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Localization of regions of interest on images and videos is a well studied prob-

lem in computer vision community. Usually localization tasks imply localization of

objects in a given image, such as detection and segmentation of objects in images.

However, the regions of interests can be limited to a single pixel as in the task of

facial landmark localization or human pose estimation. This dissertation studies ro-

bust facial landmark detection algorithms for faces in the wild using learning methods

based on Convolution Neural Networks.

Detection of specific keypoints on face images is an integral pre-processing step

in facial biometrics and numerous other applications including face verification and

identification. Detecting keypoints allows to align face images to a canonical coordi-

nate system using geometric transforms such as similarity or affine transformations

mitigating the adverse affects of rotation and scaling. This challenging problem has

become more attractive in recent years as a result of advances in deep learning and

release of more unconstrained datasets. The research community is pushing bound-



aries to achieve better and better performance on unconstrained images, where the

images are diverse in pose, expression and lightning conditions.

Over the years, researchers have developed various hand crafted techniques

to extract meaningful features from features, most of them being appearance and

geometry-based features. However, these features do not perform well for data col-

lected in unconstrained settings due to large variations in appearance and other nui-

sance factors. Convolution Neural Networks (CNNs) have become prominent because

of their ability to extract discriminating features. Unlike the hand crafted features,

DCNNs perform feature extraction and feature classification from the data itself in

an end-to-end fashion. This enables the DCNNs to be robust to variations present

in the data and at the same time improve their discriminative ability.

In this dissertation, we discuss three different methods for facial keypoint de-

tection based on Convolution Neural Networks. The methods are generic and can be

extended to a related problem of keypoint detection for human pose estimation. The

first method called Cascaded Local Deep Descriptor Regression uses deep features ex-

tracted around local points to learn linear regressors for incrementally correcting the

initial estimate of the keypoints. In the second method, called KEPLER, we develop

efficient Heatmap CNNs to directly learn the non-linear mapping between the input

and target spaces. We also apply different regularization techniques to tackle the

effects of imbalanced data and vanishing gradients. In the third method, we model

the spatial correlation between different keypoints using Pose Conditioned Convo-

lution Deconvolution Networks (PCD-CNN) while at the same time making it pose

agnostic by disentangling pose from the face image. Next, we show an application



of facial landmark localization used to align the face images for the task of apparent

age estimation of humans from unconstrained images.

In the fourth part of this dissertation we discuss the impact of good quality

landmarks on the task of face verification. Previously proposed methods perform

with reasonable accuracy on high resolution and good quality images, but fail when

the input image suffers from degradation. To this end, we propose a semi-supervised

method which aims at predicting landmarks in the low quality images. This method

learns to predict landmarks in low resolution images by learning to model the learning

process of high resolution images. In this algorithm, we use Generative Adversarial

Networks, which first learn to model the distribution of real low resolution images

after which another CNN learns to model the distribution of heatmaps on the images.

Additionally, we also propose another high quality facial landmark detection method,

which is currently state of the art.

Finally, we also discuss the extension of ideas developed for facial keypoint

localization for the task of human pose estimation, which is one of the important

cues for Human Activity Recognition. As in PCD-CNN, the parts of human body

can also be modelled in a tree structure, where the relationship between these parts are

learnt through convolutions while being conditioned on the 3D pose and orientation.

Another interesting avenue for research is extending facial landmark localization to

naturally degraded images.
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Chapter 1: Introduction

Interpretation and analysis of faces are fundamental functions of the human vision

system and it improves social interaction. Recently, with the increase in the use

of portable image and video recording devices, the trend has been shifting towards

automatic face analysis in uncontrolled scenarios. To achieve a fully automatic face

analysis system, a face detector and a robust facial landmark detector is crucial.

More generally, localization in images refers to detecting or segmenting objects

in a given image. However, regions of interests can be limited to a single pixel. One

such task is facial landmark localization which refers to automatically detecting

important keypoints in a face such as eye corners, nose tip. Localizing regions of

interest is extremely challenging and has been researched quite extensively in the

literature. Objects vary in appearance and appear in variety of shapes and scale.

Humans appear in different poses and are usually occluded. Face images can be

captured under extreme pose, occlusion or resolution. This dissertation studies

robust facial landmark detection algorithms for faces in the wild using learning

methods based on Convolution Neural Networks.

In general, an automatic face analysis system comprises four main steps: face

detection, face association, facial landmark localization and face alignment, facial
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Figure 1.1: Face alignment in a face analysis system

feature extraction and face analysis as illustrated in Figure 1.1. Facial landmark

localization is an integral component in almost every facial biometric task such

as face identification, face synthesis, 3D modeling of faces. These landmarks are

used to align faces which mitigates the effects of in-plane rotation and scaling.

Facial landmarks are used both directly and indirectly. Typical direct applications

include facial expression analysis [147] where landmarks are used to decode specific

set of emotions or non-verbal message and marker-less motion capture [139] where

landmarks assist in computer generated imagery. To the category of the indirect

applications of facial landmark detection belong all applications where the facial

landmarks are used for some pre-processing, for example: face verification [30, 80];

3D face reconstruction [120], where, for instance, the landmarks are used to aid the

structure from motion algorithm; head-pose orientation [27] where a 3D face model

is fitted to estimated 2D landmark positions; face tracking; other face processing
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Figure 1.2: Rigid image transformations: translation, rotation, scale, shear; Nonrigid im-
age transformations and out of plane rotation: deformation. The face align-
ment poses all these five transformations.

tasks like prediction of gender, age, expression, or other facial attributes [46].

Detection of facial landmarks in uncontrolled environments is a non-trivial

problem for several reasons. The key factor is a large intra-class variability of the

input image due to the change of position, scale, and rotation of the face, lighting

conditions, background clutter, facial expression, occlusions, and self-occlusions,

hair style, make-up, race, aging, modality (webcam, camera, scanned image) and so

on. Figure 1.2 illustrates different transformations in an image and shows due to the

deformable nature of human face, the problem of landmark detection is extremely

challenging.

With the advent of Deep Convolutional Neural Networks facial biometrics

problems such as facial landmark detection has received a great deal of attention

from the computer vision community. DCNNs have been shown to be very effective

for several computer vision tasks like image classification [64, 122, 137], and object
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detection [55, 117]. Deep CNNs (DCNNs) are highly non-linear regressors because

of the presence of hierarchical convolutional layers with non-linear activations. Not

only this, deep networks have shown to improve the performance of face landmark

detection by a large margin [89, 171, 176]. Existing methods for facial key-points

localization task have focused primarily on detecting essential landmarks for frontal

faces (pose yaw angles in between −60◦ and 60◦). Most of these methods fail to

correctly localize key-points for off-frontal or profile faces which occur frequently in

images collected in unconstrained settings. Moreover, manually annotating facial

key-points locations is a tedious task and hence it is very difficult to collect large

number of training samples to train a DCNN for this task.

1.0.1 Proposed Methods

In the second part of this dissertation, we discuss a deep learning-based method

called Local Deep Descriptor Regression addressing the task of facial keypoint lo-

calization. The proposed method consists of several stages of feature extraction

followed by linear regression. It is worth noting that networks trained for the task

of face detection/face verification have abstract information about the structure of

face. Hence, such a network is used for feature extraction, which are then used to

design linear regressors. The spatial resolution of the areas used for feature extrac-

tion is reduced in a step-wise manner to achieve better localization over the image

space.

Chapter 3 discusses another cascade regression based method called, KE-
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PLER. This method shows an application of multi-tasking in Convolution Neural

Networks, where a single network is used to jointly estimate the facial keypoints

and their visibility and 3D head pose. Information is pooled from shallow as well

as deeper layers of the network to achieve better localization. Some of the practical

issues, such as vanishing gradients are tackled by designing improved loss functions

and using smart training policies such as hard sample mining and local error cor-

rection.

We propose a Convolution-Deconvolution network, where we decouple the

tasks of facial keypoint localization and 3D head pose estimation by learning them

in two different networks. This makes the network agnostic to facial pose. We

also model the spatial correlation between different keypoints in a tree-structure the

weights of which are learned through convolutions. The proposed network, called

Pose-Conditioned-Dendritic CNN is able to precisely estimate the keypoints in a

single step which makes it fast and easy to deploy in real life scenarios.

Chapter 5 discusses an application of the facial keypoint localization in context

of apparent age estimation from unconstrained images. The detected faces are first

aligned using Local Deep Descriptor Regression after which the aligned faces are

used to train and age group classifier and age regression networks. We also develop

an error correction strategy after observing the fact that classifiers makes mistakes

between the boundary of age groups.

In chapter 6 of this dissertation we discuss the impact of good quality land-

marks on the task of face verification. Previously proposed methods perform with

reasonable accuracy on high resolution good quality images, but fails when the in-
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put image suffers from degradation. To this end, we also propose a semi-supervised

method which aims at predicting landmarks on the low quality images. This method

learns to predict landmarks on low resolution images by learning to model the learn-

ing process of high resolution images. In this algorithm, we use Generative Adver-

sarial Networks, which first learn to model the distribution of real low resolution

images after which another CNN learns to model the distribution of heatmaps on

the images. Additionally, we also propose another high quality facial landmark

detection method, which is currently state of the art.

We also discuss some ongoing work and future plans of localizing facial land-

marks in naturally degraded images such as turbulent images. We also plan to

extend the ideas developed for facial keypoint localization to other tasks such as

human pose estimation and action recognition from human poses.

Organization: Chapter 2 discusses in detail the proposed Local Deep De-

scriptor Regression, followed by the discussion of KEPLER in chapter 3. In chapter

4 we discuss Pose-Conditioned Dendritic CNN proposed for one step and faster

facial alignment. In chapter 5 we discuss, method to address the problem of appar-

ent age estimation from unconstrained images. Chapter 6 discusses the strategy of

landmark localization in Low resolution images. Finally in chapter 7 we conclude

the discussion by presenting future plans of extension and open issues in landmark

localization.
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Chapter 2: Local Deep Descriptor Regression

2.1 Introduction

Most of the recent methods use discriminative shape regression approach to esti-

mate the face landmark positions. With their ability to utilize large amount of

training data, and enforce shape constraints adaptively, regression-based methods

have achieved state-of-the-art performance on various unconstrained face alignment

datasets. However, the success of these methods is limited by the strength of the

features they use. In previous works, the features used are either hand crafted ; for

example SIFT was used as features in [158], or learned from a limited set of training

samples [25, 116].

In recent years, features obtained using deep CNNs have yielded impressive re-

sults for various computer vision applications. They significantly outperform meth-

ods proposed earlier for the tasks of face detection and recognition. It has been

shown in [84] that a deep CNN pre-trained with a large generic dataset such as Ima-

genet [122], can be used as a meaningful feature extractor. Although these features

are effective for reliable classification, they are global in nature. Hence, this approach

may not be effective for problems such as face alignment where local features are

desirable. To overcome this problem, Overfeat [130] uses predicted detection bound-
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Figure 2.1: We present a deep descriptor-based regression approach for fiducial point ex-
traction. This figure shows fiducial points extracted on all the detected faces
on an image from the IJB-A [81] dataset using the proposed method.

aries, but lacks the needed pixel-based localization feature. [138] and [48] propose

pixel-based localization, the former based on the Restricted Boltzmann machine

while the latter processes the image to determine a key-point descriptor.

In this chapter, we address the localization problem in existing deep CNNs by

constructing a deep convolutional key-point descriptor model. We build a network

which takes a small local image patch around a pixel as an input and produces a

feature vector as the output. We claim that the proposed deep descriptor network

can be used as a substitute for SIFT [100] descriptors in most vision problems. To

support our claim, we apply the descriptor model for facial landmark detection.

Local features calculated for a small rectangular patch around each estimated land-

mark position are used by a linear regressor to learn the shape increment during

training, and predict the landmark positions at test time. Figure ?? shows several

faces where our method is able to locate fiducial points on all the detected faces.

Overall, this chapter makes the following contributions:
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Figure 2.2: Overview of the proposed method. During training, we extract deep descrip-
tors for each landmark and concatenate them to form a shape-indexed feature
vector. Given these features and target shape increments ∆Sti , we learn the
linear regression weights W t. During testing, deep descriptors are extracted
around each point of the initialized mean shape. Intermediate shape is pre-
dicted using the regressor weights W t. This process is iterated to reach the
final estimated shape.

1. We construct a novel deep descriptor network to evaluate the local features

for a given key-point.

2. We perform face alignment by applying linear regression to the deep descrip-

tors evaluated for facial landmarks.

This chapter is organized as follows. Section 2.2 reviews a few related works.

Details of our deep descriptor-based face alignment method are given in Section 2.3.

Section 6.4.3 provides the landmark localization results on five challenging datasets.

Finally, Section 2.5 concludes the chapter with a brief summary and discussion.
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2.2 Previous Work

The task of face alignment can be classified broadly into three categories depending

on the approach.

2.2.1 Model-based Approaches

Model-based approaches learn a shape model during training and use it to fit new

faces during testing. The pioneering works of Cootes et al. such as Active Ap-

pearance Models (AAM) [36] and Active Shape Models (ASM) [35] were built using

PCA constraints on appearance and shape. In recent years many improvements

over these models have been proposed in [57, 58, 95, 105, 128, 141]. In [37], Cristi-

nacce and Cootes generalised the ASM model to a Constrained Local Model (CLM),

in which every landmark has a shape constrained descriptor to capture the appear-

ance. In [127], a more sophisticated local model and mean shift was used to obtain

good results. However, these methods depend upon the goodness of the error cost

function and how well it is optimised. For example, AAM estimates the shape by

minimizing the texture residual. Recently, Antonakos et al. [7] proposed a method

along similar lines by modeling the appearance of the object using multiple graph-

based pairwise normal distributions (Gaussian Markov Random Field) between the

patches extracted from the regions. However, the learned models lack the power to

capture complex face image variations in pose, expression and illumination. Also,

they are sensitive to initialization due to gradient descent optimization, a critical

step.
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2.2.2 Regression-based Approaches

Since face alignment is naturally a regression problem there has been a plethora of

regression-based approaches in recent years. These methods learn a regression model

that directly maps image appearance to target output. But the performance of these

methods depends on the robustness of local descriptors. Sun et al. [135] proposed a

cascade of carefully designed CNNs in which at each level outputs of multiple net-

works are fused for landmark estimation. Our work is different from [135], in that

we use a single CNN carefully designed to provide a unique key-point descriptor.

Xiong et al. [158] predicts the increment in shape by applying linear regression on

SIFT features. Burgos et al. [151] proposed a cascade of T-regressors to estimate

the pose in image sequence using pose-indexed features. Cao et al. [25] sequen-

tially learned a cascade of random fern regressors using pixel intensity difference as

the feature and regresses the shape stage-wise over the learnt cascade. They per-

formed regression on all parameters simultaneously, thus effectively exploiting the

shape constraint. Following this, Sun et al. [116] proposed cascaded regression using

fern regressors and local binary features. Subsequently, Burgos et al. [24] extended

their work to face alignment with occlusion handling, enhanced shape indexed fea-

tures and more robust initialization which they refer to as Robust cascaded pose

regression (RCPR). Li et al. [159] combined multiple final shapes from multiple ini-

tializations in a cascade regression manner using weights matrices learnt to combine

these hypotheses accurately. Recently, Lee et al. [93] proposed a Gaussian Process

Regression face alignment method based on the responses of the Gaussian filters
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around the patches extracted from the region adjacent to intermediate landmarks.

Finally, Zhu et al. [174] proposed a hierarchical face alignment , starting from a

coarse shape estimate and refining it to reach the target landmark. Also, Xiong et

al. [157] proposed the global supervised descent method where they consider direct

optimization over the landmarks independent of any shape model.

2.2.3 Part-based Deformable Models

Part-based deformable models perform alignment by maximizing the posterior like-

lihood of part locations given an input image I. The models vary in the optimization

techniques or the shape priors used. In [126] Saragih et al. used a method similar to

mean shift to optimize the posterior likelihood. Recently, Saragih [125] developed

a sample specific prior which significantly improves over the original PCA prior in

ASM , CLM and AAM. Zhu and Ramanan [177] used a part-based model for face

detection, pose estimation and landmark localization assuming the face shape to be

a tree structure. Asthana et al. [9] combined discriminative response map fitting

with CLM, which learns a dictionary of probability response maps based on local

features and adopts linear regression-based fitting in the CLM framework.

2.3 Regression of Deep Descriptors

The proposed method for facial landmark detection, called Local Deep Descrip-

tor Regression (LDDR), consists of two modules. The first module generates local

features for each estimated facial landmark points using the deep descriptor frame-
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work. These features are concatenated together to form a global shape-indexed

feature. The second module is a linear regressor which learns the relationship be-

tween the shape feature and the corresponding shape increment during training.

The process is repeated stage-by-stage in a cascaded fashion. Figure 2.2 shows the

overview of our method.

2.3.1 Deep Descriptor Construction

In order to construct a deep CNN descriptor, we start with the Alexnet [84] network.

We use the publicly available network weights trained on the Imagenet [122] data

using Caffe [72], that are distributed with RCNN [55] . However, this particular CNN

cannot be used directly as a key-point descriptor because of the following limitations.

Firstly, the CNN requires a fixed input image size of 224 × 224 pixels which is too

large to be considered for the patch size around the key-point. Secondly, a single

activation unit at the fifth convolutional layer (conv5) has a highly overlapping

receptive field of size 195 × 195 pixels, which makes localization difficult. As a

result, two pixel points in close vicinity cannot be distinguished from one another.

On further analysis of the first problem, we found that a CNN requires fixed

size input only because of its fully-connected layers. A convolutional layer can

process any input as long as it is larger than the convolutional kernel. On the other

hand, a fully connected layer needs a fixed size input as its output dimension is

predetermined. To resolve this issue, we remove the last max pooling layer (pool5)

and all the subsequent fully-connected layers (fc6, fc7, fc8, and softmax) from the
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Figure 2.3: Architecture of the proposed Deep Descriptor Network. The height and width
represents the dimensions of each feature map, whereas the depth denotes the
number of features maps for a given layer. The number of strides for each
layer is restricted to 1.

network. The CNN output is, therefore, computed by the conv5 layer containing 256

feature channels. Analyzing the second problem, we find that a major contributor

for the large size of receptive field is the inter-layer subsampling operation, which

is implemented in the form of strides in the convolutional as well as max pooling

layers. They are deployed mainly to reduce the number of parameters and feature

computation time, which are not required for a key-point descriptor since the small

patch input will drastically bring down the convolution time anyway. Hence, strides

in all the existing layers are set to 1. Also, padding from all the convolutional layers

are removed as they contribute very little to describing a key-point. Instead, we

apply a single pixel padding in the max pooling layer to further reduce the size of

the receptive field without altering the output. With these architectural changes,

the receptive field size is reduced to 21 × 21 pixels which is good enough for the

size of a local patch surrounding a key-point. The final network structure obtained

for the deep descriptor is shown in Figure 2.3. With the input size as small as the
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receptive field, single pixel feature maps are obtained at the conv5 layer forming a

256 dimensional output vector.

The proposed deep descriptor satisfies the essential properties of being a key-

point descriptor. It is position independent, as it depends only on the image patch

relative to the point. It is robust to small geometric transformations because of the

max pooling operation in CNN. The normalization operation after each convolu-

tional layer makes it robust to illumination variations. Since the network weights

are trained using fixed sized inputs, the descriptor works best when the input im-

ages are scaled to the same size prior to key-point extraction, thus reducing the

dependency on scale. Hence it can be used as a generic keypoint descriptor in many

computer vision applications. Additionally, for domain specific problems, the model

weights can be fine-tuned before evaluating the features. For the application of face

alignment, we fine-tune the model weights using face images from the FDDB [70]

dataset. Fine-tuning was done for the face detection task, which classifies the in-

put as face or non-face. The procedure adopted is similar to the method described

in [55]. During fine-tuning, the network learns features specific to face parts which

is a crucial part in our work. As a result, the activations at the fifth convolutional

layer become more discriminatory to local face patches such as eyes, nose, lips, etc.

The other advantage of fine-tuning is that the same network weights can be used

for both face detection as well as face alignment. Once the network is fine-tuned,

the test image just goes through a forward pass to generate CNN features, which

are then fed to a simple linear regression method to generate incremental shapes.
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2.3.2 Computing Shape Indexed Features

Given an initial mean shape containing L landmarks, we compute the 256 dimen-

sional deep descriptor φtl for each landmark l ∈ 1, 2, ....L at a given stage t. A global

shape indexed feature is composed by concatenating the set of deep descriptors, i.e.,

Φt = [φt1, φt1, ..., φtL] , which is subsequently used to learn the ground truth shape

increment, as explained in section 2.3.3.

We adopt a coarse to fine regression approach. It is important in face alignment

that the features used to describe the landmark points are local. To predict the offset

∆s of a single landmark, we extract the deep descriptors from a local region of size

r. It has been shown in [116] that the optimal size is almost linear to the standard

deviation of individual shape increment ∆s. Since, we want ∆s to decrease sharply

at every stage, we need to choose the size of the local patch region around the

landmark accordingly. Following [116], we keep the patch size for deep descriptor

larger in the first stage and decrease it linearly in subsequent stages. With this

modification, the deep descriptor is bound to generate higher dimensional output

for the initial stages. Additional structural modification is needed for uniform output

dimension, which limits us to consider only four stages of regression. The patch sizes

normalized by face rectangle are taken to be 0.4, 0.3, 0.2, 0.1 for respective stages.

Since the face is resized to 224×224 pixels (the input face size used for fine-tuning),

the actual patch sizes correspond approximately to 92, 68, 42, 21. Moreover, variable

amounts of strides are added to conv1, max1, conv2 and max2 layers for each stage

as listed in Table 2.1. The network for the last stage remains unchanged as its input
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patch size matches the requirement for our deep descriptor network. This ensures

a consistent output dimension of 256 at each stage and for every landmark. In

addition to just removing the fully connected layers, our network has reduced the

amount of subsampling/stride for different regression stages as shown in Table 2.1.

Stage 1 Input Size (pixels) conv1 max1 conv2 max2
Stage 1 92× 92 4 2 1 1
Stage 2 68× 68 3 2 1 1
Stage 3 42× 42 2 1 1 2
Stage 4 21× 21 1 1 1 1

Table 2.1: Input size and the number of strides in conv1, max1, conv2 and max2 layers
for 4 stages of regression.

2.3.3 Learning the Global Regression

In this section, we introduce our basic shape regression methodology for the face

alignment problem. Unlike [25] and [116] which have two level cascaded regression

framework, we perform a single global regression at each stage. Given a face image

I and initial shape S0, the regressor computes the shape increment ∆S from the

deep descriptors and updates the face shape using (2.1)

St = St−1 +W tΦt(I, St−1) (2.1)

After extracting the deep descriptors, we concatenate them to a form a global shape-

indexed feature Φt = [φt1, φt1, ..., φtL]. Our aim is to learn a global linear projection
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W t by minimizing the following objective function:

min
W t

N∑
i=1
‖∆S̃ti −W tΦt(Ii, St−1

i )‖2
2 + λ‖W t‖2

2, (2.2)

where the first term is the regression target and the second term is a regulariza-

tion of W t in L2 sense. The parameter λ controls the strength of regularization.

Regularization here plays a major role due to the high dimensionality of the shape-

indexed feature. In the experiments, the dimensionality of features for 68 landmarks

points could be as high as 17K+. Without regularization there could be substantial

amount of over-fitting. For implementing regression, we use L2 regularized L2-loss

support vector regression using the LIBLINEAR [47] package. Since the objective

function is quadratic in W t, we can always reach a global minimum.

2.3.4 Incorporating Shape Constraint

As mentioned in [25], the shape constraint is preserved by learning a vector regressor

and explicitly minimizing the shape alignment error as in (2.2). Since each shape is

updated in an additive manner, and each shape increment is a linear combination

of certain training shapes, the final shape is modeled as a linear combination of the

initial shape S0 and all training shapes:

S = S0 +
N∑
i=1

wiŜi. (2.3)
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Hence, as long as the initial shape satisfies the shape constraint, the regressed final

shape is bound to lie in the linear subspace constructed by all the training shapes.

As a matter of fact all the intermediate shapes also satisfy the shape constraint,

since they are constructed in a similar fashion.

2.4 Experiments

There are several landmark annotated datasets publicly available. However, we

choose the most recent and challenging ones. These are Helen [90], LFPW [12],

AFW [177] and IBUG [124]. In addition to these, we evaluate the performance of our

method on a recently introduced IARPA Janus Benchmark A (IJB-A) dataset [81].

These datasets present different variations in face shape, appearance and pose and

are described in the following subsections. To maintain consistency in the exper-

iments, we perform face alignment using Multi-PIE [59] 68 point markup format.

2.4.1 Datasets

LFPW [12] is one of the widely used datasets to benchmark the face alignment

tasks. It consists of 811 training and 220 testing images. The dataset contains

unconstrained images from the internet which have large variations in pose, illumi-

nation and expression. Since some of the image links mentioned in the dataset are

invalid, we downloaded the LFPW images from the ibug [124] website which has

accumulated all valid images and their 68 point annotations.
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Figure 2.4: Average pt-pt error (normalized by face size) vs fraction of images in (a)
LFPW, (b) Helen, (c) AFW and (d) iBUG.
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Helen [90] dataset has 2300 high resolution web images, each one marked with

194 landmark points. To be consistent with the 68 point markup in our experiments,

we downloaded this dataset from the ibug website which provides the 68 point

annotations along with this dataset.

AFW has annotated faces in the wild dataset created by Zhu and Ramanan

[177]. It consists of 205 in-the-wild-faces with varying illumination, pose, attributes

and expressions. It was originally annotated with six landmark points. However,

we perform our experiment on the AFW dataset provided on ibug website, as it

contains 68 points annotated ground truth helping us to maintain consistency in

the experiments.

IBUG is a challenging subset of 135 images taken from the 300-W [124]

dataset. 300-W contains IBUG and images from existing datasets LFPW, Helen,

AFW and XM2VTS [106]. It inherently follows the 68 point annotation format.

IJB-A [81] dataset is the recently released face verification dataset. The

dataset is annotated with three key-points on the faces (two eyes and nose base).

The dataset contains images and videos from 500 subjects collected from online

media. In total, there are 67,183 faces of which 13,741 are from images and the

remaining are from videos. The locations of all faces in the IJB-A dataset were

manually annotated by human annotators. The subjects were captured so that

the dataset contains wide geographic distribution. The faces in this dataset have

significant variations in pose, illumination and resolution.

Training and testing: We evaluated the performance of our method on these

challenging datasets. First, we performed training and testing on the LFPW and
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Helen datasets taking only their own training and testing sets. Using this model we

test on AFW dataset. In order to evaluate on the IBUG dataset, we generated our

own cumulative training set consisting of 3148 images taken from the LFPW, Helen

and AFW datasets. This is done since AFW has more pose variations compared to

LFPW and Helen. To test on IJBA-A dataset we use the same model.

Evaluation Metric: Following the standards of [25], [12], we computed the

average error for all landmarks in an image normalized by the inter-pupil distance.

For each dataset, the mean error evaluated over all the images is reported. In the

following sub-section, we compare our LDDR algorithm against existing state-of-

the-art methods and validate our results. Since the IJB-A dataset has only three

annotated points, the interoccular distance error was normalized by the distance

between nose tip and the midpoint of the eye centers.

2.4.2 Comparison with state-of-the-art Methods

During training we augmented the data to improve the generalization ability. A

single training sample is translated to multiple samples by flipping all the images

and then randomly rotating them. Then initial shapes are also randomly assigned.

Our method has only one fitting parameter i.e. number of stages of regression, which

following the principles of [116], [25] has been set to 4 in our case. We compare our

results with those reported in [25], [116], [24], [9], [144].

Tables 2.2, 2.3, 2.4 and Figure 2.4 provide the Normalized Mean Square Error

and average pt-pt error (normalized by face size) vs fraction of images plots of

22



Method 68-pts 49-pts
Zhu et al. [177] 8.29 7.78

DRMF [9] 6.57 -
RCPR [24] 6.56 5.48
SDM [158] 5.67 4.47

GN-DPM [144] 5.92 4.43
CFAN [168] 5.44 -
CFSS [174] 4.87 3.78

LDDR 4.67 2.38

Table 2.2: Averaged error comparison of different methods on the LFPW dataset.

different methods, respectively. In Figure 2.6 we present the comparison of our

algorithm with [177], [9] and [79]. Our deep descriptor-based global shape regression

method outperforms the above mentioned state-of-the-art methods. The tables also

show a comparison of our method with many other pioneering methods such as

Gauss Newton based Deformable Part Models [144] and Robust Cascaded Pose

Regression (RPCR) [24] and some recent methods like [174]. Figure 2.5 shows some

landmark localization results on the five datasets. It can be seen from this figure

that the proposed method is able to localize landmarks on near profile faces as well

as faces of low resolution, partially visible and expression from the IJB-A dataset.

Randomly rotating and flipping doubles the amount of data and hence gener-

alizes the data more while reducing the error by ∼ 2%. After the advent of deep

learning, it was seen that the conv5 features capture a lot of salient information.

Our method depends on the generalization of the deep descriptors and hence the

increase in the amount of data available for training favors the learning step. After

training only on Helen and LFPW trainset, we get an error of 5.09% and 5.08%,

respectively. However, after training on the cumulative data we achieve improved

23



Figure 2.5: Qualitative results of our landmark localization method. First row: LFPW,
Second row: Helen, Third row: AFW and Fourth row: IBUG. Fifth row:
IJB-A.
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performance getting 4.76% on the former and 4.67% on the latter. Also, it can be

seen from Tables 2.2 and 2.3, the error with 68 landmark points is higher than that

with 49 points as the former includes the face contour points. It is evident from our

experiments that the proposed method performs better than [177] and [158] where

HOG and SIFT were used as their features. Table 2.4 shows the performance of

our method on a challenging subset of 300-W ibug dataset. The error in the perfor-

mance of CFSS [174] is lower than our method. This may be due to the fact that

CFSS performs its initial search on the space of multiple mean shapes, whereas we

initialize with only one mean shape at test time. We do this to reduce the time and

space complexity during training. In our experiments we only flipped and rotated

the shapes in contrast to conventional techniques where the shapes are flipped, ro-

tated, translated and scaled. This also demonstrates the discriminatory quality of

our Deep Descriptors and how better it can get given a large amount of diversified

training data.

Method 68-pts 49-pts
Zhu et al. [177] 8.16 7.43

DRMF [9] 6.70 -
RCPR [24] 5.93 4.64
SDM [158] 5.50 4.25

GN-DPM [144] 5.69 4.06
CFAN [168] 5.53 -
CFSS [174] 4.63 3.47

LDDR 4.76 2.36

Table 2.3: Averaged error comparison of different methods on the Helen dataset.
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Figure 2.6: Average 3-pt error (normalized by eye-nose distance) vs fraction of images in
the IJB-A dataset.

2.4.3 Runtime

All the experiments were performed using an NVIDIA TITAN-X GPU using cudnn

library on a 2.3Ghz computer. Training on LFPW took 5.5 hours and on Helen took

9 hours. Training on cumulative data took around 15 hours. Due to different CNN

being initialized in each stage, the testing was observed to be slow taking ∼ 4 seconds

given a face bounding box. However in our implementation testing was close to real

time performance taking only ∼ 0.8 seconds per face, thereby reducing the testing

time by 80% . This includes the time taken for feature extraction and regression.

The time consuming part for the landmark localization was the initialization of

a different CNN in each stage. To counter this delay in testing, we merged the

4 CNN models in a single CNN model which is initialized only once. To reduce

the performance time even more, the 68 patches extracted around the intermediate

shape were passed in a batch.

26



Method 68-pts
Zhu et al. [177] 18.33

DRMF [9] 19.75
RCPR [24] 17.26
SDM [158] 15.40

GN-DPM [144] -
CFAN [168] -

ESR [25] 17.00
LBF [116] 11.98

LBF Fast [116] 15.50
CFSS [174] 9.98

LDDR 11.49

Table 2.4: Averaged error comparison of different methods on the iBUG challenging
dataset.

2.5 Conclusions

In this work, we presented a deep descriptor-based method for face alignment using

regression of local descriptors. The highly informative nature of deep descriptor

makes it useful as SIFT, SURF and HOG features. This means deep descriptors

have potential in many different kinds of applications in machine vision, such as

pose estimation, activity recognition and human detection and many others. We

also presented an effective way of reducing the testing time by combining four CNNs

into one achieving real-time performance. Extensive experiments on five publicly

available unconstrained face datasets demonstrate the effectiveness of our proposed

image alignment approach.
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Chapter 3: KEPLER: Keypoint and Pose Estimation of Un-

constrained Faces by Learning Efficient H-CNN

Regressors

3.1 Introduction

Figure 3.1: Sample results generated by the proposed method. The numbers in black
are the predicted 3D pose P:Pitch Y:Yaw R:Roll. Green dots represent the
predicted keypoints. The bar graphs show the visibility confidence of each of
the 21 keypoints.

In the last five years, keypoint localization using DCNNs has received great

attention from computer vision researchers. This is mainly due to the availability

of large scale annotated unconstrained face datasets such as AFLW [82]. Recently,

Bulat et al. [19] released even larger dataset with more that 200K annotated face

images. Works such as [166] have hypothesized that as the network becomes deeper

and deeper more semantic information such as identity, pose, attributes are retained

while immediate local features are lost. However, various methods such as [135],
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[168], and [174] directly used CNNs as regressors or used deeper features from CNNs

to design regressors for predicting keypoints. Some of the methods used global

features to regress for the keypoints, while others opted for local deep features and

train in a coarse to fine manner.

On the other hand, an earlier method known as Explicit Shape Regression

(ESR) [25] proposed by Cao et al. achieved superior results by introducing the im-

portant concept of non-parametric shape regression for facial keypoint localization.

Many of its variants [92], [116], [79], [135], [89] were published later, using a variety

of features producing incremental improvements over [25]. However, they are all

limited by the fixed number of points on the face. In real life applications, there are

more challenging datasets such as IJBA [81] and AFW [177], which do not always

have 68 or 49 fixed points due to occlusion or pose variation. As alternatives, re-

searchers moved towards more sophisticated techniques by incorporating 3D shape

models [178], [74], [73], domain learning [176], recurrent autoencoder-decoder [1]

and many others. The LS3D-W dataset by Bulat et al. [19] is annotated with 34

3D-coordinates. However, in applications such as face recognition, the images are

aligned directly from the 2D images/coordinates skipping the 3D mapping step.

Thus, unconstrained face alignment on 2D face images has received much attention

as an emerging research topic in the recent past. With all the methods in recent

years, one question still remains unanswered: Can cascaded shape regression be

applied for an arbitrary face with no prior knowledge of its pose ?

The motivation for this work stems from a desire to adapt cascaded regression

for predicting landmarks of arbitrary faces, while taking advantage of CNNs. We
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transform the cascaded regression formulation into an iterative scheme for arbitrary

faces. In each iteration the regressor predicts the increment for the next stage which

progressively moves the initial estimate closer to ground truth. By jointly training

for all the points, the inherent shape constraint is maintained implicitly. As by-

products of KEPLER, we get the visibility confidence of each keypoint and 3D pose

(pitch, yaw and roll) for the face image. Figure 3.1 shows a set of sample results

from the proposed method, indicating the 3D pose, keypoint locations and their

visibility confidences.

Figure 3.2: Sample results generated by the proposed method KEPLER. White dots rep-
resent the location of keypoints after each iteration. The first row shows an
image from the AFLW dataset. The points move at subpixel level after fourth
iteration. The second row is a sample image from the AFW dataset, which
shows how the last stage of error correction can effectively mitigate the incon-
sistent bounding box across datasets. The numbers in red are the predicted
3D pose P:Pitch Y:Yaw R:Roll

The main contributions of this chapter are:

• We design a novel GoogLenet-based [137] architecture with a channel inception

module which pools features from intermediate layers and concatenates them

similar to the inception module. We call the proposed architecture Channeled

Inception in the rest of the chapter. This network is used in all the stages of
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KEPLER.

• Inspired by [26], we present an iterative method for estimating the face land-

marks using the fixed point consolidation scheme. Fixed point consolidation

refers to estimating the error correction in an iterative way by partitioning the

total error correction into multiple steps. We observe that estimating land-

marks on a face is more challenging than estimating keypoints on a human

body. The overview of the pipeline is shown in Figure 3.3.

• After each stage, the error from ground-truth decreases, making the gradi-

ent smaller. This is because regression-based approaches use Euclidean loss,

the gradient of which also depends on the error. Hence we employ different

training policies in each stage for the efficient training of H-CNNs. Figure 5.1

shows how by correcting the estimates of landmark points locally, the issues

of inconsistent bounding box can be handled.

• We evaluate the performance of the landmark estimation method on challeng-

ing benchmark datasets AFLW, AFW which include faces in diverse pose,

expressions and occlusion. Different from many previous methods such as

[158], [176], this work estimates variable number of points depending on the

head pose. We also introduce a new protocol for evaluating the facial keypoint

localization scheme on AFLW which is more challenging and usually left out

while evaluating unconstrained face alignment methods.

This chapter builds upon KEPLER [86] by Kumar et. al by evaluating KEPLER

on two other challenging datasets. To test the robustness of the proposed method
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during deployment, we evaluate it on the datasets with images of qualities different

from which KEPLER was trained on. Without retraining or finetuning we test the

proposed method on COFW [23] dataset which is a standard benchmark dataset for

evaluating face alignment schemes designed to work on images under heavy internal

and external object occlusion. We show that it performs comparable to methods

such as RCPR [23] which uses COFW training set to develop the method. We also

evaluate the method on the IJB-A dataset which is one of the most challenging

datasets publicly available for face verification. Without finetuning, we test the

performance of the proposed method on IJB-A. We show in Figure 3.13 that earlier

methods [9], [79] which yielded good performance on high resolution images, almost

fails on IJB-A dataset. However, due to efficient training scheme of KEPLER, it

is able to yield improved landmark estimates on images with lower resolution and

extreme head-pose.

The rest of the chapter is organized as follows. Section II reviews closely

related works. Section III presents the proposed method in detail. Section IV

describes the experiments and comparisons, which are then followed by conclusions

and suggestions for future works in section V.

3.2 Related Work

Following [25], we classify the previous works on face alignment into two basic cat-

egories.
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Part-Based Deformable models: These methods perform alignment by max-

imizing the likelihood of part locations in the given input image. One of the major

works in this category was done by Zhu and Ramanan [177], where they used a

part-based model for face detection, pose estimation and landmark localization as-

suming the face shape to be a tree structure. Discriminative Response Map Fitting

(DRMF) [9] by Asthana et al., learned a dictionary of probability response maps

followed by linear regression in a Constrained Local Model (CLM) framework. How-

ever, it is widely acknowledged that the formulation based on CLMs is non-convex,

and may converge to local minima. Hsu et al. [66] extended the mixture of tree

model [177] in a coarse to fine manner to achieve improved accuracy and efficiency.

However, their method again assumes face shape to be a tree structure, enforcing

strong constraints specific to shape variations. However, formulating keypoint de-

tection problem as a classification problem, Kumar et al. [87] attempted to capture

the structural relationships between different keypoints through convolutional filter

assuming the keypoints to be arranged in a tree structure.

Regression-based approaches: A multitude of regression-based approaches has

been proposed in recent years by formulating the keypoint detection as a regression

problem using local or global features. Methods reported in [95], [25], [174] are

based on learning a regression model that directly maps image appearance to tar-

get outputs. Different low-level features such as Local Binary Patterns (LBP) [3],

Histogram of Oriented Gradients (HOG) [39], Scale Invariant Feature Transform

(SIFT) [101] have been used in a variety of regression methods such as Support Vec-

tor Regression and Random Forests. However, these methods along with methods

33



from [6], [142], [5], [8], [144] and [134] were mostly evaluated either in a lab setting

or on face images where all the facial keypoints are visible. These methods depend

highly on the bounding box annotation and hence the training data is augmented by

jittering the images to accomodate for different bounding box annotation. However,

when evaluated on challenging datasets such as IJB-A, these methods do not yield

accurate results as we show in section 3.4 in Figure 3.13. Wu et al. [155] proposed

an occlusion-robust cascaded regressor to handle occlusion by including two sepa-

rate models for landmark localization and visibility estimation in an iterative way.

Xiong et al. [157] pointed out that standard cascaded regression approaches such

as Supervised Descent Method (SDM) [158] tend to average conflicting gradient

directions resulting in reduced performance. Hence, Xiong et. al [157] suggested

domain dependent descent maps. Inspired by this, Cascade Compositional Learn-

ing (CCL) [176] and Ensemble of Model Regression Trees (EMRT) [175] developed

head pose-based and domain selective regressors respectively. [176] partitioned the

optimization domain into multiple directions based on head pose and learned to

combine the results of multiple domain regressors through composition estimator

function. Similarly, [175] trained an ensemble of random forests to directly predict

the locations of keypoints for a given face image, and face alignment is then achieved

by aggregating the consensus of different models.

Recently, methods based on 3D models have been proposed for aligning faces.

PIFA [73] by Jourabloo et al. proposed a 3D approach that employed cascaded

regression to predict the coefficients of 3D to 2D projection matrix and the base

shape coefficients. Another recent work from Jourabloo et al. [74] formulated the
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face alignment problem as a dense 3D model fitting problem, where the camera

projection matrix and 3D shape parameters were estimated by a cascade of CNN-

based regressors. However, [176] suggests that optimizing the base shape coefficients

and projection is indirect and sub-optimal since smaller parameter errors are not

necessarily equivalent to smaller alignment errors. 3DDFA [178] by Zhu et al. fitted

a dense 3D face model to the image via CNN, by modelling the depth data in a

Z-Buffer. In [15, 98] authors used the 3D-morphable model to learn the 3D camera

projection matrix parameters and warping parameters while simultaneously training

for 2D face alignment. Although these methods provide 3D coordinates of the

keypoints for a given image, they do not outperform the state of the art methods for

2D face alignment. This can be attributed to the fact that learning 3D points from

2D data is a complex problem where the groundtruth data itself is noisy. In contrast,

KEPLER simultaneously learns the keypoints, visibility and pose directly from the

2D image, and hence is able to capture the inherent structural dependencies among

them. We show that, even without finetuning, KEPLER performs comparable to

the state of the art methods on the COFW dataset.

Our work falls in the category of regression-based approaches and addresses the

issue of adapting the cascade shape regression to unconstrained settings. Different

from all other previous works, it performs joint training on the three fundamental

tasks simultaneously, namely, 3D pose, visibility of each keypoint and the location

of keypoints. It also demonstrates that efficient joint training on the three tasks

achieves superior performance. One of the closely related work is [172] where the

authors used multi-tasking for many attributes, but did not leverage the intermedi-
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ate features.

Figure 3.3: Overview of the architecture of KEPLER. The function f() predicts the visi-
bility, pose and the corrections for the next stage. The representation function
h() forms the input representation for the next iteration.

3.3 KEPLER

KEPLER is an iterative method which consists of three modules. Figure 3.3 illus-

trates the basic building blocks of KEPLER. The first module is a rendering module

h which models the structure in an N-dimensional input space, with N being the

maximum number of keypoints on a face image. The current locations of the key-

points are represented by the vector yt = {y1
t . . . y

N
t }. The output of the rendering

module is concatenated to the raw RGB input image I, along the channel dimension

which is then fed to the function f.

The second module is the function f which calculates the correction to be made at

the next stage. The function f is modeled by a convolution neural network whose

architecture is described in section 3.3.1.
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The third module is the correction stage which adds the increments, predicted by

f, to the current locations. The output goes again into the rendering module h

which prepares the rendered data for the next iteration. The rendering function is

not learned in this work, but represented by a 2D Gaussian with a fixed variance

and centered at current keypoint locations in each of the N channels. Finally, the

Gaussian rendered images are stacked together with image I. Therefore the overall

method can be summarized by the following set of equations.

δt = ft(Xt,Θt) (3.1)

yt+1 = yt + δt (3.2)

Xt+1 = h(yt+1) (3.3)

where f is a function with learned parameters Θt. The prediction function f is

indexed by t as it is trained separately for every iteration. In the first iteration, the

function h renders Gaussians at y0, which is the mean shape. In this work we set

t = 5 iterations. We perform the last iteration only to take into effect the improper

bounding box across different datasets(see Figure 5.1). After four stages of global

corrections, no significant improvement was observed on the validation set and hence

we adopted local corrections as the last stage of KEPLER. The loss functions for

each task is mentioned below.

Keypoint localization

Keypoint localization is the task of predicting the keypoints in a face. In this

chapter, we consider predicting the locations of N = 21 keypoints on the face. With
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each point is associated the visibility of that point. The loss function for this task

is given by

L1(y,g) =
N∑
i=1

vi(yit − gi)2, (3.4)

where yit and gi are the predicted and the ground truth locations of the ith keypoint

resprectively at time t. vi is the ground truth visibility associated with each key-

point. According to this formulation of the keypoint loss, since there is no penalty

for invisible points, there is no gradient back-propagated for such points. We discuss

this loss function and its variant in detail in section 3.3.3.

Pose Prediction

Pose prediction refers to the task of estimating the 3D pose of the face. We use the

Euclidean loss function for pose prediction.

L2(pp,gp) = (pyaw − gyaw)2 + (ppitch − gpitch)2 + (proll − groll)2 (3.5)

where p stands for predicted and g for the ground-truth. In an alternate formulation

this task can be constructed as a classification problem where the face images are to

be classified into different classes. However, this will result in binning of pose into

discrete bins. Since, we have access to accurate 3D pose, we use the Euclidean loss

for this task.

Visibility

This task is associated with estimating the visibility of each keypoint.The number

of keypoints visible on the face varies with pose. Hence, we use the Euclidean loss
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to estimate the visibility confidence of each point.

L3(vp,vg) =
N∑
i=1

(vp,i − vg,i)2, (3.6)

Alternatively, one can also use multi target cross-entropy loss for this task.

Therefore the net loss in the network is the weighted linear combination of the

above loss functions.

L(p, g) = λL1(y,g) + µL2(pp,gp) + νL3(vp,vg) (3.7)

where λ, µ and ν are the weight parameters suitably chosen depending on the

iteration.

3.3.1 Network Architecture

For the modeling function f we design a unique ConvNet architecture based on

GoogLenet [137] by pruning the inception network after inception 4c. As PReLU has

shown better performance in many vision tasks such as object recognition [63], in this

pruned network we first replace the ReLU non-linearity with PReLU. We pool the

intermediate features from the pruned GoogLenet. Then convolutions are performed

from the output of each branch, and the output maps are concatenated similar to

inception module. We call this module as the Channeled Inception module. Since the

output maps after conv1 are larger in size, we first perform 4X4 convolution and then

again a 4X4 convolution, both with the stride of 3 to finally match the dimension

39



Figure 3.4: The KEPLER network architecture. The dotted line shows the channeled
inception network. The intermediate features are convolved and the responses
are concatenated in a similar fashion as inception module. Tasks such as pose
are abstract and contained in deeper layers, however, the localization property
is in the shallower layers.

of the output to 7X7. Similarly, after conv2 we first perform 4X4 convolution and

then 3X3 convolution to match the output to 7X7. The former uses a stride of 4

and the latter uses 2. The most näive way of combining features is by concatenation.

However, the concatenated output blob can be very high dimensional and hence we

perform 1X1 convolution for dimensionality reduction. This lets the network decide

the weights to effectively combine the pooled features into lower dimension. It has

been shown in [166] that adjacent layers are correlated and therefore, we only pool

features from alternate layers.

Next, the network is trained on three tasks namely, pose, visibilities and the

bounded error using ground truth. The joint training is helpful since it models

the inherent relationships among visible number of points, pose and the amount

of correction needed for a keypoint in particular pose. Choosing an architecture

like GoogLenet is appropriate as it has fewer parameters (as compared to VGG-
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Net [131]) and the training of GoogLenet is faster when batch normalization is

added after each convolution layer. In order to further speed up the process we

only use convolution layers till the last layer where we use a fully connected layer

to get the final output. Recently, Residual Networks [64] with skip connections

have been proposed where the number of parameters is even fewer; furthermore

these networks have achieved improved classification results on the Imagenet [40]

classification task. In that case the backbone network in each stage of the whole

pipeline of KEPLER can be replaced by a ResNet, while keeping the training process

same. The architecture of the whole network is shown in Figure 3.4.

3.3.2 Iteration 1 and 2: Constrained Training

In this section, we explain the first stage training for keypoint estimation. The

first stage is the most crucial one for face alignment. Since the network is trained

from scratch, precautions have to be taken on what the network learns. Directly

learning the locations of keypoints from a network is difficult not only because of

highly non-linear mapping between input and target space, but also because when

the network gets deeper it loses the localization capability. This is due to the fact

that the outputs of the final convolution layers have a larger receptive field on the

input image. We devise a strategy in which the corrections for the first two stages

are bounded. Let us suppose the key-points are represented by their 2D coordinates

y : {yi ∈ <2, i ∈ [1, . . . , N ]} where N is the number of keypoints and yi denotes the
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ith keypoint. The bounded corrections were calculated using (3.8) given below.

δit(gi, yit) = min(L, ‖u‖).û (3.8)

where L denotes the bound of correction. u = g − yt and û = u
‖u‖ represent the

error vector and error unit vector respectively. In our experiments, we set the bound

L to a maximum of 20 pixels. This simplifies the learning problem for the network

for the first stage. According to this formulation, error correction for points for

which the ground truth is far away, gets bounded by L. The interesting property

of this formulation is that in the first and second stages the network only learns

the direction in which the points have to shift. This can be thought of as learning

the direction of the error unit vector, to which the magnitude will be added later.

In addition to just having keypoint location we also have access to facial 3D pose

and the visibility of each point. One-shot prediction of the location of keypoints is

difficult since the input-output mapping is typically nonlinear. Also, learning small

corrections should be easier, when the network is being trained for the first time.

Hence, to impart the prior knowledge to the network we jointly learn the pose and

visibility of each point. The loss functions used for the three tasks are described in

equations (3.4, 3.5, 3.6) in the previous section3.3.

The function f for second iteration is trained in a similar fashion with the weights

initialized from the first iteration.
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Figure 3.5: Qualitative results of KEPLER after second stage. The green dots represent
the predicted points after second stage. Red dots represent the ground truth.
It can be seen that the visible points have taken the shape of input face image.

3.3.3 Iteration 3: Variant of Euclidean loss

We show the outputs of the network after the second stage of training in Figure 3.5.

Visual inspection of the outputs shows that for many of the faces, the network has

already learned the magnitude and direction of the correction vector. However, there

are misalignments in some images or in some keypoints in the images. But repeating

the training methodology exactly as second iteration revealed that our architecture

suffered from vanishing gradients. While back propagating the gradients, the loss is

averaged over a batch and if there are few misalignments in a batch, there is very

little gradient to be propagated. To maintain consistency we stick with the same

architecture. Even though GoogLenet [137] claims to not have vanishing gradient

problem, KEPLER faced it because of the absence of intermediate supervision which

GoogLenet originally had.

This motivated us to design a loss function that satisfies both of these condi-

tions: on the one hand, the loss function should minimize the error between predic-

tion and the ground truth; on the other hand, it should have sufficient gradients to

be propagated to make the learning process reach global minima. Towards this end,
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we use the following loss function.

L1(y,g) = 1
n

(
N∑
i=1

vi(yi − gi)2 + γ
N∑
i=1

vi | yi − gi |
)

(3.9)

δL1(y,g)
δy

= 1
n

(
2

N∑
i=1

vi(yi − gi) + γ
N∑
i=1

vi
| yi − gi |
yi − gi

)
(3.10)

where γ is a parameter which controls the strength of the gradient and n is the

number of samples in a batch. We would like to emphasize that the additional term

is not a regularizer as it is added to the objective function and does not directly

regularize the weights. However, this is able to provide substantial gradients for

the training of ConvNet because depending on the sign of difference, second term is

always +1 or -1 in equation 3.9(b).

The representation function h in this stage does not render any Gaussian in the

channel for which the predicted visibility is below the threshold τ . In this work, we

set this threshold τ to 0.03 and γ to 0.2 , which were determined experimentally.

Now that the network has learned the unit vectors in first and second iteration, we

do not constrain the amount of error corrections for the third stage training.

3.3.4 Iteration 4: Hard sample mining

Face alignement is a task which requires precise localization as error in alignment can

propoagate to errors in verification/recognition or other tasks which depend on the

aligned image. In our case, although after the third iteration, most of the images are

aligned, they lack precision in local alignment. Recently, Kabkab et al. [77] suggested

that by efficiently sampling the data one can make an optimal use of training data
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while training ConvNets leading to obtain improved performance. [77] developed

an online data sampling method based on a convex optimization formulation and

showed how their formulation can make the classifier robust when class imbalance is

present. Inspired by [77], we reuse the hard samples of the dataset to build a more

robust keypoint localization system.

Figure 3.6: Error Histogram of training samples after stage 3

Using the keypoints predicted after the third iteration, we plot the histogram

(Fig.3.6) of normalized mean error (NME), after calculating it for all the training

samples. We denote the NME on the x-axis at which the maximum number of

samples are centered, as C. In an ideal case, the value of C should be low, implying

that the average alignment error is less. Therefore, the objective of this stage is to

lower the value of C by hard sample mining. We select a threshold C+∆ (0.03 in our

experiments), towards the right of C, after which at least 30−40% of the samples lie,

as the threshold for hard samples. Using C + ∆, we partition the dataset into two

groups of hard and easy samples. We first select equal number of samples from both

groups to form a batch which is then presented to the ConvNet for training. This

effectively results in reusing the hard samples since the number of samples in hard
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group is much lower than in the easy group. Then, to counter the group imbalance

we finetune the network with the whole dataset again with a lower learning rate.

We use the loss function as in (3.9) with γ = 0.1 for this stage.

3.3.5 Iteration 5: Local Error Correction

There is a lot of inconsistency among the bounding boxes provided by different

datasets. AFLW [82] provides larger bounding box annotations compared to AFW

[177]. Regression-based alignment methods are dependent on the mean shape ini-

tialization, which is scaled to the bounding box size. Also it is impractical to come

up with a heuristic which tries to determine compatible bounding boxes. Almost

all the existing methods perform data augmentation by randomly perturbing the

bounding boxes by some amount. However, it is not clear by how much the bound-

ing boxes should be perturbed to obtain reasonably good bounding boxes during

testing which is consistent with the dataset the network was trained on. We train

our networks on a larger bounding box provided by AFLW. AFLW bounding boxes

tend to be square and for almost all the images the nose tip appears at the center

of the bounding box. This is a big limitation for the deployment of the system in

real world scenarios. It is worth noting that the previous four stages are trained on

full images and hence produce global corrections.

Our last stage of local correction is optional, which depends upon the test set

and the bounding box annotations that it comes with. We train a similar network as

before but only for the tasks of predicting the visibility and corrections in the local
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Figure 3.7: Red dots in the left image represent the ground truth while green dots rep-
resent the predicted points after the fourth iteration. Local patches centered
around predicted points are extracted and fed to the network. The network
shown in Fig 3.4 is trained on the task of local fiducial correction and visibil-
ity of fiducials inside the patch. The image on the right shows the predictions
after local correction.

patches (see Fig 3.7). Predicting the pose with a local patch of say WXW pixels is

difficult which can lead the network to learn improper weights. We choose all the

N patches irrespective of the visibility factor. Learning visibility and corrections

is important because we do not want the network to propagate any gradient if the

point is invisible. We observe during experimentation that training the ConvNet on

two tasks together achieves significantly better performance than when the network

is trained only for the task of error correction. We again partition the dataset into

easy and hard sample groups according to the strategy explained in section3.3.4.

We finally finetune the network with the whole dataset with a lower learning rate.
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3.4 Experiments and Comparison

3.4.1 Datasets

We select two challenging datasets with their most recent benchmarks.

In-the-wild datasets: To make the system robust for images in real life scenarios

due to challenging shape variations and significant view changes, we select AFLW

[82] for training and, AFLW and AFW [177] as the main test sets.

AFLW contains 24, 386 in-the-wild faces (obtained from Flickr) with head

pose ranging from 0◦ to 120◦ for yaw and upto 90◦ for pitch and roll with extremely

challenging shape variations and deformations. AFLW provides at most 21 points

for each face. It excludes coordinates for invisible landmarks, which we consider

to be the best, because there is no way of correctly knowing the exact location

of those points. In many cases such invisible points are mostly hallucinated and

annotated thereafter. Along with this, AFLW also demonstrates a limited amount

of external-object occlusion.

COFW is a collection of 1007 face images out which of 507 images are par-

titioned as the test set. Caltech Occluded Faces in the Wild (COFW) dataset

exhibits wide range of images in diverse pose and is mainly used for evaluation of

face alignment methods designed to perform on images under extreme occlusion. In

addition, one important point to note is that COFW also provides the annotations

for the invisible landmarks while in the case of AFLW the invisble landmarks are

unavailable.
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IJB-A dataset is one of the most challenging face verification dataset. The

face images in the dataset are annotated with three key-points ; two eyes and nose

base. The dataset contains images and videos from 500 subjects collected from

online media. In total, there are 67,183 faces of which 13,741 are from images and

the remaining are from videos. The locations of all faces in the IJB-A dataset were

manually annotated by human annotators. The images were captured so that the

dataset contains wide geographic distribution. The challenge comes through the

wide diversity in pose, illumination and resolution.

AFW is a popular benchmark for the evaluation of face alignment algorithms.

AFW contains 468 in-the-wild faces (obtained from Flickr) with yaw degree up to

90◦ . The images are diverse in terms of pose, expression and illumination. The

number of visible points also varies depending on the image, but the location of

occluded points are to be predicted as well.

Testing Protocols:

(I)AFLW-PIFA: We follow the protocol used in PIFA [73]. We randomly se-

lect 23, 386 images for training and the remaining 1, 000 for testing. We divide the

testing images in three groups as done in [73]: [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] where

the number of images in each group are taken to be equal.

(II)AFLW-Full: We also test on the full test set of AFLW of sample size 1, 000.

(III)AFLW-All variants: In the next experiment, to have more rigorous anal-
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ysis, we perform the test on all variants of images from (I) above. To create all

variants images, we first rotate the full images from (I) at angles of 15◦, 30◦, 45◦

and 60◦. We do the same with the horizontally flipped version of these images. We

then rotate the bounding box coordinates and the key-points also at the same angles

and crop the faces. This is done for all the images following the AFLW-PIFA pro-

tocol. One important effect of this rotation is that some of the images have smaller

faces compared to others due to rotated bounding box. This experiment tests the

robustness of the algorithm on faces of different effective scales and orientations.

(IV)AFW: We only use AFW for testing purposes. We follow the protocol as

stated in [177]. AFW provides 468 images in total, out of which 329 faces have

height and width greater than 150 pixels. We only evaluate on those 329 images

following the protocol of [177]. It is to be noted that methods such as PIFA [73]

and CCL [176] also exclude images with pose greater than 75 degrees follwing the

protocol of TCDCN [171].

(V) Occlusion: We use COFW dataset only for evaluation purposes without fine-

tuning. This shows the efficacy of the proposed method on other datasets. COFW

face images are annotated with 29 facial landmarks, however we only evaluate on

21 points as in AFLW. We show that even without retraining KEPLER performs

comparable to Robust Cascaded Pose Regression(RCPR) [23] which is the baseline

method. We show in Figure 3.8 the schema to convert 29 points to 21 points format.
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(VI) Real Life Scenario: We use IJB-A dataset to evaluate on images and videos

which are taken in challenging situations. We only evaluate against the three points

which were manually annotated. The error between the two eye coordinates is nor-

malized the the distance between the nose coordinate and the midpoint of two eye

coordinates.

Figure 3.8: Schema to convert COFW 29 point format to AFLW 21 point format.

Evaluation metric: Following most previous works, we obtain the error for

each test sample via averaging normalized errors for all annotated landmarks. We

demonstrate our results with mean error over all samples, or via Cumulative Error

Distribution (CED) curve. For pose, we evaluate on continuous pose predictions

as well as their discretized versions rounded to nearest 15◦. We report the con-

tinuous mean absolute error for the AFLW testset and plot the Cumulative Error

Distribution curve for AFW dataset. For the COFW dataset we normalise by the

inter-occular distance following the protocol from [23]. The Normalized Mean Error

(NME), which is the average of the normalized estimation error of visible landmarks

is calculated as follows.

NME = 1
Nt

Nt∑
1

( 1
Nf |vi|

N∑
j

vji ||pi(:, j)− gi(:, j)||22) (3.11)
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where Nf is the normalization factor, which for AFLW and AFW is the ground

truth bounding box size calculated as
√
wboxxhbox and for COFW is the inter-occular

distance.

All the experiments including training and testing were performed using the

Caffe [72] framework and two Nvidia TITAN-X GPUs. Our method can process

upto 12-16 frames per second in batch mode.

AFLW AFW
Method NME NME
TSPM [177] - 11.09
CDM [2] 12.44 9.13
RCPR [24] 7.85 -
ESR [25] 8.24 -
PIFA [73] 6.8 8.61
3DDFA [178] 5.32 -
LPFA-3D [74] 4.72 7.43
EMRT [175] 4.01 3.55
CCL [176] 5.85 2.45
Rec Enc-Dec [1] >6 -
FA-3DFR [98] 4.49 -
Tree CNN [87] 3.93 3.28
3D STN [15] 4.23 -
KEPLER 2.98 3.01

Table 3.1: Comparison of KEPLER with other state of the art methods. NME stands for
normalized mean error. For AFLW, the numbers for other methods are taken
from respective papers following the PIFA protocol. For AFW, the numbers
are taken from respective works published following the protocol of [177].

3.4.2 Results

Table 3.1 compares the performance of KEPLER compared to other existing meth-

ods. Table 3.3 summarises the performance of KEPLER under different protocols of

AFLW testset. Table 3.4 shows the mean error in degrees, in estimating the 3D pose
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Method COFW
FPLL [177] 14.40
ESR [25] 11.20
FLD [155] 5.18
RCPR [23] 8.5
KEPLER 8.8

Table 3.2: Performance comparison of the proposed method on COFW dataset. It is to
be noted that NME in FPLL, ESR, FLD and RCPR (trained on COFW) is
calculated over 29 points, which is calculated for 21 points in KEPLER. It can
be observed that the performance of KEPLER is comparable to RCPR without
finetuning on the training set of COFW.

Figure 3.9: Cumulative error distribution curves for landmark localization on the AFLW
dataset. The numbers in the legend are the average normalized mean error
normalized by the face size.

of a face image. Table 3.2 compares the performance of KEPLER on COFW testset.

It can be observed that even without finetuning KEPLER performs comparable to

RCPR. Figures 3.9 and 3.10 show the cumulative error distribution in predicting

keypoints on the AFLW and AFW test sets. Figure 3.11 shows the cumulative error

distribution in pose estimation on AFW. Figures 3.12 and 3.13 shows the cumulative

error distribution curves for the COFW and IJB-A datasets.

Comparison with CCL [176]: It is clear from the tables that KEPLER

outperforms all state of the art methods on the AFLW dataset. It also outperforms

all state of the art methods except CCL [176] on the AFW datatset. Visual inspec-
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tion of our results suggests that KEPLER is a little farther from ground truth on

invisible points. We note that CCL [176] manually annotates the AFLW dataset

with 19 landmarks along with the invisible landmarks, leaving the earpoints. In

our experiments we prefer to use the dataset as provided by AFLW [82], although

we believe that CCL-kind of reannotation may boost the performance(since during

AFW evaluation the location of occluded points also need to be predicted). In KE-

PLER there is no loss propagated for the invisible points. We believe that training

KEPLER on the revised annotation by [176] would make the prediction of occluded

points more precise.

Method AFLW-PIFA AFLW-FULL AFLW-Allvariants AFW
KEPLER 2.98 2.90 2.35 3.01

Table 3.3: Summary of performance on different protocols of AFLW and AFW by KE-
PLER.

AFLW AFW
Method Yaw Pitch Roll MAE Accuracy(≤ 15◦)

Random Forest [146] - - - 12.26◦ 83.54%
KEPLER 6.45◦ 5.85◦ 8.75◦ 6.45◦ 96.67%

Table 3.4: Comparison of Mean error in 3D pose estimation by KEPLER on AFLW testset.
For AFLW [146] only compares mean average error in Yaw. For AFW we we
compare the percentage of images for which error is less than 15◦.

We also verify our claim that iteration 5 is optional and only required for

transferring the algorithm to other datasets with different bounding box annotations.

To support our claim we calculate the normalized mean error after iteration 4 for

both datasets and compare with the error obtained after iteration 5. The error after

iteration 4 for AFLW testset was 0.0369 (which is already lower than all existing
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works) and after fifth iteration it was 0.0299, bringing the performance up by 18%.

On the other hand the improvement in AFW (whose bounding box annotation is

different from AFLW) was close to 60%. The error after iteration 4 on AFW dataset

was 0.0757 which decreases to 0.0301 after fifth iteration.

We demonstrate some qualitative results from AFLW and AFW test sets in Figure

3.14 and from COFW and IJB-A datasets in Figures 3.15 and 3.16.

Figure 3.10: Cumulative error distribution curves for landmark localization on the AFW
dataset. The numbers in the legend are the fraction of testing faces that have
average error below (5%) of the face size.

Figure 3.11: Cumulative error distribution curves for pose estimation on AFW dataset.
The numbers in the legend are the percentage of faces that are labeled within
±15◦ error tolerance
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Figure 3.12: Cumulative error distribution curves for landmark localization on the COFW
dataset. This is to be noted that the error is calculated over 21 points nor-
malized by inter-occular distance.

Figure 3.13: Cumulative error distribution curves for landmark localization on the IJBA
dataset. The error is calculater for 3 points normalized by the distance
between midpoint of eyes and the nose.
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3.5 Conclusions

In this work, we showed that by efficiently capturing the structure of face through

additional channels, we can obtain precise keypoint localization on unconstrained

faces. We proposed a novel Channeled Inception deep network which pools features

from intermediate layers and combines them in the same manner as the Inception

module. We show how cascade regressors can outperform other recently developed

works and designed to yield variable number of keypoints. As a byproduct of KE-

PLER, 3D pose information is also generated which can be used for other tasks such

as pose dependent verification methods, 3D model generation and many others. In

conclusion, KEPLER demonstrates that by improved initialization and multitask

training, cascade regressors outperforms state of the art methods not only in pre-

dicting the keypoints but also for head pose estimation. One future avenue for

extending this work, can be developing methods in which the gaussians are learned

and estimated directly from the image.
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Figure 3.14: Qualitative results of KEPLER after last stage. The green dots represent the
final predicted points after last stage. First row are the test samples from
AFLW. Second row shows the samples from AFW dataset. The last two
rows are the results of KEPLER after last stage from AFLW testset for all
variants protocol. The green dots represent the final predicted points after
second stage.
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Figure 3.15: Qualitative results of KEPLER after last stage on COFW dataset. The green
dots represent the final predicted points after last stage.

Figure 3.16: Qualitative results of KEPLER after last stage on IJBA dataset. The green
dots represent the final predicted points after last stage.
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Chapter 4: Disentangling 3D Pose in A Dendritic CNN for

Unconstrained 2D Face Alignment

4.1 Introduction

As shown in [10], accurate face alignment improves the performance of a face verifica-

tion system, as well as other applications such as 3D face modelling, face animation

etc. Currently, face alignment is still dominated by regression-based approaches

which yield a fixed number of points. Explicit Shape Regression (ESR) [25] and Su-

pervised Descent Method (SDM) [158] have addressed the problem of face alignment

for faces in medium pose. To achieve sub-pixel accuracy on such face images, coarse

to fine approaches have also been proposed in the literature [89, 168, 174]. It is evi-

dent that such methods perform poorly on face images with extreme pose, expression

and lighting mainly because they are dependent on bounding box and mean face

shape intializations. On the other hand, Convolutional Neural Networks (CNNs)

have achieved breakthroughs in many vision tasks including the task of keypoints es-

timation [109]. Lately, researchers have used heatmap regression extensively for the

task of face alignment and pose estimation using an Encoder-Decoder architecture

in the form of Convolution-Deconvolution Networks [32]. Most of the approaches in
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Figure 4.1: (a) A bird’s eye view of the proposed method. Dendritic CNN is explicitly
conditioned on 3D pose. A generic CNN is used for auxiliary tasks such as
fine-grained localization or occlusion detection.

the literature perform heatmap classification followed by regression [11, 17, 18, 21].

In this work, we propose the Pose Conditioned Dendritic Convolution Neural Net-

work (PCD-CNN); which models the dendritic structure of facial landmarks using

a single CNN (see Figure 4.1).

Shape constraint: Methods such as ESR [25] and SDM [158] impose the

shape constraint by jointly regressing over all the points. Such a shape constraint

cannot be applied to a profile face as a consequence of extreme pose leading to a

variable number of points. Tree structured part models (TSPM) [177] by Zhu et al.

had two major limitations associated with it; namely pre-determined models and

slower run-time. With an intent to solve these, we propose a tree structure model in

a single Dendritic CNN (PCD-CNN), which is able to capture the shape constraint

in a deep learning framework.

Pose: Works such as Hyperface [115] and TCDCN [172] have used 3D pose in

a multitask framework and demonstrated that learning pose and keypoints jointly

using a deep network improves the performance of both tasks. However, in contrast

to multi-tasking approaches, we condition the landmark estimates on the head pose,

following a Bayesian formulation and demonstrate the effectiveness of the proposed
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approach through extensive experiments. We wish to point out that our primary

goal is not to predict the head pose, instead, use 3D head pose to condition the

landmark points. This makes our work different from multitask approaches.

Speed-vs-Accuracy: We observe that systems which process images at real

time, such as [14,75] have higher error rate as opposed to cascade methods which are

accurate but slow. Researchers have proposed many different network architectures

like Hourglass [109], Binarized CNN (based on hourglass) [18] in order to achieve

accuracy in keypoints estimation. Although, such methods are fully convolutional

, they suffer from slower run time as a result of cascaded deep bottleneck modules

which perform a large number of FLOPs during test time. The proposed PCD-

CNN works at the same scale as the input image and thus reduces the extrapolation

errors. PCD-CNN is fully convolutional with fewer parameters and is capable of

processing images almost at real time speed (20FPS). Limited generalizability as a

consequence of smaller number of parameters is tackled by efficiently training the

network using Mask-Softmax loss and difficult sample mining.

Generalizability: Methods for domain-limited face images have been de-

veloped, mostly following the cascade regression approach. [24, 156, 167] have been

shown to work well for faces under extreme external object occlusion. On the other

hand, [92, 116, 142, 144, 145, 174] achieved satisfactory results on the 300W [123]

dataset which contains images in medium pose with almost no occlusion. [73,85,176]

have demonstrated their effectiveness for extreme pose datasets with a limited num-

ber of fiducial points. However, they do not generalize very well to other datasets.

We show that by a small increase in the number of parameters, PCD-CNN can be
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extended to most of the publicly available datasets including 300W, COFW, AFLW

and AFW yielding variable number of points depending on the protocol.

(a)

(b)

Figure 4.2: (a) Details of the proposed method. The dotted lines on top of convolution
layers denote residual connections. The feature maps from the pose model are
multiplied element-wise with the feature maps of the keypoint model. The
network inside the grey box represents the proposed PCD-CNN, whereas the
second network inside the blue box is modular and can be replaced for an
auxiliary task. A conv-deconv network for finer localization is used alongside
a second regression network for occlusion detection. (b) Proposed dendritic
structure of facial landmark points for effective information sharing among
landmark points. The nodes of the dendritic structure are the outputs of
deconvolutions while the edges between nodes i and j are modeled by con-
volution functions fij . For the architecture of deconvolution network refer to
Figure 4.3.

To summarize, the main contributions of this work are :

• We propose the Pose Disentangled Dendritic CNN for unconstrained 2D face

alignment, where the shape constraint is imposed by the dendritic structure of

facial landmarks. The proposed method uses classification followed by classifi-
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cation approach as opposed to classification followed by regression. The second

auxiliary network is modular and can be designed for fine grained localization

or any other auxiliary tasks.

• The proposed method disentangles the head pose using a Bayesian framework

and experimentally demonstrates that conditioning on 3D head pose improves

the localization performance. The proposed method processes images at real-

time speed producing accurate results.

• With a recursive extension, the proposed method can be extended to datasets

with arbitrarily different number of points and different auxiliary tasks.

• As a by-product, the network outputs pose estimates of the face image where

we achieve close to state-of-the-art result on pose estimation on the AFW

dataset. In another experiment, the auxiliary classification network is trained

for occlusion detection where we obtain state-of-the-art result for occlusion

detection on COFW dataset.

4.2 Prior Work

We briefly review prior work in the area of keypoint localization under the following

two categories: Deep Learning-based and Hand crafted features-based methods.

Parametric part-based models such as Active Appearance Models (AAMs) [36]

and Constrained Local Models [38] are statistical methods which perform keypoint

detection by maximizing the confidence of part locations in a given input image

using handcrafted features such as SIFT and HOG. The tree structure part
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model (TSPM) proposed in [177] used deformable part-based model for simultaneous

detection, pose estimation and landmark localization of face images modeling the

face shape in a mixture of trees model. Later, [9] proposed learning a dictionary of

probability response maps followed by linear regression in a Constrained Local Model

(CLM) framework. Early cascade regression-based methods such as [8, 25, 134, 142,

144,158,174] also used hand crafted features such as SIFT to capture appearance of

the face image. The major drawback of regression-based methods is their inability

to learn models for unconstrained faces in extreme pose.

Deep learning-based methods have achieved breakthroughs in a variety of

vision tasks including landmark localization. One of the earliest works was done

in [89,135] where a cascade of deep models was learnt for fiducial detection. 3DDFA

[178] modeled the depth of the face image in a Z-buffer, after which a dense 3D face

model was fitted to the image via CNNs. Pose Invariant Face Alignment (PIFA) [73]

by Jourabloo et al. predicted the coefficients of 3D to 2D projection matrix via deep

cascade regressors. [14] used 3D spatial transformer networks to capture 3D to 2D

projection. [69, 76, 99] extended [73] by using CNNs to directly learn the dense 3D

coordinates. The proposed method has a dendritic structure which looks at the

global appearance of the image while the local interactions are captured by pose

conditioned convolutions. PCD-CNN does not assume that all the keypoints are

visible and the interactions between keypoints are learned. PCD-CNN is entirely

based on 2D images, which captures the 3D information by conditioning on 3D head

pose.

Formulating keypoint estimation as the per-pixel labeling task, Hourglass net-
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works [109] and Structured feature learning [34] were proposed. Hourglass networks

use a stack of 8 very deep hourglass modules and hence, even though based en-

tirely on convolution can process only 8-10 frames per second. [34] implemented

message passing between keypoints, however was able to process images at lower

resolution due to large number of parameters. PCD-CNN models the dendritic

structure in branched deconvolution networks where each network is implemented

in Squeezenet [68] fashion and hence has fewer parameters, contributing to real-time

operation at full image scale.

In the next few sections, we describe Pose Conditioned Dendritic-CNN in detail

and present ablative studies to arrive at the desired architecture.

4.3 Pose Conditioned Dendritic CNN

The task of keypoint detection is to estimate the 2D coordinates of, say N landmark

points, given a face image. Observing the effectiveness of deep networks for a variety

of vision tasks, we present a single end-to-end trainable deep neural network for

landmark localization.

It has been shown in previous works that capturing structural dependencies

between different keypoints is important [34]. THis work derives its motivation

from the work by Zhu and Ramanan [177] where every keypoint was modeled as a

part and mixture of trees was used to select the best fitting model. Modeling such

structural interactions between keypoints pose a great challenge in a deep learning

framework as the invisible points are not annotated.
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Conditioning on 3D pose: Keypoints are susceptible to variations in ex-

ternal factors such as emotion, occlusion and intrinsic face shape. On the other

hand, 3D pose is fairly stable to them and can be estimated directly from 2D im-

age [85]. Reasonably accurate 2D keypoint coordinates can be also inferred given

3D pose and a generic 3D model of a human face. However, the converse problem

of estimating 3D pose from 2D keypoints is ill posed. Therefore, we make use of

the probabilistic formulation over the variables including the image I ∈ Rw×h×3 of

height h and width w, 3D head pose denoted by P ∈ R3, 2D keypoints C ∈ RN×2,

where N is the number of keypoints. Following the natural hierarchy between the

two tasks, the joint and the conditional probabilities can be written as:

p(C,P, I) = p(C|P, I)p(P|I)p(I) (4.1)

p(C,P|I) = p(C,P, I)
p(I)

= p(P|I)︸ ︷︷ ︸
CNN

. p(C|P, I)︸ ︷︷ ︸
PCD-CNN

(4.2)

We implement the first factor with an image-based CNN learned to predict the 3D

pose of the face image. The second factor is implemented through a ConvNet and

multiple DeconvNets arranged in a dendritic structure. The convolution network

maps the image to lower dimension, after which the outputs of several deconvo-

lution networks are stacked to form the keypoint-heatmap. The models are tied

together by element-wise product (as (4.1) and (4.2)) to condition the measurement
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of 2D coordinates on 3D pose. We choose element-wise product as the operation to

condition on the head pose as keypoint heatmaps can be interpreted as probability

distribution over the keypoints. The visibility of each keypoint is learnt implicitly

as the invisible points are labeled as background.

Multi-tasking-vs-Conditioning: In a multi-tasking method such as [85],

several tasks are learnt synergetically and backpropagation impacts all the tasks. On

the other hand, in the proposed PCD-CNN, the error gradients backpropagated from

keypoint network affect both, keypoint network and pose network; however, the pose

network affects the keypoint network only during the forward pass. In other words,

multi-tasking approaches try to model the joint distribution p(C,P|I) , whereas

the proposed approach explicitly models the decomposed form p(P|I)p(C|P, I) by

learning the individual factors.

Proposed Pose Conditioned Dendritic CNN : We propose the dendritic

structure of facial landmarks as shown in figure 4.7b where the nose tip is assumed to

be the root node. Such a structure is feasible even in faces with extreme pose. Fol-

lowing this, the keypoint estimation network is modeled with a single CNN in a tree

structure composed of convolution and deconvolution layers. The pairwise relation-

ships between different keypoints are modeled via specialized functions, fi,j, which

are implemented through convolutions and are analogous to the spring weights in

the spring-weight model of Deformable Part Models [49]. A low confidence of a par-

ticular keypoint is reinforced when the response of fi,j corresponding to the adjacent

node is added. With experimental justifications we show that such a deformable tree

model outperforms the recently published works [14,75,76,99] which use 3D models
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and 3D spatial transformer networks to supplement keypoint detection models. Fig-

ure 4.2 shows the overall architecture of the proposed PCD-CNN and the proposed

dendritic structure of the facial landmarks.

Instead of going deeper or wider [18, 109] with deep networks, we base our

work on the Squeezenet-11 [68] architecture, attributing to its capability to main-

tain performance with fewer parameters. We use two Squeezenet-11 networks; one

for pose and other for keypoints, named as -PoseNet and KeypointNet respectively.

Convolutions are performed on the pool8 activation maps of the PoseNet, the re-

sponse of which is then multiplied element-wise to the response maps of pool8 layers

of the KeypointNet. Each convolution layer is followed by ReLU non-linearity and

batch normalization. In table 4.10, we show that keypoint localization error reduces

when conditioned on 3D head pose.

The design of deconvolution network is non-trivial. To maintain the same

property as of SqueezeNet, we first upsample the feature maps using parametrized

strided convolutions and then squeeze the output features maps using 1x1 convolu-

tions. We call this network as Squeezenet-DeconvNet. Figure 4.3 shows the detailed

architecture of the Squeezenet-DeconvNet. Since, each keypoint in the proposed net-

work is modeled by a separate Squeezenet-DeconvNet, it alleviates the need for large

number of deconvolution parameters (256 and 512 3× 3 in Hourglass networks). In

fact, in the practical version of PCD-CNN, there are only 32 and 16 deconvolution

filters which results in the design of networks, which are small enough to fit in a

single GPU. The design of networks with fewer filters is motivated by real-time

processing consideration. With experiments we show that disentangling the pose

69



Method Normalised Error
Without pose conditioning 3.45
With pose conditioning 2.85

Table 4.1: Root mean square error normalized by bounding box size, calculated on the
AFLW validation set following the PIFA protocol. The proposed PCD-CNN
when conditioned on pose yields better performance for the task of keypoint
localization.

Method Normalised Error
Classification+Regression 3.93
Classification+Classification 3.09

Table 4.2: Mean square error normalized by bounding box size, calculated on the AFLW
validation set following the PIFA protocol. This table shows that PCD-CNN
when followed by another classification stage results in lower localization error
compared to classification followed by regression. Note that conditioning on
pose is not used in both the cases above for fair comparison.

by conditioning on it, reinforces the learning of the proposed PCD-CNN with fewer

parameters (Table 4.10).

In order to obtain fine grained localization results, we concatenate to the

input data, a learned function of the predicted probabilities (represented as purple

box in Figure 4.7a) and pass them through the second Squeezenet based conv-

deconv network. This function is modeled by a residual unit with 1 × 1 and 3 × 3

filters, which are learned end-to-end with the second classification network (while

keeping the weights PCD-CNN frozen). For experimental purposes, we replace

the second conv-deconv by another regression network designed along the lines of

GoogleNet [137]. Table 4.2 shows a comparison between two stage classification

approach versus classifcation followed by regression approaches.

One of the goals of this work is to generalize the facial landmark detection to

other datasets in order to broaden its applicability. A trivial extension would be
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Figure 4.3: Detailed description of a single Squeezenet-DeconvNet network. Note the
fewer number of deconvolution filters. Each deconvolution network is identical
to the one shown above.

to increase the number of deconvolution branches, which however is infeasible due

to limited GPU memory. With a non-trivial extension, PCD-CNN can be extended

to yield more landmark points arranged in different configurations. In figure 4.9

we show the proposed tree structures for COFW and 300W datasets with 29 and

68 landmark points respectively. Keeping the basic dendritic structure intact, first

the number of output response maps in the last deconvolution layer are increased

and then network slicing is performed to produce the desired number of keypoints.

For instance, the output of the deconvolution network for eye-center is sliced to

produce four outputs as required by the 300W dataset. Depending on the dataset,

the second network can be replaced to perform auxiliary tasks resulting in a modular

architecture; for instance in the case of COFW dataset we replace the second conv-

deconv network with another Squeezenet network to detect occlusion. We direct

the readers to the supplementary material for more details on network surgery and

a magnified view of figures 4.7b and 4.9.

Each branch of PCD-CNN is designed according to the proposed Squeezenet-

Deconv networks shown in Figure 4.3. Due to fewer parameters in the Squeezent-
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Figure 4.4: The proposed extension of the dendritic structure from Figure 4.2 generalizing
to other datasets (COFW and 300W) each with different number of points.

Deconv, we hypothesize limited generalization capacity of the deconvolution net-

work. By means of experiments, we show that effective training methods such as

Mask-Softmax and Hard sample mining improves the performance of PCD-CNN by

a large margin as a result of better generalization capacity.

Mask-Softmax Loss: To train the network, the localization of fiducial key-

points is formulated as a classification problem. The label for an input image of size

h × w × 3 is a label tensor of same size as the image with N + 1 channels, where

N is the number of keypoints. The first N channels represent the location of each

keypoint whereas the last channel represents the background. Each pixel is assigned

a class label with invisible points being labeled as background. The objective is to

minimize the following loss function:

L0(p,g) =
h∑
i=1

w∑
j=1

m(i, j)
N+1∑
k=1

gk(i, j)log
(

epk(i,j)∑
l epl(i,j)

)
(4.3)

where k ∈ {1, 2 . . . N} is the class index and gk(i, j) represents the ground truth

at location (i, j). pl(i, j) is the score obtained for location (i, j) after forward pass

through the network. Since the number of negative examples is orders of magnitudes

larger than the positives, we design a strategic mask m(i, j) which selects all the
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Method Normalised Error
Softmax 4.56
Using Mask-Softmax 2.85

Table 4.3: Root mean square error normalized by bounding box calculated on the AFLW
validation set following PIFA protocol. This table indicates the effect of using
Mask-softmax over Softmax.

positive pixel samples, and keeps only 50% of the 4-neighborhood pixels and 0.025%

of the negative background samples by random selection. During backward pass, the

gradients are weighed accordingly. We experimentally show the effect of using Mask-

Softmax Loss by training two separate PCD-CNN; with and without the Mask-

Softmax Loss; trained under identical training policies(Table 4.3) .

Hard Sample Mining: [77] by Kabkab et al. showed that effective sampling

of data improves the classification performance of the network. Following [77], we

use an offline hard sample mining procedure to train the proposed PCD-CNN. The

histogram of error on the training data is plotted after the network is trained for 10

epochs by random sampling (refer supplementary material). We denote the mode

of the distribution as C, and categorize all the training samples producing errors

larger than C as hard samples. Next we retrain the proposed PCD-CNN with hard

and easy samples, sampled at the respective proportion. This effectively results in

retraining the network by reusing the hard samples. Table 4.4 shows that such hard

sample mining improves the performance of PCD-CNN (with fewer parameters) by

a large margin.

In the next set of experiments, we train PCD-CNN by increasing the number

of deconvolution filters to 128 and 64 in each deconvolution network. We follow
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Method Normalised Error
Without Hard Mining 2.85
With Hard Mining 2.49

Table 4.4: Root mean square error normalized by bounding box calculated on the AFLW
validation set following PIFA protocol. This table depicts the effect of offline
hard sample mining.

Method Normalised Error
Less Filters+Hard Mining 2.49
More Filters+Hard Mining 2.40

Table 4.5: Root mean square error normalized by bounding box calculated on the AFLW
validation set following PIFA protocol. This table shows the effect of offline
hard-mining and quadrupling the number of deconvolution filters.

the same strategy of Mask-Softmax and hard sample mining to train this network.

Unsurprisingly, we see an improvement in performance for the task of keypoint

localization (Table 4.5), although, increasing the number of deconvolution filters

leads to slower run time of 11FPS as opposed to 20FPS.

4.4 Magnified version of the Tree

One expects to receive information from all other keypoints in order to optimize the

features at a specific keypoint. However, this has two drawbacks: First, to model

the interaction between keypoints lying far away such as ‘eye corner’ and ‘chin’,

convolution kernels with larger size have to be introduced. This leads to increase

in the number of parameters. Secondly, relationships between some keypoints are

unstable, such as ‘left eye corner’ and ‘right eye corner’. In a profile face image one of

the points may not be visible and passing information between those two keypoints

may lead to erroneous results. Hence, convolution kernels are learned at the size of
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14 × 14 which ensures keypoints which are closer and have stable relationships to

be connected together.

We also describe the process of extending the proposed dendritic structure of

facial landmarks to other datasets with variable number of landmark points. Figure

4.9a shows the tree structure of the 21 landmark points compatible with the AFLW

dataset. In figure 4.9b and 4.9c the number of points is increased to 29 and 68 respec-

tively compatible with COFW and 300W datasets. We wish to keep the structure

of the facial landmarks intact while increasing the number of landmark points. For

this, we make use of the network surgery. First, the number of deconvolution filters

in the penultimate and ultimate deconvolution layers is increased to 128 and 64

respectively. Next 1× 1 convolutions are used to obtain desire number of outputs,

which is then sliced and concatenated in order for loss computation. For instance,

eye center points is split into 4 landmark points in the case of COFW and 300W

datasets, and ear corner points are dropped. An advantage of network surgery is

that, it leads to yielding a variable number of landmark points with minimal increase

in parameters while keeping the face structure intact.

4.5 Experiments

We select four different datasets with different characteristics to train and evaluate

the proposed two stage PCD-CNN.

AFLW [82]and AFW [177] are two difficult datatsets which comprises of

images in extreme pose, expression and occlusion. AFLW consists of 24, 386 in-the-
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wild faces (obtained from Flickr) with head pose ranging from 0◦ to 120◦ for yaw

and upto 90◦ for pitch and roll. AFLW provides at most 21 points for each face. It

excludes coordinates for invisible landmarks and in our method such invisible points

are labelled as background. For AFLW we follow the PIFA protocol; i.e. the test set

is divided into three groups corresponding to three pose groups with equal number

of images in each group.

AFW which is a popular benchmark for the evaluation of face alignment algo-

rithms, consisting of 468 in-the-wild faces (also obtained from Flickr) with yaw up

to 90◦. The images are diverse in terms of pose, expression and illumination and was

considered the most difficult publicly available dataset, until AFLW. The number

of visible points varies depending on the pose and occlusion with a maximum of 6

points per face image. We use AFW only for evaluation purposes.

A medium pose dataset from the popular 300W face alignment competition

[123]. The dataset consists of re-annotated five existing datasets with 68 landmarks:

iBug, LFPW, AFW, HELEN and XM2VTS. We follow the work [174] to use 3, 148

images for training and 689 images for testing. The testing dataset is split into three

parts: common subset (554 images), challenging subset (135 images) and the full

set (689 images).

Another dataset showing extreme cases of external and internal object occlu-

sion; COFW [155]. COFW is the most challenging dataset that is designed to

depict faces in real-world conditions with partial occlusions [24]. The face images

show large variations in shape and occlusions due to differences in pose, expression,

hairstyle, use of accessories or interactions with other objects. All 1,007 images were
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annotated using the same 29 landmarks as in the LFPW dataset, with their indi-

vidual visibilities. The training set includes 845 LFPW faces + 500 COFW faces,

that is 1,345 images in total. The remaining 507 COFW faces are used for testing.

Evaluation Metric: Following most previous works, we obtain the error for

each test sample via averaging normalized errors for all annotated landmarks. We

illustrate our results with mean error over all samples, or via Cumulative Error

Distribution (CED) curve. For AFLW and AFW, the obtained error is normalized

by the ground truth bounding box size over all visible points whereas for 300W

and COFW, error is normalized by the inter-occular distance. Wherever applicable

NME stands for Normalized Mean Error.

Training: The PCD-CNN was first trained using the AFLW training set

which was augmented by random cropping, flipping and rotation. The network

was trained for 10 epochs where the learning rate starting from 0.01 was dropped

every 3 epochs. Keeping the weights of PCD-CNN fixed, the auxiliary network for

fine grained classifcation was trained for another 10 epochs using the hard mining

strategy explained in section 4.3. PoseNet was kept frozen while training the network

for COFW and 300W datasets. All the experiments including training and testing

were performed using the Caffe [72] framework and Nvidia TITAN-X GPUs and

p6000 GPUs. Being a non-iterative and single shot keypoint prediction method, our

method is fast and can process 20 frames per second on 1 GPU only in batch mode.

77



4.6 Training Details

KeypointNet and PoseNet described in section 3 are designed based on the SqueezeNet

architecture, attributing its lower parameter count. The proposed PCD-CNN was

first trained using AFLW training set, where Mask-Softmax is used for keypoints

and Euclidean Loss for 3D pose estimation. Starting from the learning rate of

0.001, the network was trained for 10 epochs with momentum set to 0.95. The

learning rate was dropped by a factor of 10 every 3 epochs. While training PCD-

CNN for COFW and 300W datasets, the convolution branch was initialized with

the previously trained network, whereas the deconvolution branches were trained

from scratch. Since, COFW and 300W datasets does not provide 3D pose ground

truth, we leverage the previously trained PoseNet and freeze its weights.

4.6.1 Effect of Pose Disentaglement

Next, we also perform an experiment to observe the effect of 3D pose conditioning

on the second auxiliary network designed for fine grained localization. Table 4.10

shows the effect of disentangling pose by conditioning, when the auxiliary conv-

deconv network does not receive information from the PoseNet.

4.6.2 Improvement in localization by augmentation during testing

For a fair comparison with the previous state-of-the-art methods we did not perform

augmentation during testing. In the next set of experiments along with the test

image, we also pass the flipped version of it and the final output is taken as the mean
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AFLW AFW
Method NME NME
TSPM [177] - 11.09
CDM [2] 12.44 9.13
RCPR [24] 7.85 -
ESR [25] 8.24 -
PIFA [73] 6.8 9.42
3DDFA [178] 5.32 -
LPFA-3D [74] 4.72 7.43
EMRT [175] 4.01 3.55
Hyperface [115] 4.26 -
Rec Enc-Dec [1] >6 -
PIFAS [76] 4.45 6.27
FRTFA [14] 4.23 -
CALE [21] 2.63 -
KEPLER [85] 2.98 3.01
Binary-CNN [18] 2.85 -
PCD-CNN(Fast) 2.85 2.80
PCD-CNN(C+C) 2.49 2.52
PCD-CNN(Best: C+C+more filters) 2.40 2.47

Table 4.6: Comparison of the proposed method with other state of the art methods. C+C
stands for classification+classification. For AFLW, numbers for other methods
are taken from respective papers following the PIFA protocol. For AFW, the
numbers are taken from respective published works following the protocol of
[177].

of the two outputs. With experimentation we observe that data augmentation while

testing also improves the localization performance. This does not incur any increase

in run-time as the inputs can be passed through the network in batch mode, keeping

the runtime still at 20FPS. Table 4.11 shows the effects of data augmentation during

testing.

4.6.3 Training PCD-CNN for COFW

This section covers the details of training for the COFW dataset. The PCD-CNN

network was trained using the Mask Softmax and hard negative mining. The second
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Method [0,30] [30,60] [60,90] Mean
HyperFace [115] 3.93 4.14 4.71 4.26
AIO [114] 2.84 2.94 3.09 2.96
Binary-CNN [18] 2.77 2.86 2.90 2.85
PCD-CNN(C+C) 2.33 2.60 2.64 2.49

Table 4.7: Comparison of the proposed method with other state of the art methods on
AFLW-PIFA test set, categorized by absolute yaw angles. The numbers repre-
sent the normalized mean error.

Method Common Challenge Full
RCPR [24] 6.18 17.26 8.35
SDM [158] 5.57 15.40 7.52
ESR [25] 5.28 17.00 7.58
CFAN [168] 5.50 16.78 7.69
LBF [116] 4.95 11.98 6.32
CFSS [174] 4.73 9.98 5.76
TCDCN [172] 4.80 8.60 5.54
DDN [165] - - 5.59
MDM [142] 4.83 10.14 5.88
TSR [103] 4.36 7.56 4.99
PCD-CNN 3.67 7.62 4.44

Table 4.8: Comparison of the proposed method with other state-of-the-art methods on
300W dataset. The NME for comparison are taken from the Table 3 of [103].

auxiliary network was trained for the task of occlusion detection. According to the

released details about the COFW dataset, around 23% of the landmark points are

invisible. Hence, to tackle the class imbalance problem between the visible and

invisible points the following loss function was used.

L(p,g) =
29∑
i=1

(0.23 ∗ 1gvisi =1 + 0.77 ∗ 1gvisi =0)(pvisi − gvisi )2 (4.4)

where p,g are the vector of predicted and ground-truth visibilities. pvisi and gvisi are

the values of the individual elements in the vectors of visibilities. The weighted loss

function also balances the gradients back-propagated while loss calculation.
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(a) (b)

(c)

Figure 4.5: Cumulative error distribution curves for landmark localization on AFLW,
AFW and COFW dataset respectively. (a) Numbers in the legend repre-
sents mean error normalized by the face size. (b) Numbers in the legend are
the fraction of testing faces that have average normalized error below 5%. (c)
The numbers in the legend are the fraction of testing faces that have average
normalized error below 10%.

Figure 4.6 shows the failure rate and error rate on the COFW dataset. The

failure rate on the COFW dataset drops to 4.53% bringing down the error rate

to 6.02. When testing with the augmented images the error rate further drops to

5.77 bringing it closer to human performance 5.6. Figure 4.8a shows the precision

recall curve for the task of occlusion detection on the COFW dataset. PCD-CNN

achieves a significantly higher recall of 44.7% at the precision of 80% as opposed to

RCPR’s [24] 38.2%.
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Method NME Failure Rate
RCPR [24] 8.5 20%
OFA [167] 6.46 -
HPM [54] 8.48 6.99%
ERCLM [16] 6.49 6.3%
RPP [160] 7.52 16.2%
Human [24] 5.6 0%
PCD-CNN 6.02 4.53%

Table 4.9: Comparison of the proposed method with other state of the art methods on
COFW dataset.

Method NME
PCD-CNN + Auxiliary Network 2.99
PCD-CNN + Pose Conditioned Auxiliary Network 2.49

Table 4.10: Mean square error normalized by bounding box calculated on AFLW test
set following PIFA protocol. When PCD-CNN and fine-grained localization
network both are conditioned on pose yields lower error rate.

4.7 Hard mining

Figure 4.7 shows the distribution of average normalized error on the training sets of

AFLW and COFW datasets. The error distributions were obtained upon evaluating

the PCD-CNN network on the training set, after it is trained with the whole dataset

for 10 epochs. The dataset is partitioned into hard and easy samples after choosing

the mode of the distribution as the threshold. Next, the network is trained again,

Dataset Pre-Aug Post-Aug
AFLW-PIFA (PCD-CNN-Fast) 2.85 2.81
AFW (PCD-CNN-Fast) 2.80 2.66
AFLW-PIFA (PCD-CNN-C+C) 2.49 2.40
AFW (PCD-CNN-C+C) 2.52 2.36
COFW (PCD-CNN-Fast) 6.02 5.77
300W-Challenge (PCD-CNN-Fast) 7.62 7.17

Table 4.11: NME on different datasets Pre-Augmentation and Post-Augmentation during
testing.
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Figure 4.6: Comparison of NME and failure rate over visible landmarks out of 29 land-
marks from the COFW dataset.

(a)

(b)

Figure 4.7: Histogram of error, when evaluated on the training set of (a) AFLW (b)
COFW.
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(a) (b)

(c) (d)

Figure 4.8: (a) Precision Recall for the occlusion detection on the COFW dataset.
(b)Cumulative error distribution curves for pose estimation on AFW dataset.
The numbers in the legend are the percentage of faces that are labeled within
±15◦ error tolerance. Cumulative Error Distribution curve for (c) Helen (d)
LFPW, when the average error is normalized by the bounding box size.

(a) (b) (c)

Figure 4.9: The proposed extension of the dendritic structure from Figure 1, generalizing
to other datasets with variable number of points.
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by sampling equal number of images from both groups, which results in an effective

reuse of the hard examples.

4.8 More results on AFLW, AFW, LFPW and HELEN

In this section, we show some more results obtained by the PCD-CNN on AFW,

LFPW and Helen datasets. Figure 4.8b shows the cumulative error distribution

curves for the prediction of face pose on AFW dataset. We observe that even though

the primary objective of PCD-CNN is not pose prediction, it achieves state-of-the-

art results when compared to recently published works Face-DPL [177],RTSM [67].

Figures 4.8c and 4.8d show the cumulative error distribution curve on LFPW

and Helen datasets, when the average error is normalized by face size. PCD-CNN

achieves significant improvement over the recent work of GNDPM [144].

Figure 4.11 shows some of the difficult test samples from AFLW, AFW, COFW

and IBUG datasets respectively.

4.8.1 Results

Table 4.6 compares the performance of proposed method over other existing methods

on AFLW-PIFA and AFW dataset. Table 4.7 compares the performance on AFLW-

PIFA with respect to each pose group. Tables 6.6 and 4.9 compares the mean

normalized error on the 300W and COFW datasets respectively. It is clear from the

tables that while the proposed PCD-CNN performs comparable to previous state-

of-the-art method [18], the two stage PCD-CNN outperforms the state-of-the-art
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Figure 4.10: Qualitative results generated from the proposed method. The green dots rep-
resent the predicted points. Every two show randomly selected samples from
AFLW, AFW, COFW, and 300W respectively with all the visible predicted
points.
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methods on all three datasets: AFLW, AFW and COFW by large margins. It

is not surprising that increasing the number of deconvolution filters improves the

performance on all the datasets. Figures 4.5a, 4.5b and 4.5c show the cumulative

error distribution for landmark localization in AFLW, AFW and COFW test sets.

From the plots, we observe that the proposed PCD-CNN leads to a significant

increase in the percentage of images with mean normalized error less than 5%. On

AFW, fraction of images having an error of less than 15◦ for pose estimation is

87.22% compared to 82% in the recent work [67]. On COFW dataset, the NME

reduces to 6.02 (close human performance of 5.6) bringing down the failure rate

to 4.53%. PCD-CNN achieves a higher recall of 44.7% at the precision of 80%

as opposed to RCPR’s [24] 38.2%. (refer to the supplementary material for more

results.)

Figure 4.11: Qualitative results generated from the proposed method. The green dots
represent the predicted points. Each row shows some of the difficult sam-
ples from AFLW, AFW, COFW, and 300W respectively with all the visible
predicted points.
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Based on our experiments, we observe that two major factors are responsi-

ble for achieving state-of-the-art results on the task of face alignment. First, the

choices made during the design of PCD-CNN and efficient training; and secondly,

disentangling of pose by conditioning on it. With the assistance of above two fac-

tors PCD-CNN is able to effectively localize landmark points on unconstrained faces

directly from 2D images without using 3D morphable models. Figure 4.11 shows

some of the difficult images and the predicted visible keypoints on the four datasets.

We also achieve state of the art results on the performance of auxiliary tasks, such

as pose estimation on AFW and occlusion prediction on COFW dataset.

4.9 Conclusions

In this work, we present a dendritic CNN which processes images at full scale looking

at the images globally and capturing local interactions through convolutions. We

also demonstrate that disentangling pose by conditioning on it can influence the

localization of landmark points by reducing the mean pixel error by a large margin.

We show that due to effective design choices made, the proposed model is not

limited to yield a fixed number of points and can be extended to other datasets with

different protocols. With the help of ablative studies, impact of effective training of

the convolutional network by using sampling strategies such as Mask-Softmax and

hard instance sampling is shown. Using smaller and fewer convolution filters, the

proposed network is able to process images close to real-time and can be deployed

in a real life scenario. The proposed method can be easily extended to 3D face
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alignment and human pose estimation tasks, which we plan to pursue in the future.
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Chapter 5: A Cascaded Convolutional Neural Network for

Age Estimation of Unconstrained Faces

5.1 Introduction

Face analysis is an active research topic in computer vision with applications in

surveillance, human-computer interaction, access control, and security. In this work,

we focus on apparent age estimation. Traditionally, the problem is tackled through

pure classification or regression approaches. In this chapter, we present a cascaded

approach which incorporates the advantages of both classification and regression

approaches. Given an input image, we first apply the age group classification algo-

rithm to obtain a rough estimate and then perform age group specific regression to

obtain an accurate age estimate.

Like other facial analysis techniques, age estimation is affected by many in-

trinsic and extrinsic challenges, such as illumination variation, race, attributes, etc.

One may define the age estimation task as a process of automatically labeling face

images with the exact age, or the age group (age range) for each individual. It was

suggested in [50] to differentiate the problem of age estimation along four concepts:

• Actual age: real age of an individual.
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Figure 5.1: Estimated age on sample images from [45]. Our method is able to predict the
age in unconstrained images with variations in pose, illumination, age groups,
and expressions.

• Appearance age: age information shown on the visual appearance.

• Apparent age: suggested age by human subjects from the visual appearance.

• Estimated age: recognized age by an algorithm from the visual appearance.

The proposed cascaded classification and regression approach for apparent age

estimation is based on a deep convolutional neural network. Our method consists of

three main stages: (1) a single coarse age classifier, (2) multiple age regressors, and

(3) an error correcting stage to correct the mistakes made by the age group classifer.

Since the number of samples for apparent age estimation is limited, we exploit a

DCNN model pretrained for large-scale face identification task and finetune the

model for age group classification and age regression tasks. This strategy is effective

since the face recognition model trained on the CASIA-WebFace dataset [162] (i.e. it

consists of 10,575 subjects and 494,414 images.) encodes rich information reflecting

large variations in facial appearances due to aging and variations in pose, expression
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Figure 5.2: An overview of the proposed age cascade apparent age estimator.

and illumination.

The main contribution of this work is to propose the age error correction mod-

ule which mitigates the common disadvantage of coarse-to-fine approaches. Typi-

cally, the errors made at the initial classification stage cannot be recovered by the

regressors at the following stage. In this work, we set up the baseline algorithm

which is based on the proposed regression algorithm in Section 5.3.6 and study

how the coarse-to-fine strategy and the error correction module improve the predic-

tion performance. Figure 5.2 presents an overview of the proposed age estimation

method.

The rest of the chapter is organized as follows: Section 5.2 provides a brief

overview of the related works. The proposed approach is presented in Section 5.3

with a concrete example. Experimental results are provided in Section 5.4, and

Section 5.5 concludes the chapter with a brief summary and discussion.
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5.2 Related Work

Most of the earlier age estimation methods have focused on using shape or textural

features. These features are then fed to a regression method or a classifier to estimate

the apparent age [111,112,143,152].

Holistic approaches usually adopt subspace-based methods, while feature-based

approaches typically extract different facial regions and compute anthropometric dis-

tances. Geometry-based methods [111,143] are inspired by studies in neuroscience,

which suggest that facial geometry strongly influences age perception [111]. As such,

these methods address the age estimation problem by capturing the face geometry,

which refers to the location of 2D facial landmarks on images. Recently, Wu et

al. [152] proposed an age estimation method that presents the facial geometry as

points on a Grassmann manifold. To solve the regression problem on the Grass-

mann manifold, [152] then used the differential geometry of the manifold. However,

the Grassmannian manifold-based geometry method suffers from a number of draw-

backs. First, it heavily relies on the accuracy of landmark detection step, which

might be difficult to obtain in practice. For instance, if an image is taken from a

bearded person, then detecting landmarks would become a very challenging task. In

addition, different ethnic-groups usually have slightly different face geometry, and to

appropriately learn the age model, a large number of samples from different ethnic

groups is required.

Unlike the traditional methods discussed, the proposed method is based on

DCNN to encode the age information from a given image. Recent advances in deep

93



learning methods have shown that compact and discriminative image representation

can be learned using DCNN from very large datasets [29]. There are various neural-

network-based methods, which have been developed for facial age estimation [52,

83, 129] . However, as the number of samples for estimating the apparent age task

is limited, (i.e. not enough to properly learn discriminative features, unless a large

number of external data is added), the traditional neural network methods often fail

to learn an appropriate model.

Thukral et. al. [140] proposed a cascaded approach for apparent age esti-

mation based on classifiers using the naive-Bayes approach and a support vector

machine (SVM) and regressors using the relevance vector machine (RVM). How-

ever, the difference between [140] and the proposed approach is that we leverage the

rich information contained in the DCNN model pretrained using a large-scale face

dataset for age estimation. Also, the proposed error correction module mitigates

the influences of the errors made at initial classification stage.

5.3 Proposed Method

Figure 5.2 shows an overview of our CNN-based cascaded age estimation method.

Our approach consists of three main components: (1) age group classifier, (2) age

regressor to predict the relative age with respect to each age group mean, and (3)

apparent age error correction. Given a face image, we first apply the age group

classifier to get a rough estimate of the age range from the image. Then, we choose

the corresponding age regressor based on the classification results to predict the
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relative age with respect to the predicted group mean and combine them to get

the apparent age estimate. Then, we utilize the characteristic of the classification

plus regression framework to design an age error correction scheme to correct age

classification and regression errors. Finally, the algorithm outputs the final age

estimate for the given input image. In what follows next, we will describe each of

these component in detail.

5.3.1 Face Preprocessing

In our work, all the face detection and facial landmark detection are handled using

the open source library dlib [148] [78]. Three landmark points (the center of the left

eye, the center of the right eye, and the nose base) are used to align the detected

faces into the canonical coordinate system using the similarity transform.

5.3.2 Deep Face Feature Representation

We use the DCNN model with the architecture similar to the one proposed in [162]

which is pretrained for the face-identification task with softmax loss using the

CASIA-WebFace dataset [162]. The CASIA-WebFace dataset consists of 10,575

subjects and 494,414 images. The architecture is composed of 10 convolutional lay-

ers, 5 pooling layers and 1 fully connected layer. In our work, we use PReLU [62]

instead of ReLU as the nonlinear activation function and data augmentation to train

the network. The input is a color image of aligned faces of dimension 100× 100× 3.

The details of this architecture are given in Table 5.1. We do net surgery on this
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network (i.e., we cut off the part after pool5 layer.) and use its pretrained weights

on the CASIA-WebFace dataset to finetune on the age group dataset and apparent

age estimation dataset to perform age group classification and relative age regression

with respect to each age group.

5.3.3 Age Group Classifier

Inspired by the Viola and Jones face detection algorithm [148], we quantize the

human age into several age groups (e.g. 0-7, 8-14, 15-23, etc.) which is an easier

problem than directly performing classification or regression for the whole age range

which requires a large amount of training data. To train the age group classifier,

we remove the original fully connected layer, add the PReLU units and the fully

connected layer with 512 outputs and finetune it on the the Images of Groups [51],

Adience [43] and FGNet [61] datasets to obtain the DCNN-based age group classifier.

5.3.4 Apparent Age Regressor Per Age Group

To train the age regressor for each age group, we prepare the training data by

splitting each training sample into the corresponding age group based on its ground

truth age, and then subtract the mean of that group. The regressors are trained in

two ways. The first one is to extract the pool5 features and use them to train the

regressors with a large batch size. The other is to train the regressor through end-

to-end network finetuning but with a smaller batch size. (i.e., Similarly, we keep

the part before pool5 layer and add fully connected layers.) Since the pool5 feature
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in the face identification task is followed by the fully connected layer with 10,575

output corresponding to the number of subject in the CASIA-WebFace dataset, the

pool5 features should contain strong discriminative information from all the face

images to classify a large number of subjects in the training data. In addition,

we also adopt a novel loss function called, the Gaussian Loss, which takes the a

rough age (i.e. the age is represented as a mean and a standard derivation instead

of the exact age) as input and is robust for apparent age estimation. The role of

the new loss function in learning the nonlinear regression method is discussed in

Section 5.3.6.

For the pre-training of DCNN face representation model, we use the standard

batch size 128 for the training phase. The initial negative slope for PReLU is set to

0.25 as suggested in [62]. The weight decay rates of all the convolutional layers are

set to 0, and the weight decay of the final fully connected layer to 5e-4. In addition,

the learning rate is set to 1e-2 initially and reduced by half every 100,000 iterations.

The momentum is set to 0.9. Finally, we use the snapshot of 1,000,000th iteration

as our pretrained model. For the finetuning of the age group classifier, we use the

learning rate, 1e-4, for the convolutional layers and 1e-3 for the fully connected

layers with 100,000 iterations. For training each age regressor, we first extract all

the 320-d feature vectors for each age group and feed them at once into the age

regressor network. We train it with 30,000 iterations using the learning rate, 1e-2,

and momentum, 0.9. For the end-to-end finetuning of the regressors, we use batch

size, 128, with the learning rate, 1e-4, for the convolutional layers and 1e-3 for the

fully connected layers. The 120,000th models are used for each age regressor. Data
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augmentation is performed by randomly cropping 100 × 100 regions from a 128 ×

128 box and horizontally face flipping.

5.3.5 Age Error Correction

In practice, the age group classifier will make errors and these errors significantly

affect the final age estimation results for the second stage regressors. To handle

these errors, we employ an error correcting approach. When we train the regressor

for each age group, we also include the training examples from the neighboring age

group. For example, given 3 age groups, (1) 8-14, (2) 15-21, and (3) 22-28, if we

want to train the age regressor for the first age group, besides the training samples

with ages ranging from 8 to 14 years old, we also add the training samples from its

neighboring group (i.e., we added the samples from ±2 groups for the experiments.),

that is the second age group. Thus, when the classifier mistakenly assigns the

subject to the neighboring age group, the regressor is able to predict a large enough

value and correct the error caused by the age group classifier. Furthermore, to

take the classifier error into consideration, we also add the misclassified samples to

augment the training samples of all the regressors in between the true and wrong

groups to increase the chance of correcting the imprecise age estimate so that it is

close to the ground truth through our error correction scheme. The detailed step-

by-step illustration for the age error correction scheme and other components will

be presented in the following subsection. The pseudo code for our age correction

approach is given in Algorithm 1.
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Algorithm 1 Age Estiamtion Algorithm
Require: (a) Input face image, I, (b) maxIter iterations, (c) age group classifier, G0, and

age regressor per age group, A0, A1, . . . , AN−1 where N is the number of age groups
and both age group classifier and age regressors are all DCNN-based models.

Ensure: Predicted apparent age, â.
1: g` = G0(I), where g` is the predicted age group label.
2: For i = 0 to N-1
3: ∆ai = Ai(I).
4: End For
5: â = mean(g`)+∆ag` .
6: // Age estimation error correction
7: For i = 0 to maxIter - 1
8: ĝ` = L(â), where L(·) returns the age group label of â.
9: IF ĝ` = g`

10: Return â
11: ELSE
12: â = mean(ĝ`)+∆aĝ`
13: End IF
14: g` = ĝ`
15: End For
16: Return â

Name Type Filter Size/Stride #Params
Conv11 convolution 3×3×1 / 1 0.28K
Conv12 convolution 3×3×32 / 1 18K
Pool1 max pooling 2×2 / 2

Conv21 convolution 3×3×64 / 1 36K
Conv22 convolution 3×3×64 / 1 72K
Pool2 max pooling 2×2 / 2

Conv31 convolution 3×3×128 / 1 108K
Conv32 convolution 3×3×96 / 1 162K
Pool3 max pooling 2×2 / 2

Conv41 convolution 3×3×192 / 1 216K
Conv42 convolution 3×3×128 / 1 288K
Pool4 max pooling 2×2 / 2

Conv51 convolution 3×3×256 / 1 360K
Conv52 convolution 3×3×160 / 1 450K
Pool5 avg pooling 7×7 / 1

Dropout dropout (40%)
Fc6 fully connection 10575 3305K
Cost softmax
total 5015K

Table 5.1: The base architecture of DCNN model used in this work [162] to finetune on
the age group classification and ∆age regression for each age group.
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5.3.6 Non-linear Regression

We use a 3-layer neural network to learn the age regressor for each age group. The

number of layers is determined experimentally to be 3. The regression is learned by

optimizing the Gaussian loss function as follows [45]. The Gaussian loss function is

useful since the apparent age labels are usually not exact.

L = 1
N

i=N∑
i=1

1− e
− (∆xi−µi)

2

2σ2
i , (5.1)

where L is the average loss for all the training samples, ∆xi is the predicted shift

in age from the mean of the corresponding age group. µi is the ground truth shift

in age and σi is the standard deviation in age increment for the ith training sample.

The network parameters are trained using the back-propagation algorithm [118]

with batch gradient descent. The gradient obtained for the loss function is given by

(5.2). This gradient is used for updating the network weights during training using

back-propagation.

∂L

∂∆xi
= 1
Nσ2 (∆xi − µi)e

− (∆xi−µi)
2

2σ2
i . (5.2)

We apply dropout [132] after each fully connected layers to reduce the over-fitting

due to the limited number of training data. The amount of dropout applied is 0.4, 0.3

and 0.2 for the input, first and second layers of the network respectively. The dropout

ratio is applied in a decreasing manner to cope up with the decrease in the number

of parameters for the deeper layers. Each layer is followed by the (PReLU) [62]

activation function except the last one which predicts the age. The first layer is
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the input layer which takes the 320 dimensional feature vector obtained from the

face-identification task. The output of this layer, after the dropout and PReLU

operation, is fed to the fist hidden layer containing 320 hidden units. Subsequently,

the output propagates to the second hidden layer containing 160 hidden units. The

output from this layer is used to generate a scalar value that would describe the

apparent age. Figure 5.3 depicts the 3-layer neural network used.

Figure 5.3: The 3-layer neural network used for estimating the increment in age for each
age group.

5.3.7 A Toy Example

To illustrate the end-to-end pipeline of the proposed age estimation algorithm, we

present a toy example below. In this example, we use the 3 age group setting for the

age group classifier where (1) the first age group is from 8 to 14 years, (2) the second

15 to 21, and (3) the third 22 to 28. The age regressor will predict ∆age with respect

to the mean age of its corresponding group. For example, the regressor for the first

age group takes charge of predicting the real value ranging from -3 (i.e. 8 - 11 = -3,

where 11 is the mean age of the first group) to +3 (i.e. 14 - 11 = 3). Now, given a
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face image with ground truth age 27 years old, ideally the predicted age group label

should be 3 after passing the image into the age group classifier. Then, we will use

the third age regressor to predict its ∆age which should ideally predict the value as

+2 and then we can estimate the apparent age as 25 + 2 = 27 by combining the

results of the age group classifier and its corresponding age regressor where 25 is

the group mean for the third age group. However, as mentioned in Section 5.3.5,

in practice, if the age group classifier makes mistakes, the age estimation results

will be wrong. To handle this error, we do the age error correction as described in

Section 5.3.5. Now, given another face image with ground truth age 14, incorrectly

being classified into third age group, we augment the misclassified samples when

we train the regressor. Thus, it can be expected that the ∆age should be negative

enough, say -5, and as a result, the age estimation will be 25 - 5 = 20 which is

still wrong but falls in the range of the second group. Then, we can pass the image

again to the second group regressor to get a new estimate, say 18 - 4 = 14. We stop

correcting the error when the predicted age and the previous predicted age falls in

the same group or reach the maximum number of iterations. That is, we will pass

the image to the first regressor again and it will predict 11 + 3 = 14 and then we

stop. Otherwise, we continue to perform the correction.

The proposed age estimation algorithm is summarized in Algorithm 1. The ex-

ecution orders for both the classification and regression parts are written in parallel,

and thus it runs in one age group classification plus N ∆age regression simultane-

ously in total. The maximum number of iterations is preset to avoid looping.
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5.4 Experimental Results

We evaluate the proposed method on two publicly available datasets: Adience [43]

and FG-Net [61]. Both datasets include unconstrained images of individuals which

are labeled by their actual biological ages. In addition to these two datasets, we

present results on the ICCV 2015 Chalearn ’Looking at people-Age Estimation’

challenge dataset [45]. The main difference between this dataset and Adience and

FG-Net datasets is that Chalearn includes unconstrained images of individuals la-

beled by their apparent ages.

5.4.1 Datasets

Adience dataset [43] consists of 26, 580 unconstrained images of 2, 284 subjects in 8

age groups (0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+). The standard five-fold,

subject-exclusive cross-validation protocol is used for testing (i.e., we merge 0-2 and

4-6 into one for the experiments of Challenge and FG-Net datasets.)

FG-Net aging dataset [61] contains a collection of 1, 002 images of 82 sub-

jects, where each image is annotated with true age.

Images of groups [51] consists of 28, 231 faces in 5, 080 images. Each face is

annotated with a label corresponding to one of the seven age groups; 0-2, 3-7, 8-12,

13-19, 20-36, 37-65, 66+ .

Chalearn Workshop Challenge dataset is the first dataset on apparent age

estimation containing annotations. The dataset consists of 2, 476 training images,

1, 136 validation images, and 1, 087 test images, which were taken from individuals
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aged between 0 to 100. The images are captured in the wild, with variations in

pose, illumination and quality. Figure 5.4 shows the distribution of the ’Chalearn

Looking at People’ Challenge dataset across the different age groups. It is evident

from this figure that most of the data are distributed around the age group of 20-50,

while there are very few samples in the range of 0-15 and above 55. The remaining

data consists of the test set which has not been released publicly.

5.4.2 Experimental Details

For the first stage of age classification, we augmented the training set with the

training splits of Adience [43], FG-Net [61] and Images of groups [51] datasets. To

evaluate on the FG-Net, we train the seven regressor networks and then pass them

through our proposed error correcting mechanism to predict the final age. Although

the recently released IMDB-WIKI dataset [121] contains a large collection of images

with ages, the number of the images for the young and old age groups is much smaller

than other groups and some of the annotations for the dataset are noisy. Due to

these factors, we confine the age group ranges to the ones defined by Adience [43]

and focus on those previosly well-labelled datasets for this work. The study of the

influences by different ranges of age group intervals is left for future work. All the

models were trained using Caffe [71]. We also compare the performance of our

proposed method with a recently proposed geometry-based method [152], which is

referred to as Grassmann-Regression (G-LR).
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Figure 5.4: Training data distribution of ICCV-2015 Chalearn Looking at People Appar-
ent Age Estimation Challenge, with regard to age groups.

5.4.3 Results

To evaluate the performance of age classification algorithm, we conduct experi-

ments on the Adience dataset [43], by following the 5 fold cross validation protocol

described in [94]. From Table 5.2, it can be seen that our approach achieve better

performance than the previous state-of-the-art methods. One thing worth noticing

is that the accuracy for exact age group classification is around 53%, but the 1-off

accuracy is 88.45% (i.e., 1-off means the predicted label is within the neighboring

groups of the true one, and 2-off means ± 2 groups). The results demonstrate the

need of our error correction module to make the coarse-to-fine strategy to work

better.

Method Exact 1-off
Best from [43] 45.1± 2.6 79.5± 1.4
Best from [94] 50.7± 5.1 84.7± 2.2

Ours 52.88± 6 88.45± 2.2

Table 5.2: Age estimation results on the Adience benchmark. Listed are the mean ac-
curacy ± standard error over all age categories. Best results are marked in
bold.

After age group classification, we evaluated the performance of the proposed
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method following the protocol provided by the Chalearn ’Looking at People’ chal-

lenge dataset to further investigate how the coarse-to-fine strategy and error correc-

tion mechanism help the age estimation. The error is computed as follows:

ε = 1− e−
(x−µ)2

2σ2 , (5.3)

where x is the estimated age, µ is the provided apparent age label for a given face

image, average of at least 10 different user opinions, and σ is the standard deviation

of all (at least 10) gauged ages for the given image. We evaluate our method on the

validation set of the challenge [45], as the test set annotations are not available for

performing analysis. Our baseline approach is to perform age estimation by a single

deep regressor (as described in Section 5.3.6) on top of all the DCNN features. From

Table 5.3, it shows that the coarse-to-fine strategy improves the prediction results of

the baseline approach, and the error correction module further significantly boosts

the performance which also demonstrates that the error correction module effectively

fixes the errors made by the age classification step. In addition, we also show that

the results of end-to-end finetuning on the training data of the challenge data for

both baseline and our approach outperform the ones which are trained separately.

(i.e., For the results of baseline with end-to-end finetuning, we use the 500,000th

model which are trained with the same batch size and learning rate for the proposed

approach.) Some prediction sample results from this dataset are shown in Figure 5.5.

By looking at the images, we can infer that our method is robust to pose and
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Method Gaussian Error

G-LR [152] 0.62
Baseline 0.39
Our method
without error correction 0.382

Our method
with error correction 0.355

Baseline
with end-to-end finetuning 0.312

Our method
with end-to-end finetuning and error correction 0.297

Table 5.3: Performance comparison on the Chalearn Challenge dataset.

Figure 5.5: Age estimates on the Chalearn Validation set. The incorrect age obtained
without using the self correcting module is shown in blue, while the corrected
age is given in red.
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resolution changes to a certain extent. It fails mostly for extreme illumination and

extreme pose scenarios. On further inspection of the Chalearn challenge dataset, we

observe the the first stage classification fails to classify correctly when the images

have attributes such as hats, glasses, microphone, etc. However, the proposed error

correcting mechanism makes it robust to such artifacts. The performance of our

method can be improved considerably if we train using age labeled data.

Finally, we further evaluate the proposed method with end-to-end finetuning

on the FG-Net dataset (i.e., For FGNet, we set σ = 2 for Gaussian loss.). Since

the training of DCNN is computationally intensive, a fair amount of time is needed

to complete the full leave-one-person out (LOPO) evaluations. Thus, we chose to

compromise and show a result that demonstrates the performance level as compared

to other methods. We randomly chose 73 subjects and used their images as the

training data and the rest for testing. Table 5.4 shows the empirical evaluation

of our method compared with several other methods proposed in recent years (i.e.,

Since the test protocol is different from LOPO used for other methods, the results of

the proposed method are not directly comparable to others but only as an empirical

performance evaluation.). From this table, it can be seen that our method performs

comparable to other state-of-the-art age estimation methods. The approach with

error correction module performs much better than the one without considering

neighboring samples for error correction during training.
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Reference Method Training/Testing Result (MAE)

Luu2009 [102] 2 stage SVR in AAM subspace 800/200 4.37
Ylioinas2013 [164] LBP Kernel Density Estimate LOPO 5.09
Geng2013 [53] Label Distribution (CPNN) LOPO 4.76
Chen2013 [31] Cumulative Attribute SVR LOPO 4.67
El Dib2010 [44] Biologically-Inspired features LOPO 3.17
Han2013 [61] Component and holistic BIF LOPO 4.6
Hong2013 [65] Biologically InspiredAAM LOPO 4.18
Chao2013 [28] Label-sensitive learning LOPO 4.38
Proposed method Classification+Regression 890 train , 112 test 4.8
Proposed method Classification+Regression+EC 890 train , 112 test 3.49

Table 5.4: Performance comparison of different age estimation algorithms on the FG-Net
aging database using mean absolute error(MAE). Since the training of DCNNs
is computationally intensive, the evaluation of the proposed approach does not
follow the full LOPO protocol. The results are for an empirical evaluation to
show the performance level of the proposed approach.

5.4.4 Runtime

All the experiments were performed using NVIDIA GTX TITAN-X GPU and the

CUDNN library on a 2.3Ghz computer. The first stage training for the classifica-

tion task took approximately 8 hours whereas training for the second stage took

approximately 8 hours per regressor. The system is fully automated with minimal

human intervention. The end-to-end system takes about 2.5 seconds per image for

age estimation, with only 0.8 seconds being spent in age estimation given the aligned

face while the remaining time being spent on face detection and alignment.

5.5 Conclusions

In this work, we proposed a cascaded classification-regression framework to perform

unconstrained facial apparent age estimation. The proposed approach estimates

the apparent age in a coarse-to-fine manner. The age group classifier gives the
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rough age estimate, the regressor per age group gives the fine-grained age estimate,

and the age error correcting module fixes incorrect prediction. Our experimental

results demonstrate the effectiveness of the proposed approach, especially when only

a limited number of training data available in the target domain.

Although our age classifiers and regressors are all based on DCNN, our frame-

work is generic and can be extended to other non-DCNN models. In addition, the

same classification-regression framework can be also applied to other vision prob-

lems, such as head pose estimation.
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Chapter 6: S2LD : Semi Supervised Landmark Detection

for Low Resolution Images

6.1 Introduction

Convolution Neural Networks have revolutionized the computer vision research, to

the point that current systems can recognize faces with more than 99.7% [41] accu-

racy or achieve detection, segmentation and pose estimation results upto subpixel

accuracy. These are only few of the many tasks which have seen a significant perfor-

mance improvements in the last five years. However, CNN-based methods assume

access to good quality images. ImageNet [122], COCO [97], CASIA [163], 300W [123]

or MPII [4] datasets all consist of high resolution images. As a result of domain

shift, much lower performance is observed when networks trained on these datasets

are applied to images which have suffered degradation due to intrinsic or extrinsic

factors. In this work, we address landmark localization in low resolution images.

Although, we use face images in our case, the proposed method is also applicable to

other tasks, such as human pose estimation. Throughout this chapter we use HR

and LR to denote high and low resolutions respectively.

Facial landmark localization, also known as keypoint or fiducial detection,
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Figure 6.1: Inaccurate landmark detections on low resolution images. We show landmark
predicted by different systems. (a) MTCNN [169] and (b) [19] are not able to
detect any face in the LR image. (c) Current practice of directly upsampling
the low-resolution image to a fixed size of 128× 128 by bilinear interpolation.
(d) Output from a network trained on downsampled version of HR images.
(e) Landmark detection using super-resolved images. Note: For visualization
purposes images have been reshaped after respective processing. Actual size
of the images is in the range of 20× 20 pixels

refers to the task of detecting specific points such as eye corners and nose tip on a

face image. The detected keypoints are used to align images to canonical coordi-

nates, which are then used as inputs to different convolution networks. It has been

experimentally shown in [10], that accurate face alignment leads to improved perfor-

mance in face verification. Though great strides have been made in this direction,

mainly addressing large-pose face alignment, landmark localization for low resolu-

tion images, still remains an understudied problem, mostly because of the absence

of large scale labeled dataset(s). To the best of our knowledge, for the first time,

landmark localization directly on low resolution images is addressed in this work.

Main motivation: In Figure 6.1, we examine possible scenarios which are

currently practiced when low resolution images are encountered. Figure 6.1 shows

the predicted landmarks when the input image is a LR image of size less than 32×32

pixels. Typically, landmark detection networks are trained with 224 × 224 crops

of HR images taken from AFLW [82] and 300W [123] datasets. During inference,

irrespective of resolution, an incoming image is rescaled to 224×224. We deploy two
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methods: MTCNN [169] and Bulat et al. [19], which have detection and localization

built in a single system. In Figure 6.1(a) and (b) we see that these networks failed

to detect face in the given image. Figure 6.1(c), shows the outputs when a network

trained on high resolution images is applied to a rescaled low resolution one. It is

important to note that the trained network, say HR-LD high resolution landmark

detector (detailed in Section 6.5.1) achieves state of the art performance on AFLW

and 300W test sets. A possible solution is to train a network on sub-sampled

images as a substitute for low resolution images. Figure 6.1(d) shows the output of

one such network. It is evident from these experiments that networks trained with

HR images or subsampled images are not effective for real life LR images. It can

also be concluded that subsampled images are unable to capture the distribution of

real LR images.

Super-resolution is widely used to resolve LR images to reveal more details.

Significant developments have been made in this field and methods based on encoder-

decoder architectures and GANs [56] have been proposed. We employ two recent

deep learning based methods, SRGAN [91] and ESRGAN [149] to resolve given LR

images. It is worth noting that the training data for these networks also include

face images. Figure 6.1(e) shows the result when the super-resolved image is passed

through HR-LD. It can be hypothesized that possibly, the super-resolved images

do not lie in the same space of images using which HR-LD was trained. Super

resolution networks are trained using synthetic low resolution images obtained by

downsampling the image after applying Gaussian smoothing. In some cases, training

data for super-resolution networks consists of paired low and high resolution images.
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Neither of the mentioned scenarios is applicable in real life situations.

Main Idea: Different from these approaches, the proposed method is based

on the concept of ‘generate to adapt’. This work aims to show that landmark local-

ization in LR images can not only be achieved, but it also improves the performance

over the current practice. To this end, we first train a deep network which generates

LR images from HR images and tries to model the distribution of real LR images in

pixel space. Since, there is no publicly available dataset, containing low resolution

images along with landmark annotations, we take a semi-supervised approach for

landmark detection. We train an adversarial landmark localization network on the

generated LR images and hence, switching the roles of generated and real LR im-

ages. Heatmaps predicted for unlabelled LR images are also included in the inputs

of the discriminators. The adversarial training procedure is designed in a way that

in order to fool the discriminators, the heatmap generator has to learn the struc-

ture of the face even in low resolution. We perform extensive set of experiments

explaining all the design choices. In addition, we also propose new state of the art

landmark detector for HR images.

6.2 Related Work

Being one of the most important pre-processing steps in face analysis tasks, facial

landmark detection has been a topic of immense interest among computer vision

researchers. We briefly discuss some of the methods which use Convolution Neural

Networks (CNN). Different algorithms have been proposed in the recent past such
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as direct regression approaches of MTCNN by Zhang et al. [172] and KEPLER by

Kumar et al. [85]. The convolution neural networks in MTCNN and KEPLER act

as non-linear regressors and learn to directly predict the landmarks. Both works are

designed to predict other attributes along with keypoints such as 2D pose, visibility

of keypoints, gender and many others. Hyperface by Ranjan et al. [115] has shown

that learning tasks in one single network does in fact, improves the performance

of individual tasks. Recently, architectures based on Encoder-Decoder architecture

have become popular and have been used intensively in tasks which require per-

pixel labeling such as semantic segmentation [110, 119] and keypoint detection [1,

87, 88, 168]. Despite making significant progress in this field, predicting landmarks

on low resolution faces still remains a relatively unexplored topic. All of the works

mentioned above are trained on high quality images and their performance degrades

on LR images.

One of the closely related works, is Super-FAN [20] by Bulat et al., which makes

an attempt to predict landmarks on LR images by super-resolution. However, as

shown in experiments in Section 6.4.3, face recognition performance degrades even

on super-resolved images. This necessitates that super-resolution, face-alignment

and face recognition be learned in a single model, trained end to end, making it

not only slow in inference but also limited by the GPU memory constraints. The

proposed work is different from [20] in many respects as it needs labeled data only

in HR and learns to predict landmarks in LR images in an unsupervised way. Due

to adversarial training, the network not only acts as a facial parts detector but

also learns the inherent structure of the facial parts. The proposed method makes
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Figure 6.2: Overview of the proposed approach. High resolution input is passed through
High-to-Low generator G1 (shown in cyan colored block). The discrimina-
tor D1 learns to distinguish generated LR images vs. real LR images in
an unpaired fashion. This generated image is fed to heatmap generator G2.
Heatmap discriminator D2 distinguishes generated heatmap vs. groundtruth
heatmaps. The pair G2, D2 is inspired from BEGAN [13]. In addition to
generated and groundtruth heatmaps, the discriminator D3 also receives pre-
dicted heatmaps for real LR images. This enables the generator G2 to generate
realistic heatmaps for un-annotated LR images.

the pre-processing task faster and independent of face verification training. During

inference, only the heatmap generator network is used which is based on the fully

convolutional architecture of U-Net [119] and works at the spatial resolution of

32× 32 making the alignment process real time.

6.3 Proposed Method

S2LD predicts landmarks directly on a LR image of spatial size less than 32 × 32

pixels. We show that predicting landmarks directly in LR is more effective than the

current practices of rescaling or super-resolution. The entire pipeline can be divided

into two stages: (a) Generation of LR images in an unpaired manner (b) Generating

heatmaps for target LR images in a semi-supervised fashion. An overview of the

proposed approach is shown in Figure 6.2. Being a semi-supervised method, it is
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important to first describe the datasets chosen for the experiments.

High Resolution Dataset: We construct the HR dataset by combining the

20, 000 training images from AFLW and the entire 300W dataset. We divide the

Widerface dataset [161] into two groups based on their spatial size. The first group

consists of images with spatial size between 20×20 and 40×40, whereas the second

group consists of images with more than 100× 100 pixels. We combine the second

group in HR training set, resulting in a total of 35, 543 HR faces. The remaining

4, 386 images from AFLW are used as validation images for the ablative study and

test set for the landmark localization task.

Low Resolution Datasets:

• The first group from Widerface dataset consists of 47, 046 faces is used as real

LR images for ablative study.

• For face verification experiments, we use recently published TinyFace dataset

[33] as the target LR dataset.

• Due to the absence of LR annotated dataset, we create a real LR landmark

detection dataset which we call Annotated LR Faces (ALRF) by manually

annotating 700 LR images of TinyFace dataset. The details of ALRF creation

is discussed in the supplementary materials.

6.3.1 High to Low Generator and Discriminator

High to low generator G1, shown in Figure 6.8, is designed following the Encoder-

Decoder architecture, where both encoder and decoder consists of multiple residual
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blocks. The input to the first convolution layer is the HR image concatenated

with the noise vector which has been projected using a fully connected layer and

reshaped to match the input size. Similar architectures have also been used in [?,91].

The encoder in the generator consists of eight residual blocks each followed by a

convolution layer to increase the dimensionality. Max-pooling is used after every 2

residual block to decrease the spatial resolution to 4× 4, for HR image of 128× 128

pixels. The decoder is composed of six residual units followed by up-sampling and

convolution layers. Finally, one convolution layer is added in order to output a three

channel image. BatchNorm is used after every convolution layer.

The discriminator D1, shown in Figure 6.8 is also constructed in a similar way,

except that due to low spatial resolution of the input image, max-pooling is only

used in the last three layers. In Figure 6.2, we use IHR for HR input images of size

128×128, ILRG for generated LR images of size 32×32 and ILRR for target LR images

of the same size. Spectral Normalization [107] is also used in the convolutional layers

of D1 to satisfy the Lipschitz constraint σ(W ) = 1, presented in Equation 6.1:

WSN(W ) = W
σ(W ) (6.1)

We train G1 using a weighted combination of GAN loss; L2 pixel loss to encour-

age convergence in initial training iterations and perceptual loss back-propagated

from a pre-trained VGG network. The final loss is summarized in Equation 6.2.

lG1 = αlGGAN + βlpixel + γlperceptual (6.2)
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Figure 6.3: (a) High to low generator G1. Each → represents two residual blocks fol-
lowed by a convolution layer. (b) Discriminator used in D1 and D2. Each →
represents one residual block followed by a convolution layer.

where α, β and γ are hyperpameters which are empirically set. Following re-

cent developments in GANs we experimented with different loss functions. However,

we settled on the hinge loss. In Equation 6.2, lGGAN is computed as:

lGGAN = Ex̂∈Pg [min(0,−1 +D1(x̂))] (6.3)

where Pg is the distribution of generated images ILRG . Also L2 pixel loss, lpixel, is

derived from the following expression:

lpixel = 1
H×W

W∑
i=1

H∑
i=1

(F (IHR)− ILRG )2 (6.4)

where W and H represent the generated image width and height respectively; also

the operation F is implemented as a sub-sampling operation obtained by passing

IHR through four average pooling layers. This loss is used to minimize the distance

between the generated and sub-sampled images which ensures that the content is not

lost during the generation process. To train discriminator D1 we use hinge loss with

gradient penalty and Spectral Normalization for faster training. The discriminator
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Figure 6.4: Sample outputs of High to Low generation of AFLW dataset. For more results
please refer to the supplementary material.

D1 loss can be defined as:

lD1 = lDGAN +GP (6.5)

where

lDGAN = Ex∈Pr [min(0,−1 +D1(x))] + Ex̂∈Pg [min(0,−1−D1(x̂))]

(6.6)

and Pr is the distribution of real LR images ILRR from Widerface dataset. GP in

Equation 6.5 represents the gradient penalty term. Figure 6.4 shows some sample

LR images generated from the network G1.

6.3.2 Semi-Supervised Landmark Localization

6.3.2.1 Heatmap Generator G2

The key-point heatmap generator, G2 in Figure 6.5 produces heatmaps correspond-

ing to N (in our case 19 or 68) key-points in a given image. As mentioned earlier,

the objective of this work is to show that landmark prediction directly on LR im-

ages is feasible even in the absence of labeled LR data. To this end, we choose a

simple network based on the U-Net architecture as the heatmap generator. The
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Figure 6.5: Architecture of the heatmap generator G2. Architecture of this network is
based on U-Net. Each → represents two residual blocks. 99K represents skip
connections between the encoder and decoder.

network consists of 16 residual blocks where both encoder and decoder have eight

residual blocks. In the last layer, G2 outputs (N+1) feature maps corresponding

to N key-points and 1 background channel. After experimentation, this design for

landmark detection has proven to be very effective and results in state of the art

resutls for HR landmark predictions. Further architectural details are presented in

the supplementary materials.

6.3.2.2 Heatmap Discriminator D2

The heatmap discriminator D2 follows the same architecture as the heatmap gen-

erator G2 with different number of input channels, i.e., input to the discriminator

is a set of heatmaps concatenated with their respective color images. D2 receives

two sets of inputs: generated LR image with down-sampled groundtruth heatmaps

and generated LR images with predicted heatmaps. This discriminator predicts an-

other set of heatmaps and learns whether the key-points described by the input

heatmaps are correct and correspond to the input face image. The quality of the

output heatmaps is determined by their similarity to the input heatmaps, following

the notion of an autoencoder. The loss is computed as the error between the input
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and the reconstructed heatmaps.

6.3.2.3 Heatmap Confidence Discriminator D3

The architecture of D3 is identical to D1 except for the number of input channels.

This discriminator receives three inputs: generated LR image with corresponding

groundtruth heatmaps, generated LR image with predicted heatmaps and target LR

image with predicted heatmaps. D3 learns to distinguish between the groundtruth

and predicted heatmaps. To fool this discriminator, G2 should learn to: (a) gener-

ate heatmaps for generated LR images similar to their respective groundtruth, (b)

generate heatmaps for unlabeled target LR images with similar statistical properties

to the groundtruth heatmap, i.e., G2 should understand the inherent structure of

the face in LR images and generate accurate and realistic heatmaps.

6.3.3 Semi-supervised Learning

The learning process of this setup is inspired by the seminal works BEGAN [13]

and [173] called Energy-based GANs. It is worth recalling that HR images have

annotations associated with them and we assume key-point locations in a generated

LR image stay relatively the same as its down-sampled version. Therefore, while

training G2, the down-sampled annotations are considered to be groundtruth for

the generated LR images.

The discriminator D2, when the input consists of groundtruth heatmaps, is

trained to recognize it and reconstruct a similar one to minimize the error between
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the groundtruth and reconstructed heatmaps. On the other hand, if the input

consists of generated heatmaps, the discriminator is trained to reconstruct different

heatmaps to drive the error as large as possible. The losses are expressed as

lrealD =
N+1∑
i=1

(Hi −D2(Hi, I
LR
G ))2 (6.7)

lfakeD =
N+1∑
i=1

(Ĥi −D2(Ĥi, I
LR
G ))2 (6.8)

lkpD = lrealD − ktlfakeD (6.9)

where Hi and Ĥi represent the ith key-point groundtruth and generated heatmap of

the generated LR image ILRG . Inspired by BEGAN, we use a variable kt to control

the balance between heatmap generator and discriminator. The variable is updated

every t iterations. The adaptive term kt is defined by:

kt+1 = kt + λk(γlrealD − lfakeD ) (6.10)

where kt is bounded between 0 and 1, and λk is a hyperparameter. As in Equation

6.9, kt controls the emphasis on lfakeD . When the generator is able to fool the dis-

criminator, lfakeD becomes smaller than γlrealD . As a result of this kt increases, making

the term lfakeD dominant. The amount of acceleration to train on lfakeD is adjusted

proportional to γlrealD −lfakeD , i.e the distance the discriminator falls behind the gener-

ator. Similarly, when the discriminator gets better than the generator, kt decreases,

to slow down the training on lfakeD making the generator and the discriminator train
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together.

The discriminator D3 is trained using the loss function from Least squares

GAN [104] as shown in Equation 6.11. This loss function was chosen to be consistent

with the losses computed by D2.

lconfD = Ex∈Pr [(D3(x)− 1)2] + Ex̂∈Pg [D3(x̂)2] + Eŷ∈Pg [D3(ŷ)2]
(6.11)

It is noteworthy to mention in this case Pr represents the groundtruth heatmaps dis-

tribution on generated LR images, while Pg represents the distribution on generated

heatmaps of generated LR images and real LR images.

The generator G2 is trained using a weighted combination of losses from the

discriminators D2 and D3 and lMSE heatmap loss. The loss functions for the gener-

ator G2 are described in the following equations:

lMSE
G =

N+1∑
i=1

(Hi −G2(ILRG ))2 (6.12)

lkpG =
N+1∑
i=1

(Ĥi −D2(Ĥi, I
LR
g ))2 (6.13)

lconfG = Ex∈Pg [(D3(x)− 1)2] (6.14)

lG = alMSE
G + blkpG + clconfG (6.15)

where a, b and c are hyper parameters set empirically obeying alMSE
G > blkpG > clconfG .

We put more emphasis on lMSE
G to encourage convergence of the model in initial
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Figure 6.6: Sample key-point detections on TinyFace images.

iterations. Some target LR images with key-points predicted from the G2 are shown

in Figure 6.6.

6.4 Experiments and Results

6.4.1 Ablation Experiments

We experimentally demonstrated in Section 6.1 (Figure 6.1) that networks trained

on HR images perform poorly on LR images. Therefore, we propose the semi-

supervised learning as mentioned in Section 6.3. With the above mentioned networks

and loss functions it is important to understand the implication of each component.

This section examines each of the design choices quantitatively. To this end, we

first train the high to low resolution networks, and generate LR images of 4, 386

AFLW test images. In the absence of real LR images with annotated landmarks,

this is done to create a substitute for low resolution dataset with annotations on

which localization performance can be evaluated. We also generate subsampled

version of the 20, 000 AFLW trainset and 4, 386 AFLW testset using average pooling

after applying Gaussian smoothing. Data augmentation techniques such as random

scaling (0.9, 1.1), random rotation (−30◦, 30◦) and random translation upto 20 pixels

are used.

Evaluation Metric: Following most previous works, we obtain error for each
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test sample by averaging normalized errors for all annotated landmarks. For AFLW,

the obtained error is normalized by the ground truth bounding box size over all

visible points whereas for 300W, the error is normalized by the inter-pupil distance.

Wherever applicable NRMSE stands for Normalized Root Mean Square Error.

Training Details: All the networks are trained in Pytorch using the Adam

optimizer with an initial learning rate of 2E−4 and β1, β2 values of 0.5, 0.9. We train

the networks with a batch size of 32 for 200 epochs, while dropping the learning

rates by 0.5 after 80 and 160 epochs.

Setting S1: Train networks on subsampled images? We only train network

G2 with the subsampled AFLW training images using the loss function in Equation

6.12, and evaluate the performance on generated LR AFLW test images.

Setting S2: Train networks on generated LR images? In this experiment, we

train the network G2 using generated LR images, in a supervised way using the loss

function from Equation 6.12. We again evaluate the performance on generated LR

AFLW test images.

Observation: From the results summarized in Table 6.1b it is evident that

there is a significant reduction in localization error when G2 is trained on gener-

ated LR images validating our hypothesis that subsampled images on which many

super-resolution networks are trained may not be a correct representative of real LR

images. Hence, we need to train the networks on real LR images.

Setting S3: Does adversarial training help? This question is asked in order to

understand the importance of training the heatmap generator G2 in an adversarial

way. In this experiment, we train G2 and D2 using the losses in Eqs 6.7, 6.8, 6.12,
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Method NRMSE (all) NRMSE (479 images) Time
MTCNN [169] - 0.9736 0.388 s
HRNet [133] 0.4055 0.3107 0.076 s

SAN [42] 0.3901 0.3141 0.0178 s
Proposed 0.257 0.1803 0.0105 s

(a)
Setting NRMSE±std auc@0.07 auc@0.08
S1 11.33± 9.81 11.897 21.894
S2 4.23± 4.52 50.843 55.751
S3 4.120± 4.43 51.889 56.791
S4 4.123± 4.394 51.775 56.697

(b)

Table 6.1: (a) Landmark Detection Error on Real Low Resolution dataset. (b) Table for
ablation experiments under different settings on synthesized LR images.

6.13. Metrics are calculated on the generated LR AFLW test images and compared

against the experimental setting mentioned in S2 above.

Setting S4: Does G2 trained in adversarial manner scale to real LR images?

In this experiment, we wish to examine if training networks G2, D2 and D3 jointly,

improves the performance on real LR images from Widerface dataset.(see Section

6.3 for datasets)

Observation: From Table 6.1b we observe that the network trained with

setting S3 performs marginally better compared to setting S4. However, since there

are no keypoint annotations available for the Widerface dataset, conclusions cannot

be drawn from the drop in performance. Hence, in the following subsection 6.4.3,

we leap towards understanding this phenomenon indirectly, by aligning the faces

using the models from setting S3 and setting S4 and evaluating face recognition

performances.
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6.4.2 Experiments on Low Resolution images

We choose to perform direct comparison on a real LR dataset. Two recent state

of the art methods Style Aggregated Networks [42] and HRNet [133]. To create a

real LR landmark detection dataset which we call Annotated LR Faces (ALRF),

we randomly selected 700 identities from the TinyFace dataset, out of which one

LR image (less than 32× 32 pixels and more than 15× 15 pixels) per identity was

randomly selected, resulting in a total of 700 LR images. Next, three individuals

were asked to manually annotated all the images with 5 landmarks(two eye centers,

nose tip and mouth corners) in MTCNN [169] style, where invisible points were

annotated with −1. The mean of the points obtained from the three users were

taken to be the groundtruth. As per convention, we used Normalised Mean Square

Error (NRMSE), averaged over all visible points and normalized by the face size as

the comparison metric. Table 6.1a shows the results of this experiment. We also

calculate time for forward pass of one image in a single gtx1080. Without loss of

generality, the results can be extrapolated to other existing works as [42] and [133]

are currently state of the art. MTCNN which has detection and alignment in a

single system was able to detect only 479 faces out of 700 test images.

6.4.3 Face Recognition experiments

In the previous section, we performed ablative studies on the generated LR AFLW

images. Although convenient to quantify the performance, it does not uncover the

importance of training three networks jointly in a semi-supervised way. Therefore,
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Figure 6.7: Snippet of the annotation tool used.

in this section, we choose to evaluate the models from setting S3 and setting S4

(Section 6.4.1), by comparing the statistics obtained by applying the two models to

align face images for face recognition task.

We use recently published and publicly available, Tinyface [33] dataset for our

experimental evaluation. It is one of the very few datasets aimed towards under-

standing LR face recognition and consists of 5, 139 labeled facial identities with an

average of three face images per identity, giving a total of 15, 975 LR face images

(average 20 × 16 pixels). All the LR faces in TinyFace are collected from the web

(PIPA [170] and MegaFace2 [108]) across diverse imaging scenarios, captured under

uncontrolled viewing conditions in pose, illumination, occlusion and background.

5, 139 known identities is divided into two splits: 2, 570 for training and the remain-

ing 2, 569 for test.

Evaluation Protocol: In order to compare model performances, we adopt

the closed-set face identification (1:N matching) protocol. Specifically, the task is

to match a given probe face against a gallery set of enrolled face images with true

match from the gallery at top-1 of the ranking list. For each test class, half of
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Setting L1 L2 L3 L4 L5
top-1 31.17 35.11 39.03 39.87 43.82

(a)
Setting top-1 top-5 top-10 top-20 mAP
Baseline (ArcFace [41]) 34.71 44.82 49.01 53.70 0.32
I1 34.01 41.98 45.36 49.22 0.29
I2 45.04 56.30 60.11 63.71 0.43
I3 51.10 61.05 64.38 67.89 0.47

(b)

Table 6.2: Verification performance on Tinyface dataset under different settings (a)
LightCNN trained from scratch (b) Using Inception-ResNet pretrained on
MsCeleb-1M

the face images are randomly assigned to the probe set, and the remaining to the

gallery set. For the purpose of this chapter, we drop the distractor set as this does

not divulge new information while significantly slowing down the evaluation process.

For face recognition evaluation, we report statistics on Top-k (k=1,5,10,20) statistics

and mean average precision (mAP).

Experiments with network trained from scratch: Since the number of

images in TinyFace dataset is much smaller compared to larger datasets such as

CASIA [163] or MsCeleb-1M [60], we observed that training a very deep model like

Inception-ResNet [136], quickly leads to over-fitting. Therefore, we adopt a CNN

with fewer parameters, specifically, LightCNN [154]. Since inputs to the network

are images of size 32× 32, we disable first two max-pooling layers. After detecting

the landmarks, training and testing images are aligned to the canonical coordinates

using affine transformation. We train 29 layer LightCNN models using the training

split of TinyFace dataset under the following settings:

Setting L1: Train networks on generated LR images? In this setting, we

use the model trained under the setting S2 from the previous section 6.4.1. In this

130



setting, network G2 is trained using generated LR images in a supervised way using

the loss function from Equation 6.12.

Setting L2: Does adversarial training help? We use the model trained from

setting S3 (section 6.4.1) to align the faces in training and testing sets. In this

setting networks G2 and D2 are trained using a weighted combination of L2 pixel

loss and GAN losses from Equations 6.7, 6.8, 6.12, 6.13.

Setting L3: Does G2 trained in adversarial manner scale to real LR images?

In this setting, networks G2, D2 and D3 are trained jointly in a semi-supervised

way. We use Tinyface training images as real low resolution images. Later, Tiny-

face training and testing images are aligned using the trained model for training

LightCNN model.

Setting L4: End-to-end training? Under this setting, we also train the High

to Low networks G1 and D1, using the training images from Tinyface dataset as real

LR images. We reduce the amount of data-augmentation in this case to resemble

tiny face dataset images. With the obtained trained model, landmarks are extracted

and images are aligned for LightCNN training.

Setting L5: End-to-end training with pre-trained weights? This setting is

similar to the setting L4 above, except instead of training a LightCNN model from

scratch we initialize the weights from a pre-trained model, trained with CASIA-

Webface dataset.

Observation: The results in Table 6.2a summarizes the results of the exper-

iments done under the settings discussed above. We see that although, we observed

a drop in performance in landmark localization when training the three networks
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jointly (Table 6.1b), there is a significant gap in rank-1 performance between setting

L2 and L3. This indicates that with semi-supervised learning G2 generalizes well

to real LR data, and hence also validates our hypothesis of training G2, D2 and D3

together. Unsurprisingly, insignificant difference is seen between settings L3 and L4.

Experiments with pre-trained network: Next, to further understand the

implications of joint semi-supervised learning, we design another set of experiments.

In these experiments, we use a pre-trained Inception-ResNet model, trained on

MsCeleb-1M using ArcFace [41] and Focal Loss [96]. This model expects an input of

size 112× 112 pixels, hence the images are resized after alignment in low resolution.

Using this pre-trained network, we perform the following experiments:

Setting top-1 top-5 top-10 top-20 mAP
A1 11.75 14.58 24.57 30.47 0.10
A2 26.21 34.76 39.03 43.99 0.24

Table 6.3: Face recognition performance using super-resolution before face-alignment

Baseline: For the baseline experiment, we choose to follow the usual practice

of re-scaling the images to a fixed size irrespective of resolution. We trained our own

HR landmark detector (HR-LD) on 20, 000 AFLW images for this purpose. Tinyface

gallery and probe images are resized to 128×128 and used by the landmark detector

as inputs. Using the predicted landmarks, images are aligned to a canonical co-

ordinates similar to ArcFace [41]. Baseline performance was obtained by computing

cosine similarity between gallery and probe features extracted from the network

after feed-forwarding the aligned images.

Setting I1: Does adversarial training help? The model trained for S3 (Section
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6.4.1) is used to align the images directly in low resolution. Features for gallery and

probe images are extracted after the rescaling the images and cosine distance is used

to measure the similarity and retrieve the images from the gallery.

Setting I2: Does G2 trained in adversarial manner scale to real LR images?

For this experiment, the model trained for L3 in Section 6.4.3 is used for landmark

detection in LR. To recall, in this setting, the three models G2, D2 and D3 (with G1

and D1 frozen) are trained jointly in a semi-supervised way and Tinyface training

images are used as real LR data for D3.

Setting I3: End-to-end training? In this case, we align the images using the

model from setting L4 from Section 6.4.3. In this case, we also trained High to

low networks (G1 and D1) using training images from Tinyface dataset as real LR

images. After training the model for 200 epochs, the weights are frozen to train

G2, D2 and D3 in a semi-supervised way.

Observation: With no surprise, we observe that (from Table 6.2b) training

the heatmap prediction networks in a semi-supervised manner, and aligning the

images directly in low resolution, improves the performance of any face recognition

system trained with HR images.

6.5 Evaluation on the IJB-S dataset

Along with the method to predict landmarks in low resolution images, this work

presents a rather counter-intuitive result that performing landmark detection di-

rectly in low resolution leads to higher face recognition performance. To understand
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UltraFace Semi-Supervised
Rank 1 23.65 28.88
Rank 2 26.03 32.42
Rank 3 27.58 33.57
Rank 4 28.14 34.46
Rank 5 28.64 35.05
Rank 7 29.54 36.61
Rank 10 30.42 37.46
Rank 20 32.58 39.95
Rank 30 34.38 42.05
Rank 40 35.79 43.34
Rank 50 36.69 44.61

Table 6.4: Retrieval rates at different ranks(Higher is better)

FPIR/Method UltraFace Semi-Supervised
1e2 0.9450 0.8959
1e3 0.9081 0.8767
1e4 0.8808 0.8485
1e5 0.8114 0.7720

Table 6.5: False negative rates at different false positive rates. (Lower is better)

this further we performed experiments on recently released IJB-S dataset [?]. IJB-S

dataset is one of the most challenging dataset available, and consists of several videos

collected with surveillance cameras. The subjects in this dataset are extremely chal-

lenging to verify because of the distance from the camera and low resolution. We

randomly selected 10 videos from the dataset which contained at least 5 subjects

from the two galleries the dataset provides. We used surveillance to booking proto-

col for the purpose of this experiment. Only 10 videos were chosen attributing to

the fact that IJB-S is an extremely large dataset and experimenting on the entire

dataset takes more than a month on a single GPU machine. Tables 6.4 and 6.5

shows retrieval rates at different ranks and false negative rates vs false positives.

We compare with [113].
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(a)

(b)

Figure 6.8: (a) Retrieval rates at different ranks. (b) False negatives at different false
positive rates.

6.5.1 Additional Experiments:

Setting A1: Does Super-resolution help? The aim of this experiment is to under-

stand if super-resolution can be used to enhance the image quality before landmark

detection. We use SRGAN [91] to super-resolve the images before using face align-

ment method from Bulat et al. [19] to align the images.

Setting A2: Does Super-resolution help? In this case, we use ESRGAN [149]

to super-resolve the images before using HR-LD (below) to align.

Observation: It can be observed from Table 6.3, that face recognition per-
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formance obtained after aligning super-resolved images is not at par even with the

baseline. It can be hypothesized that possibly super-resolved images do not repre-

sent HR images using which [19] or HR-LD are trained.

High Resolution Landmark Detector (HR-LD) For this experiment, we

train G2 on high resolution images of size 128 × 128 (for AFLW and 300W) using

lMSE loss from Equation 6.12. We evaluate the performance of this network on

common benchmarks of AFLW-Full test and 300W test sets, shown in Table 6.6. A

few sample outputs are shown in Figure 6.9

Method 300W AFLW
Common Challenge Full Full

RCPR [24] 6.18 17.26 8.35 -
SDM [158] 5.57 15.40 7.52 5.43
CFAN [168] 5.50 16.78 7.69 -
LBF [116] 4.95 11.98 6.32 4.25
CFSS [174] 4.73 9.98 5.76 3.92
TCDCN [172] 4.80 8.60 5.54 -
MDM [142] 4.83 10.14 5.88 -
PCD-CNN [88] 3.67 7.62 4.44 2.36
SAN [42] 3.41 7.55 4.24 1.91
LAB [153] 3.42 6.98 4.12 1.85
HR-LD 3.60 7.301 4.325 1.753

Table 6.6: Comparison of the proposed method with other state of the art methods on
AFLW (Full) and 300-W testsets. The NMEs for comparison on 300W dataset
are taken from the Table 3 of [103]. In this case G2 is trained in supervised
manner using high resolution images of size 128× 128.
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Figure 6.9: Sample outputs obtained by training G2 with HR images. First row shows
samples from AFLW test set. Second row shows sample images from 300W
test set. Last two columns of second row shows outputs from challenging
subset of 300W

6.6 Conclusion

In this chapter, we first present an analysis of landmark detection methods when

applied to LR images, and the implications on face recognition. We also discuss the

proposed method for predicting landmarks directly on LR images. We show that

the proposed method improves face recognition performance over commonly used

practices of rescaling and super-resolution. As a by-product, we also developed a

simple but state of the art landmark detection network. Although, low resolution is

chosen as the source of degradation, however, the method can trivially be extended

to capture other degradations in the imaging process, such as motion blur or climatic

turbulence. In addition, the proposed method can be applied to detect human

keypoints in LR in order to improve skeletal action recognition. In the era of deep

learning, LR landmark detection and face recognition is a fairly untouched topic,

however, we believe this work will open new avenues in this direction.
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Chapter 7: Conclusion

This dissertation has addressed one of the major face-centric computer vision prob-

lems: non-rigid alignment of deformable faces. We discussed four different methods

for facial keypoint localization. With extensive experiments we demonstrated the

state-of-the art performance of each of the method.

In Chapter 1 we discussed the motivation behind the problem of face alignment

and the associated challenges. Next we presented a cascade linear regressor based

method which takes localized deep features from a face verification network in order

to localize landmark points. It was shown by experiments that face verification

networks capture localized information to verify faces and can also be used for

landmark localization. The proposed method is one of the first methods to use deep

features for keypoint localization.

We detailed another cascade regression based method KEPLER, based on

multi-task learning framework in Chapter 2. The approach of cascade regression

makes the method somewhat slower but yields precise locations of keypoints. Along

with the keypoints KEPLER is also able to predict 3D head pose from a single

image. We also developed a new Channeled Inception Network which was trained

in a multi-task fashion to achieve precision over keypoint locations. To tackle the
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effect of vanishing gradients in a very deep network we also used a novel loss function.

In Chapter 3, we discussed Pose Conditioned Dendritic CNN, where the pre-

diction of keypoints was conditioned on the 3D head pose. We showed that the

knowledge of 3D headpose assist in obtaining accurate keypoints. We also modelled

the geometric relationships among different facial parts in a dendritic network. An

auxiliary network was used to predict other attributes, such as occlusion and visi-

bility. The proposed method is able to predict different attributes of a face image

including keypoints in a single pass. This tackles the slower run time of the two

methods by learning the locations of keypoints in a single convolution method mak-

ing it faster. To tackle the imbalance between positive and negative samples we also

discussed a novel Mask Softmax Loss Function.

In Chapter 5, we discussed an application of face alignment for the task of

apparent age estimation. Face images are aligned with LDDR before being passed

through the CNN for age estimation. We analyzed the properties of the convolution

networks and develop efficient error correction strategy for better age estimates.

The above methods assumed access to high quality images while training and

testing. However, a huge amount of data collected are from closed circuit cameras

which capture images in much lower resolution. In the semi-supervised method

presented in Chapter 6 we showed how we can transfer the knowledge learnt from

high resolution images to predict keypoints in naturally degraded images. We also

showed the impact keypoint localization has on the task of face verification. With

experiments we demonstrated that aligning keypoints in lower resolution achieves

better face verification performance than the current practice of upsampling and
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aligning.

7.0.1 Future Work

• Alignment in videos: The proposed methods are suitable for obtaining pre-

cise keypoint locations from still images. However, we observe a temporal

relationships between keypoints in a video. One future direction is in exploit-

ing the temporal information and utilizing it for simultaneous tracking and

keypoint localization.

• Alignment of climatically degraded images: In the age of technical ad-

vancement, people are always taking images, in adverse climatic and illumina-

tion conditions, such as in rain or under the sun. Images are also taken while

in motion, such as running or in a bus. These degrade the quality of images

and the current systems of keypoint localization perform poorly on these im-

ages. In future, we plan to extend this research, which will enable accurate

keypoint localization even under extreme degradation.
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[145] Roberto Valle, José Miguel Buenaposada, Antonio Valdés, and Luis Baumela.

Head-Pose Estimation In-the-Wild Using a Random Forest, pages 24–33.

Springer International Publishing, Cham, 2016.

[146] M. F. Valstar, T. Almaev, J. M. Girard, G. McKeown, M. Mehu, L. Yin,

M. Pantic, and J. F. Cohn. Fera 2015 - second facial expression recogni-

tion and analysis challenge. In 2015 11th IEEE International Conference

and Workshops on Automatic Face and Gesture Recognition (FG), volume 06,

pages 1–8, May 2015.

[147] P. Viola and M. J. Jones. Robust real-time face detection. International

journal of computer vision, 57(2):137–154, 2004.

162



[148] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,

Chen Change Loy, Yu Qiao, and Xiaoou Tang. ESRGAN: enhanced super-

resolution generative adversarial networks. CoRR, abs/1809.00219, 2018.

[149] Peter Welinder and Pietro Perona. P.: Cascaded pose regression. In In: IEEE

Conference on Computer Vision and Pattern Recognition, 2010.

[150] T. Wu, P. Turaga, and R. Chellappa. Age estimation and face verification

across aging using landmarks. IEEE Transactions on Information Forensics

and Security, 7(6):1780–1788, 2012.

[151] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou.

Look at boundary: A boundary-aware face alignment algorithm. In CVPR,

2018.

[152] Xiang Wu, Ran He, and Zhenan Sun. A lightened CNN for deep face repre-

sentation. CoRR, abs/1511.02683, 2015.

[153] Y. Wu and Q. Ji. Robust facial landmark detection under significant head

poses and occlusion. In ICCV, pages 3658–3666, Dec 2015.

[154] Yue Wu, Chao Gou, and Qiang Ji. Simultaneous facial landmark detection,

pose and deformation estimation under facial occlusion. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[155] X. Xiong and F. De la Torre. Global supervised descent method. In CVPR,

2015.

163



[156] Xuehan-Xiong and Fernando De la Torre. Supervised descent method and its

application to face alignment. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013.

[157] Junjie Yan, Zhen Lei, Dong Yi, and Stan Z. Li. Learn to combine multiple

hypotheses for accurate face alignment. In Proceedings of the 2013 IEEE

International Conference on Computer Vision Workshops, ICCVW ’13, pages

392–396, Washington, DC, USA, 2013. IEEE Computer Society.

[158] H. Yang, X. He, X. Jia, and I. Patras. Robust face alignment under occlu-

sion via regional predictive power estimation. IEEE Transactions on Image

Processing, 24(8):2393–2403, Aug 2015.

[159] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Wider face: A face

detection benchmark. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[160] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch.

arXiv preprint arXiv:1411.7923, 2014.

[161] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning face representation

from scratch. CoRR, abs/1411.7923, 2014.

[162] Juha Ylioinas, Abdenour Hadid, Xiaopeng Hong, and Matti Pietikäinen. Age
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