

ABSTRACT

Title of Document: PERFORMANCE EVALUATION OF

DISRUPTION TOLERANT NETWORKS
WITH IMMUNITY MECHANISM AND
CODING TECHNIQUE

 Jin Na Lee

Doctor of Philosophy, 2015

Directed By: Associate Professor Richard J. La,

Department of Electrical and Computer
Engineering

We examine the performance of a Disruption Tolerant Networks (DTNs) with an

epidemic routing (ER) scheme with the coding technique and/or immunity

mechanism under the various network environments. We are interested in the

scenarios of opportunistic dissemination of large files. First, we study how the

different implementations of the ER scheme perform in diverse network settings. We

compare the performance of ER with its summary vector implemented as both a list

and as a Bloom filter. Second, we examine how network coding affects the

performance of the ER scheme. To this end, we investigate the performance of

encoding-based routing (EBR), a variant of the ER scheme which uses random linear

coding at source nodes. EBR is expected to mitigate what is commonly known as the

coupon collector’s problem, which arises when a large file is chopped into small

fragments and then the fragments are disseminated throughout the network. We

compare this to the case where intermediate non-source nodes are allowed to create

new linear combinations from the ones it already holds. Lastly, we evaluate the

benefits of two different types of immunity mechanisms – one based on file ID and

the other based on bundle ID – with not only the ER scheme but also two different

EBR schemes in various network scenarios and settings. We also investigate the

performance gain from compressing the immunity list.

By presenting and analyzing extensive simulation results, we provide

information that could provide a guideline for employing each of the aforementioned

techniques in routing schemes of interest in various network settings.

PERFORMANCE EVALUATION OF DISRUPTION TOLERANT NETWORKS
WITH IMMUNITY MECHANISM AND CODING TECHNIQUE.

By

Jin Na Lee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Associate Professor Richard J. La, Chair
Professor Armand Makowski
Associate Professor Charles Silio
Professor Gang Qu
Professor Sung Lee

© Copyright by
Jin Na Lee

2015

 ii

Acknowledgements

First and foremost, I would like to thank my Lord, who began this work and finally

finished it. Completing this dissertation and my Ph.D. journey is a true blessing and

God be the glory.

This dissertation would not have been finished without the help of my advisor

Dr. Richard La. I would like to thank for his great guidance, continuous support and

patience during my Ph.D. years. Also, I am grateful to all of my committee members

for their valuable advices and encouragement as well as being on my committee: Dr.

Armand Makowski, Dr. Charles Silio, Dr. Gang Qu, and Dr. Sung Lee. I am also

thankful to my research mentors for their kindness, support, and guidance: Dr. Padma

Mundur and Dr. Gregory Stein.

There are not enough words to describe how thankful I am to my family and

friends for their tremendous support, love, encouragement, and prayers. I would like

to thank my family first for their unconditional love and support throughout my

whole life: dad Dr. Ho-In Lee, mom Ms. Hae-Jeung Lim, sisters Dr. Hannah Lee and

Dr. Yoonnah Lee, brothers Kwangjin Lee, Dr. Sangwoo Shin and Dr. Norman Kim,

and lovely nieces Christine Shin and Ydel Kim. Thank you and love you all! I would

also like to thank my awesome friends for their love, prayers, help, support, and

encouragement: Dr. Brenton Walker, Hyeonmi Kim, Sohl Han, Yoohee Kim, Uran

Oh, Dongheon Ha, and Sungmin Eum. I would like to thank my BizFlow family for

their support, patience, understanding, and prayers: Jae Ahn, Caffrey Lee, Peter Lee,

 iii

Kyungwon Kim, and others. I must also thank my family in Christ for their prayers

and encouragement: Pastor Aaron Park, Kilya Park, Nara Kim, Jaeyul Kwon, Kenny

Kim, Yoonsoo Lee, Youngin Lee, and my KBS family. Last but not least, I am

eternally grateful to everyone who has prayed for me.

 iv

Table of Contents

Acknowledgements ... ii	

Table of Contents ... iv	

List of Tables ... vi	

List of Figures ... vii	

List of Abbreviations ... xiii
Chapter 1: Introduction ... 1	

1.1 Epidemic routing scheme .. 3	

1.2 Coding technique .. 4	

1.3 Immunity mechanism .. 7	

1.4 Summary of key changes to the simulator and challenges 9	

1.5 Organization .. 11	

Chapter 2: Related work ... 14	

2.1 Coding technique .. 14	

2.2 Immunity mechanism .. 16	

Chapter 3: Network scenarios ... 18	

3.1 The ONE simulator ... 18	

 3.2 Performance metrics ... 20	

3.3 Parametric scenario ... 20	

3.3.1 Number of nodes .. 20	

3.3.2 Transmission rate and range .. 21	

3.3.3 Buffer capacity ... 22	

3.3.4 Node speed ... 22	

3.4 Mobility scenarios ... 22	

3.4.1 Ferry Scenario .. 23	

3.4.2 Manhattan in New York City Scenario .. 25	

3.4.3 Island hopping within Istanbul, Turkey Scenario 26	

3.4.4 Taxi Trace in San Francisco, CA Scenario .. 28	

3.5 File traffic generation .. 29	

3.6 Summary of simulation settings.. 31	

4.1 Implementation Details ... 33	

4.1.1 Description of the ER Scheme ... 33	

4.1.2 File Handling and Scheduling Strategy ... 35	

4.2 Summary Vector Implemented by the Bloom Filter ... 36	

4.2.1 The optimal number of hash functions .. 37	

4.3 Simulation Results .. 39	

4.3.1 Ferry scenario ... 39	

4.3.2 NYC scenario ... 43	

Chapter 5: Encoding Based Routing Scheme .. 47	

5.1 Encoding Based Routing with Source Coding .. 47	

5.1.1 File Creation ... 48	

5.1.2 Rank Calculation .. 53	

5.1.3 Control Message .. 60	

5.2 Encoding Based Routing with Network Coding ... 64	

5.2.1 Implementation Details .. 64	

 v

5.2.2 Simulation Results ... 66	

5.3 Benefit of Coding Technique .. 68	

Chapter 6: Immunity Mechanism .. 80	

6.1 Bundle Based Immunity Mechanism .. 81	

6.1.1 Implementation Details .. 81	

6.1.2 Simulation Results ... 82	

6.1.3 Compression over the Immunity List .. 88	

6.2 UUID Based Immunity Mechanism ... 91	

6.2.1 Implementation Details .. 91	

6.2.2 Simulation Results ... 92	

Chapter 7: Conclusion .. 109	

Bibliography ... 113	

 vi

List of Tables

1.1 Summary of key changes to the ONE simulator..……………………….. 10

3.1 Mobility domain assignments on ferry nodes …………………………… 25

3.2 Simulation settings ……………………………………………………… 32

4.1 ADD and FDR of ER scheme with Bloom filter and list summary vector
under the NYC scenario with the transmission range of 100m …………

45

4.2 ADD and FDR of ER scheme with Bloom filter and list summary vector
under the NYC scenario with the transmission range of 50m……………

46

5.1 Statistics of the ferry mobility scenarios with the transmission range of
100m……………………………………………………………………..

71

5.2 Statistics of the taxi trace mobility scenarios ……………………………
 77

7.1 Guidance for summary vector configuration ……………………………
 110

7.2 Guidance for rank check configuration …………………………………
 110

7.3 Guidance for mobility scenario………………………………………….. 111

7.4 Guidance for coding scheme in the ferry scenario………………………. 111

7.5 Guidance for coding scheme in the NYC scenario....……………………
 112

7.6 Guidance for coding scheme in the Istanbul scenario...………………….
 112

7.7 Guidance for coding scheme in the Taxi scenario………………………
 112

 vii

List of Figures

1.1 Organization of Chapter 4, 5, and 6..……………………………………. 12

1.2 Combinations of the routing schemes and the approaches of interest .… 13

3.1 Screen shot of the ONE running a scenario with Istanbul map ………… 19

3.2 Locations of stationary nodes and the mobility domains of ferry nodes in
the ferry scenario..….……………………………………………………. 24

3.3 A snapshot of the locations of 30 nodes on the map of Manhattan in New
York City, NY ………………………………………………………….... 26

3.4 A snapshot of the Istanbul scenario depicting the locations of the
stationary nodes and the sub-areas ……………………………………… 28

3.5 A taxi mobility trace in May 2008 ……………………………………… 29

4.1
FDR and ADD of the ER scheme with Bloom filter and list summary
vector in the ferry scenario with 200kB/s of transmission rate and 50m of
transmission range.…..…………..…………..…………..…………… 40

4.2 Average contact time and total number of contacts in the ferry mobility
scenarios.…..……………………………………………………………. 41

4.3
FDR and ADD of ER scheme with Bloom filter and list summary vector
in the ferry scenario with 100kB/s of transmission rate and 50m of
transmission range …..…………..…………..…………..………………. 42

4.4 File delivery delays of the F2-2 scenario by increasing order …..……… 43

4.5 ADD of ER scheme with Bloom filter and list summary vector under the
NYC scenario.…..…………..…………..…………..……………….. 44

5.1 FDR of the EBR scheme varying the encoding weight in the ferry
scenario when N = 1000.………..…………..…………..……………….. 52

5.2 FDR of the EBR scheme varying the encoding weight in the ferry
scenario when N = 100.………..…………..…………..………………… 52

 viii

5.3 FDR of the EBR scheme varying the encoding weight in the NYC
scenario when N = 1000...……………………………………………. 53

5.4 FDR of the EBR scheme varying the encoding weight in the NYC
scenario when N = 100……………………………………………….. 53

5.5 FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with light traffic congestion 58

5.6
FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with moderate traffic
congestion…………………………………………………………….. 58

5.7
FDR and ADD of the EBR scheme with and without rank check at the
relay nodes under the NYC mobility with file generation rate of
0.0005 file/s.………………………………………………………… 59

5.8
FDR and ADD of the EBR scheme with and without rank check at the
relay nodes under the NYC mobility with file generation rate of
0.00005 file/s..……..………………………………………………… 59

5.9 FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with light traffic congestion 62

5.10
FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with moderate traffic
congestion…………………………………………………………….. 63

5.11 FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the NYC mobility..…………….……...…...…. 64

5.12 FDR of the EBR with network coding scheme varying the re-encoding
weight under the NYC scenario with 100MB files.…….......………… 68

5.13 FDR of the EBR with network coding scheme varying the re-encoding
weight under the NYC scenario with 10MB files……………….......... 68

5.14
FDRs of ER and two modes of EBR scheme under the Ferry scenario
with light traffic.….…..…………..…………..…………..……………
 70

 ix

5.15 FDRs of ER and two modes of EBR scheme under the Ferry scenario
with moderate traffic..………………..………..…………..…………….

71

5.16

FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 100MB files..……..…………..…………..……………….

73

5.17 FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 10MB files……..…………..…………..…………………

73

5.18 FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 100MB files……..…………..…………..………………..

73

5.19 FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 10MB files.………………………………………………..

74

5.20 FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 24 100MB files …………………………………

76

5.21 Figure 5.21. FDRs and ADDs of ER and two modes of EBR scheme
under the Istanbul scenario with 325 10MB files ………………………

76

5.22 FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 24 100MB files…………………………………..

76

5.23 FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 325 10MB files…………………………………..

77

5.24 FDRs and ADDs of ER and two modes of EBR scheme under the taxi
trace scenario with 100MB files…………………………………………

79

5.25 FDRs and ADDs of ER and two modes of EBR scheme under the taxi
trace scenario with 10MB files……………………..……………………

79

6.1 FDRs of ER scheme with and without BBI under the ferry scenario
when the network is moderately congested with large files……………..

83

6.2 FDRs of ER scheme with and without BBI under the ferry scenario
when the network is moderately congested with small files…………….

84

6.3 FDRs and ADDs of ER scheme with and without BBI under the ferry
scenario when the network is lightly congested with large files…………

84

6.4 FDRs and ADDs of ER scheme with and without BBI under the ferry
scenario when the network is lightly congested with small files………...

85

 x

6.5 FDRs of ER scheme with and without BBI under the NYC scenario…... 86

6.6 ADDs of ER scheme with and without BBI under the NYC scenario…... 86

6.7
FDR and ADD of the EBR scheme with and without the BBI in the
ferry scenario with transmission rate of 200kB/s, range of 100m, file
size of 100MB, and file generation 0.00005 file/s……………………….

87

6.8
FDR and ADD of the EBR scheme with and without the BBI in the
NYC scenario with transmission rate of 200kB/s, range of 50m, file size
of 100MB, and file generation 0.00005 file/s……………………………

88

6.9 FDR and ADD of the ER scheme with BBI that the compression
technique is employed and not employed in the ferry scenario………….

90

6.10 FDR and ADD of the ER scheme with BBI that the compression
technique is employed and not employed in the NYC scenario…………

90

6.11 FDR of the ER scheme with and without UBI under the ferry mobility
when transferring 100MB files…………………………………………..

93

6.12 FDR of the ER scheme with and without UBI under the ferry mobility
when transferring 10MB files……………………………………………

93

6.13 FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 100MB files…………………………………

94

6.14 FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 10MB files…………………………………..

94

6.15 FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 10MB files in a lightly congested network…

94

6.16
FDR of the ER scheme with and without UBI under the Istanbul
mobility with two different transmission rates (Left: 200kB/s, Right:
500kB/s)………………………………………………………………….

95

6.17 ADD of the ER scheme with and without UBI under the Istanbul
mobility with light traffic………………………………………………...

96

6.18 FDR and ADD of the ER scheme with and without UBI under the taxi
trace when transferring 100MB files…………………………………….

97

6.19 FDR and ADD of the ER scheme with and without UBI under the taxi
trace when transferring 10MB files………………………………………

97

 xi

6.20 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the ferry mobility……………………………………

98

6.21
FDR of the source coding enabled EBR scheme with and without UBI
under the ferry mobility when transferring different size of files
(Left:100MB, right: 10MB)……………………………………………...

98

6.22 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility when transferring 100MB files…

99

6.23 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility when transferring 10MB files…...

99

6.24 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility and light traffic…………………..

99

6.25 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the Istanbul mobility when transferring 100MB files

100

6.26 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the Istanbul mobility when transferring 10MB files..

100

6.27
FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the taxi trace mobility when transferring 100MB
files………………………………………………………………………

101

6.28 FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the taxi trace mobility when transferring 10MB files

101

6.29 FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the ferry mobility……………………………………

102

6.30 FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the NYC mobility……………………………………

103

6.31 FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the Istanbul mobility………………………………...

103

6.32 FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the taxi trace mobility……………………………….

103

6.33 FDR of three routing schemes with UBI enabled under the ferry
scenario when transferring 100MB files…………………………………

105

6.34 FDR of three routing schemes with UBI enabled under the ferry
scenario when transferring 10MB files…………………………………..

105

 xii

6.35 FDR and ADD of three routing schemes with UBI enabled under the

NYC scenario with moderate traffic congestion…………………………
106

6.36 FDR and ADD of three routing schemes with UBI enabled under the
NYC scenario with light traffic congestion……………………………...

106

6.37 FDR and ADD of three routing schemes with UBI enabled under the
Istanbul scenario with moderate to high traffic congestion……………...

107

6.38 FDR and ADD of three routing schemes with UBI enabled under the
Istanbul scenario with light to moderate traffic congestion……………...

107

6.39 FDR and ADD of three routing schemes with UBI enabled under the
taxi trace scenario when transferring 100MB files………………………

108

6.40 FDR and ADD of three routing schemes with UBI enabled under the
taxi trace scenario when transferring 10MB files………………………..

108

 xiii

List of Abbreviations

ADD Average Delivery Delay
BBI Bundle Based Immunity
BIM Bundle Immunity Message
DTN Disruption Tolerant Network
ER Epidemic Routing
EBR Encoding Based Routing
FDR File Delivery Ratio
JOSM Java OpenStreetMap
LNC Linear Network Coding
LZW Lempel-Ziv-Welch
RMBM Routed Map-Based Movement
TTL Time To Live
SPMBM Shortest Path Map-Based Movement
UBI UUID Based Immunity
UIM UUID Immunity Message
UUID Universally Unique Identifier
WKT Well Known Text

 1

Chapter 1: Introduction

Disruption tolerant networks (DTNs) are networks where link disruption may

occur due to the sparsity of mobile nodes, the limit of wireless radio range or energy

resources, noise, and other factors. Unlike traditional multi-hop wireless networks,

DTNs are disconnected or partitioned most of the time. As a result one cannot assume

the existence of contemporaneous end-to-end connections between sources and their

intended destinations. Interplanetary communication, military ad hoc networks,

wildlife tracking sensor networks, and vehicular ad hoc networks are several example

use cases for DTNs.

Because of their intermittent connectivity, these types of challenged networks

cannot be supported by the traditional computer network solutions (e.g., the Internet)

that assume the availability of an end-to-end route between a source and its

destination(s). Instead, nodes must exchange messages (“bundles” in the DTN

literature) in an opportunistic manner when they meet each other in order to deliver

messages to their destinations. Thus, researchers began to work on establishing a

separate framework [2, 7] rather than extending the traditional network. A number of

routing solutions for DTNs also have been proposed to cope with the frequent and

unpredictable connectivity interruptions. Epidemic routing (ER) [29] is one of these

routing solutions, which is based on the idea of replication. To maximize the

probability of successful deliveries, the ER scheme produces many copies of every

message. Each relay node forwards each message to every other node it meets. This

creates a lot of redundancy in the network, but at the price of high resource

requirements.

 2

In this dissertation, we are specifically interested in the problem of

disseminating large files in a DTN environment. When a file is too large to be

communicated in a single contact, it must be first chopped into fragments that are

small enough to be transferred to other nodes within a contact. Then the fragments are

disseminated throughout the network, and the destination is required to collect a copy

of each fragment and reassemble the original file. In order to enhance the

performance of data routing in this kind of scenario, a form of linear network coding

(LNC) has been proposed and studied.

In order to study the benefits of coding techniques for transmitting the sets of

fragments in diverse network environments, we implemented an encoding based

routing (EBR) scheme. EBR employs the LNC scheme on the fragments to be

transmitted. It has two modes regarding where coding operations are employed. One

is the source-coding mode that allows only source nodes to create new encodings,

while the other is the network-coding mode that allows relay nodes to create new

encodings from the encodings they already hold. We compare the performance of

EBR to ER scheme under various network environments, and investigate the

appropriate network settings that are suitable to employ these coding techniques.

In addition, we investigate the use of an immunity mechanism in both of

routing schemes, ER and EBR scheme. The immunity mechanism is designed to stop

the distribution of bundles that have already reached their destination(s). The

traditional immunity mechanism works with individual bundles; when a bundle

reaches its destination, the destination node releases an immunity message telling all

other nodes that they can drop that particular message. We also implemented a new

 3

immunity mechanism that operates based on the delivered file. We examine the

performance gains due to the immunity mechanisms in different network settings by

evaluating the performance of the ER and EBR schemes both with and without the

immunity mechanisms.

As no solution is optimal in every situation, both coding techniques and the

immunity mechanisms have different benefits in different network scenarios. With

help of extensive simulation results, we investigate how these techniques bring

different performance gains in different network settings. A goal of this dissertation is

to provide a helpful guideline for utilizing these two techniques and choosing the

suitable routing schemes for various network environments.

1.1 Epidemic routing scheme

In order to deal with the expected lack of contemporaneous end-to-end paths

through the network, the routing algorithms in a DTN must be compatible with the

opportunistic “store-carry-forward” model, which relies on the mobility of nodes to

physically move data through a network. The most common technique used to

achieve reliable data delivery is replication. That is, sending identical copies of a

bundle over multiple relay nodes at the expense of high resource requirements and

redundant transmissions of same bundles in the network.

 The ER scheme is a replication-based scheme [29]. It propagates data rapidly

at every node-node contact, similar to the way an epidemic of disease might spread.

Whenever a bundle-carrying node meets a new node that does not have a copy of the

bundle, the carrier node is said to “infect” the new node by forwarding a copy of the

bundle. Then, the newly infected node behaves in the same way to other non-infected

 4

nodes. The bundle is finally delivered to the destination when the destination first

encounters an infected node.

While this routing algorithm floods the entire network with multiple copies of

a bundle, it mitigates the amount of unnecessary data transmission by maintaining a

data structure, called a summary vector, at each node. A node’s summary vector

indicates which bundles are stored in its local buffer. Whenever two nodes get in

contact, they exchange their summary vectors first. Then, they figure out what

bundles are not stored in the buffer of the other node, and forward only those bundles

that the neighboring node does not already have. This has the same effect as

unrestrained flooding of messages; given sufficient contact time, both nodes will end

up having the same list of bundles.

We implemented the summary vector for the ER router using two different

data structures. One is a simple list of the bundle identifiers (IDs), and the other is a

Bloom filter. A Bloom filter is a space-efficient probabilistic data structure used for

the membership test with risk of the false positives. The idea of utilizing a Bloom

filter for the summary vector was proposed in [29] to reduce the space overhead

associated with the summary vector. We examine the performance of the ER scheme

with these two different implementations over various network settings when nodes

transmit large files (sets of fragments) to others.

1.2 Coding technique

The use of coding has been considered as a promising technique that can

improve the performance of communication systems and networks [21, 30]. From

erasure coding [17, 19, 30] to many forms of network coding such as random linear

 5

network coding [15, 21, 33], various coding techniques have been explored in the

DTN community as well. We study how coding solves the problem of disseminating

large files in an opportunistic network, where the coupon collector’s problem would

be an issue if plain fragmentation were used [6].

When LNC [14] is employed on a large file to be transferred in the EBR

scheme, the file is first broken into a fixed number of equal sized blocks, or chunks.

These chunks are then used to generate encodings, each of which is a linear

combination of the chunks. Along with each encoding, an encoding vector that

specifies the list of coefficients used to generate the encoding from the chunks. The

source generates distinct encodings by taking different linear combinations of the

chunks. The source transmits a stream of distinct encodings instead of the original

chunks from the file. The destination can recover the file when it has collected a

sufficient number of linearly independent encodings. Regardless of which encodings

were received by the destination, typically the number of encodings required to

reconstruct the file is close to the number of chunks used by the source with high

probability. Compared to sending out the original chunks from the source, which may

suffer from the coupon collector’s problem, the file would be recovered more quickly

at the destination when coding is employed.

 We implement a routing scheme utilizing this coding technique, which we

name the EBR scheme. It has two different modes depending on where the coding

operation is performed. The first mode is the source coding that is built on top of the

ER scheme. In this mode, only source nodes generate encodings and the relay nodes

only need to employ the ER scheme (i.e., forward a copy of the encodings to other

 6

nodes after exchanging the summary vector first). The other mode is the network

coding in which the coding can be performed at the relay nodes as well as the source

node. Relay nodes generate new encodings from the encodings they are carrying and

transmit them rather than just forwarding what they have in the buffer. With this

mode, nodes do not exchange the summary vectors or check the bundle list to select

which bundle to send.

 Besides investigating the benefits of both coding techniques in the ER scheme

in different network environments, we also study each of the coding schemes in detail

for better understanding of these techniques. For the EBR with source coding scheme,

we examine the effects of coding weight on the performance. When a new encoding

is generated from either original chunks or existing encodings, the weight is the

number of items summed together to create the new encoding. Using higher weight

has the potential to improve the statistical performance of the code, but requires more

internal processing at the nodes creating the encodings. Also, as we did with the ER

scheme, we study how different implementations of the summary vector affect the

performance of the EBR scheme. Furthermore, we examine what we call the “rank

check” feature. With this feature, every node maintains an encoding matrix, and

figures out whether a newly received encoding is linearly independent of the

encodings the node already holds in its buffer. If an encoding is redundant (i.e., not

linearly independent from its existing inventory), the receiving node drops it. Also,

nodes stop receiving encodings if they reach the full rank for the file. We compare the

performance of the EBR scheme with and without this feature. For the EBR with

 7

network coding scheme, we examine the effect of re-coding weight on the

performance.

Eventually, we evaluate the performance of these two modes of EBR scheme

by comparing the result of ER scheme under diverse network settings. We study how

the coding technique performs in different network environments and which network

setting would be suitable for this technique to be adopted.

1.3 Immunity mechanism

An immunity mechanism [3, 15, 27, 33] has been proposed in order to

mitigate the storage requirement of replication-based routing protocols. The immunity

mechanism is a means of reducing additional circulation of the unwanted copies of

delivered bundles in the network. Through this mechanism, the copies of delivered

bundles are removed from the buffer at the nodes that become immunized to the

delivered bundles (i.e., notified of their delivery). It has been shown that this

immunity mechanism improves the performance of existing routing protocols in

many scenarios by reducing resource consumption, while at the same time increasing

the bundle delivery ratio and decreasing the delivery latency.

Since we are interested in transferring files using collections of small bundles,

we implemented two different types of immunity mechanisms: one based on the file

and the other based on bundle. The immunity mechanism based on the file generates

a new immunity message when a whole file is successfully delivered to the intended

destination. Because the immunity message associated with the delivered file contains

the universally unique identifier (UUID) assigned to the file, we refer to this

immunity mechanism as UUID-based immunity (UBI). The other immunity

 8

mechanism operates as each individual bundle is delivered to the destination. In this

immunity mechanism, the immunity message includes the unique ID of the delivered

bundle, and we call it bundle-based immunity (BBI). We evaluate the benefits of

these immunity mechanisms under various scenarios not only for ER scheme but also

for the two different modes of EBR scheme.

While the immunity mechanism is intended to facilitate nodes to better utilize

the limited contact times as well as the buffer space, we demonstrate that it could hurt

the performance as the size of immunity list increases. Especially, since the BBI

generates the immunity messages per the delivered bundle, the number of immunity

messages in the network could grow very large. If the size of immunity list is very

large, it is possible for nodes to waste most of contact time for exchanging the

immunity messages. As a solution to this issue, we propose to compress the immunity

list to reduce overhead of the control messages. We study how the compression over

the BBI benefits the ER.

 9

1.4 Summary of key changes to the simulator and challenges

We use the ONE simulator [11] for simulations. The simulator has been

developed for DTN research. However, it does not include every protocol for DTNs.

Furthermore, many features that we are interested in are not supported in the original

ONE simulator. Therefore, we made several major modifications and added new

features to the simulator in order to investigate the benefits from the coding scheme

and the immunity mechanism. Key changes to the simulator are summarized in Table

1.1.

Component Description of modification or new implementation

Link sharing scheme
between nodes

When two nodes get in contact, a link is established between
them. They share the link to exchange bundles with each
other. However, the link sharing rule implemented in the
original ONE simulator results in unfair communication
between nodes. A node that gets on the channel first
monopolizes the link until it runs out of bundles to send. In
order to balance the nodes’ communication, we modified the
code so that nodes take turns.

Link scheduling

No link scheduling mechanism is implemented in the ONE
simulator. When a node has links established with multiple
nodes at the same time, it selects one among the links and
communicates only on the link. Therefore, we added general
link scheduling schemes for multiple links; Round Robin
scheduling (default), and random scheduling.

Bundle scheduling
In addition to the random and FIFO bundle scheduling
schemes that are supported in the ONE simulator, we
implemented Round Robin scheduling.

Control message

A control message is a special bundle that is exchanged
between nodes before the real data transfer as a part of a
routing protocol. Unlike normal bundles, it should not be
stored in the buffer. However, we still need to account for
the transmission time of a control message.
Since the ONE simulator does not support control messages,
we added this to our implementation.

Summary vector
exchange

The ER scheme implemented in the ONE simulator works
different from the original ER protocol proposed in [29].
First of all, nodes do not exchange summary vectors.
Instead, they send every bundle in the buffer like Flooding

 10

[27]. When a node transfers a bundle that already resides in
the other node’s buffer, the simulator does not count the time
used for sending the bundle and the other node drops it (i.e.,
denies the transfer). However, this implementation does not
take account of the overhead of exchanging the summary
vector, which could affect the performance depending on
network settings. Therefore, we modified the code to
exchange summary vectors first when nodes meet each
other. Furthermore, we implemented it with two different
data structures – list and Bloom filter.

Bundle fragmentation

We newly implemented the proactive bundle fragmentation
using event generator. Each fragment becomes a single
bundle with a UUID representing the original bundle or file
and its index stored in the extension block. Also, every node
can recover the original large bundle when it collects all of
fragment bundles.

EBR scheme

Coding scheme is added to the ONE simulator. Nodes can
generate encoding bundles and decode them as well. There
are two modes in the EBR depending on which nodes
perform coding operations.

Immunity mechanism

The original ONE simulator does not support any immunity
mechanism. Two different immunity mechanisms - BBI and
UBI - are implemented with both ER and EBR. Immunity
mechanisms are configurable.

Report module Necessary report modules for analyzing the results are newly
added to the simulator.

Table 1.1 Summary of key changes to the ONE simulator

Besides the code changes to the simulator itself, we also developed programs

and scripts for the simulator, which are related to the mobility generation and result

analysis.

There are several major challenges we ran into while we were implementing

these components. First, the routing protocols provided in the simulator are not

implemented as proposed in terms of node behavior. For example, nodes do not

exchange the summary vector in the ER scheme that comes with the simulator. In

 11

order to simulate the routing protocols according to their original design, we

implemented routing schemes of our interest from the scratch. Second, many aspects

of the simulator are oversimplified, which could result in several issues that could

significantly affect the simulation results. Therefore, we made necessary

modifications to the simulator in order to create realistic settings.

1.5 Organization

We focus on investigating the benefits from two techniques, namely the

immunity mechanism and the coding technique, under diverse network environments

when transmitting large files. The goal of our study is to provide a guideline for

choosing the right combinations or routing scheme depending on the network

settings. To this end, we implement routing schemes by implementing coding

techniques and immunity mechanisms as an extension to the ER scheme. Then, we

investigate the performance of three routing schemes: the ER scheme and EBR

scheme with source coding and network coding, with and without the immunity

mechanisms through extensive simulations in diverse network settings.

The rest of the dissertation is organized as follows: Chapter 2 introduces the

related literature. In Chapter 3, we introduce the ONE simulator and describe the

network scenarios used for the research. From Chapter 4 to Chapter 6, we study the

ER scheme, the coding technique, and the immunity mechanisms. Then, the

conclusion is follows in Chapter 7. Figure 1.1 depicts the details of each chapter, and

Figure 1.2 shows the combinations of the routing scheme and the different

implementations and/or improvement approaches to be evaluated in this dissertation.

 12

Note on terminology: Here are some of terms used throughout the

dissertation. Chunk denotes one of the file fragments to be transferred. Encoding is

the result of the coding operation on chunks (i.e., a linear combination of the chunks).

Encoding vector is a vector of the coding coefficients, which contains the

information of which chunks are used for generating the corresponding encoding.

Innovative encoding means that the encoding is linearly independent of other

encodings in a set. That is, an encoding is innovative if adding the corresponding

encoding vector to an existing set of encoding vectors increases the rank of the set.

On the other hand, redundant encoding is an encoding that is not innovative. That is,

its encoding vector is not linearly independent of the existing set of encoding vectors.

Re-encoding vector is a vector that is created when a relay node performs re-coding

on encodings.

Figure 1.1. Organization of Chapter 4, 5, and 6

 13

Figure 1.2. Combinations of the routing schemes and the approaches of interest

 14

Chapter 2: Related work

In this chapter, we introduce the existing research related to the techniques of

interest, opportunistic network coding and the immunity mechanism. Then, we

discuss the limitations of these works with the motivation of this dissertation.

2.1 Coding technique

Assume that there is a source that wants to send a very large file (e.g. video)

to a destination in a DTN. The file must be chopped into small pieces that are

transferable during a single contact. Thus, the source sends out a large number of

chunks (i.e., small pieces) containing a small part of the file to deliver. The

destination needs to receive all of those chunks to reconstruct the original file. When

a flooding protocol is used, collecting all of the distinct chunks can be modeled as a

coupon collector’s problem [6] with the assumption of the independence of message

arrivals at the destination. It takes very little time to collect the first few chunks, while

it takes a long time to collect the last few chunks. Hence, the delivery delay could be

very large. The expected number of chunks needed at the destination is Ο 𝑁 log𝑁 ,

where 𝑁 is the number of chunks generated by the source [6]. A natural question is

“How can we improve the performance of delivery delay in this situation?”

 Coding techniques have been considered for improving the performance of

DTN routing schemes. Existing work [16, 33, 35] has shown that network coding [1]

improves the performance of average delivery delay over a set of messages with a

 15

relatively small amount of overhead in many scenarios. Gkantsidis and Rodriguez [8]

study the effectiveness of using network coding for the distribution of large data.

They also investigate the performance of source coding, which allows coding

operations only at the source. Their work suggests that network coding improves

download rates compared to source coding and no coding (plain fragmentation) in a

heterogeneous network. Wang et al. [30] propose a coding-based routing algorithm

that adapts the source coding approach to a simple replication-based algorithm. They

show that the source coding improves the worst case delay.

 Going back to the situation of interest, sending a large file in a DTN can be

converted to a case of transferring a set of messages, in which coding technique could

be used as an enhancement to the existing routing protocols. Then, how much better

does coding technique perform as compared to replication, and in what particular

network scenarios? Would the coupon collector’s problem be mitigated at all by the

coding technique? If so, when does it deliver the most benefits? Throughout this

research, we investigate the benefits of coding when sending large files in a DTN,

trying to find an answer to these questions.

 The main difference from the previous studies of coding technique in DTNs

would be the range of investigation with respect to network settings. Although all of

the existing works investigate the benefits of coding given a type of challenged

network, there has been no research considering multiple network characteristics. For

instance, the node mobility examined in [35] for studying the benefits of random

linear coding is only the random waypoint model. However, we evaluate the

performance of the routing protocol with and without coding in different network

 16

settings, in order to see when and how much the coding improves or hurt the

performance. The results will provide insights towards a better understanding of

utilizing the coding technique when transferring large files in DTNs.

2.2 Immunity mechanism

Haas and Small [9] discuss the impact of discarding obsolete information in

the context of an infostation model for sensor network applications. They propose and

study several strategies (called IMMUNE, IMMUNE_TX, and VACCINE) that

discard a packet when it is delivered, but keeps an identifier (ID) of the packet which

they call an “antipacket”. Each strategy has a different method for using antipackets.

Another related study is the work by Zhang et al. [34] on ER and its variants. They

study the performance of basic ER and its variations with the immunity mechanisms

introduced in [9]. In addition, Matsuda and Takine [20] analyze the performance of

(p, q)-ER with VACCINE. Mundur et al. [18] also propose an algorithm called ER

with immunity, and study the performance improvement over the ER scheme when

the buffer constraint exists.

 All of these studies except [18] are based on a mathematical model, either a

Markov chain model [9, 20] or ordinary differential equations (ODEs) [34]. In

addition, there is no existing study considering the scenarios where a set of fragments

needs to be transmitted. Furthermore, these researches have limited performance

evaluation in different network settings. Just as no single routing algorithm fits

perfectly in every situation, the immunity mechanism(s) may also not be able to

improve the performance in every network environment. Depending on network

characteristics, mobility scenario, routing protocol, and so forth, the benefit of the

 17

immunity mechanism may vary to a large extent. However, all of the existing works

study the immunity mechanism with a specific network setting. For example, the

mobility scenario chosen in [18] is only random waypoint, which is not realistic for

most DTN applications. Throughout this dissertation we investigate the performance

under multiple sets of varying network settings.

 Moreover, existing studies regarding the immunity mechanism do not

consider its overhead such as bandwidth consumed by the immunity mechanism.

 18

Chapter 3: Network scenarios

In this chapter, we describe the various network settings we used for the

performance evaluation. In order to thoroughly investigate the benefits of each

approach of interest, we carried out an extensive simulation-based study in a number

of different network settings. For each network scenario, except for the ones using

real trace data, we generate 10 runs with random initial seeds and take the average.

This chapter describes the network environments we consider. The rest of this

chapter is organized as follows: Section 3.1 briefly introduces the ONE simulator,

which is the tool we use for the simulations. The performance metrics that we are

interested in are presented in Section 3.2. Section 3.3 specifies the parameters and the

values we chose for creating diverse network scenarios with other settings such as

mobility scenarios and traffic generations. Section 3.4 describes four different

mobility scenarios, each of which has distinguishing characteristics from other ones.

Settings of the traffic generation scenarios are presented in Section 3.5. The summary

of network settings is shown in a table in Section 3.6.

3.1 The ONE simulator

The ONE simulator [11] is a widely used simulation tool that is specifically designed

for evaluating DTN routing protocols. With this simulator, we can construct various

network settings relatively easily. One of its attractive features is the map and

mobility feature. It allows using real maps (e.g., Google map) and the mobility

scenarios based on the map. Figure 3.1 shows the ONE simulator running with the

Istanbul city map. It supports not only programmed mobility scenarios such as

 19

random movements on the map, but also supports the real traces collected by field

tests (e.g. UMass DieselNet [4]) by importing the trace data into the simulated

environments. In this dissertation, we explore both of these types of mobility patterns,

the map-based mobility, and the real traces for the performance evaluation.

As stated in Section 1.4, the ONE simulator does not come with all of routing

protocols proposed in the research fields or other features. Thus, we made necessary

modifications to the simulator in order to study the techniques of interest. Details of

the implementations will be presented in relevant Chapters.

Figure 3.1. Screen shot of the ONE running a scenario with Istanbul map

 20

3.2 Performance metrics

For studying each of the approaches of interest, we will focus on the following

performance metrics. First, we are interested in evaluating the file delivery ratio

(FDR) that is the fraction of files successfully delivered to their destinations. When

we say that a file is delivered, it means that the destination received every chunk of

the file or enough encodings to recover the file (i.e., the number of linearly

independent encodings is the same as the number of chunks of the file). Second, we

will compute the average delivery delay (ADD) for transmitting files, which is the

time between when the source starts to generate encodings or to create chunks and

when the destination finishes the reconstruction of the file by collecting enough

encodings or all of chunks.

3.3 Parametric scenario

As we mentioned earlier, performance could vary widely depending on

different network settings even with same technology or identical routing scheme.

Besides the mobility scenarios and the message traffic generation scenarios, there are

parameters that are important when setting up a network environment. In this section,

we explain the parameters we consider along with the reason that they matter respect

to the performance.

3.3.1 Number of nodes

This represents the node density, which directly affects the network

connectivity. The connectivity of the network critically affects the performance

 21

metrics such as the delivery ratio and delivery latency. In particular, the delivery

delay will be longer as the network becomes sparser.

We vary the number of nodes not only over different mobility scenarios, but

also with same mobility scenario in order to see how the node density affects the

performance in various network environments.

3.3.2 Transmission rate and range

The properties of the node include the transmission range and rate.

Transmission range also affects the network connectivity. When the transmission

range of nodes gets larger, the network is connected better with the same number of

nodes. This means that the chance that nodes contact another node becomes higher.

As a consequence, the probability that messages are delivered to their destination

increases.

Transmission rate means how fast nodes transmit data to another node. It

affects the number of bundles that can be transferred to the other node during a

contact. Obviously, the delivery ratio and the delivery delay will be affected by the

transmission rate.

In this dissertation, we assume that nodes communicate with each other using

Wi-Fi, which is the most popular local area wireless technology. Even though modern

Wi-Fi using extensions to IEEE 802.11 allows maximum data rates higher than 100

megabit per second (e.g. 802.11n), we set the transmission rate much lower because

in practice goodput tends to be much lower than the max transmission rate.

Depending on the scenario, we choose the rates from 100 kilobyte per second (kB/s)

to 500 kB/s accordingly. Also, for the transmission range, we assume that all of nodes

 22

are moving around outdoors. We set the transmission range to 50m, 100m, and 150m

as we explore different connectivity of each mobility scenario.

3.3.3 Buffer capacity

Buffer capacity is one of the most important resource constraints in DTNs.

Depending on the buffer size, the stay time of bundles in the buffer varies. If bundles

are dropped from the buffer due to overflow, the delivery ratio could suffer. In recent

years, however, storage capacities have increased considerably, and this is not a

restrictive constraint anymore. Therefore, we do not consider buffer capacity in this

dissertation, and assume that there are no bundle drops due to buffer congestion.

3.3.4 Node speed

How fast nodes are moving affects the network dynamics. When nodes move,

the network connectivity also changes according to their location changes. As nodes

move faster, the probability that nodes meet another node in a limited time gets

increased, while the contact time between nodes decreases. We set different node

speeds and the pause time in different mobility scenarios based on what we believe

are realistic speed of vehicles.

3.4 Mobility scenarios

As we mentioned before, the ONE simulator supports the map-based mobility.

Utilizing this feature of the simulator, we construct three different mobility scenarios

for the performance evaluation. As the ONE simulator understands map data in Well

Known Text (WKT) format, we generate map data files by exporting the real-world

map using Java OpenStreetMap Editor (JOSM)[36] for the first two mobility

 23

scenarios. In addition, we created a simple map using OpenJUMP [37], a Geographic

Information System (GIS) program. For the last mobility scenario, instead of the

map-based mobility, we use real trace data that are processed to be readable by the

ONE simulator.

With map-based mobility, nodes move only on paths and routes defined in the

map data. We use the Shortest Path Map-Based Movement (SPMBM) for the first

two mobility scenarios, and the Routed Map-Based Movement (RMBM) for the third

scenario. With SPMBM, nodes are initially placed at random locations. Then, each

node selects a random point on the given map and moves towards the chosen point

following the shortest route decided by the Dijkstra’s shortest path algorithm. With

RMBM, nodes follow pre-determined routes. At the beginning, nodes are placed

somewhere on the route assigned to them. Then they select a next point on the route,

and start moving to the target point along the route. With both of map-based mobility

schemes, nodes move at a uniformly assigned speed among the pre-configured speed

range. When the node reaches its target point, it pauses for a random amount of time

uniformly distributed over pre-configured pause time, selects a new next point and a

new speed, and repeats the same process.

3.4.1 Ferry Scenario

Ferry mobility scenarios are very popular in the DTN research community,

where a set of nodes called ferries are responsible for carrying messages (i.e.,

bundles) for all nodes in the networks. With this ferry scenario, we evaluate the

performance under a simple topology with low node density where not all of nodes

meet each other.

 24

Figure 3.2. Locations of stationary nodes and the mobility domains of ferry nodes in
the ferry scenario

 We generate a simple diamond shape map using OpenJUMP as shown in

Figure 3.4. At each vertex of the diamond, there is a stationary node. Every ferry

node is moving along the pre-assigned routes. Since not only the number of ferries,

but also the domains of ferries’ mobility could affect the performance, we carry out

multiple combinations of ferry routes as shown in Table 3.1. Columns under

‘Segments on which each ferry moves’ show the pre-defined routes for each ferry.

For example, second column of the third row presents that three ferries move on the

segments {1, 5}, {3, 5}, and {6}, respectively.

In the ferry scenario, there is one source and one destination. N0 is the source,

and N2 is the destination in Figure 3.4. Ferry nodes move at the speed given by a

random variable uniformly distributed over [10, 30] mile per hour (mph). Their pause

 25

time is given by random variables uniformly distributed over [10, 120] seconds. The

minimum pause time is larger than other mobility scenario considering that ferries

tend to stay longer for loading and unloading data when they meet another node.

Total simulation time is a week as well.

Number of ferries Scenario
name Segments on which each ferry moves

2 F2-1 {1, 5}, {3, 5}
F2-2 {1, 2}, {3, 4}

3 F3-1 {1, 5}, {3, 5}, {6}
F3-2 {1, 2}, {3, 4}, {6}

6 F6-1 {1, 2}, {3, 4}, {5}, {6}, {1, 3, 5}, {2, 4, 5}
F6-2 {5}, {6}, {1, 4}, {2, 3}, {1, 3, 6}, {2, 4, 6}

Table 3.1. Mobility domain assignments on ferry nodes for each scenario

3.4.2 Manhattan in New York City Scenario

In this scenario, nodes are moving on the map of Manhattan in New York,

NY, which is generated using the JOSM editor as described above. Figure 3.3 shows

the snapshot of the simulator running the Manhattan scenario with 30 nodes.

The Manhattan scenario represents a random movement in an urban area.

Within the small area, nodes keep moving slowly and communicating with each

other. Node speeds are given by independent random variables uniformly distributed

over [1.5, 3.5] mph to model pedestrian mobility. In this scenario, nodes are

homogeneous and move according to the same mobility scheme, SPMBM described

earlier, with the same speed range and pause time range. Pause times are also random

variables uniformly distributed over [0, 120] seconds. Furthermore, every node can

generate files destined to any node in the network (i.e., every node can be a source or

destination of files).

 26

In the Manhattan scenario, we vary the number of nodes from 30 to 60, and

then to 90. We run the simulations for a week or 604800 seconds.

Figure 3.3. A snapshot of the locations of 30 nodes on the map of Manhattan in New
York City, NY

3.4.3 Island hopping within Istanbul, Turkey Scenario

Island hopping scenario is suggested as a mobility model for a partitioned

network in [25] based on an observation that in many practical settings, spatial node

 27

distributions are very heterogeneous, and there are some concentration points of high

node density. We create a mobility scenario based on this idea. Indeed, in the real life,

nodes are not moving around over the whole network field. Rather, nodes tend to

have a small sub-area where they tend to stay, and communicate mainly with other

nodes that share the sub-area.

 In the Istanbul scenario, we create three sub-areas each of which is overlapped

at the edge. In each sub-area, there is one stationary node, which generates files to

other stationary nodes in a different sub-area. Also, the number of moving nodes in

the sub-areas is same. We conduct simulations with the number of moving nodes in a

sub-area of 9, 19, and 29. Thus, total number of nodes in the network is 30, 60, and

90 respectively. Figure 3.3 is a snapshot of the Istanbul scenario with 60 nodes

showing the map of Istanbul city and the locations of the stationary nodes (with red

circle) as well as other mobile nodes.

 Moving nodes follow the SPMBM as in the Manhattan scenario. The node

speed is set to mimic the speeds of cars in Istanbul. Considering the traffic congestion

in the city, we use minimum speed of 22.5 mph and maximum speed of 36 mph. The

pause time is the same as in the Manhattan scenario, a random variable uniformly

distributed over [0, 120] seconds. Total simulation time is also a week, or 604800

seconds.

 28

Figure 3.4. A snapshot of the Istanbul scenario depicting the locations of the
stationary nodes and the sub-areas

3.4.4 Taxi Trace in San Francisco, CA Scenario

In this San Francisco taxi scenario, we use the real mobility trace collected

from taxi cabs in San Francisco, CA in 2008 [22]. The data set contains GPS

coordinates of approximately 500 taxis collected over 30 days in the San Francisco

bay area as a part of the cabspotting project [21] by the Exploratorium. Each taxi is

equipped with a GPS receiver and sends a location-update to a central server

periodically. Figure 3.5 shows a single taxi trace (depicted in red lines) on the real

map.

 29

Figure 3.5. A taxi mobility trace in May 2008

The processed data of the taxi trace contains the location information of 150 taxies

over 5 days. In order to make this mobility trace be readable and runnable by the

ONE simulator, we process the data by selecting only a part of taxis’ trace and

interpolating the intervening location data. Since we do not take the real road or

building locations into account when calculating the missing points, the processed

mobility data would include some unrealistic location points.

3.5 File traffic generation

Along with the network settings described in the earlier sections such as

mobility scenarios, the traffic generation is also another key factor, which

 30

significantly affects performance. In particular, the size of file(s) and the rate of file

generation have strong influence on the level of data traffic congestion in the

network. In addition, the size of chunk segmented from a file is also important for the

traffic pattern.

Considering the transmission rate of nodes, we fix the size of chunk to be

100kB regardless of a file size, which is small enough to transfer in a single contact.

Therefore, if the size of a file is big, the number of chunks for the file is also large

while the size of chunk remains same. For file generation, we use a Poisson process.

Throughout the simulation, files are generated according to a Poisson process with a

given rate. We use two different rates with two different sizes of file respectively to

keep the total traffic load in the network similar. 10MB files are generated at a rate of

0.0005 file per second (file/s), and 100MB files are generated at a rate of 0.00005

file/s. Comparison of performance between these two scenarios shows the effect of

file size as well as rate of file generation.

We also consider various traffic patterns. For each mobility scenario, we give

a different pattern of the source and destination. For example, every node can be

source and destination in the NYC scenario, while there are fixed source and

destination in the ferry scenario.

We note that the key point of traffic flow pattern we focus on in this

dissertation is the level of traffic congestion. In order to set different traffic

congestion environment, we vary multiple parameters such as transmission rate and

range, node density, node speed, traffic generation rate, and etc. However, unlike the

traditional network, traffic load is very hard to estimate by these configurable

 31

parameters in DTNs. It significantly depends on a routing scheme and the mobility.

Therefore, in this dissertation, we define the traffic congestion level by FDR from the

simulation result. For instance, we say that a network is highly congested when the

FDR is higher than 70%.

While analyzing the results, we explore the performance of routing schemes

with at least three different levels of congestion, light, moderate, and high traffic jam.

We are not interested in the situations of too light congestion (i.e., all of files are

delivered) or too high congestion (i.e., no file is delivered).

3.6 Summary of simulation settings

Table 3.2 shows all the parameter settings for each mobility scenario. It will

be referred to throughout Chapters 4, 5, and 6 when simulation results are presented.

As shown in the table, node speed, pause time, and file generation settings are fixed

for each mobility scenario. Node speeds and pause times are uniformly distributed

over the specified intervals. We use the same file size and file generation rate for

every scenario.

 32

Mobility
scenario Ferry NYC Istanbul Taxi

Number of
nodes

4 stationary
nodes
+ 2, 3, 6 ferries

30, 60, 90
moving nodes

3 stationary
nodes
+ 27, 57, 87
moving nodes

150 moving
nodes

Transmission
rate, range

1 100kB/s,
50m 1 100kB/s,

50m 1 200kB/s,
100m 1 100kB/s,

50m

2 200kB/s,
50m 2 200kB/s,

50m 2 500kB/s,
100m 2 200kB/s,

100m

3 200kB/s,
100m 3 200kB/s,

100m 3 300kB/s,
150m

Node speed [10, 30] mph [1.5, 3.5] mph [22.5, 36] mph Real trace
Pause time [10, 120] s [0, 120] s [0, 120] s

File
generation
setting

1 fixed source
1 fixed
destination

Every node can
be source and
destination

Only stationary
nodes are
source and
destination

Every node can
be source and
destination

File size,
generation
rate

1 10MB, 0.0005 file/s

2 100MB, 0.00005 file/s

Table 3.2. Simulation settings

 33

Chapter 4: Epidemic Routing Scheme

In this chapter, we investigate the Epidemic Routing (ER) scheme,

specifically its performance with two different implementations of the summary

vector. The rest of the Chapter is organized as follows: first, we describe the

implementation details of the ER scheme in Section 4.1. The issues we encountered

while implementing the ER scheme in the ONE simulator are also included in Section

4.1. Section 4.2 explains the details of Bloom filters and how we use one in our

summary vectors. Simulation results are presented in Section 4.3.

4.1 Implementation Details

The ONE simulator comes with an implementation of six popular DTN

routing protocols, and the ER scheme is one of them. However, there is a marked

discrepancy between its implementation and the originally proposed ER algorithm

[29], especially regarding the exchange of the summary vector. Therefore, we

implemented a new version of the ER protocol in the ONE simulator. In the following

sections, we describe the implementation details of the ER scheme, which is also the

base for the EBR scheme.

4.1.1 Description of the ER Scheme

The ER scheme works by replicating copies of a bundle and distributing them

amongst many relay nodes. Each node maintains a buffer consisting of bundles that

are created by the node as well as those that were forwarded by others. For efficient

processing, we store the bundles in a hash table keyed by a unique ID of each bundle.

Every node also stores a bit vector, called a summary vector that indicates which

 34

bundles are in the bundle hash table. The summary vector is exchanged at node

encounters to determine which bundles need to be transferred. As we mentioned

before, we implemented the summary vector with the list of bundle IDs and the

Bloom filter keyed by the bundle IDs. It will be explained in detail in later sections.

The exchange of summary vectors has not been implemented in the ER

protocol of the ONE simulator. Instead, a node tries to send every bundle it is

carrying to the neighboring node, and the receiver simply drops a bundle if it is

already stored in the buffer. This is what is commonly referred to in the DTN

literature as “flooding”, and is different from true Epidemic Routing as proposed by

Vahdat and Becker [29]. However, because the simulator clock does not advance

during the failed tries, it works as though only bundles the other node does not have

were forwarded. However, this model of ER does not allow us to evaluate the

overhead due to exchange of summary vectors. As the number of bundles stored on

each node increases, so should the overhead incurred by the exchange of summary

vectors. Therefore, in order to capture the effect of this overhead in our simulations,

we needed to implement a more realistic version of the ER scheme in the ONE

simulator.

First, we implemented the exchange of the summary vector at node

encounters. When two nodes come in contact, one of them sends out its summary

vector first. Then, the other node also sends its summary vector to the initiator node.

Unlike [29] where the node with smaller ID always initiates the communication, we

select the initiator in a random fashion. In addition, in order to best utilize the limited

contact time, we skip the step of requesting the bundles a node needs (i.e., requesting

 35

bundles it does not have, but the other node has). In our implementation, right after

exchanging summary vectors, nodes start to transfer real data bundles if needed.

Since we assume that links are not shared at the same time, only one node can send

data at a time. In the absence of any detailed scheduling algorithm, they take turns

sending a bundle. This feature is also newly implemented in the ONE simulator; in

the original ONE simulator, one of the nodes transfers all its bundles before the other

node gets a chance to send any.

Once a node receives the summary vector from the other node, it figures out

which bundles need to be transmitted and creates a separate outgoing queue for them.

It sorts the queue according to selected scheduling strategy. Then, while the link is

available (i.e., they are within the transmission range) and there are more bundles in

the send queue, they keep forwarding bundles to the each other, alternating between

them.

4.1.2 File Handling and Scheduling Strategy

The original ONE simulator does not provide any implementation of bundle

fragmentation [26] or application data unit reassembly [26]. Therefore, we needed to

implement these features in the ONE simulator in order to study the scenarios of

transferring large files that need to be fragmented before sending.

In our implementation, when a node creates a file, it proactively breaks it into

fragments (i.e., chunks). Then, the source node places each chunk in the payload of a

new bundle. Every one of these new bundles also stores information regarding the

chunk such as the UUID [36] of the file and the location of the chunk within the file

in the extension block. In addition, a unique bundle ID is assigned to each bundle by

 36

the following naming rule, “[creation time], [sequence number], [time to live], [end

point identifier of the source node]”, where the sequence number is generated by the

source node. An example of the bundle ID is “419, 11, 200000, dtn://umd.edu/N20”.

Once a chunk is placed in a separate bundle via the above procedure, it is

treated as any other ordinary bundle until it is delivered to its destination. Relay

nodes, as well as the source node, pay no attention to the UUID information attached

to the chunk bundles, and forward chunks (in a bundle format) by only referencing

their bundle ID in the summary vector to determine if they need to be transmitted to

the neighboring node.

 Scheduling strategy is also simple. Since every chunk is seen as just a bundle,

nodes sort chunks in the outgoing queue by the bundle scheduling strategy, regardless

of the file they are associated with. In this dissertation, we use the Round Robin

scheduling for all scenarios.

At the destination, chunks are grouped by the file they belong to. It checks the

number of chunks collected for the file. When the number of chunks delivered at the

destination reaches the total number of chunks fragmented from the file, it means the

destination collects all of chunks to recover the file. Then, we say the file is delivered.

4.2 Summary Vector Implemented by the Bloom Filter

A defining part of the ER protocol is the exchange of summary vectors when

nodes encounter each other. In order to avoid unnecessary data transmission, nodes

check which bundles need to be transmitted to the neighbor node before starting the

data transfer. A summary vector is a control message that indicates which bundles the

 37

node is carrying at the moment of encounter. We implemented the summary vector

with two different types of data structure. The list of bundle IDs has been proposed

and discussed in [18]. However, the Bloom filter implementation has not been studied

in detail yet to the best of our knowledge.

A Bloom filter is a storage-efficient probabilistic data structure that is used to

test the membership of an element in a set. It experiences false positives, but it

guarantees no false negatives. Since the role of the summary vector of the ER scheme

is to test the membership of bundles in a neighboring node’s bundle store, the Bloom

filter is a good candidate data structure for the summary vector [29].

4.2.1 The optimal number of hash functions

In order to keep the probability of false positives low, we need to have a

sufficiently large Bloom filter size (m) and a sufficient number of hash functions used

for the membership test. Calculation of the optimal number of hash functions given

the size of an entry is as follows: After inserting n entries into a Bloom filter of size m

bits using k hash functions, the probability that a particular bit is still 0 is:

𝑃! ≈ 1−

1
𝑚

!"

 (4.1)

Thus, the probability of false positive (i.e., all of the k array positions computed by

the hash functions is 1) is:

𝑃!"" = 1− 𝑃! ! = 1− 1−

1
𝑚

!" !

≈ 1− 𝑒!
!"
!

!
 (4.2)

 38

Suppose that we are given the ratio !
!

 and want to optimize the number of 𝑘 hash

functions to minimize the probability of false positive 𝑃!"". We can find the minimum

by taking the derivative of 𝑃!"" with respect to k. We find the optimal 𝑘 by setting the

derivative to 0.

𝑓 = ln𝑃!"" = 𝑘 ∙ ln 1− 𝑒!
!"
!

𝑑𝑓
𝑑𝑘 = ln 1− 𝑒!

!"
! +

𝑘𝑛
𝑚 ∙

𝑒!
!"
!

1− 𝑒!
!"
!

 ∴ 𝑘 =
𝑚
𝑛 ln 2 (4.3)

 For the optimal value of 𝑘, the false positive rate is;

𝑃!"" =
1
2

!
! !" !

= 0.6185
!
!

We pick 8 for , the size of each entry (i.e., an entry takes 1 byte), thus, run

the hash functions 7 times to keep the probability of false positives roughly 2.14%.

Note that the above calculation assumes perfect hash functions that spread the

elements uniformly throughout the range {1…m}. [23] suggests the MD5 message-

digest algorithm [24] as a hash function for the Bloom filter, claiming that it has

achieved good results in practice. Our implementation also uses MD5.

m
n

 39

4.3 Simulation Results

There is a trade-off between using the Bloom filter for the summary vector vs.

using the list. Despite getting the benefit from space efficiency, the Bloom filter can

result in false positives, which could adversely affect performance. Intuitively, we

expect that Bloom filter implementation of summary vectors saves contact time,

generally resulting in higher delivery ratio than the list type of summary vector.

However, we need a better understanding of how the false positive instances affect

the performance.

In this section, we evaluate the performance of the ER scheme with both types

of summary vector in different network settings. We are interested in comparing the

relative performance of the ER scheme with the Bloom filter type summary vector

against the list type one. In order to investigate with which network setting the Bloom

filter works well in the ER scheme, we use the ferry network scenario with low node

density, and the NYC scenario for more complex and denser network.

4.3.1 Ferry scenario

Our experiments show that with the ER scheme, the Bloom filter type

summary vector outperforms the list type when the data traffic congestion is

relatively high, but not that dramatically. However, when the data traffic is light or

moderate, they are usually more or less on the same level. However, in some specific

conditions, the Bloom filter performs even worse than the list type. If the data traffic

is too light, and all of files generated are delivered, the Bloom filter performs worse

than the list with respect to the ADD. This is because destinations need to wait for the

next encounter to receive few more chunks that are missed due to the false positives.

 40

Even though false positives are not many, still destination has to collect every chunk

in order to complete the file. However, we do not investigate such scenarios in detail

in this dissertation.

Figure 4.1 shows the FDR and ADD of the ER scheme in the network with

our second setting for transmission rate and range: 200kB/s and 50m. We used our

first setting for file size and generation rate; 10MB files are generated in a Poisson

process with the rate of 0.0005 file/s (refer to Table 3.2). As the left graph depicts,

there is no noticeable difference in the FDR. In terms of the ADD, the mobility

scenarios of F2-1 and F3-1 experience better performance with the list type of the

summary vector. In other scenarios, the ADD of the Bloom filter and the list fall into

the confidence interval of each other, which are calculated with 90% of confidence

level.

Figure 4.1. FDR and ADD of the ER scheme with Bloom filter and list summary
vector in the ferry scenario with 200kB/s of transmission rate and 50m of
transmission range

In order to find the reason for the debasement of the performance due to the

Bloom filter, we analyze each network mobility scenario. We found that the scenarios

F2-1 and F3-1 are distinct from other scenarios in some sense. First, compared to

other scenarios, these two mobility scenarios tend to have longer contact times.

 41

Second, they have fewer node encounters during the simulation than others. Figure

4.2 shows the mean contact time and the total number of contacts of every ferry

scenario. In general, longer contact time helps nodes to transmit more bundles while

fewer contacts are an adverse condition for delivering bundles. Considering that F2-1

and F3-1 mobility scenarios experience worse FDR, it seems that the ER with Bloom

filter summary vector does not perform well in the network environment where nodes

meet other nodes less frequently.

Figure 4.2. Average contact time and total number of contacts in the ferry mobility
scenarios

With highly congested traffic, when using the Bloom filter implementation of

the summary vector compared to the list, the performance gain from saving contact

time is larger than the negative effect of the false positives in terms of FDR. Figure

4.3 shows the results when we decrease the transmission rate to 100kB/s while

keeping other network settings same. With this setting, most of ferry scenarios

experience low FDR (i.e., high congestion).

 42

As is shown in the graphs, when the FDR is not distinguishable between the

Bloom filter and the list such as the mobility scenarios of F2-1, F3-1, and F6-1, the

ADD of the Bloom filter is smaller than that of the list type.

Figure 4.3. FDR and ADD of ER scheme with Bloom filter and list summary vector
in the ferry scenario with 100kB/s of transmission rate and 50m of transmission range

F2-2, F3-2, and F6-2 in Figure 4.3 may suggest that the ADDs are larger for

the Bloom filter. But, this is actually a consequence of the fact that the Bloom filter

delivers more files that the list cannot deliver during the simulation time. Figure 4.4

plots the delivery delays of delivered files in increasing order for one of the runs. This

graph tells us that if we compare the same number of delivered files with the smallest

delivery delays, the Bloom filter performs better than the list. Moreover, it indicates

that the ADD of the Bloom filter is affected significantly by the largest 20 percent of

the delivery delays due to a sharp increase in the delivery delays for the last 17 files

in the plot.

 43

Figure 4.4. File delivery delays of the F2-2 scenario by increasing order

* Remarks: 1. The Bloom filter type of the summary vector slightly

outperforms the list type when the network is highly congested in the ferry mobility

scenarios.

2. When a network consisting of a simple topology and low node density is

under moderate or light traffic, the Bloom filter performs worse than the list if nodes

encounter other nodes less frequently.

4.3.2 NYC scenario

Like the ferry scenario, the NYC scenario shows similar results. If the data

traffic is light, there is little difference in the performance of the ER when using the

Bloom filter summary vector compared to using the list type. However, if the data

traffic is high, the Bloom filter outperforms the list slightly.

 44

Figure 4.5 shows the ADDs of the delivered files for the ER scheme with both

types of summary vector under the third settings of transmission rate and range in

Table 3.2. The file generation scenario of the left plot is the first one in Table 3.2

generating total of 32 100MB files according to a Poisson process with the rate of

0.00005 file/s throughout the whole simulation, while for the right plot we use the

second scenario that creates a total of 330 10MB files with the rate of 0.0005 file/s.

Table 4.1 displays both FDR and ADD for each case.

Note unlike the ferry or the Istanbul scenario, in the NYC scenario, the source

and destination of a file are also randomly picked among nodes, and the source and

destination are moving. In spite of these distinctions, the plots and table show that the

Bloom filter does not have any significant performance gain over the list when the

traffic is light. The slight gap between them is within the margin of error with the 90

% of the confidence level.

Figure 4.5. ADD of ER scheme with Bloom filter and list summary vector under the
NYC scenario

 45

100MB List Bloom filter
of nodes ADD FDR ADD FDR

30 107165.17 0.933 106741.27 0.933
60 45761.67 0.941 46440.81 0.941
90 27343.95 0.968 27061.22 0.969

10MB List Bloom filter
of nodes ADD FDR ADD FDR

30 43116.17 0.906 40660.12 0.919
60 15239.15 0.970 15954.60 0.970
90 10812.81 0.985 11576.01 0.988

Table 4.1. ADD and FDR of ER scheme with Bloom filter and list summary vector
under the NYC scenario with the transmission range of 100m

In the network setting where the traffic is higher, the NYC scenarios also

experience the slight performance gain from the Bloom filter implementation of the

summary vector over the list type. Table 4.2 shows the results when the transmission

range is decreased to 50m from 100m (i.e., the second setting of transmission rate and

range in Table 3.2). Other parameters remain the same. While the average contact

time between nodes in the previous network scenario where the transmission range is

100m is about 155 seconds for all of three node density settings, it drops to about 76

seconds with the smaller transmission range. Due to the shorter contact time, the

transmission time saved by using the Bloom filter type of summary vector would give

more positive impact on the performance.

In particular, with a 30-node network, the FDR is very low much like with the

list type of the summary vector. Over the 10 runs, either only one file or none out of

30 files is delivered to the destination. However, with using the Bloom filter, every

run successfully delivers more files to the destination resulting in better performance

 46

in terms of FDR. With the smaller files (i.e., lower rate of file generation), it also

shows similar results.

100MB List Bloom filter
of nodes ADD FDR ADD FDR

30 471029.19 0.023 457028.30 0.033
60 189201.98 0.782 190359.60 0.824
90 71210.18 0.921 70007.44 0.938

10MB List Bloom filter
of nodes ADD FDR ADD FDR

30 210001.71 0.089 227703.38 0.106
60 99810.66 0.801 105991.64 0.843
90 21312.87 0.935 28422.26 0.953

Table 4.2. ADD and FDR of ER scheme with Bloom filter and list summary vector
under the NYC scenario with the transmission range of 50m

* Remarks: 1. The Bloom filter type of the summary vector slightly

outperforms the list type one when the network is highly congested, regardless of the

node density of the network.

 47

Chapter 5: Encoding Based Routing Scheme

In this chapter, we study the functionality and performance of the EBR router.

We study two different modes of the EBR scheme, the source coding and the network

coding. We first explain each mode of the EBR scheme itself in detail, and then

investigate the benefits of coding by examining the performance of both ER and EBR

scheme. The rest of this chapter is organized as follows: In Section 5.1, we study

EBR with source coding. Then, we examine the network coding mode of the EBR

scheme in Section 5.2. Lastly, we investigate the performance of ER and both modes

of the EBR in various network settings in Section 5.3.

5.1 Encoding Based Routing with Source Coding

In this section, we explain the EBR with source coding scheme focusing on

three aspects, the encoding operation, the relay nodes’ capability, and the control

message. In each sub-section, we describe the implementation details of the routing

protocol regarding that aspect, and examine the performance of EBR scheme to

explore it thoroughly. In Section 5.1.1, we describe how the coding technique is

employed when creating a file. We also include a study of the impact of the coding

weight. That is the number of chunks used to generate an encoding. Then, we explain

our implementation of the nodes’ rank calculation capability in Section 5.1.2. Also,

we investigate the performance of EBR with different configurations of relay nodes

with respect to the rank calculation. Finally, we study the control message

implementation of the EBR scheme in Section 5.1.3. In particular we examine how

 48

the different implementations of the summary vector affect the performance of the

EBR scheme as we did for the ER scheme in Chapter 4.

5.1.1 File Creation

5.1.1.1 Implementation Detail

As explained in Chapter 4, when a source has a large file to deliver, which is

too big to transfer in a single contact, we fragment it into smaller pieces, called

chunks. Each of these chunks is transported in a separate bundle in the ER scheme. In

the EBR scheme, the source generates encodings from the chunks and forwards these

encodings in bundles.

Encodings can be generated using different coding schemes. In EBR, we use a

random binary linear coding scheme. Suppose a large file is divided into a large

number of equally sized chunks 𝑁 (𝑁 ≫ 1). To generate a single encoding, the

source randomly chooses at most K (1 ≤ K ≤N) chunks out of the N chunks, takes a

binary sum of these K chunks, and puts the binary sum in the payload of the bundle

along with the associated encoding vector in the extension block. We call K the

encoding weight since it is the maximum number of distinct chunks in an encoding.

Algorithm 1 shows how to create a new encoding vector with a given K.

Algorithm 1. Creating a new encoding vector
N = number of chunks
K = encoding weight
V = N-dimensional zero vector

for i in [0, … , K]
 j = random(0, N-1);
 V[j] := 1;
end for

 49

When N is large and K > 1, the number of distinct encodings we can generate

(i.e., the number of different nonempty sets of at most K chunks we can choose) is

given by, 𝑃 = 𝑁
𝑖 = Θ 𝑁!

!!!!! , which is in general much larger than N.

However, in order to prevent flooding the network with too many encodings from a

single file, we limit the number of encodings generated by the source to , where

m ≥ 1. For our simulations in this dissertation, we select m = 3. Note that there is a

chance some of these encodings we produce are identical since we do not check

the redundancy of encoding vectors at the source.

We also limit the maximum number of encodings held in the buffer of the

source at any one time to B, in order for the source nodes to avoid buffer overflow

caused by encodings belonging to a single file. In this dissertation we use B = 20.

Thus, initially, the source generates only 20 encodings when a file arrives, and, once

the number of encodings in the buffer drops below !
!
, it generates additional

encodings as encodings are transferred to other nodes. In addition, when it loses the

contact with a neighbor, the source replenishes the B encodings as long as the total

number of encodings generated does not exceed the limit. This implementation detail

is obviously different from the ER scheme where the source nodes generate all of

chunks when a file arrives. Moreover, each new encoding created by the source is

forwarded only to a single neighbor and is removed from the buffer after it is

successfully transferred to another node. Hence, no two nodes receive the same

encoding from the source directly.

Setting a proper value of K is important for the performance of the routing

scheme. If the encodings generated by the source miss any chunk (i.e., a specific

m ⋅N

m ⋅N

 50

chunk is not chosen at all while the source generates encodings), there will be no

chance to collect all of chunks at the destination. The probability that the file is not

delivered depends on the value of K especially when K is small. Hence, we compute

the proper weight for encodings to guarantee that the probability Prob[every chunk is

used in at least one of encodings] is at least some threshold

Let us say is the event that the chunk i is missing in the first N encodings.

Then, the probability q that at least one chunk is missing in the first N encodings can

be calculated by the following expressions.

 𝑞 = 𝑃(𝐸!!

!!!) ≤ 𝑃 𝐸!!
!!! = 𝑁×𝑃 𝐸! (5.1)

is the probability that the first chunk is missing in the first N encodings. Given

the encoding weight 𝐾, when 𝑁 is very large, 𝑃 𝐸! is given by

 𝑃 𝐸! = 1−
𝐾
𝑁

!

≈ 𝑒!! (5.2)

From (5.1) and (5.2), the value of K that keeps the probability that the first 𝑁

encodings miss any chunk below 𝑞 is derived as follows.

𝑁×𝑒!! ≤ 𝑞

𝑒!! ≤
𝑞
𝑁

∴ 𝐾 ≥ log! 𝑁 − log! 𝑞

Therefore 𝐾 should be larger than . In the next section, we examine the

performance of the EBR scheme as we vary the encoding weight. We will show the

N +ε

Ei

P(E1)

loge N − loge q

 51

optimal value of K to create innovative encodings (i.e., encodings with independent

encoding vectors) is as we calculated above.

5.1.1.2 Simulation Results

Figure 5.1 shows the performance of EBR scheme with varying encoding

weight in the ferry scenario with the second setting for file size and generation rate. In

this scenario, 100MB of files are fragmented into 1000 chunks. Figure 5.2 shows the

same with the first setting, where the file size is 10MB, which is split in 100 chunks.

The name of each line is the mobility scenario name, which is introduced in Table

3.1. For example, the graph named ‘F2-1’ shows the result where two ferries are

moving on the assigned segments {1, 5}, {3, 5} respectively. In addition, Figures 5.3

and 5.4 are the results of the NYC scenarios with the second setting for the

transmission rate and range and the second and the first setting for the file size

respectively.

According to the calculation in the previous section, in order to keep the

probability that the first N encodings miss any chunk at or below 5%, K should be

larger than 9.903 when 𝑁 = 1000, and it should be larger than 7.601 when 𝑁 = 100.

Figures 5.1 and 5.3 show that when the coding weight is equal to or larger than 10,

which is very close to our calculation, the performance of EBR does not increase

noticeably as the coding weight increases. Also, Figures 5.2 and 5.4 show that

according to the simulation results, the optimal value of 𝐾 is about 8 when 𝑁 = 100,

which is similar to our calculation.

 52

In addition, it is observed that there is a tendency for the optimal value of 𝐾 to

be smaller in the denser networks (when the number of nodes is larger).

Figure 5.1. FDR of the EBR scheme varying the encoding weight in the ferry scenario
when N = 1000

Figure 5.2. FDR of the EBR scheme varying the encoding weight in the ferry scenario
when N = 100

 53

Figure 5.3. FDR of the EBR scheme varying the encoding weight in the NYC
scenario when N = 1000

Figure 5.4. FDR of the EBR scheme varying the encoding weight in the NYC
scenario when N = 100

5.1.2 Rank Calculation

5.1.2.1 Implementation Detail

In order for the destination to be able to recover the file, it needs to collect N

encodings with linearly independent encoding vectors, where 𝑁 is the number of

chunks of the file. In other words, if we denote by 𝑒! the encoding vector of the 𝑖!!

 54

encoding that the destination has and 𝐴 is the total number of encodings that the

destination possesses, a necessary and sufficient condition for recovery is:

 𝑟𝑎𝑛𝑘 𝑒! 𝑒! … 𝑒! ! = 𝑁 (5.3)

where 𝑒! 𝑒! … 𝑒! ! is an 𝐴×𝑁 matrix which row 𝑖 is 𝑒!. We call this matrix

containing the encoding vectors the encoding matrix. When the condition in (5.3) is

satisfied by the encodings held at the destination, we say that the destination has

reached full rank. Once the destination reaches the full rank, it starts to decode the

original chunks through matrix inversion (e.g., Gaussian elimination [5]) and

reconstruct the file. In the simulation, we do not consider the cost of reconstructing a

file, which would depend on the capability of (destination) nodes. Instead, we only

calculate the rank, and when the destination reaches full rank, we say the file is

delivered. Therefore, the time at which the last encoding (i.e., the Nth innovative

encoding) arrives at the destination is the time of delivery for the file. Algorithm 2

shows how to calculate the rank of the encoding matrix by keeping it in row echelon

form [13].

Algorithm 2. Calculating the rank of a file
𝑁 is number of chunks
𝑀 is an 𝑁×𝑁 matrix
𝐿 is a vector of size 𝑁
𝐿! is the position of the leading 1 in row 𝑖 of M.
𝑟 is the rank of M

Initialize 𝑟 = 0;

New vector 𝑣 arrives, put it into row 𝑟 of M
for i in [0, … , 𝑁 − 1] do
 𝑀!,! = 𝑣!;
end for

for i in [0, … , 𝑟 − 1] do
 if 𝑀!,!! ≠ 0 then,

 55

 for j in [0, … , 𝑁 − 1] do
 𝑀!,! = 𝑀!,! 𝑀!,! ;
 end for
 end if
end for

flag = false;
𝑖 = 0;

while flag is false do
 if 𝑖 = 𝑁 then flag = true;
 else if 𝑀!,! ≠ 0 then,
 flag = true;
 𝐿! = 𝑖;
 𝑟 = 𝑟 + 1;
 end if
 𝑖 = 𝑖 + 1;
end while

Suppose that each new encoding that arrives at the destination is equally likely

to be any of P possible encodings, where 𝑃 = 𝑁
𝑖!!!!! is the number of distinct

encodings we can generate. Assuming that K is not too small, the expected number of

distinct encodings the destination needs before it can recover the file is approximately

𝑁 + 𝜀, where 𝜀 is a constant number that is much smaller than 𝑁.

Relay nodes may get N linearly independent encodings with high probability

when they receive 𝑁 + 𝜀 distinct encodings from others. Because receiving and

carrying redundant encodings results in performance debasement, we restrict the

number of encodings from a single file that a relay node may carry. We implement

this restriction in two different ways. First, we set the maximum number of encodings

belonging a single file to 𝑁 + 𝜀. Second, we allow the relay nodes to process the

encoding vectors, so that they can drop any redundant encoding as they receive it. In

other words, every relay node is able to calculate the rank of files when a new

 56

encoding arrives, and if the newly received encoding does not increase the rank (i.e.,

it is not linearly independent with other encodings the node already has), it drops the

encoding. We call this capability rank check. Once a relay node has reached full rank

of a file, it no longer receives encodings for the file from other nodes.

There is a trade-off between these two implementations. Allowing extra

encodings is cost-efficient in terms of calculation. In this way, nodes need to neither

maintain the encoding matrices nor calculate the rank. They only count the number of

encodings belonging to each file when they decide to receive an encoding or not. Yet,

once they collect 𝑁 + 𝜀 encodings for a specific file, even though the number of

innovative encodings is less than 𝑁 (i.e., not full rank), they stop receiving new

encodings for the file. Furthermore, there could be an opposite case as well; a node

keeps receiving more encodings for a file even though it already reaches the full rank.

5.1.2.2 Simulation Results

In this section, we study how the rank check feature described above affects

on the performance of the EBR with source coding scheme. For all of scenarios, we

use 𝜀 = 50 for the configuration when relay nodes do not have the rank check

capability. Also, we do not consider the computational cost of the rank check

operations at the relay nodes. In order to explore both of simple networks and

complex ones, we conducted simulations using the ferry scenarios and the NYC

mobility model. Figures 5.5 and 5.6 show the performance of EBR in the ferry

scenario, and Figures 5.7 and 5.8 show it under the NYC scenario. Each figure

represents a different level of traffic congestion.

 57

Figure 5.5 plots FDRs and ADDs of the EBR scheme in the source coding

mode when the transmission rate and range is set to the second one for the ferry

mobility in Table 3.2; 200kB/s and 50m. The file size and generation rate setting is

the first one, 10MB and 0.0005 file/s. Every file is encoded with the coding weight of

15. This network setting generates the light to moderate traffic congestion under the

ferry scenario. FDRs are from 0.4 to 0.95 depending on the scenario, where one can

say the traffic is moderate or light.

According to the results from the plots, the rank check at the relay nodes

always outperforms the configuration without rank check with respect to both of FDR

and ADD.

When the network is more congested, the benefit from the rank check

capability at relays is also significant. Figure 5.6 shows the results under the scenario

where only the transmission rate is changed from the setting of Figure 5.5. When the

transmission rate is reduced from 200kB/s to 100kB/s, the network ends up

experiencing higher level of traffic congestion. But the relative performance of the

EBR with rank check at relay nodes against the EBR with no rank check at the relay

nodes remains almost same as the previous setting. With the rank check feature, the

EBR outperforms the one without it under all of ferry scenarios.

 58

Figure 5.5. FDR and ADD of the EBR scheme with and without rank check at the
relay nodes under the ferry mobility with light to moderate traffic congestion

Figure 5.6. FDR of the EBR scheme with and without rank check at the relay nodes
under the ferry mobility with moderate to high traffic congestion

The reason that the rank check feature works better than allowing extra

encodings without any calculation seems the overhead of allowing extra encodings

for each file. When a node collects 𝑁 independent encodings before receiving 𝑁 + 𝜀

encodings, if the node has rank check capability, it stops receiving more encoding

from the file. However, without rank check, the node keeps receiving more encodings

until it collects 𝑁 + 𝜀 encodings, which is waste of resource such as transmission

time. And, as the number of files is increased, the waste is cumulated resulting in the

performance loss. We can see how the cumulated overhead hurts the performance of

EBR by comparing the results between two different settings for file size and

generation.

 59

Figures 5.7, and 5.8 show the results under the NYC mobility scenarios. They

are plots of FDR and ADD under the same setting for the transmission rate and range

(200kB/s and 100m), but different settings for the file size and generation rate. Figure

5.7 shows the result with the first setting where 330 10MB files are created

throughout the simulation, and Figure 5.8 shows the one with the second setting

where 32 100MB files are generated.

Even though there is little difference in the total number of chunks generated

between these two settings, it seems that the difference is significant in the overhead

resulted by allowing extra encodings between the two settings. As shown in the plots,

the benefit from the rank check feature is much bigger when the rate of file

generation is larger.

Figure 5.7. FDR and ADD of the EBR scheme with and without rank check at the
relay nodes under the NYC mobility with file generation rate of 0.0005 file/s

Figure 5.8. FDR and ADD of the EBR scheme with and without rank check at the
relay nodes under the NYC mobility with file generation rate of 0.00005 file/s

 60

5.1.3 Control Message

5.1.3.1 Implementation Detail

The EBR with source coding is based on the ER scheme. Other than encoding

at the sources and decoding at destinations, the routing algorithm itself is very similar

to the ER scheme. In particular, nodes make a decision on selecting which bundle to

send to the other node by referencing the summary vector, exactly same as in the ER

scheme. Creating the summary vector with the bundles in the buffer, exchanging it at

the node encounter, and forwarding only those bundles that are not sitting in the

buffer of the other node are also the same as the ER scheme, which described in

Chapter 4. In the next section, we will investigate the performance of the EBR

scheme with different summary vector implementations, the list of bundle IDs and the

Bloom filter keyed by bundle IDs.

Unlike ER, in the EBR scheme nodes exchange another control message

conveying the rank information of files the node carries. It is needed to limit the

number of encodings carried by relay nodes. This control message simply conveys

the number of encodings for each file and the UUID of the file. It is exchanged along

with other control messages such as the summary vector. After exchanging these

control messages, nodes figure out how many encodings for each file is needed for

the other node to get the full rank as following. Assume that the other node has L

encodings for a file, and the number of chunks for the file is N. Then, it limits on the

number of encodings for the file to 𝑁 − 𝐿 + 𝜀, where ε (0 < 𝜀 ≪ 𝑁) is a configurable

number. When , the routing protocol forks off in two ways. If the rank check

configuration is on, the node does not send more encodings. However, without the

L = N

 61

rank check capability, it sends 𝜀 more encodings as long as it has enough encodings

to send.

Also, the scheduling strategy is different from the ER scheme described in

Chapter 4. In the EBR scheme, bundle scheduling is related to the files that encoding

bundles are associated with. Every node maintains a queue for each file, which it

carries. Once it receives a new encoding, it checks the UUID stored in the extension

block of the bundle, which indicates which file the encoding comes from. If the node

already has a queue for the file, meaning that it has at least one encoding for the file,

it puts the received encoding into that queue. However, if it fails to find a queue

associated with the UUID of the file, it sets up a new queue for the file, and stores the

encoding in the queue just created.

When a node meets another node, assuming that the node has multiple queues

for files (i.e., it carries encodings from different files) and the contact time is enough

to send out more than one encoding, it needs to schedule the encodings for

transferring. In order to decide which encoding (bundle) to transmit next, the node

processes two steps of scheduling. First of all, it picks a queue of files in the round-

robin fashion. It does not consider the number of encodings in a queue. Then, the

node selects an encoding from the chosen queue in a round-robin fashion. If the

selected encoding is not in the summary vector of the other node, it starts transferring

the bundle. If not, it tries next encoding until either the chosen encoding is not in the

summary vector or there is no more encoding to choose.

 62

5.1.3.2 Simulation Results

In this section, we examine the benefit of the Bloom filter implementation for

the summary vector against the list of bundle IDs. For this study, we carried out

simulations with the ferry and NYC scenarios as we did for the ER scheme. We use

the EBR scheme without the rank check implementation at the relay nodes. And, the

file generation is exactly same as the simulation of Section 5.1.2.

In the ferry scenario, Figure 5.5 is the result from the network with the third

setting for transmission rate and range; 200kB/s and 100m, and the second setting for

file size and generation rate; 100MB and 0.00005 file/s. And, Figure 5.6 plots the

result from the network with the same setting for the transmission rate and range and

the first setting for file size and generation rate; 10MB and 0.0005 file/s, where the

higher traffic congestion is demonstrated.

Figure 5.5. FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with light traffic congestion

 63

Figure 5.6. FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the ferry mobility with moderate traffic congestion

According to the results in Figure 5.6, with respect to both of FDR and ADD,

Bloom filter brings benefit to the performance of EBR scheme against the list type.

Moreover, unlike the ER scheme, Bloom filter summary vector outperforms the list

type in terms of ADD even in the network settings of light traffic (refer to Figure 5.5).

This result shows that the false positive cases do not have much of an impact on the

encodings. Regardless of which encodings are delivered to the destination, it will be

able to reconstruct the file once it collects enough encodings. Hence, missing

encodings due to false positives do not hurt the performance. In addition, it is

observed that the performance gain from the Bloom filter implementation increases as

the level of traffic congestion becomes higher in Figures 5.5 and 5.6.

 For the NYC mobility scenario, Figure 5.7 demonstrates results from three

different node density settings, each of which results in three different levels of traffic

congestion. We use the second setting for transmission rate and range; 200kB/s and

50m for every scenario, and the second setting for file size and generation rate;

100MB and 0.00005 file/s.

 64

With the NYC mobility scenarios, the performance benefit of the Bloom filter

implementation for the summary vector is more noticeable than the ferry scenarios,

even under the light traffic. This is demonstrated with high node density such as 90

nodes, the performance gain is experienced with respect to both of FDR and the

ADD.

Figure 5.7. FDR and ADD of the EBR scheme with the Bloom filter and the list
summary vector under the NYC mobility

5.2 Encoding Based Routing with Network Coding

In this section, we study the EBR with network coding scheme. We explain

the implementation details of the routing scheme, and examine the performance of the

EBR with network coding with varying the re-coding weight.

5.2.1 Implementation Details

EBR with network coding mode and EBR with the source coding mode have

many common implementation details. Especially, file creation at sources and the

reconstructing a file at destinations are exactly same in both of modes. However, the

relay nodes behave distinctly in each mode. In the source coding mode, relay nodes

make a copy of encodings, which received from the source or other relay nodes, and

 65

just forward them to neighboring nodes. They never create a new encoding. Yet, the

network coding mode of the EBR scheme allows the relay nodes to perform coding

operations to generate a new encoding. Since the bases of the coding operation at the

relay nodes are not chunks, but the encodings, we say that relay nodes perform re-

encoding.

Obviously, re-encoding is only allowed for encodings associated with the

same original file (i.e., with the same UUID). Therefore, nodes maintain a queue for

each file, and encodings are stored in the queue of their associated file. When a node

meets another node, in a round-robin fashion, it selects a file to generate a new

encoding to send. Once a queue is selected, it picks encodings in the queue. The

number of encodings that are used in re-encoding is re-encoding weight, which is

configurable. Then, the node performs re-encoding with them (i.e., linear

combination of them), and sends it to the other node. Once the newly created

encoding is forwarded successfully, it deletes the encoding.

Like the source coding mode, nodes exchange the rank information of the files

they are carrying before they start re-encoding and transmitting the results of it. After

exchanging these control messages, nodes figure out how many encodings for each

file are needed for the other node to reach the full rank. Note that in EBR with

network coding mode, every node has the rank check capability. We set the stopping

condition of disseminating the re-encoded bundles as follows: let us say that the node

has R encodings for a file, where the number of chunks for the file is N. Since all of

encodings are linearly independent, the rank of the encoding matrix for the file is also

R. Theoretically, the maximum number of innovative encodings generated from an

 66

encoding set is the rank of the encoding matrix of the set. Therefore, we limit the

number of re-encoded bundles to R. In the case the other node needs less than R

encodings to reach the full rank, it only generates as needed.

Let us explain the receiver side. In the network coding mode, there is a new

system architecture called a temporary buffer. In order to avoid selecting encodings

that just forwarded from the other node when generating a new encoding, nodes keep

the newly received encodings in the temporary buffer during the session. When the

link is disconnected, nodes start processing each encoding bundle in the temporary

buffer to figure out whether it is innovative or not. While processing, nodes push the

encoding vector of each encoding into the encoding matrix of the associated file. If

the encoding is not innovative, they just drop it. Otherwise, they store the encoding in

the associated queue. This process is same as the rank check implementation of the

source coding mode, which is presented in Section 5.1.2.

5.2.2 Simulation Results

We investigate how the re-encoding weight affects the performance of the

EBR with network coding scheme. Unlike the source coding, re-encoding can use

existing encodings rather than only the original chunks to generate a new encoding.

Since each encoding already has information from multiple chunks, the optimal re-

encoding weight of our intuition was very small such as less than 5. In order to check

if the small re-encoding weight engenders enough number of innovative encodings,

we carried out simulations varying the re-encoding weight.

 67

Figures 5.8 and 5.9 show the FDR of EBR with network coding under the

NYC mobility scenario with the second setting for transmission rate and range;

200kB/s and 50m. We used the set of {2, 5, 10, 15, 20, ln 𝑟} as the re-encoding

weight, where 𝑟 is the rank of the encoding matrix for the file at the moment re-

encoding is conducted. The idea of using ln 𝑟 as the re-encoding weight comes from

[21]. Each figure shows the result from different setting for file size and generation

rate. Result from the first setting is shown in Figure 5.8, while the one from the

second setting is shown in Figure 5.9.

 As shown in the plots below, the results are very different from our intuition.

According to the simulation results, if the re-encoding weight is set to very small

number such as less than 5, it hurts the performance of EBR significantly. At least 10

encodings should be used for re-encoding. Especially, when the traffic is light, the

performance loss due to the small re-encoding weight is critical. Refer to the result of

90 nodes in Figure 5.8. When the re-encoding weight is 2, the FDR is smaller than 0.4

while it is larger than 0.9 when the re-encoding weight is larger than 5.

 In addition, the plot shows that ln 𝑟 is not optimal for the re-encoding weight.

Constant value brings better performance than ln 𝑟 for all of three different node

density settings when it is large enough (e.g., 10).

 Figures 5.8 and 5.9 show that the number of chunks in a file does not affect

significantly the performance depending on the re-encoding weight. With both

settings for file size and generation rate, when the re-encoding weight is larger than

10, the performance increase is not noticeable as the re-encoding weight increases.

 68

Figure 5.8. FDR of the EBR with network coding scheme varying the re-encoding
weight under the NYC scenario with 100MB files

Figure 5.9. FDR of the EBR with network coding scheme varying the re-encoding
weight under the NYC scenario with 10MB files

5.3 Benefit of Coding Technique

In this section, we evaluate the performance of the ER scheme and the EBR

scheme with both source coding and network coding in the various network settings.

 69

For the EBR scheme, in every scenario we set both of encoding and re-encoding

weight as 15. Also, the EBR scheme with source coding mode does not allow the

relay nodes to check the rank. We use in the stopping condition of receiving

the encodings for each file at relays. In order to investigate the benefit from coding

under the various network environments, we carried out the extensive simulations

with all of four different mobility scenarios that are described in Chapter 3.

 Let us see the results of the ferry scenario first. Figure 5.10 shows the FDR

results under the network with the second setting for the transmission rate and range;

200kB/s and 50m. We use the second setting for file size and generation rate. As

shown in figures, the performance largely depends on the mobility scenario. Even

under the scenarios with same number of the ferries, the relative performance

between three routing schemes is different. However, there are still trends observed in

these results.

First, in lightly congested networks, which are demonstrated in Figure 5.10,

there is no benefit from the coding scheme observed with respect to FDR. For every

mobility scenario, ER outperforms both modes of EBR. Especially, the source coding

scheme demonstrates worse performance compare to the ER scheme.

Second, network coding scheme results in very low FDRs against other two

routing schemes in the scenarios F2-2 and F3-2. In order to investigate if there is any

specific network setting that incurs this result, we analyze the mobility scenarios.

Table 5.1 shows the statistics of the ferry mobility scenarios with the transmission

range of 100m. Each number is the average out of ten same scenarios with different

random seed for the movement, all of which we used for the simulations. As this table

ε = 50

 70

indicates, the scenario F2-2 and F3-2 has relatively short average contact time

between nodes. Therefore, network coding could hurt the performance under this

network environment where the contact time between nodes is short and the traffic is

relatively light.

Third, when the traffic congestion level is higher, the benefit from using

coding scheme is clearly demonstrated. Figure 5.11 shows the FDRs of ER and both

of EBR schemes when we use the network settings with the first setting for the

transmission rate and range; 100kB/s, 50m. The setting for file size and generation

rate is same as the one used in Figure 5.10. With these settings, the network

experiences higher congestion, which results in lower FDRs. We can see the EBR

with source coding outperforms two other routing schemes, no coding scheme (i.e.,

ER) and network coding scheme.

Figure 5.10. FDRs of ER and two modes of EBR scheme under the Ferry scenario
with light traffic

 71

Figure 5.11. FDRs of ER and two modes of EBR scheme under the Ferry scenario
with moderate traffic

Scenario Average contact time Median contact time Total contacts

F2-1 169.26 168.32 767.12
F2-2 92.97 92.09 1342.22
F3-1 150.01 138.99 1077.14
F3-2 95.33 94.12 1640.87
F6-1 102.47 85.76 3993.98
F6-2 132.69 113.18 3090.01

Table 5.1. Statistics of the ferry mobility scenarios with the transmission range of
100m

 In the NYC scenarios, the map where nodes are moving is much more

complicated compared to the ferry scenarios. Also, there is no stationary node, and

every node can be a source and a destination, therefore, sources and destinations are

also moving in this scenario. Under this homogeneous node setting, the node density

affects the network traffic congestion level significantly. With low node density, the

traffic is highly congested, while the light traffic is demonstrated with higher node

density such as 90 nodes.

 72

 Figures 5.12 and 5.13 are results under the second setting for the transmission

rate and range; 200kB/s and 50m. We use the first setting for the file size and

generation rate in the scenarios of Figure 5.13, and the second setting in Figure 5.12.

Figures 5.14 and 5.15 show the results under the third setting for the transmission rate

and range; 200kB/s and 100m. For the file size and generation rate, we use the first

setting in Figure 5.15, and the second one in Figure 5.14.

In this type of network setting, the coding scheme outperforms the ER scheme

when the network is highly congested. It is observed in the Figures 5.12 and 5.13

when number of nodes is 30. The benefit from both of source coding and network

coding is significant with respect to both of FDR and ADD. When comparing the

performance between source coding and network coding, the results show that source

coding works better than network coding in terms of FDR.

When the network traffic is light and the size of file is large such as 100MB,

the benefit from coding schemes is observed with respect to the ADD. Figure 5.14

shows that with all of three node density settings, both of coding schemes

demonstrate better ADD than the ER while the differences in FDR between the three

routing schemes are negligible.

When the network traffic is light and the size of file is small, there is no

benefit from the coding technique observed. The ER scheme shows always the best

performance regardless the node density and file generation setting. Especially, the it

is not advisable to use the EBR with source coding when the traffic is light and the

size of files is small. Figure 5.15 shows that the source coding scheme demonstrates

 73

the worst performance in all of three node density settings with respect to both of the

performance metrics.

Figure 5.12. FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 100MB files

Figure 5.13. FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 10MB files

Figure 5.14. FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 100MB files

 74

Figure 5.15. FDRs and ADDs of ER and two modes of EBR scheme under the NYC
scenario with 10MB files

The Istanbul scenario is an island hopping mobility model on map of the city

of Istanbul. There is no specific traveler node between islands, but we set three sub-

areas that are overlapped each other, so nodes move around in each sub-area meet

another group of nodes in the overlapped area. Also, the source and destination are

picked among the three stationary nodes located in each sub-area. Figure 3.3 shows

the location of each stationary node. Since the locations of destinations do not fall

into the overlapped areas, the only way they receive the bundles destined to them is

via the moving nodes in the same sub-area when the transmission range is small

enough. With our settings in Table 3.2, each destination can communicate only with

nodes moving in the same sub-area. Thus, the moving nodes meet other moving

nodes from another sub-area, and convey the bundles to the stationary destination in

their sub-area.

Figure 5.16 plots FDRs and ADDs of delivered files of three different

schemes under the Istanbul scenario with the first setting for the transmission rate and

range; 200kB/s and 100m, and the second setting for the file size and generation rate;

100MB files are generated according to a Poisson process with the rate of 0.0005

file/s. Total number of files generated is 24 during the whole simulation time of a

 75

week (i.e., 604800 sec). The setting for Figure 5.17 is same as Figure 5.16 except the

traffic generation. We use the first setting; 10MB files are created with 0.0005 file/s

and total number of files generated is 325. Figures 5.18 and 5.19 show the results

under different transmission rate setting, 500kB/s.

In the Istanbul scenarios, depending on the level of traffic congestion, the

recommended routing scheme is different. First of all, with the high traffic congestion,

the EBR routing with source coding delivers the files best. When we see the FDRs in

Figure 5.16 when the number of nodes is 30 or FDRs in Figure 5.17 when the node

density is set to 30 and 60, the EBR with source coding works best over other two

routing scheme. Also, it seems that the ER scheme is not suitable when the network is

highly congested with the low transmission rate and large number of files. Figure

5.17 shows that both of EBR schemes outperform the ER scheme significantly.

Second, when the traffic congestion is moderate, network coding enabled

EBR scheme performs best among these three routing schemes. It is observed from

the FDR results in Figure 5.16 when the number of nodes is 60 and 90, the same ones

in Figure 5.17 when the node density is set to 90, and Figures 5.18 and 5.19 when the

number of nodes is 30 and 60.

Lastly, when the network is lightly congested and the node density is high, no

benefit from coding scheme is demonstrated. The ER scheme shows better

performance than both of EBR schemes in Figures 5.18 and 5.19 when the node

density is set to 90.

 76

Figure 5.16. FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 24 100MB files

Figure 5.17. FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 325 10MB files

Figure 5.18. FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 24 100MB files

 77

Figure 5.19. FDRs and ADDs of ER and two modes of EBR scheme under the
Istanbul scenario with 325 10MB files

The taxi trace in San Francisco is a real life mobility trace collected in 2008.

Table 5.2 shows some statistics of the trace mobility when we set the transmission

range to 50m, 100m, and 150m. As explained in Section 3.4.4, we process the trace

data by selecting only a part of each taxi’s trace and interpolating the intervening

location data. We generate the numbers in Table 5.2 with this processed data by

checking when a link is up and down between nodes. One remarkable characteristic is

that there is a huge gap between the mean and median contact time. Also, note that

each simulation is conducted with identical node mobility since we use the same real

trace data for each run. The traffic generation scenario used for the taxi trace is very

similar to the NYC case, where nodes are homogeneous. Every node can be a source

and a destination.

Transmission range Mean contact time Median contact time Total contacts
150m 793.79 28.00 241002
100m 722.88 24.00 194482
50m 426.06 18.00 141455

Table 5.2. Statistics of the taxi trace mobility scenarios

 78

Figure 5.20 shows the results when we use the second setting for the file size

and generation rate, and Figure 5.21 shows the results when using the first setting.

The trends in the relative performance between the three routing schemes in the taxi

mobility are very similar to those of the Istanbul mobility scenario. First, when the

file size is big, so the number of chunks in a file is relatively large such as 1000, the

source coding scheme is the best with high traffic, and the network coding scheme is

better than others in less congested networks. Regardless of the traffic congestion

level, we observe that there are benefits from using the coding technique. Moreover,

the result of small files in the taxi trace is very similar to the result in the Istanbul

scenario with moderate traffic congestion, which is shown in Figure 5.19. When the

size of files is relatively small, the source coding even hurts the performance.

However, the network coding improves the performance with respect to both of FDR

and ADD.

 79

Figure 5.20. FDRs and ADDs of ER and two modes of EBR scheme under the taxi
trace scenario with 100MB files

Figure 5.21. FDRs and ADDs of ER and two modes of EBR scheme under the taxi
trace scenario with 10MB files

 80

Chapter 6: Immunity Mechanism

ER scheme is a replication-based routing scheme. Since EBR with source

coding is also built on the ER, it relies on flooding the network with multiple copies

of the same bundles. Even the EBR with network coding scheme also keeps

generating encodings belonging to same file. Once these copies of bundles or new

encodings are generated, following contacts between nodes, they stay in the network

until they are dropped due to (i) buffer overflow at the nodes or (ii) expiration of

time-to-live (TTL). Because we do not consider both of the buffer constraint and the

file expiration in this dissertation, the number of bundles in the network keeps

increasing as time goes unless there is a mechanism that deletes the bundles.

For the nodes may not be aware of the delivery of certain bundles or files,

they cannot use such information to determine which bundles to safely remove from

their buffer. And, when they choose bundles to transfer to other node, they may pick

bundles that have already been delivered even though they are carrying bundles that

have not been delivered to the destinations and need to be spread out quickly. Such a

bundle transfer is the waste of transmission time, and it could be a critical issue to the

performance especially when the contact time is very limited.

It is clear that if the nodes were made aware of the list of files and/or bundles

delivered to their destinations, such information could be exploited to help nodes

make better use of limited contact times between nodes. This is the basic intuition

behind the two immunity mechanisms we describe in this chapter. The first immunity

mechanism, BBI, is based on the unique bundle IDs. The second immunity

 81

mechanism, UBI, uses the UUIDs that identify the file from which the bundles were

constructed.

We investigate the benefit of the immunity mechanisms in various network

scenarios. We employ the immunity mechanisms on not only the ER scheme but also

two different modes of the EBR scheme when applicable. In Section 6.1, we study the

BBI in detail. The performance gain from the compression technique over the BBI is

also discussed in the same section. In Section 6.2, we investigate the UBI.

6.1 Bundle Based Immunity Mechanism

6.1.1 Implementation Details

In the ER and the EBR with source coding, the communication between two

nodes at their encounter is as follows: first, nodes exchange summary vectors. Then,

by comparing the summary vectors, each node determines the bundles to transfer,

which the other node does not have. The BBI is implemented by modifying this

simple protocol. Similar to the summary vector, nodes maintain an immunity list,

which consists of the bundle IDs that are successfully delivered to their destination.

And, they exchange the immunity list as a part of the control message like the

summary vector before starting the real data communication.

When a BBI-enabled destination receives a bundle, it generates a bundle

immunity message (BIM) with the bundle ID and adds the BIM to its immunity list.

In the immunity list, we append ‘|’ as a delimiter between BIMs. Once a BIM is

generated, it is propagated throughout the network using flooding. After the exchange

of immunity lists between a pair of BBI-enabled nodes, they first scan their buffer to

 82

see if there is any bundle to purge. If any bundle matches a bundle ID in the immunity

list of the other node, they eliminate it. This ends up purging the unnecessary copies

of delivered bundles from the network. Then, they update their immunity list by

merging two immunity lists together.

After processing this immunity mechanism, nodes follow the original routing

schemes such as the ER and the EBR with source coding. Note that BBI is not

applicable to the EBR with network coding because it does not replicate bundles (i.e.,

there is no bundle that has the same bundle ID with another one).

6.1.2 Simulation Results

We examine the benefit of the BBI when it is employed onto both of the ER

and the EBR with source coding scheme in the following sub sections. To investigate

the performance gain due to the BBI on each routing scheme in various network

settings, we carried out simulations using the ferry and NYC mobility scenarios.

Since the BBI generates a large number of BIMs as the simulation is going on and

bundles are delivered to their destination, it is a challenge to run a simulation

compared to other scenarios. First of all, it needs a large size of virtual memory to run

the simulator, which is developed in java. Second, it takes very long time to finish a

simulation, especially with a setting of the light traffic and high node density.

6.1.2.1 BBI mechanism with ER Scheme

Let us check the ferry scenario first. The results are shown in Figures 6.1 to

6.4. We adjust the traffic congestion level by changing the transmission rate and the

range. Figures 6.1 and 6.2 show results from the simulation with the first setting for

 83

the transmission rate and range; 100kB/s and 50m. Figures 6.3 and 6.4 are the result

of the third setting; 200kB/s and 100m. We use the first setting for the file size and

generation rate for Figures 6.2 and 6.4, and the second setting for Figures 6.1 and 6.2.

In the ferry mobility scenario, when the number of chunks in a file is large

such as 1000, the BBI helps the ER scheme to improve the performance in overall

network environments with respect to FDR. See Figures 6.1 and 6.3. In particular,

when the network is more congested, the performance gain due to the BBI is more

significant. However, if the files are small, so the number of chunks in a set is also

small such as 100, the BBI is not beneficial to the ER scheme in some network

settings. Referring to Figure 6.2, in the scenarios with two or three ferries, the BBI

even hurts the performance of ER. There results show that the BBI is not suitable for

the ER when the number of chunks is relatively small and the traffic congestion is

high. Figure 6.4 shows the results in the lighter traffic congestion, which brings the

noticeable performance gain due to the BBI.

Figure 6.1. FDRs of ER scheme with and without BBI under the ferry scenario when
the network is moderately congested with large files

 84

Figure 6.2. FDRs of ER scheme with and without BBI under the ferry scenario when
the network is moderately congested with small files

Figure 6.3. FDRs and ADDs of ER scheme with and without BBI under the ferry
scenario when the network is lightly congested with large files

 85

Figure 6.4. FDRs and ADDs of ER scheme with and without BBI under the ferry
scenario when the network is lightly congested with small files

Now let us study the more crowded network setting, the NYC scenario.

Figures 6.5 and 6.6 plot the results from the setting where the transmission rate is

200KB/S and the range is 50m. The first setting for the file size and generation setting

is used. Depending on the node density, they show three different levels of network

congestion scenarios.

In the complex mobility with higher node density such as the NYC scenario,

with respect to the FDR, the benefit from BBI to the ER scheme is significant only

when the node density is relatively low. Figure 6.5 shows that the network traffic is

light with higher node density like 60 or 90 nodes (i.e., the FDR is higher when the

node density is high). In such network settings, FDRs of the ER scheme with and

without BBI fall into the confidence interval of each other, which are calculated with

90% of confidence level. However, when the node density is lower like 30 nodes, the

BBI increase the FDR of the ER significantly.

 86

With respect to the ADD, the performance gain due to the BBI is noticeable

unless the node density is very high. Figure 6.6 shows that the BBI improves the

performance of ER in the network with 30 or 60 nodes, while it fails to improve in the

setting of 90 nodes. These results show that the BBI is not beneficial to the ER when

the network traffic is too light so most of bundles are delivered to the destination very

quickly even before the BBI starts taking effect.

Figure 6.5. FDRs of ER scheme with and without BBI under the NYC scenario

Figure 6.6. ADDs of ER scheme with and without BBI under the NYC scenario

 87

6.1.2.2 BBI Mechanism with EBR with Source Coding Scheme

The simulation results show that the BBI is not beneficial, but rather harmful

to the EBR scheme with respect to both of FDR and ADD in overall network settings.

This result contradicts claims in literature, which say that the BBI improves the

performance of every replication-based routing scheme.

As we study the performance gain due to the BBI on the ER scheme in the

previous section, we also use the ferry and NYC mobility to examine the benefit of

BBI to the EBR. We are very confident that the similar results will be demonstrated

in other network settings. We use the third setting for the transmission rate and range;

200kB/s and 100m, in the ferry scenario. In the NYC scenario, we select the second

one, which is 200kB/s and 50m. Figures 6.7 and 7.8 show the simulation results run

in the second setting for the file size and generation rate; 100MB and 0.00005 file/s.

In Figures 6.7 and 6.8, it is shown that the BBI hurt the performance

significantly in regards both of FDR and ADD. In particular, under the NYC scenario,

the amount of performance debasement in FDR due to the BBI is significant. These

results clearly tell us that the use of BBI is not suitable for the EBR scheme.

Figure 6.7. FDR and ADD of the EBR scheme with and without the BBI in the ferry
scenario with transmission rate of 200kB/s, range of 100m, file size of 100MB, and
file generation 0.00005 file/s

 88

Figure 6.8. FDR and ADD of the EBR scheme with and without the BBI in the NYC
scenario with transmission rate of 200kB/s, range of 50m, file size of 100MB, and file
generation 0.00005 file/s

Let us explain the rationale behind these results. Purging the encodings from

the nodes by the BBI induces unwanted situations. It is because nodes are aware of

only the delivery of bundles, but not of the delivery of files. When a file is delivered,

at least N encodings are delivered to the destination, where N is the number of chunks

of the file. Then, nodes immunized for the delivered bundles remove them from the

queue associated with the delivered file. However, because the nodes do not know the

file is already delivered, they keep filling the queue with the new encodings for the

file until having 𝑁 + 𝜀 encodings in the queue. These new encodings are totally

unwanted copies in the network that result in the waste of resource, especially the

contact time. This behavior of nodes hurts the performance of the EBR scheme.

6.1.3 Compression over the Immunity List

As the bundles are delivered to the immunity mechanism(s) enabled

destination, immunity messages keep generated in the network. Even though the

immunity list consists of only the bundle IDs, the size of immunity list keeps

increasing, and at some point, it would take significant amount of the contact time to

 89

just transmit the immunity list between nodes. Especially, when the bundles have

very long TTL like our setting (no expiration), there is no chance to remove the

immunity messages in the network.

It is our motivation of applying the compression technique on the immunity

list to save the transmission time for immunity lists. Unlike the summary vector, the

Bloom filter, which is a space-efficient data structure, is not suitable for the purpose

of the immunity list because the immunity lists need to be reconstructed without any

loss. In order to reduce the size of the immunity list, we chose Lempel-Ziv-Welch

(LZW) [31], which is a universal lossless data compression algorithm. We investigate

how much this compression algorithm could reduce the immunity list resulting in

saving the contact time and how this affects the performance of the ER scheme.

Because the BBI hurts the performance of the EBR scheme, we are not interested in

studying the impact of the compression technique on the immunity lists of the EBR

scheme.

6.1.3.1 Simulation Results

To study the benefit from the compression technique on the BBI, we

investigate the performance of the ER scheme that is enabled the BBI with and

without the compression employed. We use the ferry and NYC mobility and change

the network settings in order to investigate three different levels of traffic congestion.

Figure 6.9 shows the result under the ferry mobility scenarios with the first setting for

the transmission rate and range; 100kB/s and 50m, and the second setting for the file

size and generation rate; 100MB and 0.00005 file/s. Figure 6.10 displays the results

of simulations that use the NYC mobility with the second setting for the transmission

 90

rate and range; 200kB/s and 50m, and the second setting for the file size and

generation rate; 100MB and 0.00005 file/s.

As shown in Figure 6.9, compression technique does not improve the

performance significantly with respect to FDR in the ferry scenarios. However, in

terms of ADD, using compression brings performance improvement in every ferry

mobility scenarios.

Figure 6.10 shows that benefit from compression is demonstrated more

noticeably in the NYC settings. Not only the ADDs but also the FDRs are improved

when compression technique is employed. Especially, when the network is congested

highly with 30 nodes, the benefit is enlarged with respect to both of FDR and ADD.

Figure 6.9. FDR and ADD of the ER scheme with BBI that the compression
technique is employed and not employed in the ferry scenario

Figure 6.10. FDR and ADD of the ER scheme with BBI that the compression
technique is employed and not employed in the NYC scenario

 91

6.2 UUID Based Immunity Mechanism

6.2.1 Implementation Details

The UBI is similar to the BBI in principle. Instead of a bundle, it works based

on a file. When a large file is broken up into chunks and either chunks or encodings

are forwarded in separate bundles, we insert the UUID associated with the file in the

extension block of each bundle generated from that file. When the destination of the

file successfully reconstructs the file and has UBI employed (i.e., the UBI mechanism

is working at the destination), it generates a UIM that contains the UUID of the file,

and adds the UIM into the UUID immunity list maintained by the node. In our EBR

implementation, a node maintains separate immunity lists for the UBI from the BBI.

In the UBI, nodes purge bundles in a different way from the BBI. When a

node receives the immunity list from its neighbor, it removes all the bundles with a

UUID that matches any new UIM received from the neighbor. And then, it updates its

own UUID immunity list by merging two UUID immunity lists together. Therefore,

exchange of UIMs allows the nodes to safely remove all unwanted bundles containing

the chunks or encodings that came from files, which have been already delivered to

their destinations.

Unlike the BBI, the UBI is applicable to any routing scheme when the

fragmentation is employed in the network. Therefore, UBI is suitable not only to the

ER and the EBR with source coding scheme, but also to the EBR with network

coding scheme.

 92

6.2.2 Simulation Results

In this section, we will investigate the performance gain due to the UBI on

three different routing schemes, the ER and EBR with source coding and network

coding scheme. In addition, we study the relative performance between these three

routing schemes when the UBI is employed on them in the last section. In order to

explore more diverse network environment, we use four different mobility scenarios,

the ferry, NYC, Istanbul, and the taxi trace. Even for each mobility scenario, we

conduct simulations with different transmission rate and range settings as well as a

couple of traffic generations.

6.2.2.1 Benefit of the UBI to ER scheme

Overall, the UBI improves the performance of the ER scheme with respect to

both of FDR and ADD. However, the trend is not consistent for every network setting.

Let us explain the observed trends at each of mobility scenarios in detail.

In the ferry mobility scenarios, which represent the simple topology and low

node density network, the relative performance between the ER scheme with and

without the UBI depends on the node mobility considerably. Figure 6.11 shows that

the plain ER outperforms the UBI enabled ER in the mobility scenario F2-2, while

UBI is beneficial to the ER in every other scenario. The amount of benefit from the

UBI is also different per mobility scenario. In Figure 6.11, the benefit due to the UBI

is significant under the mobility F3-1. In addition, Figures 6.11 and 6.12 show that

the fluctuation in the relative FDR between two routing schemes depending on the

mobility scenario is larger when transferring larger files.

 93

Figure 6.11. FDR of the ER scheme with and without UBI under the ferry mobility
when transferring 100MB files

Figure 6.12. FDR of the ER scheme with and without UBI under the ferry mobility
when transferring 10MB files

In contrast, the number of ferries (i.e., node density) in the network does not

affect the performance. Even though the number of ferries is same, the results are

very different between two network settings in Figure 6.11. Furthermore, there is no

specific trend in the performance with respect to the level of traffic congestion.

 In the NYC mobility scenarios, the UBI achieves a little bit performance

improvement in overall. However, when the traffic congestion level is light, the

benefit due to the UBI is negligible with respect to FDR as it is observed in Figures

 94

6.13, 6.14, and 6.15. Also, under the light traffic as shown in Figure 6.15, if the node

density is high such as 90 nodes, the benefit to the ADD of ER scheme is also

negligible.

Figure 6.13. FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 100MB files

Figure 6.14. FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 10MB files

Figure 6.15. FDR and ADD of the ER scheme with and without UBI under the NYC
mobility when transferring 10MB files in a lightly congested network

 Under the island hopping mobility scenario in the Istanbul city, the UBI also

leads the performance gain of the ER scheme, but not very much. Figure 6.16 shows

 95

the FDR results of ER in two different transmission rates. Left graph displays the

results when we use the first setting for the transmission rate and range; 200kB/s and

100m, while right one shows the results when we use the second setting; 500kB/s and

100m. Figure 6.17 is the ADD results that are collected from the same setting of the

right graph in Figure 6.16.

When the level of traffic congestion is high and the node density is high such

as 60 or 90 nodes, the benefit from the UBI is noticeable with respect to FDR as

shown in Figure 6.16. However, if the transmission rate is higher resulting in less

congested network environment, the benefit due to the UBI with respect to FDR is

not demonstrated regardless of the node density. In this network setting, the UBI is

beneficial in regard of ADD, which is shown in Figure 6.17. The amount of benefit is

significant when the node density is not high like 30 nodes.

Figure 6.16. FDR of the ER scheme with and without UBI under the Istanbul mobility
with two different transmission rates (Left: 200kB/s, Right: 500kB/s)

 96

Figure 6.17. ADD of the ER scheme with and without UBI under the Istanbul
mobility with light traffic

Now, let us see the results from the simulation when we use the real mobility

trace that is collected by taxies in San Francisco. Figures 6.18 and 6.19 show the FDR

and ADD of ER with and without UBI enabled when transferring 100MB files and

10MB files respectively. It is clear that, when the UBI is enabled, the ER

substantially outperforms the plain ER with respect to both of FDR and ADD in

overall network settings.

In Figures 6.18 and 6.19, the benefit from the UBI is most significant in the

second setting for the transmission rate and range; 200kB/s and 100m with respect to

both of FDR and ADD. It shows that the UBI brings the performance gain to the ER

especially in the moderate traffic congestion setting. However, no specific trend is

observed regarding the size of files or the number of chunks in a file.

 97

Figure 6.18. FDR and ADD of the ER scheme with and without UBI under the taxi
trace when transferring 100MB files

Figure 6.19. FDR and ADD of the ER scheme with and without UBI under the taxi
trace when transferring 10MB files

6.2.2.2 Benefit of the UBI to the EBR with Source Coding

In this section, we will study the relative performance between the EBR

scheme with and without the UBI enabled in different network settings. The benefit

of the UBI is obviously demonstrated when it is employed on the EBR with source

coding. Regardless of the mobility scenario, it leads the performance gain

significantly.

 Figures 6.20 and 6.21 plot the FDRs and ADDs of the EBR in source coding

mode under the ferry mobility scenarios. Figure 6.20 shows the results from the

scenario where we use the first setting for both of the transmission rate and range and

 98

the file size and generation rate. Figure 6.21 displays ones from the setting we use the

second setting for the transmission rate and range.

As shown in Figure 6.20, even though the EBR scheme experiences the

performance gain due to the UBI in every mobility scenario, the relative amount of

performance improvement largely relies on the mobility pattern. Also, Figure 6.21

shows that the UBI brings more improvement in FDR when transferring smaller files.

Figure 6.20. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the ferry mobility

Figure 6.21. FDR of the source coding enabled EBR scheme with and without UBI
under the ferry mobility when transferring different size of files (Left:100MB, right:
10MB)

In the NYC mobility scenario, the UBI enabled EBR also outperforms the

plain EBR with source coding scheme. Moreover, the same trend we observed with

the ER scheme is also observed in the Figures 6.22 and 6.23. The UBI induces the

 99

largest performance gain with respect to both of FDR and ADD when the node

density is moderate such as 60 nodes. When the network is very lightly congested like

the simulations in Figure 6.24, the UBI is not beneficial with respect to the FDR. But,

the benefit in regard of the ADD is clearly demonstrated. In particular, when the node

density is relatively low like 30 nodes, the performance gain is significant.

Figure 6.22. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility when transferring 100MB files

Figure 6.23. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility when transferring 10MB files

Figure 6.24. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the NYC mobility and light traffic

 100

In the Istanbul mobility, the benefit due to the UBI is clearly observed in

every setting we simulate with respect to both of FDR and ADD. Figures 6.25 and

6.26 show the results from simulations run in the second setting for the transmission

rate and range; 500kB/s and 100m. For the file size and generation rate, we use the

first setting in Figure 6.26 and the second setting in Figure 6.25.

Like the NYC mobility settings, the UBI is most beneficial to the EBR with

source coding scheme when the node density is moderate such as 60 nodes. In

addition, as shown in Figures 6.25 and 6.26, the EBR with source coding experiences

more benefit from the UBI when transferring small files rather than large files.

Especially, with respect to the ADD, the performance improvement is significant.

Figure 6.25. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the Istanbul mobility when transferring 100MB files

Figure 6.26. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the Istanbul mobility when transferring 10MB files

 101

Lastly, Figures 6.27 and 6.28 show the results from the simulations conducted

with the real trace mobility. We vary the setting for the transmission rate and range in

order to see the benefit from the UBI in the different traffic congestion levels. Like

other mobility scenarios, the UBI is beneficial with respect to both of FDR and ADD

in overall network settings regardless the traffic congestion level. Especially when the

traffic congestion level is moderate, the benefit due to the UBI is most significant.

Figure 6.27. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the taxi trace mobility when transferring 100MB files

Figure 6.28. FDR and ADD of the source coding enabled EBR scheme with and
without UBI under the taxi trace mobility when transferring 10MB files

6.2.2.3 Benefit of the UBI to the EBR with network coding scheme

 We examine the benefit from the UBI to the EBR with network coding in this

section. Figures 6.29, 6.30, 6.31, and 6.32 show the results from the simulation using

different mobility scenarios; ferry, NYC, Istanbul, and taxi trace respectively. We use

 102

the first setting for the transmission rate and range, and the first setting for the file

size and generation in every simulation.

In summary, the UBI is beneficial to the network coding enabled EBR scheme

as well. However the performance gain is not very significant as we observed in the

source coding enabled EBR scheme. In particular, the benefit due to the UBI is not

noticeable in the network with an urban map such as NYC and Istanbul mobility

scenarios as shown in Figures 6.30 and 6.31. However, in the ferry mobility scenarios,

which result is shown in Figure 6.29, the UBI improves notably performance of EBR

with network coding with respect to both of FDR and ADD. In addition, the benefit

from the UBI is most noticeable in the moderately congested network, where the FDR

is between 0.3 and 0.7. The results from the taxi trace mobility in Figure 6.32 also

show that the UBI is beneficial to the EBR with network coding with respect to both

of FDR and ADD.

Figure 6.29. FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the ferry mobility

 103

Figure 6.30. FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the NYC mobility

Figure 6.31. FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the Istanbul mobility

Figure 6.32. FDR and ADD of the network coding enabled EBR scheme with and
without UBI under the taxi trace mobility

 104

6.2.2.4 Performance comparison between UBI enabled routing schemes

 In this section, we will examine the relative performance of three routing

schemes when the UBI is enabled on them. Recall that we study the same when the

UBI is not employed in the last section of Chapter 5. We will investigate how the

UBI changes the trends.

 Above all, the impressive change from the previous study is that the source

coding enabled EBR scheme is the best scheme in overall network settings.

According to our simulation results, the UBI and EBR with source coding is a very

nice combination for transferring files in DTNs.

 Let us examine the result of each mobility scenario. First, Figures 6.33 and

6.34 plot the FDR of three routing schemes under the ferry mobility. They show the

results from the simulations that we use the first setting for the transmission rate and

range. Regardless of the mobility pattern, traffic congestion level, and the size of file,

the source coding enabled EBR scheme always shows the best performance. However

the ER scheme and the network coding enabled EBR scheme beat each other in

different network settings. When transferring large size files, the network coding

scheme deliver more files than the ER scheme as shown in Figure 6.33 while the ER

scheme works better than the network coding scheme when sending the smaller files

as shown in Figure 6.34.

 105

Figure 6.33. FDR of three routing schemes with UBI enabled under the ferry scenario
when transferring 100MB files

Figure 6.34. FDR of three routing schemes with UBI enabled under the ferry scenario
when transferring 10MB files

 In the NYC mobility scenario, the source coding scheme is also the best one

with respect to both of the FDR and ADD. As shown in Figure 6.35, this trend is

more clearly observed under the moderate or high traffic congestion. In Figure 6.36,

when the network is lightly congested, the performance difference in terms of FDR is

not very clear. But, with respect to the ADD, the source coding scheme demonstrates

the best performance. Regarding the relative performance between the ER scheme

 106

and the network coding enabled EBR scheme, it is observed that the network coding

scheme brings better performance in terms of ADD than ER under the light traffic.

Figure 6.35. FDR and ADD of three routing schemes with UBI enabled under the
NYC scenario with moderate traffic congestion

Figure 6.36. FDR and ADD of three routing schemes with UBI enabled under the
NYC scenario with light traffic congestion

The simulation results from the Istanbul mobility scenario are displayed in

Figures 6.37 and 6.38. We use the first setting for the transmission rate and range, and

the second setting for the file size and generation rate in the simulation, which results

shown in Figure 6.37. For the simulations shown in Figure 6.38, we use only change

the transmission rate from 200kB/s to 500kB/s in order to set the less congested

network. Again, EBR with source coding always performs best in this mobility

scenario. And, the network coding scheme performs better than the ER scheme with

respect to FDR unless the traffic congestion is light.

 107

Figure 6.37. FDR and ADD of three routing schemes with UBI enabled under the
Istanbul scenario with moderate to high traffic congestion

Figure 6.38. FDR and ADD of three routing schemes with UBI enabled under the
Istanbul scenario with light to moderate traffic congestion

In the taxi trace scenario, the EBR with source coding still perform best

among the three schemes. However, in this mobility setting, the network coding

scheme is also good with respect to the FDR unless the network is highly congested.

With the high traffic congestion, the source coding scheme obviously works best.

Moreover, when the size of files is small such as 10MB, as Figure 6.40 shows, there

is no big difference between the performances of three routing schemes with respect

to the FDR.

 108

Figure 6.39. FDR and ADD of three routing schemes with UBI enabled under the taxi
trace scenario when transferring 100MB files

Figure 6.40. FDR and ADD of three routing schemes with UBI enabled under the taxi
trace scenario when transferring 10MB files

 109

Chapter 7: Conclusion

We have evaluated the ER and EBR DTN routing algorithms under a set of

different configurations, and network scenarios. We first compared the performance

of EBR in two different modes (i) source coding, where only the message’s source is

allowed to create new encodings, and (ii) network coding, where any relay node may

create new encodings from existing ones. We also examined the performance of each

of the three routing schemes with different configurations. For the ER scheme, we

looked at the effects of using a Bloom filter vs. a simple list as the data structure of

the summary vector. In addition, for the EBR with only the source coding scheme, we

evaluated the effect of using different encoding weights, different forms of the

summary vector, and the rank check capability at relay nodes.

We also investigated the two different immunity mechanisms, BBI and UBI,

which can be used along with the ER and EBR schemes. Additionally, we examined

the benefits of compressing the immunity messages in BBI. Through simulation we

demonstrated that overall BBI is not suitable with the EBR scheme, but the UBI

works best with the EBR with source coding scheme rather than the other two routing

schemes (i.e., ER and EBR with network coding). Moreover, when the UBI is

employed, the source coding-enabled EBR scheme outperforms other schemes under

every network setting.

In evaluating the relative performance of the different routing schemes and

configurations, the details of the network scenario, such as the node mobility, the

node density, level of traffic congestion, etc affect the performance of routing

 110

schemes and configurations considerably. In each section, we presented simulation

results and provided our analysis of the performance trends in different network

scenarios. We summarize our analysis in the following tables. These tables provide a

concise guide that matches particular network characteristics to what we have

determined to be the best configuration on the basis of our study. This could offer a

guideline for choosing the suitable routing schemes for different network

environments.

Tables 7.1 and 7.2 show the guideline for configuration of summary vector

and rank check respectively. Regardless of mobility scenario, our recommendations

are same for both configurations.

Traffic
congestion

level

High Bloom filter Bloom filter
Moderate List Bloom filter
Light List Bloom filter

 ER EBR
Routing Scheme

Table 7.1. Guidance for configuration of summary vector

Traffic
congestion

level

High Rank check Rank check
Moderate Rank check Rank check

Light Rank check Node
density

Low Rank check

High No rank
check

 • Simple topology
• Low node density
• Not all nodes meet each other

• Urban map
• High node density
• Frequent contact
• Long contact duration

Mobility

Table 7.2. Guidance for configuration of rank check

Before providing a guide for choosing the suitable coding scheme, we first list

up characteristics of the mobility scenarios used in our study in Table 7.3. Since we

 111

provide a guideline for each mobility scenario, it is required to choose one mobility

model that corresponds with the target network environment. Table 7.3 will help in

selecting the appropriate mobility scenario to refer. From Table 7.4 to 7.7, we provide

our guides for choosing the suitable coding scheme in different network settings.

 Mobility
Characteristic Ferry NYC Istanbul Taxi

Node density Very low;
𝑛 ≤ 10

Low to high;
30 ≤ 𝑛 ≤ 90

Low to high;
30 ≤ 𝑛 ≤ 90

High;
𝑛 = 150

Map Simple
topology

Urban map Urban map Urban map

Node behavior

- Node can not
meet every
other node
- Nodes move
on the pre-
assigned paths
only
- Source and
destination are
stationary

- Nodes are
homogeneous
- Every node is
moving

- Nodes have a
moving
boundary
- Source and
destination are
stationary
- Node can not
meet every
other node

- Nodes are
homogeneous
- Every node is
moving
- It is data
collected from
the real life

Node speed Ferry;
[10, 30] mph

Pedestrian;
[1.5, 3.5] mph

Car in a city;
[22.5, 36] mph

Car in an urban
area

Table 7.3. Guidance for mobility scenario (𝑛 is the number of nodes)

Transmission
range

High Source coding (EBR) Source coding (EBR)

Moderate Source coding (EBR)
Do not use network coding Source coding (EBR)

Light No coding (ER)
Do not use source coding No coding (ER)

 Short Long
Average contact time

Table 7.4. Guidance for coding scheme in the ferry scenario

 112

Transmi-
ssion
range

High Source coding (EBR)

Node
density

High
Source coding
(EBR)
Do not use ER

Medium No coding (ER) Medium Source coding
(EBR)

Low
No coding (ER)
Do not use source
coding

Low Network coding
(EBR)

Small Large
File size

Table 7.5. Guidance for coding scheme in the NYC scenario

Transmission
rate /

Node density

Low /
Medium

Source coding / Network
coding (EBR)

Source coding (EBR)
Do not use ER

High /
High

No coding (ER)
Do not use source coding

No coding (ER)
Do not use source coding

Otherwise Network coding (ER) Network coding (EBR)
 Small Large

File size

Table 7.6. Guidance for coding scheme in the Istanbul scenario

Traffic
congestion

level

High Network coding (EBR) Source coding (EBR)
Medium Network coding (EBR) Network coding (EBR)

Low
No coding (ER) / Network
coding (EBR)
Do not use source coding

Network coding (EBR)

 Small Large
File size

Table 7.7. Guidance for coding scheme in the Taxi scenario

Lastly, our guideline for the immunity mechanism enabled routing schemes is

very simple. EBR with source coding with UBI is the best routing scheme in overall

network settings according to our study.

 113

Bibliography

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. “Network information flow,”

IEEE Transaction on Information Theory, 2000.

[2] F. Albini, A. Munaretto, and M. Fonseca, “Delay tolerant transport protocol –

DTTP,” Global Information Infrastructure Symposium, 2011.

[3] E. Altman and F. Pellegrini, “Forward correction and fountain codes in delay-

tolerant networks,” IEEE/ACM Transactions on Networking, 2011.

[4] J. Burgess, B. Levine, R. Mahajan, J. Zahorjan, A. Balasubramanian, A.

Venkataramani, Y. Zhou, B. Croft, N. Banerjee, M. Corner, and D. Towsley,

“CRAWDAD data set umass/diesel (v. 2008-09-14),”

http://www.crawdad.org/umass/diesel, 2008.

[5] T. Cormen, C. Leiserson, R. Rivest, and, C. Stein, "28.4: Inverting matrices,"

Introduction to Algorithms (2nd ed.), MIT Press and McGraw-Hill, 2001.

[6] B. Dawkins, "Siobhan's problem: the coupon collector revisited", The American

Statistician, 1991.

[7] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,”

Proceedings of the 2003 conference on Applications, technologies, architectures, and

protocols for computer communications (SIGCOMM '03), 2003.

[8] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content

distribution,” IEEE Infocom, 2005.

[9] Z. Haas and T. Small, “A new networking model for biological applications of ad

hoc sensor networks,” IEEE/ACM Transactions on Networking, 2006.

 114

[10] D. Hahn, G. Lee, B. Walker, M. Beecher, and P. Mundur, "Using Virtualization

and Live Migration in a Scalable Mobile Wireless Testbed," HotMetrics, 2010.

[11] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol

Evaluation,” Proceedings of the 2nd International Conference on Simulation Tools

and Techniques, 2009.

[12] P. Leach, M. Mealling, and R. Salz, “RFC 4122 A Universally Unique Identifier

(UUID) URN Namespace,” 2005

https://www.ietf.org/rfc/rfc4122.txt

[13] S. Leon, “Linear Algebra with Applications (8th ed.),” Pearson, ISBN 978-

0136009290, 2009

[14] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transactions on

Information Theory, 2003.

[15] Y. Lin, B. Liang, and B. Li, “Performance modeling of network coding in

epidemic routing,” Proceedings of the 1st international MobiSys workshop on Mobile

opportunistic networking, 2007.

[16] Y. Lin, B. Li, and B. Liang, “Stochastic analysis of network coding in epidemic

routing,” IEEE Journal on selected areas in communications, 2008.

[17] D. Mackay, “Fountain codes,”, IEEE Proceedings Communications, 2005.

[18] T. Matsuda and T. Takine, “(p, q)-Epidemic routing for sparsely populated

mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, 2008.

[19] M. Mitzenmacher, “Digital Fountains: A Survey and Look Forward,” IEEE

Information Theory Workshop, 2004.

 115

[20] P. Mundur, M. Seligman, and G. Lee, “Epidemic routing with immunity in

Delay Tolerant Networks,” Proceedings of the Military Communications Conference,

2008.

[21] A. Petz, C.-L. Fok, C. Julien, B. Walker, and C. Ardi, “Network coded routing in

delay tolerant networks: An experience report,” In Proc. of ExtremeCom, 2011

[22] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAWDAD

data set epfl/mobility (v. 2009-02-24),” http://www.crawdad.org/epfl/mobility/, 2009

[23] M.V. Ramakrishna, “Practical performance of Bloom filters and parallel free-

text searching,” Communications of the ACM, 32 (10). 1237-1239.

[24] R. Rivest, “RFC 1321 The MD5 Message-Digest Algorithm”, 1992

https://tools.ietf.org/html/rfc1321

[25] N. Sarafijanovic-Djukic, M. Piorkowski, and M. Grossglauser, “Island hopping:

Efficient mobility-assisted forwarding in partitioned networks,” Sensor and Ad Hoc

Communications and Networks, 2006

[26] K. Scott and S. Burleigh, “RFC 5050 Bundle Protocol Specification,” 2007

https://tools.ietf.org/html/rfc5050

[27] D. Singh, N. Walde, R. Desai, “Flooding – An efficient routing algorithm,”

International Journal of Advanced Research in Computer and Communication

Engineering Vol.2, Issue 10, 2013

[28] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and Wait: An Efficient

Routing Scheme for Intermittently Connected Mobile Networks,” Proceedings of

ACM SIGCOMM Workshop on Delay Tolerant Networking, 2005.

 116

[29] A. Vahdat, and D. Becker, “Epidemic routing for partially-connected ad hoc

networks,” Duke University Tech. Report, 2000.

[30] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based routing for

opportunistic networks,” Proceedings of the 2005 ACM SIGCOMM workshop on

Delay-tolerant networking, 2005.

[31] T. Welch, "A Technique for High-Performance Data Compression". Computer

17 (6): 8–19, 1984.

[32] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M.

Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental Environment for

Distributed Systems and Networks,” Proceedings of the 5th symposium on Operating

systems design and implementation, 2002.

[33] J. Widmer and J-Y. Boudec, “Network coding for efficient communication in

extreme networks,” Proceedings of the 2005 ACM SIGCOMM workshop on Delay-

tolerant networking, 2005.

[34] E. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance Modeling of

Epidemic Routing,” UMass Computer Science Technical Report, 2005.

[35] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “On the Benefits of Random

Linear Coding for Unicast Applications in Disruption Tolerant Networks,” Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006.

[36] Java OpenStreetMap, http://josm.openstreetmap.de/

[37] OpenJUMP, http://openjump.org

