate evolution with some neofunctionalization, as well 

as asymmetric losses in different vertebrate classes 
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CHAPTER 1: INTRODUCTION 

1.1. What is prototypical eIF4E and what role does it play in translation? 

In eukaryotes, eIF4E-1 is a central and essential component in the initiation and 

regulation of translation. Through its interaction with the 5’-cap structure of 

mRNA and its binding partner, eIF4G, eIF4E-1 functions to recruit mRNAs to the 

ribosome (1-5) Figure 1.1. 

 

Figure 1.1: Role of eIF4E in mRNA recruitment to the ribosome 

eIF4G is a large factor that plays a scaffolding role, coordinating interactions 

between translation initiation factors (6). eIF4G provides the crucial link to 

various translation initiation factors associated with the small ribosomal subunit, 

such as eIF3 (7) (Figure 1.2).

 

Figure 1.2 Domain structure of eIF4E: middle domain of eukaryotic initiation factor G: PAPB(polyA binding 
protein)  eIF4E, eIF4A (helicase) eIF3, and Mnk domain( MAP kinase interacting kinase 1 domain)  
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 eIF4G also contains an RNA-binding domain, which serves to anchor eIF4E to 

the mRNA and enhance its interaction with the cap structure (8). Furthermore, 

eIF4G interacts directly with poly(A) binding protein (PABP) (9). eIF4E interacts 

with the mRNA cap, PABP interacts with the poly(A) tail and eIF4G bridges the 

two ends of the mRNA leading to the formation of a closed loop (10). The 

'closed-loop’ model of translation initiation hypothesizes that mutual interactions 

of the cap-binding eukaryotic initiation factor eIF4E, eIF4G and PABP hold the 5' 

and 3' ends of mRNA in close proximity and promote recruitment of the small 

ribosomal subunit to the mRNA 5' end (4, 11, 12) (Figure 1.3). 

 

Figure 1.3 Closed loop model of translation Initiation: mechanism of cap-dependent 
translation initiation: Schematic representation of the closed-loop model of translation initiation. 
For simplicity, other proteins, as well as a second eIF4A molecule known to interact with eIF4G, 
have been omitted (from 12) 
 

The anchoring of the eIF4E and eIF4G to the 3’-poly(A) tail ensures that they will 

remain tethered to the mRNA and gives a competitive advantage in subsequent 

rounds of initiation. 
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1.2. Structure of prototypical eIF4E  

eIF4E structure and activity is highly conserved across eukaryotic lineages with 

the core structure representing a novel fold (2, 13). The three-dimensional 

structure of eIF4E resembles a “cupped-hand” as exemplified by the mouse 

eIF4E [PDB:1L8B] (14) (Figure 1.4). 

 

Figure 1.4: Structure of murine translational initiation factor 4E (eIF4E-1) and key 
binding residues: The crystal structure of Class I murine eIF4E, [PDB:1L8B], was used to show 
conserved binding domains. Residues W56, W102, and W166 are highlighted in red, as well as E103, which 
is highlighted in orange, directly interact with the methyl-guanosine moiety. Residues R112, R157 and K162, 
which are highlighted, contribute charged interactions with the phosphate bridge that links the m7GTP to the 
rest of the mRNA chain. A key conserved domain that interacts with eIF4G or eIF4E-interacting proteins is 
colored green on alpha helix-1 (from 14). 
 
 

The mRNA cap-binding region is found within a core of 160 to 170 amino acids 

containing eight aromatic residues with conserved spacing (15). The secondary 

structure consists of six beta sheets and three major alpha helices (16-18) 
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(Figure 1.5).

 

Figure 1.5: Murine eIF4E sequence: mouse Mus musculus sequence from Genbank 
(NP_031943). eight conserved tryptophans (W) are highlighted in fuschia. Alpha helices (blue 
arrows) and beta sheets (red arrows) are designated. eIF4G and 4E-BP conserved consensus 
region is indicated above W73. 
 

The beta sheets line the binding pocket, and recognition of the 7-

methylguanosine moiety is mediated by cation-π bond stacking between Trp-56 

and Trp-102 and H-bonds between Glu-103 and the N-1 and N-2 protons of 7-

methylguanine. In addition, W166 interacts with the methyl group on the modified 

base of the mRNA cap. Furthermore, the triphosphate of the cap forms salt 

bridges with R112, R157 and K162 (16-19). Aromatic residues Trp, Phe, and Tyr 

show a distinctive pattern across from N- to C-terminus of the conserved core 

that contains eight similarly spaced tryptophans (15). The alpha helices form the 

exterior, solvent accessible side of the protein. Alpha helix one, containing the 

recognition motif of S/TVEDFW interacts with eukaryotic translation initiation 

factor 4G (eIF4G) and eIF4E-interacting proteins, the 4E-BPs, and a wealth of 

other eIF4E-interacting proteins (reviewed, 20, 21). 

1.3. Prototypical eIF4E is part of an extended eukaryotic gene family 

Multiple eIF4E family members have been identified in a wide range of 

organisms that include plants, flies, mammals, frogs, birds, nematodes, fish, and 



 

 5 
 

various protists (15). Evolutionarily, it seems that a single early eIF4E gene 

underwent a series of gene duplications, generating multiple structural classes 

and in some cases subclasses. eIF4E and its relatives comprise a family of 

structurally related proteins within a given organism. Through an extensive 

phylogenetic analysis, it has been shown that eIF4E is part of an extended gene 

family found exclusively in eukaryotes (15, 22). However, not all eIF4E family 

members function to promote translation initiation but can be involved in 

specialized regulatory functions(reviewed, 20,70). Sequence similarity is highest 

in the core region of 160 to 170 amino acid residues identified by evolutionary 

conservation and functional analyses (15). Prototypical eIF4E is considered to be 

eIF4E-1 of mammals, eIF4E and eIF (iso)4E of plants, and eIF4E of 

Saccharomyces cerevisiae.  

With the exception of eIF4Es from protists, all eIF4Es can be grouped into 

one of three classes, Figure 1.6 (15).  
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Figure 1.6: Classification of eIF4E family members: eIF4E-family member names in 

black or red indicate whether or not the complete sequence of the conserved core region of the 
member could be predicted from consensus cDNA sequence data, respectively. eIF4E-family 
member names in blue indicate that genomic sequence data was used to either verify or 
determine the nucleotide sequence representing the core region of the member. The shape of a 
'leaf' indicates the taxonomic kingdom from which the species containing the eIF4E-family 
member derives: Metazoa (diamonds); Fungi (squares); Viridiplantae (triangles); and Protista 
(circles); respectively. The color of a 'leaf' indicates the sub-group of the eIF4E-family member: 
metazoan eIF4E-1 and IFE-3-like (red); fungal eIF4E-like (gold); plant eIF4E and eIF(iso)4E-like 
(green); metazoan eIF4E-2-like (cyan); plant nCBP-like (blue); fungal nCBP/eIF4E-2-like (purple); 
metazoan eIF4E-3-like (pink); atypical eIF4E-family members from some protists(white). eIF4E-
family members within structural classes Class I, Class II, and Class III are indicated (from 15). 
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Class I members from Viridiplantae, Metazoa, and Fungi carry Trp 

residues equivalent to W43, W46, W56, W73, W102, W113, W130, and W166 of 

Homo sapiens eIF4E-1. Prototypical eIF4Es bind eIF4G through the motif 

S/TVE/DE/DFW in which the Trp is W73. Substitution of a nonaromatic amino 

acid for W73 has been shown to disrupt the ability of eIF4E to interact with eIF4G 

and the regulatory eIF4E binding proteins, the 4E-BPs (23). Substitution of a Gly 

residue in place of V69 creates an eIF4E variant that still binds mammalian 4E-

BP1 but has a reduced capacity to interact with both eIF4G and 4E-BP2 (23). 

Only Class I eIF4Es are known to function as translation factors. Class I 

members include the prototypical initiation factor but may also include eIF4Es 

that recognize alternative cap structures such as IFE-1, -2,and -5 of 

Caenorhabditis elegans (24, 25), or eIF4Es that fulfill regulatory functions such 

as the vertebrate eIF4E-1Bs (26-28) and the Class I deIF4E3 of Drosophila (29).  

1.4. Roles for eIF4E family members that do not function as translation 
factors 

1.4.1. Vertebrate eIF4E-1B 

 Unlike the prototypical eIF4E-1A, eIF4E-1B does not bind to eIF4G, but 

instead binds directly to the so-called eIF4E transporter protein, 4E-T (27). 

eIF4E-1B can be found complexed with CPEB, RNA helicase Xp54, P100 (Pat1) 

and the eIF4E transporter (4E-T) and is responsible for suppressing the 
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translation of CPE-containing mRNAs (27, 28) Figure 1.7. 

 

Figure 1.7:  Model for translational repression by eIF4E-1B: In Xenopus oocytes, CPE 
(cytoplasmic polyadenylation element) mRNAs will be repressed by the binding of eIF4E-1B. This 
eIF4E acts as a co-repressor of the CEP binding complex(4E-transporter and Xp54) when 
tethered to the 3' UTR (from 27). 
 

The target mRNAs are specifically inhibited by a weak binding of eIF4E-1B to the 

cap structure from its tether at the 3'-UTR. Antisense morpholino nucleotides to 

eIF4E-1B injected into Xenopus tropicalis fully-grown stage VI oocytes down-

regulate eIF4E-1B and cause a significant acceleration of oocyte maturation due 

to increased translation of these mRNA targets (30). eIF4E-1B does not show the 

characteristics of the prototypical initiation factor. eIF4E-1Bs from zebrafish, 

Xenopus laevis and mouse show weak binding to the 5'-cap structure (26, 31). 

Although eIF4E-1B does not interact with eIF4G or the 4E-binding proteins (4E-

BPs) all the residues critical for 5’-cap mRNA binding and interactions with 

eIF4Gs or eIF4E-BPs are absolutely conserved among eIF4E-1Bs. eIF4E-1B is a 

tissue specific translational regulatory factor expressed primarily in ovary and 

testis (26, 27, 30, 32). In the amphibian X. laevis, eIF4E-1B is involved in 

translational repression in early oogenesis (27, 30, 32). Mouse eIF4E-1B is 
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distinguishable from eIF4E1A by a set of 15 dispersed amino acid changes (33). 

The residues are proximal to the region of amino acids that bind the cap. It was 

determined that Ser105 and Arg106, the amino acids at positions equivalent to 

Glu103 and Lys104 in H. sapiens eIF4E-1A may directly influence the position of 

Trp102 in the structure and hence modify the stacking interaction with the cap. 

After mutagenesis of select residues to match those found in eIF4E-1B, the cap-

binding ability of eIF4E-1A decreases to a level approximating that of eIF4E-1B 

(31). The N-terminal region of the eIF4E-1B is enriched in basic residues such as 

lysine and arginine, suggestive of the ability to induce nuclear import, although 

the location of eIF4E-1B appears to be entirely in the cytoplasm of the oocyte. 

Furthermore, domain swap experiments in zebrafish eIF4E-1B have shown that 

the inability of eIF4E-1B to support protein synthesis is a characteristic of the 

conserved core (26). 

1.4.2. Class II eIF4E family members 

 Class II eIF4E family members, the eIF4E-2s (also called 4EHP, 34) have 

been shown to regulate specific mRNA recruitment in Drosophila (35), C. 

elegans (36) and mouse embryos (37, 38). Translational inhibition of a specific 

mRNA by Class II eIF4Es involves tethering of the mRNA 5’ and 3’ ends, giving a 

configuration much like the classic closed-loop configuration of mRNAs being 

actively translated, but preventing the interaction of eIF4E and eIF4G. Class II 

members possess W→Y/F/L and W→Y/F substitutions relative to W43 and W56 

of H. sapiens eIF4E, respectively (39). Although Class II eIF4Es are found 

throughout plants, fungi and metazoa, they are absent from the model 
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ascomycetes, S. cerevisiae and Schizosaccharomyces pombe. In the D. 

melanogaster embryo the Class II eIF4E, termed d4EHP (deIF4E-8) regulates 

the synthesis of caudal protein (35, 40). Caudal protein is synthesized 

asymmetrically in the D. melanogaster embryo because translation of its mRNA 

is inhibited in the anterior region by bicoid (35) Figure 1.8. 

  

Figure 1.8:  Model for translational repression by eIF4E-2: In Xenopus eIF4E2 protein will 
directly interact with bicoid by recognition of the 3' UTR element bicoid-binding region (BBR) 
(from 27) 
 

The Class II eIF4E family member d4EHP, which binds the cap but not eIF4G, 

specifically interacts with bicoid to suppress caudal mRNA translation. The 

inhibition is dependent on the bicoid-binding region present in the 3’-UTR of 

caudal mRNA. In another study, it was found that translation of hunchback 

mRNA is regulated by the same Class II eIF4E family member, d4EHP, but in 

this case, the eIF4E-binding partner is Brat (41).  

 In mouse oocytes, eIF4E-2 co-localizes with prep1, a homeodomain 

transcription factor, which contains an eIF4E-binding motif (37). The 

Prep1/eIF4E-2 interaction seems to bridge the 3’-UTR of Hoxb4 mRNA to the 5’-

cap structure suppressing its translation. This has been the first demonstration 

that a mammalian homeodomain transcription factor regulates translation, raising 
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the possibility that this function could be involved in mammalian zygote 

development. There are over 200 homeodomain proteins that are predicted to 

contain an eIF4E binding motif, which may all interact with eIF4E-2. In order to 

determine the role of eIF4E-2 in mouse, an eIF4E-2 knockout was created (38). 

In the absence of eIF4E-2, translation rates were increased in the eIF4E-/- 

mouse. However, the deletion was an embryonic lethal, confirming that eIF4E-2 

is essential for embryonic development. Conversely, over-expression of Hoxb4 in 

mouse zygotes in vitro resulted in the slowing of development. 

1.4. 3. Class III eIF4Es 

Class III eIF4Es have been identified primarily in chordates with rare examples in 

other Coelomata and in Cnidaria (15). Class III members, like eIF4E-3 of mouse 

possess a Trp residue equivalent to W43 of H. sapiens eIF4E but carry a 

W→C/Y substitution relative to H. sapiens W56 (15, 39). Their biological function 

has not yet been determined, although mouse eIF4E-3 has been shown to bind 

both cap and eIF4G (39). Mammalian eIF4E-3 binds the m7G cap in the absence 

of an aromatic sandwich, using instead a cluster of hydrophobic and charged 

residues in the C-terminus to make extensive contact with the cap to increase 

affinity (42). Only one form of eIF4E-3 has been found across chordates and it 

appears to have a limited tissue distribution. Its role in the regulation of gene 

expression is not well established, with its role as a tumor suppressor appearing 

at odds with its ability to prevent muscle atrophy (42, 43). 
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1.5. Modulation of eIF4E-1 activity by covalent modification 

1.5.1. Phosphorylation of eIF4E-1 

 Phosphorylation occurs at Ser209 in the human and mouse proteins 

eIF4E-1 (44). The primary signal transduction pathway leading to eIF4E 

phosphorylation is that involving the ras gene; RAS activation leads to the 

phosphorylation and activation of MAP-interacting kinase-1 (Mnk1) that in turn 

phosphorylates eIF4E. Although it has long been known that eIF4E-1 can be 

phosphorylated at Ser209, the functional consequences are still unclear. The 

effect of eIF4E phosphorylation appears to be a reduction of binding affinity to 5’ 

cap structures (45, 46) although increased phosphorylation invariably 

accompanies increased protein synthetic rates. Mouse mutants that cannot 

phosphorylate eIF4E have been shown to be less susceptible to viral infection 

(46). Knock-in mice expressing a nonphosphorylatable form of eIF4E-1 are 

resistant to tumorigenesis in a prostate cancer model (47). Drosophila eIF4E-1 

Ser209 mutants show arrested larval development (48).  

1.5.2. Sumoylation of eIF4E 

 Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins 

that are covalently attached to and detached from other proteins to modify their 

function. Sumoylation of eIF4E-1A has been shown to activate mRNA translation 

(49, 50). Sumoylation is involved in various cellular processes, such as nuclear-

cytoplasmic transport, transcriptional regulation, apoptosis, protein stability, 

response to stress, and progression through the cell cycle. Phosphorylation has 

been shown to enhance SUMO modification for several SUMO substrates and 
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phosphorylation-dependent SUMO conjugation motifs are a key example of this 

(51). Sumoylation of eIF4E-1A has been shown to activate mRNA translation by 

enhancing the interaction between eIF4E and eIF4G SUMO-2. Knockdown of 

SUMO-2 via shRNA partially impaired cap-dependent translation and cell 

proliferation (52). It may be that phosphorylation at eIF4E-1 facilitates changes in 

sumoylation that in turn modulates eIF4E-1 activity/localization (49, 50). 

1.5.3. Modification of eIF4E activity by ubiquitin like molecules 

Under stress conditions, modifications involving eIF4E proteins may occur by 

interaction with ubiquitin (Ub). When degradation of mis-folded protein or 

regulation of a cell signaling pathway (ie PCNA) is necessitated, the ubiquitin 

system steps in to process the targeted protein via a series of conjugation/de-

conjugation steps (53) The presence of a lysine residue is a key point of 

recognition for attachment of these modification molecules, such as the interferon 

stimulated gene 15 (ISG15). This small 15 kDa sized protein is induced by type I 

interferon (54, 55) and consists of two tandem domains, both of which have high 

identity to an ubiquitin conjugation motif. The functional region of binding for 

ISG15 was first identified in yeast as having a unique binding motif LRLRGG 

(56). Induction of ISG15 expression is triggered by cell stressors, such as 

infections from bacterial or viral agents (57, 58) ,and cellular insults such as 

radiation and aging (59). ISG15 has been identified in fish kidney and spleen in 

an antiviral immune response (60, 61) and has the same conserved motif as the 

mammalian homologue (62). ISG15 may play a role in potential interaction with 

human eIF4E-2 (4EHP). ISGylated eIF4E-2 displays enhancement of cap-
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binding, evident from the m7GTP pull downs (63). The mechanism is speculated 

to be a conformational change in eIF4E-2. This reaction does not interfere with 

general translation. 

1.6. Regulation of activity of prototypical eIF4E by 4E-BPs in 
deuterostomes 

A family of eIF4E binding proteins can prevent the interaction between eIF4E-1 

and eIF4G. These are known as the 4E-BPs, which are capable of suppressing 

translation (1). Binding of eIF4E to the 4E-BPs or eIF4G is mutually exclusive. In 

high affinity binding of eIF4G or 4E-BP, the signature binding motif is YXXXXLφ 

(in which X represents any amino acid and φ is a hydrophobic residue). In 

addition, a conserved PGVTS/T motif within the C-terminal region of 4E-BP has 

been discovered that plays a role in strengthening the binding of eIF4E to the 

core motif YXXXXLφ and accounts for the higher affinity of 4E-BPs to eIF4E-1 

compared to the binding of eIF4G (64, 65). This association is reversible and is 

regulated by phosphorylation (66, 67). Hypo-phosphorylated 4E-BPs will bind 

strongly to eIF4E and phosphorylated forms will not. Phosphorylation of 4E-BP is 

regulated by the mTOR signal transduction pathway (1, 48), which is activated by 

hormones, growth factors, and amino acids and by cellular energy status (68). 

4E-BPs act as global regulators of protein synthesis, with more pronounced 

effects on mRNAs with high secondary structure content in the 5’ untranslated 
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regions (69). Figure 1.9

 

Figure 1.9: Regulation of cap-dependent translation initiation by 4E-BP: Signal transduction-
mediated phosphorylation events regulate the function of eIF4E. Hypophosphorylated 4E-binding 
proteins (4E-BPs) bind tightly to eIF4E, thereby preventing its interaction with eIF4G and thus 
inhibiting translation. Mammalian target of rapamycin complex 1 (mTORC1)-mediated 
phosphorylation of 4E-BPs releases the 4E-BP from eIF4E, resulting in the recruitment of eIF4G 
to the 5' cap, and thereby allowing translation initiation to proceed (from 180) 
 

1.7. Regulation of eIF4E/eIF4G interaction by other eIF4E binding proteins  

  There is a wide range of eIF4E interactive proteins other than the 4E-

BPs. All of these binding partners have been shown to contain the YXXXXLφ 

motif like eIF4G and the 4E-BPs. These also compete for eIF4E-1 and modulate 

its functions, but target specific mRNAs (20, 21, 70).  

1.7.1: Maskin 

The first of these to be described was an eIF4E-binding protein, maskin, in X. 

laevis which can be tethered to a specific mRNA by a 3’-UTR sequence motif 

and provides a mechanism for both mRNA-specific translational repression as 

well as cytoplasmic polyadenylation Figure 1.10 (71).
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Figure 1.10: Model for translational repression by maskin  
 

 X. laevis oocytes arrested in meiotic progression contain silent maternal mRNAs 

with short poly(A) tails. Upon exposure to progesterone, the poly(A) tail is 

elongated and translation begins; a requirement for maturation of the oocytes. 

These “masked mRNAs” contain a cytoplasmic polyadenylation element, CPE, in 

their 3’-UTRs, which regulates poly(A) length by binding cytoplasmic 

polyadenylation binding protein, CPEB, the poly(A) polymerase, Gld2, as well as 

the poly(A)-specific ribonuclease, PARN. Translational suppression is due to 

both the short poly(A) tail and sequestration of eIF4E-1 by maskin. Progesterone 

initiates a signaling cascade that results in phosphorylation of CPEB, leading to 

dissociation of PARN, polyadenylation of mRNA by Gld2, displacement of maskin 

from eIF4E, and initiation of translation. Table 1.1 lists other known eIF4E 

interacting proteins. 

 



 

 17 
 

Table 1.1: eIF4E-binding partners 

   
Protein Consequences of binding 

Residues in the binding partner that 
interact with eIF4E 

eIF4G 
Recruits the eIF4A-driven unwinding 
machinery KRYDREFLLGF 

4E-BP1 
Represses highly cap-dependent mRNA 
translation IIYDRKFLMEC 

p20 
Represses cap-dependent translation in S. 
cerevisiae IKYTIDELFQL 

maskin 
Represses translation of CPE-containing 
mRNAs EFKLATEADFLLAA 

4E-T Transports eIF4E into the nucleus PHRYTKEELLDIKELP 
lipoxygenase 

2 Competes for binding of eIF4E by eIF4G LKKYRKEELE 

vPg 
Reduces eIF4E affinity for the cap and inhibits 
host translation 

Mapped to aa 59–93 of TuMV VPg; 
interaction abolished by mutation of 
Asp-77 

PGL-1 Localizes IFE-1 to P granules 
 

cup 
Represses translation of nanos and oskar 
mRNAs YTRSRLM 

bicoid Represses translation of caudal mRNA NYNYIRPYLPNQ 

BTF3 
Competes for binding of eIF4(iso)4E by 
eIF(iso)4G RLQSTLKRIG 

brat Represses translation of hunchback mRNA NHL domain 

gemin5 
Inhibition of both cap-dependent and IRES-
driven translation LKLPFLK and YEAVELL 

neuroguidin 
Represses translation of CPE-containing 
mRNAs 

YPTEKGL, YQIDKLVKT, and 
YVPPRLV 

CYFIP1 
Represses translation of mRNAs that bind 
FMRP LLLDKRKRSEC 

angel1 Interacts with eIF4E1 in ER and golgi RRKYGRDFLL(Hs),KIYTRQQLL(Xe) 
GIGYF2/F1 Interacts with eIF4E2 in mouse DYRYGREEMLAL/DYRYGREEMLAL 

From (20, 38, 74) 
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1.7.2. eIF4E transporter (4E-T) and related proteins  

4E-T is a large and highly conserved protein in vertebrates (985 amino acids in 

humans) that harbors a canonical eIF4E-binding site at its N-terminus. It was 

initially characterized as a nucleocytoplasmic shuttling protein, with defined NLS 

(nuclear localization sequence) and NES (nuclear export sequence) that 

mediates eIF4E nuclear import by a piggy-back mechanism (72). 4E-T is an 

abundant component of the large CPEB/mRNP (mribonucleoprotein) 

translational repression complex in Xenopus oocytes, which resemble processing 

bodies (P-bodies), and also includes the RNA helicase Xp54/p54/DDX6, the 

RNA-binding proteins Pat1a and RAP55 (Lsm14) and eIF4E1B (21, 27). 4E-T 

proteins are notably highly expressed in oocytes and ovaries in Xenopus, fruit 

flies and nematodes, in which they repress the translation of specific mRNAs in 

conjunction with 3'-UTR RNA-binding proteins and are typically found in large 

RNP aggregates. 

A range of other eIF4E binding proteins have been described that target specific 

mRNA translation pathways through disruption of the interaction of eIF4E/eIF4G 

and which involve interaction directly or indirectly with motifs in the 3’-UTR (20, 

21, 38, 40, 70, 73, 74). 
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1.8. Why study eIF4E function in zebrafish?  

1.8.1. Zebrafish as a model system 

 Over the past decades, zebrafish has become a preeminent vertebrate 

model system for clarification of the roles of specific genes, signaling pathways in 

development and especially the identification of new drug targets for human 

disease. There is a substantial historical database regarding basic 

developmental biology, toxicology, and gene transfer. Zebrafish can be used in 

forward genetic screens and reverse genetic techniques; genes can be knocked 

down with morpholinos (75), or knocked out with high efficiency using 

CRISPR/Cas technology (76, 77). CRISPR (clustered regularly interspaced short 

palindromic repeats) coupled with guide RNAs and the Cas9 protein can cut at 

any desired location in the genome. CRISPR/Cas technology has also made 

development of transgenic zebrafish much easier (78). The benefits of the use of 

zebrafish as a model system include its transparent and accessible embryos, 

cost-effective mutagenesis screening, and ease of maintenance and breeding, 

but also the availability of genomic data, fish mutant strains, and other on-line 

resources such as ZFIN (79). With the completed genome available, zebrafish 

has become a powerful model system for clarifying mechanisms in development, 

differentiation, toxicity, disease, and resistance to infection (79).  

Transgenic zebrafish are being used to develop models of human disease (80-

82). The other benefits for the use of zebrafish as a model system are the 

availability of genomic data, extensive resources, the ease of maintenance and 

breeding (http://zfin.org/). In addition, zebrafish knockouts for some of the eIF4Es 
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are now available, including eIF4E-1B and eIF4E-1A. There is also a knockout 

for 4E-BP3l (https://www.sanger.ac.uk/sanger/Zebrafish). Zebrafish females are 

capable of producing large quantities of high quality eggs daily, which are 

transparent, fast developing, and are easily manipulated (83).  

1.8.2. The zebrafish genome encodes six eIF4E family members  

There is now conclusive evidence that whole genome duplication occurred in ray-

finned fish coincident with radiation of teleost species, followed by reciprocal 

gene loss (reviewed (84)). While most gene pairs formed by WGD are deleted, 

rapid functional divergence provides an explanation for duplicate gene retention 

(85). Divergence of gene function between duplicates has been reported in many 

studies (86, 87). Such neofunctionalization may account for the fact that the 

zebrafish genome has six eIF4E genes; three that express Class I eIF4Es, 

termed eIF4E-1A, -1B and -1C, two that express Class II eIF4E, eIF4E-2A and -

2B, and one Class III, eIF4E-3. Figure 1.11 shows the multiple alignments of the 

zebrafish eIF4Es. 
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Figure 1.11: Multiple alignment of zebrafish eIF4E family members: a) Multiple alignments of the full sequences of 
deuterostome eIF4E family members. b) Schematic representation of core eIF4E region between H37 and H200. The conserved Trp(W) 
residues and indicated by location at W43,W46,W56,W73,W102,W113,W130,W166 . Yellow stars are above Trps involved in cap-binding. 
The blue star at W166 represents the Trp that binds the m7-methyl moiety on the cap. Purple asterisks indicate the sites of Trp 
substitutions in Class II and III (Class II members have Trp→Tyr/Phe/Leu and Trp→Tyr/Phe substitutions relative to Trp-43 and Trp-56 
respectively of H. sapiens eIF4E; Class III have Trp→Cys relative to Trp-56. The red triangle indicates the TrpW73 in the eIF4G/4E-BP 
binding region 
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Table 1.2 provides identity and similarity comparisons of zebrafish family 

members. 

The Jagus laboratory has confirmed the deduced sequences of the zebrafish 

eIF4E family members and has characterized two, eIF4E-1A- and -1B.  eIF4E-1A 

has been concluded to represent a prototypical translation factor on the basis of 

its identity/similarity to human/mouse eIF4E-1, its ubiquitous expression, its 

ability to bind 7mGTP-Sepharose, interact with eIF4G and 4E-BP, as well as 

complement a yeast eIF4E knock out system (26, 88). Zebrafish eIF4E-1B does 

not interact with eIF4G or the 4E-BPs and has been reported to be expressed 

only in ovary, testis and at low levels in muscle (26). Furthermore, domain swap 

experiments in zebrafish eIF4E-1B have shown that the inability of eIF4E-1B to 

support protein synthesis is a characteristic of the conserved core (26). The 

characteristics of the remaining four eIF4E family members have not previously 

Table 1.2: Identity and Similarity comparisons of eIF4 family members in human(Hs) and 
zebrafish(Dr) 
Similarity(%) 

 DreIF4E
1A 

DreIF4E
1B 

DreIF4E
1C 

DreIF4E
2A 

DreIF4E
2B 

DreIF4
E3 

HseIF4E
1A 

HseIF4E
1B 

HseIF4
E2 

HseIF4
E3 

DreIF4E1
A  85.1 84.5 50.8 49.7 41.7 97.1 89.7 50.8 41.7 

DreIF4E1
B 73.1  78.8 49.1 48 40 85.1 81.7 49.1 40 

DreIF4E1
C 77.1 68.5  50.2 50.2 42.8 84.5 80.5 50.2 42.8 

DreIF4E2
A 34.8 33.1 38.2  93.7 49.1 51.4 52 99.4 49.1 

DreIF4E2
B 34.8 33.1 35.4 88.5  48.5 50.2 50.8 94.2 48.5 

DreIF4E3 29.2 29.1 29.7 30.8 29.7  42.2 42.2 49.1 90.8 
HseIF4EE1

A 89.7 76 78.2 35.4 34.2 31.4  87.4 51.4 42.2 

HseIF4E
1B 75.4 72 69.7 35.4 34.8 29.7 74.8  52 4.2 

HseIF4E
2 35.4 33.7 38.8 97.1 89.1 32 36 36  49.1 

HseIF4E
3 27.2 28 28 31.4 30.2 84.5 29.7 27.4 31.4  

Identity(%) 
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been investigated. The confirmed sequences for eIF4E-1A, and eIF4E-1B are 

deposited in GenBank as accession numbers numbers: NM_131733.1 (eIF4E-

1A), NM_131454.1 (eIF4E-1B) (26).  Other Jagus laboratory members have 

isolated the cDNAs and the sequences of eIF4E-1C and eIF4E-3, GenBank 

accession numbers, NM_001017851.2 (eIF4E-1C) and NM_001004589.1 

(eIF4E-3). I have isolated the cDNA and confirmed the sequences of eIF4E-2A 

and eIF4E-2B,  and placed in GenBank accession numbers, AGW99949.1 and 

AGW99950.1, respectively.  

1.9. Focus and objectives 

My aim in this dissertation is to determine the phylogenetic origin of the zebrafish 

eIF4E family members and their relationship to the eIF4Es of lower 

deuterostomes and the tetrapods. In addition, I aim to characterize zebrafish 

eIF4E-1C, eIF4E-2A, eIF4E-2B and eIF4E-3 by comparing their activities in a 

variety of in vitro assays, as well as their ability to complement an S. cerevisiae 

strain conditionally depleted of eIF4E. I will also undertake expression analysis at 

the transcript and protein levels.  

The hypotheses to be examined are: 1) Because it has high sequence identity to 

the previously described eIF4E-1A, eIF4E-1C will function as a translational 

initiation factor; 2) Because of the evolutionary persistence of the two cognate 

proteins, eIF4E-2A and -2B, this suggests neofunctionalization had occurred in 

one of these to give an eIF4E family member with distinct characteristics; and 3) 

Because of apparently conflicting reports, the function and characteristics of 

eIF4E-3 remain unclear.  
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The results presented here will provide the basis for future studies that dissect 

the role of the zebrafish eIF4E family members in the regulation of protein 

expression.
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Chapter 2: Molecular and phylogenetic insights of eukaryotic 
translational initiation factor 4E family members in teleosts  

2.1. Abstract 

In addition to the prototypical translation initiation factor eIF4E, eukaryotes have 

evolved sequence–related variants with distinct features, some of which have 

been shown to negatively regulate translation of particular mRNAs. I present 

here my perspective on the evolution of the eIF4E family in deuterostomes. 

Metazoan eIF4E family members have been divided into three classes, with 

Class I containing the canonical cap-binding protein eIF4E1. eIF4E-1 binds 

eIF4G to initiate translation, a process inhibited by eIF4E binding proteins such 

as the 4E-BPs and 4E-T that prevent the interaction between eIF4E and eIF4G 

by competing for the same binding site, YXXXXLΦ. All deuterostomes have at 

least one representative of Class I, Class II and Class III eIF4E family members. 

Early deuterostomes such as sea urchins, tunicates, and lancelets have only one 

eIF4E family member in each of the three classes; eIF4E-1, eIF4E-2 and eIF4E-

3. A member of the Elasmobranchii, the elephant shark (Callorhinchus milii) and 

the Sarcopterygii, coelacanth (Latimeria chalumnae) have duplicated Class I 

eIF4Es to give eIF4E-1A, eIF4E-1B, and eIF4E-1C. Prior to the emergence of the 

tetrapod branch, a duplication of Class II eIF4Es occurred, becoming eIF4E-2A 

and -2B. eIF4E-2B was retained by amphibians (Xenopus spp) and teleosts, but 

was lost in coelacanths and amniotes. After the teleost-specific whole genome 

duplication event, 320-350 mya, eIF4E-1A, -1C, -2A, -2B and -3 were 

consistently maintained by the ray-finned fish, the salmonids, and gadiformes. 



 

 26 
 

Percomorphs acquired a new cognate of Class I family member, designated 

eIF4E-1A-like. However, eIF4E-1B appears to disappear after the salmoniformes 

split. This study has shown that duplication within the different classes of eIF4E 

family members occurred early in vertebrate evolution with subsequent 

asymmetric losses in different vertebrate classes.  

2.1. Introduction 

2.1.2. Deuterostome phylogeny 

The Cambrian explosion, also called the Cambrian radiation, was the relatively 

short evolutionary event, beginning around 540 mya in the Cambrian Period, 

during which most major animal phyla appeared as indicated by the fossil record 

(89). Lasting for about the next 20-25 million years, this explosion resulted in the 

divergence of most modern metazoan phyla (90, 91). The earliest generally 

accepted deuterostome fossils, those of echinoderms, appeared in the Late 

Atdabanian (Cambrian, 3rd Stage) (92). The deuterostome superphylum consists 

of three phyla: echinoderms, hemichordates and chordates. Three subphyla are 

recognized within the chordates themselves; the urochordates (including the 

ascidians and larvaceans) the cephalochordates (lancelets) and the vertebrates, 

including fish and tetrapods. Figure 2.1 provides an illustration of deuterostome 

phylogeny (93). 
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Figure 2.1: Deuterostome phylogenetic tree: Generalized phylogenetic tree of deuterostome 
evolutionary progression. The circles indicate where the chordate (yellow) and vertebrate 
(orange) origin points occurred respectively. The R box (green) is the representation of two 
rounds of whole genome duplication events early in vertebrate evolution; R1 at ~550 mya, R2 at 
500 mya (from 93). 

Phylogenetic analysis based on assembled sequences of more than 200 nuclear-

encoded proteins support the pairing of echinoderms with hemichordates 

corroborating morphological interpretations of larval similarities between these 

two groups (94).  

Gene duplication is considered to be a major force of evolution (95) because new 

copies may acquire new functions by mutation (known as neofunctionalization) 

(96). It is generally accepted that two rounds of whole-genome duplication 

occurred during the evolution of vertebrates from their deuterostome ancestors 

before the divergence of gnathostomes between 500 and 550 mya (97). In 

comparison with tetrapods, the ray-finned fishes underwent an extra round of 
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whole-genome duplication, which caused the teleost radiation (98). The last 

common ancestor of all vertebrates was the common ancestor of the 

Actinopterygii (ray-finned fishes) and Sarcopterygii (lobe-finned fishes and 

tetrapods), which probably lived during the Silurian period, approximately 420 

mya (99-101). Within vertebrates, lampreys and hagfish are closely related 

(Cyclostomata) and are the closest relatives of jawed vertebrates, the 

gnathostomes. Molecular analyses suggest that the coelacanth and lungfish form 

a group that is the closest living relative of tetrapods and that cartilaginous fish 

are the most basal gnathostomes. Within the ray-finned fish, the dominant extant 

group is the Teleotstii comprised of over 20,000 species. The teleost lineage 

splits from basal ray-finned fishes and started to diverge after a whole genome 

duplication event that took place 320–350 mya and is referred to as the teleost 

specific whole genome duplication, TGD (102, 103). Molecular phylogeny 

suggests the initial divergence of the Teleostei from basal Actinopterygii occurred 

about 280 mya (101). The teleosts began a major evolutionary radiation in the 

Triassic, about 200 mya, and have since undergone massive diversification in 

morphology, physiology, and habitat. Their genomes did not remain static and 

they are still evolving. The evolutionary divergence and extreme diversity teleosts 

provide are now represented by over ten genomes that reflect all the structure–

function combinations that have survived during the last 400 million years (104). 

The teleosts are characterized by many derived characteristics that are absent in 

primitive ray-fins such as gar, sturgeon and paddlefish. Teleosts are thus remote 

from the common actinopterygian/sarcopterygian ancestor. Within the teleosts, 
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the Ostariophysi (such as zebrafish) retain many primitive characteristics and 

occupy a relatively basal position (106). Thus the zebrafish is a rather 

generalized teleost and can, in most cases, be used to represent the ‘‘primitive’’ 

or ‘‘ancestral’’ condition in comparison with more recently evolving teleosts such 

as the percomorphs medaka, stickleback, tilapia and fugu (105-107). However, 

with an evolutionary separation of less than 150 million years, the zebrafish is still 

closer to the more recently evolved fish species than any mammalian model 

organism such as the mouse, whose common ancestor with the teleosts lived 

around 400 mya (107). 

2.2. The radiation of the vertebrates is reflected in their eIF4E family 
members 

All deuterostomes have at least one representative of Class I, Class II and Class 

III eIF4Es, eIF4E-1, eIF4E-2 and eIF4E-3. In contrast mammals have an 

additional eIF4E-1 cognate, eIF4E-1B, that functions to down-regulate translation 

of mRNAs with cytoplasmic polyadenylation elements (CPEs) in the 3'-UTR (15, 

26, 27, 30). Zebrafish have two eIF4E-1 cognates, eIF4E-1B and -1C, as well as 

a Class II cognate, eIF4E-2B (15, 26). Figure 2.2 shows a simplified phylogeny of 

deuterostomes, emphasizing teleost fish adapted from (105), and indicates the 

occurrence of different eIF4E family members. The availability of fully sequenced 

genomes from many deuterostome species provides an unprecedented 

opportunity to systematically evaluate the origins and evolution of protein families 

such as the eIF4E family, shedding new light on the old question of how 

organismal complexity arose. 
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Figure 2.2: Phylogenetic tree of deuterostome: Generalized phylogenetic tree from basal 
deuterostomes to higher teleosts (from 105). Multiple whole genome duplication events (WGD) 
are indicated in yellow circles at time points of ~550, 500, 320-350, 50-80 and 5.6-11.3 (mya). 
The addition to figure (bottom); Basal deuterostome panel with Echinoderms, Tunicate, and 
Cephalochordata and time points ~550 and 500 mya. Translation initiation factor eIF4E cognate 
forms were overlaid onto original schematic and placed near the representative branch and/or 
subfamily member (highlighted in red). * Denotes teleosts family that may not have eIF4E-2B 
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2.3. Materials and Methods 

2.3.1. Database Searches and Phylogenetic Analysis  

In order to investigate eIF4E family members in deuterostomes, zebrafish eIF4E-

1A (NM_131733.1), eIF4E-1B (NM_131454.1), eIF4E-1C (NM_001017851.2), 

eIF4E-2A (AGW99949.1), eIF4E-2B (AGW99950.1), and eIF4E-3 

(NM_001004589.1) were used as templates for BlastP queries at the National 

Center for Biotechnology Information (NCBI) website 

(http://www.ncbi.nlm.nih.gov/mapview/) for sea urchin (Strongylocentrotus 

purpuratus), sea squirt (Ciona intestinalis), zebrafish (Danio rerio), and human 

(Homo sapiens) genomes. Cross references were achieved by use of alternative 

databases which included; Ensembl (http://www.ensembl.org/index.html) for 

spotted gar (Lepisosteus oculatus) medaka (Oryzias latipes), stickleback 

(Gasterosteus aculeatus), Takifugu (Takifugu rubripes), and Tetraodon 

(Tetraodon nigroviridis) genomes: the Institute of Molecular and Cell 

Biology(IMCB) elephant shark genome http://esharkgenome.imcb.a-star.edu.sg; 

the coelacanth genome project site (http://coelacanth.nig.ac.jp/index.php), the 

salmonDB genome  database(http://salmondb.cmm.uchile.cl) and the Joint 

Genome Institute (JGI) for the Branchiostoma floridea  genome 

(http://genome.jgi-psf.org); the HMMR database( http://hmmer.janelia.org). Each 

eIF4E sequence was verified using the Genbank BLAST tool and aligned by the 

MUSCLE algorithm included in the CLC workbench (CLCBio CLC Genomics 

Workbench 7.0.3 (http://www.clcbio.com). The phylogenetic analysis used Le 

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier 
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(LIRMM) tool Phylogeny.fr suite of programs including Gblocks, PhyML, and 

TreeDyn with 100 iterations (108). The reliability of the tree was measured by 

bootstrap analysis. Gene loci designations and orientations were determined 

utilizing a combination of both the NCBI gene database and the Ensembl gene 

region of interest function. All accession numbers, additional database 

designations, and details on sequences are provided in Appendix Table A2.1.  

2.4 Deuterostome Class I eIF4E family members 

2.4.1. Phylogenetic analysis of Class I eIF4E family members 

The evidence of gene duplication is apparent from the number of orthologues of 

each eIF4E class across the deuterostomes. Phylogenetic analysis divided these 

proteins into three clusters corresponding to Class I, Class II and Class III eIF4E 

family members (Figure 2.3). 

Ancestral members of the vertebrates; the protochordate tunicate Ciona 

intestinalis, the cephalochordate lancelet, Branchiostoma floridae, and the 

echinoderm sea urchin Stongylocentrotus purpuratus, have only one Class I 

eIF4E cognate. These eIF4Es form a distinct clade outside of the eIF4E-1A,-1B, 

and -1C designations. The eIF4E of lamprey, Petromyzon marinus, appears to 

reside on a separate branch, closest to the eIF4E-1A clade. Overall in each 

cluster, the tetrapod and teleost eIF4Es tend to group together. Further 

examination shows there is a clear separation of nodes between the early 

teleosts such as zebrafish (Dr), carp and cavefish (Am) when compared to the 

more recently evolved teleosts such as cod (Gm), tilapia (On), medaka (Ol) and  
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Figure 2.3: Phylogenetic analysis of deuterostome Class I eIF4Es: Phylogenetic analysis based on the 
conserved core and C-terminal regions from muscle alignments. The numbers on the branches are 
confidence limits (expressed as percentages) estimated from a bootstrap analysis with 100 replicates 
(above 60 % are indicated). Bar 1.0 indicates 1.0 substitutions per nucleotide position. Human eIF4E2 is 
used as out group. 
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puffer fish (Tn). Only eIF4Es from the speckled gar (Lo) and coelacanth (Lc) 

stand outside each cluster. Within the eIF4E-1C teleost sub-cluster, the zebrafish 

 (Dr) is closely related to the cod (Gm). However, zebrafish eIF4E-1A and -1B 

align with the salmon (Ss) and trout (Om). The Class I eIF4E cognates, eIF4E-

1B, and eIF4E-1C are thought to have arisen from one or more whole genome 

duplications. Because eIF4E-1C is found in teleosts and not in tetrapods, our 

original supposition was that eIF4E-1C arose as the result of the TWGD. 

However, both the elephant shark, Callorhinchus milii (Cm) and the coelacanth, 

Latimeria chalumnae (Lc) have all three sub-classes. This implies that the 

duplications must have occurred prior to the branching of the chondrichthyes. 

However, although all teleosts have retained eIF4E-1C, it has been lost in 

tetrapods.  

The evolution of eIF4E-1B seems more complicated. The presence of eIF4E-1B 

in the elephant shark suggests an early origin in gnathostomes. Inspection of the 

teleost genomes available, has uncovered eIF4E-1B in basal ray-finned fish, 

such as spotted gar, L. oculatus (Lo), as well as in zebrafish, and rainbow trout, 

(Om). However, it has not been found in the genomes of more recently evolved 

fish such as the three-spined stickleback, G. aculeatus, and pufferfish, T. 

nigroviridis.  

2.4.2. Gene loci for the Class I eIF4Es  

The gene loci for the Class I eIF4E cluster was examined and the proximal genes 

that overlap are highlighted (Table 2.1). 
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Table 2.1 Gene loci of the eIF4E-1A family members 

human tspan5 rp11 btf313 eIF4E1
A tbcap3 mir36

84 metap1 fam1
77a 

ndufs
5p4 

abt1p
1 adh5 adh4 

Xenopus adh1c h2afz dnajb14 mttp.1 dapp1 adh7 adh18 adh1
a adh5 metap

1 
eIF4E1

A 
tspan

5 

shark 
rap1gd

s1 tspan5 eIF4E1
A metap1 UC UC shb tdrd7 tmod

1 tstd2 ncbp1  

coelacanth 
rap1gd

s1 tspan5 eIF4E1
A          

gar 
eIF4E1

A metap1 adh5 adh8b dnajb14 cf1 casp61l ccdc1
09b lef1    

zebrafish metap1 adh8b adh8a c13h4or
f32 

eIF4E1
A lingo2 c13h0or

f72      

pike lingo3 C4orf32 adh1l metap1 eIF4E1
A lingo2 ch9orf7

2 
kiaa1
109     

tongue 
sole adh3cll metap1 eIF4E1

A lingo3 c1h9orf
72 

kiaa11
09       

fugu  metap1 eIF4E1
A lingo3 C9orf72 kiaa110

9 
kiaa11

09l 
kiaa110

9l tpol capn
1    

Table 2.1:  Gene loci of the eIF4E-1A family members: Full suite of genes represented are proximal to 
the eIF4E within 0.1-0.4 mb on contig or chromosome. Color scheme is coordinated with identical genes. 
eIF4E members are in bold. UC (uncharacterized) 
 

 Additional genomes have been newly completed that provide detailed coverage 

of ancestral lineages (shark, coelacanth, spotted gar) as well as the more 

recently evolved percomorphs, such as the tongue sole (Cs). Upgrades to the 

annotations of existing genomes have also supplied an enhanced 

comprehensive picture of what genes are located near/far proximal to the eIF4E 

members. In the eIF4E-1A gene loci, the predominant gene appears to be 

metap1 (methionyl aminopeptidase). My gene location analysis has also 

revealed that the teleosts that retain an eIF4E-1A- like family member have one 

universal signature gene, the Gar1 (ribonucleoprotein). It was previously reported 

that eIF4E-1B in zebrafish is not orthologous to the tetrapod form because the 

locus is not conserved (30). This analysis was done before so many genomes 

were available and before they were so well annotated. However, in the spotted 
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gar L. oculatus, the Eif4e1b locus is the same as that found in the tetrapods as is 

the Eif4e1b locus in elephant shark. Since convergent evolution seems an 

improbable explanation of this, it seems possible that multiple eif4e1b-like loci 

existed in the common ancestor of Actinopterygii and Sarcopterygii, with some of 

them asymmetrically retained in Actinopterygii such as the eif4e1b locus in 

zebrafish, while other ancestral eif4e1b genes gave rise to eif4e1b of Tetrapoda 

(30). In the eif4e1b loci, tspan17 tetraspanin) and sncb (synuclein) genes are 

conserved in tetrapod, basal ray fishes, and chondrichthyes. The representatives 

I have provided for eIF4E-1B in teleost, zebrafish and northern pike (El), have 

only the casr (calcium sensing receptor) gene in common (Table 2.2). 

Table 2.2 Gene loci of the eIF4E-1B family members 

human rnf44 cdhr2 gprin1 
mir42
81 sncb eIF4E1B tspan17       

Xenopus 
cdhr
2 sncb eIF4E1B 

tspan
17 unc5a hk2 sh2d4b znf346 

  
shark faf2 cltb cdhr2 gprin1 sncb eIF4E1B tspan17 UC unc5a 

pdlim
7 

coelacanth rnf44 r cdhr2 gprin1 scncb eIF4E-1B tspan17    

gar 
anxa
6 tnip1 gpx3 dctn4 synpo tspan17 eIF4E1B mchr2 ctnna1 

lrrtm
2 

zebrafish 
wasf
3a 

gtf3a
a mtif3 gsx1 

abhd1
0a tagln3a 

zgc:1528
16 

zgc:175
280 

eIF4E1
B casr 

pike 
matr
3l 

slc7a
2l eIF4E1B casr UC 

     Table 2.2:  Gene loci of the eIF4E-1B family members: Full suite of genes represented are proximal to 
the eIF4E within 0.1-0.4 mb on contig or chromosome. Color scheme is coordinated with identical genes. 
eIF4E members are in bold. UC(uncharacterized) 

Worth noting is the obvious deviation between the tetrapod and teleost Eif4e1b 

gene loci as indicated by Evsikov (30).  Additional prior analysis by Evsikov 

included a schematic for what they designated Eif4e1_1, Eif4e1_2, and Eif4e1_3 

gene loci arrangement where Eif4e1_3 is the Eif4e1c gene. The principal gene 

proximal to eIF4E-1C is the tet1 (tet methylcytosine dioxygenase 1), but it 
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appears that the gene slc25a16 (soluble carrier family 25 mitochondrial carrier) is 

also well maintained up the evolutionary tree from the chrondrichthyes (Table 

2.3). 

Table 2.3 Gene loci of eIF4E-1C family members 

shark hnrnph3 pbld dna2 eIF4E1C tet1 slc25a16         
coelacanth tspan15 rufy2 hnrnph3 pbld dna2 slc25a16 tet1 eIF4E1C bloc1s2   
gar tspan15 rufy2 hnrnph3 pbld dna2 stox1 ccar1 eIF4E1C tet1 alox5b 

stickleback stox1 ccar1 eIF4E1C tet1 fam21c alox5a slc25a16 
  

  

zebrafish fam21c alox5a slc25a16 tet1 eIF4E1C ccar1 stox1 
  

  

cavefish stox1 ccar1 eIF4E1C tet1 fam21c alox5a slc25a16 
  

  

pike slc25a16 tet1 eIF4E1C tmp150a nfu1 
    

  
tongue 
sole slc25a16 tet1 eIF4E1C tmp150a nfu1 

    
  

 
Table 2.3:  Gene loci of the eIF4E-1C family members: Full suite of genes represented are proximal to 
the eIF4E within 0.1-0.4 mb on contig or chromosome. Color scheme is coordinated with identical genes. 
eIF4E members are in bold.  
 

In spotted gar, tet1 does retain proximity to eIF4E-1C. 

2.5.  Deuterostome Class II eIF4E family members 

2.5.1. Phylogenetic analysis of Class II eIF4E family members 

eIF4E family members of Class II eIF4E family members fall within two discrete 

clusters within the phylogenetic tree (Figure 2.5). The eIF4E designated as 

eIF4E-2 (2A) comprises the majority of the class II eIF4Es within the 

deuterostomes. The eIF4E-2B cluster is represented primarily by the ray-finned 

fish, but also by the amphibian Xenopus spp. It should be pointed out that the 

elephant shark eIF4E-2 is an outlier to the teleost eIF4E-2A, and the coelacanth 

Class II eIF4Es tend to segregate consistent with their evolutionary 

relationships.eIF4E-2 falls outside of the tetrapod eIF4E-2. As with the Class I 

eIF4Es, the eIF4E-2A in lower teleosts such as zebrafish and cavefish is related. 
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In comparing the eIF4E-2B cluster, it is evident there is tight grouping between 

the higher and lower teleosts and Xenopus.

 

Figure 2.5: Phylogenetic analysis of deuterostome Class II eIF4Es: Phylogenetic trees based on the 
core and C-terminal regions from muscle alignments. The numbers on the branches are confidence limits 
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(expressed as percentages) estimated from a bootstrap analysis with 100 replicates (above 60 % are 
indicated). Bar 1.0 indicates substitutions per nucleotide position. Human eIF4E1A is used as  out group. 

2.5.2. Gene loci for the Class II eIF4Es 

Table 2.4: Gene loci of eIF4E-2A family members 

human chrng 
prss5
6 chrnd tigd1 eIF4E2 efhd1 gigyf2 

eef1b2
p7       

Xenopus prss56 phr chrnd chrng 
kiaa02
26 

eIF4E
2 phrb 

   
  

shark 
C2orf7
2 

psmd
1 htr2b 

prss5
6 UC chrnd ps2l eIF4E2 

capn1
0 

ecs
rl 

ph
r 

coelacan
th chrnd chrng ps2l 

eIF4E
2 cap10l cp450 

    
  

gar znf862 
capn1
0 eIF4E2 chrng chrnd 

vwa5b
2 

cops7
b prss56 alg3 

 
  

zebrafish prss56 chrng 
eIF4E2
A 

capn1
0 cu mir 

    
  

stickleba
ck mul1a alg3 prss56 chrng eIF4E2 

capn1
0 

gpsm
2 fndc7 

  
  

pike 
cccm2
0 

capn1
0 eIF4E2 ps2l chrng 

     
  

tongue 
sole prss56 chrng ps2l 

eIF4E
2 capn10 

ccmc2
6 

    
  

Table 2.4:  Gene loci of the eIF4E-2A family members: Full suite of genes represented are 
proximal to the eIF4E within 0.1-0.4 mb on contig or chromosome. Color scheme is coordinated 
with identical genes. eIF4E members are in bold 
 
When comparing the gene loci proximal genes (Table 2.4), eif4e2a shows a 

characteristic signature of the genes chrnd (cholinergic receptor nicotinic delta 

(muscle) and chrng (cholinergic receptor nicotinic gamma (muscle). This location 

is found exclusively in the tetrapod, whereas in teleosts only the chrng is found. 

Capn10 (calcium-activated neutral proteinase) is found in the teleost. The 

elephant shark and coelacanth appears to have a mixture, which may provide a 

strong indication of when the eIF4E2A began to diverge. The story is not as clear 

in the case of eIF4E-2B in teleosts, though there appears to be a distinct 

delineation of genes between the higher and lower teleost species (Table 2.5). 
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Table 2.5 Gene loci of eIF4E-2B family members 
Xenopus mink1 wrap53 zpy1 rangrf gp1ba chrne eIF4E2B 
pike eIF4E2B cuorf rgs11 tm8a pdia2 

 
  

cavefish eph4bl edsp1 eIF4E2B cb1l nacht 
 

  
zebrafish eph4b eIF4E2B act6b cabz spsb2 psmb6   
stickleback ctc1 hmgb2b atp1b2a mogat3a gucy2d eIF4E2B   
fugu ctc1 atp1b2a mogat3a eIF4E2B gucy2d sh3gl2 spag17 
Table 2.5:  Gene loci of the eIF4E-2B family members: Full suite of genes represented are proximal to 
the eIF4E within 0.1-0.4mb on contig or chromosome. Color scheme is coordinated with identical genes. 
eIF4E members are in bold 
 

 The Xenopus eif4e2b gene locus is of interest, not due to the comparison with 

the teleost, but because the proximal genes wrap53 and rangrf  (in red)are 

involved in ribonucleoprotein complex formation of telomeres synthesis and 

protein transporter activity (http://www.genecards.org). This finding may have a 

relevance to our current studies on eIF4E2 (see Chapter 4). 

2.6.  Deuterostome Class III eIF4E family members 

2.6.1. Phylogenetic analysis of Class III eIF4E family members 

Class III eIF4Es are the most conserved eIF4E family members across the 

deuterostomes; only a single cognate is traditionally identified (Figure 2.6). 

Phylogenetically, all the clusters of eIF4E3 present themselves as tightly  

conserved units dependent on the sub-order, as was observed for the Class I. 

However, in the percomorph teleosts there is an additional eIF4E-3 member, 

designated the eIF4E-3 like, which has a gene loci organization that is distinct 

from eIF4E-3. 
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Figure 2.6: Phylogenetic analysis of deuterostome Class III eIF4Es: Phylogenetic trees based on the 
core and C-terminal regions from muscle alignments. The numbers on the branches are confidence limits 
(expressed as percentages) estimated from a bootstrap analysis with 100 replicates (above 60 % are 
indicated). Bar 1.0 indicates substitutions per nucleotide position. Human eIF4E1A is used as the outgroup 
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2.6.2. Gene loci for the Class III eIF4Es 

When comparing the proximal genes from eIF4E-3 and eIF4E-3-like, it can be 

seen that gpr27 (G protein coupled receptor), rybp (RING1 and YY1 binding 

protein), and prok2 (Prokineticin) are characteristic of the Eif4e3 loci (Table 2.6).  

Table 2.6 Gene loci of eIF4E-3 family members 

human foxp1 mir1284 eIF4E3 gpr27 prok2         
Xenopus eIF4E3 gpr27 rybp shq1 

    
  

shark rybp prok1 gpr27  eIF4E3 
    

  
coelacanth eIF4E3 gpr27 prok2 

     
  

gar gxytl2 shq1 rybpa  prok2 gpr27 eIF4E3 foxp1b 
 

  
zebrafish pdzm3a ppp4r2a rybp eIF4E3 fox1a tenc1a 

  
  

cavefish krt18 eIF4ba tenc1a foxp1a eIF4E3 rybpa ppp4r2a pdrn3a   
stickleback pd2m3b ppp4r2b gxylt2 shq1 gpr27 eIF4E3 prok2 foxp1b mitafa 
tongue 
sole eIF4E3 gpr27 prok2 foxp1 plxnal 

   
  

pike dcrml foxp1l eIF4E3 gpr27 tMIT1l 
   

  
Table 2.6:  Gene loci of the eIF4E-3 family members:  Full suite of genes represented are proximal to the 
eIF4E within 0.1-0.4 mb on contig or chromosome. Color scheme is coordinated with identical genes. eIF4E 
members are in bold. 
 

The foxp1-like (forkhead box P1) and the mitf (microphthalmia-associated 

transcription factor) are retained by the loci of the Eif4e3-like gene. However, 

alignment and phylogenetic analysis of these sequences does not show an 

obvious difference in the C-terminal regions of the eIF4E-3-like. The N terminal 

region does present a marked variation, but only few residues are different 

between eIF4E3 and eIF4E3-like in the core region or those key residues as 

discussed in Chapter 3. 
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2.7. Identification of gene loci orientation in deuterostome eIF4Es and 
implication for co-expression 

WGD events enabled the formation of gene paralogues, which became the 

multitude of eIF4Es that have persisted in the evolution of the teleosts. These 

retained genes can provide a framework to categorize adjacent genes found in 

loci formation. Arrangements of gene loci are not random, and regulation of gene 

function may be inevitable. This co-expression of clustered genes has been 

documented across eukaryotic systems including human and C. elegans (109, 

181). With the advent of accessible databases containing genomic complete 

annotations, it has become possible to locate a gene on a chromosome/scaffold. 

From this vantage point, it is possible to ascertain the orientation and distance of 

neighboring genes, and assign potential for expression. In mammalian systems, 

gene loci orientation has been examined for relative importance. It seems that 

when proximal genes are in the “head to head” or “HH” orientation ! "(also 

known as divergent transcription) gene pairs show a positive correlation for 

expression and genes in many such pairs share a regulatory element (110). In 

zebrafish, the gene orientation and co-expression has been linked to those 

genes pairs which display a parallel transcription, ! ! or " ". It was 

speculated that this occurrence is due to the genes being driven by 5’ cis 

regulatory elements or by bidirectional promoters found in zebrafish (111). 

Utilizing this information, the orientation of the predominant gene proximal to the 

eIF4Es that was discussed prior in this chapter was compared in human, shark, 

coelacanth, zebrafish, and northern pike. The preliminary results indicate 

possible co-expression of these eIF4E proximal genes in zebrafish across 
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classes of eIF4E, due to the parallel transcription orientation observed 

(highlighted in green). Conversely, there are only two potential HH orientation 

proximal genes in human, those from eIF4E-1A and eIF4E-3 (highlighted in 

orange). As in tetrapods, coelacanth may have co-expression of the tet1 gene, 

proximal to the Eif4e1c gene of higher teleosts. Likewise, elephant shark may 

have co-expression of the capn10 gene, proximal to the Eif4e2 gene. The Eif4E3 

gene of northern pike, elephant shark, and coelacanth all show HH orientation 

with the gpr27 gene that is specific to tetrapods (Table 2.7). 

It may be of interest to determine if this gene has some evolutionary significance 

that caused it to be maintained in a wide variation of lineages. Though not 

definitive about unknown functions, analysis of possible correlation of related 

function in paired co-expression may provide key insights. My analysis is 

preliminary in scope, but it may be probable for an extensive gene survey of the 
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arrangement and frequency of the gene far/near proximal pairs found in relation 

to all Eif4e genes. This could be verified by analyzing expression data. 

2.8. Discussion 

Table 2.8 summarizes the distribution of eIF4E family members in 

deuterostomes.

 
Table 2.8: Phylogenic distribution of eIf4E family members in deuterostomes: Hs,Homo 
sapiens; Tg, Taeniopygia guttata; Ac, Anolis carolinensis; Xt , Xenopus tropicalis; Lc, Latimeria 
chalumnae; Cm, Callorhinchus milii; Lo, Lepisosteus oculatus; Dr, Danio rerio; Am, Astyanax 
mexicanus; El, Esox lucius; Ss Salmo Salar; Gm, Gadus morhua; Tr, Takifugu rubripes; Cs, 
Cynoglossus semilaevis.(** )eIF4E-1A sequence was not located in the genomic databases. (*) A 
partial eIF4E-1B sequence identified. 
 

 The distribution of the subclasses of eIF4E1 and eIF4E2 is consistent with the 

duplication of Class I and II prior to the teleost specific whole genome 

duplication. eIF4E-1A is prevalent across deuterostomes from echinoderms to 

mammals, but eIF4E-1C is lost in tetrapods. eIF4E1B has apparently been lost in 

the percomorph teleosts, but retained in sharks, basal ray-finned fish, lower 

teleosts and tetrapods. eIF4E-2B has been lost in the amniotes but retained in 

basal ray-finned fish, teleosts and Xenopus. The Eif4e genes of teleosts and 
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tetrapods display marked differences in their proximal genes. Interestingly, it is 

the Eif4e genes in elephant shark and coelacanth that appear to preserve nearly 

identical proximal genes to each other. The representative of basal ray finned 

fish, spotted gar, has proximal gene patterns similar to lower and upper teleosts, 

sarcopterygii and chondrichithyes across the eIF4E cognates. Northern pike (El) 

are genetic wild cards of sorts, in that they have all eight known deuterostome 

eIF4Es. Conclusions could be drawn that the reduction of eIF4E family members 

accompanied the evolution of the amniotes. In the expansion of the 

deuterostome suite, eIF4Es preceded the diversification of the teleosts.  
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Chapter 3: Comparison of Class I and III eIF4E Family Members 
in Zebrafish (Danio rerio)  

3.1. Abstract 

Six members of the eukaryotic translational initiation factor 4 (eIF4E) family of 

proteins have been identified in zebrafish. Functional characteristics of zebrafish 

Class I eIF4Es, eIF4E-1A and eIF4E-1B in vitro have been studied previously, 

identifying eIF4E-1A as a prototypical initiation factor and eIF4E-1B as a tissue 

specialized translational regulation factor. Hitherto nothing has been reported on 

the function of zebrafish Class I eIF4E-1C or the Class III eIF4E-3. Here we 

describe the characterization of zebrafish eIF4E-1C and eIF4E-3. eIF4E-1C can 

be recognized first in jawed vertebrates and persists in teleosts. Although eIF4E-

1C is present in coelacanth, a basal sarcopterygian, it has been lost in tetrapods. 

eIF4E-3 is found in all deuterostomes. eIF4E-1C is ubiquitously expressed like 

eIF4E-1A, but has higher protein expression levels than eIF4E-1A across adult 

tissues, during early embryogenesis, and in the zebrafish liver cell line (ZFL). We 

show that, like eIF4E-1A, eIF4E-1C is confirmed to function as a translational 

initiation factor by its ability to bind to cap analogue, interact with the scaffold 

protein (eIF4G), and complement a S. cerevisiae strain conditionally deficient in 

functional eIF4E. Like eIF4E-1A, eIF4E-1C also interacts with the eIF4E-binding 

proteins (4E-BPs). Although zebrafish eIF4E-3 binds to cap and eIF4G, it does 

not complement in eIF4E conditionally deficient yeast strain. Here we provide the 

first assessment of protein expression of eIF4E-3 in tissues and non-transformed 

cells that indicates that its levels are lower than that of eIF4E-1A and -1C. eIF4E-
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3 is found above threshold levels only in specialized tissues such as muscle and 

brain. 

3.2. Introduction 

The importance of eukaryotic translational initiation factor eIF4E lies in its ability 

to recruit mRNA to the ribosome through specific and high affinity binding to 

eIF4G (reviewed (2, 20, 73, 112, 113)). This is accomplished by the binding of 

eIF4E to the 7-methylguanosine cap structure at the 5’-end of mRNA, allowing 

for interaction with eIF4G, eIF4A, and eIF3 (reviewed (3, 4, 69, 73, 114, 115)). 

This assemblage places the 40S ribosomal subunit in contact with the 5’-end of 

mRNA, so translation can commence. eIF4E structure and activity is highly 

conserved across eukaryotic lineages with the core structure representing a 

novel fold (2, 13). eIF4E is part of an extended gene family found exclusively in 

eukaryotes (15, 21, 22, 116, 117). Although the family is named for the 

translation initiation factor, not all members of the gene family function as such. 

There is an accumulation of evidence showing functional specialization of eIF4E 

cognate proteins, each having a particular role in the regulation of gene 

expression, some involved in translational initiation but others having alternate 

functions, including modulation or suppression of translation of particular mRNA 

species (15, 20, 21, 70, 116, 117). 

Phylogenetic analysis has grouped eIF4Es from multicellular eukaryotes into 

three classes, Classes I-III, with mammals expressing two Class I eIF4Es, eIF4E-

1A and -1B, one Class II, eIF4E-2 (4EHP) and one Class III, eIF4E-3 (15, 39). 

The eIF4E fold is characterized by an eight β-sheets that form the cap cavity, 
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backed by three long α-helices with a binding site for eIF4E protein partners, 

including eIF4G and a variety of regulatory proteins such as the 4E-BPs (16-18). 

The consensus sequence of the conserved core of eIF4E shows a distinctive 

pattern of aromatic residues Trp, Phe, and His across from N- to C-terminus (15). 

The contacts between the translation factor eIF4E and cap analogues involve 

sandwiching of the aromatic guanine residue of the cap-structure between two 

tryptophans in (in metazoan Class I eIF4Es), or a tryptophan and a tyrosine (in 

metazoan Class II eIF4Es). Additional contacts include hydrogen bonds with the 

N(7)-methylguanosine and the second nucleoside, as well as direct and water-

mediated contacts with the phosphate chain (16-19). The structures of 

mammalian eIF4E-1A, eIF4E-2 and eIF4E-3 resolved in NMR or crystallographic 

studies all show that the characteristic α+β domain is representative of all three 

metazoan classes of eIF4E (16, 18, 42, 118).  

In ray-finned fish (Actinopterygii), such whole genome duplication occurred 

coincident with the radiation of teleost species. This has been termed the teleost 

specific whole genome duplication (TGD) (102, 103). There is additional 

evidence that two earlier rounds of large-scale gene duplication occurred early in 

vertebrate evolution (86, 119). In general, while most gene pairs formed by WGD 

are subsequently deleted, rapid functional divergence is known to allow duplicate 

gene retention (84, 120-123). Such neofunctionalization may account for the fact 

that the zebrafish genome has additional Class I and Class II Eif4e genes 

compared to tetrapods; three that express Class I eIF4Es, termed eIF4E-1A, -1B 

and -1C, and two that express Class II eIF4Es, termed eIF4E-2A and -2B.  
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Zebrafish eIF4E-1A has been described previously as a prototypical translation 

initiation factor, expressed ubiquitously, able to bind m7GTP, interact with eIF4G 

and the vertebrate 4E-BPs (26). eIF4E-1A also complements a S. cerevisiae 

strain containing a glucose repressible eif4e gene (26, 88). In contrast, zebrafish 

eIF4E-1B is a tissue specific translational regulation factor expressed primarily in 

ovary and testis (26) that is also seen in tetrapods (27, 30, 32). Although all the 

residues critical for 5’-cap mRNA binding and interactions with eIF4Gs or eIF4E-

BPs are absolutely conserved among eIF4E-1Bs, eIF4E-1B shows only weak 

interactions with m7GTP-Sepharose, eIF4G and 4E-BPs (26, 31). Conversely, 

eIF4E-1B is distinguishable from eIF4E1A by a set of conserved amino acid 

substitutions several of which are located near to cap-binding residues (31). 

Instead of eIF4G, eIF4E-1B interacts with the purported eIF4E transporter 

protein, 4E-T (27, 28, 33). Unlike eIF4E-1A, D. rerio eIF4E-1B cannot be 

exchanged for mammalian eIF4E in complementation assays using an 

S.cerevisiae strain conditionally deficient in eIF4E (26, 88). Xenopus eIF4E-1B is 

found in a complex with 4ET, CPEB and mRNAs containing 3’-UTR recognized 

by CPEB precluding productive binding of eIF4E-1A to eIF4G (27, 28). 

Interestingly, although tetrapod eIF4E-1Bs have a high identity (72.4 %) and 

similarity (82.8 %) index when compared to zebrafish eIF4E-1B in the conserved 

core region, and have a similarly restricted pattern of expression, the zebrafish 

Eif4e1b gene is not orthologous to the Eif4e1b locus of tetrapods (30). Since 

convergent evolution seems an improbable explanation of this, it is possible that 

multiple Eif4e1b-like loci existed in the common ancestor of Actinopterygii  and 
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Tetrapoda. It may have occurred that with some of them were asymmetrically 

retained in Actinopterygii ,such as the Eif4e1b locus in zebrafish, while other 

ancestral Eif4e1b genes gave rise to Eif4e1b of Tetrapoda (30). 

The two Class II family members of zebrafish, eIF4E-2A and -2B, are anticipated 

to have a similar regulatory role to Class II eIF4Es from Drosophila, C. elegans 

and mouse (33, 34, 38, 124-126), although some neofunctionalization should be 

anticipated from their evolutionary persistence. An investigation of these 

orthologues is the subject of a separate study (Chapter 4 & Gillespie et al, ms in 

preparation). The role of eIF4E-3, found primarily in chordates, is the least 

understood of the chordate eIF4E family members. Mammalian eIF4E-3 binds 

the m7G cap in the absence of an aromatic sandwich, using instead a cluster of 

hydrophobic and charged residues in the C-terminus to make extensive contact 

with the cap to increase affinity (42). Only one variant of eIF4E-3 has been found 

in most chordates. However, in Percomorpha, the most recently evolved teleosts, 

such as tongue sole, Cynoglossus semilaevis, and pufferfish, Tetroadon 

nigroviridis, there is an eIF4E-3 cognate protein termed eIF4E3-like (Chapter 2 & 

Gillespie, Bachvaroff & Jagus, m/s in progress). eIF4E-3 appears to have a 

limited tissue distribution. Its role in the regulation of gene expression is not well 

established. In mammals, eIF4E-3 functions as a tumor suppressor suggesting a 

role in repression of mRNA utilization (42), although this role seems at odds with 

its ability to prevent muscle atrophy (43).  

In the present study, we describe the expression and functional characteristics of 

eIF4E-1C and eIF4E-3 and compare them with eIF4E-1A, and eIF4E-1B. It 
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appears that eIF4E-1C, previously recognized but uncharacterized in the Jagus 

laboratory, functions as a prototypical translational initiation factor. Furthermore, 

eIF4E-1C appears to be the prevalent form of translation initiator expressed 

throughout adult zebrafish tissue, in early embryogenesis and in cultured ZFL 

cells. eIF4E-3 does not appear to function as a translational initiation factor; it 

does not rescue initiation of translation in eIF4E-deficient yeast cells, and is 

evident only in muscle, heart, and brain. The results presented here on eIF4E-3 

are consistent with the emerging picture of eIF4E3 from other systems as having 

a regulatory role in mRNA recruitment in select tissues. 

3.3. Materials and Methods  

3.3.1. Rearing and spawning zebrafish  

Adult fish were maintained at 28.5 °C in a constant flow-through system. 

Embryos were obtained by spontaneous spawning, maintained at 28.5 °C, and 

staged as described (127). Staged embryos were either immediately processed 

or snap-frozen and stored at -80 °C for future use. 

3.3.2. Culture of ZFL cells  

Cells were grown at 28 °C in L-15 medium supplemented with 10 % fetal calf 

serum but without sodium bicarbonate. 

3.3.3. Identification of zebrafish eIF4E family members  

eIF4E-1A (Genbank mRNA AF176317.1, (cds): AAG09794.1) and eIF4E-1B 

(UniProtKB/Swiss-Prot: Q9PW28.1) were previously described (26). The 

sequence for eIF4E-1C was deposited into Genbank as NP_001017851.2, and 
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eIF4E-3 as NP_001004589.1. The Jagus laboratory deposited the indicated 

Danio rerio eIF4Es sequences (mRNA and/or coding regions) in Genbank from 

2000-2013. Other sources have provided additional sequences (BC081620.1, 

NP_571529.1, AAH55649.1, AAD50526.1) that are identical to the deposited 

Jagus laboratory sequences. 

3.3.4. Identification of eIF4E family members from other deuterostomes:  

The peptide sequences of eIF4E family members of the deuterostomes included 

in this study have been collected from on-line genomic resources including; the 

National Center for Biotechnology Information (NCBI) at 

http://www.ncbi.nlm.nih.gov, the Ensembl project (156), the HMMR database 

(http://hmmer.janelia.org), the Institute of Molecular and cell Biology (IMCB) 

elephant shark genome http://esharkgenome.imcb.a-star.edu.sg, the coelacanth 

genome project site (http://coelacanth.nig.ac.jp/index.php) and the Joint Genome 

Institute (JGI) for the Branchiostoma floridea genome (http://genome.jgi-psf.org). 

Each eIF4E sequence was verified using the Genbank BLAST tool and aligned 

by the MUSCLE algorithm applying the suite of software provided by CLC 

workbench (CLCBio CLC Genomics Workbench 7.0.3 (http://www.clcbio.com). 

Accession numbers and details on sequences are provided in the Appendix 

(Appendix Table A2.1). 

3.3.5. Generation of cDNAs encoding zebrafish eIF4E family members  

The generation of zebrafish eIF4E-1A and eIF4E-1B constructs have been 

described previously (26). cDNAs encoding zebrafish eIF4E-1C and eIF4E-3 

were cloned into the in vitro transcription/ translation plasmid vector pCITE-4a(+) 
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(Novagen, EMD-Millipore, Billerica, MA, USA), using engineered NcoI and 

BamHI sites (primers listed in Table 3.1A) 

3.3.6. Generation of constructs encoding zebrafish 4E-BPs and fragment of 
zebrafish eIF4G1  

The generation of a zebrafish 4E-BP3-like construct has been described 

previously (26). Nucleotide sequences for zebrafish 4E-BPs 4E-BP1 

(NP_955939.1), 4E-BP2 (NP_997968.1), 4E-BP3 (NP_001007355.1) were 

codon optimized for rabbit, Oryctolagus cuniculus, using Advanced 

OptimumGene™ (Genscript, Piscataway, NJ, USA). The nucleotide sequence 

was synthesized by Genscript, augmented with additional methionine residues 

and cloned into the in vitro transcription/translation plasmid vector pCITE-4a (+) 

(Novagen, EMD-Millipore, Billerica, MA, USA), using engineered Nde1 and 

BamHI sites. The cloning strategy adds an S-tag to the amino-terminus and uses 

the stop codon from the coding sequences. The nucleotide sequences for the 

zebrafish eIF4G-1 fragment 262-681 were codon optimized for rabbit, 

synthesized and cloned into pCITE4a (+) as for the 4E-BPs (Genscript, 

Piscataway, NJ, USA) using the same cloning strategy.  

3.3.7. RNA purification, cDNA synthesis, RT-PCR and RT-qPCR  

Fresh tissues, embryos, or harvested cells were homogenized by bead beating 

and extracted using a Purelink RNA minikit: (Ambion™ Grand Island, NY, USA). 

RNA was quantified on a Nanodrop 1000 (Thermo Fisher by Life Technologies 

Waltham, MA). Values of >2 for 260/280 and 260/230 ratios were considered to 

be of sufficient purity. RNA was reverse-transcribed using Superscript II reverse 
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transcriptase (Invitrogen, by Life Technologies, Carlsbad, CA, USA) with random 

hexamers in accordance with the manufacturer’s instructions. The generated 

cDNA was used as template for RT-PCR and RT-qPCR. The quality of all cDNA 

preparations was assessed by end point PCR amplification.   

 

were performed under standard conditions using Taq DNA polymerase (Denville 

Scientific Inc, South Plainfield, NJ, USA). Whenever purified PCR products were 

transferred into plasmids, insertions were sequenced in both orientations to 

ensure that no errors had been introduced due to amplification. The products 

were resolved by TAE-agarose electrophoresis and imaged in the Typhoon 9410 

Variable Mode Imager (GE Healthcare Life Sciences, Pittsburgh, PA, USA). 

Primers for qPCR were designed by PearlPrimer and Primer 3 software to span 

exon-exon junctions (Table 3.1B). For RT-qPCR using an Applied Biosystems 

Fast 7500 thermal cycler (Life Technologies, Grand Island, NY, USA), cDNA 

from 20 ng RNA was amplified using Taqman Fast Universal PCR Mastermix (no 

AmpErase UNG) (Applied Biosystems, Foster, CA, USA). Thermal cycling 

Table 3.1A: zebrafish eIF4E cloning primers 
eIF4E Forward/Reverse Sequence Tm bp 

1A F CGAGCCATGGCGACTGCTGAACCGGAAAC 67.7 937 

 R GAAGGATCCGCACTCCCCCAATCCCCACTA 67.3  
1B F GCAGCCATGGCGTCGTGTGCTGTACAACTGATTGATAAAGTACCGAAG 68.3 667 

 R CCAGGATCCGCCCACTTTTAAACAACAAACT 62.4  
1C F ATATATCCATGGCGACTTCGGAGCCG 62 662 

 R TACAACAAAGAATATGTACTCTGTTTGAGGATCCAAGAAG 60.5  
2A F GGCAAACCACCATGGACAACAAATTTGAC 64.0 704 

 R GGCGGATCCCTATACGAAATCCTCCCAAGC 64.2  

2B F GGCAAACCACCATGGATCAGTTTGAAC 60.5 735 

 R GGCAAATTCGGATCCTCACAAAGTGATC 59.8  

3 F ATATATCCATGGCGGTTCCTGCAGCCC 58.9 692 

 R ATATGGATCCCTAATGTCTTGAGCGA 58.2  



 

 56 
 

conditions consisted of an initial denaturation at 95 °C for 2 min followed by 40 

cycles of denaturation at 95 °C for 15 sec, annealing at 60 °C for 15 sec, and 

extension at 72 °C for 30 sec. The reaction was completed with a melt curve to 

detect any spurious PCR products. Each eIF4E was encoded into cDNA 

plasmids to generate transcripts used to determine the absolute copy number. A 

standard curve was subsequently constructed from the cDNA from 25 ng of in-

vitro transcribed RNA and utilized for extrapolation of mRNA targets of unknown 

concentration. Elongation factor 1A (EF1A) was used as control. 

 

Table 3.1B: zebrafish eIF4E qPCR primers 
eIF4E Primer( 5' to 3') F/R Position length Tm Size(bp) 
            

 1A ACTGAATGTGATTGTATAACGCCC F 234 24 61.75 170 

1A ATGAGCAACAGATCGTGAGTC  R  64 21 60.62   

       

1B CTAAGGCTCATCACCAAATTCGA F 228 23 61.2 119 

1B CTCTATGCCATCCTTGAACATGG R 347 23 61.58   

       

1C TGAACAGTACATCAAACACCCT F 130 22 60.07 137 

1C TTGTATAATGCCCAGAAATCTTCC R 267 24 59.39   

       

2A ACGCCCTGAAAGATGATGAC F 16 20 60.59 124 

2A GACCACTGCCTTTCTCTTTG R 140 20 59.23   

       

2B ACAGCCAATGATCAGGTGAC F 537 20 60.52 125 

2B GAAGCTGGAGTTATCCTTCAGAC R 662 23 60.95   

       

3 TGCATCAGAGGATGAAGTGGT F 593 21 61.69 212 

3 TGCTAATGTCTTGAGCGACC R 805 20 60.59   

       

EF1A CTTCAACGCTCAGGTCATCAT  F 1091 21 52.59 261 

EF1A ACAGCAAAGCGACCAAGAGGA  R 1351 21 56.35  
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3.3.8. Preparation of protein extracts from cultured cells and tissues 

Cultured cells or tissues (except for ovary) were homogenized in up to 10 

volumes of ice-cold buffer containing 25 mM Tris -HCl, pH 7.4, 1 mM EDTA, 1 

mM EGTA, 1 mM dithiothreitol, 100 mM KCl, 0.5 % Elugent, and CompleteTM 

Protease Inhibitors (Roche Applied Science, Madison WI, USA). Homogenates 

were clarified by centrifugation (15 k x g, 4 °C, for 15 min). Supernatants were 

snap-frozen and stored in liquid N2. 

3.3.9. In vitro transcription and translation 

35S-radiolabeled proteins were translated in vitro, using pCITE4a constructs as 

templates in the rabbit reticulocyte TnT (Promega, Madison, WI, USA) coupled 

transcription-translation system, containing [35S]-methionine as per the 

manufacturer’s directions. 2 µl of the in vitro translation reaction (IVT) reaction 

was taken for analysis of 35S-methionine incorporation by mixing to a final 

concentration of 5 % TCA, boiling and capturing on GF/C filter paper(EMD-

Millipore, Billerica, MA, USA).  

3.3.10. m7GTP-Sepharose binding assay  

Sepharose beads bound to 7-methyl-guanosine-triphosphate (Jena Bioscience 

GmbH, Jena, Germany) were blocked using 1 mg/ml soybean trypsin inhibitor 

(Sigma, St. Louis, MO, USA) in binding buffer (25 mM HEPES/KOH pH 7.2, 10 % 

glycerol, 150 mM KCl, 1 mM dithiothreitol, 1 mM D-L methionine) for 1 h at 4 °C 

shaking at 1400 rpm in a benchtop thermomixer 22331 (Eppendorf, Hamburg, 

Germany). The beads were washed twice with binding buffer and suspended in 
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50 % v/v binding buffer. 20 µl of each in vitro translation product (IVT) was diluted 

10-fold with binding buffer containing 200 µM GTP and 200 µM MgCl2, mixed 

with the bead suspension and incubated at 4 °C for 1 h with shaking at 1400 rpm. 

The supernatant containing the unbound fraction was recovered by centrifugation 

at 500 x g at 4 °C. An equivalent of 2 µl of the original IVT was used for TCA 

precipitation and filtered onto a GF/C membrane (Millipore, Billerica, MA, USA,). 

These were washed 5 times with binding buffer and the final bead-bound fraction 

was suspended in SDS-PAGE sample buffer. The bead suspensions were 

heated to 90 °C and a fraction equivalent to 2 µl of the original IVT reaction  

applied to GF/C filter paper. Fractions were counted in Ecoscint Original 

scintillation cocktail (National Diagnostics, Georgia, USA) and cpm was 

determined using a LS6500 Multipurpose Scintillation Counter (Beckman 

Coulter). IVT, unbound, and bead bound fractions were diluted in SDS-PAGE 

sample buffer and heated to 90 °C for 3 min. The samples were separated by 

17.5 % high-Tris SDS-PAGE, transferred to PVDF membranes and visualized 

using a Storage Phosphor screen (Molecular Dynamics, GE Healthcare Life 

Sciences, Pittsburgh, PA, USA) and imaged with a Typhoon 9410 Variable Mode 

Imager (GE Healthcare, Healthcare Life Sciences, Pittsburgh, PA, USA).  

3.3.11. Protein-protein interaction assays  
For protein interaction assays, a fragment of zebrafish eIF4GI from amino acid 

262-681, containing the eIF4E-binding domain was cloned into pCITE4a. The 

zebrafish 4E-BP was co-translated with either S-tagged eIF4E-1A,-1B,-1C or -3 

in 35 µl reactions for 60 min at 30 °C. Reactions were diluted with 10 volumes of 
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S-binding/washing buffer and incubated with 50 µl of S-protein agarose 

(Novagen, Madison, WI, USA) for 60 min at 10 °C. S-protein-agarose beads 

were recovered by centrifugation and washed 5 times with buffer (1 ml each), 

prior to elution with SDS-PAGE sample buffer. Samples of fractions, equivalent 

to 2 µl of the initial translation reactions, were analyzed by high-Tris SDS-PAGE, 

transferred to PVDF membrane and labeled proteins visualized using a Storage 

Phosphor screen (Molecular Dynamics, GE Healthcare Life Sciences, Pittsburgh, 

PA, USA) and imaged with a Typhoon 9410 Variable Mode Imager (GE 

Healthcare, Healthcare Life Sciences, Pittsburgh, PA, USA). 

3.3.12. Production of recombinant eIF4Es from E. coli 

Zebrafish eIF4E family members were sub-cloned into pET11d (Novagen, EMD 

Millipore, Billerica, MA, USA) to give untagged proteins. Constructs were 

transfected into Rosetta™ (DE3)-pLysS competent cells (EMD Miliipore, Billerica, 

MA, USA ) and expressed essentially as described (26). 10-ml cultures were 

grown in LB, 100 µg/ml carbenicillin, 34 µg/ml chloramphenicol, overnight at 37 

°C with shaking (220 rpm). Cells were harvested, resuspended in fresh medium, 

diluted to an optical density (OD) of 0.1 and grown to an OD of 0.5. Expression 

was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) at a 

concentration of 1 mM for 2.5 h. Cells were harvested by centrifugation at 10,000 

x g for 5 min and lysed in 10 µg/µl lysozyme, 25 mM HEPES-KOH, pH 7.2, 100 

mM KCl, 10 % glycerol, 1 mM EDTA, 1 mM EGTA, 0.5 % Elugent (Calbiochem 

La Jolla, CA, USA). The supernatant and/or protein pellet were isolated after 
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DNAse treatment. Expression was assessed after SDS-PAGE fractionation 

followed by staining or immunoblotting. 

3.3.13. Development and validation of affinity-purified antibodies 

 The best antigenic regions to use for immunization were determined using the 

Genscript OptimumAntigen™ Design Tool.  The Genscript™company 

synthesized  the suite of eIF4E antigenic peptides (Table 3.2) . 

Table 3.2 : eIF4E Genscript antibodies 
eIF4E peptide sequence region 
eIF4E-1A HADTATKSGSTTKNKFVVC* C terminus 
eIF4E-1A AEPETSTNPSNSEEC* N terminus 
eIF4E-1B VPKKKVEKKKFEPNC* N terminus 
eIF4E-1C TSEPRGTRTEEVRAC* N terminus 
eIF4E-2A QDNSSPKDGEKEKNC* N terminus 
eIF4E-2B EMKDNNESDRASINC* N terminus 
eIF4E-3 PHEEHHAFEGGRSRHC* C terminus 

Table 3.2:  Peptides for antibody development zebrafish eIF4Es  
* indicated cysteine addition for antigenic processing 
 

 There was an additional cysteine residue added at the C-terminus to allow for 

conjugation to the KLH adjuvant. Antibodies were raised in New Zealand white 

rabbits. Specific antibodies were isolated by affinity purification using the 

synthesized peptide. Antibodies were tested for specificity and cross-reactivity by 

an ELISA assay and western blot analysis using the peptide used to generate the 

antibody and the recombinant protein of each eIF4E, respectively. The specificity 

of each antibody was validated using recombinant eIF4Es and tested for cross 
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reactivity against all recombinant zebrafish eIF4Es (Figure 3.1).

 

Figure 3.1: Specificity of antibodies for eIF4E-1A, -1B, -1C, eIF4E-3: dilutions indicated in x/y 
(x= µl of protein, y= µl volume SDS page sample buffer) 
 

 Antibody dilutions used for immunoblotting were adjusted to reflect the avidity 

and titer. 

3.3.14. SDS-PAGE and immunoblotting 

Proteins were fractionated by 17.5 % high-Tris SDS-PAGE as described (26, 

128), and were electro-transferred to PVDF membrane and subjected to blot 

analysis using the custom polyclonal antibodies followed by goat anti-rabbit 

secondary antibody coupled to HRP for an chemiluminescence reaction. 

Chemiluminescence was detected using the ProteinSimple Fluorochem E with 

quantification using AlphaImager software. When used with full size gels (16 x 18 
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cm), the SDS-PAGE conditions allowed resolution of all three Classes I eIF4Es 

(Figure 3.2) 

.  

Figure 3.2: Separation of Class 1 eIF4Es by 17.5 % high-Tris SDS-PAGE 
 

3.3.15. Quantification of eIF4E levels 

Expression of each eIF4E was determined by immunoblotting using standard 

procedures. Comparison of signal from equal loading of each recombinant 

protein allowed avidity of each antibody to be established. The ECL signal was 

normalized by avidity and the relative levels of each eIF4E determined. The 

relative levels of eIF4E-1A, -1B, -1C and eIF4E-3 were determined from tissue 

samples of muscle, brain, and ovary. Quantification by saturated pixel (SD) 

intensity was measured by Alphaimager™ software. A boxplot was generated 

from multiple samples, in which the line within the blot represents the median; the 

box length corresponds to the interquartile range, with bars bracketing the 

smallest and largest observed protein levels.  

3.3.16. Complementation assays in S. cerevisiae  

Each of the zebrafish eIF4Es were sub-cloned into the URA-selectable yeast 

expression vector pRS416GPD at BamH1 and Xbal sites (129) and transformed 
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into the S. cerevisiae strain JOS003 using a modified lithium acetate/salmon 

sperm carrier DNA/PEG method (130). JS003 is a LEU-selectable strain from 

which the endogenous EIF4E gene has been replaced by homologous 

recombination with a KanMX4 cassette making it resistant to G418 (88). JOS003 

cells lack an endogenous yeast eif4e gene and express human eIF4E-1 under 

the control of the galactose-dependent and glucose-repressible GAL1 promoter. 

As a consequence, JOS003 cells are able to survive in medium containing 

galactose as carbon source but are not viable in medium containing glucose due 

to depletion of human eIF4E-1. Growth of JOS003 in glucose can be mediated 

by ectopic expression of a functional eIF4E in pRS416GPD at BamH1 and Xbal 

sites, the regulation of which is under the control of a glyceraldehyde-3-

phosphate (GPD) promoter active in the presence of glucose. This system has 

been used previously to investigate the ability of heterologous eIF4Es to function 

in translation by rescuing growth in the presence of glucose (88). The 

transformed yeast were spot plated on synthetic deficient (SD) media lacking 

uracil and leucine and containing 200 µg/ml G418, with either galactose or 

glucose. Plates were incubated at 30 °C for 3-4 days, and growth was assessed 

visually by colony formation. Growth on plates containing glucose indicates the 

ability of an ectopic eif4e gene to complement eIF4E deficiency. To verify that the 

zebrafish eIF4Es were expressed as protein in yeast, protein extracts were 

prepared using the TCA extraction/bead homogenization method, essentially as 

described by the Keogh laboratory (131). Zebrafish eIF4Es were visualized by 

SDS-PAGE electrophoresis and immunoblotting by standard procedures. 
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3.3.17. Recovery of eIF4Es from zebrafish ovary extracts by methyl-7GTP-

Sepharose binding 

Multiple zebrafish ovaries were combined, and subjected to 10 volumes of mild 

disruption buffer, 0.35 M sucrose, 25 mM HEPES-KCl, pH 7.2, 1.5 mM MgCl2, 

250 µg/ml lysolecithin, 1 mM spermidine, 1 mM DTT, protease inhibitor pill and 

homogenized briefly using the Kinematica Brinkmann Polytron PT 3000 

(Brohemia NY, USA). Vitellogenin was released by this centrifugation at 1000 

rpm (228 x g) for 10 min at 4 oC. The resultant pellet was washed in 10 volumes 

pellet rinse buffer, 0.35 M sucrose, 25 mM HEPES-KCl, pH 7.2, 1.5 mM MgCl2, 1 

mM spermidine, and recovered by centrifugation at 1000 rpm (228 x g) for 10 min 

at 4 oC. The pellet was resuspended in 10 vol pellet solubilization buffer, 140 mM 

KCl, 50 mM HEPES-KCl, pH 7.2, 5 mM EGTA, 1 mM spermidine, 0.1 % Elugent, 

0.5 % Na deoxycholate, 10 % glycerol, protease inhibitor pill, vortexed and left on 

ice for 5 min. The supernatant was clarified by centrifugation at 10,000 x g x 5 

min at 4 oC and stored in liquid N2. 200 µl of this extract was bound to 25 µl of 

m7GTP-Sepharose beads. Non-specific binding sites were blocked by washing 

with binding buffer, (25 mM HEPES/KOH pH 7.2, 10 % glycerol, 150 mM KCl, 1 

mM dithiothreitol) ,that contained 1 mg/ml SBTI (soybean trypsin inhibitor). 

Extracts were incubated at 4 oC with agitation (1400 rpm) for 1 h. The 

supernatant containing the unbound fraction was recovered by centrifugation at 

500 x g at 4 °C. The cap-analogue beads were washed 5 times with binding 

buffer and the final bead-bound fraction was suspended in SDS-PAGE sample 

buffer. Protein precipitated with 2 volumes acetone from the combined washes 
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overnight at -20 oC. Equivalent volumes of fractions representing 20 µl of ovary 

extract were used for SDS-PAGE and immunoblotting analyses. 

3.4. Results 

3.4.1. Sequence comparisons of eIF4E-1A, -1B, -1C and eIF4E-3  

The multiple alignments of the zebrafish eIF4E family members can be seen in 

Chapter 1, Figure 1.11. Table 3.3 illustrates the predicted physical characteristics 

of the zebrafish Class I and Class III eIF4E family members.  

Table 3.3: Characteristics of zebrafish eIF4E family members 
eIF4Es Gene ID cds(bp) #aas pI MW(kDa) Chrom Location #exons #Met 

eIF4E-1A 79380 648 216 5.6 24.7 14 NC_007125.6 8 3 

eIF4E-1B 30738 644 215 9.1 24.6 5 NC_007116.6 7 5 

eIF4E-1C 550549 641 214 6.1 24.4 13 NC_007124.6 7 6 

eIF4E-2A 541523 711 237 6 27 2 NC_007113.6 6 6 

eIF4E-2B 393732 687 229 7 26.7 23 NC_007134.6 6 8 

eIF4E-3 447850 674 225 5.4 25.3 23 NC_007134.6 7 3 
Cds(bp): coding sequence base pair, #aas: number of amino acids,pI: isoelectric point MW: 
molecular weight, Chrom: chromosome,Met: methionine 
 

eIF4E-3 is slightly larger than the Class I eIF4Es. All except eIF4E-1B have an 

acidic isoelectric point, and each resides on a different chromosome. To facilitate 

comparison between the zebrafish Class I eIF4Es with themselves and with 

human eIF4Es, the numbering of amino acids discussed in the text is as per the 

equivalent amino acid position in human eIF4E-1. The N-termini of eIF4E family 

members show the greatest variability with only 5-15 % identity between each. 

There are significant differences in the N-terminal domains of eIF4E-1A and -1C; 

a shorter N-terminal domain in eIF4E-1C without the multiple glutamic acid and 

glutamine residues found in eIF4E-1A. These differences suggest that perhaps 

eIF4E-1C plays a subfunctional role, providing translational initiation under 
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specific conditions. The basic isoelectric point of eIF4E-1B reflects a lysine-rich 

region in the N-terminus (26). Table 1.2 shows the identities and similarities 

(based on PAM 250 matrix) between the amino acid sequences representing the 

core regions of the zebrafish eIF4E family members. Comparisons of the amino 

acid sequences representing the core regions of zebrafish eIF4E family members 

reveal that they share ~35–40 % identity and ~60–65% similarity with one 

another.  

Figure 3.3 represents sequence logos that were created from the alignments of 

the core sequences of eIF4E-1A, -1B, -1C and eIF4E-3 from a range of 

gnathostome and tetrapod species. A sequence logo is a graphical technique for 

displaying a summary of a set of aligned sequences (132, 133). Logos compare 

an overlay of multiple sequences based on the frequency of amino acid residues 

(height) and the charge to highlight similarities and differences between 

sequences. For the eIF4E Class I suite, a total of nine sequences of each 

cognate protein each were aligned. A list of the tetrapods and teleosts are given 

in the Appendix (Table A3.1). Echinoderm, chordate and agnathan eIF4Es were 

not included in this analysis because they encode only one cognate of each 

eIF4E from each class. The multiple alignments of the full sequences of the 

sequences analyzed in the logos are shown in Appendix (Figure A2.1).  
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Figure 3.3: Logo of eIF4E-1A, -1C, -1B and eIF4E-3 alignments: The core region and C-terminal regions of eIF4Es from 11 
species of teleosts and tetrapods are represented as logos. The charge is indicated as positive (blue) negative (red) or uncharged 
(black). 
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Reflecting their classification into Class I, eIF4E-1A, -1B, -1C, have tryptophan 

(W) at positions equivalent to W43, W46, W56, W73, W102, W113, W130 and 

W166 in human eIF4E-1A. Similarly, all three Class I eIF4Es have the positively 

charged residues equivalent to R112, R157 and K162 that form salt bridges with 

the triphosphate of the cap. The logos highlight a signature residue pattern 

surrounding His-170 that distinguishes the eIF4E Class I subtypes from each 

other and from eIF4E-3. eIF4E-1A has the motif “SHAD”, eIF4E-1B has “AHAD”, 

eIF4E-1C has “SHDD” and eIF4E-3 has PHEEHH”. Using this distinction, it was 

possible to screen for the presence of a particular Class or subclass eIF4E 

quickly across genomic databases. There are only a few differences in the 

sequence of eIF4E-1C compared to eIF4E-1A; these include the substitutions 

F47Y, T55S, Q57T, A58E, L81Q, S82P, S87F, S92C, E99K, R109L, A201D, 

A204S, and T205S.  

3.4.1b. Zebrafish eIF4E-1B 

Zebrafish eIF4E-1B has all the substitutions reported for Xenopus eIF4E-1B that 

have been shown to reduce binding to cap analogue (Figure 3.4). 
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Figure 3.4: Alignment of human eIF4E-1A, eIF4E-1B, and zebrafish eIF4E-1B 
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These include a Met to Ser/Thr substitution at the position equivalent to M86 in 

human eIF4E-1A, negatively charged amino acid substitutions for the acidic 

residues just C-terminal to W102, the Ser to Ala substitution in the eIF4E-1B 

distinguishing motif “AHAD”, and the Leu to Thr substitution at the position 

equivalent to T211 in human eIF4E-1A (31). The substitution of serine and 

arginine in eIF4E1B at positions corresponding to glutamine and lysine in human 

eIF4E-1A may directly influence the position of Trp102 (involved in cap-binding) 

modifying the stacking interaction with the cap. Similarly, the substitution of 

Ala199 for Ser may induce changes in the orientation of the indole ring of Trp102 

by influencing the position of His200 located close to Trp102 in the 3-D structure. 

Replacement of Thr in position 210 and 211 by Leu and Ser in zebrafish eIF4E-

1B is also likely to be important, because they are located in the C-terminal loop 

responsible for binding the phosphate chain and second cap nucleoside. 

3.4.1c. Zebrafish eIF4E-3 

eIF4E-3 deviates from the Class I translational initiation factors by the 

substitution of cysteine at the position equivalent to W56 (Figure 3.5).  
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Figure 3.5: Amino acid sequence and secondary structure of eIF4E-3: showing important residues for cap-binding highlighted in yellow (from 
42). 
 



 

 72 
 

eIF4E-3 is capable of binding to cap, though its affinity is lower than that of Class 

I eIF4Es (42). Although mouse eIF4E-1A is dependent on the tryptophans at 

W56 and W102 for optimal π-stacking, and W166 to recognize the methyl7GTP 

moiety of the cap, structural analysis of human eIF4E-3 implicates the residues 

C52 and W98 (equivalent to W56 and W102 of human eIF4E-1A) as playing 

important roles in eIF4E-3 cap-binding. In human eIF4E-3 the amino acid C52 is 

the residue equivalent to W56 in human eIF4E-1A. C52 forms part of a helix in 

the S1–S2 loop (designated α1–2) in both the apo (unbound) and m7GDP forms 

of human eIF4E-3. This pre-formed helix is thought to play a key role in cap 

recognition since mutation of the S43, A47, A49, H194, and H197 of mouse 

eIF4E-3 reduces cap-binding. eIF4E-3 seems to recruit these additional contacts 

in order to offset the decline in binding energies due to the deficiency of the 

second aromatic residue, the Trp to Cys substitution and associated π-packing 

(42). Zebrafish eIF4E-3 has been verified to have all the signature residues 

described for the binding of human eIF4E-3 to cap analogue terminus (Figure 

3.5) (42).  

3.4.2. Phylogenetic analysis of deuterostome Class I eIF4Es  

To investigate the origin of eIF4E-1B and eIF4E-1C, a phylogenetic analysis was 

undertaken of deuterostome Class I eIF4E family members. The tree 

subsequently constructed (see Chapter 2, Figure 2.3) indicates that each Class I 

sub-type of eIF4E comprises a unique clade. Ancestral members of the 

vertebrates; the protochordate tunicate Ciona intestinalis, the cephalochordate 

lancelet, Branchiostoma floridae, and the echinoderm sea urchin 
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Stongylocentrotus purpuratus, have only one Class I eIF4E cognate. These 

eIF4Es form a distinct clade outside of the eIF4E-1A,-1B, and -1C designations. 

The eIF4E of lamprey, Petromyzon marinus, appears to reside on a separate 

branch, closest to the eIF4E-1A clade. The Class I eIF4E cognates, eIF4E-1B, 

and eIF4E-1C are thought to have arisen from one or more whole genome 

duplications. Because eIF4E-1C is found in teleosts and not in tetrapods, our 

original supposition was that eIF4E-1C arose as the result of the TGD. However, 

with the recent availability of the genomes of many fish, it has become clear that  

the elephant shark, Callorhinchus milii, and the coelacanth, Latimeria chalumnae 

, have all three Class I eIF4Es. This implies that the duplications must have 

occurred prior to the branching of the chondrichthyes. However, while all teleosts 

have retained eIF4E-1C, it has been lost in tetrapods.  

The phylogenetic analysis of vertebrate eIF4E-1Bs can be seen in Chapter 2, 

Figure 2.3. The presence of eIF4E-1B in the elephant shark suggests an early 

origin in gnathostomes. Inspection of the teleost genomes available have 

uncovered eIF4E-1B in basal ray-finned fish, such as speckled gar, L. oculatus, 

as well as in zebrafish, and rainbow trout, O. mykiss. eIF4E-1B has not been 

found in the genomes of more recently evolved fish such as the three-spined 

stickleback, G. aculeatus, and pufferfish, T. nigroviridis. Furthermore, it was 

previously reported that eIF4E-1B in zebrafish is not orthologous to the tetrapod 

form because the locus is not conserved (30). Interestingly, in L. oculatus, the e-

Eif4e1b locus is the same as that found in the tetrapods. Since convergent 

evolution seems an improbable explanation of this, it is possible that multiple 
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Eif4e1b-like loci existed in the common ancestor of Actinopterygii and Tetrapoda. 

Eif4e1b genes may have been asymmetrically retained in Actinopterygii, such as 

the Eif4e1b locus in zebrafish, while other ancestral Eif4e1b genes gave rise to 

Eif4e1b of Tetrapoda (30).  

3.4.3. Expression and quantitation of eIF4E-1A, -1B, -1C and eIF4E-3 in 
zebrafish tissues, ZFL cells and early embryos 

It was anticipated that analysis of the levels and distribution of eIF4E family 

members in cultured cells, different tissues, and developmental stages would be 

indicative of the relative importance of each form and could assist in directing the 

functional analyses of each. In particular, the spatio-temporal patterns of 

expression could indicate whether increased/decreased expression of one form 

of eIF4E is linked to a particular differentiated state or developmental event. 

Analysis of the expression patterns of zebrafish eIF4E-1A and eIF4E-1B by end-

point RT-PCR had previously shown that eIF4E-1A transcript is expressed 

ubiquitously, but eIF4E-1B is expressed only in muscle, ovary, and testis and in 

embryos up to the 21-somite stage of development (26). Coupled with the failure 

of eIF4E-1B to function in several eIF4E-1-specific assay systems, this pointed to 

a tissue/developmental stage-specific regulatory role. This was later confirmed 

by the findings of the Standart lab (27, 28, 32).  
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3.4.3a) Transcript levels 

To assess where the eIF4E family members are expressed during early 

development and in different tissues, we looked at transcript levels of each in a 

variety of tissues using RT-qPCR (Figures 3.6A). 

 

Figure 3.6: Transcript levels of eIF4E family members in adult tissues and early developmental 
stages: Top panel (A)Transcript levels from adult zebrafish tissues (top) and in embryos at various times 
post-fertilization (bottom panel)(B) were determined by RT-qPCR using cDNA generated from 25 ng RNA.  
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 eIF4E-1A, eIF4E-1C, and eIF4E-3 transcripts were detected in all tissues 

examined. Except for eIF4E-1B, transcript levels for all eIF4Es ranged from 103 

to 106 copies per 25 ng RNA, with the highest transcript levels of all six eIF4Es in 

heart, ovary, and testis (Table 3.4). 

Table 3.4: Transcript levels of zebrafish eIF4E family members 
(copy number of mRNA per 25 ng RNA) 

 
Tissue eIF4E-1A eIF4E-1B eIF4E-1C eIF4E-3 
heart 5 x 105 2.5 x 105 1.25 x 105 3.98 x 105 
brain 1 x 104 0.0 1.9 x 103 1.99 x 104 
ovary 1.99 x 105 5 x 104 3.9 x 104 6.3 x 104 
testis 7.9 x 104 1.25 x 105 1.25 x 105 1.58 x 105 
gill 2.5 x 104 1.99 x 103 5 x 103 3.16 x 104 
muscle 6.3 x 103 79 2.5 x 103 1.99 x 104 
ZFL cell 1.1 x 103 0.81 3.9 x 104 1 x 104 
Embryo hpf eIF4E-1A eIF4E-1B eIF4E-1C eIF4E-3 
0.2 1.3 x 103 1.25 x 104 3.9 x 104 2.75 x 104 
1.0 7.76 x 103 1.12 x 105 5.37 x 104 1.12 x 105 
3.0 1.99 x 103 4.57 x 103 1.02 x 104 4.67 x 104 
6.0 1.99 x 103 3 x 102 1.3 x 103 1.3 x 103 
19.5 2.4 x 104 134 1 x 104 1.25 x 104 
25 3.9 x 104 91 3.4 x 103 1.95 x 103 

 

 In the adult liver cell line, ZFL, trancript levels for all eIF4Es, except for eIF4E-

1B, ranged from 1 x 104 to 3 x 104 copies/25 ng RNA. This suggests there is no 

real tissue specific expression, except for eIF4E-1B. eIF4E-1B transcript levels 

vary dramatically between tissue types. By endpoint PCR, eIF4E-1B is only seen 

in ovary, testis, muscle, and heart. In RT-qPCR, it is seen in most tissues except 

for brain. Transcript levels for eIF4E-1B were highest in ovary, testis, and heart 

tissue (2.5 x 105 copies/25ng RNA), though lowest in ZFL cells (7.2 x 100 

copies/25ng RNA), and below detection limits in brain. Transcript levels of the 

zebrafish eIF4Es were also determined for embryos at different developmental 
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stages (Figure 3.6B). eIF4E-1C and eIF4E-3 transcripts were detected at the 

highest levels shortly after fertilization after which they decline through the 

maternal-zygotic transition(MZT). eIF4E-1A mRNA transcripts were detected at 

the lowest level of expression from the zygote (0.2 hpf) to the gastrula (6 hpf). 

Transcript levels for eIF4E-1A, -1C, and eIF4E-3 were lowest shortly after the 

MZT, and then began to increase. eIF4E-1B transcripts levels steadily declined 

post fertilization. The overall conclusions of the expression patterns of eIF4E 

family members suggest that eIF4E-1A and eIF4E-1C are ubiquitously 

expressed, as expected for an essential translation factor with some cell type-

specific modulation of expression of eIF4E-1A, -1B, -1C, and -3.  

3.4.3b) Protein levels: eIF4E-1A and -1C are ubiquitously expressed  

In order to assess the extent of eIF4E protein expression in tissues, antibodies 

were custom developed. Signature peptide sequences can be identified in the N-

terminus. eIF4E-1A,-1B,- and -1C antibodies derived from this region and 

confirmed for antigenic specificity by using recombinant proteins prior to tissue 
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analysis (Figure 3.7).

 

Figure 3.7: Expression of eIF4E class I and III in zebrafish tissues: (A) Extracts from adult 
zebrafish tissues and ZFL cells, were subjected to high-Tris SDS-PAGE at 50 V for 17 h prior to 
being transferred to PVDF membranes and probed with antibody to eIF4E-1A C-terminus. (B) 
Expression observed using the specific eIF4E antibodies developed to eIF4E-1C, eIF4E-1B, and 
eIF4E-3 in zebrafish tissues. The tissues represented by letter are testis (T), ovary (O), heart (H), 
muscle (M), gill (G), brain (B) and ZFL cells (Z). 
 
 The antibody to eIF4E-1A has significantly lower in avidity. Fortuitously, the C-

terminus derived antibody for eIF4E-1A also recognized eIF4E-1A and eIF4E-1B, 

because of that high sequence identity, and could be used to assess the levels of 

all three Class I eIF4E simultaneously. When this C-terminal antibody was used 

in parallel studies with the N-terminal antibody, the results indicated that the 

eIF4E-1A and eIF4E-1C were prevalent in most tissues types (Figure 3.7a and 

3.7b). eIF4E-1A and -1C display variable expression across different tissues, but 

the eIF4E-1C protein was expressed across all the tissues (Figure 3.7b). In ZFL 

cells, only the expression of eIF4E-1C could be detected consistently at higher 
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levels (data not shown). eIF4E-1A and -1B previously were shown to be 

expressed in three tissues; ovary, testis ,and muscle (26). Clear expression of 

eIF4E-3 was observed in brain and muscle. On the basis of this, ovary, muscle 

and brain were selected for quantification purposes. Determination of relative 

levels of expression of each eIF4E across the selected tissues was achieved by 

immunoblot analysis using the Alphaimager™ program. The resultant saturated 

pixel density values were normalized against an eIF4E standard (Figure 3.8).  

 

Figure 3.8: Quantification of zebrafish eIF4E expression in muscle, brain, and ovary tissue: 
Avidity of antibody was assessed using dilutions of eIF4E recombinant protein dilutions on gel 
and then for relative levels by use of pixel saturation intensity from Alpha imager. Samples of 2 to 
6 representative blots were analyzed for creation of a boxplot. The minima/maximal values are 
bracketed 

By comparing a selection of samples, the boxplot median values indicate that 

levels of eIF4E-1A and eIF4E-1C are considerably higher than other eIF4E family 

members. eIF4E-1A displayed the highest expression level in ovary. eIF4E-1C 

levels were higher than the eIF4E-1A in muscle and brain. In ovary, eIF4E-1B 
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levels were approximately a third the level of eIF4E-1A and approximately 50 % 

of the level of eIF4E-1C. Low levels of eIF4E-1B could be seen in skeletal 

muscle and brain.  

3.4.4. eIF4E3 is expressed in muscle and brain of adult zebrafish 

In mouse, eIF4E3 transcripts have been reported in skeletal muscle, lung, and 

heart using a Northern blot analysis (39). In this current study, western analysis 

confirmed that eIF4E-3 is observed at the level of protein in skeletal muscle and 

heart tissue. The highest levels of eIF4E-3 are seen in brain, although at only 20 

% of the level of eIF4E-1C and at approximately 30 % the level of eIF4E-1A.  A 

recent proteomic analysis of zebrafish has supported this result by confirming 

that eIF4E-3 is present in brain tissue, although other  tissues tested showed 

negligible expression levels for eIF4E3 (134). 

3.4.5. eIF4E shows increased expression across zebrafish embryonic 
development 

After assessment of the eIF4E transcript levels of eIF4E in embryos, westerns 

blots were performed to analyze Class I and III eIF4E family members during 

early development. A stepwise methodology was employed to remove the 

chorion and de-yolk the samples (135). In particular, the removal of the 

vitellogenin fraction was critical, since its presence obscures the eIF4Es due to 
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the similarity in molecular weight. Figure 3.9

 

Figure 3.9: Expression of eIF4E in zebrafish embryonic development: Embryos were collected at the 
indicated hour post fertilization (hpf); assessed microscopically, flash frozen, and protein extracts prepared 
as described. Proteins were fractionated by high-Tris SDS-PAGE for 2 h at 200 V. After transfer to PVDF 
membrane, proteins were probed using indicated specific antibody to eIF4E-1A C terminus and the eIF4E-3 
C-terminal respectively. 
 

 shows eIF4E family member expression from 0.2 (zygote) to 25 hpf (prim6) 

comparing equivalent numbers of embryos. Unfortunately, protein recovery was 

poor particularly at early time points and protein loaded increased from 0.2 -16 

hpf. eIF4E-1A,-1C,-1B, and -3 can be seen at 3-6 hpf (blastula). The levels of 

eIF4E-1A and eIF4E-1C are expressed proportionally from 3-25 hpf, although 

levels of eIF4E-1C are consistently higher. Although eIF4E-1B transcript levels 

fall continuously during early development, with lowest levels at 25 hpf, eIF4E-1B 

protein levels begin to increase between 16-25 hpf, coincident with 

somitogenesis. eIF4E-1B transcript and protein levels are not coordinately 

regulated, suggesting regulated mRNA recruitment or protein turnover, or both. 
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3.4.6. Zebrafish eIF4E-1C, but not eIF4E-3, is functionally equivalent to 
human eIF4E-1 

Although there is considerable sequence divergence between human eIF4E-1 

and S. cerevisiae eIF4E (31 % identity), the mammalian factor can sustain 

growth of yeast deficient in eIF4E. The previously developed yeast strain, 

JOS003 (88), was used to compare the functionality of eIF4E-1C and eIF4E-3 

with eIF4E-1A and eIF4E-1B. The JOS003 strain lacks the endogenous yeast 

eIF4E gene and expresses human eIF4E-1 inserted in the pRS415 leu(-) vector 

under the control of the galactose-dependent and glucose-repressible GAL1 

promoter. As a consequence, strain JOS003 is able to survive in medium 

containing galactose as carbon source but is not viable in medium containing 

glucose due to depletion of the human eIF4E-1. Growth of JOS003 in glucose 

can be mediated by ectopic expression of a functional eIF4E, the regulation of 

which is under the control of a promoter in the pRS416 ura(-) vector, which is 

active in the presence of glucose. The cDNAs encoding the zebrafish eIF4E 

cognates were cloned into pRS416, allowing expression from the constitutively 

active glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter. Following 

transfection and selection on media lacking uracil, the yeast cells containing 

control vector, or vectors for the expression of eIF4E-1A, -1B, -1C or eIF4E-3, 

were streaked on selective plates; Synthetic medium (SC) –Ura, -Leu containing 
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either galactose or glucose as carbon source (Figure 3.10).

 

Figure 3.10: Ability of zebrafish eIF4Es to rescue the growth of S. cerevisiae, JOS003: The 
S. cerevisiae strain, JOS003, (88) was transformed with the Ura-selectable vector, pRS416GPD, 
containing cDNAs encoding one of the following products: eIF4E-1A, eIF4E-1B, eIF4E-1C and 
eIF4E-3, as indicated. Following selection on SC medium with galactose lacking uracil and 
leucine, yeast from the resulting single colonies were diluted 10-1 to 10-7 fold and transferred onto 
YP-agar media containing G418 and either glucose (left) or galactose (right). Growth was 
assessed after 48 h. 

As previously reported, eIF4E-1A is capable of complementation, while eIF4E-1B 

is not (26). It is evident that eIF4E-1C, but not eIF4E-3 is able to rescue the 

JOS003 strain under conditions in which human eIF4E-1 is depleted. Expression 

of each eIF4E was verified by immunoblot analysis using antibodies specific to 

each eIF4E (results not shown). These results demonstrate that zebrafish eIF4E-

1C is functionally equivalent to a tetrapod prototypical Class I eIF4Es.  

3.4.7. eIF4E-1A and eIFE-1C and eIF4E-3 bind to m7GTP cap analogue  

Recombinant eIF4Es proteins were synthesized via production of 35S-

radiolabeled proteins translated in vitro and the relevant pCITE4a constructs 

were used as templates in the rabbit reticulocyte-coupled transcription-translation 

system, containing [35S]Met , essentially as described previously (26). The 

resultant pools were mixed with m7GTP-Sepharose bead slurry, and the total, 

unbound and bound fractions were analyzed by SDS-PAGE and immunoblotting 



 

 84 
 

(Figure 3.11).

 

Figure 3.11: m7GTP binding activity of zebrafish Class I and III eIF4Es: eIF4Es were 
translated in the reticulocyte cell-free translation system, in the presence of [35S]Met. The proteins 
were bound to m7GTP-Sepharose beads and analyzed by high-Tris SDS-PAGE and 
autoradiography. Each sample is equivalent to an equal volume of the translation reaction. The 
total (T), unbound (U), and bead bound fractions (B) are labeled as indicated. Trichloracetic acid 
precipitated samples of each fraction were analyzed by scintillation cpm counts and represented 
as bound versus unbound expressed as a percentage of the incorporated cpm total.  The bound 
fraction (Red) and unbound( Blue).The binding of 35S Met luciferase was included as a negative 
control. The proteins were also analyzed by high-Tris SDS-PAGE.  
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For the investigation of native eIF4E, ovary extract was bound to m7GTP-

Sepharose, followed by extensive washing and elution with excess m7GTP. 

Eluted proteins were resolved by high-Tris SDS-PAGE prior to immunoblotting 

and visualization of eIF4E-1A, -1B, and -1C. The ovary extract contains eIF4E-

1A, eIF4E-1B and eIF4E-1C, but not eIF4E-3. eIF4E-1A and eIF4E-1C, but not 

eIF4E-1B, bound to the m7GTP-matrix and was specifically eluted with m7GTP 

(Figure 3.12). 

  

A previous report from the Jagus laboratory claimed that only eIF4E-1A from 

ovary bound to m7GTP-Sepharose (26). However, at that time, eIF4E-1C had not 

been identified. The antibody used cross-reacts with eIF4E-1A and -1C. Only one 

protein was observed, but the gel electrophoresis conditions used would not 

have separated eIF4E-1A and -1C. 

3.4.8. eIF4E-1A, -1C and eIF4E-3 interact with zebrafish eIF4GI in vitro  

The platform protein, eIF4G, binds to eIF4E and will compete with the 4E binding 

proteins (4E-BPs) for a common binding site -YXXXXLφ) located within the 

conserved core region of the eIF4Es (19, 65, 136-139). A polypeptide 

corresponding to residues 262-681 of zebrafish eIF4GI (molecular mass ~45 

kDa), which brackets the eIF4E-1 interaction domain, was co-translated with S-

Figure 3.11: m7GTP binding activity of eIF4Es from ovary extract 
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tagged variants of eIF4Es in a reticulocyte cell free translation system in the 

presence of 35S Met (Figure 3.13). 

 

Figure 3.13: Interaction of zebrafish eIF4G with Class I and III eIF4Es: The Mwt(kDa) of 
eIF4E is ~24-27 and eIF4G is ~51 kDa*( eIF4G migrates as ~ 100 kDa under the SDS page 
conditions (39)). 
 

Reaction mixes were incubated with S-protein-agarose. Following extensive 

washing, all proteins, which bound to the matrix, were eluted with SDS-PAGE 

sample buffer. Fractions were resolved by high-Tris SDS-PAGE and analyzed by 

Typhoon Storm imaging. Whereas zebrafish the eIF4GI fragment co-purified with 

eIF4E-1A and eIF4E-1C, eIF4E-1B failed to interact with the same polypeptide. 

eIF4E-3 is bound to eIF4G, but more weakly than eIF4E-1A and -1C. These 

data, coupled with the yeast complementation data, confirms the findings of the 

original study that zebrafish eIF4E-1A is able to interact with human eIF4GI in 

vitro and with yeast eIF4G in vivo. eIF4E-1C was also observed to bind zebrafish 

eIF4G1 supporting its role as a translation initiation factor. In contrast, eIF4E-1B 

has a low affinity for both human and zebrafish eIF4GI and thus is unlikely to 

function as an efficient in vivo competitor of eIF4E-1A or eIF4E-1C. 
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3.4.9. eIF4E-1A and eIF4E-1C interact with the zebrafish 4E-BPs  

The binding partners of eIF4E are designated 4E binding proteins, 4E-BPs, and 

act to regulate translation through phosphorylation and the mTOR pathways (21, 

65, 136, 137, 140-143). The 4E-BPs bind to eIF4E through common motifs and it 

is anticipated that zebrafish eIF4E-1A and eIF4E-1C, but not eIF4E-1B or eIF4E-

3, would be targeted by the 4E-BP repressors. However, there remained the 

possibility that a homologue of eIF4E that is deficient in both cap-binding activity 

and eIF4G interaction could potentially bind to 4E-BPs and work as a 

translational de-repressor. There are four variants of the zebrafish 4E binding 

proteins, which are designated as 1,2,3 and 3-like (26). In GenBank, the 

designation of 4E-BP1, -2 and -3 is a consistent nomenclature across the 

mammalian systems, but only the Actinopterygii appears to have an additional 

4E-BP3-like type. To assess the functionality of the cloned zebrafish 4E-BPs, in 

vitro interaction assays with S-tagged variants of eIF4E-1A, -1B, -1C, eIF4E-3 

was performed using the same bead binding strategy as for the eIF4E/eIF4G 

interaction assay previously described in Section 3.4.8. After synthesis, reactions 

were incubated with S-protein-agarose. Following extensive washing, proteins 

bound to the matrix were eluted with SDS-PAGE sample buffer (Figure 3.13).
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Figure 3.14: Interaction of zebrafish 4E-BPs with zebrafish Class I and III eIF4Es: The Mwt 
(kDa) of the 4E-BPs is ~15 and eIF4Es are~24-27. 

The data showed that zebrafish 4E-BP was enriched in the fraction of bound 

proteins in the presence of eIF4E-1A and eIF4E-1C, but not eIF4E-1B or eIF4E-

3. This evidence supports the conservation of the 4E-BP mediated translational 

repression pathway in zebrafish. However, neither the eIF4E-1B nor the eIF4E3 

binds to any zebrafish 4E-BP variant with an affinity that would be consistent with 

a role as a de-repressor of 4E-BP-mediated inhibition of translation. 
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3.5. Discussion 

This present study has focused on the unique ray finned species, Danio rerio, 

from the teleost superfamily Ostariophysi, whose eIF4E members include three 

Class I eIF4Es (eIF4E-1A, -1B, -1C), two Class II eIF4Es (eIF4E-2A, eIF4E-2B) 

and a single Class 3 eIF4E (eIF4E-3). There are currently twenty fish genomes 

available at NCBI, http://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/ )and 

many more in the pipeline for annotation. Analysis of eIF4E sequences from 

these twenty species, as well as the echinoderm, tunicate and cephalocordate 

sequences has allowed a glimpse of origins and evolution of the eIF4E family. In 

particular, access to protein sequences generated by genomic annotation from 

genomes of the coelacanth, elephant shark, lamprey and basal ray-finned fish, 

has provided a means to speculate on when the duplications occurred. The 

distribution of the subclasses of eIF4E1 is consistent with the duplication of Class 

I prior to the teleost specific whole genome duplication, so probably one of the 

whole genome duplications thought to have occurred at ~500 (2R) mya and 550 

(1R) mya. Although there is some uncertainty on whether these duplications 

occurred before or after the separation of agnathans and gnathostomes, Kuraku 

and colleagues have suggested that the data favor the scenario whereby both 

the 1R and 2R WGD events occurred prior to the lamprey-gnathostome split, 

based on analysis of selected families of gene duplicates, (144, 145). This 

scenario would predict that lamprey should also have eIF4E-1A, -1B, and -1C. 

However, it seems that lamprey have thrown out more and different duplications 

than the gnathostomes (97, 144-146). 
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The diversification of the Class I eIF4Es are interesting because the product of 

one gene, eIF4E-1B, has neofunctionalized to become a tissue specific regulator 

of mRNA recruitment. The other, eIF4E-1C, appears to have retained function as 

a prototypical initiation factor. In view of the fact that eIF4E-1A and -1C have 

been conserved for 500-550 mya, it would seem likely that some 

subfunctionalization has occurred but was not apparent in the studies here. Only 

further work with zebrafish themselves is likely to shed light on this. The question 

that arises is whether both are essential or whether either one alone can support 

normal growth and development in zebrafish. eIF4E-1A is prevalent across 

deuterostomes from echinoderms to mammals. eIF4E-1C is first seen shark and 

retained in basal ray-finned fish, teleosts and coelacanth.  However, eIF4E-1C is 

lost in tetrapods. eIF4E-1B is a chordate specific eIF4E, although eIF4E family 

members with convergent characteristics have been found in Drosophila. eIF4E-

1B is also first seen in shark and is retained in basal ray-finned fish, lower 

teleosts, and tetrapods, but has apparently been lost in higher spiny ray fish 

known as the percomorph teleosts. It will be of interest to determine how the 

recruitment of CPE-containing mRNAs is regulated during meiosis in these fish.  

eIF4E-3 is the most conserved of the eIF4E classes. Only one form of eIF4E-3 

had been discussed in the literature from primarily tetrapod research. My current 

analysis of gene loci has revealed that a cognate protein that is referred to as 

eIF4E-3-like appears in the percomorph teleosts. The function of eIF4E-3 is still 

uncertain. In mice, it has been shown that the microRNAs, miRNA-206 and 

miRNA-21 are sufficient and required for muscle wasting during catabolic 
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conditions (43). In silico and in vivo approaches have identified transcription 

factor YY1 and the translational initiator factor eIF4E3 as downstream targets of 

these miRNAs. This suggests that eIF4E-3 is involved in muscle protein 

synthesis. Conversely, eIF4E-3 has been reported to suppress translation of a 

subgroup of mRNAs associated with oncogenesis including VEGF, c-myc and 

cyclin D1 in mouse NIH3T3 cells (42, 147). This implies that eIF4E3 is not 

involved in forming active translation complexes but rather forms inactive 

complexes sequestering the mRNA away from the active translation machinery. 

The knockout of this gene in zebrafish should allow for the study of eIF4E-3 

function in muscle development and growth, as well as its role in mRNA 

recruitment. 

This is the first description of the functional characteristics and expression of 

zebrafish eIF4E-1C and eIF4E-3 ,and will provide the basis for ongoing studies of 

their roles in the translational regulation of gene expression in the zebrafish. 
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Chapter 4: Class II eIF4E Family Members in Zebrafish (Danio 
rerio): Neofunctionalization of eIF4E-2B 

4.1. Abstract 
The translation initiation factor, eIF4E, is an essential component of the 

eukaryotic translation machinery that binds to the 5’-cap of mRNAs and promotes 

recruitment to the small ribosomal subunit. Prototypical eIF4E falls into Class I of 

the metazoan eIF4E family. In contrast, Class II eIF4E family members have 

been found to down-regulate the translation of specific mRNAs by tethering the 5’ 

and 3’ ends and preventing the interaction of the translation factor eIF4E and 

eIF4G with the 5’-cap structure. The zebrafish, Danio rerio, has two Class II 

eIF4Es, designated eIF4E-2A and eIF4E-2B. eIF4E-2A is found across 

vertebrates, but the cognate protein, eIF4E-2B, is only seen in basal ray-finned 

fish, teleosts and the amphibian genus Xenopus. The genes located in close 

proximity to the eIF4E-2A locus appear to be conserved across teleosts and 

tetrapods, but the eIF4E-2B genetic loci are more variable. This suggests that 

eIF4E-2A is the ancestral form, whereas the eIF4E-2B cognate may have 

resulted from a genomic duplication event. The retention of these two cognates 

suggests that neofunctionalization may have occurred. Here we compare the 

characteristics of zebrafish eIF4E-2A and -2B. Zebrafish eIF4E-2A and -2B both 

bind to cap analogue, are unable to interact with zebrafish eIF4G,and bind poorly 

to the 4E-BPs. Zebrafish eIF4E-2B and -2A can be distinguished from eIF4E-1A 

by its ability to bind trimethyl GTP (TMG) and to complement a S. cerevisiae 

strain conditionally deficient in functional eIF4E.  
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4.2. Introduction 

Prototypical eIF4E is important for its essential role in recruitment of mRNA to 

the small ribosomal subunit through a complex involving the poly(A) binding 

protein (PABP), eIF4G, eIF4A and eIF3 (reviewed, 1-5). Prototypical eIF4E 

begins the recruitment process by binding to the 5'-m7Gppp cap of mRNA. The 

'closed-loop’ model of translation initiation hypothesizes that interactions of the 

cap-binding eukaryotic initiation factor eIF4E, eIF4G and PABP hold the 5' and 

3' ends of mRNA in close proximity and promote recruitment of the small 

ribosomal subunit to the mRNA 5' end (4, 11). The anchoring of eIF4E and 

eIF4G to the 3’-poly(A) tail ensures that they will remain tethered to the mRNA 

and increase the efficiency of subsequent rounds of initiation.  

Phylogenetic analysis of the translation initiation factor eIF4E is part of a family 

of proteins (15, 21, 22, 116, 117). Most eIF4E family members do not function 

as translational initiation factors, but as regulators of mRNA recruitment (15, 70). 

With the exception of eIF4Es from protists, all eIF4Es can be grouped into one 

of three classes, Class I, Class II, Class III (15). The structures of mammalian 

Class I (eIF4E-1A), Class II (eIF4E-2) and Class III (eIF4E-3) all show the 

characteristic α+β domain as resolved in NMR or crystallographic studies (16, 

18, 42, 118). Class I members from Viridiplantae, Metazoa, and Fungi carry Trp 

residues equivalent to W43, W46, W56, W73, W102, W113, W130, and W166 of 

H. sapiens eIF4E-1. eIF4E sandwiches the m7G cap via tryptophan residues, 

W56 and W102, and binds the consensus YXXXXLΦ sequence in eIF4G (in 

which Φ is hydrophobic and X is any amino acid) on its convex side (16, 18). 
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Prototypical eIF4Es bind eIF4G through the consensus motif S/TVE/DE/DFW in 

which the Trp is W73 in mouse eIF4E-1A. Other eIF4E family members show 

functional specialization and operate as regulators of initiation (reviewed (15, 20, 

21, 70, 116, 117)). 

Class II eIF4E family members, the eIF4E-2s (also called 4EHP (34)) have been 

shown to regulate specific mRNA recruitment in Drosophila (35), C. elegans (36) 

and mouse (37, 38). Class II members possess W→Y/F/L and W→Y/F 

substitutions relative to W43 and W56 of H. sapiens eIF4E, respectively (15). 

There is no eIF4E-2 interaction with eIF4G ,and binding to 4E-BPs is relatively 

weak (39, 118, 148). Mouse eIF4E-2 has a 30-fold lower affinity for the cap 

analogue, m7GTP (118, 149). This means that eIF4E-2 alone, will not compete 

with eIF4E1 for mRNA effectively, but may do so with a partner protein. The 

lower affinity of mouse eIF4E-2 for m7GTP is largely due to an extension of the 

loop, which creates the ligand binding site, and thus negatively affects formation 

of the three stacked aromatic rings, Trp124/m7G/Tyr78. In addition, mouse 

eIF4E-2 has different arrangements of basic amino acids interacting with the 

phosphate chain of the cap (118, 149). The Drosophila homologue, d4EHP 

(eIF4E-8) binds Bicoid, an RNA-binding protein that recognizes a 3’ UTR 

element in caudal mRNA to specifically repress its translation (35, 41). Similarly, 

in mouse, eIF4E-2 (4EHP) binds cytoplasmic Prep1 inhibiting Hoxb4 translation 

(125). Recently, Morita et al. showed that mouse eIF4E-2, forms a translational 

repressor complex with Grb10-interacting GYF protein 2 (GIGYF2) and zinc 

finger protein 598 (38). eIF4E-2 is essential for mammalian development; 
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eIF4E2-/- mice are not viable, with the embryos dying perinatally (38). Mouse 

eIF4E-2 also interacts with an eIF4E-binding protein, eIF4E transporter protein 

(4E-T), which has been shown to inhibit cap-dependent translation (72). 4E-T is 

a component of processing bodies (P-bodies) and a nucleocytoplasmic protein 

that transports eIF4E into nuclei (150-152). P-bodies are distinct cytoplasmic 

foci containing mRNA, microRNAs, mRNA decay enzymes, and RNA-binding 

proteins/translational repressors but not ribosomes, and are understood to 

participate in mRNA decay and in reversible translational repression including 

that mediated by microRNAs (153-155). 

My study focuses on a comparison of the functional characteristics and 

expression of zebrafish eIF4E-2A and -2B. Consistent with the retention of both 

cognate forms for over ~500 mya, it appears that eIF4E-2B has undergone 

neofunctionalization. Zebrafish eIF4E-2B can be distinguished from eIF4E-2A by 

its ability to bind with greater affinity to trimethyl GTP (TMG), and its ability to 

complement a S. cerevisiae strain conditionally deficient in functional eIF4E. 

4.3. Materials and Methods  

4.3.1. Identification of zebrafish eIF4E family members  

The eIF4E-1A (GenBank mRNA AF176317.1, (cds): AAG09794.1) and eIF4E-1B 

(UniProtKB/Swiss-Prot: Q9PW28.1) were previously described (26). Sequence 

for eIF4E-2A and eIF4E-2B were deposited into GenBank as AGW99949.1 

andAGW99950.1, respectively. The indicated Danio rerio eIF4E sequences 

(cDNA and/or coding region cDNA) are currently residing in GenBank and were 

deposited from 2000-2013 by the Jagus laboratory. 
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4.3.2. Identification of eIF4E family members from other deuterostomes 

The amino acid sequences of eIF4E family members of the deuterostomes 

included in this study have been collected from on-line genomic resources 

including; the National Center for Biotechnology Information (NCBI) at 

http://www.ncbi.nlm.nih.gov, the Ensembl project (156), the HMMR database 

(http://hmmer.janelia.org), the Institute of Molecular and Cell Biology (IMCB) 

elephant shark genome (http://esharkgenome.imcb.a-star.edu.sg), the 

coelacanth genome project site (http://coelacanth.nig.ac.jp/index.php) and the 

Joint Genome Institute (JGI) for the Branchiostoma floridea genome 

(http://genome.jgi-psf.org). Each eIF4E sequence was verified using the 

Genbank BLAST tool and aligned by the MUSCLE algorithm applying the suite of 

software provided by CLC workbench (CLCBio CLC Genomics Workbench 7.0.3 

(http://www.clcbio.com). Accession numbers and details on sequences are 

provided in the Appendix (Appendix Table A2.1). 

4.3.3. Generation of cDNAs encoding zebrafish eIF4E family members  

cDNAs encoding zebrafish eIF4E-1C and eIF4E-3 were amplified by RT-PCR 

from RNA from ZFL cells and cloned into the in vitro transcription/translation 

plasmid vector pCITE-4a(+) (Novagen, EMD-Millipore, Billerica, MA, USA), using 

engineered NcoI and BamHI sites (primers listed in Chapter 3,Table 3.1). From 

here they were transferred to other vectors such as pET11d and the yeast 

pRS416GPD. Because eIF4E-2B gave such an unexpected result in 

complementing a yeast strain conditionally deficient in eIF4E, the eIF4E-2B 
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cDNA was codon optimized for yeast, synthesized and cloned into pRS416GPD 

by GenScript (Piscataway, NJ, USA). 

4.3.4. Generation of constructs encoding zebrafish 4E-BPs and fragment of 
zebrafish eIF4GI  

The constructs for zebrafish 4E-BP3-like were described previously (26). 

Nucleotide sequences for zebrafish 4E-BPs 4E-BP1 (NP_955939.1) 4E-BP2 

(NP_997968.1) 4E-BP3 (NP_001007355.1) were codon optimized for rabbit, 

Oryctolagus cuniculus, using Advanced OptimumGene™ (Genscript, 

Piscataway, NJ, USA). The nucleotide sequence was synthesized by Genscript, 

augmented with additional methionine residues and cloned into the in vitro 

transcription/translation plasmid vector pCITE-4a(+) (Novagen( EMD-Millipore) 

Billerica, MA, USA), using the NcoI and BamHI sites. This cloning strategy adds 

an S-tag to the amino-terminus and includes a stop codon at the carboxy 

terminus. The nucleotide sequences for the zebrafish eIF4G-1 fragment aa 262-

681 were codon optimized for rabbit, generated and cloned into pCITE4a(+).  

4.3.5. RNA purification, cDNA synthesis, RT-PCR and RT-qPCR 

Fresh tissue, embryos, or harvested cells was homogenized by bead beating and 

extracted via kit Purelink RNA minikit: (Ambion™ Grand Island, NY, USA). RNA 

was quantified on a Nanodrop 1000 (Thermo Fisher by Life Technologies 

Waltham, MA). Values of >2 for 260/280 and 260/230 ratios were considered to 

be of sufficient purity. RNA was reverse-transcribed using Superscript II reverse 

transcriptase (Invitrogen, Life Technologies, Carlsbad, CA, USA) with random 

hexamers in accordance with the manufacturer’s instructions. Generated cDNA 
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was used as template for RT-PCR and RT-qPCR. The quality of all cDNA 

preparations was assessed by end point PCR amplification. Amplification 

reactions (primers listed in Chapter 3,Table 3.1A) were performed under 

standard conditions using Taq (Denville Scientific Inc, South Plainfield, NJ, USA) 

DNA polymerases. Whenever purified PCR products were transferred into 

plasmids, insertions were sequenced in both orientations to ensure that no errors 

had been introduced due to amplification. The products were resolved by TAE-

agarose electrophoresis and recorded in a fluorimager (Amersham Biosciences, 

Pittsburgh, PA, USA). 

Primers for qPCR were designed by PearlPrimer and Primer 3 software to span 

exon-exon junctions (listed in Chapter 3,Table 3.1B). For RT-qPCR using an 

Applied Biosystems (Life Technologies) Fast 7500 thermal cycler, cDNA from 20 

ng RNA was amplified using Taqman Fast Universal PCR Mastermix (no 

AmpErase UNG) (Applied Biosystems Foster, CA, USA). Thermal cycling 

conditions consisted of an initial denaturation at 95 °C for 2 min followed by 40 

cycles of denaturation at 95 °C for 15 sec, annealing and fluorescent data 

collection at 60 °C for 15 sec, and extension at 72 °C for 30 sec. The reaction 

was completed with a melt curve to determine the presence of spurious PCR 

products. Cycle thresholds and baselines were determined manually and 

quantities were normalized by absolute quantification using linearized plasmid 

DNA. 
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4.3.6. Preparation of protein extracts from cultured cells and tissues 

The cultured cells or tissues were homogenized in up to 10 volumes of ice-cold 

buffer containing 25 mM Tris -HCl, pH 7.4, 1 mM EDTA, 1 mM EGTA, 1 mM 

dithiothreitol, 100 mM KCl, 0.5 % Elugent, and CompleteTM Protease Inhibitors 

(Roche Applied Science, Madison WI, USA). Homogenates were clarified by 

centrifugation (15 k x g, 4 °C, for 15 min). Supernatants were frozen and stored 

in liquid N2. 

4.3.7. In vitro transcription and translation 

 35S-radiolabeled proteins were translated in vitro, using pCITE4a constructs as 

templates in the rabbit reticulocyte TnT (Promega, Madison, WI, USA) coupled 

transcription-translation system, containing 35S Met as described as 

recommended by the manufacturer. 

4.3.8. Protein binding assays 

For protein interaction assays, the fragment of zebrafish eIF4GI containing the 

eIF4E-binding domain was cloned into pCITE4aDr4GI4EBD. The zebrafish 4E-

BP was co-translated with either S-tagged eIF4E-1A,-1B,-1c or -3 in 35 µl 

reactions for 60 min at 30 °C. Reactions were diluted with 10 volumes of S-

binding/washing buffer and incubated with 50 µl of S-protein agarose (Novagen, 

Madison, WI, USA) for 60 min at 10 °C. S-protein-agarose beads were recovered 

by centrifugation and washed 5 times with buffer (1 ml each), prior to elution with 

SDS-PAGE sample buffer. Samples of fractions, equivalent to 2 µl of the initial 
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translation reactions, were analyzed by SDS-PAGE and scanned for radioactivity 

using a Typhoon Storm (26). 

4.3.9. Production of recombinant eIF4Es and 4E-BPs from E. coli  

pET11deIF4E constructs were transfected into Rosetta™(DE3)-pLysS competent 

cells (EMD Miliipore, Billerica, MA, USA ) and expressed as described (26). 10-

ml cultures, grown in LB, 100 µg/ml carbenicillin, 34 µg/ml chloramphenicol, 

overnight at 37 °C. This culture was diluted to an optical density (OD) of 0.1 in 

LB/carbenicillin/chloramphenicol and grown to an OD of 0.5. Expression was 

induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) at a concentration of 

1 mM. This culture was shaken at 37 °C at 220 rpm for 2.5 h, and harvested by 

centrifugation at 10,000 x g for 5 min. Cells were lysed (10 µg/µl lysozyme, 25 

mM HEPES-KOH pH 7.2, 100 mM KCl, 10 % glycerol, 1mM EDTA, 1mM EGTA, 

0.5% Elugent (Calbiochem La Jolla, CA, USA) and the supernatant and/or 

protein pellet isolated after DNAse treatment. Expression was assessed by SDS-

PAGE fractionation followed by staining or immunoblotting. 

4.3.10. Development and validation of affinity purified antibodies 

The amino acid sequences of each eIF4E zebrafish were submitted to the 

Genscript OptimumAntigen™ Design Tool to determine the best antigenic 

regions to use for immunization. Genscript synthesized each antigenic peptide 

(See Table 3.2) and added an additional cysteine residue to allow for conjugation 

to the KLH adjuvant. These were used for immunization of New Zealand white 

rabbits. Specific antibodies were isolated from the resulting serum by affinity 

purification using the synthesized peptide as bait. Antibodies were tested for 
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specificity and cross-reactivity by an ELISA assay and western blot analysis 

using the peptide used to generate the antibody and the recombinant protein of 

each eIF4E, respectively. The specificity of each antibody was validated using 

recombinant eIF4Es and tested for cross reactivity against all recombinant 

zebrafish eIF4Es. Antibody dilutions used for immunoblotting were adjusted to 

reflect the avidity and titer. 

4.3.11. SDS-PAGE and immunoblotting 

Proteins fractionated by 17.5 % high-Tris SDS-PAGE as described (26) were 

electro-transferred to PVDF membranes and subjected to immunoblot analysis 

using our custom polyclonal antibodies followed by goat anti-rabbit secondary 

antibody coupled to HRP and coupled with chemiluminescence. 

Chemiluminescence was detected using the ProteinSimple Fluorochem E with 

quantification using AlphaImager software.  

4.3.11. Quantification of eIF4E levels 

Unfortunately, our antibody for zebrafish eIF4E-2A gave a very poor signal. I was 

able to look at eIF4E-2B levels only and the combined levels of eIF4E-2A and -

2B. Expression of each eIF4E was determined by immunoblotting using standard 

procedures. Comparison of signal from equal loading of each recombinant 

protein allowed avidity of each antibody to be established. The ECL signal was 

normalized by avidity and the relative levels of each eIF4E determined. The 

relative levels of eIF4E-2B and eIF4E-1A, -1B, -1C and eIF4E-3 assessed from 

tissue samples of muscle, brain, and ovary. Quantification by saturated pixel 

(SD) intensity was measured by Alphaimager™ software.  
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4.3.12. Complementation assays in S. cerevisiae 

The yeast expression vector, pRS416GPD, separately containing each of the 

zebrafish Eif4es was transformed into S. cerevisiae strain JOS003 (88) using 

modified LiAc/SS carrier DNA/PEG Method (130, 157). JOS003 is a strain from 

which the endogenous EIF4E gene has been replaced by homologous 

recombination with a KanMX4 cassette. This makes the strain resistant to G418. 

It also expresses the human EIF4E-1 gene behind a glucose-sensitive promoter 

on a plasmid conferring the ability to grow on uracil-deficient media. This system 

has been used previously to investigate the ability of heterologous eIF4Es to 

function in translation by rescuing growth in the presence of glucose (88). The 

transformed yeast were spot plated on synthetic deficient (SD) media lacking 

uracil and leucine and containing 200 µg/ml G418, with either galactose or 

glucose. Plates were incubated at 30 °C for 3-4 days, and growth was assessed 

visually by colony formation. Growth on plates containing dextrose indicates the 

ability of an ectopic EIF4E gene to complement eIF4E deficiency. 

4.3.13. m7GTP-Sepharose and TMG-Sepharose binding assay 

Sepharose beads bound to 7-methyl-guanosine-triphosphate (Jena Bioscience 

GmbH, Jena, Germany) were blocked using 1 mg/ml soybean trypsin inhibitor 

(Sigma, T9128) in binding buffer (25 mM HEPES/KOH pH 7.2, 10 % glycerol, 

150 mM KCl, 1 mM dithiothreitol, 1 mM D-L methionine) for 1 h at 4 °C shaking at 

1400 rpm in a benchtop thermomixer 22331(Eppendorf). The beads were 

washed twice with binding buffer without soybean trypsin inhibitor and 

suspended in 50 % v/v binding buffer. 20 µl of each In Vitro Translation (IVT) 
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product was diluted 10-fold with binding buffer containing 200 µM GTP and 200 

µM MgCl2 and mixed with the bead suspension. Binding was allowed to occur at 

4 °C for 1 h shaking at 1400 rpm. The supernatant containing the unbound 

fraction was recovered by centrifugation at 500 x g at 4 °C. An equivalent of 1 µl 

of the original IVT was used for TCA precipitation and filtered onto a GF/C 

membrane (Millipore). The cap-analogue beads were washed 5 times with 

binding buffer and the final bead fraction was suspended in SDS-PAGE sample 

buffer. The bead suspensions were heated to 90 °C and a fraction equivalent to 1 

µl of the original IVT reaction applied to GF/C filter paper. Fractions were counted 

in Ecoscint Original scintillation cocktail (National Diagnostics, Georgia, USA) 

and CPM determined using a LS6500 Multipurpose Scintillation Counter 

(Beckman Coulter). IVT, unbound, and bead bound fractions were diluted in 

SDS-PAGE sample buffer and heated to 90 °C for 3 min. The samples were 

separated by 17.5 % high-Tris SDS-PAGE. Bead binding assays were also 

conducted with TMG-agarose, a gift from Dr. Ed Darzynkiewicz, University of 

Warsaw, Poland. 

4.4. Results 

4.4.1. The zebrafish genome encodes two Class II eIF4E family members: 

eIF4E-2A and eIF4E-2B 

eIF4E Class II members are distinguished from Class I eIF4Es primarily by two 

Trp to Tyr residue substitutions in the conserved core (at residues equivalent to 

W46, W56 of mouse eIF4E-1). In zebrafish there are two eIF4E-2 cognates, 

designated as eIF4E-2A and eIF4E-2B. These are 237 and 229 amino acids in 
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length, respectively (see Chapter 3,Table 3.3). eIF4E-2A and -2B are 88.5 

%.identical. Both have 34.8 % identity to zebrafish eIF4E-1A and -1C, and 38.2 

% / 35.4 % identity to zebrafish eIF4E-1A and -1C, respectively (see Chapter 1, 

Table 1.2). 

Although the Class II eIF4Es have similar core peptides sequences, the N- and 

C- termini differ significantly (Figure 4.1 and Appendix Figure A2.2). eIF4E-2B 

displays an unusual string of asparagine (N) residues, whereas the eIF4E-2A has 

more negative residues (aspartic acid (D) and glutamic acid (E)) in the N-terminal 

region. Appendix Figure A2.2 shows a multiple alignment that most of the 

residues involved in binding the m7GTP in eIF4E-1 are conserved across species 

in eIF4E-2. Tyr77, Trp123 and Glu124 residues in zebrafish eIF4E-2A and Tyr71, 

Trp118, and Glu119 in zebrafish eIF4E-2B correspond to Trp56, Trp 123 and 

Glu124 in mouse eIF4E-1, the residues that interact with the guanine moiety of 

the m7GTP. These amino acids, at equivalent positions, are invariant in all 

deuterostome eIF4E-2s. Similarly, Lys133, Arg173 in zebrafish eIF4E-2A and 

Lys128, Arg168 in zebrafish eIF4E-2B are equivalent to Arg112, Arg157 in 

mouse eIF4E-1, which form salt bridges with the triphosphate of the cap. These 

amino acids, at equivalent positions, are invariant in all deuterostome eIF4E-2s. 

  



 

 105 
 

Figure 4.1: multiple alignment of HseIF4E-1A with Hs eIF4E-2, Dr eIF4E-2A, -2B, Xl eIF4E-2A, -2B 
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At positions equivalent to the negatively charged Lys162 in mouse eIF4E-1, both 

eIF2B-2A and -2B have Ile at positions amino acid residue positions 178 and 

173, respectively. This serves to reduce the salt bridges with the triphosphate of 

the cap. These amino acids, at equivalent positions, are invariant in all 

deuterostome eIF4E-2s. The loop-β1β2, which forms one wall of the m7GTP 

binding site is five residues longer in deuterostome Class II eIIF4Es and contains 

an additional short α-helix enclosing more of the ligand binding site (118). The 

flexible loop on which the cap-binding Tyr residue resides is also of variable 

length amongst the Class II eIF4Es from different species. All these 

characteristics appear to reduce the affinity of the Class II eIF4Es to the cap 

structure (118). There are many amino acids in the core region that differ 

between zebrafish eIF4E-2A and -2B. However, none of them occurs at the sites 

identified as important for affinity to cap described above. There are only three 

positions in the core structure at which eIF4E-2A, but not eIF4E-2B, differs from 

eIF4E-1A. The first of these is Met101 in zebrafish eIF4E-2A and Leu101 in 

eIF4E-2B, equivalent to Ile79 in human eIF4E-1A and Ile in zebrafish eIF4E-1A. 

The second is Cys148 in eIF4E-2A and Phe141 in eIF4E-2B, equivalent to 

Phe129 in human eIF4E-1A and Phe in zebrafish eIF4E-1A. The third is Ala193 

in zebrafish eIF4E-2A and Ser188 in zebrafish eIF4E-2B, equivalent to Thr177 in 

human eIF4E-1A and Ser in zebrafish eIF4E-1A. The question then arises, can  

such minimal differences in the core sequences be sufficient for 

neofunctionalization?  
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The phylogenetic analysis of deuterostome Class II eIF4Es can be seen in 

Chapter 2, Figure 2.4. eIF4E family members of Class II  fall within two discrete 

clusters within the phylogenetic tree. The eIF4E designated as eIF4E-2 (2A) 

comprises the majority of the class II eIF4Es within the deuterostomes. The 

eIF4E-2B cluster is represented primarily by the ray-finned fish, but also by the 

amphibian Xenopus spp. As with the Class I eIF4Es, the Class II eIF4Es tend to 

segregate consistent with their evolutionary relationships. In comparing the 

eIF4E-2B cluster, it is evident there is tight grouping between the higher and 

lower teleosts and Xenopus. Only one variant of Class II was initially present in 

the early deuterostomes; the cognate protein eIF4E-2B first appears in the basal 

ray-finned fish, has been lost in coelacanth and amniotes but retained in 

amphibians. All teleosts so far examined have eIF4E-2A and most have eIF4E-

2B (see also Chapter 2, Figure 2.2).  

4.4.2. eIF4E-2A and eIF4E-2B transcript levels To assess where the eIF4E-2 

family members are expressed in zebrafish embryonic series and tissues, I 

looked for the transcripts of each in a variety of tissues using RT-qPCR (Figures 

4.2A and 4.2B). 
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Figure 4.2: Transcript levels of Class II eIF4Es in adult tissues and early developmental stages: Top 
panel (A)Transcript levels from adult zebrafish tissues (top) and in embryos at various times post-fertilization 
(bottom) (B)were determined by RT-qPCR using cDNA generated from 25 ng RNA 
 

 eIF4E-2A and eIF4E-2B transcripts were detected in all tissues examined, with 

the highest transcript levels of eIF4E-2A transcripts in heart, ovary, and testis 

and the highest levels of eIF4E-2B transcripts in heart and testis (Figure 4.2A, 

Table 4.1). In most tissues,  and in ZFL cells, transcript levels for the eIF4E-2A 

and -2B appeared to be about the same. Copy numbers of eIF4E-2A transcripts 

vary from 4.5 x 103 (brain) to 70 x 103 (heart), based on 25 ng RNA samples. 
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Transcript levels for eIF4E-2B ranged from 2 x 103 (muscle) to 100 x 103 (testis). 

These numbers compare to 6 x 103 (muscle) to 537 x 103 (ovary) for eIF4E1A. 

Transcript levels were also determined for embryos at different developmental 

stages (Figure 4.2B, Table 4.1). 

Table 4.1:Transcript levels of zebrafish  eIF4E family 
members 

( copy number of mRNA per 25 ng RNA) 
Tissue eIF4E-1A eIF4E-1C eIF4E-2A eIF4E-2B 
heart 5.37x105 1.13x105 7.31x104 4.51x104 
brain 9.89x103 2.05x103 4.52x103 1.12x103 
ovary 1.87x105 4.18x104 3.10x104 4.71x103 
testis 7.13x104 1.19x105 6.58x104 1.06x105 
gill 2.59x104 5.40x103 2.24x104 4.32x103 
muscle 6.05x103 2.64x103 7.07x103 2.03x103 
ZFL cell 2.69x104 3.71x104 1.16x104 1.14x104 
Embryo hpf eIF4E-1A eIF4E-1C eIF4E-2A eIF4E-2B 
0.2 1.09x103 4.09x103 1.15x104 5.14x103 
1.0 7.76x103 5.37x104 2.21x104 1.78x104 
3.0 2.02x103 1.03x104 6.75x103 7.65x103 
6.0 2.02x103 1.26x103 5.17x102 6.78x102 
19.5 2.40x104 1.04x104 1.12x104 1.32x104 
25 3.97x103 3.36x103 1.17x103 7.11x102 

 

 Both eIF4E-2A and eIF4E-2B transcripts were detected at the highest level 

shortly after fertilization. Transcript levels for eIF4E-2A and eIF4E-2B were 

lowest shortly after the maternal to zygotic transition (MZT), and then began to 

increase up to 16 hpf. The overall conclusions of the expression patterns of  

eIF4E family members suggest that eIF4E-2A and eIF4E-2B are ubiquitously 

expressed and follow the same pattern as the transcripts for genes over this 

period.  
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4.4.3. eIF4E-2A and -2B protein levels 

Unfortunately, the antibody developed for zebrafish eIF4E-2A gave a very poor 

signal. A consultant at Genscript informed me that developing an additional 

antibody to the eIF4E-2A in the C terminus could incur further poor performance 

due to problems with glycosylation at that site. Conversely, the antibody for 

eIF4E-2B has a comparable avidity to that for eIF4E-1C and eIF4E-3 (data not 

shown). eIF4E-2B expression can be seen slightly in brain, and definitively in gill 

(Figure 4.3). 

 

Figure 4.3: eIF4E-2A and -2B protein levels: Ovy, O: (ovary); Tst, T: (testis); Mus: (muscle); 
Brn: (brain); Hrt: (heart); Gill. Samples in duplicate lanes, or individual when noted. 
 
eIF4E-2B levels in brain may be very low, but it exceeds eIF4E-1C in expression 

levels in gill. eIF4E-2B levels are undetectable in testis  and ovary and barely 

detectable in heart. Unlike at the transcript level, eIF4E-2B was undetectable in 

embryos at any stage. This obvious disconnect between transcript and protein 

level of the Class II eIF4Es suggests that their level is regulated by low 

translational efficiency or high protein turnover.  Both eIF4E-2A and -2B proteins 

have putative SUMO sites. 
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4.4.4. Zebrafish eIF4E-2B will rescue eIF4E function in a yeast strain 
conditionally deficient in eIF4E-1 

The JOS003 strain lacks the endogenous yeast eIF4E gene and expresses 

human eIF4E-1 inserted in the pRS415 leu (-) vector under the control of the 

galactose-dependent and glucose-repressible GAL1 promoter (88). As a 

consequence, strain JOS003 is able to survive in medium containing galactose 

as carbon source but is not viable in medium containing glucose due to depletion 

of the human eIF4E-1. Growth of JOS003 in glucose can be mediated by ectopic 

expression of a functional eIF4E, the regulation of which is under the control of a 

promoter in the pRS416 ura (-) vector, which is active in the presence of glucose 

(88). The cDNAs encoding the zebrafish eIF4E-2 cognates were cloned into 

pRS416, allowing expression from the constitutively active glyceraldehyde-3-

phosphate dehydrogenase (GPD) promoter. Following transfection and selection 

on media lacking uracil, the yeast cells containing control vector, or vectors for 

the expression of eIF4E-1A, -1B, -2A or eIF4E-2B, were streaked on selective 

plates; Synthetic media (SC) –Ura, -Leu containing either galactose or glucose 

as carbon source (Figure 4.4). As previously reported, eIF4E-1A is capable of 

complementation, while eIF4E-1B is not (26). Though unexpected, it is evident 

that eIF4E-2B is able to rescue the JOS003 strain under conditions in which 

human eIF4E-1 is depleted. Expression of each the eIF4E-2A and eIF4E-2B was 

verified by western blot analysis using antibodies specific to each eIF4E (data not 

shown) and each sequence identity was confirmed by PCR analysis and DNA 

sequencing (data not shown). 

  



 

 112 
 

 

Figure 4.4: Ability of zebrafish Class II eIF4Es to rescue the growth of S. cerevisiae, 
JOS003: The S. cerevisiae strain, JOS003,(88) was transformed with the Ura-selectable vector, 
pRS416GPD, containing cDNAs encoding one of the following products: eIF4E-1A, eIF4E-1B, 
eIF4E-2A and eIF4E-2B, as indicated. Following selection on SC medium with galactose lacking 
uracil and leucine, yeast from the resulting single colonies were diluted 10-1 to 10-7 fold and 
transferred onto YP-agar media containing G418 and either glucose (left) or galactose (right). 
Growth was assessed after 48 h. 
 
These results show that zebrafish eIF4E-2B is capable of supporting protein 

synthesis in yeast like prototypical eIF4E-1. Because eIF4E-2B gave such an 

unexpected result, the pRS416GPD/eIF4E-2B cDNA was re-made using 

synthetic cDNA, codon optimized for yeast, and cloned into pRS416GPD by 

Genscript. This construct also complemented the yeast strain grown in the 

presence of glucose.  

4.4.5. eIF4E-2A and eIF4E-2B bind to m7GTP cap analogue  

Mammalian eIF4E-2 was previously examined for binding affinity to the m7GTP 

cap analogue in bead binding assays, which showed that it was able to bind in 

vitro (26). This study was replicated using recombinant zebrafish eIF4E-2A and -

2B synthesized in vitro using pCITE4a constructs in the rabbit reticulocyte 

coupled transcription-translation system, TnT, containing 35methionine as 
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described previously (26). Zebrafish eIF4E-1A and -1B were used as positive 

and negative controls respectively. Luciferase was also used as a negative 

control. The TnT incubations were diluted and mixed with a m7GTP-Sepharose 

bead slurry, and the total, unbound, and bound fractions were analyzed by SDS-

PAGE, immunoblotting, and scanned for radioactivity using a Typhoon Storm. 

Eluted proteins were resolved by high-Tris SDS-PAGE prior to immunoblotting 

and visualization of the eIF4E-2A and eIF4E2B proteins. The results obtained 

indicate that both eIF4E-2A and eIF4E-2B will bind to the m7GTP beads (Figure 

4.5). 

  

Figure 4.5: m7GTP binding activity of zebrafish Class II eIF4Es 
 

4.4.6. eIF4E-2B binds to m7,7,7GTP cap analogue (TMG)  

In the initial paper describing the human form of eIF4E2 (4EHP), Rom discussed 

the possibility that eIF4E-2 may be involved in recognition of the hypermethylated 

2,2,7-trimethyguanosine (TMG) of small nuclear RNAs for import into or export 

from the nucleus (148). TMG cap structures are characteristic of small nuclear 

and nucleolar RNAs that program pre-mRNA splicing (U1, U2, U4, and U5 

snRNAs) and pre-rRNA processing (U3 and U8 snRNAs) (158). These small 

nuclear RNAs (snRNAs) are known to exit the nucleus in human cells and their 
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export is enhanced by their cap structures (159). Because 4E transporter (4E-T) 

binds to eIF4E-2 and eIF4E-2 shuttles through nuclei (33), zebrafish eIF4E-2A 

and -2B were assayed for binding to TMG-agarose. The binding assay was 

conducted using TMG-agarose beads kindly provided by Dr. Ed Darzynkiewicz. 

Comparing the TCA-precipitable protein in the total, unbound, and bound 

fractions then assessed binding to these specialized beads. C. elegans IFE-1, a 

Class I eIF4E that is known to bind to the TMG caps of C. elegans mRNAs, was 

included to provide a positive control for TMG binding. The results indicate that 

eIF4E-2B binds TMG at a comparable level to C. elegans IFE-1s (Figure 4.6). 

These results could reflect potential for neofunctionalization of eIF4E-2B. 

However, I will need to properly confirm these results by utilizing a more sensitive 

assay for affinity, such as SPR, to quantify the interaction of eIF4E-2B and TMG.  
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Figure 4.6: TMG binding activity of zebrafish Class II eIF4Es 

4.4.7. Neither eIF4E-2A nor eIF4E-2B interact with zebrafish eIF4GI in vitro 

The nucleotide sequences for the zebrafish eIF4G1 corresponding to amino 

acids 262-681 were codon optimized for rabbit, synthesized and cloned into 

pCITE4a (+) (Genscript). This region brackets the eIF4E interaction domain. The 

eIF4E fragment was co-translated with S-tagged variants of eIF4E-2A and -2B in 

a reticulocyte cell free translation system in the presence of 35S methionine 

(Figure 4.7). After synthesis, reactions were incubated with S-protein-agarose. 

Following extensive washing, proteins that bound to the matrix, were eluted with 

SDS-PAGE sample buffer. Zebrafish eIF4E-1A was used as a positive control; 

eIF4E-1B was used as a negative control. 
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Figure 4.7: Interaction of zebrafish eIF4G with Class I and II eIF4Es: The Mwt(kDa) of eIF4E 
is ~24-27 and eIF4G is ~51 kDa*( eIF4G migrates as ~ 100 kDa under the SDS page conditions, 
39). 
 

Proteins were fractionated by high-Tris SDS-PAGE and an image generated 

using the Typhoon Storm. Whereas the zebrafish eIF4GI fragment co-purified 

with eIF4E-1A, neither eIF4E-2A nor eIF4E2B bound to eIF4G. As expected, 

zebrafish eIF4E-1B also failed to interact with eIF4G. The inability of zebrafish 

eIF4E-2B to bind to zebrafish eIF4G seems to be at odds with its ability to 

complement the yeast strain conditionally deficient in eIF4E. This will require 

further study.  

4.4.8. eIF4E-2A and eIF4E-2B interact poorly with the 4E-BPs 

The binding partners of vertebrate eIF4E the 4E binding proteins (4E-BPs) act to 

regulate translation through phosphorylation and the mTOR pathways (reviewed 

(160-162)). Most vertebrates have three 4E-BPs, 4E-BP1, 4E-BP2 and 4E-BP3. 

The Actinopterygii have an additional 4E-BP3-like (26) giving four variants of the 

zebrafish 4E binding proteins, which are designated as 4E-BP1, 2, 3 and 3-like 

(3L). The 4E-BPs bind to eIF4E through the consensus motif, YXXXXLφ, also the 

binding site for eIF4G. Previous studies have shown that 4E-BPs bind poorly to 
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the Class II eIF4Es (39). In deuterostome Class II eIF4Es the eIF4G/4E-BP 

binding motif, TVEDFW of the Class I eIF4Es, has been changed to SVEQFW 

(Appendix Figure A2.2). The change from the negatively charged aspartate to 

polar, uncharged glutamine likely to affect the conformation of this motif 

substantially and likely accounts for the inability of eIF4G to bind to the Class II 

eIF4Es. To assess the functionality of the eIF4E-2A and -2B to bind to the 4E-

BPs, in vitro interaction assays with S-tagged variants of 35S-labeled eIF4E-2A, -

2B was performed in the same method as the eIF4E/eIF4G interaction assay 

described in Section 4.4.7. Zebrafish eIF4E-1A and -1B were used as positive 

and negative controls. After synthesis, reactions were incubated with S-protein-

agarose. Following extensive washing, proteins bound to the matrix were eluted 

with SDS-PAGE sample buffer (Figure 4.8). The data showed that unlike eIF4E-

1A, zebrafish eIF4E-2A and -2B bound the 4E-BPs poorly. The exception to this 

was that both eIF4E-2A and -2B bound to the teleost specific 4E-BP3l. However, 

no differentiation was seen between the activity of eIF4E-2A and -2B.  
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Figure 4.8: Interaction of zebrafish 4E-BPs with zebrafish Class I and II eIF4Es: The Mwt 
(kDa) of the 4E-BPs is ~15  and eIF4Es are~24-27. 
 

5. Discussion 

This represents the first study to investigate the origin of the duplication of the 

deuterostome Class I eIF4Es, as well as the neofunctionalization of the 

vertebrate eIF4E-2Bs. The ability of zebrafish eIF4E-2B to complement the yeast 

strain conditionally deficient in eIF4E was most surprising since both eIF4E-2A 

and -2B have the amino acid substitutions thought to account for its more than 

100-fold lower affinity for the m7GTP cap (118). For complementation to occur, 

eIF4E-2B must support protein synthesis and the sequence of eIF4E-2B does 
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not seem compatible with this. This result was of concern, so I had an alternate 

yeast construct prepared by Genscript using a chemically synthesized cDNA. 

And again, the results were the same. In fact, there are only three positions in the 

core structure at which eIF4E-2A, but not eIF4E-2B, differs from eIF4E-1A. From 

their location, it seems unlikely this would make a difference in their ability to 

support protein synthesis. The two proteins do differ markedly in the N-terminal 

and C-terminal regions. In looking at the multiple alignment of the deuterostome 

Class II eIF4Es in the Appendix Figure A2.2, it can be seen that the eIF4E-2Bs 

have consistently shorter N-terminal regions that include Q-rich regions. Q- or 

Q/N-rich regions have been reported to induce aggregation-prone proteins and 

have been suggested to play a role in the accumulation of proteins in P-bodies 

(163). However, although this is a significant difference between eIF4E-2A and -

2B, it is unlikely to account for its ability to promote protein synthesis. Similarly, 

there are differences in C-terminal motifs; the eIF4E-2As of teleosts have a motif, 

KAWEDFH, whereas the eIF4E-2Bs have KDNSSF. The motif in eIF4E-2A is 

shared with the single eIF4E-2 in lamprey. The motif in eIF4E-2B is shared with 

the single eIF4E-2s in the cephalochordates (Amphioxus), the tunicate, C. 

intestinalis, elephant shark and the coelacanth.  

The ability of eIF4E-2B to bind TMG may be significant under certain biological 

conditions such as embryogenesis, where the TMG cap is a signal for snRNP re-

import into the nucleus for formation of immature snRNPs into Cajal bodies (CB) 

(164) Since eIF4E-2B is predicted to be of nuclear localization via PSORTII  
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algorithms (data not shown), its role in the SMN complex would still need to be 

experimentally verified for biological significance in zebrafish. 

In looking toward future research, I plan to substitute the three discussed amino 

acid differences in eIF4E-2A, with those in eIF4E-2B to determine if this will 

change its ability to bind. In addition, I plan to switch the N- and C-terminal 

domains of eIF4E-2A and -2B and look at the effects on the ability of the proteins 

to complement the eIF4E-deficient yeast strain. In this way, I hope to be able to 

establish alternate functions. 
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Chapter Five:  Summary and Future Directions 

5.1. Summary/Conclusions 

In this chapter, I reaffirm the research objectives and review the contributions 

and significance of my work in meeting my objectives of defining the phylogenetic 

origins of the teleost eIF4E family members, demonstrating that eIF4E-1C 

functions as a prototypical initiation factor, and showing that eIF4E-3 is playing a 

regulatory role in the regulation of gene expression in muscle and brain. I also 

discuss the questions arising from my work to date and suggest approaches that 

can be used to answer these questions.  

The zebrafish, Danio rerio, has proved to be a useful model system for studying 

the evolution and differing roles of eIF4E family members in deuterostomes. The 

recent expansion of accessible completed deuterostome genomes in online 

databases has enabled the investigation of deuterostome eIF4Es from 

echinoderms through mammals. In particular, access to protein sequences 

generated from the genomes of sea urchin, tunicates, lancelets (Amphioxus), 

lamprey, elephant shark, coelacanth, and several teleosts, along with many 

tetrapod species has provided an illustration of the duplication of eIF4Es through 

multiple whole genome duplications, neo-functionalization and asymmetric 

deletion of eIF4Es among the different vertebrate classes. eIF4E-1B represents a 

duplication of an ancestral deuterostome eIF4E-1 that is expressed primarily in 

ovary and testis and has acquired a regulatory function. It can first be recognized 

in the elephant shark suggesting that the duplication must have occurred prior to 

the branching of the chondrichthyes and persists throughout the tetrapod lineage.  
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eIF4E-1B is not seen in the higher spiny ray fish of the Actinopterygii, such as 

Tetradonts (Takifugu rubripes ) and Percoids (Oreochromis niloticus), although 

such species have the same needs for the regulation of mRNA recruitment in 

circumstances such as completion of meiosis that eIF4E-1B is known to 

accomplish (27, 30, 31). 

Unlike the distinct neofunctionalization seen in eIF4E-1B, duplication of eIF4E-1 

to give eIF4E-1A and -1C has seemingly provided two forms that function as 

translation initiation factors. The duplication must have occurred prior to the 

branching of the chondrichthyes because the elephant shark, Callorhinchus milii, 

has both eIF4E-1A and -1C. Both eIF4E-1A and -1C are conserved across the 

Actinopterygii. The lobe-finned fish represented by the coelacanth, Latimeria 

chalumnae , is basal to the tetrapods and also has both eIF4E-1A and -1C.  

However, eIF4E-1C has been lost in tetrapods. Since both eIF4E-1A and -1C 

function as the translation initiation factor, it is currently unclear what selective 

advantage can be attributed to the retention of both forms in gnathostomes. 

This present study utilizes the ray-finned species, Danio rerio, from the 

superfamily Ostariophysi, whose eIF4E members include each of the three 

classes of eIF4E found in metazoans; three Class I (eIF4E-1A, -1B, -1C), two 

Class II (eIF4E-2A, eIF4E-2B) and a single Class 3 (eIF4E-3). One of the 

advantages of working with the zebrafish model system is the online availability 

of a completed genome database for comparison of protein sequences and 

genetic loci. When comparing this data with other teleost fish models, it provides 

a reliable framework upon which to construct hypotheses concerning whole 
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genome duplication events and neofunctionalization. My purpose was to examine 

the origin of the eIF4E family members, to characterize their function in in vitro 

and complementation assays, and compare their expression in tissues and 

developmental stages. Overall, the results support the Jagus laboratory’s 

previous recognition of eIF4E-1A as a translation initiation factor, and eIF4E-1B 

as a regulatory factor in specialized tissues. My contribution is the first account of 

the functional characterization and expression of eIF4E-1C and eIF4E-3. 

With development of cross reactive and specific antibodies to zebrafish eIF4Es, it 

became possible to compare expression across different tissues and 

developmental stages at the level of protein. In zebrafish, both eIF4E-1A and-1C 

are ubiquitously expressed, although eIF4E-1C is the predominant form. The 

ability to monitor expression of the zebrafish eIF4E family members at both the 

protein and transcript levels demonstrated that, except for eIF4E-1B and eIF4E-

3, transcript and protein levels vary coordinately. Though relatively consistent 

transcript levels of the eIF4E Class II proteins, eIF4E-2A and eIF4E-2B were 

observed across all tissues, protein expression was only significant in the gill and 

brain tissues, and not until 25 hpf in embryos. At the level of protein, eIF4E-3 is 

only detected in muscle and brain. This investigation is the first to detect eIF4E-3 

at the protein level in normal tissues. 

The duplication of eIF4E-2 seen in zebrafish seems to be a teleost-specific 

attribute, with the exception of Xenopus species. I have been able to provide 

evidence of neofunctionalization of eIF4E-2B. The surprising finding is that the 

teleost specific form, eIF4E-2B, is able to complement the growth of an eIF4E-
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deficient yeast strain. This was unexpected, since it is not able to bind to eIF4G 

in in vitro assays (Chapter 4). It could be speculated that this variant of eIF4E-2 

will have the ability to interact with the yeast eIF3 and thereby facilitating the 

binding to the yeast eIF4G and subsequently initiation. eIF4E-2 is capable of 

having enhanced cap-binding ability when it is ISGylated with ISG15 through 

interaction with a binding partner (63), therefore it is possible that a protein 

partner may be operating in conjunction to allow the eIF4E-2B to function as a 

translation initiation factor. One difference between eIF4E-2A and eIF4E-2B is 

that eIF4E-2B is predicted to have a nuclear location (83 %) and eIF4E-2A is 

predicted to be primarily cytoplasmic. However, this would not account for its 

ability to function as a translation initiation factor.  

5.2. Future Directions 

The research I have summarized has raised a number of questions that future 

research needs to address.  

5.2.1. What are the affinities of zebrafish eIF4E family members for cap 

analogues?  

Traditionally, the measurement of the relative binding affinity of the cap structure 

to eIF4Es has been implemented using an in vitro binding assay to cap 

analogues on beads. This method only provides resolution of the strong binders 

and cannot be used quantitatively. Another methodology that provides both 

association and dissociation constants using surface plasmon resonance (SPR) 

will be employed using customized chip formats of the CM5 with the GST 

conjugated eIF4Es and the Biacore™ T200 instrumentation. The advantage of 
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this technology is in the presentation of an immobilized functional eIF4E on a re-

usable chip to a selection of cap analogues and observing the binding affinity in 

real time to give dissociation constants. In particular, this usage will enable a 

definitive comparison of the zebrafish eIF4E-2 members when challenged with 

alternative forms of the cap structure and may confirm TMG binding affinity. 

5.2.2. What is the effect of substituting eIF4E-2B-specific amino acids in 

eIF4E-2A? 

The amino acids thought to give eIF4E-2B its ability to complement the yeast 

strain conditionally deficient in eIF4E will be substituted in eIF4E-2A, both 

separately and together. The effect on activity will be determined by the ability of 

the eIF4E-2A variants to support growth in the yeast strain conditionally deficient 

in eIF4E. In addition, since the N- and C-terminals of eIF4E-2A and -2B are very 

different, the effect of domain swapping will also be investigated. 

5.2.3. What are the binding partners for zebrafish eIF4Es?  

There are numerous examples of binding partner proteins to eIF4E family 

members, in addition to the 4E-BPs, that have been identified for eukaryotic 

organisms including human, Xenopus, mouse, and Drosophila. To that end, a 

reporter system (pGEX-GST fusion) will be commercially created and tailored for 

each zebrafish eIF4E. Cell lysates from selected tissues and embryo series will 

be run through eIF4E-GST affinity columns to purify eIF4E interacting proteins. 

The eluted fraction of captured proteins will then be analyzed by LC/Mass 

spectrophotometry for determination of amino acid sequence. This data would 

then be compiled for identification by means of online databases of protein motif 
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and family classification. The identity of these proteins will provide the means to 

compare these proteins to existing eIF4E binding partners such as 4E-T. When 

optimized, the Biacore™ system will be an additional method to pinpoint and 

collect potential binding partners from cell lysates with greater ease. 

5.2.4. Where do eIF4E family members localize in cells, tissues and during 

development? 

 Though expression of eIF4E family members has been shown to occur in 

various tissues and embryonic stages, the exact localization of expression needs 

to be determined. This could be accomplished by means of fluorescence in situ 

hybridization (FISH), utilizing all the available antibodies of eIF4Es as probes. 

The expectation is that the Class eIF4E-1A; -1C and I eIF4Es will be ubiquitously 

expressed throughout tissue and embryonic stages due to the expression studies 

results.  Differences in nuclear versus cytoplasmic localization may be resolved 

since eIF4E-1 and eIF4E-2 have been shown to play a role in shuttling mRNAs 

from the nucleus to the cytoplasm (33, 165) and eIF4E-1C is predicted to be 

primarily nuclear. My results also predict that eIF4E-1B, the eIF4E Class II 

eIF4Es and eIF4E-3 should be observed predominantly in select tissue such as 

muscle, brain, gill and different time points of embryo development. The results 

of these studies will be used to inform knockdown or knockout experiments. 

5.2.5. How will knock-down and/or knockout of eIF4E family members affect 
phenotypes of zebrafish? 

The simple questions I ask with knockdowns or knockouts include: 1) are both 

eIF4E-1A and eIF4E-1C essential? 2) does deletion of eIF4E-1B affect formation 
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of germ cells or fertility of adults? 3) what phenotypes will a knockout of the Class 

II eIF4Es have?  and 4) is eIF4E-3 essential for muscle development? The 

effects of gene knock-downs and knock-outs of eIF4E family members will be 

determined with an emphasis on eIF4E-1B, eIF4E-2A, -2B and eIF4E-3. For 

“knocking down” the expression of a gene of interest in zebrafish, the preferred 

method has become morpholinos, whereas the newest choice in zebrafish for 

deleting a gene is the prokaryotic derived Clustered Regularly Interspaced Short 

Palindromic repeats (CRISPR)/cas9 system. Morpholinos will be implemented to 

observe the effect of eIF4E Class II and III knock downs during development. In 

order to deal with possible “off target” effects, either a control non-target 

morpholino will be co-injected with the eIF4E target, or a “rescue” mRNA 

experiment with co-injection of a mRNA of the intended gene to restore to 

wildtype will be subsequently conducted (166). However, the CRISPR/cas9 

system may provide a more efficient means in later stages of embryonic 

development to complement the use of morpholinos. Two of the newest 

modifications of the CRISPR system have been developed. One involves dual 

use of RNA guided endonuclease (RGENs) Cas9 derived from Streptococcus 

(167), and the other is vector based CRISPR methodology targeting a specific 

tissue type and inducing a fluorescence phenotype in the F1 generation (168). 

5.2.6. Do the class II eIF4E-2A and -2B N terminal regions affect binding to 
potential partners? 

There are two distinct variants of Class II eIF4Es, designated eIF4E-2A and 

eIF4E-2B, which display unique N and C terminus regions that may play a role in 

snRNP binding. To assess if the terminal sequences play a role in cap and/or 4E 
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binding partner interaction, a mutagenesis study will be implemented. The 

alteration of the N terminus by switching the asparagine rich (N) eIF4E-2B to the 

eIF4E-2A, -1A, and -3 will determine if there is a functional aspect to this region 

that enhances cap-binding or interaction with protein partners. 

5.2.7. Does the zebrafish eIF4E-2B react with components of the RNA 
granules? 

 eIF4E-2 (also termed 4E-HP) has been observed to interact with the 4E-

Transporter protein(4E-T), P body aggregations, nuclear bodies (NB), and 

spliceosomal snRNP assembly in Cajal bodies containing Coilin which are all 

components of the RNA granule complex (28, 150, 164, 169-174). 

Trimethylguanosine (TMG)-capped snRNAs are present in the zebrafish nucleus 

as part of this assembly and enable nuclear transport  (172). In Chapter 3, 

zebrafish eIF4E-2B was shown to bind with TMG-bound beads, similar in ability 

to the positive control C. elegans IFE-1. If the proposed Biacore studies confirm 

that eIF4E-2B interacts with TMG, then this study will be conducted to determine 

if an additional component is involved. To confirm whether zebrafish eIF4E-2B is 

capable of interacting with TMG and 4E-T specifically, antibodies to TMG and 

4E-T could be utilized in immunoprecipitation studies. To prove that Cajal bodies 

and snRNAs are present in early embryonic stages, immunofluorescence studies 

from 0-5 hpf embryos that are enriched in Cajal bodies and snRNA will be 

performed (172). The zebrafish tissues of gill have been observed to express 

eIF4E-2B proteins, so would be a good source material to utilize in far western 

blotting. The eIF4E pGEX-GST tagged system would serve as the probe, after 
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mixing the tissue lysate then blotting with the eIF4E-2A and -2B antibodies 

(eIF4E-1B is used as a negative control). 

5.2.8. Do zebrafish eIF4E-2A and -2B undergo ISGylation or sumoylation? 

Under stress conditions, modifications involving eIF4E proteins may occur by 

interaction with Ubiquitin (Ub). As it pertains to eIF4E, the ISG15 appears to play 

a role in potential interaction with human eIF4E class II (4EHP) and may 

enhance cap-binding (63). Sumoylation is involved in various cellular processes, 

such as nuclear-cytoplasmic transport, transcriptional regulation, apoptosis, 

protein stability, response to stress, and progression through the cell cycle (175). 

SUMO-1 has been shown to modify eIF4E by conjugation and promotes eIF4F 

complex formation (50). Prior studies have observed that the presence of key 

lysine residues in an C terminal LRLRGG motif indicates when a protein is 

capable of being ISGylated (56) . The motif ψ-K-X-E  functions as the same for 

sumoylation (176).  Using predictive algorithims from a suite of online resources 

indicates that zebrafish eIF4E-2A and -2B both contain the necessary motifs for 

sumoylation (GP-SUMO). eIF4E-2B has a higher potential for ubiquitin 

interaction (UbPred), and possess a nuclear export signal peptide (NES). 

ISGylated mammalian eIF4E-2 (4EHP) will bind cap with enhanced affinity when 

observing the m7GTP pull down results and modified/non-modified ISG15 4EHP 

fusion protein experiments (63). Subsequent experimentation with zebrafish 

eIF4E-2A and -2B would include cell lysate pull downs with the pGEX-GST 

fusion system and immunoblotting analysis with anti-ISG15, anti-SUMO-1 and 

anti-SUMO 2-3.  
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Overall statement: My work has revealed that the duplications of eIF4E family 

members arose early in vertebrate evolution, with either the 1R or 2R whole 

genome duplications. The evolutionary picture seems to be that the eIF4E family 

expanded to reach its zenith in northern pike (eight eIF4E family members) and 

then contracted in amniotes and to some extent in the percomorph teleosts.  

eIF4E-1C can be found in basal actinopterygians, teleosts lamprey, but has been 

lost in tetrapods. Tetrapods and lower teleosts have retained eIF4E-1B, but it has 

been lost in the percomorph teleosts. Subfunctionalization of eIF4E-1A and -1C 

is suspected although not apparent from my investigations.  

Overall, I can say the following about the function of each zebrafish eIF4E family 

member. eIF4E-1A and eIF4E-1C definitively serve as initiation factors, as 

demonstrated by the ability of both to rescue growth of a yeast strain 

conditionally deficient in eIF4E. This is reflected in their ubiquitous expression. 

The differences in expression levels of each from tissue to tissue are suggestive 

of subfunctionalization. eIF4E-1B does not function as a translation initiation 

factor, but plays a regulatory role in the recruitment of CPE-containing mRNAs in 

specialized tissues such as ovary and testis (27). However, it is not clear how the 

more recently evolved teleosts such as pufferfish, stickleback, tilapia, regulate 

this function. Since eIF4E-2A and eIF4E-3 are not able to rescue growth of a 

yeast strain conditionally deficient in eIF4E, they are likely to play regulatory 

roles, by mechanisms still to be elucidated. eIF4E-3 expression is only detectable 

in muscle and brain. The ability of microRNA-206 and microRNA-21  to promote 

muscle atrophy, as well as target eIF4E-3, suggests that eIF4E-3 plays a role in 
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muscle development and maintenance (43). The ability of eIF4E-2B to rescue 

growth of a yeast strain conditionally deficient in eIF4E and to bind TMG are both 

clear indications of neofunctionalization, although its role has not been defined. It 

is also not clear how eIF4E-2B is able to support growth in yeast.  

Complete understanding of the alternative functions of the zebrafish eIF4E family 

members in the regulation of gene expression will provide useful insights into the 

understanding of cell proliferation, cellular stressors, and the regulated utilization 

of mRNAs during development.  
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Table A2.1:  Sequences of eIF4E family members 
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Figure A2.1 Multiple alignments Class I eIF4E family members 
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Figure A2.2 Multiple alignments Class II eIF4E family members 
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Figure A2.3 Multiple alignments Class III eIF4E family members 
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Table A3.1: Species used for eIF4E-1A and eIF4E-1B logos 

organism name  common name abbrev 
mammal     
Homo sapiens human Hs 
bird     
Taeniopygia guttata zebrafinch Tg 
reptile     
Anolis carolinensis lizard Ac 
amphibian     
Xenopus tropicalis frog Xt 
shark     
Callorhinchus milii elephant shark Cm 
spiny fin fish     
Danio rerio zebrafish Dr 
Oncorhynchus mykiss rainbow trout Om 
Astyanax mexicanus cavefish Am 
Lepisosteus oculatus spotted gar Lo 
lobe fin fish     
Latimeria chalumnae coelacanth Lc 

Additional species used for eIF4E-1C logo 
Spiny Fin Fish common name abbrev 
Salmo Salar salmon Ss 
Oreochromis niloticus tilapia On 
Oryzias latipes medaka Ol 
Takifugu rubripes fugu Tr 
Gadus morhua cod Gm 
Gasterosteus aculeatus stickleback Ga 
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