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 Phytomyza glabricola (Diptera: Agromyzidae) is a leaf-mining fly native to the 

eastern United States that mines two sympatric native holly species, Ilex coriacea and I. 

glabra. Recent work revealed significant genetic divergence between host-associated 

populations of flies in North and South Carolina, suggesting the populations are host 

forms and recent work in Ilex phylogenetics hint the two holly hosts may hybridize. In 

this work, I investigated potential ecological speciation in P. glabricola, hybridization in 

its host plants, and how the hybridization among host plants may affect gene flow 

between host forms of the flies. 

 No-choice mating trials in a greenhouse revealed reproductive isolation between 

host forms of P. glabricola and suggested female flies are capable of making oviposition 

mistakes resulting in adult offspring on the non-natal host. Based on these results, I used 

sequences of the nuclear gene EF-1α and AFLPs to genetically confirm host form status 



 
 

of the flies, and identify I. glabra as the ancestral host. In addition, genome scans 

revealed several loci under divergent selection among the hosts, suggesting the flies may 

be undergoing ecological speciation.  

To investigate the role host plants may play in the genetic divergence among flies, 

I first used AFLPs to confirm hybridization between I. coriacea and I. glabra. 

Hybridization rates differed across the geographic range of the species, which was also 

reflected in the morphology of the leaves. There were no general patterns, however, in 

the phenotypes of hybrid plants, and no single morphological trait that could reliably 

identify the hybrids. 

 Finally, I combined genetic data of the flies and the plants to determine whether 

hybrid plants serve as bridges or barriers for the flies. Population comparisons revealed a 

significant positive relationship between hybridization in the plants and gene flow in the 

flies, and individual comparisons indicated flies are using the hybrid plants, albeit at low 

levels. The results suggest hybrids could serve as bridges between parental species, 

helping explain how a species from a typically monophagous lineage could expand its 

host range.  
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CHAPTER 1: NO-CHOICE MATING TRIALS REVEAL THE PRESENCE OF 

REPRODUCTIVE ISOLATION BETWEEN HOST FORMS OF PHYTOMYZA 

GLABRICOLA ON ILEX CORIACEA AND I. GLABRA 

ABSTRACT 

Speciation is the process by which taxa are split into independently evolving lineages. 

Where a given population or species falls on the continuum of divergence between one 

and two species depends on the degree of gene flow between the taxa. Reproductive 

isolation between taxa is one way to decrease gene flow between taxa and allow 

evolution to progress towards eventual speciation. In this study, I used no-choice mating 

trials to test for the presence of reproductive isolation between host forms of a leaf-

mining fly, Phytomyza glabricola, on its two holly host species, Ilex coriacea and 

I. glabra. I found that reproductive isolation does exist between host forms in a controlled 

greenhouse setting. In addition, the presence of either host plant does not affect the 

mating success of the flies. The results indicate host forms of P. glabricola may be well 

on their way to becoming different species, although field studies are needed to validate 

these findings. 
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INTRODUCTION 

 How new species evolve, whether through selection or drift, in allopatry or 

sympatry, gradually or in spurts, has been a subject of much debate, even before the 

seminal works of Darwin (1858, 1859) and Wallace (1858, 1876). One large part of the 

debate is how to define a species (Coyne and Orr 2004). At least nine species definitions 

exist (reviewed in Coyne and Orr 2004), typically applied to studies to which they are 

most appropriate. As more research has accumulated, we have come to view speciation as 

a continuum with species definitions falling at different stages in the process (Harrison 

1998; Dres and Mallet 2002). Where taxa fall on that continuum hinges on the degree of 

gene flow among diverging lineages: as gene flow decreases, lineages grow closer to 

species status. Because specificity to host plants can enforce reproductive isolation, a 

large number of studies have focused on host-associated populations (Walsh 1864; Diehl 

and Bush 1984; Waring et al. 1990; Abrahamson et al. 2003; Stireman et al. 2005; 

Dickey and Medina 2010; Barman et al. 2012), populations with varying degrees of 

divergence that fall in the middle of the continuum between a single and multiple species 

(Dres and Mallet 2002; Funk 2012).  

The majority of these host-associated systems consist of host forms (Funk 1998; 

Funk et al. 2002; Nosil et al. 2009), populations with host-associated biological variation, 

but where the kind and degree of variation have not been fully examined (Funk 2012) and 

host races, incompletely reproductively isolated populations in sympatry that also remain 

distinct in the face of gene flow due to divergent selection on populations using alternate 

hosts (Thorpe 1930; Bush 1969; Jaenike 1981; Dres and Mallet 2002). Host forms and 

host races imply genetically distinct populations that are associated with different hosts, 
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such as in herbivorous insects (Bush 1969; Phillips and Barnes 1975; Feder et al. 1988; 

Brown et al. 1996; Via 1999; Abrahamson et al. 2003; Diegisser et al. 2006; Scheffer and 

Hawthorne 2007; Barman et al. 2012), parasites (Hoberg and Brooks 2008; Kempf et al. 

2009), and parasitoids (Stireman et al. 2006; Kolaczan et al. 2009). Understanding why 

these host-associated populations are genetically distinct requires knowledge of the 

barriers to gene flow: what degree of reproductive isolation exists between host-

associated groups? If it does exist, what causes the isolation? If isolation is incomplete or 

nonexistent, how can divergence persist in the face of gene flow? To address these 

questions, it is important to determine whether or not reproductive isolation does, in fact, 

exist. Will individuals from different host forms mate with one another and produce 

viable offspring? 

 Here, I address this most fundamental question of reproductive isolation using a 

newly studied host form system of a leaf-mining fly feeding on two species of holly, all 

of which are endemic to the eastern United States. Phytomyza glabricola Kulp belongs to 

a radiation of 14 closely related species, most of which are monophagous and all of 

which feed on hollies in the genus Ilex (Aquifoliaceae) (Kulp 1968; Scheffer and 

Wiegmann 2000; Lonsdale and Scheffer 2011). Unlike its congeners, P. glabricola feeds 

on two sister species of holly, Ilex glabra (L.) A. Gray and Ilex coriacea (Pursh) Chapm. 

Ilex glabra’s range begins in Maine and extends south to Florida and west to northeastern 

Texas (Figure 1.1). Ilex coriacea’s range is restricted to the southern portion of 

I. glabra’s range, where it is sympatric and syntopic to I. glabra (Scheffer 2002; JBH 

pers. obs.).  



4 
 

When feeding on I. coriacea, P. glabricola (hereafter “coriacea-flies”) have a 

development time of approximately 9-10 months and are univoltine , whereas 

P. glabricola feeding on I. glabra (“glabra-flies”) have a larval development time of 2-4 

weeks and are multivoltine (Kulp 1968; Al-Siyabi and Shetlar 1998; Scheffer 2002; 

Scheffer and Hawthorne 2007). Despite these phenological differences, adult 

P. glabricola from both hosts emerge in synchrony in mid-January to mid-February 

(Scheffer 2002), therefore creating the opportunity for flies originally from the two host 

plant species to mate. Adult flies that emerge from each host do not differ 

morphologically in either external characters or genitalia (Scheffer 2002; Lonsdale and 

Scheffer 2011). 

Initial work using amplified fragment length polymorphism (AFLP) frequencies 

revealed that fly populations from North and South Carolina show host-plant based 

genetic divergence (Scheffer and Hawthorne 2007). However, mitochondrial haplotypes 

did not cluster by host plant or location, reflecting either a lack of lineage sorting due to 

recent divergence or introgression via continuing gene flow (Scheffer and Hawthorne 

2007). In this study, using no-choice mating trials in a full factorial design (male host, 

female host, and host plant(s) present) in the greenhouse, I tested same-host and cross-

host mate pairs of flies to determine which fly combinations mated and produced viable 

offspring, and whether the success of matings depended on presence or absence of 

particular host plant species.  

I estimated the degree of reproductive isolation by comparing the number of 

among-host matings (e.g., female coriacea-fly with male glabra-fly) to same-host matings 

(e.g., female and male coriacea-flies) producing adult offspring. This comparison 
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provided a coarse measure of overall reproductive isolation including prezygotic as well 

as extrinsic and intrinsic postzygotic barriers encompassing mating, oviposition, larval 

development, and successful emergence of adult flies. Flies must survive all of these 

stages in order to be able to pass their genes on to the next generation; therefore all are 

required for successful gene flow. If coriacea-flies and glabra-flies are completely 

reproductively isolated, I expected no successful among-host mate pairs to produce viable 

offspring. If there is partial reproductive isolation between coriacea-flies and glabra-flies, 

I expected some among-host mate pairs to be successful, but significantly less than same-

host mate pairs. Finally, if there is no reproductive isolation between coriacea-flies and 

glabra-flies, I expected no difference in the success rate of among-host and same-host 

mate pairs. 

Varying host plant species in the mating chambers allowed me to assess the 

importance of the physical presence of the host plant species in mate choice and mating 

success. If flies have a mating preference based on presence of the natal host plant, I 

expected more successful matings when the natal host was present than when the natal 

host was absent. In addition, I included trials with both host species and observed the 

presence/absence of leaf-mines (successful larval development) and from which mines 

adult flies emerge on each host plant species. I then used differences in the presence of 

leaf-mines, from which leaf-mines adult flies emerged, and the time taken to develop 

within the leaf-mine, to identify the role of host plant species on the success of mate pairs 

and the basis of differences in development time. 
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METHODS 

Collections 

Flies were collected in January and February of 2006 from Croatan National 

Forest in North Carolina and Francis Marion National Forest in South Carolina 

(Figure 1.1). Leaves containing well-developed leaf-mines were removed from host 

plants and placed into plastic bags labeled for site and host plant species. Abundance of 

leaf-mines and rates of parasitism varied between locations, leading to unequal sample 

sizes among populations. Pupae were dissected from mines and placed individually in 0.5 

mL Eppendorf tubes and stored in a moist chamber until the emergence of adults.  

Mating trials 

No-choice mating experiments were performed in modified 16 ounce plastic cups 

surrounding small propagated host plants in the greenhouse (Figure 1.2). A total of 107 

trials were conducted using every combination of male fly and female fly (from I. 

coriacea or I. glabra) placed in mating chambers with either I. glabra, I. coriacea, or 

both host plants present (Table 1.1, Figure 1.2). As flies only live a few days in the 

greenhouse, mate pairs were generated as soon as a male and female fly eclosed from the 

same location. The host plant(s) on which they were tested was randomized. Each trial 

was observed twice a day to note formation of leaf-mines and the emergence of adults 

from pupae. Dead parental flies were removed from the cup, placed in 100% ethanol, and 

stored at -80˚C. Trials were considered unsuccessful if no leaf-mine was formed after 

three months.  

A Pearson’s chi-squared contingency test was used to determine if there was a 

significant difference in the success rate between same-host and among-host mating 
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trials, allowing me to determine whether different host forms of P. glabricola were 

capable of producing adults that could potentially allow introgression of alleles among 

host forms. Hence, a mating trial was considered successful if the mate pair produced 

offspring that eventually emerged as an adult from at least one of the mines inside the 

mating chamber. First, I compared the number of successful and unsuccessful trials for 

same-host versus among-host mate pairs to test for overall reproductive isolation. Next, I 

compared the number of successful and unsuccessful trials in presence and absence of the 

natal host plant species to test whether the natal host species is required for mating 

success. Last, I compared the number of successful and unsuccessful trials in presence 

versus absence of the non-natal host to test whether the non-natal host prevents 

successful mating. Tests were performed in the statistical package R (v2.7.2, R 

Development Core Team, 2010). P-values were computed using a Monte Carlo test 

(Hope, 1968) with 107 replicates to compensate for a potential lack of power due to small 

sample sizes. 

To address whether differences in development time in the wild are only under 

genetic control, means and standard errors were calculated for development time on each 

host. In addition, a 2-sample heteroscedastic t-test was conducted in R to test whether 

development time differed between offspring from different parental combinations. 

RESULTS 

Only 12 of the 107 trials successfully resulted in adult offspring, all of which 

were same-host trials (Table 1.1). Despite the low number of successful matings, 

significantly more same-host trials were successful than among-host trials (Χ2 = 7.44, 
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p < 0.01). Because no among-host trials produced offspring, the remaining results refer to 

same-host trials only. 

Host plant species presence had no effect on mating success. The presence of the 

natal host did not appear to increase mating success in either coriacea-flies (Χ2 = 4.8081, 

p = 0.06977) or glabra-flies (glabra-flies: Χ2 = 0.0845, p = 1; Table 1.2). In addition, the 

non-natal host did not decrease mating success (coriacea-flies: Χ2 = 0.4444, p = 0.6561; 

glabra-flies: Χ2 = 1.712, p = 0.3127; Table 1.2). Interestingly, adult offspring emerged 

from both host plant species for both coriacea-fly and glabra-fly same-host matings. 

Offspring emerged from coriacea-fly same-host trials on I. coriacea alone as well as trials 

with both host plant species present (Table 1.1). For the latter, adults emerged from leaf-

mines on I. coriacea as well as from I. glabra. Offspring from glabra-fly same-host trials 

emerged from trials on I. coriacea alone and trials on I. glabra alone (Table 1.1).  

Finally, all offspring emerged from each host plant species within two months of 

the start of the trial. Offspring produced from coriacea-fly mate pairs took 45 ± 2.0 days 

to emerge whereas flies from glabra-fly same-host mate pairs emerged in 54 ± 5.4 days. 

The time to emergence did not significantly differ between coriacea-fly and glabra-fly 

same-host crosses (t = 1.55, df = 6.35, p = 0.17).  

DISCUSSION 

 When studying speciation, it is important to determine the degree of gene flow 

between potentially reproducing populations. In this study, I demonstrated the presence 

of reproductive isolation between host-associated populations of P. glabricola on its host 

plants, I. coriacea and I. glabra. I found host plant species presence had no effect on 
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mating success. My results suggest host forms of P. glabricola may be well on their way 

to becoming distinct species. 

The lack of viable offspring from any among-host mate pairs suggests the 

presence of prezygotic or postzygotic barriers to gene flow. No mating behavior was 

observed and I could not detect oviposition unless a leaf-mine formed, so I was unable to 

separate premating isolation from among-host inviability. The apparent reproductive 

barriers indicate that genetic signatures of gene flow (Scheffer & Hawthorne 2007, 

Chapter 2) are more likely due to incomplete lineage sorting than to ongoing gene flow.  

There were a low number of successful trials, possibly due to performing the 

experiments in the greenhouse rather than the natural environment. Conditions in the 

greenhouse were optimal for plant growth (temperature, light, and water controlled with 

fertilizer), and are likely different from conditions in their natural pocosin habitat (sandy 

soil over peat, acidic, low in nutrients such as nitrogen and phosphorus, and often poorly 

drained although seldom standing water; Smith et al. 1956; Wilbur and Christensen 1983; 

Richardson 1991; Mitchell et al. 1995). The increased nutrient levels in the green house 

could have changed important traits such as plant volatiles, physiological chemistry, and 

secondary metabolites (Kainulainen et al. 1996; Gaston et al. 2004; Scutareanu and 

Loxdale 2006; Nell et al. 2009; Olson et al. 2009; Winter and Rostas 2010; Ibrahim et al. 

2011), all of which could affect the willingness of flies to mate and oviposit (Feder et al. 

1995; Nishida et al. 1996; Gouinguene and Stadler 2005; Joyce et al. 2008; Cook et al. 

2011) and the ability of offspring to complete their life cycle (Potter 1992; Melo et al. 

2006). For example, Diptera are known to use pheromones derived from nutrition sources 

(Tillman et al. 1999) for signaling during courtship (reviewed in Wicker-Thomas 2007). 
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Changes to the chemistry of their host could change the pheromone composition, 

preventing the completion of copulation. In addition, the small containers may have 

interfered with visual courtship displays commonly found in flies, including agromyzids 

(Ota and Nishida 1966; Carriere and McNeil 1988). Two species of Phytomyza have also 

been found to use substrate-borne courtship songs (Kanmiya 2006); the vibrations from 

fans and other equipment in the greenhouse could disrupt such acoustic signaling. Future 

work should focus on the rates of same-host and across-host matings in natural 

conditions. 

Flies from the same host plant successfully mated and success did not depend on 

which host plant species was present, suggesting host plant presence does not affect 

mating success (either as an attractant or a deterrent). In addition, offspring from these 

mate pairs were able to emerge from both I. coriacea and I. glabra, regardless of the 

parents’ natal host. Therefore, it is possible that females could make oviposition 

“mistakes”, laying eggs on non-natal hosts, and if the offspring can survive on the non-

natal host, as suggested here, these mistakes could lead to gene flow among host forms.  

Again, the lack of a difference could be due to the greenhouse setting. Changes in 

plant chemistry and general substrate could affect mating preferences. Furthermore, these 

were no-choice trials, so females could have oviposited on the non-natal host out of 

necessity, whereas in normal conditions, they would not. Field work is needed to 

determine whether host plants affect mating success, females oviposit on the non-natal 

host, and if larvae and pupae of flies can survive in wild populations. 

Unexpectedly, all offspring of successful mate-pairs emerged within two months, 

irrespective of what host plant they emerged from. Flies from I. coriacea typically take 
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nine months to develop in the wild, as opposed to two months for flies from I. glabra 

(Scheffer 2002). The reduction in development time suggests there is at least some 

environmental component to the flies’ rate of development on each host plant species. 

Insect development can depend on how well host plants are defended: insects tend to 

have more generations on plants that are less well defended (Hunter and McNeil 1997; 

Steinbauer et al. 2004; van Asch and Visser 2007), and host plant quality can influence 

the induction of diapause (Hunter and McNeil 1997; Ito 2003; Ishihara and Ohgushi 

2006; Ito and Saito 2006; Takagi and Miyashita 2008). Foliar nitrogen content is known 

to vary with soil nutrients (Marschner 1995) and can directly affect the growth rate of 

phytophagous insects (White 1993; Cornelissen and Stiling 2006). The addition of 

fertilizer in the greenhouse could explain more rapid development if I. glabra is better 

able to obtain nitrogen than I. coriacea in natural populations.  

 The mechanisms underlying reproductive isolation in these flies warrants further 

investigation. I do not yet know the specific mating behavior of these flies, so I may have 

missed key features important for mating success such as space for flies to move in, 

additional mates to choose from, day length, or external temperatures. In addition, 

changes in nutrient content could affect plant volatiles and nutrition, which could play a 

role in oviposition choice and mating behavior. Future work should focus on replicating 

natural conditions to determine whether or not complete reproductive isolation exists 

between host forms of P. glabricola.  

 I have now established that reproductive isolation exists between host forms of P. 

glabricola, so I can begin to investigate what ecological, behavioral, and/or genetic 

factors serve as barriers to gene flow in this system. It is important to use recently 
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diverged populations and species to study these barriers, as the original factors causing 

divergence may disappear over time (Coyne and Orr 2004). Using populations in the 

‘grey area’ of species status will allow us to determine what elements are the most 

important drivers of speciation, and therefore understand how the great biodiversity we 

see today originally arose. 

 In conclusion, my study suggests populations of P. glabricola are closer to the 

species end of the speciation continuum between populations and species. My mating 

trials indicate a large degree of reproductive isolation exists among populations of 

P. glabricola on its two host plant species, corresponding to previous molecular work 

demonstrating significant genetic divergence between the host forms (Scheffer and 

Hawthorne 2007). I found that female flies will oviposit on both host plant species and 

offspring are capable of surviving on the parental non-natal host in greenhouse 

conditions. In addition, I found no evidence that flies must mate in the presence of their 

natal host or the absence of the non-natal host, indicating migration may be possible 

between host forms. However, because no cross-host mating pairs produced viable 

offspring, I have no indication that migration will result in gene flow between host forms 

of the flies. 
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Table 1.1. Mating trials of Phytomyza glabricola on its host plants, Ilex glabra and I. 

coriacea. Trials were considered successful if the flies mated, the female oviposited eggs, 

and the offspring successfully emerged as adults. 

Male fly Female fly 
Host-plant  

species present
# Successful Trials Total # of Trials 

Glabra Glabra Glabra 3 12 
Glabra Glabra Coriacea 2 12 
Glabra Glabra Both 0 11 
Glabra Coriacea Glabra 0 5 
Glabra Coriacea Coriacea 0 5 
Glabra Coriacea Both 0 4 

Coriacea Glabra Glabra 0 8 
Coriacea Glabra Coriacea 0 8 
Coriacea Glabra Both 0 8 
Coriacea Coriacea Glabra 0 12 
Coriacea Coriacea Coriacea 3 11 
Coriacea Coriacea Both 4 11 

  Total 12 107 
 

 

 

Table 1.2. Comparison of mating trials of Phytomyza glabricola in presence versus 

absence of the natal and non-natal host plant species. Trials were considered successful if 

the flies mated, the female oviposited eggs, and the offspring successfully emerged as 

adults. 

 
Natal 
present

Natal 
absent 

Non-natal 
present 

Non-natal 
absent 

Coriacea-Coriacea 
mate pairs 

Successful 7 0 4 3 
Unsuccessful 15 12 19 8 

Glabra-Glabra mate 
pairs 

Successful 3 2 2 3 
Unsuccessful 20 10 21 9 
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Figure 1.1: Endemic range of the host plants, Ilex coriacea and I. glabra with collection 

sites labeled.  

 
 

  

Ilex glabra
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Figure 1.2: Diagram of mating chamber. A piece of foam surrounds the base of the plant 

in its pot, sealing the bottom portion of the cup. Fine mesh was held over the cup with a 

rubber band. Honey was placed on the side of the cup so that flies had a food source. 
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CHAPTER 2: EVIDENCE FOR ECOLOGICAL SPECIATION IN THE HOLLY 

LEAF-MINER, PHYTOMYZA GLABRICOLA (DIPTERA: AGROMYZIDAE) 

ABSTRACT 

Evolutionary radiations have been well documented in plants and insects, but we have yet 

to determine the relative impact of genetic drift and natural selection underlying these 

radiations. If the radiations are adaptive, the diversity of species could be due to 

ecological speciation in these lineages. Agromyzid flies are known to have repeated host-

associated radiations, so I take advantage of previously identified host forms of 

P. glabricola associated with Ilex coriacea and I. glabra to test whether the species 

undergoing ecological speciation. Using AFLPs and nuclear sequence data, I found a 

geographic mosaic of genetic divergence between host forms across the range of these 

flies. Flies on I. glabra are multivoltine whereas flies on I. coriacea are univoltine, and 

voltinism is at least partially controlled by the environment, suggesting plant-mediated 

genetic divergence could lead to host race formation without the evolution of host 

preference. The data also suggest the flies expanded from I. glabra to I. coriacea and are 

now experiencing divergent selection. Genome scans revealed several loci under 

divergent selection in multiple populations of these flies. It appears P. glabricola is in the 

process of ecological speciation, suggesting ecological speciation could be at least 

partially responsible for host-associated radiations in these flies. 
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INTRODUCTION 

Understanding the evolution of biotic diversity is one of the primary aims of 

biology. Phytophagous insects are known to be extremely diverse, making up over 25% 

of the total terrestrial biodiversity (Strong et al. 1984; Price 2008). Much of the diversity 

was generated by radiations of phytophagous insects onto a number of host plant taxa, 

particularly angiosperms (Mitter et al. 1988; Farrell 1998; Winkler and Mitter 2008). The 

wide variety of chemical and morphological defenses of plants combined with a number 

of plant modules (e.g., leaves, stems, flowers, and fruits) provide many adaptive zones 

(Simpson 1949, 1953) in which phytophagous insects can specialize (Ehrlich and Raven 

1964; Price 2008). 

Ehrlich and Raven (1964) described how evolutionary radiations of plant lineages 

could result from the evolution of novel defensive chemistry, followed by evolutionary 

radiations of phytophagous insects from reciprocal changes to adjust to that chemistry 

(i.e., ‘escape and radiate’). Evolution of key innovations, such as the ability to digest 

plant defensive chemicals combined with dispersal into a new habitat (e.g. a host plant 

range expansion) provide ecological opportunities needed for adaptive radiations 

(Simpson 1949, 1953; Mitter et al. 1991; Schluter 2000; Yoder et al. 2010). If insects 

mate on their host plant, specialization to a host plant species can result in reproductive 

isolation and can eventually lead to speciation (Ehrlich and Raven 1964; Wheat et al. 

2007; Janz and Nylin 2008).  

Although patterns of host-associated radiations have been well-documented 

(Mitter et al. 1988; Farrell 1998; Winkler and Mitter 2008; Yoder et al. 2010), our 

understanding of the speciation processes and host specialization that give rise to these 
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patterns remains contentious (Coyne and Orr 2004). Darwin first connected speciation 

with adaptive divergence to different habitats (Darwin 1859). Conceptual models shifted 

to allopatry with neutral accumulated changes (Mayr 1963; Nosil 2008) followed by 

sympatric models where fitness and reproduction were associated with habitat preference 

(Bush 1969; Felsenstein 1981; Rice and Hostert 1993; Hawthorne and Via 2001; Schluter 

2001; Via 2001; Feder et al. 2005). More recently, studies of speciation have shifted 

away from a focus on geographic distribution towards an emphasis on ecologically-based 

adaptive divergence causing reproductive isolation in either allopatry or sympatry, 

termed ‘ecological speciation’ (Futuyma and Moreno 1988; Rundle et al. 2000; Schluter 

2000). 

In phytophagous insects, adaptation to different host plants can decrease gene 

flow between host-associated populations of insects, especially if the insects reproduce 

on the host (Smith 1966; Diehl and Bush 1984; Schluter 2001; Turelli et al. 2001; Via 

2002). Specific host-associated systems such as host forms (Funk 1998; Funk et al. 

2002), populations with an unknown kind and/or degree of host-associated biological 

variation (Funk 2012) and host races (Thorpe 1930; Bush 1969; Jaenike 1981; Dres and 

Mallet 2002) demonstrate intermediate steps in speciation, representing the evolution of 

ecological divergence. Still, ecological divergence is not synonymous with speciation, 

and we have yet to determine the relative impact of divergent selection versus genetic 

drift on whether or not speciation proceeds to completion. To determine whether 

ecological speciation could be responsible for radiations of phytophagous insects on host 

plants, we need to focus currently diverging or recently evolved taxa within adaptive 

radiations and determine whether ecological speciation can account for the divergence. 
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The Agromyzidae (leaf-mining flies) show considerable evidence of repeated 

host-associated radiations (Spencer 1990; Scheffer and Wiegmann 2000; Winkler et al. 

2009b). The genus Phytomyza is the largest Agromyzid genus, and is comprised of a 

large number of host-associated radiations primarily associated with the Ranunculaceae 

and families within the Asteridae (Winkler et al. 2009a; Winkler et al. 2009b). Phytomyza 

glabricola Kulp, a species endemic to the eastern United States, belongs to a radiation of 

14 closely related species, all of which feed on hollies in the genus Ilex (Aquifoliaceae) 

and most of which are monophagous (Kulp 1968; Scheffer and Wiegmann 2000; 

Lonsdale and Scheffer 2011). Unlike its monophagous congeners, P. glabricola feeds on 

two sister species of holly, Ilex glabra (L.) A. Gray and Ilex coriacea (Pursh) Chapm, 

both of which are also endemic to the eastern United States (Selbach-Schnadelbach et al. 

2009; Manen et al. 2010).  

Ilex glabra and I. coriacea are found in baygall and pocosin habitats in the coastal 

plains of the eastern United States (Caughey 1945; Richardson 1983, 1991; Brooks et al. 

1993). Ilex glabra is present from Maine south to Florida and west to northeastern Texas 

(Figure 2.1). Ilex coriacea is sympatric with I. glabra (Scheffer 2002), but it has a much 

smaller distribution, limited to the southern portion of I. glabra’s range. It also has a 

patchier distribution than I. glabra, likely due to lower tolerance of dry conditions 

(Mohlenbrock 1976; Brooks et al. 1993). Where sympatric, the plants are often also 

syntopic, with leaves from one plant commonly in contact with leaves of the other 

species. In addition, the two species likely hybridize in nature (Robert K. Godfrey 

Herbarium 2012, Specimens 000016759-000016766) Hybridization is not surprising 

considering Ilex species are often very genetically similar to one another (Cuenoud et al. 
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2000; Setoguchi and Watanabe 2000; Manen et al. 2002; Manen 2004; Manen et al. 

2010), as evidenced by the many ornamental Ilex cultivars that have been generated by 

interspecific hybridization (Galle 1997). 

In the field, when feeding on I. glabra, P. glabricola (hereafter “glabra-flies”) 

have a development time of approximately 2-4 weeks and are multivoltine, whereas 

P. glabricola feeding on I. coriacea (“coriacea-flies”) have a development time of 9-10 

months and are univoltine (Kulp 1968; Al-Siyabi and Shetlar 1998; Scheffer 2002; 

Scheffer and Hawthorne 2007). Despite these phenological differences, adult 

P. glabricola from each host emerge in synchrony in mid-January to mid-February 

(Scheffer 2002). Adult flies that emerge from each host do not differ morphologically in 

either external characters or genitalia (Scheffer 2002; Lonsdale and Scheffer 2011). On 

greenhouse grown plants, female flies will oviposit on the non-natal host, and the 

offspring can develop into adult flies (Scheffer pers. comm.; Chapter 1). Mating trials 

also indicate the presence of reproductive isolation between flies from the two host plant 

species (Chapter 1).  

Initial work revealed that fly populations from North and South Carolina show 

host plant-based genetic divergence based on amplified fragment length polymorphism 

(AFLP) frequencies (Scheffer and Hawthorne 2007). However, mitochondrial haplotypes 

did not cluster by host plant or location, reflecting either a lack of lineage sorting due to 

recent divergence or introgression via continuing gene flow (Scheffer and Hawthorne 

2007).  

Whether divergence exists throughout the range of these insects and their host 

plants has not been examined and could differ for several reasons. The host plant ranges 
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do not fully coincide, so there may be different degrees of divergence in locations 

supporting only I. glabra. The host plant range spans a very wide latitudinal gradient 

possibly altering intrinsic and extrinsic factors such as developmental patterns and natural 

enemy abundances. In addition, as mentioned above, the host plants likely hybridize in 

nature, and initial morphological observations suggest hybridization rates differ among 

locations (see Chapter 3). Because hybridization could produce plants with mixed traits, 

it could change the distribution of insects on the host plants in different locations, 

potentially affecting the degree of gene flow in flies among host plant species (see 

Chapter 4).  

In this study, I first asked is the degree of genetic divergence across the natural 

range of P. glabricola similar to the results of Scheffer and Hawthorne (2007)? I used 

DNA sequence data from the nuclear protein-coding gene Elongation Factor-1α (EF-1α) 

as well as AFLP data to test for host-associated genetic divergence from populations 

spread across the sympatric range of the host plant species. I also used this data to 

examine the amount and direction of gene flow between host forms of P. glabricola by 

identifying migrants and offspring of cross-host matings. 

If host-associated radiations of agromyzids, particularly in Phytomyza species 

feeding on Ilex, are a result of host expansions followed by ecological speciation, I 

expected to find a pattern of a host range expansion where flies from one host plant 

species are ancestral to flies from the other species, and genetic signatures of divergent 

natural selection. First, to determine the direction of the initial host range expansion, I 

estimated diversity and genetic structure using the EF-1α dataset. I expected more genetic 

variation and older haplotypes in flies from the ancestral host plant (Harrison 1991; 
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Brown et al. 1996), whereas there should be no difference in the diversity and relative 

age of haplotypes if both host forms of flies arose at the same time, such as from an 

additional host. 

Finally, I asked whether the genetic divergence is due to natural selection or 

genetic drift associated with vicariance. I used genome scans of AFLPs to detect genetic 

patterns of divergent selection among genomes of coriacea-flies and glabra-flies then 

tested for linkage disequilibrium between outliers. If divergent selection reduced gene 

flow between host forms, the genomic architecture of selected loci, such as physical 

linkage or sex-chromosome linkage, would increase the likelihood of eventual ecological 

speciation in P. glabricola.  

MATERIALS AND METHODS 

Collections 

Flies were collected in January and February of 2006 from Croatan National 

Forest in North Carolina and Francis Marion National Forest in South Carolina, and again 

in 2007 with additional samples from Cape Henlopen State Park, DE, the Great Dismal 

Swamp National Wildlife Refuge, VA, Crooked River State Park, GA, Etoniah Creek 

State Forest, FL, and Apalachicola National Forest, FL (Figure 2.1). Ilex glabra was 

found at every collection site; however I. coriacea was absent from the most northern 

sites (NY, NJ, DE, MD) which are outside the plant’s geographic range, and from the GA 

and Archibold, FL sites. Leaves containing well-developed leaf-mines, and visible larvae, 

were removed from host plants and placed into plastic bags labeled for site and host plant 

species. Pupae were dissected from mines and placed individually in 0.5 mL Eppendorf 
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tubes and stored in a moist chamber until adults emerged. Adult flies were placed in 

100% ethanol and stored at -80˚C.  

AFLPs 

 Genomic DNA was extracted from 183 individual flies (96 coriacea-flies and 87 

glabra-flies) following the animal tissue protocol of the Qiagen DNeasy kit (Qiagen, 

Valencia, CA). DNA concentrations were standardized to 12.5 ng/µL. AFLP constructs 

were assembled in a single-tube reaction by mixing 30.0 µL of genomic DNA, 5.0 µL 

10 X NEBuffer 3 [100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol 

(DTT)] (New England Biolabs, Ipswich, MA), 0.5 µL 100X bovine serum albumen 

(BSA), 5.0 µL 10mM ATP, 5 units PstI, 5 units EcoRI, 100 units T4 DNA ligase 

(Genscript, Piscataway, NJ), and 1 µL each of 5 µM double-stranded EcoRI and PstI 

adapters (Hawthorne 2001). The reactions were incubated at 37 C for 5 hours and then 

80 C for 20 minutes. Each reaction was then diluted 1:10 with ultrapure H2O and stored 

at -20 C.  

 A two-step amplification was used (Vos et al. 1995): the preamplification step 

used one selective base on each primer (EcoRI-A and PstI-A) in a 10 µL reaction 

[1.5 mM MgCl2, 0.125 mM dNTPs, and 0.5 units Taq DNA polymerase (Genscript, 

Piscataway, NJ) combined with 0.25 µM primers and 2.0 µL of template DNA]. The 

reaction was cycled 21 times for 30 sec at 95 C, 1 min at 56 C, and 1 min 72 C with an 

additional extension period of 5.5 min at 72 C. Preamplification products were diluted 

1:40 with ultrapure H2O and stored at -20 C. The selective amplification was performed 

using the same 10 µL cocktail, but with a fluorescein amidite (FAM)-labeled primer with 

additional selective bases in place of EcoRI-A (Table 2.1). A touchdown-PCR was used 
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starting with an annealing temperature of 65 C which was decreased by 1 C for 8 rounds 

of amplification, followed by 22 rounds of amplification at an annealing temperature of 

58 C, and an additional extension period of 7 min at 72 C. PCR products were separated 

with an ABI 3730 DNA Analyzer (Applied Biosystems, Carlsbad, CA) using MapMarker 

X-Rhodamine (ROX) labeled 1000bp ladder (BioVentures, Murfreesboro, TN). 

 Electropherograms were scored using GENEMAPPER v.3.7 (Applied Biosystems, 

Carlsbad, CA). Fragments between 76 and 800 base pairs were first scored using the 

automated procedure and secondarily checked by eye. To measure the repeatability of 

peaks, six individuals were repeated across plates and an additional ten individuals 

replicated within each plate. Negative controls (H2O template) were included at every 

step of the process. A genotyping error rate was estimated as the ratio of 

electropherogram peak mismatches among the replicates to the total number of replicated 

markers (Pompanon et al. 2005). Loci with peak mismatches among repeated samples 

were removed from the analysis as were loci occurring at the same sizes as peaks 

observed in the negative controls. Mismatches were not equally distributed among loci: 

some loci had only a single individual with a mismatch whereas others showed 

mismatches in a large number of individuals. Therefore, the percentage of loci removed 

due to mismatches was much higher than the overall genotyping error rate. Finally, 

because a significant negative correlation of fragment frequency and fragment size may 

be caused by excessive homoplasy, I estimated that correlation using AFLPSURV 

(Vekemans et al. 2002).  
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Nuclear sequence data 

A 910-bp DNA fragment of the nuclear protein-coding gene Elongation Factor-1α 

(EF-1α) was amplified from genomic DNA of 236 flies (122 coriacea-flies and 114 

glabra-flies) collected in 2006 and 2007, and 46 flies (25 coriacea-flies and 21 glabra-

flies) from a previous study (Scheffer and Hawthorne 2007) using the primers found in 

Table 2.1. A standard amplification protocol was used to amplify the fragments, with 

initial denaturation at 95°C for 2 min followed by 12 cycles of 92°C for 15 s, 56°C for 

30 s, and 70°C for 1 min 30 s, then 32 cycles of 92 °C for 10 s, 55 °C for 15 s, and 72 °C 

for 1 min 30 s, with a final extension at 72 °C for 10 min. PCR products were purified 

using either the QIAquick PCR purification kit or the QIAquick gel extraction kit 

(Qiagen, Inc.). Purified PCR product was used in sequencing reactions with BigDye 

sequencing kits (Applied Biosystems, Foster City, CA) and the products generated using 

an ABI-3130 automated sequencer (Applied Biosystems). Diploid sequencing was 

conducted using nested primers to ensure overlap of at least two amplifications for each 

sample (Table 2.1). Sequence contigs were assembled and aligned using CODONCODE 

ALIGNER (v.2.0 CodonCode Corp., Dedham, MA). Heterozygous states were identified as 

dual peaks. The reading frame of the final consensus sequence was determined by 

comparison with EF-1α100E and EF-1α48D in Drosophila melanogaster.  Allelic phase 

for EF-1α sequences was reconstructed using the program CVHAPLOT (v.2.01 Huang et al. 

2008; Huang and Zhang 2010). CVHAPLOT runs the sequences through several phase-

determining programs, each of which has a different algorithm for phase-determination. 

The resulting haplotypes are then compared among analyses to check for consensus 

between programs. CVHAPLOT was run with the entire data set, then with flies from each 
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host plant separately. Separating flies from each host plant gave a better consensus 

among programs, therefore those results were used. Taking a conservative approach, only 

samples with agreement in 5 or more programs were included in the following analyses 

(Huang et al. 2008; Huang and Zhang 2010).  

Geographic scale of host plant associated genetic divergence 

Host plant associated genetic differentiation was estimated for the entire data set 

as well as within geographic locations using both AFLP markers and EF-1α sequence 

data. For AFLPs, 5000 permutations were run to calculate and test the significance of FST 

using AFLPSURV (v.1.0 Vekemans et al. 2002). For EF-1α sequence data, ΦST (Excoffier 

et al. 1992) was estimated using ARLEQUIN (v.3.5 Excoffier et al. 2005). FST (and ΦST) for 

within-host comparisons among locations were calculated only if at least five individuals 

were present in a population on a single host plant species; for among-host comparisons, 

locations were only included if at least five individuals were present on each host plant 

species.  

I took two additional approaches to measuring the genetic divergence among flies 

collected from different plant species and locations: an analysis of molecular variance 

was performed using a permutational MANOVA via the ADONIS function from the 

VEGAN package (Oksanen et al. 2010 ) in the statistical package R (v 2.11.1, 2010), and 

using a clustering method that required no a priori hypotheses of substructure using the 

AFLP data. The distance matrix for EF-1α was calculated using the F84 model of 

nucleotide substitution (Kishino and Hasegawa 1989; Felsenstein and Churchill 1996) in 

DNADIST, part of the PHYLIP package (v.3.69 Felsenstein 2005); Jaccard distances were 

calculated using the AFLPs because they are based only on the shared presence of peaks. 
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ADONIS models were constructed to test the effects of host plant source and collection site 

location on the genetic structure of flies from all locations and to test the effects of 

collection year using only the locations common to all years collected. ADONIS models 

were also constructed to test the effects of sex of the fly on genetic structure of the flies 

using AFLP data. Models were run with host plant source nested within location. Models 

for each analysis were first run with all interactions then interactions were sequentially 

removed if non-significant. Significance was based on 5000 permutations producing 

pseudo-F ratios. 

Second, I performed nonmetric multidimensional scaling (NMDS) on pairwise 

Jaccard genetic distance estimates between individual genotypes to visualize the data in 

two dimensions. Using NMDS, I am also able to estimate the correlation of a series of 

explanatory variables, including host plant source, sex, and year, with genetic distances 

among individuals. The ordination was generated using the function METAMDS, also part 

of the VEGAN package in R, and the magnitudes of variance attributable to the categorical 

explanatory variables were tested using a goodness of fit statistic based on 5000 

permutations of environmental variables on the ordination data using the function ENVFIT 

in R.  

Estimation of cross-host plant oviposition and gene flow 

Individuals collected from one host plant that carry a multilocus genotype that 

predominates in the other may signal a cross-host plant oviposition in which a female 

deposits an egg into the host plant from which neither she nor her mate emerged. These 

individuals provide an estimate of the oviposition infidelity of females for their natal host 

plant. Hybrids or more advanced backcrosses between host plant-specific genotypes 
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indicate cross-host plant gene flow. Hybrid AFLP genotypes (F1 and backcrosses) were 

identified using NEWHYBRIDS (Anderson and Thompson 2002; Anderson 2008). The 

choice of prior had no effect on the overall likelihood of the results, so calculations were 

run without individual-specific assumptions using ‘Jeffreys-like’ prior for the mixing 

proportion and a uniform prior for allele frequency. Simulations were run with a burn-in 

period of 8 x 104 iterations followed by 1.5 x 106 sweeps for sampling from the posterior 

distribution. Ancestry was determined based on three thresholds: the category with the 

highest posterior probability for each individual, or with a threshold of 90% or 75% 

probability of being a parental form with the rest considered “introgressed” individuals.  

Identification of ancestral and novel host plants 

Because a recent divergence of flies from ancestral to novel host plants may result 

in reduced genetic diversity in leaf-miner populations on the novel host plant, I compared 

the diversity of EF-1α haplotypes and AFLP genotypes of flies from the two host plant 

species to infer which is ancestral and which is novel. For EF-1α sequence data, the 

number of haplotypes (H), polymorphic sites (p),haplotype diversity (Hd, Nei 1987), and 

nucleotide diversity (π, Tajima 1983) were estimated using ARLEQUIN (v.3.5 Excoffier et 

al. 2005). The number of singleton haplotypes (Sn) and nucleotide diversity (π, Tajima 

1983) were estimated using and DNASP (v.5.1 Librado and Rozas 2009). For AFLPs, 

Nei’s genetic diversity (HJ) and the average gene diversity within populations (HS) were 

calculated using AFLPSURV (v.1.0 Vekemans et al. 2002).  

The topology of a haplotype network can also provide clues to the relative ages of 

haplotypes. Haplotypes that represent nodes that are relatively internal versus at the tips 

of a network and haplotypes that are more abundant and geographically widespread are 
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likely to be older (Donnelly and Tavare 1986; Golding 1987; Crandall and Templeton 

1993). To visualize the relationships among EF-1α haplotypes found in flies from each 

host plant I generated a median-joining network using NETWORK (v.4.5.1.6 Bandelt et al. 

1999; Polzin and Daneschmand 2003). The network was rooted using EF-1α sequences 

from three closely related species: P. ilicis, P. ilicicola, and P. ditmani to further inform 

my inference of the relative ages of haplotypes from different host plants (Winkler et al. 

2009b).  

Host-associated divergent selection 

Migration, mutation, drift, and inbreeding are expected to affect all loci in a 

genome in a similar fashion. In contrast, selection should have locus specific effects: 

selected sites should show lower genetic diversity and increased genetic differentiation 

among populations with contrasting environments relative to the rest of the genome 

(Beaumont and Balding 2004; Egan et al. 2008; Nosil et al. 2009). I used genome scans 

to identify AFLP loci whose divergence exceeds that expected by genetic drift associated 

processes alone to infer the action of selection in causing genetic divergence among flies 

using the two host plants. I used two methods to detect outliers in several geographic 

locations to gain confidence in my results by rejecting false positives that are identified in 

single comparisons and with different analyses (Luikart et al. 2003; Stinchcombe and 

Hoekstra 2008). First, I identified AFLP loci using a hierarchical-Bayesian approach in 

DFDIST (Beaumont and Balding 2004), and then I directly asked which loci were likely 

diverged by selection using BAYESCAN (v.1.0 Foll and Gaggiotti 2008). To generate a 

seed for creation of a null distribution of FST in DFDIST, a trimmed mean FST for each 

population was estimated that excludes the highest and lowest 30% of locus-specific FST 
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estimates in the AFLP data set (Weir and Cockerham 1984; Zhivotovsky 1999; Bonin et 

al. 2006). Using this seed, DFDIST creates a distribution of FST for individual loci given 

assumptions of neutrality and independent evolution of loci (loose linkage). Thresholds 

identifying exceptionally divergent or constrained allele frequencies found in 

comparisons of different populations can then be determined using that distribution. 

Here, loci with an FST in the upper 95% and 99% confidence intervals of the simulated 

distributions were labeled “outliers” and are candidates for divergent selection. DFDIST 

was run using the total data set, then for NC, SC, and eastern Florida populations, as loci 

repeatedly identified in more than one location are considered especially robust 

(Campbell and Bernatchez 2004; Bonin et al. 2006; Egan et al. 2008; Nosil et al. 2008; 

Hohenlohe et al. 2010). 

Unlike DFDIST, BAYESCAN estimates the posterior probability of a given locus 

under two models, evolving neutrally or under selection, using a reversible MCMC 

approach in which FIS is allowed to vary between 0 and 1. BAYESCAN was run starting 

with a burn-in period of 20 pilot runs, each with a length of 104 iterations. The burn-in 

was followed by 40 thinning intervals each with 104 iterations for a total of 400 000 

iterations. Outliers were identified as loci with posterior probabilities of being under 

selection at the ‘strong’ (0.91-0.97), ‘very strong’ (0.97-0.99), and ‘decisive’ (>0.99) 

levels.  

Genomic architecture of divergent loci 

Recent studies in flies have found divergent loci located within chromosomal 

inversions (Noor et al. 2001; Coluzzi et al. 2002; Feder et al. 2003; Brown et al. 2004; 

Ayala and Coluzzi 2005), which are expected to show differences faster than normally 
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recombining regions. Inversions are common in Phytomyza (Block 1969a, 1974), so I 

estimated linkage disequilibrium among host-associated divergent loci to determine 

whether the loci were clustered with one another suggesting close physical linkage. 

Because my calculations of LD assume the populations are in Hardy-Weinberg 

equilibrium, LD was estimated separately for flies from each host plant. Separate 

analyses also prevented confounding loci in LD because of selection or shared history 

with those in LD because of physical linkage. Estimates of allele frequencies and LD 

between AFLP markers were performed as described by Hill (1974) using the statistical 

package R (v2.11.1, 2010; Appendix A; code available upon request). A chi-square test 

with one degree of freedom was used as an approximation of the likelihood ratio of LD to 

no LD to infer significance of LD comparisons (Hill 1974). I used a correction for 

multiple comparisons based on false discovery rates (Pike 2011) for all tests of LD to 

account for multiple non-independent comparisons.  

Sex chromosomes are often associated with speciation because they are expected 

to show differences in FST faster than other parts of the genome (Muller 1942; 

Charlesworth et al. 1987; Haldane 1992). Agromyzids have been shown to have an 

XX/XY sex chromosome system (Block 1969a, b, 1974, 1975a, b, 1976), allowing me to 

compare allele frequencies of male and female flies within hosts to predict whether host-

associated outliers may be located on the X- or Y-chromosome. I estimated allele 

frequencies and variation in these estimates for each host-associated locus for male and 

female coriacea-flies, and male and female glabra-flies, using the same iterative model 

used for estimating LD (Hill 1974). In addition, I estimated allele frequencies for each 

host-associated locus in male coriacea-flies and male glabra-flies using a haploid model. 
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If a host-associated outlier was located on the Y-chromosome, I expected an absence of 

peaks in female flies and the presence of peaks in male flies at that locus. If a host-

associated outlier is located on the X-chromosome, I expected the allele frequency 

estimates of that locus for female coriacea-flies to be more similar to estimated allele 

frequencies of male coriacea-flies calculated using a haploid model than those using a 

diploid model. I used a t-test with one degree of freedom to compare estimates of female 

allele frequencies to estimates of male allele frequencies using the haploid model and 

again for the diploid model.  

RESULTS 

A total of 656 AFLP markers were scored from 183 flies giving an initial error 

rate of 5.5% (Table 2.2, Appendix B). An additional 258 markers were removed due to 

discrepancies across repeated samples. No plate effect was found, however linkage 

disequilibrium analyses resulted in patterns of linked markers of the same size from 

different primer pairs, indicating non-specific primer binding occurred in the samples. 

There was a higher probability of non-specific primer binding in this study due to one 

primer being used in all primer-pair combinations. Where identified, all but one locus 

were discarded to eliminate replicated markers, resulting in a total of 305 markers. 

Finally, using a more conservative cutoff than the typical 5%, any markers where only 

one individual contained the rarer allele were discarded, giving a final total of 265 

markers. The size range of the AFLP markers was 78-792bp, and 92% had a fragment 

size above 200 bp. The Pearson correlation coefficient between fragment sizes and 

fragment frequencies was not significant (r = -0.0137, p = 0.82310), indicating a low risk 

of homoplasy due to small fragment sizes (Vekemans et al. 2002). 
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A total of 308 flies were genotyped for a 910 bp sequence of EF-1α, resulting in 

27 SNPs (Table 2.2, Appendix B). Only 279 individuals (145 coriacea-flies and 134 

glabra-flies) had 5 or more votes in the consensus analysis of CVHAPLOT, reducing the 

dataset to 75 distinct genotypes and 43 haplotypes with 22 polymorphic sites (Table 2.3). 

The translated sequence matched that of EF-1α48D (95% match), and all polymorphic 

sites were in third codon positions (Figure 2.2). Both coriacea-flies and glabra-flies 

showed signs of recombination between haplotypes (minimum number of recombination 

events based on the four allele approach, Hudson and Kaplan 1985; Table 2.4; Fu 1997). 

Geographic scale of host plant associated genetic divergence 

The mean allele frequencies did not differ between sample years for AFLPs 

(F = 1.17435, df = 1, p=0.226, Table 2.5) nor EF-1α (F = 2.2811, df = 1, p=0.168, 

Table 2.6), therefore data were combined among years. Results from the ADONIS function 

(Tables 2.5 and 2.6) and analyses using FST were similar, therefore only FST is given here. 

Significant genetic divergence was found among flies from different host plant species 

using both AFLPs (FST: 0.1247, p < 0.0005) and EF-1α (ΦST: 0.50744, p < 0.001; 

Table 2.7). Host-associated differences were also significant in all three geographic 

locations, but varied in magnitude among locations (Table 2.7). Estimates of ΦST using 

EF-1α increased in a southerly direction (Table 2.7). The opposite was seen in AFLPs: 

the most southern population in eastern Florida had the lowest FST whereas the northern 

populations (North and South Carolina) had higher values of FST. There were significant, 

but smaller, differences in allele frequencies among flies from different locations within 

the same host plant species for AFLPs (coriacea-flies: FST: 0.0482, p = 0.0182 glabra-
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flies: FST: 0.0178, p = 0.0146; Table 2.7) and EF-1α (coriacea-flies: ΦST: 0.02844, 

p = 0.00880; glabra-flies: ΦST: 0.01263, p = 0.09677; Table 2.7).  

Using the AFLP data, the 183 individuals formed four distinct groups on the first 

two NMDS axes, corresponding to host plant and sex of the fly (Figures 2.3, 2.4). The 

Kruskal’s stress for the final ordination was 22.9%. Both host plant and sex were 

significantly correlated with the ordination of the AFLP data (host plant: R2 = 0.4965, 

p = 0.0002, Figure 2.3a; sex: R2 = 0.3123, p = 0.0002, Figure 2.3b). Visually, flies from 

each host plant clearly separated along the first axis, and males and females separated 

along the second axis (Figure 2.4). The differentiation among the sex of the flies likely 

represents good coverage of the genome, and is likely driven by distances among 

individuals associated with sex chromosomes and genes that influence sex formation. 

Location was also significantly associated with the NMDS ordination, (location: 

R2 = 0.0804, p = 0.0024), but only if the two locations with only glabra-flies included; if 

they were removed, location was no longer significant (location: R2 = 0.0272, 

p = 0.3243). 

The results from NEWHYBRIDS indicated low rates of gene flow between host 

plants. Using the majority-rules threshold, none of the flies were identified as F1 hybrids, 

but 18 individuals were classified as backcrosses with coriacea-flies and one individual as 

a backcross with glabra-flies (Appendix C). Using the 90% threshold, 36 individuals 

were identified as introgressed individuals in a primarily coriacea-fly genome, and eight 

as introgressed individuals in a primarily glabra-fly genome (Appendix C). Using the 

75% threshold, those numbers dropped to 21 and 2, respectively. Regardless of the 



35 
 

threshold used, the introgression patterns indicate bidirectional gene flow with 

asymmetric movement of glabra-fly alleles to coriacea-fly genomes. 

Identification of ancestral and novel host plants 

The mean genetic variability of EF-1α is lower for coriacea-flies than glabra-flies 

regardless of the measure used (Table 2.4). Coriacea-flies have less haplotype and 

nucleotide diversity, and fewer average pairwise differences than glabra-flies. In addition, 

there were 14 haplotypes and only one singleton found in coriacea-flies, whereas glabra-

flies had more than twice as many haplotypes (36) and 13 singletons (Figure 2.5). There 

were 7 haplotypes shared between the flies on the different host plants. The most 

common haplotype (h13) was found in 126 of the 135 coriacea-flies but only one glabra-

fly (Figure 2.5). Unlike host plant, there were no geographic patterns in the network 

(Figure 2.6).  

AFLPs revealed a different pattern. Estimates of genetic diversity were fairly 

similar among host forms. Coriacea-flies had slightly more polymorphic loci than glabra-

flies (Table 2.8), but glabra-flies had slightly higher values for Nei’s genetic diversity and 

Nei’s HS (Table 2.8). Dividing the AFLPs into outlier and non-outlier loci did not change 

this result. Glabra-flies had slightly higher genetic diversity than coriacea-flies with both 

outlier and non-outlier loci (Table 2.8) 

The majority of the haplotypes found in coriacea-flies are found in a cluster distal 

to the most similar haplotypes found in glabra-flies. This cluster is distinguished by 

alternative alleles of a single SNP (snp4; Figure 2.5). The SNP was nearly a fixed 

difference between host forms, however 2.8% of coriacea-flies are homozygous for the 

glabra-fly allele, 19.3% of coriacea-flies were heterozygous, and 0.7% of glabra-flies 
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were homozygous for the coriacea-fly allele. No glabra-flies were heterozygous at this 

position. 

Host-associated divergent selection 

Genome scans in DFDIST testing for divergent selection between populations on 

each host plant in each location indicated 32 loci (12.5%) had FST higher than the 95th 

percentile of the simulation results in at least one comparison (Table 2.9; Appendix D). 

Of those, 24 (9.3%) were significant outliers in multiple locations. When all populations 

were combined, 15 (5.7%) outliers were significant among host plants (Figure 2.7; 

Tables 2.9, 2.10). All but two (loci 200 and 238) of the 15 loci found in the combined 

comparison were also significant using BAYESCAN (Table 2.10), and all but locus 238 

were significant in multiple independent comparisons. These two loci were the closest 

outliers to the cutoff in DFDIST, so they had a lower likelihood in general of being outliers 

(Figure 2.7).  

The values of ΦST in EF-1 α were very similar to the FST estimates using only 

outlier AFLP loci (Table 2.7). Given the high FST, but the lack of non-synonymous 

changes in the DNA sequence, the data suggest EF-1α is likely near a locus under 

divergent selection. When EF-1α is added to the AFLP outliers present in multiple 

independent comparisons, there appear to be 15 loci showing signs of divergent selection 

among host plants in these flies. 

When I examined the distribution of peaks among populations of coriacea-flies 

and glabra-flies, no strong patterns emerged (Table 2.11). Both coriacea-flies and glabra-

flies had five fixed or nearly-fixed loci, only one of which was shared between them 

(locus 118): it had nearly a fixed presence in coriacea-flies and a nearly-fixed absence in 
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glabra-flies (Table 2.11). Where populations were nearly fixed, the individuals with the 

minority allele were typically found in populations from North and South Carolina, 

where I collected over two years and had larger sample sizes (Tables 2.2, 2.11). Of the 

outliers with lower support, locus 200 had a fixed absence in glabra-flies, likely driving 

its identification as an outlier, but was only at mid-level frequencies in coriacea-flies, 

reducing its likelihood of experiencing divergent selection (Table 2.11). Locus 238 was at 

higher frequencies in coriacea-flies than glabra-flies, but the difference was not enough to 

be identified using smaller sample sizes in location comparisons or using the Bayesian 

approach. 

Among samples of coriacea-flies collected from different locations, 13 loci 

(6.4%) were identified as significant outliers in DFDIST (Tables 2.9, 2.10). None of those 

markers were outliers in more than one independent comparison and only one was 

identified in BAYESCAN (locus 144 within coriacea-flies; Table 2.10; Appendix D). Two 

of the 16 outlier loci were also identified as host-associated outliers (locus 70 and 

locus 72; Table 2.10). Upon further examination, the outlier status appeared to be driven 

by coriacea-flies in eastern Florida (Table 2.11, Appendix D). These populations lack a 

fixed absence in locus 70 and a nearly fixed presence in locus 72 found in in all other 

populations (Table 2.11). 

 Glabra-flies had fewer location-specific outliers: 10 loci (5.1%) were identified at 

the 95% level in DFDIST (Tables 2.9, 2.10), none of which were significant in BAYESCAN. 

Two of the among-location outliers identified in glabra-flies were also outliers in 

coriacea-flies in DFDIST (locus 167 and locus 226; Table 2.10). Within-host location-

associated divergence for locus 167 was driven by genetic differences in eastern Florida 
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for both coriacea-flies and glabra-flies (Table 2.11; Appendix D). Locus 226 was more 

complicated: differences existed between both northern populations and Florida, and 

between eastern and western Florida populations within coriacea-flies, but differences in 

glabra-flies were driven by the population in Delaware (Table 2.11; Appendix D). 

Genomic architecture of divergent loci 

Two groups of loci were identified in LD among coriacea-flies (70-72 and 

115-118-246) and one pair of loci in LD among glabra-flies (242-255; Figure 2.7). 

Loci 70 and 72 were also identified as host-associated outliers as well as location-

associated outliers within coriacea-flies largely due to genetic differences in the 

population from eastern Florida (Tables 2.10, 2.11; Appendix D). These differences 

could potentially explain why these loci appear to be in LD within the coriacea-flies as 

well.  

I did not detect LD among the remaining host-associated outlier loci. However, 

six host-associated outliers were in LD with sex-related outliers. In coriacea-flies, host-

associated outliers 94 and 115 were in LD with sex-associated locus 188, and host-

associated loci 72 and 213 were in LD with sex-associated locus 113. In addition, host-

associated locus 238 was in LD with the 8 sex-associated loci (20, 32, 41, 125, 132, 249, 

251, and 261). Glabra-flies only had one host-associated locus (231) in LD with a sex-

associated locus (188). 

My estimates of male and female allele frequencies gave no evidence of among-

host outliers on the Y-chromosome. All of but one of these loci either had peaks in 

multiple females, or if no peaks in females, also had no peaks in the males for that 

population (Table 2.12). The only locus with no peaks in females and peaks in males was 
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locus 231 in glabra-flies; however coriacea-fly females did have peaks (Table 2.12). 

There was no significant interaction between host plant and sex of the fly, so I have no 

reason to expect locus 231 to be on a sex chromosome in one host-associated population 

but not the other.  

I also did not see strong evidence of the presence of host-associated outliers on 

the X-chromosome. For most loci, estimates of allele frequencies using a diploid model 

for male flies more closely resembled female allele frequencies than estimates using a 

haploid model (Tables 2.13, 2.14). Three loci had significant differences between female 

allele frequency estimates and those using the diploid male model, but not with estimates 

using the haploid male model (loci 72, 213, and 238; Table 2.13). Two of those loci, 

markers 72 and 213, were closer to the diploid male model in glabra-flies but not 

coriacea-flies (Table 2.13). Locus 238 had more similar allele frequency estimates 

between females and haploid males in both coriacea-flies and glabra-flies; however, the 

haploid model was also close to significantly different in both cases (Table 2.13).  

To clarify whether 238 could be located on the X-chromosome, I examined allele 

frequency estimates of the sex-associated outliers with females, a haploid male model, 

and a diploid male model (Table 2.14). All of the sex-associated outliers in LD with host-

associated locus 238 showed a pattern of being on a Y-chromosome, not an X-

chromosome, making it unlikely locus 238 is located on a sex chromosome in these flies. 

DISCUSSION 

The results of this study show Phytomyza glabricola may be in the process of 

ecological speciation among its two host plant species, Ilex coriacea and I. glabra. Host-

associated genetic divergence is present across the geographic range of P. glabricola, 
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although the magnitude varies among locations and among genetic markers. I found 

evidence of contemporary gene flow, indicating host forms of the flies are likely not yet 

different species despite previous evidence of reproductive isolation (Chapter 1). The 

flies likely expanded from I. glabra to I. coriacea, but enough time has passed to 

eliminate much of the demographic signature of a host range expansion from the genome 

of coriacea-flies. Instead, genetic divergence appears to be primarily driven by natural 

selection, as expected if the flies are in the process of ecological speciation. However, I 

did not detect physical linkage among AFLP outlier loci, nor did the loci appear to be on 

sex chromosomes, two features often tied to an increased probability of eventual 

speciation. Still, I cannot completely eliminate the potential presence of inversions or 

sex-linkage due to the low resolution of AFLP loci in this study. 

 Geographic scale of host-associated genetic divergence  

Host-associated genetic structure exists across the range of P. glabricola, 

supporting the previous identification of coriacea-flies and glabra-flies as host forms 

(Scheffer and Hawthorne 2007; Funk 2012). Divergence among host plants is much 

larger than divergence among locations within a given host, meaning coriacea-flies from 

Florida are more genetically similar to coriacea-flies from Delaware than they are to 

glabra-flies from Florida. In addition, the degree of genetic divergence among host forms 

varies among locations. 

The variation in the degree of host-associated genetic divergence could be due to 

environmental differences between geographic locations. Higher temperatures and 

increased daylight hours in the south could increase developmental rates of flies in these 

locations. Flies on I. glabra experience multiple generations in a year, whereas flies on 
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I. coriacea have only a single generation (Scheffer 2002). The additional generations of 

flies on I. glabra could give more chances for adaptive traits to arise via recombination 

and mutation in glabra-flies, and selection could more efficiently eliminate slightly 

deleterious alleles, especially if alleles allowing coriacea-flies to use I. coriacea are 

maladaptive on I. glabra, increasing the degree of divergent selection on glabra-flies. If 

so, plant-driven temporal differences without allochronic isolation could result in 

increased genetic divergence among host forms. A host range expansion from I. glabra to 

I. coriacea could have immediately resulted in genetic divergence among populations on 

each host plant species, without a need for preference of a particular host or differences in 

performance. 

 Environmental differences could also indirectly impact the populations of flies by 

changing the relative abundances of their host plants. Ilex glabra tolerates a wider range 

of temperatures than I. coriacea, and is also more tolerant of dry conditions 

(Mohlenbrock 1976; Brooks et al. 1993). Locations with less rain fall and cooler 

temperatures may have a higher relative abundance of I. glabra. Much like the increase in 

the number of generations, an increased population size of glabra-flies could increase the 

genetic variation in the population, allowing selection to more efficiently eliminate 

deleterious alleles. However, the abundance of flies is not necessarily tied to the 

abundance of the host species. Individual I. coriacea plants tend to have a higher density 

of leaf-mines than do I. glabra (JBH, S.J. Scheffer pers. obs.), even though a given 

location typically has more I. glabra, so the two could balance out to even the relative 

population sizes of host forms of the flies. It is also possible the geographic variation in 

estimates of FST could be a sampling effect as sample sizes from eastern Florida were 
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smaller than those in North and South Carolina, and too small in the other locations to 

have any confidence in estimates of FST.  

Direction of host range expansion 

There are three probable scenarios to explain how P. glabricola has diverged 

between I. coriacea and I. glabra. Either I. coriacea is the ancestral host and flies 

expanded to I. glabra, vice versa, or the ancestral flies were originally on a different plant 

species that they no longer use, and expanded onto I. coriacea and I. glabra from that 

third ancestral host. Phytomyza glabricola is not found on host plants other than 

I. coriacea and I. glabra, and most in the clade are monophagous, therefore a shift from 

one current host to the other appears more likely than a shift to both from an additional 

species. The combination of the haplotype network and genetic divergence present in 

host forms points towards I. glabra as the ancestral host. 

Haplotypes that are relatively internal in a network are likely to be older than 

haplotypes at the tips of the network (Donnelly and Tavare 1986; Golding 1987; Crandall 

and Templeton 1993). Closely related taxa used as outgroups for the network were most 

closely related to primarily glabra-fly haplotypes (Figure 2.5). In addition, the haplotypes 

most characteristic of coriacea-flies were found within an offshoot of the main network, 

analogous to a nested clade within a phylogram. The topology suggests either that a 

subset of flies from I. glabra colonized the novel host plant, bringing along only a small 

fraction of the ancestral genetic diversity (Harrison 1991; Brown et al. 1996), or natural 

selection is reducing the genetic variation of either EF-1α, or a locus closely linked to it, 

in coriacea-flies but not glabra-flies.  
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Coriacea-flies also had less genetic variation in EF-1α than glabra-flies, but 

roughly equal genomic variation based on AFLPs. There are two main reasons to expect 

less genetic diversity in coriacea-flies than glabra-flies: either the flies expanded from 

I. glabra to I. coriacea and coriacea-flies are not yet in mutation selection balance, or 

coriacea-flies are adapting to a novel environment. Given the high ΦST among host forms 

(0.51662, Table 2.7) and the presence of only synonymous substitutions, it appears EF-1α 

may be closely linked to a locus under divergent selection. In addition, if the lowered 

variation in EF-1α were due to a founder event following a host range expansion, I would 

expect the AFLPs to show reduced diversity in coriacea-flies as well, as drift should 

affect all loci similarly (Cavalli-Sforza 1966; Lewontin and Krakauer 1973; Vitalis et al. 

2001). Thus, if the flies expanded from I. glabra to I. coriacea, it was long enough ago 

that additional genetic variation has arisen throughout the genome of coriacea-flies.  

The differences in development time on each host could also affect the genetic 

diversity of EF-1α in each host form. If EF-1α is near a locus under divergent selection, I 

would expect less genetic diversity in glabra-flies due to the increased effect of selection 

compounded over multiple generations, which does not match the pattern seen. Instead, it 

appears that the strength of selection on coriacea-flies is stronger than the increased effect 

of selection due to multiple generations. However, multiple generations could also allow 

for increased recombination between EF-1α and the selected locus, potentially increasing 

diversity in EF-1α in glabra-flies, which I cannot eliminate as a possibility with these 

data. 

Identifying the ancestral and novel host plant will allow me to investigate factors 

that may have driven the initial host range expansion. Enemy-free space is a strong 
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possibility (Denno et al. 1990; Gratton and Welter 1999; Murphy 2004), as populations 

of P. glabricola experience parasitism rates of 50 to 100% (JBH pers. obs.) with a trend 

of higher parasitism on I. glabra than I. coriacea.  Flies could also have expanded to a 

new host plant species to escape competition on the ancestral host plant or gain a new 

resource. However, I find many I. coriacea and I. glabra with no leaf-mines on them, and 

plants do not seem to be saturated with leaf-mines, suggesting a lack of strong 

competition. More work is needed to elucidate what selection pressures may differ 

between the host plants, and how those affect genetic divergence between the fly 

populations. 

Asymmetrical gene flow 

Very low rates of gene flow were found among populations of coriacea-flies and 

glabra-flies. No fixed differences in either AFLPs or EF-1α were found between host 

forms of P. glabricola. In addition, none of the individual flies were identified as F1 

hybrids; but, a number of individuals were identified as backcrosses, indicating either F1 

hybrids are present at a low frequency within these populations, or the putative 

backcrosses are presenting unsorted ancestral polymorphism. Most of the individuals 

identified as having introgression predominantly had a coriacea-fly genetic background.  

The asymmetry of gene flow could have several explanations. Flies on I. glabra 

are multivoltine whereas flies on I. coriacea are univoltine (Scheffer 2002). If voltinism 

has at least a partial environmental component linked to the host plant (Chapter 1), F1 and 

backcrossed flies on I. glabra will have multiple generations in which they will likely 

mate back to the parental glabra-flies, potentially masking bidirectional gene flow by 

eliminating easily identifiable glabra-fly backcrosses. The additional generations would 
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also allow selection to more efficiently remove slightly deleterious alleles. If selection in 

the additional generations results in increased specialization to I. glabra, any preference 

that evolves could potentially reduce the willingness or ability of glabra-flies to use the 

alternate host plant, I. coriacea. Future work should sample flies from the second 

generation on I. glabra to determine whether or not F1 and backcrossed individuals are 

present and eliminated in future generations, or instead, if gene flow is primarily 

unidirectional from I. glabra into I. coriacea. 

On the other hand, asymmetrical gene flow may not be directly influenced by the 

host plant. Expansion to a novel host plant species is associated with changes in host 

acceptance, host use, and mate choice (Janz and Nylin 2008). If coriacea-flies are less 

choosy, they may be more likely to migrate to another host plant and may also be less 

choosy about mates. Previous work in Drosophila species demonstrated asymmetrical 

mating between ancestral and founding populations where female choose mates based on 

specific mating behavior (Kaneshiro 1976; Ohta 1978). Males in the founding population 

putatively lose parts of the polygenic mating ritual via drift and cannot mate with 

ancestral females, whereas females from the founding population will mate with ancestral 

males, and potentially as time goes on, with novel males (Kaneshiro 1980). If the same is 

true for coriacea-flies, coriacea-females may mate with glabra-males and males of mixed 

ancestry, but glabra-females may not, resulting in a greater number of backcrosses to 

coriacea-flies. 

Host-associated divergent selection 

Ecological speciation is defined as ecologically-based adaptive divergence. To 

investigate whether the genetic divergence I found between coriacea-flies and glabra-flies 
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shows signatures of divergent selection, I used genome scans to identify several AFLP 

loci with a higher FST between host-associated populations than expected due to drift 

processes alone. All but two of these loci were also identified as outliers in multiple 

independent population comparisons and/or using multiple methods of identification, 

lending support to their outlier status.  

The arrangement of presences and absences within an outlier locus among 

populations pointed to divergent selection on both hosts rather than directional selection 

on one host and balancing selection on the other. If the latter was the case, I would have 

expected more outlier loci with near-fixed and fixed differences in the population 

experiencing directional selection, but the number of outlier loci with fixed and near-

fixed differences was equal among host forms.  

EF-1α was also likely near a locus under divergent selection. The high estimates 

of ΦST among host forms were more similar to FST estimates using AFLP outliers than to 

estimates using non-outlier loci across the geographic range of P. glabricola. If EF-1a is 

physically linked to a locus under divergent selection, the increased number of 

generations of glabra-flies could explain why the patterns of divergence seen in EF-1a 

among locations (increasing FST in a southerly direction) differs from the patterns seen 

with AFLPs (lower FST in Florida relative to North and South Carolina); AFLPs should 

represent both selection and demographic effects, whereas EF-1a could just represent the 

strength of divergent selection. If southern populations of glabra-flies have a greater 

number of generations than northern populations, the increased effects of selection near 

EF-1a could lead to the increased host-associated genetic divergence in southern 

locations. 
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Fewer AFLP outlier loci were found when comparing among locations within 

host plant than among host plants, and only one locus was found to be significant in 

multiple independent comparisons within DFDIST, indicating divergent selection is much 

stronger between host plants than local adaptation (Table 2.10). Most location-associated 

outliers within both glabra-flies and coriacea-flies were due to differences between 

populations in eastern Florida and the other populations. These differences could be due 

to environmental conditions in Florida. For example, winter diapause is terminated by 

high temperatures in a congeneric, P. chaerophylli (Frey 1991). If the same is true for 

P. glabricola, flies in southern populations could experience earlier diapause, and in the 

case of glabra-flies, potentially more generations in southern populations. On the other 

hand, if differences were due to temperature, I would expect to see similar differences 

associated with the populations from western Florida in coriacea-flies, but this was not 

the case. More work is needed to determine what is causing flies from eastern Florida to 

differ from the other populations. 

Genomic architecture of divergent loci 

 The genomic architecture of host-associated outliers both reflects the past 

evolution of genetic divergence and will affect how rapidly genetic divergence will 

continue to evolve between host forms of P. glabricola, therefore affecting the likelihood 

of speciation in these lineages. LD will accumulate among markers in genomic regions 

experiencing reduced recombination, such as within chromosomal inversions (reviewed 

in Hoffmann and Rieseberg 2008) or in regions containing loci under especially strong 

selection (Beaumont and Balding 2004; Via and West 2008; Nosil et al. 2009). To 

examine whether ‘genomic islands’ exist in P. glabricola, I looked for LD between host-
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associated outliers in coriacea-flies and glabra-flies separately to make a very coarse 

inference of the genomic architecture of the divergence.  

 I found little evidence for physical linkage among host-associated outliers in these 

flies. Host-associated outliers found to be in LD within coriacea-flies were not the same 

as outliers in LD in glabra-flies. Coriacea-flies and glabra-flies could have different 

adaptive genes, in addition to different alleles, potentially explaining the loci in LD found 

with coriacea-flies and not glabra-flies, and vice versa (Hawthorne and Via 2001). The 

differences could also appear to be in LD due to chance. Estimates of LD using dominant 

markers require the assumption of Hardy Weinberg Equilibrium (HWE), and the outliers 

clearly do not meet that assumption (Bonin et al. 2004). In addition, by testing for LD 

within a given host form, outlier loci close to fixation in that host form would have little 

or no variation with which to detect linkage disequilibrium. However, if host forms were 

combined, I could not separate LD due to divergent selection (as expected with the 

outlier loci) from physical linkage. 

Host-associated outliers found to have LD in one host form, but not the other, 

could be due to genomic rearrangements in coriacea-flies relative to glabra-flies. 

Chromosomal inversions have been associated with speciation (reviewed in Hoffmann 

and Rieseberg 2008), but I expect host-associated outliers within an inversion should be 

more likely to show up as in LD in both populations, due to a reduced likelihood of 

recombination in inversions (Hoffmann and Rieseberg 2008; Feder and Nosil 2009). 

However, given the course genomic resolution of AFLPs and the lack of a linkage map or 

a sequenced genome on which to map the host-associated outliers, I cannot say for sure 

that chromosomal rearrangements cannot be associated with the genomic distribution of 
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outliers in these flies. Although evidence of LD among host-associated outliers would 

have indicated potential islands of speciation, not finding significant LD does not mean 

markers are not linked or within an inversion. The degree of coverage by AFLP loci here 

is not enough to negate the potential presence of physical linkage. 

 Sex chromosomes are also expected to show differences in FST faster than other 

parts of the genome due to a smaller effective population size as a result of Haldane’s 

rule (Muller 1942; Haldane 1992; Wu and Davis 1993; Turelli and Orr 1995; Wu et al. 

1996) and the large X-effect (Charlesworth et al. 1987; Coyne and Orr 1989; Coyne 

1992; Masly and Presgraves 2007), and are consequently often associated with 

speciation. I did not see convincing evidence of X- or Y-linkage of the host-associated 

outliers. I cannot say for sure that host-associated outliers in P. glabricola are not located 

on the sex chromosomes because I do not have a linkage map or sequenced genome on 

which to map the markers. So-called ‘speciation genes’ have been associated with sex 

chromosomes in other systems (Wittbrodt et al. 1989; Barbash et al. 2000; Phadnis and 

Orr 2009), so further work is needed to determine whether or not it could also be the case 

in P. glabricola.  

Conclusions 

Host forms of Phytomyza glabricola show a geographic mosaic of genetic 

divergence on their host plants, Ilex coriacea and I. glabra. Patterns of genetic 

divergence associated with differences in voltinism on each host plant suggest genetic 

divergence could arise among host-associated populations without the evolution of host 

preference. Differences in development time also likely manifest themselves in 

asymmetrical bidirectional gene flow, in this case with primarily glabra-fly alleles 



50 
 

introgressing into the coriacea-fly background, giving the appearance of unidirectional 

gene flow. However, I could not eliminate the possibility of unidirectional gene flow 

associated with the host range expansion of glabra-flies onto I. coriacea, which may have 

resulted in less fidelity in host acceptance, host use, and mate choice in coriacea-flies. 

I detected evidence for divergent selection among host forms of P. glabricola 

associated with both EF-1α and fifteen AFLP outlier loci. Although I would expect 

stronger selection on coriacea-flies to adapt to the novel host plant environment, I did not 

see more fixed alleles in coriacea-flies, potentially because the additional generations of 

glabra-flies allows selection to more efficiently remove slightly deleterious alleles. 

Regardless, the detection of divergent selection suggests host forms of P. glabricola are 

in the midst of ecological speciation. 

Recent studies of speciation have often identified divergent selection in genomic 

areas of reduced recombination. I did not find evidence of linkage disequilibrim among 

outliers, as expected if outliers are within an inversion, nor evidence of outliers on sex 

chromosomes. I cannot, however, eliminate the possibility of LD or sex-linkage due to 

the low genomic resolution of AFLP loci in this study. 

The endemic P. glabricola belongs to an adaptive radiation of leaf-mining flies 

onto Ilex species. Although not guaranteed, it is reasonable to presume the 

macroevolutionary patterns seen in Phytomyza are due to similar microevolutionary 

processes. Because P. glabricola is either currently diverging or recently diverged, it is 

an appropriate species with which to identify the evolutionary processes responsible for 

an adaptive radiation. It appears that ecological speciation may be that mechanism. 

Future work will need to determine how other host races and recently diverged species 
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have evolved within this clade of Phytomyza, which has great potential to become a 

model system for the evolution of new species. Future work should also focus on what 

trait(s) are under divergent selection, the genetic basis for these traits, and the resulting 

phenotypes to fully grasp the evolutionary mechanisms driving divergence in these flies.
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Table 2.1. AFLP and EF-1α primer sequences. Pst1A was used in combination with each 

of the EcoRI based primers (EACA-EAGT). 

Primer Sequence 

AFLP 
Pst1A 5 ’- GAC TGC GTA CAT GCA GA - 3’ 
EACA 5’ - /56-FAM/GAC TGC GTA CCA ATT CAC A - 3’ 
EACT 5’ - /56-FAM/GAC TGC GTA CCA ATT CAC T - 3’ 
EAGA 5’ - /56-FAM/GAC TGC GTA CCA ATT CAG A - 3’ 
EAGT 5’ - /56-FAM/GAC TGC GTA CCA ATT CAG T - 3’ 
EF-1α 
EF46F * 5' - GAG GAA ATC AAG AAG GAA G - 3' 
PEF40F 5' - TCG TCA TTG GAC ACG TAG ATT CAG G - 3' 
PEF61R 5' - GAT GGT TCC AAC ATG TTA TCA C - 3' 
PEF64R 5' - CGA CAC ATA AAG GCT TGG ATG GCA CC - 3' 
PEF65R 5' - GTC TCA TGT CAC GCA CAG CGA AAC GAC - 3' 

*(Cho et al. 1995)



 
 

Table 2.2. Summary of samples genotyped from each location and year.  

  Coriacea-flies Glabra-flies 

  Ef1alpha AFLP Ef1alpha AFLP 

State Site Population S&H1 2006 2007 2006 2007 S&H1 2006 2007 2006 2007

FL 

Apalachicola National Forest Hunters   -2 - 6 - 6 - - 1 - 1 

Archibold Biological Station Archibold - - - - - 8 - - - - 

Etoniah Creek State Forest 
East V - - - - - - - 2 - 0 

Stuck in Sand - - 7 - 5 - - 11 - 9 

GA Crooked River State Park Crooked River - - - - - - - 4 - 3 

SC Francis Marion National Forest
Big Ocean Bay 10 17 5 15 4 - 18 6 17 4 
Wambaw Trail - 19 10 12 7 - 21 1 16 2 

NC 
Croatan National Forest 

Catfish Lake - 22 - 18 - - 5 - 3 - 
Road 152 - 22 10 20 7 - 25 4 19 2 

Carolina Beach State Park Carolina Beach 15 - - - - 7 - - - - 

VA 
Great Dismal Swamp 

National Wildlife Refuge 
Great Dismal Swamp - - 4 - 2 

 
- - 1 - 1 

MD Annapolis Annapolis - - - - - 2 - - - - 

DE Cape Henlopen State Park Cape Henlopen - - - - - - - 15 - 10 

NY Long Island Long Island - - - - - 4 - - - - 

  Subtotal 25 80 42 63 31  21 69 45 55 32 

Total 147 96  135 87 
1Details on samples can be found in Scheffer and Hawthorne (2007). 2 Samples not collected from locations with ‘-‘.  
  



 
 

Table 2.3. Results from CVHAPLOT. Analyzing flies from each host plant separately yielded a better consensus between the programs. 

CV category H S I II III Overall
Individuals (combined data) 127 139 13 9 8 296 
Individuals (from I. coriacea) 90 53 2 2 1 148 
Individuals (from I. glabra) 37 86 11 7 7 148 
Number distinct genotypes 10 56 10 9 8 93 
Total distinct haplotypes 10 33 14 16 14 57 
Number of category-unique haplotypes* 10 25 8 7 7 57 
Frequency (%) of category-unique haplotypes in total sample 83.9 11.5 2.2 1.2 1.2 100 

Note: All rows following the separate host plant analyses refer to the combined data from those separate analyses. H: homozygous 
individuals; S: individuals where all programs fully supported the same haplotype; I – III: number of dissenting consensus votes 
received in each category (e.g., I means only one program had a different solution than the others); * Haplotypes newly observed in 
each category. 
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Table 2.4. Summary statistics for EF-1α sequence data.  

 N H p Sn Hd Π Rm

Flies from I. coriacea 145 15 10 1 0.4932 0.047474 4 

Flies from I. glabra 134 36 22 13 0.7869 0.104536 5 

Total flies 279 43 22 12 0.8008 0.114040 6 

N: number of phased samples; H: the number of haplotypes; p: the total number of 
polymorphic SNPs; Sn: the number of singleton haplotypes; Hd: haplotype diversity; 
π: nucleotide diversity; Rm: the minimum number of recombination events. 
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Table 2.5. Analysis of molecular variance estimated using the ADONIS function for AFLP 

data from Phytomyza glabricola feeding on either Ilex coriacea or I. glabra. Variation 

was partitioned (a) among individuals on each host plant species nested within each 

location, sex of the flies, and the collection year for North and South Carolina 

populations; (b) among individuals on each host nested within each location and sex of 

the flies; (c & d) among locations and sex of the flies within each host plant species. All 

non-significant interactions were removed from the analysis. 

 Source d.f. SS MS F - model R2 P (>F) 

a) 
 
 
 
 
 
 
b) 
 
 
 
 
 
c) 
 
 
 
 
 
d) 

Location 
Sex 
Year 
Host nested in Location 
Residuals   
Total 
 
Location 
Sex 
Host nested in Location 
Residuals 
Total 
 
Coriacea-flies 
Location 
Sex 
Residuals 
Total 
 
Glabra-flies 
Location 
Sex 
Residuals 
Total 

1 
2 
1 
2 

139 
145 

6 
2 
5 

169 
182 

 

4 
2 

89 
95 

 

6 
2 

78 
86 

0.33913 
2.72593 
0.16667 
4.05319 

19.72807 
27.01300 

2.30711 
3.23548 
5.00615 

23.89756 
34.44630 

 

1.20764 
2.00981 

11.77062 
14.98807 

 

1.55257 
1.63939 

11.64781 
14.83977 

0.33913 
1.36296 
0.16667 
2.02659 
0.14193 

 

0.38452 
1.61774 
1.00123 
0.14141 

 
 

0.30191 
1.00491 
0.13225 

 
 

0.25876 
0.81969 
0.14933 

 

2.38946 
9.60317 
1.17435 

14.27898 
      -    . 

 

2.71925 
11.44043 
7.08055 
      -    . 

 
 

2.28281 
7.59829 
      -    . 

 
 

1.73281 
5.48911 
      -    . 

 

0.0126 
0.1009 
0.0062 
0.1500 
0.7303 

1 
 

0.0670 
0.0939 
0.1453 
0.6938 

1 
 
 

0.0806 
0.1341 
0.7853 

1 
 
 

0.1046 
0.1105 
0.7849 

1 

< 0.001
< 0.001
   0.226 
< 0.001
      -    . 

 

< 0.001
< 0.001
< 0.001
      -    . 

 
 

< 0.0005
< 0.0005
      -    . 

 
 

< 0.0005
< 0.0005
      -    . 
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Table 2.6. Analysis of molecular variance estimated using the ADONIS function for EF-1α 

sequences from Phytomyza glabricola feeding on either Ilex coriacea or I.glabra. 

Variation was partitioned (a) among locations, year, and among individuals on each host 

plant nested within location for North and South Carolina populations (the only 

populations sampled in more than one year); (b) among locations and host plants nested 

within location; (c & d) among locations and sex of the flies within each host plant 

species. All non-significant interactions were removed from the analysis. 

 Source d.f. SS MS F - model R2 P (>F) 

a) 
 
 
 
 
 
b) 
 
 
 
 
c) 
 
 
 
 
d) 

Location 
Year 
Host nested in 
Location 
Residuals   
Total 
 
Location 
Host nested in 
Location 
Residuals 
Total 
 
Coriacea-flies 
Location 
Residuals 
Total 
 
Glabra-flies 
Location 
Residuals 
Total 

1 
1 
2 

215 
219 
 

9 
5 

264 
278 

 
 

4 
139 
143 

 
 

9 
125 
134 

-0.000003 
0.000002 
0.000483 
0.000165 
0.000647 

 
1.381623 
4.823749 
3.824143 

10.029514 
 

 
0.000012 
0.000060 
0.000072 

 
 

0.18877 
0.19076 
0.37953 

-0.000003 
0.000002 
0.000242 
0.000001 

 
 
0.153514 
0.964750 
0.014485 

 
 

 
0.000003 
0.000000 

 
 

 
0.020974 
0.001526 

- 3.9021 
  2.2811 
  314.17 
      -    . 

 
 
10.597825 
66.601577 

      -    . 
 
 

 
6.8100 

      -    . 
 
 

 
13.744 

      -    . 
 

- 0.0046 
  0.0027 
  0.7465 
  0.2554 

 1 
 

0.1378 
0.4810 
0.3813 

1 
 

 
0.1639 
0.8361 

1 
 

 
0.4974 
0.5026 

1 

1 
   0.1678 
< 0.0005
      -    . 

 
 
< 0.0005
< 0.0005
      -    . 

 
 

 
< 0.05

      -    . 

 
< 0.05

      -    . 
 

 

 



 
 

Table 2.7: Estimates of FST from AFLPs and EF-1α based on host plant (total samples), host plant within locations, and among 

locations within coriacea-flies and glabra-flies (separately). Samples from locations with less than five samples on one of the host 

plants were removed from all but the host plant comparison. 

 AFLPs EF-1α AFLP outliers AFLP non-outliers 
Comparison FST p-value ΦST p-value FST p-value FST p-value 

Host plant 0.1247 < 0.0005 0.5166 < 0.0001 0.4946 < 0.0005 0.0571 < 0.0005 
NC host plant 0.1270 < 0.0005 0.4950 < 0.0001 0.5045 < 0.0005 0.0632 < 0.0005 
SC host plant 0.1390 < 0.0005 0.5599 < 0.0001 0.5179 < 0.0005 0.0764 < 0.0005 

East-FL host plant 0.0973    0.0032 0.5892 < 0.0001 0.4154 < 0.0005 0.0553    0.0142 
Locations of coriacea-flies 0.0482    0.0182 0.0284    0.0088 0.0883    0.0076 0.0312    0.0014 
Locations of glabra-flies 0.0178    0.0146 0.0374    0.0968 0.0527    0.0834 0.0158    0.0322 
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Table 2.8. Summary statistics for AFLPs: a) all loci combined, b) outlier loci only, 

c) non-outlier loci only. 

 Pop n #loc. #poly. loc. HJ HS 

a) Flies from I. coriacea 96 265 238 0.1559 0.1723 
 Flies from I. glabra 87 265 232 0.1594 0.1771 
 Total 183 265 265 0.1662 0.1577 
       

b) Flies from I. coriacea 96 15 12 0.2429 0.2404 
 Flies from I. glabra 87 15 14 0.2594 0.2444 
 Total 183 15 15 0.3430 0.2512 
       

c) Flies from I. coriacea 96 250 226 0.1508 0.1590 
 Flies from I. glabra 87 250 218 0.1535 0.1646 
 Total 183 250 250 0.1556 0.1521 

n: number of samples; #loc.: number of loci; #poly loci.: number of polymorphic loci; 
HJ: Nei’s gene diversity; HS: average gene diversity within populations. 
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Table 2.9. Outliers detected using DFDIST from comparisons between all study 

populations. Dashes indicate the trimmed mean FST was too low a value to run DFDIST. 

‘Repeated across comparisons indicates’ the number of loci with an outlier above 95% in 

more than one location comparison (number in independent comparisons). 

 Outlier loci: 95% (99%) 
Geographic 
Distance (km)

No. of 
polymorphic loci Total % 

Across hosts     
CNC vs. GDE 430 187 11 (5) 5.9% (2.7%) 
CNC vs. GNC 0 198 12 (8) 6.1% (4.0%) 
CNC vs. GSC 312 214 13 (8) 6.1% (3.7%) 
CNC vs. GE-FL 722 181 8 (2) 4.4% (1.1%) 
CSC vs. GDE 752 177 10 (5) 5.6% (2.8%) 
CSC vs. GNC 312 190 10 (8) 5.3% (4.2%) 
CSC vs. GSC 0 215 13 (10) 6.0% (4.7%) 
CSC vs. GE-FL 424 172 9 (3) 5.2% (1.7%) 
CE-FL vs. GDE 1175 115 3 (0) 2.6% (0%) 
CE-FL vs. GNC 722 143 5 (0) 3.5% (0%) 
CE-FL vs. GSC 424 170 14 (3) 8.2% (1.8%) 
CE-FL vs. GE-FL 0 104 6 (0) 5.8% (0%) 
CW-FL vs. GDE 1284 125 4 (0) 3.2% (0%) 
CW-FL vs. GNC 870 198 10 (4) 5.1% (2.0%) 
CW-FL vs. GSC 558 175 13 (7) 7.4% (4.0%) 
CW-FL vs. GE-FL 264 115 4 (3) 3.5% (2.6%) 
Combined na 257 15 (11) 5.7% (4.2%) 

Repeated across comparisons 23 (14) 8.7% (5.3%) 
Within I. coriacea     
CNC vs. CSC 312 190 -- -- 
CNC vs. CE-FL 722 163 8 (5) 4.9% (3.1%) 
CNC vs. CW-FL 870 165 7 (2) 4.2% (1.2%) 
CSC vs. CE-FL 424 154 6 (3) 3.9% (1.9%) 
CSC vs. CW-FL 558 155 6 (1) 3.9% (0.6%) 
CE-FL vs. CW-FL 264 78 5 (1) 6.4% (1.3%) 
Combined na 203 13 (7) 6.4% (3.4%) 
 Repeated across comparisons 11 (0) 5.4% (0.0%) 
Within I. glabra     
GDE vs. GNC 430 148 -- -- 
GDE vs. GSC 752 173 5 (2) 2.9% (1.1%) 
GDE vs. GE-FL 1175 131 2 (1) 1.5% (0.8%) 
GNC vs. GSC 312 185 -- -- 
GNC vs. GE-FL 722 192 3 (1) 1.6% (0.5%) 
GSC vs. GE-FL 424 174 8(4) 4.6% (2.3%) 
Combined na 197 10 (4) 5.1% (2.0%) 
 Repeated across comparisons 4 (0) 2.0% (0.0%) 
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Table 2.10. Summary of outlier loci found in host, sex, and geographic comparisons. 

Posterior probabilities in bold indicate marker found as an outlier in multiple independent 

population comparisons. Dashes indicate non-significant posterior probabilities (using an 

alpha of 0.05). 

Between hosts Within I. coriacea Within I. glabra Between sexes 

Outlier # (name) DFDIST BAYESCAN DFDIST BAYESCAN DFDIST BAYESCAN DFDIST BAYESCAN

2 (eact.140)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

8 (eact.210)  ‐‐  ‐‐  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

13 (eact.254.6)  0.99975  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

20 (eact.333.8)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

22 (eact.349.5)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.977256  ‐‐ 

28 (eact.392)  ‐‐  ‐‐  ‐‐  ‐‐  0.990752 ‐‐  ‐‐  ‐‐ 

32 (eact.407.4)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

41 (eact.457.7)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

43 (eact.472.2)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.979505  ‐‐ 

51 (eact.537)  ‐‐  ‐‐  0.979505 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

70 (eaca.208.1)  1  1  0.990502 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

72 (eaca.219.3)  0.99975  1  0.99975 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

74 (eaca.253.3)  ‐‐  ‐‐  ‐‐  ‐‐  0.990502 ‐‐  ‐‐  ‐‐ 

92 (eaca.371.9)  ‐‐  ‐‐  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

94 (eaca.388.4)  1  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

99 (eaca.404.8)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  ‐‐ 

109 (eaca.469.9)  ‐‐  ‐‐  ‐‐  ‐‐  0.986  ‐‐  ‐‐  ‐‐ 

111 (eaca.489.2)  ‐‐  ‐‐  0.996751 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

113 (eaca.505.8)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.9915  ‐‐ 

115 (eaca.518.8)  1  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

116 (eaca.522.7)  ‐‐  ‐‐  0.997751 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

118 (eaca.532.1)  1  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

122 (eaca.584.8)  ‐‐  ‐‐  0.976256 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

124 (eaca.592.8)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.99925  ‐‐ 

125 (eaca.623.9)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

132 (eaca.755.4)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

137 (eagt.148)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.99975  0.997 

144 (eagt.226.3)  ‐‐  ‐‐  ‐‐  0.952  ‐‐  ‐‐  ‐‐  ‐‐ 

148 (eagt.236.3)  ‐‐  ‐‐  0.984004 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

167 (eagt.414.1)  ‐‐  ‐‐  0.994251 ‐‐  0.997001 ‐‐  ‐‐  ‐‐ 

184 (eagt.552.8)  ‐‐  ‐‐  ‐‐  ‐‐  0.995001 ‐‐  ‐‐  ‐‐ 

188 (eagt.654.5)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.991252  ‐‐ 

191 (eagt.729.2)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.990002  ‐‐ 
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Between hosts Within I. coriacea Within I. glabra Between sexes 

Outlier # (name) DFDIST BAYESCAN DFDIST BAYESCAN DFDIST BAYESCAN DFDIST BAYESCAN

192 (eagt.737.6)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

193 (eagt.739.9)  ‐‐  ‐‐  ‐‐  ‐‐  0.993252 ‐‐  1  0.978 

199 (eaga.186.1)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  0.993252  ‐‐ 

200 (eaga.210.2)  0.983754  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

204 (eaga.249.1)  0.998  0.961  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

213 (eaga.297.7)  0.994251  0.989  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

225 (eaga.402.1)  ‐‐  ‐‐  0.995001 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

226 (eaga.411.3)  ‐‐  ‐‐  0.99925 ‐‐  0.997251 ‐‐  ‐‐  ‐‐ 

227 (eaga.425.2)  0.99925  0.992  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

229 (eaga.432.4)  ‐‐  ‐‐  ‐‐  ‐‐  0.9995  ‐‐  ‐‐  ‐‐ 

231 (eaga.437.4)  0.993252  0.956  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

238 (eaga.489.5)  0.976006  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

241 (eaga.498.2)  ‐‐  ‐‐  ‐‐  ‐‐  0.988503 ‐‐  ‐‐  ‐‐ 

242 (eaga.499.4)  0.999251  0.982  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

245 (eaga.517.6)  ‐‐  ‐‐  0.994501 ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

246 (eaga.518.5)  0.99925  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

249 (eaga.542.9)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

250 (eaga.543.9)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  0.999 

251 (eaga.583.9)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 

255 (eaga.651.2)  1  1  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

259 (eaga.672.3)  ‐‐  ‐‐  ‐‐  ‐‐  0.993252 ‐‐  ‐‐  ‐‐ 

260 (eaga.681.6)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  ‐‐ 

261 (eaga.684.6)  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  1  1 
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Table 2.11. Distribution of peaks in host-associated outliers. Numbers represent the 

number of individuals that have a peak at that locus. 

Locus 13 70 72 94 115 118 200 204 213 227 231 238 242 246 255 Total

Coriacea-flies 

VA 1 0 2 0 2 2 0 0 1 0 1 1 0 2 0 2

NC 39 0 41 7 13 44 23 0 38 0 26 26 1 16 0 45

SC 34 0 36 4 4 38 11 0 30 0 20 26 0 12 0 38

East-FL 4 2 0 0 2 4 0 0 5 0 2 0 1 2 0 5

West-FL 4 0 5 0 2 6 3 0 6 0 0 4 0 2 0 6

Frequency 0.85 0.02 0.88 0.11 0.24 0.98 0.39 0.00 0.83 0.00 0.41 0.59 0.02 0.35 0.00 

Glabra-flies 

DE 3 10 0 10 10 0 0 7 1 2 1 0 7 10 5 10

VA 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1

NC 1 20 3 16 24 1 0 11 5 11 1 2 17 24 19 24

SC 2 27 2 36 36 1 0 13 10 23 0 4 18 36 34 39

GA 1 2 0 3 3 0 0 1 2 2 0 2 2 3 1 3

East-FL 1 6 3 8 9 0 0 1 1 4 0 2 2 9 9 9

West-FL 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 1

Frequency 0.09 0.77 0.09 0.85 0.97 0.02 0.00 0.39 0.22 0.48 0.02 0.13 0.54 0.97 0.80 

Frequency: the frequency of peaks within the listed host form (coriacea-flies or glabra-
flies).  



 
 

Table 2.12. Estimates of allele frequencies for host-associated outlier loci treating males and females of each host race separately. 

Male frequencies were estimated treating males as haploids and as diploids to compare to estimates using female loci. If haploid male 

estimates are more similar to female estimates than diploid male estimates (see Table 2.13), the locus will be treated as putatively on 

the X-chromosome. If females have no peaks present (all 0 alleles) and males have peaks, the locus is putatively on the Y-

chromosome. 

Coriacea-flies Glabra-flies 
outliers haploid male female diploid male haploid male female diploid male 

# Locus Freq. SE Freq. SE Freq. SE Freq. SE Freq. SE Freq. SE 

13 eact.254.6 0.8696 0.0025 0.5959 0.0049 0.6388 0.005 0.0952 0.0021 0.0488 0.0011 0.0488 0.0011
70 eaca.208.1 0.0217 0.0005 0.0103 0.0002 0.0109 0.0002 0.9048 0.0021 0.3828 0.0056 0.6914 0.0051
72 eaca.219.3 0.8193 0.0021 0.622 0.0048 0.6703 0.0048 0.0714 0.0016 0.0614 0.0014 0.0364 0.0008
94 eaca.388.4 0.1522 0.0028 0.0417 0.0008 0.0792 0.0016 0.881 0.0025 0.5636 0.0059 0.655 0.0054
115 eaca.518.8 0.3696 0.0051 0.0632 0.0012 0.206 0.0036 1 0 0.7327 0.0047 1 0 
118 eaca.532.1 0.9783 0.0005 0.8571 0.0025 0.8526 0.0027 0 0 0.012 0.0003 0 0 
200 eaga.210.2 0.413 0.0053 0.1919 0.0032 0.2339 0.0039 0 0 0 0 0 0 
204 eaga.249.1 0 0 0 0 0 0 0.3571 0.0055 0.2441 0.0044 0.1982 0.0038
213 eaga.297.7 0.8696 0.0025 0.5482 0.0051 0.6388 0.005 0.1429 0.0029 0.1409 0.0029 0.2763 0.0048
227 eaga.425.2 0 0 0 0 0 0 0.4762 0.0059 0.2763 0.0048 0.2763 0.0048
231 eaga.437.4 0.5 0.0054 0.3149 0.0044 0.2929 0.0045 0.0238 0.0006 0 0 0.012 0.0003
238 eaga.489.5 0.3696 0.0051 0.5482 0.0051 0.206 0.0036 0.0952 0.0021 0.0742 0.0016 0.0488 0.0011
242 eaga.499.4 0.0217 0.0005 0.0103 0.0002 0.0109 0.0002 0.5714 0.0058 0.3274 0.0052 0.3453 0.0054
246 eaga.518.5 0.4348 0.0053 0.1548 0.0027 0.2482 0.0041 1 0 0.7327 0.0047 1 0 
255 eaga.651.2 0 0 0 0 0 0 0.7857 0.004 0.5636 0.0059 0.5371 0.0059

Freq.: estimated allele frequency. SE: standard error of allele frequency estimate. 



 
 

Table 2.13. T-tests comparing estimated allele frequencies from Table 2.12. Comparisons were made between haploid male 

frequencies and female frequencies, then between diploid frequencies and female frequencies. Significantly different comparisons are 

primarily between haploid male estimated frequencies and female frequencies. The remaining significant differences between diploid 

male estimates and female estimates are also significantly different for haploid estimates as well, with the exception of locus 238.  

  Coriacea-flies Glabra-flies 
Outliers haploid male vs. female diploid male vs. female haploid male vs. female diploid male vs. female 
# locus t s p-value t s p-value t s p-value t s p-value 

13 eact.254.6 22.0305 0.0124 0.0007 * 2.9696 0.0144 0.0324 5.3158 0.0087 0.0109 0 0.0072 0.3183 
70 eaca.208.1 2.9483 0.0039 0.0328 0.2067 0.0029 0.3053 38.5523 0.0135 0.0002 * 19.3343 0.0160 0.0008 *

72 eaca.219.3 16.4639 0.0120 0.0012 * 3.3958 0.0142 0.0254 1.1832 0.0085 0.1326 3.4542 0.0072 0.0246 
94 eaca.388.4 12.5766 0.0088 0.0020 5.2454 0.0071 0.0112 22.4436 0.0141 0.0006 * 5.5723 0.0164 0.0099 
115 eaca.518.8 26.3357 0.0116 0.0005 * 14.0876 0.0101 0.0016 * 25.2682 0.0106 0.0005 * 25.2682 0.0106 0.0005 *

118 eaca.532.1 15.4061 0.0079 0.0013 * 0.4296 0.0105 0.2687 4.4900 0.0027 0.0150 4.4900 0.0027 0.0150 
200 eaga.210.2 16.4559 0.0134 0.0012 * 3.4283 0.0123 0.0250 0 0 0.3183 0 0 0.3183 
204 eaga.249.1 0 0 0.3183 0 0 0.3183 7.3601 0.0154 0.0058 3.2850 0.0140 0.0270 
213 eaga.297.7 25.5345 0.0126 0.0005 * 6.2111 0.0146 0.0080 0.1702 0.0118 0.3093 10 0.0135 0.0032 
227 eaga.425.2 0 0 0.3183 0 0 0.3183 12.5241 0.0160 0.0020 0 0.0151 0.3183 
231 eaga.437.4 12.8595 0.0144 0.0019 1.6061 0.0137 0.0889 6.2969 0.0038 0.0078 4.4900 0.0027 0.0150 
238 eaga.489.5 12.1818 0.0147 0.0021 25.3417 0.0135 0.0005 * 2.2374 0.0094 0.0530 3.1679 0.0080 0.0288 
242 eaga.499.4 2.9483 0.0039 0.0328 0.2067 0.0029 0.3053 15.0771 0.0162 0.0014 * 1.1267 0.0159 0.1403 
246 eaga.518.5 21.4549 0.0131 0.0007 * 7.7771 0.0120 0.0052 25.2682 0.0106 0.0005 * 25.2682 0.0106 0.0005 *

255 eaga.651.2 0 0 0.3183 0 0 0.3183 14.4662 0.0154 0.0015 * 1.5810 0.0168 0.0910 

Values in bold font are significantly different at a standard 0.05 level 
t: the estimated t-value; s: the combined standard deviation. * Significantly different after a Bonferroni correction for multiple 
comparisons.  



 
 

Table 2.14. Allele frequency estimates of sex-associated outliers treating males and females of each host race separately. Male 

frequencies were estimated treating males as haploids and as diploids to compare estimates using female loci. If haploid male 

estimates are more similar to female estimates than diploid male estimates (see Supp. Table 10), the locus will be treated as putatively 

on the X-chromosome. If females have no peaks present (bolded values of all 0 alleles) and males have peaks, the locus is putatively 

on the Y-chromosome. Bolded outliers were found to be in linkage disequilibrium with host-associated outlier 238. 

 

  



 
 

Table 2.14 

 Coriacea-flies Glabra-flies 
outliers haploid male female diploid male haploid male Female diploid male 

# locus Freq. SE Freq. SE Freq. SE Freq. SE Freq. SE Freq. SE Chromosome 

2 eact.140 0.5435 0.0054 0.0206 0.0004 0.3243 0.0048 0.7143 0.0049 0.0364 0.0008 0.4655 0.0059 Y? 
20 eact.333.8 0.9348 0.0013 0.0742 0.0014 0.7446 0.0041 1 0 0.0120 0.0003 1 0 Y? 
22 eact.349.5 0.0435 0.0009 0.0103 0.0002 0.0220 0.0005 0.2143 0.0040 0 0 0.1136 0.0024 Y? 
32 eact.407.4 0.5000 0.0054 0.0311 0.0006 0.2929 0.0045 0.5238 0.0059 0.0120 0.0003 0.3099 0.0051 Y? 
41 eact.457.7 0.8043 0.0034 0.0103 0.0002 0.5577 0.0054 0.9286 0.0016 0 0 0.7327 0.0047 Y? 
43 eact.472.2 0.7174 0.0044 0.7143 0.0042 0.4684 0.0054 0.9762 0.0006 1 0 0.8457 0.0031 X? 
99 eaca.404.8 0.1739 0.0031 0 0 0.0911 0.0018 0.2143 0.0040 0 0 0.1136 0.0024 Y 
113 eaca.505.8 0.6304 0.0051 0.7143 0.0042 0.3921 0.0052 0.6667 0.0053 0.5371 0.0059 0.4226 0.0058 X? 
124 eaca.592.8 0 0 0.0853 0.0016 0 0 0.0476 0.0011 0.1691 0.0033 0.0241 0.0006 Auto? 
125 eaca.623.9 0.9348 0.0013 0 0 0.7446 0.0041 0.9762 0.0006 0 0 0.8457 0.0031 Y 
132 eaca.755.4 0.9348 0.0013 0.0103 0.0002 0.7446 0.0041 0.9524 0.0011 0 0 0.7818 0.0041 Y? 
137 eagt.148 0.2609 0.0042 0 0 0.1403 0.0026 0.4286 0.0058 0.0120 0.0003 0.2441 0.0044 Y? 
188 eagt.654.5 0.9783 0.0005 1 0 0.8526 0.0027 0.8571 0.0029 1 0 0.6220 0.0056 X? 
191 eagt.729.2 0.1739 0.0031 0 0 0.0911 0.0018 0.1190 0.0025 0.0120 0.0003 0.0614 0.0014 Y? 
192 eagt.737.6 0.7391 0.0042 1 0 0.4892 0.0054 0.7143 0.0049 1 0 0.4655 0.0059 X? 
193 eagt.739.9 0.2174 0.0037 0 0 0.1153 0.0022 0.2381 0.0043 0 0 0.1271 0.0026 Y 
199 eaga.186.1 0.1739 0.0031 0 0 0.0911 0.0018 0.1429 0.0029 0.0120 0.0003 0.0742 0.0016 Y? 
249 eaga.542.9 0.9565 0.0009 0 0 0.7915 0.0036 0.9048 0.0021 0 0 0.6914 0.0051 Y 
250 eaga.543.9 0.0217 0.0005 0.4467 0.0050 0.0109 0.0002 0.0238 0.0006 0.0614 0.0014 0.0120 0.0003 Auto? 
251 eaga.583.9 0.9130 0.0017 0.0103 0.0002 0.7051 0.0045 0.8095 0.0037 0 0 0.5636 0.0059 Y? 
260 eaga.681.6 0.0870 0.0017 0.1548 0.0027 0.0445 0.0009 0.0714 0.0016 0.2929 0.0049 0.0364 0.0008 X? 
261 eaga.684.6 0.7391 0.0042 0 0 0.4892 0.0054 0.6429 0.0055 0.0120 0.0003 0.4024 0.0057 Y? 
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Figure 2.1: Endemic range of the host plants, Ilex coriacea and I. glabra with collection 

sites labeled.  
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Figure 2.3: Spider diagrams of environmental factors fitted onto the ordination of AFLP data using non-metric multidimensional 

scaling. Lines connect each individual within a category to the centroid for that category. a) Host plant species; b) Sex of the fly. 
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Figure 2.4. Results of non-metric multidimensional scaling (NMDS) of AFLPs. Yellow 

represents flies from I. coriacea and blue represent flies collected from Ilex glabra. 

Squares represent male flies and triangles are female flies. Four samples were genotyped 

as larvae, therefore their sex is unknown. 
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Figure 2.5. Haplotype network of EF-1α in P. glabricola. The size of nodes reflects the 

relative abundance of each haplotype in the total population. Nodes are colored based 

upon the frequency of flies from each host plant with that haplotype. Nodes are arranged 

to show size and connections, therefore connection length does not reflect the number of 

base pair changes between each haplotype. Each connection represents one base pair 

difference between nodes. The network is rooted by three closely related species: 

P. ilicis, P. ditmani, and P. ilicicola. 
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Figure 2.6: Haplotype network of EF-1α in P. glabricola. The size of nodes reflects the 

relative abundance of each haplotype in the total population. Nodes are colored based 

upon the frequency of flies from each location with that haplotype. Nodes are arranged to 

show size and connections, therefore connection length does not reflect the number of 

base pair changes between each haplotype. Each connection represents one base pair 

difference between nodes. The network is rooted by three closely related species: 

P. ilicis, P. ditmani, and P. ilicicola. 
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Figure 2.7. Results from among host plant comparison in DFDIST. Lines represent the 

95% and 99% confidence intervals generated from the trimmed mean FST in DFDIST. 

 

Note: Loci connected in yellow were in LD within coriacea-flies. Loci connected in blue 
were in LD within glabra-flies 
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CHAPTER 3: A GEOGRAPHIC MOSAIC OF HYBRIDIZATION BETWEEN 

ILEX CORIACEA AND I. GLABRA (AQUIFOLIACEAE) AND ITS EFFECTS ON 

HYBRID MORPHOLOGY 

ABSTRACT 

Premise: Interspecific hybridization is common in plants and can cause discordance 

among phylogenies based on different genes or phenotypes, particularly in taxa with 

porous genomes such as the genus Ilex. In these taxa, it is important to be able to identify 

and remove hybrid individuals from phylogenetic studies. I use a pair of sister species to 

test whether morphological characters can be used to reliably identify parental species 

and their hybrids. 

Methods: Leaves were sampled from locations across the sympatric range of I. coriacea 

and I. glabra. AFLPs were used to genetically identify parental species and their hybrids. 

Discriminant functions were generated based on morphological characters of leaves to 

determine whether leaf morphology could reliably recover genetic identities. 

Key Results: Natural hybrids were found in 3 of the 7 populations sampled, with 

asymmetric bidirectional gene flow of I. glabra alleles into the I. coriacea genetic 

background. Discriminant functions based on morphological characters were able to 

correctly identify all samples, but only if samples were first split into geographic regions, 

likely reflecting varying rates of hybridization among locations. No single trait could 

easily differentiate hybrids from parental samples, and each hybrid had a combination of 

parental, intermediate, and/or transgressive traits. 

Conclusions: A geographic mosaic of hybridization exists across the range of I. coriacea 

and I. glabra resulting in a phenotypic mosaic of parental, intermediate, and transgressive 
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traits. The effects of hybridization in Ilex will likely depend on the individuals sampled, 

the location they are sampled from, and the traits examined. 
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INTRODUCTION 

Hybridization is a common phenomenon in plants, particularly in outcrossing 

species with vegetative reproduction (Ellstrand et al. 1996; Rieseberg 1997). Although 

interspecific hybrids typically constitute less than 0.1% of a given population of 

hybridizing species, 25% of plant species are known to hybridize with at least one other 

species (Mallet 2005). Hybrids experience increased genetic variation via new 

combinations of alleles (Rieseberg and Ellstrand 1993) which can have a variety of 

outcomes. These combinations are often deleterious, but in some cases they can 

contribute to adaptability by producing novel phenotypes (Rieseberg and Carney 1998; 

Rieseberg et al. 1999; Whitham et al. 1999; Rieseberg et al. 2000) and allowing adaptive 

traits to introgress into a novel genomic background (Morgan et al. 2010). In addition 

new genetic combinations in hybrids can either decrease or increase differentiation 

between parental species (Seehausen 2004; Mallet 2005) by either breaking down or 

reinforcing reproductive barriers (reviewed in Abbott 1992; Rieseberg and Wendel 

1993). Hence, hybridization can affect both anagenesis and cladogenesis in plant lineages 

and given its prevalence across taxa, it likely has been an important influence in plant 

diversification patterns and processes 

The effects of hybridization on phylogenetic analysis are likely to be greatest in 

taxa with porous genomes, i.e., taxa that remain distinct entities despite current gene flow 

(Lexer et al. 2009). Such taxa are expected to have a ‘genetic mosaic’ of highly divergent 

and introgressed genome regions, depending on physical proximity to loci directly or 

indirectly involved in reproductive isolation (Wu 2001; Smadja et al. 2008; Via and West 

2008). Such genetic mosaics should also result in ‘phenotypic mosaics’ due to 
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interspecific recombination in hybrids and backcrosses (Lexer et al. 2009). These 

complexities explain why few general patterns have emerged from studies that have 

examined phenotypes in hybrid plants (reviewed in Rieseberg and Ellstrand 1993). First 

generation hybrids are no more likely to display morphologically intermediate characters 

than parental ones, and most hybrids show at least one transgressive (i.e., extreme) 

phenotype (Rieseberg and Ellstrand 1993; Rieseberg et al. 1999).  

The variation in both genetic and morphological characters in hybrid samples can 

be problematic for taxonomic and phylogenetic analysis. Intermediate morphologies can 

make species characterization difficult, and transgressive phenotypes can lead to long-

branch attraction and homoplasy (Kornet and Turner 1999; Vriesendorp and Bakker 

2005). Phylogenetic studies can exclude putative hybrids to gain phylogenetic clarity, but 

to do so, the hybrid individuals must be identified, and most phylogenetic studies do not 

include more than two or three individuals per species, making identification of hybrids 

difficult, especially in taxa with porous genomes where hybrids can form between both 

closely and distantly related taxa (Lexer et al. 2009; Manen et al. 2010). In these systems, 

more work is needed using multiple specimens of putatively hybridizing species to screen 

for hybrid individuals and phenotypes and determine whether genetic or morphological 

data will be more reliable for determining taxonomic relationships. 

The family Aquifoliaceae (hollies) has emerged as a group with porous genomes. 

Recent work has revealed high levels of introgression between both closely and distantly 

related species and a lack of concordance between phylogenies based on different genes 

or morphological characters (Baas 1978; Cuenoud et al. 2000; Manen et al. 2002; Manen 

2004; Selbach-Schnadelbach et al. 2009; Manen et al. 2010). Aquifoliaceae consist of a 
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single extant genus (Powell et al. 2000), Ilex (L.), of approximately 600 species (Loizeau 

et al. 2005). Taxonomic studies of Ilex noted the overlap in morphological variation 

among species, suggesting hybridization was likely an important part of evolution in the 

lineage (Baas 1978). Detailed population level studies of Ilex have identified naturally 

occurring hybrid individuals (Manen 2004; Lee et al. 2006) and hybrid species 

(Setoguchi and Watanabe 2000; Joung et al. 2011), indicating hybridization is a common 

phenomenon in Ilex. To date however, work has focused primarily on documenting the 

presence of hybrids rather than examining rates of hybridization or characterizing the 

genetic and morphological traits exhibited.  

One pair of species, I. coriacea (Pursh) Chapm. and I. glabra (L.) A. Gray are 

consistently placed as sister taxa (but see Selbach-Schnadelbach et al. 2009) although the 

placement of this pair relative to other Ilex species varies between plastid and nuclear 

phylogenies (Manen et al. 2010). These species are evergreen holly shrubs that are native 

to pine forests on the coastal plain of the eastern United States (Duncan and Duncan 

1987; Godfrey 1988). The more cold-tolerant I. glabra grows from Nova Scotia, south to 

Florida, and along the Gulf of Mexico into eastern Texas whereas I. coriacea has a much 

smaller range from southern Virginia south to northern Florida and west to Texas 

(Scheffer 2002; Chapters 1, 2). Throughout the range of I. coriacea, I. glabra is more 

abundant (Mohlenbrock 1976; Richardson 1983; Brewer 1998; Brockway and Lewis 

2003; Clark et al. 2008), but where I. coriacea is found, the two species are sympatric 

and often syntopic. They are distinguished in the field based on leaf morphology (Gray 

and Fernald 1950; Lundell 1961; Duncan and Duncan 1987; Godfrey 1988; Lance 2004) 

but are often mistaken as a single species, particularly in southern populations (Lundell 
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1961). Due to the spatial overlap, the two species have potential to hybridize throughout 

the overlapping range, and plants with intermediate leaf morphology have been found 

throughout regions of overlap (Robert K. Godfrey Herbarium 2012, Specimens 

000016759-000016766). However the hybrid status of these individuals has not been 

genetically confirmed.  

The sympatric distribution, sister species status, and morphological similarities of 

I. coriacea and I. glabra are particularly suited to test whether morphological characters 

can be used to reliably identify parental species and their hybrids. For the purposes of this 

study, I use ‘hybrid’ to encompassing F1 and backcrossed individuals (i.e., non-parental 

types). Both I. coriacea and I. glabra are evergreen species and leaves are used to 

identify and differentiate them year round (Gray and Fernald 1950; Lundell 1961; 

Duncan and Duncan 1987; Godfrey 1988; Lance 2004). Hence, leaves were collected 

from multiple populations throughout the range of both species to encompass the full 

range of genotypic and morphological variation. The objectives of the study were to 

genetically confirm that I. coriacea and I. glabra naturally hybridize in wild populations 

and to determine whether hybridization rates vary among locations. In addition, I test 

whether morphology is a good indicator of hybrid status, especially in phenotypically 

plastic species.  

METHODS 

Collections 

Plant material for genetic analysis was collected in January and February of 2006 

and 2007 from Croatan National Forest, NC and Francis Marion National Forest, SC 

(Table 3.1). In 2007, additional samples were collected from Cape Henlopen State Park, 
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DE, the Great Dismal Swamp National Wildlife Refuge, VA, Crooked River State Park, 

GA, Etoniah Creek State Forest, FL, and Apalachicola National Forest, FL (Figure 3.1, 

Table 3.1). Ilex glabra was found at every collection site, however I. coriacea was not 

found at two of the sites (DE and GA), the first of which is outside the known geographic 

range of I. coriacea.  

Plant material collected in 2007 was also used for morphometric analysis. 

Collection protocols were developed to represent variation across individuals and 

locations. Ilex can grow via vegetative reproduction, so the shrubs were selected by 

moving through a patch and collecting from plants clearly separated by one another by at 

least a yard between main trunks. The stem closest to the base of the plant with at least 

five leaves and no new growth was removed from each plant and placed into a plastic bag 

labeled with site and plant species. After returning to the lab, leaves were removed from 

the stem and images of both the abaxial and adaxial surfaces of the leaves were recorded 

using a scanner (Canon CanoScan LiDE 55) at 400 dpi with a ruler included to allow 

scaling for morphological measurement (Figure 3.2). Immediately after scanning, leaves 

were placed in labeled envelopes and stored at -80˚C.  

 AFLPs 

 Phylogenetic relationships of Ilex species based on nuclear data more closely 

resemble morphological relationships than do those based on plastid data (Manen et al. 

2010); thus I used genomic markers to genetically differentiate each species and their 

putative hybrids. A total of 202 plants (104 putative I. coriacea and 98 putative I. glabra) 

were genotyped using AFLPs. For each plant, 35 to 45 mg of leaf material was frozen 

using liquid nitrogen and ground to a fine powder using a sterilized mortar and pestle. 
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Total genomic DNA was extracted following the plant tissue mini protocol of the Qiagen 

DNeasy plant kit (Qiagen, Valencia, CA) with a minor adjustment: the lysis step was 

incubated overnight to increase yield. Following extraction, DNA concentrations were 

standardized to 12.5 ng/µL. AFLPs were generated using two-step amplification (Vos et 

al. 1995; Chapter 2). Preamplification and amplification followed procedures in 

Chapter 2 with only a change in the selective primers used (Table 3.2). PCR products 

were separated with an ABI 3730 DNA Analyzer (Applied Biosystems, Carlsbad, CA) 

using MapMarker X-Rhodamine (ROX) labeled 1000bp ladder (BioVentures, 

Murfreesboro, TN). 

 Electropherograms were scored using GENEMARKER (Soft Genetics, LLC, State 

College, PA). Fragments between 76 and 949 base pairs were first scored using the 

automated procedure and secondarily checked by eye. Samples were then examined to 

determine the fragment size where peak heights became too low to be reliably scored. 

Final maximum fragment sizes varied from 457 to 720bp across primer pair 

combinations. AFLPs are known to exhibit problems with repeatability, therefore six 

individuals were repeated across plates, and ten individuals within each plate to test for 

repeatability, resulting in 85-136 repeated samples (depending on the optimization 

needed in each primer-pair combination). In addition, negative controls (H2O template) 

were run for every step of the process.  

After scoring, a genotyping error rate was estimated as the ratio of 

electropherogram peak mismatches among replicated samples to the total number of 

replicated markers (Pompanon et al. 2005). Using a conservative approach, loci with 

peaks in the negative controls were removed from the analysis as were loci with peak 
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mismatches among repeated samples. Mismatches are not equally distributed among loci: 

some loci have only a single individual with a mismatch whereas others show 

mismatches in a large number of individuals. As a result, the percentage of loci removed 

due to mismatches is much higher than the overall genotyping error rate. Finally, because 

a significant negative correlation of fragment frequency and fragment size may be caused 

by excessive homoplasy, the correlation was estimated using AFLPSURV (Vekemans et 

al. 2002). 

Genetic Analysis 

Local rates of hybridization can differ depending on ecological conditions 

(Bleeker and Hurka 2001; Williams et al. 2001; Watano et al. 2004; Aldridge and 

Campbell 2009) so I tested for geographic differences in genetic structure across the 

range of I. coriacea and I. glabra. Genetic differentiation and diversity were estimated 

for each species using AFLPs. Nei’s genetic diversity, total gene diversity, Nei’s HS, and 

Wright’s FST were calculated using AFLPSURV (Vekemans et al. 2002), with 5000 

permutations run to test significance for FST. Geographic variation in genetic divergence 

was addressed using pairwise FST as calculated using AFLPSURV and using an analysis of 

molecular variance, performed using a permutational MANOVA of Jaccard distances via 

the ADONIS function from the VEGAN package in R (Oksanen et al. 2010 ). ADONIS models 

were constructed to test the effects of species and collection site location on the genetic 

structure of plants from all locations. Models were run with species nested within 

location to examine whether hybridization rates differed among locations. Significance 

was based on 5000 permutations producing pseudo-F ratios. 
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To identify rates of hybridization between the Ilex species, I used both a 

clustering algorithm and an assignment test of the AFLP genotypes. First, I used 

STRUCTURE (v2.3.3, Pritchard et al. 2000; Falush et al. 2007) to determine the number (K) 

of genetic groupings the hollies formed. Runs were conducted for K = 1 to 15 to 

determine whether genetic structure was present among species and sampled locations. I 

used the population admixture model and independently replicated each run of a given K 

10 times with a burn-in of 125 000 iterations followed by 106 iterations of Monte Carlo 

Markov Chain (MCMC) via grid computing on the Lattice Project at the University of 

Maryland (Bazinet et al. 2007; Bazinet and Cummings 2008; Myers et al. 2008). To 

identify the most likely value of K among my samples I used ΔK as described in Evanno 

et al. (2005). The mean of the permutated matrices among replicates was calculated using 

CLUMPP 1.1.2 (Jakobsson and Rosenberg 2007), then visualized using DISTRUCT 1.1 

(Rosenberg 2004).  

Although the result of STRUCTURE presents a hypothesized mixture of K 

populations, STRUCTURE does not assign individuals as having parental types or showing 

introgression associated with either hybridization or backcrossing. Thus, hybrid AFLP 

genotypes (F1 and backcrosses) were identified using NEWHYBRIDS (Anderson and 

Thompson 2002; Anderson 2008). Briefly, NEWHYBRIDS uses Bayesian inference to 

estimate the posterior probability that individuals belong in user-specified categories 

(e.g., parental, backcross, F1) based on the proportion of loci expected to come from one 

of two species (Anderson and Thompson 2002), and has been modified to allow inference 

using dominant markers (Anderson 2008). The choice of prior had no effect on the 

overall likelihood of the results, so calculations were run without individual-specific 
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assumptions using a ‘Jeffreys-like’ prior for the mixing proportion and a uniform prior 

for allele frequency. Simulations were run with a burn-in period of 8 x 104 iterations 

followed by 1.5 x 106 sweeps for sampling from the posterior distribution. Individuals 

were classified as parental, F1, backcross, or late backcross depending on the probability 

of membership in each category. Parental-types were defined as having at least a 90% 

probability of being a parental form (Vaha and Primmer 2006). Within the hybrids, the 

category with the highest probability was considered true (F1, backcross to I. coriacea, or 

backcross to I. glabra). In cases where the individual had the highest probability of being 

a parental-type, but that probability was less than 90%, the individual was considered a 

later generation backcross.  

 To determine whether a genetic mosaic of divergence exists for these species, 

frequencies for the presence of alleles were calculated for each locus for parental-type 

I. coriacea and separately for I. glabra. The frequencies of each species were visually 

compared using a scatterplot to determine whether some loci were more divergent than 

others. 

Morphometric Analysis 

To investigate whether vegetative morphological features can reliably 

differentiate the species and hybrids, I used morphometric analysis to distinguish 

individuals genotypically classified as I. coriacea, I. glabra, and hybrids. A total of 54 

I. coriacea and 62 I. glabra samples were both genotyped and used for morphometric 

analysis. For each plant, I selected the largest leaf with the least amount of damage with 

no obvious discernible differences in shape from other leaves from that plant. Once the 
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leaf was chosen, landmarks were placed and stored as x-y coordinates and traditional 

measurements were made using TPSDIG2 (Rohlf 2005; Figure 3, Tables 3-5).  

Strictly speaking, landmarks are defined as points at specific anatomical 

structures and are considered homologous, whereas pseudolandmarks are defined by 

specifying their position on a structure relative to each other and other landmarks present 

(Dickinson et al. 1987; Kores et al. 1993), therefore I am using. Pseudolandmarks have 

been shown to accurately represent shape (Dickinson et al. 1987) and are appropriate for 

this study because I am not testing for allometric change through time. Landmarks were 

placed at the base of the petiole, where the blade joined the petiole, and at the apex of the 

blade (Table 3.3, Figure 3.3). The length between the base and apex of the blade was 

measured, and landmarks were placed at ¼, ½, and ¾ the length of the blade on the 

midvein of the leaf. Landmarks were also placed on the edges of the leaf at a 90° angle to 

the midvein at ¼, ½, and ¾ of the length (Table 3.3, Figure 3.3). 

Traditional morphological measurements were chosen based on features often 

used to differentiate these two species (Tables 3.4-3.5). Leaf shape ranges from elliptic to 

oblong for I. coriacea and obovate to elliptic for I. glabra (Lundell 1961; Godfrey 1988). 

The apex is described as acute or obtuse for I. coriacea with an acute, sometimes rounded 

base versus an obtuse apex and acute base in I. glabra (Lundell 1961; Godfrey 1988). In 

I. coriacea, the leaves are typically spinescent-serrate above the middle often with 

spinose prickles along the entire margin of the leaf (Gray and Fernald 1950; Duncan and 

Duncan 1987; Lance 2004). On the other hand, I. glabra leaves are typically crenate or 

crenate-serrate above the middle of the margin (Gray and Fernald 1950; Duncan and 

Duncan 1987). In addition, the leaves of I. coriacea tend to be larger than those of 
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I. glabra, and have a greater width relative to the length of the leaf (Lundell 1961; 

Godfrey 1988; Lance 2004).  

All of the following analyses were conducted using the statistical package R 

(v2.11.1, 2010). Individuals were grouped by the resulting classifications from 

NEWHYBRIDS. Because there were very few individuals identified as hybrids and 

NEWHYBRIDS has been shown to be more robust at identifying hybrids versus parental 

individuals than discriminating between hybrid categories (Anderson 2008), all 

individuals with less than 90% parental membership were pooled as ‘hybrids’ for the 

remaining analyses (Vaha and Primmer 2006).  

For analysis of landmark data, I performed generalized Procrustes analysis (GPA) 

using the function PROCGPA in the SHAPES package (Dryden 2009). Differences between 

the mean shapes of I. glabra and I. coriacea, and between parentals and hybrids, were 

tested using 5000 permutations of the tangent coordinates generated from the GPA’s of 

each group in the function TESTMEANSHAPES, also in the SHAPES package.  

 The traditional morphological data was used to classify individuals into parental 

I. coriacea, I. glabra, and their hybrids via a discriminant function analysis (DFA) using 

the function LDA in the package MASS (Venables and Ripley 2002). Discriminant 

functions were generated using all of the samples collected, then using subsamples based 

upon location. Hybrid samples were not present in every location, so nearby locations 

had to be combined to allow for discrimination among parental species and hybrids. 

Treating genetic classification as ‘truth’, the performance of each of the discriminant 

functions was assessed using the following measures: 
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1) Efficiency, the power to identify true genotypic status of individuals (sensu 

Vaha and Primmer 2006; Burgarella et al. 2009): the number of correctly 

identified individuals for a group divided by the actual number of individuals 

actually in that group. 

2) Accuracy (sensu Yang et al. 2005; Vaha and Primmer 2006; Burgarella et al. 

2009): the proportion of individuals correctly assigned to a group divided by 

the total number of individuals assigned to that group. 

3) Type I error: the number of individuals wrongly identified as hybrids over the 

total number of actual purebreds in a sample. 

Finally, I examined each morphological trait in individual hybrids to characterize 

them as parental, intermediate, or transgressive trait states to determine whether a genetic 

mosaic is indeed tied to a phenotypic mosaic of leaf morphology. Means and standard 

deviations of each character were calculated for I. coriacea and I. glabra. A t-test for 

comparing a single observation to the mean was used to determine whether the character 

state of each hybrid individual fell within the range of I. coriacea, I. glabra, or both 

parental species(Sokal and Rohlf 1981). Character states significantly outside the range 

of both species were considered transgressive characters (Cosse et al. 1995). 

RESULTS 

Genetic analysis 

A total of 1034 markers were scored giving an initial error rate of 8.82%. 

Discarding markers with a single discrepancy between repeated samples resulted in a 

total of 679 markers. Finally, an initial allele frequency cutoff of 0.5% (corresponding to 

only a single individual containing the rarer allele) resulted in a significant correlation 
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between fragment size and allele frequency (N = 631, r = 0.0789, p < 0.05). As a result, 

the frequency cutoff was increased until the correlation was no longer significant (at 3%, 

N = 427, r = 0.0871, p = 0.07220) to reduce the risk of homoplasy. The size range of the 

427 AFLP markers was 76-720 bp and 79% had a fragment size above 200 bp.  

Overall, there is more genetic diversity in I. glabra than in I. coriacea, with a 

larger number of polymorphic loci and larger estimates of genetic and gene diversity 

(Table 3.6). The results of ADONIS (Table 3.7) and analyses using FST yielded similar 

results, so only FST is given here. Populations of both holly species show small but 

significant genetic structuring among locations (I. coriacea: FST = 0.0518, p < 0.0005; 

I. glabra: FST = 0.0290, p < 0.0005; Table 3.6). The degree of divergence between the 

holly species varied in magnitude among locations with higher values of FST in northern 

than southern populations (Figure 3.4). Within I. coriacea, pairwise estimates of FST 

among populations indicated significant differences among all population comparisons 

except VA with NC, and eastern and western FL (Table 3.8a). Populations of I. glabra 

were much more similar to one another with significant differences between NC and all 

but DE, and between VA and western FL (Table 3.8b). When species were combined, the 

only locations with both host plants that showed significant divergence were eastern FL 

from NC and SC (Table 3.8c).  

Using the AFLP data, STRUCTURE clustered the 202 individuals from the seven 

locations into two distinct groups that corresponded to species identification (Figures 3.5-

3.6). Using a 90% membership cutoff, 97 samples were identified as I. coriacea, 95 as 

I. glabra, and 10 as hybrids (Appendix E). Only one sample was found to be 
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misidentified, initially identified as being I. glabra but conclusively I. coriacea based on 

its genotype (Appendix E).  

The results from NEWHYBRIDS also indicated low rates of gene flow between the 

holly species. The same 97 individuals were identified as I. coriacea parentals, 95 as 

I. glabra, and 10 as hybrids (Appendix E). Hybrid individuals were found in NC, SC, and 

western FL, but not the other four locations. Of the 10 hybrids, 2 were identified as F1, 4 

as backcrossed to I. coriacea, 3 as late backcrosses to I. coriacea, and 1 as a late 

backcross to I. glabra. Although the exact identification of sample status by 

NEWHYBRIDS may not be correct (Anderson 2008), the combination of population 

membership resulting from STRUCTURE and the number of individuals identified as 

backcrosses to I. coriacea give good evidence that gene flow is bidirectional, but 

asymmetric with primarily I. glabra alleles introgressing into the I. coriacea background.  

 When examining the loci for a genetic mosaic of divergence, the majority of loci 

were present at relatively high or low frequencies in both species (Figure 3.7). Several 

loci were absent from one species but present, at varying frequencies, in the others, and 

roughly 10% were at a high frequency in one location but low in the other, with a 

difference in frequency of 0.75 or more. A single locus was fixed among species: all 

I. glabra had a peak whereas all I. coriacea did not. 

Morphometric Analysis  

 Preliminary analysis suggested I. coriacea and I. glabra could be discriminated 

based on leaf shape, but hybrids could not. Shapes of leaves based on landmarks were 

significantly different between parental Ilex species (James T2: 84.35, p < 0.01), but not 

between parental plants and hybrids (James T2: 561.44, p = 0.387123), the latter likely 
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due to a low number of hybrid plants (7 compared to 109 parental; Figure 3.8).Visual 

inspection of the mean shapes indicated hybrid leaves were, on the whole, transgressive 

rather than intermediate relative to the parental species (Figure 3.8d). 

 Discriminant function analyses were run using the full dataset then with 

combinations of samples that are geographically near one another. Samples from NC, SC, 

and/or western FL had to be included in each dataset as they were the only locations with 

individuals identified as hybrids (Appendix E). Because no hybrids were identified in DE 

or VA, the samples from these locations were combined with those from NC. Pairwise 

comparisons of FST among I. coriacea populations were significantly different between 

VA and SC, and NC and SC (Table 3.8a), as were comparisons among I. glabra 

populations between NC and SC (Table 3.8b), therefore samples from SC were not 

combined with the DE-VA-NC group. Samples from eastern and western FL were 

combined due to proximity and genetic similarity (Table 3.8). The GA population was 

more similar to the population from eastern FL than to SC, so it was combined with the 

FL populations, resulting in two groups: SC, and GA-FL.  

The discriminant function based on the total data set did not perform as well as 

the functions based on the subsets of samples, which had no misclassified samples 

(Table 3.9, Figure 3.9). In the total combined data, hybrids and I. coriacea were more 

likely to be incorrectly identified (2 of 48 samples and 2 of 7 samples, respectively) than 

I. glabra, with only 1 sample misidentified. Similar to the mean shapes based on 

landmark data, linear discriminant scores of hybrid plants more closely resemble those of 

I. coriacea than I. glabra (Figure 3.9), potentially explaining why I. glabra was more 

likely to be correctly identified. 
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 Hybrid individuals had character states that ranged from parental to intermediate 

to transgressive depending on the individual and character in question. No quantitative 

variables were particularly indicative of hybrid status, and most were intermediate 

between parental distributions (Table 3.10). Three hybrid individuals showed 

transgressive characters: one was identified as a backcross to I. coriacea (PHUNC012), 

one as an F1 (PHUNGE05), and one as somewhere between an F1 and a backcross to 

I. coriacea (PSOPC005; Appendix E). The three individuals identified as late 

backcrosses to I. coriacea (P152C288, P152CE02, and PBOBC191) all had a 

combination of intermediate and I. coriacea-like traits. Interestingly, one of the 

individuals identified as an F1 was intermediate for all characters (PBOBCE05), but the 

other had the largest number of transgressive character states (PHUNGE05).  

Apex shape and leaf margin were the two most discriminatory qualitative 

characters that appeared representative of species status (Table 3.11). The majority of 

I. coriacea (37 out of 48 individuals) had complex apices whereas all 61 I. glabra had 

convex apices. Hybrids were split, 2 with convex apices and 5 with complex. The leaf 

margin of 40 of the 48 I. coriacea plants had bristles with no crenation whereas 54 of 

the 61 I. glabra had crenation on the leaf margin lacking bristles (Table 3.11). Hybrids 

more closely resembled I. coriacea with 6 of the 7 individuals containing bristles but no 

crenation along their leaf margins. The remaining hybrid, with crenation on the leaf 

margin, was the F1 individual that also had the majority of the transgressive quantitative 

traits. 
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DISCUSSION 

 The objectives of this study were to test for hybridization between two species of 

holly, I. coriacea and I. glabra, examine whether hybridization rates varied among 

locations, and determine whether or not leaf morphology could be used to differentiate 

parental species from one another and hybrid plants. I found low rates of hybridization 

between these two species that varied depending on the location examined. These 

differences were also reflected in the ability to discriminate between the morphology of 

leaves of I. coriacea, I. glabra, and their hybrids: discriminant functions based on data 

divided into geographic regions were better able to correctly identify samples than the 

function based on the entire dataset. Despite the correct classification, there were no 

characters that could be used alone to discriminate samples and few patterns emerged 

regarding the character state of hybrids relative to parental types.  

Geographic mosaic of hybridization 

 The genetic data match observations of the abundance and distribution of the 

plant species. Ilex glabra is both more abundant within a given location and has a wider 

geographic range than I. coriacea, likely generating the higher genetic diversity seen in 

I. glabra. The differences in genetic structure among the species are likely due to the 

patchier distribution of I. coriacea, resulting in a higher FST among its populations than 

among populations of I. glabra. Within a given host species, there was a trend for more 

northern populations to be similar to one another, but different than southern populations, 

suggesting different environmental pressures among northern and southern areas of the 

species’ ranges. 
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Genetic data indicated that I. coriacea and I. glabra are naturally hybridizing in 

native populations. The degree of hybridization varies among geographic locations, with 

a general trend towards greater gene flow with a decrease in latitude. The genetic data 

agrees with observational data, where it can be more difficult to identify plants in 

southern populations (JBH, S. J. Scheffer, personal observation). Work in other systems 

have also found rates of hybridization can vary depending on ecological conditions such 

as differences in climate (Williams et al. 2001), pollinators (Chase and Raven 1975), and 

types of vegetation (Watano et al. 2004).  

A number of factors could explain the geographic mosaic of hybridization in this 

system. In southern populations, I. coriacea begins blooming weeks before I. glabra 

(Godfrey 1988), but the degree of overlap in blooming time for these species is unknown. 

The plants in this study were sampled over a wide latitudinal range, and flowering times 

vary by latitude (Duncan and Duncan 1987). If the period of overlap is higher in southern 

populations than the populations farther north, it could explain the higher levels of gene 

flow in those locations. In addition, I. glabra is much more abundant in the south, 

whereas I. coriacea is patchily distributed throughout its range. Even if the degree of 

overlap in blooming period does not vary among locations, the higher relative abundance 

of I. glabra in the south could increase interspecific pollination relative to intraspecific 

pollination in I. coriacea.  

Both I. coriacea and I. glabra are dioecious and pollinators are required for 

reproduction (Galle 1997). Abundances of pollinators are known to vary both spatially 

and temporally among plant populations (Herrera 1988; Schemske and Horvitz 1990; 

Ashman and Stanton 1991; Eckhart 1992; Cane and Payne 1993; Moeller 2005) due to 
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different geographic ranges of pollinators relative to the plants they pollinate, yearly 

fluctuations in pollinator population sizes, and variation in the availability of other 

sources of pollen or nectar in a given location (Thompson 1988; Eckhart 1992; Moeller 

2006). Pollinators also vary in their effectiveness at transferring pollen (Primack and 

Silander 1975; Schemske and Horvitz 1984; Eckhart 1992). Localized adaptation of floral 

phenotypes in response to varying communities of pollinators could select for floral traits 

specialized to specialist pollinators (Schemske and Bradshaw 1999; Schluter 2000; 

Coyne and Orr 2004; Ellis and Johnson 2009), but could also result in increased variation 

to allow a greater number of generalist species to pollinate flowers. If pollinator 

communities vary greatly in space and time, interspecific hybridization rates could vary 

accordingly. 

 Hybrid plants have been shown to be less affected by competition than their 

parental species (Campbell and Snow 2007; Rose et al. 2009). I observed that 

surrounding vegetation differed among locations: Southern habitats often consisted of 

very large populations of I. glabra and Serenoa repens (Bartr.) Small (saw-palmetto) in 

the understory of long-leaf and slash pine forests. More northern populations had smaller 

patches of both I. glabra and I. coriacea, and were outside the range of S. repens (McNab 

and Edwards Jr. 1980). If hybrid plants have better competitive ability against S. repens 

or other sympatric species relative to the parental species, it could potentially explain 

why hybridization rates were higher in southern populations. 

 In addition, or in contrast, to environmental conditions, variation in gene flow can 

be due to evolutionary history or intrinsic genetic incompatibilities. I have no data on the 

historical distributions of I. coriacea and I. glabra, but it is reasonable to surmise that 
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I. glabra could have been driven south during the Pleistocene (Davis 1981; Delacourt and 

Delacourt 1984). A longer period of sympatry between I. coriacea and I. glabra in 

southern populations relative to the more northern distribution would increase the chance 

that hybridization would occur in the southern part of the distribution. 

Intrinsic genetic incompatibilities due to chromosomal rearrangements, 

differences in ploidy levels, or genic incompatibilities, either within or between loci 

(reviewed in Coyne and Orr 2004) could also cause gene flow to vary. Most Ilex species, 

including I. glabra are diploid (2N = 40) with a few cases of tetraploidy (Frierson 1959; 

Galle 1997), but the ploidy level of I. coriacea remains unknown. I saw no difference in 

the number of peaks seen in the samples of I. coriacea relative to I. glabra, suggesting 

that I. coriacea is also diploid. Based on phylogenetic studies of the Aquifoliaceae, 

reproductive barriers are weak in general among Ilex species, and both closely related and 

distantly related species show signs of hybridization (Manen et al. 2010). Incompatibility 

can vary with the particular genotypes present in a given location, as well as the species 

present. Phylogenetic work based on plastids places these species with other North 

American species whereas nuclear phylogenies place I. coriacea and I. glabra in a 

different clade, suggesting at least some degree of introgression with other North 

American species (Manen et al. 2010). Although not tested here, I. ambigua (Michx.) 

Torr., I. cassine L., I. decidua Walter, I. opaca Aiton, and I. vomitoria Aiton are found 

within an insect’s cruising range of I. coriacea and I. glabra, and could potentially 

hybridize with either or both species, further complicating the phylogenetic relationship 

between Ilex species. 
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Morphological identification 

 Leaf morphology can be used to identify hybrid samples, but there were no easily 

identifiable characters that could consistently discriminant hybrids from the parental 

species. Although the discriminant function based on the full dataset performed quite 

well, five samples were misclassified whereas functions derived from subsets based on 

geographic proximity and genetic similarity were able to correctly classify all individuals 

as defined by their genotype. Varying morphology among regions is not surprising given 

the genetic structure among locations in each species. However, regional differences 

complicate matters for identifying and removing hybrid individuals from phylogenetic 

reconstruction. If hybridization commonly varies among locations and the traits used for 

phylogenetic reconstruction vary accordingly, not only multiple individuals, but multiple 

individuals from multiple locations will be needed to correctly identify hybrid status.  

 The difficulty identifying hybrids from the full dataset is likely due to the wide 

variation of morphologies found just among these seven hybrid samples. No characters 

showed consistent differences between hybrid plants and parental species. Much like 

patterns seen in the hybrid species Ilex x wahlodensis (Lee et al. 2006; Joung et al. 2011) 

and hybrids seen between Brahea dulcis and B. nitida (Ramirez-Rodriguez et al. 2011), 

introgression appeared primarily unidirectional, with the majority of hybrid individuals 

identified as varying degrees of backcrosses to I. coriacea, and these individuals tended 

to have a combination of intermediate and I. coriacea-like traits. The most interesting 

comparison was that of the F1s: one had all intermediate character states, and the other 

had the majority of transgressive character states as well as intermediate states and ones 

like one or the other of the parental species. Hybrid F1s are typically expected to have 
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intermediate morphology, whereas F2 individuals are expected to have higher numbers of 

transgressive traits due to recombination (Whitham 1989; Bangert et al. 2006). I did not 

test for the F2 category in NewHybrids as it can be tough to differentiate from F1’s 

particularly when hybridization rates are low, but the morphology suggests that 

PHUNGE05 may be an F2 individual. If so, it could suggest higher rates of hybridization 

in western Florida than other locations, particularly given the smaller sample size taken 

from that location.  

Patterns of introgression  

When the traits were combined there was one generality: hybrid individuals 

tended to look more like I. coriacea than I. glabra, matching the patterns of genetic 

introgression. Four of the five non-F1 hybrids were identified as being backcrossed to 

I. coriacea, indicating asymmetrical bidirectional introgression of primarily I. glabra 

alleles into the I. coriacea background. Similar patterns have been found in cottonwoods, 

where phytochemical composition and arthropod communities on hybrid trees are most 

similar to the most genetically similar parental species (Bangert et al. 2006). 

There are several potential explanations for the asymmetric introgression of 

alleles from I. glabra into the I. coriacea genetic background. First, the abundance of 

I. glabra is much larger than I. coriacea, both within a given location and with a larger 

overall geographic range. Abundance is expected to affect frequency of introgression, 

where the frequency of alleles from the more abundant species in the genetic background 

of the less abundant species should be higher than vice versa (Nason et al. 1992; Carney 

et al. 2000; Burgess et al. 2005). Although F1 individuals are more likely to backcross to 

the more common species, backcrosses to the less common species will be easier to 
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genetically discern from parental and F1 individuals, resulting in asymmetrical 

introgression. Because I. glabra is more abundant than I. coriacea, abundance alone 

could explain the higher number of individuals identified as backcrosses to I. coriacea.  

In addition to differences in abundance, at least some degree of allochrony exists 

between I. coriacea and I. glabra (Godfrey 1988). If the temporal divergence is heritable, 

the blooming period of F1 hybrids could have greater overlap with I. coriacea than 

I. glabra. Range expansions are also expected to show patterns of unidirectional 

introgression from the local species into the invading species (Currat et al. 2008; 

Excoffier et al. 2009). If I. glabra has always had a more northern distribution than 

I. coriacea, and both species were pushed further south during the Pleistocene, when the 

species moved back north during post-glaciation, I. coriacea could have moved into the 

current range, still occupied by I. glabra.  

 Fitness differences can also affect the directionality of introgression. Alleles 

conferring increased fitness are expected to introgress more often than neutral or 

deleterious alleles (Barton 2001; Borge et al. 2005; Whitney et al. 2006). Ilex glabra 

tolerates a wider range of ecological conditions than I. coriacea including soil texture, 

calcium carbonate, pH, salinity, and temperature (USDA 2012), and is also more tolerant 

of dry conditions (Mohlenbrock 1976; Brooks et al. 1993). If competition for space and 

resources is important, introgression of traits allowing greater tolerance of variation in 

these conditions would be more likely to allow I. coriacea to potentially expand its 

microhabitat whereas less would be gained by I. glabra, matching the observed pattern in 

these species.  
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 Hybridization not only affects morphological phenotypes, but chemical as well, 

yielding repercussions that extend to multiple trophic levels (Whitham et al. 1994; Fritz 

1999; Fritz et al. 1999; Whitham et al. 1999; Dungey et al. 2000; Hochwender and Fritz 

2004; Wimp et al. 2005; Bangert et al. 2006; Bailey et al. 2009; Smith et al. 2011). 

Genetically more similar plants are more likely to support more similar communities than 

genetically dissimilar plants (genetic similarity rule, Bangert et al. 2006). Because 

hybrids have traits of both parental species, they can attract community assemblages from 

both, resulting in more diverse communities of species (Whitham et al. 1994; Whitham et 

al. 1999; Dungey et al. 2000; Hochwender and Fritz 2004; Wimp et al. 2005; Bangert et 

al. 2006; Bailey et al. 2009). In addition, if traits important to interacting organisms such 

as phytophagous insects are intermediate in hybrids, hybrid individuals can serve as a 

‘hybrid bridge’ allowing the insects to expand their host range (Floate and Whitham 

1993). A leaf-mining fly from a highly specialized clade of insects has recently been 

found to be forming host races on I. coriacea and I. glabra (Scheffer and Hawthorne 

2007, Chapters 1-2), suggesting hybrids could have served as a mechanism for the 

original host shift. More work is needed to determine whether or not this is the case. 

Conclusions 

 Natural populations of I. coriacea and I. glabra are hybridizing resulting in 

primarily unidirectional introgression of I. glabra alleles into an I. coriacea background. 

The morphology of leaves can be used to discriminate parental species and their hybrids 

and perform best when the samples are divided into regional groupings rather than the 

entire dataset. The improvement is likely due to genotypic differences, as I identified a 

geographic mosaic of hybridization in these species. Despite the ability to correctly 
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classify samples using discriminant function analysis, no consistent patterns were found 

among individual traits in hybrids relative to the parental species; some traits were 

transgressive, some intermediate, and some similar to parental species, and all three could 

be found for a single trait or among traits within a single individual. The phenotypic 

mosaic seen in hybrids makes it difficult to predict how hybrids would affect 

phylogenetic inference, as it could depend on the individuals sampled, where they are 

sampled from, and what traits are used.  

 



 

 
 

Table 3.1. Summary of collected samples from each population and site. 

   I. coriacea I. glabra 
   2006 2007 2006 2007 
State Site Population Geno1 Geno Both2 Geno Geno Both

FL 
Apalachicola National Forest 

Sopchoppy 0 5 5 0 1 1 
Hunters 0 9 8 0 8 8 

Etoniah Creek State Forest 
East V 0 0 0 0 10 3 
Stuck in Sand 0 10 7 0 8 3 

GA Crooked River State Park Crooked River 0 0 0 0 10 7 

SC Francis Marion National Forest 
Big Ocean Bay 10 8 6 3 10 4 
Wambaw Trail 10 10 9 2 10 6 

NC Croatan National Forest 
Catfish Lake 3 7 3 0 9 8 
Road 152 12 11 8 1 9 6 

VA Great Dismal Swamp National Wildlife Refuge Great Dismal Swamp 0 9 8 0 9 8 
DE Cape Henlopen State Park Cape Henlopen 0 0 0 0 8 8 
  Total 35 69 54 6 92 62 
1Geno: Genotyped; 2Both: In addition to genotyping, leaf samples were morphologically measured and analyzed. 
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Table 3.2. AFLP primer sequences. 

Primer1 Sequence 
PAC 5’ - GAC TGC GTA CAT GCA GAC - 3’ 
PAG 5’ - GAC TGC GTA CAT GCA GAG - 3’ 
PAT 5’ - GAC TGC GTA CAT GCA GAT - 3’ 
EACA 5’ - /56-FAM/GAC TGC GTA CCA ATT CAC A - 3’ 
EAGA 5’ - /56-FAM/GAC TGC GTA CCA ATT CAG A - 3’
EACT 5’ - /56-FAM/GAC TGC GTA CCA ATT CAC T - 3’ 
EAGT 5’ - /56-FAM/GAC TGC GTA CCA ATT CAG T - 3’ 

Note: Four primer pairs were used: EACA-PAG, EAGA-PAT, EACT-PAC, and EAGT-
PAC. 1E: EcoRI; P: PstI.  
 

 

 

Table 3.3. Landmarks of leaf shape for comparisons of Ilex coriacea and I. glabra. 

Landmark # Description 
1 Base of the petiole 
2 Where blade joined petiole (base of blade) 
3 ¼ length of blade along the midvein 
4 Top edge of leaf at 90° angle to the midvein at point 3 
5 Bottom edge of the leaf at 90° angle to the midvein at point 3 
6 ½ length of blade along midvein 
7 Top edge of leaf at 90° angle to midvein at point 6 
8 Bottom edge of leaf at 90° angle to midvein at point 6 
9 ¾ length of blade along the midvein 
10 Top edge of leaf at 90° angle to midvein at point 9 
11 Bottom edge of leaf at 90° angle to midvein at point 9 
12 Apex of blade 

Note: Top and bottom edges are defined with the apex of the blade to the left of the base 
of the blade. 
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Table 3.4. Qualitative measurements of leaves and character coding for Ilex coriacea and 

I. glabra. 

Apex Angle 
0 – Acute 1 – Obtuse 
Apex Shape 
0 - Cuneate (no significant curvature) 1 - Convex (curves away from midvein) 
2 - Complex (more than one inflection point) 
Base Angle 
0 – Acute 1 – Obtuse 
Base Shape 
0 - Cuneate (no significant curvature) 1 - Convex (curved away from the midvein) 
2 - Concave (curved toward the 
midvein) 

3 - Convex on one side and concave on the 
other 

Blade Shape 
0 - Elliptic (widest part of blade in middle 1/5 of long axis) 
1 - Obovate (widest part of blade in the apical 2/5 of long axis) 
2 - Oblong (widest part of blade in middle 1/3 of long axis with opposite margins roughly 
parallel 
Extent of Teeth 
0 – No teeth 1 - Apex (apical ¼ of margin of blade) 
2 - Half (along apical ½ of margin of 
blade) 

3 - Much (beyond apical ½ of margin towards 
base) 

Laminar Symmetry 
0 – Symmetrical 1 – Asymmetrical at base 
2 – Asymmetrical at apex 3 – Asymmetrical at both apex and base 
Leaf Margin 
0 – Entire (smooth) 1 – Crenate lacking bristle 
2 – Crenate with bristle 3 – Bristle only 
 

Table 3.5. Quantitative measurements of leaves from Ilex coriacea and I. glabra. 

Apex Angle The angle between landmarks 10, 12, and 11
Base Angle The angle between landmarks 3, 2, and 4 
Area Area of leaf, including petiole 
Lower Teeth Number of teeth along lower leaf margin 
Upper Teeth Number of teeth along upper leaf margin 
Length of Blade Distance between landmarks 2 and 12 
Perimeter Perimeter of leaf including the petiole 
Width at ¼ Blade Distance between landmarks 4 and 5 
Width at ½ Blade Distance between landmarks 7 and 8 
Width at ¾ Blade Distance between landmarks 10 and 11 

Note: See Figure 3 and Table 3 for placement of landmarks. 
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Table 3.6. Summary statistics for AFLPs. 

Pop n #poly. loci HJ HT HS FST 
Ilex coriacea 105 407 0.16386 0.1840 0.1745 0.0518 
I. glabra 97 421 0.17798 0.1940 0.1884 0.0290 
Total 202 427 0.20208 0.2518 0.1709 0.3210 

Notes: n: number of samples; # poly. loci: number of polymorphic loci; HJ: Nei’s genetic 
diversity; HT: total gene diversity; Nei’s HS; Wright’s FST. 

 

 

Table 3.7. Analysis of molecular variance estimated using the ADONIS function for AFLP 
data from Ilex coriacea or I.glabra. 

 Source d.f. SS MS F - model R2 P (>F) 

a) 
 
 
 
 
b) 
 
 
 
 
c) 

Location 
Species nested in Location 
Residuals 
Total 
 
Ilex coriacea 
Location 
Residuals 
Total 
 
Ilex glabra 
Location 
Residuals 
Total 

6 
5 
190 
201 
 
 
4 
100 
104 
 
 
6 
90 
96 

4.00572 
13.82695 
22.95728 
40.78996 
 
 
1.44967 
10.24510 
11.69477 
 
 
1.67066 
12.71218 
14.38284 

0.66762 
2.76539 
0.12083 
 
 
 
0.36242 
0.10245 
 
 
 
0.27844 
0.14125 
 

5.52539 
22.88704 
.      -      . 
 
 
 
3.53747 
.      -      . 
 
 
 
1.97132 
.      -      . 
 

0.0982 
0.3390 
0.5628 
1 
 
 
0.1240 
0.8760 
1 
 
 
0.1162 
0.8838 
1 

< 0.0005 
< 0.0005 
.      -       . 
 
 
 
< 0.0005 
.      -       . 
 
 
 
< 0.0005 
.      -       . 
 

Notes: Variation was partitioned (a) among species nested within each location, then 
within each species among locations (b, c).  
 



 

 
 

Table 3.8. Estimates of pairwise FST. 

a)    VA   NC SC East FL West FL 
 VA     -- 0.0284    0.0022 * < 0.0001 * < 0.0001 *

 NC 0.0250     -- < 0.0001 *    0.0008 *    0.0008 * 
 SC 0.0428 0.0365        --    0.0006 *    0.0004 * 
 East FL 0.0923 0.0610    0.0522         --    0.0578 

West FL 0.0752 0.0614    0.0465    0.0246        -- 

 

b)     DE   VA      NC    SC   GA    East FL   West FL 
 DE     -- 0.0154    0.0062 0.0402 0.0074    0.0052    0.0032 
 VA 0.0344     -- < 0.0001 * 0.0516 0.0132    0.0056 < 0.0001 * 
 NC 0.0346 0.0569        -- 0.0004 * 0.0006 * < 0.0001 * < 0.0001 * 
 SC 0.0233 0.0144    0.0281     -- 0.1138    0.0070    0.0252 
 GA 0.0375 0.0125    0.0396 0.0083     --    0.1214    0.0542 
 East FL 0.0377 0.0229    0.0523 0.0192 0.0060        --    0.0594 
 West FL 0.0528 0.0400    0.0572 0.0227 0.0097    0.0106        -- 
 

c)    VA   NC    SC East FL West FL 
 VA     -- 0.0214 0.1238 0.0298 0.1138 
 NC 0.0031     -- 0.0674 0.0014 * 0.0360 
 SC 0.0079 0.0069     -- 0.0026 * 0.1116 
 East FL 0.0203 0.0400 0.0324     -- 0.0194 
 West FL 0.0101 0.0161 0.0071 0.0214     -- 

Notes: a) Among sampling locations of Ilex coriacea. b) Among sampling locations of I. glabra. c) Among sampling locations with 
combined I. coriacea and I. glabra. FST is below the diagonal and associated p-values based on resampling are above the diagonal. * 

Significant at p < 0.5 after Bonferroni correction for multiple comparisons. 

 



 

 
 

Table 3.9. Assessment of discriminant functions based on samples separated by regions and for all samples combined. 

 Efficiency Accuracy Type I Error
 I. coriacea I. glabra hybrids I. coriacea I. glabra hybrids
DE, VA, NC 1 1 1 1 1 1 0 
SC 1 1 1 1 1 1 0 
GA, East FL, West FL 1 1 1 1 1 1 0 
All populations 0.958 0.984 0.714 0.958 0.984 0.714 0.018 

Notes: See text for definitions of efficiency, accuracy, and type 1 error. Functions based on locational divisions performed better than 
the function with all samples combined. Hybrids were most often incorrectly assigned, followed by I. coriacea, likely because hybrids 
more closely resembled I. coriacea than I. glabra.  
 

  



 

 
 

Table 3.10. Measurements of quantitative variables in Ilex coriacea, I. glabra, and their hybrids. 

 
Apex 
angle 

Base 
angle 

Area (mm2) 
Left 
teeth 

Right 
teeth 

Length of 
blade (mm) 

Perimeter 
(mm) 

Width at ¼ 
blade (mm) 

Width at ½ 
blade (mm) 

Width at ¾ 
blade (mm) 

Ilex coriacea 
73.81 ± 
10.08° 

64.54 ± 
9.83° 

912.83 ± 
320.61 

2.65 ± 
1.90 

2.58 ± 
1.80 

53.64 ± 
10.66 

148.19 ± 
28.22 

17.06 ± 4.20 24.22 ± 4.85 20.32 ± 4.16 

Ilex glabra 
70.87 ± 
10.48° 

58.24 ± 
11.04° 

498.13 ± 
157.77 

1.79 ± 
0.90 

1.80 ± 
0.93 

41.46 ± 
8.11 

112.65 ± 
20.94 

11.51 ± 2.65 16.56 ± 3.52 14.75 ± 3.04 

Hybrid Samples      

P152C288 75.02° 55.77° 802.24 0 † 1 51.71 142.86 13.59 23.19 19.85 

P152CE02 77.70° 65.28° 566.31 3 4 † 41.95 117.36 13.54 19.84 17.07 

PBOBC191 84.67° 77.68° 662.57 0 † 2 41.23 117.97 16.74 † 23.31 19.01 

PBOBCE05 63.25° 48.81° 499.86 1 3 44.12 125.05 10.25 16.81 14.96 

PHUNC012 86.66° 83.72° † 723.50 4 † 1 41.93 120.41 19.04 †† 24.65 †† 20.11 

PHUNGE05 78.12° 77.17° 198.12 * 2 1 23.11 †** 71.28 †** 9.50 11.44 ** 9.49 ** 

PSOPC005 89.58° 85.54° *† 904.29 † 1 0 46.05 131.30 21.46 †† 28.29 †† 23.23 †† 

Notes: Means and standard deviations of morphological measurements are listed for each parental species. Hybrid samples are listed 
individually beneath the parental means. Colored cells represent values with a probability of 90% or less of belonging to a parental 
distribution based on a t-test to compare a single observation to the mean. Blue represents values outside the distribution of I. 
coriacea, yellow for values outside the range of I. glabra, and peach for transgressive traits. Symbols indicate significant differences 
from parental species. I. coriacea: * p < 0.05, ** p < 0.01; I. glabra: † p < 0.05, †† p < 0.01. 
 

 

  



 

 
 

Table 3.11. Character states of qualitative variables in Ilex coriacea, I. glabra, and their hybrids. 

Apex angle Apex shape Blade shape Base angle Base shape Extent of teeth Laminar symmetry Leaf margin 

0 1 0 1 2 0 1 2 0 1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

Ilex coriacea 45 3 1 10 37 43 4 1 47 1 16 22 6 4 3 14 8 23 14 6 13 15 3 0 5 40 

Ilex glabra 59 2 0 61 0 42 14 5 60 1 18 39 1 3 1 42 17 1 20 19 6 16 1 54 6 0 

Hybrids 7 0 0 2 5 6 1 0 7 0 4 3 0 0 0 3 3 1 2 2 0 3 0 1 0 6 

Notes: Yellow represents individuals with character states that more closely resemble those in I. coriacea than in I. glabra. The 
reverse is true for boxes highlighted in blue. 
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Figure 3.1: Endemic range Ilex coriacea and I .glabra with collection sites labeled. 
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Figure 3.2. SSample scan of leaves froom I. glabraa. 
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Figure 3.3. Example of landmarks on an I. coriacea leaf. 
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Figure 3.5. ΔK for structure runs using a K of 1 to 15. A K of 2 was most representative 

of the data 
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Figure 3.6. Results of STRUCTURE analysis K=2. Yellow corresponds to Ilex coriacea and blue to I. glabra. Each bar represents a 

single individual with the portion colored representing the posterior probability of the individual belonging to each cluster. Individuals 

are ordered by population from north to south (left to right). 
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Figure 3.9. Plots of first two linear discriminants from discriminant functions based on 

traditional morphological characters from samples of Ilex coriacea, I. glabra, and 

hybrids. a-c) Analyses of regional divisions of samples. d) Analysis of all samples 

combined. Regions were chosen based on geographic proximity, genetic similarity, and 

presence of hybrids. Individuals are plotted according to their taxonomic classification 

based on analysis of genetic admixture: yellow represents > 90% I. coriacea, blue 

represents > 90% I. glabra, and green represents hybrids, all individuals not classified as 

parental species. The first axis discriminates between parental species and the second axis 

discriminates the hybrids from parental species. In general, hybrid individuals more 

closely resemble I. coriacea than I. glabra.  

  



 

119 
 

Figure 3.9 
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CHAPTER 4: GENE FLOW BEGETS GENE FLOW: TESTING THE HYBRID 

BRIDGE HYPOTHESIS AND ITS ROLE IN ECOLOGICAL SPECIATION 

ABSTRACT 

Interspecific hybridization is common in plants and is known to affect plant resistance to 

herbivory either positively or negatively depending on the herbivore in question and the 

phenotype of the hybrids. The relative resistance of hybrids will affect the ability of 

herbivores to colonize hybrids and move between parental species. When populations of 

herbivores on different host plant species are genetically differentiated from one another, 

hybridization between the host plant species could affect how much gene flow occurs 

between the host forms. Here, I demonstrate that hybrid plants may be serving as ‘hybrid 

bridges’ to host forms of a leaf-mining fly, Phytomyza glabricola on its two holly hosts, 

Ilex coriacea and I. glabra. Hybridization between host plant species and the amount of 

gene flow between host forms of the fly vary among different locations. As hybridization 

rates of populations of its host plants increase, so does gene flow between host forms of 

the insect. Considering the number of plant species that hybridize, it is likely that hybrid 

bridges and barriers are important for many host form and host race systems. In addition, 

the presence of hybrid bridges indicates hybrid plants may allow host range expansion in 

specialized herbivores. Hybrid bridges may be the missing link explaining how adaptive 

radiations proceed in specialized lineages of herbivorous insects. 
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INTRODUCTION 

 Natural interspecific hybridization, successful matings in nature between two 

species, occurs in an estimated 25% of plant species (Ellstrand et al. 1996; Arnold 1997; 

Rieseberg 1997; Mallet 2005). First generation hybrids often share similarities with either 

parental species depending on the particular combination of alleles passed on from each 

parent (Lexer et al. 2009), but will also display intermediate and transgressive phenotypes 

(Rieseberg and Ellstrand 1993; Rieseberg et al. 1999). The resulting genotypic and 

phenotypic mosaics continues to increase with recombination in advanced generation 

hybrids (Carney et al. 2000; Travis et al. 2008), particularly between taxa with porous 

genomes (Lexer et al. 2009). These changes in genotypic and phenotypic diversity not 

only influence the ecology and evolution of the hybridizing species, but also affect 

communities of species affiliated with the hybridizing plants (Hochwender and Fritz 

2004). 

 A number of studies indicate hybridization can alter plant resistance to 

herbivorous species, directly and indirectly changing the abundance and community 

structure of phytophagous species (Whitham et al. 1994; Fritz 1999; Fritz et al. 1999; 

Whitham et al. 1999; Dungey et al. 2000; Hochwender and Fritz 2004; Wimp et al. 2005; 

Bangert et al. 2006; Bailey et al. 2009; Smith et al. 2011). Whether hybridization will 

result in an increase or decrease in species abundance and diversity depends on the 

particular combination of traits displayed in individual plant hybrids (Bailey et al. 2009). 

Changes in phenology (e.g., flowering date (Johnson and Agrawal 2005) and budburst 

(Hunter et al. 1997)), defensive chemistry (e.g., tannins (Bailey et al. 2006), glucosinate 

(Clauss et al. 2006), and flavonoids (Johnson et al. 2009)), defensive morphology (e.g., 
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trichome density (Clauss et al. 2006; Johnson 2008) and wax (Zalucki et al. 2002)), and 

nutritive quality (e.g., leaf water content, percent nitrogen (Strong et al. 1984; Huberty 

and Denno 2006; Johnson 2008)) can all impact the preference, performance, and 

distribution of beneficial and herbivorous species (Fritz 1999; Fritz et al. 1999; Orians 

2000; Carmona et al. 2011).  

 Depending on the fitness of herbivorous species on hybrid plants relative to the 

parental plant species, hybrids can serve as bridges (Floate and Whitham 1993) or 

barriers to movement between plant species. If specialized herbivores have moderate 

fitness on hybrids relative to the natal host plant species, but low fitness on the alternate 

parental plant species, hybrid plants can serve as ecological and evolutionary bridges 

allowing the herbivores to gradually adapt to the non-natal species (‘hybrid bridge 

hypothesis’; Floate and Whitham 1993; Whitham et al. 1999). If, on the other hand, 

herbivores have low to zero fitness on hybrid plants, natural selection should favor 

avoidance of hybrid plants, potentially resulting in reproductive isolation between 

populations of herbivores associated with each parental species (Barton 2001).  

Although plant hybridization has received little attention in regards to the 

evolution of host-associated differentiation (Dres and Mallet 2002), hybrid bridges and 

barriers could affect the degree of specialization and genetic divergence among host 

forms. The role of host plant hybridization in host-associated differentiation, and 

potentially speciation, has not been tested partially due to a lack of appropriate systems. 

An effective method requires sympatric host plant species, hybridization between the 

hosts, and herbivorous species specialized on one or both of the parental plant species. 
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In this study, a native species of leaf-mining fly, Phytomyza glabricola Kulp, and 

its two native holly hosts, Ilex coriacea (Pursh) Chapman and I. glabra (Linnaeus) Gray 

were used to study the effects of host plant hybridization on genetic distance in insect 

host forms, host-associated populations where the kind and degree of host-associated 

variation have not been fully examined (Funk 2012). Phytomyza (Diptera: Agromyzidae) 

is a large genus (> 400 species) of flies mainly composed of monophagous leaf-miners 

(Spencer et al. 1986; Spencer 1990). Phytomyza glabricola belongs to a radiation of 14 

closely related species, all of which feed on hollies in the genus Ilex, and most of which 

are monophagous (Kulp 1968; Scheffer and Wiegmann 2000; Lonsdale and Scheffer 

2011). In contrast, P. glabricola feeds on two native species of holly, the ancestral host, I. 

glabra, and I. coriacea, which are sympatric for much of their range (Scheffer 2002; 

Chapters 1-3). The adults from each host do not appear to differ morphologically in either 

external characters or genitalia (Scheffer 2002). The leaf-miners do, however, differ in 

development time, taking nine months to develop on I. coriacea versus two to four weeks 

on I. glabra (Kulp 1968; Al-Siyabi and Shetlar 1998; Scheffer 2002). Despite differences 

in development time among host plant species, adult P. glabricola emerge in synchrony 

in mid-January to mid-February (Scheffer 2002).  

The host plants of the leaf-miners, I.coriacea and I. glabra, are members of the 

family Aquifoliaceae (hollies), that consists of a single extant genus (Powell et al. 2000), 

Ilex (L.) of approximately 600 species (Loizeau et al. 2005). The two species are 

evergreen shrubs native to pocosins, hammocks, baygalls, and long-leaf pine forests on 

the coastal plain of the eastern United States (Duncan and Duncan 1987; Godfrey 1988). 

The more cold tolerant I. glabra grows from coastal Nova Scotia south to Florida, and 
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along the Gulf of Mexico into eastern Texas (Duncan and Duncan 1987; Figure 1). The 

range of I. coriacea is completely encompassed within the range of I. glabra, extending 

from southern Virginia to northern Florida and Texas. Throughout its range, I. coriacea is 

sympatric and often syntopic with I. glabra (Scheffer 2002; Chapters 1-3), the more 

abundant of the two species (Mohlenbrock 1976; Richardson 1983; Brewer 1998; 

Brockway and Lewis 2003; Clark et al. 2008). The two are likely sister species (Manen et 

al. 2010) and hybridize in the wild (Chapter 3). Although hybridization rates are 

consistently low, they do vary among locations (Chapter 3). 

No-choice mating trials have revealed that P. glabricola from the same host plant 

will mate, oviposit, and develop on either holly species but cross-host mate pairs failed to 

produce offspring (Chapter 1). The reproductive isolation seen in the mating trials is also 

expressed as host-plant based genetic structure (Scheffer and Hawthorne 2007), and 

genome scans of the flies show signs of divergent selection, suggesting they may be in 

the midst of ecological speciation (Chapter 2). The combination of sympatry throughout 

the range of I. coriacea, natural variation in rates of hybridization among the Ilex species, 

and the presence of host forms in P. glabricola allow me to test whether hybrid plants 

serve as a bridge or barrier for these flies. To examine the relationships between host 

plant hybridization and gene flow in the insects, I will focus on population-level and 

individual comparisons of flies and their host plants. I ask how does genetic divergence 

in host forms of P. glabricola change in relation to the degree of hybridization among 

I. coriacea and I. glabra? Previous work has demonstrated a geographic mosaic of 

hybridization and phenotypic divergence among locations of the two Ilex species 

(Chapter 3) and a geographic mosaic of genetic divergence among host-associated 
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populations of flies (Chapter 2), allowing for population-level comparisons of gene flow 

between fly populations and gene flow between holly species. In addition, flies were 

collected as pupae within their leaf-mine allowing for direct genetic comparison of the fly 

and its host plant. 

The relationship between genetic divergence in the flies and hybridization in the 

host plants will depend on the hybrid phenotypes for traits that affect host plant use in the 

flies. If these traits are intermediate in hybrids, host forms of P. glabricola specialized to 

each parental species could encounter one another on hybrid plants, potentially increasing 

gene flow and decreasing genetic divergence between host forms (Floate and Whitham 

1993; Gange 1995). If so, I expect a positive relationship between gene flow in the plants 

and gene flow in the insects (Figure 4.2). On the other hand, if hybrid plants have novel 

or transgressive traits rendering them unpalatable to the flies, I expect hybrids to serve as 

‘barriers’, increasing genetic divergence between host forms, resulting in a negative 

relationship between gene flow in the plants and gene flow in the insects. Finally, there 

could be no relationship at all between hybridization in host plants and gene flow in 

insects because of a phenotypic mosaic of important traits, some of which may attract 

flies from either parental host plant species and some of which may deter flies. 

METHODS 

Collections 

 Leaf-mines and leaves were collected in January through March of 2006 from 

Croatan National Forest, NC and Francis Marion National Forest, SC, and again in 2007 

with additional samples from Cape Henlopen State Park, GA, the Great Dismal Swamp 

National Wildlife Refuge, VA, Crooked River State Park, GA, Etoniah Creek State 
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Forest, FL, and Apalachicola National Forest, FL (Figure 4.1, Table 4.1). Ilex glabra was 

found at every site, however I. coriacea was not found at two sites (DE and GA), the first 

of which is outside the known geographic range of I. coriacea. Both years, leaves 

containing well-developed leaf-mines and visible larvae were removed from host plants 

and placed into plastic bags labeled with site, date, and putative host plant species. In 

2007, in addition to the leaf-mines, the stem closest to the base of the plant with at least 

five leaves and no new growth was removed from each plant and placed with the 

collected leaf-mine, if present, or into its own plastic bag labeled with site, date, and 

putative species if no leaf-mine was present on the plant. Pupae were later dissected from 

the leaf-mines and placed individually in 0.5 mL Eppendorf tubes and stored in a moist 

chamber until the emergence of adults, at which point adult flies were placed in 100% 

ethanol and stored at -80°C. After dissection of mines, leaves were placed in labeled coin 

envelopes and stored at -80°C. 

AFLPs 

A total of 202 plants (97 I. coriacea, 95 I. glabra, and 10 hybrids) and 183 flies 

(96 from putative I. coriacea, and 87 from putative I. glabra) were genotyped using 

AFLPs. Methods were as described in Chapters 2 and 3. Briefly, all samples were 

genotyped using four primer pair combinations (Chapters 2, 3). PCR products were 

separated with an ABI 3730 DNA Analyzer (Applied Biosystems, Carlsbad, CA) using 

MapMarker X-Rhodamine (ROX) labeled 1000bp ladder (BioVentures, Murfreesboro, 

TN). Electropherograms were scored using either GENEMAPPER v.3.7 (Applied 

Biosystems, Carlsbad) or GENEMARKER (Soft Genetics, LLC, State College, PA) for the 

flies and plants, respectively. Six individuals were replicated across plates, and ten 
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individuals within plates, to test for repeatability. In addition, negative controls (H2O 

template) were run for every step of the process. After scoring, loci with peaks in the 

negative controls were removed from the analysis, as were loci with peak mismatches 

among repeated samples. Finally, loci with small fragment frequencies were removed to 

eliminate any negative correlation of fragment frequency and fragment size that may be 

caused by excessive homoplasy (Vekemans et al. 2002). 

Analyses 

 The hybrid index was chosen to quantify the degree of hybridization contributing 

to an individual sample. The hybrid index is an allele-frequency based estimate of the 

proportion of alleles in an individual that are inherited from one of two parental 

populations or species (Buerkle 2005). The index ranges from 0 to 1 where, for this 

study, 0 represents either flies collected from I. coriacea (hereafter “coriacea-flies”) or 

samples of I. coriacea and 1 represents either flies collected from I. glabra (hereafter 

“glabra-flies”) or samples of I. glabra. Reference samples are needed to estimate hybrid 

indices, therefore samples were classified as parental if the sample had a 0.99 or greater 

membership in a parental category as assigned by NEWHYBRIDS (Anderson and 

Thompson 2002; Anderson 2008; see Chapters 2,3 for details). A total of 30 coriacea-

flies and 51 glabra-flies, and 84 I. coriacea and 89 I. glabra were classified as reference 

samples. Hybrid indices were estimated for each individual using the HINDEX function in 

the package INTROGRESS (Buerkle 2005; Gompert and Buerkle 2009, 2010) using the 

statistical package R (R Development Core Team 2010). Although codominant markers 

are preferred for estimating the hybrid index (Buerkle 2005), dominant markers can be 

used if enough markers are used with divergent allele frequencies in parental species (van 
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Loo et al. 2008; Bellusci et al. 2010; MacKay et al. 2010; Vereecken et al. 2010; Hrsak et 

al. 2011; Xu et al. 2011).  

 The resulting hybrid indices were then used in two ways. Direct comparisons 

were made between the hybrid index of individual flies and plants if both the fly and 

plant were successfully genotyped. Individual comparisons allowed visual examination of 

the distribution of coriacea-flies, glabra-flies, and genotypic intermediates on I. coriacea, 

I. glabra, and their hybrids. The presence of both coriacea-flies and glabra-flies, or of 

intermediates, on hybrid plants would be an indication hybrid plants are serving as a 

bridge rather than a barrier to gene flow. If, instead, no flies are found on hybrid plants, 

plants are likely serving as a barrier to gene flow. 

 Many genotyped samples of plants did not have corresponding genotypes for 

flies, and vice versa (Table 4.1), therefore hybrid indices were combined to perform 

population-level comparisons. Rather than using FST, which eliminates much of the 

information regarding introgression of alleles, mean hybrid index scores were calculated 

for each population. Previous work with mean hybrid index scores were not corrected for 

parental identification (Bennuah et al. 2004; Burgess et al. 2005; Zitari et al. 2012), 

which could result in misleading averages close to 0.5 for populations with roughly equal 

numbers of samples from each parental species. Therefore, an adjusted hybrid index was 

created to estimate the amount of introgression present in a given population. Hybrid 

index estimates above 0.5 were subtracted from 1 to normalize the data (Figure 4.3) 

resulting in a value of 0 for parental individuals and values between 0 and 0.5 for 

individuals with mixed ancestry. For populations with a minimum of 5 individuals, the 
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adjusted hybrid indices were averaged across all individuals within a given population to 

get an estimate of the degree of introgression for that population.  

A linear regression was used to test whether the mean adjusted hybrid index of fly 

populations depends on the mean adjusted hybrid index of plant populations. Holly 

species are much longer lived than the leaf-miners that feed on them, and are more likely 

to affect gene flow of the flies than vice versa. The flies are not typically present during 

the blooming periods of their host plants, and are therefore not likely pollinators of the 

holly species. If hybrid plants are serving as a hybrid bridge, then more flies should be 

moving between host plants, resulting in a positive relationship between hybridization in 

plants and gene flow in the flies (Figure 4.2a). If, instead, hybrid plants are serving as a 

hybrid barrier to gene flow, then greater hybridization in plants should result in lower 

gene flow among host-associated populations of flies (Figure 4.2b). A non-significant 

correlation would indicate no relationship between hybridization in the plants and 

hybridization in the flies (Figure 4.2c). The linear regression was estimated using the 

function LM using the statistical package R (R Development Core Team 2010). For 

regressions of a single variable and the response, the function conducts a generalized 

linear model based on a Gaussian distribution.  

RESULTS AND DISCUSSION 

 A total of 427 AFLP markers were retained for I. coriacea and I. glabra and a 

total of 267 markers for coriacea-flies and glabra-flies (Chapters 2, 3). Markers in the 

plants ranged from 76-720bp in length, with 79% having a fragment size above 200bp. In 

the flies, markers ranged from 78-792bp in length with 92% of the markers above 200bp.  
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Variation in hybrid indices among populations 

There was much more variation in the hybrid indices of flies than in the hybrid 

indices of plants (Figure 4.4, Appendix F, G), which is not surprising given the plants are 

considered different species, whereas the flies are currently considered host forms 

(Chapter 2). Previous work revealed reproductive isolation among host forms of 

P. glabricola (Chapter 1), but genetic data suggests the flies are not yet different species 

and are likely undergoing ecological speciation (Chapter 2). However, if the flies are 

different species, there has likely not been enough time for lineage sorting to differentiate 

neutral loci among the species, reflected here as intermediate hybrid index scores. 

In both plants and flies, the lowest average adjusted hybrid indices were in Cape 

Henlopen, as expected as it is outside the range of I. coriacea. In addition, both plant and 

fly populations had the highest scores in western Florida (Sopchoppy and Hunters 

populations, respectively), suggesting hybridization is much more prevalent in that area. 

A number of factors could explain the increased adjusted hybrid index in southern 

populations. Both I. coriacea and I. glabra are dioecious and pollinators are required for 

reproduction (Galle 1997). Ilex glabra is much more abundant in the south, whereas 

I. coriacea is patchily distributed throughout its range, so the higher relative abundance 

of I. glabra in the south could increase interspecific pollination relative to intraspecific 

pollination in I. coriacea. In addition, southern populations of I. coriacea begin blooming 

weeks before I. glabra (Godfrey 1988), but the degree of overlap in blooming time for 

these species is unknown. If the period of overlap is higher in southern populations than 

the populations farther north, it could explain the higher levels of gene flow among the 

plants in those locations.  
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The surrounding environment also differs across the geographic distribution of 

I. coriacea and I. glabra. Populations of I. coriacea and I. glabra differ in the 

surrounding plant communities; particularly the presence of Serenoa repens (Bartr.) 

Small (saw-palmetto) in the south. Pollinator communities may also vary spatially and 

temporally (Herrera 1988; Schemske and Horvitz 1990; Ashman and Stanton 1991; 

Eckhart 1992; Cane and Payne 1993; Moeller 2005). Differences in competitive ability 

among hybrid and parental plants against S. repens or other sympatric species, or 

variation in pollinator communities could potentially explain why hybridization rates 

were higher in southern populations. However, these factors are not likely to directly 

influence the degree of gene flow among host forms of the flies. 

Variation in gene flow can also be heavily influenced by evolutionary history. 

Although I have no data on the historical distributions of I. coriacea and I. glabra, it is 

reasonable to surmise that I. glabra could have been driven south during the Pleistocene 

(Davis 1981; Delacourt and Delacourt 1984). A longer period of sympatry between 

I. coriacea and I. glabra in southern populations relative to the more northern distribution 

would increase the chance that hybridization would occur in the southern part of the 

distribution, and if the flies have been on the plants for that long of a period, they too may 

have had more chances for gene flow. 

The variation in the degree of host-associated genetic divergence is expected to be 

influenced by environmental differences among locations, but is more likely due to 

indirect effects mediated by the host plant than direct effects from the outside 

environment. For example, flies on I. glabra experience multiple generations in a year, 

whereas flies on I. coriacea have only a single generation (Scheffer 2002), and 
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development time is influenced by the environment (Chapter 1), meaning higher 

temperatures and increased daylight hours in the south could increase developmental 

rates of flies in these locations. The additional generations in flies emerging from 

I. glabra would allow selection to more efficiently eliminate slightly deleterious alleles 

and increase the probability that any hybrid flies present would backcross to glabra-flies, 

increasing genetic divergence among host forms of the flies. However, I see decreased 

genetic divergence in southern populations, suggesting differences in development time 

are not the driving force underlying differences in genetic divergence. Instead, if hybrid 

plants are influencing the rate of gene flow among host forms of the insects, such as 

serving as a hybrid bridge, then the increased hybridization rates in the south could allow 

host forms of the flies to encounter one another via hybrid plants regardless of the cause 

of variation in hybridization rates among I. coriacea and I. glabra. 

Hybrid bridge 

A significant positive relationship was found between the average adjusted hybrid 

indices of flies and plants among locations with both host forms (R2 = 0.6717, 

F1,4 = 8.182, p = 0.04591; Figure 4.5). The averages from CHE were not included in the 

regression analysis because they are outside the range of I. coriacea, but serve as a 

control because they should have the lowest hybrid indices (Figure 4.5). Populations of 

plants with the highest scores (and therefore the highest hybridization rates) had the 

highest rates of gene flow in the flies, and the same was true for the lowest scores (Figure 

4.5), matching the expectation for hybrids serving as bridges for flies among host plant 

species. The correlation is primarily driven by the Hunters population from western 

Florida, (without HUN, R2 = 0.1313, F1,3 = 0.4535, p = 0.5489), but I believe that point is 
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valid. Plants from populations in Florida are more difficult to identify than plants in the 

northern populations (JBH, S. J. Scheffer, personal observation), suggesting higher 

hybridization rates in the south (Chapter 3). Had I sampled from additional southern 

populations in Alabama, Louisiana, and Mississippi as well as further out the panhandle 

of Florida, I would have likely found average hybrid indices at or above the level found 

in Hunters. 

 It was much harder to find a specific pattern from comparisons of individual flies 

and their hosts, mainly due to low numbers of hybrid plants (Chapter 3), and even lower 

numbers that also had corresponding genotyped flies (Table 4.1). Of the two plants 

identified as hybrids, one was associated with a fly with mixed ancestry, and one was 

associated with a glabra-fly (Figure 4.4), indicating female glabra-flies will oviposit on 

hybrid plants, and their offspring can survive to adulthood there. In addition, at least one 

coriacea-fly X glabra-fly offspring survived to adulthood on a hybrid plant, whereas most 

hybrid flies are found on I. coriacea. Based on these data, I cannot say whether the 

individual is the result of a glabra-fly female mating with a coriacea-fly male, but given 

the glabra-fly that emerged from the other hybrid plant, it is a distinct possibility. Further 

observations are needed to determine which flies are more likely to move among the 

different holly species and their hybrids, and which are more likely to oviposit on a non-

natal host species. 

Patterns of introgression 

 When introducing the hybrid bridge hypothesis, Floate and Whitham (1993) made 

specific predictions regarding the movement of taxa between parental plants and their 

hybrids: as the degree of hybridization and backcrossing to a parental species increases, 
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the number of intermediate steps between that parental species and hybrids should also 

increase, increasing the likelihood the insects will move to the hybrid plants. Therefore, if 

hybridization is asymmetrical between parental host species, insects should move 

primarily in the same direction as the asymmetry.  

Asymmetrical introgression was found in the plants, with primarily I. glabra 

alleles in the I. coriacea genetic background (Chapter 3). There are several potential 

explanations for this asymmetry. First, the abundance of I. glabra is much larger than 

I. coriacea, both within a given location and over a larger geographic range. Although F1 

individuals are more likely to backcross to the more abundant species, backcrosses to the 

less abundant species will be easier to genetically discern from parental and F1 

individuals, resulting in asymmetrical introgression, with primarily alleles from the more 

abundant species in the genetic background of the less abundant species (Nason et al. 

1992; Carney et al. 2000; Burgess et al. 2005). Because I. glabra is more abundant than 

I. coriacea, abundance alone could explain the higher number of individuals identified as 

backcrosses to I. coriacea.  

 Alleles conferring increased fitness are expected to introgress more often than 

neutral or deleterious alleles (Barton 2001; Borge et al. 2005; Whitney et al. 2006). Ilex 

glabra tolerates a wider range of ecological conditions than I. coriacea including soil 

texture, calcium carbonate, pH, salinity, and temperature (USDA 2012), and is also more 

tolerant of dry conditions (Mohlenbrock 1976; Brooks et al. 1993). If competition for 

space and resources is important, introgression of traits allowing greater tolerance of 

variation in these conditions would be more likely to allow I. coriacea to potentially 
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expand its microhabitat whereas less would be gained by I. glabra, matching the 

observed pattern in these species.  

Range expansions are also expected to show patterns of unidirectional 

introgression from the local species into the invading species (Currat et al. 2008; 

Excoffier et al. 2009). If I. glabra has always had a more northern distribution than 

I. coriacea, and both species were pushed further south during the Pleistocene, when the 

species moved back north during post-glaciation, I. coriacea could have moved into the 

current range, still occupied by I. glabra.  

As predicted by Floate and Whitham (1993), the flies show the same pattern of 

asymmetrical introgression consisting of primarily glabra-fly alleles in the coriacea-fly 

genetic background (Chapter 2). Not surprisingly, the morphology of the leaves in 

I. coriacea x I. glabra hybrids more closely resemble those of I. coriacea than I. glabra 

(Chapter 3), indicating traits important to host use by the flies could likely show the same 

pattern. However, the same pattern of asymmetry could also be coincidence. Flies on 

I. glabra are multivoltine whereas flies on I. coriacea are univoltine (Scheffer 2002). If 

voltinism has at least a partial environmental component linked to the host plant 

(Chapter 1), F1 and backcrossed flies on I. glabra will have multiple generations in which 

they will likely mate back to the parental glabra-flies, potentially masking bidirectional 

gene flow by eliminating easily identifiable glabra-fly backcrosses. The development 

time of flies on hybrid plants remains unknown, so I cannot predict how it may differ 

from that on I. coriacea or I. glabra, if at all. Work is needed to determine the cause of 

delayed development of P. glabricola on I. coriacea, and how it may change in hybrid 

plants. 
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Previous work suggests I. glabra was the ancestral host for P. glabricola, and the 

flies expanded onto I. coriacea (Chapter 2). If a hybrid bridge was responsible for the 

initial host range expansion and backcrossing increases the number of intermediate steps 

between parental taxa, current patterns of introgression indicate the initial move from 

I. glabra to an intermediate likely required more change than from the intermediate to 

I. coriacea but less of a shift than directly from I. glabra to I. coriacea (Floate and 

Whitham 1993). This suggests either the initial hybrid host plants (presumably F1) were 

phenotypically similar to I. glabra in traits that mattered to the flies or that gene flow 

among I. coriacea and I. glabra has changed since the initial expansion. Hybrids between 

I. coriacea and I. glabra contain a phenotypic mosaic of parental, intermediate, and 

transgressive traits (Chapter 3), suggesting multiple hybrid plants could have been 

colonized by glabra-flies on an evolutionary time scale. In addition, the relative 

abundance of the two host plant species has likely changed over time, and if abundance is 

responsible for asymmetrical introgression, introgression may have been more equally 

bidirectional in the past. Either way, it appears possible that hybrid plants may have 

allowed the initial host range expansion of flies in this highly specialized lineage. 

Potential mechanisms 

Many factors could be affecting the performance of P. glabricola on the hollies 

and their hybrids. Phytophagous insects are known to respond to the genetic composition 

of plants via their defensive chemistry (i.e. secondary metabolites; Bangert et al. 2006). 

Many holly species contain ursolic acid, phenylpropanoids, and arbutin (Choi et al. 

2005), all of which have been associated with plant defense (Martin 1964; Levin 1971; 
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Korkina 2007); however I. coriacea and I. glabra have not yet been examined for the 

presence of these compounds.  

A recent meta-analysis revealed physical plant traits, rather than chemical ones, 

have the strongest negative correlation with endophytes, followed by phenological traits 

and physiological traits such as water content and nitrogen concentration (Carmona et al. 

2011). As apparent by their names, I. coriacea and I. glabra are both coriaceous, 

containing thick, leathery, and highly cutinized leaves (Caughey 1945), and glabrous, 

without surface ornamentation such as bristles or hairs. The waxy leaves have no effect 

on transpiration rates (Caughey 1945), but could potentially serve as protection against 

oviposition from leaf-miners (Zalucki et al. 2002).  

Phenologically, I. coriacea blooms weeks before I. glabra for at least part of their 

overlapping range (Godfrey 1988), so the plants could also differ in the timing of new 

growth. Physiologically, I. glabra is considered less nutritious than other plants found in 

pocosin habitats (Smith et al. 1956), and its growth is deterred by competing plant species 

(Hagan et al. 2009, 2010). If nutrition content of hybrid plants differs from parental 

plants, it could affect host choice and survival of the flies.  

Plants can also indirectly control herbivory by attracting predators and 

parasitoids. Parasitoids are likely the highest source of mortality in these flies, with rates 

varying from 50-100% parasitism among locations (JBH unpublished). Reduced 

parasitism rates on hybrid plants could allow greater survival, increasing the likelihood 

coriacea-flies and glabra-flies will survive and encounter one another on the hybrid plants 

(Fritz et al. 1999). Estimates of parasitism rates on the hybrid plants in this study (60%) 

appear to be intermediate between rates on I. glabra (64%) and those on I. coriacea 
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(52%). To fully understand how hybrid plants are serving as hybrid bridges, more work 

needs to be conducted to examine the nature of host plant selection by P. glabricola, and 

the specific plant traits that affect larval performance on these species and these hybrids. 

 I must point out that not all hybrid plants had leaf-mines (Table 4.4). I have not 

yet been able to determine whether flies avoid ovipositing on these plants, larvae are 

unable to survive, or plants drop the leaves with mines. Nonetheless, it indicates that 

some individual hybrid plants could serve as barriers rather than bridges. Hybrid plants 

likely represent a phenotypic mosaic of traits (Lexer et al. 2009; Chapter 3), where 

different combinations of novel, intermediate, and parental traits can be found among 

hybrid individuals. The particular combination of traits will be controlled by the 

particular combination of alleles from parental species combined with genetic 

recombination in backcrosses (Whitham 1989; Fritz 1999; Dungey et al. 2000). The 

effects of these combinations on herbivores will depend on the particular trait of interest 

and the composition of hybrids in that location. Having evidence for both hybrid bridges 

and hybrid barriers is not a paradox, but is just representative of the natural variation 

present in host plant populations.  

 The evolutionary and ecological influence of hybrid bridges and barriers will 

likely vary among populations. If some populations have high numbers of hybrids that 

serve as barriers, herbivores will likely be more adapted to parental species in those 

populations, and may have increased preference for parental plants to avoid the hybrid 

barriers (Barton 2001). On the other hand, populations with high numbers of hybrids that 

serve as bridges will tend have less specialized herbivores and potentially less stringent 

preferences. The combination of bridges and barriers among locations will likely result in 
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a geographic mosaic of genetic divergence among associated herbivore populations 

(Thompson 2005; Edelaar and Benkman 2006; Barbour et al. 2009; Thompson 2009; 

Marsden et al. 2011; Barman et al. 2012).  

Conclusions 

 Variation in average adjusted hybrid indices among locations indicates a 

geographic mosaic of hybridization between I. coriacea and I. glabra, and a geographic 

mosaic of genetic divergence among host forms of P. glabricola. Southern populations of 

both host plants and the flies had higher average adjusted hybrid indices than northern 

populations, likely reflecting environmental variation such as differences in relative 

abundance of I. glabra among locations, which then cascaded through the plants to affect 

the flies. 

 The positive correlation between host plant hybridization and gene flow between 

host forms of P. glabricola suggest hybrid plants serve as a bridge for the flies between 

parental host plant species. Hybrid plants could be responsible for the initial host range 

expansion from I. glabra to I. coriacea in these flies. Since the initial expansion, 

differences in development time on each host have resulted in host plant-mediated 

genetic divergence among populations on each host. Subsequent adaptation to each host 

is driving ecological speciation among the host forms of the flies. However, the host 

forms are not yet new species, potentially due to gene flow promoted by hybrid bridges. 

 Much work on plant-insect coevolution has focused on host-range expansions 

followed by genetic divergence among lineages due to specialization and reproductive 

isolation on each host (Weintraub et al. 1995; Hawthorne and Via 2001; Ronquist and 

Liljeblad 2001; Nosil 2002; Janz et al. 2006; Janz and Nylin 2008). Hybrid bridges could 
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help explain how host range expansions in phytophagous insects first occur, particularly 

in highly specialized insect lineages (Kelley and Farrell 1998; Stireman 2005; Janz and 

Nylin 2008; Groot et al. 2011), such as Phytomyza (Spencer et al. 1986; Spencer 1990). 

Hybrids intermediate in traits important for host-use could ease the transition to the new 

host species (Floate and Whitham 1993). As insects adapt to the new host, genetic 

divergence is likely to increase due to divergent selection. Variation in hybridization rates 

among host plants and gene flow among insects and the genetic basis of and strength of 

selection on host preference and performance would likely result in a geographic mosaic 

of genetic divergence among host forms of insects, which if coupled with reproductive 

isolation, could result in a geographic mosaic of speciation (Thompson 2005; Edelaar and 

Benkman 2006; Barbour et al. 2009; Thompson 2009; Marsden et al. 2011; Barman et al. 

2012). 

 Knowing hybridization is common in plants (Ellstrand et al. 1996; Rieseberg 

1997), it is likely that hybrid bridges and barriers exist in many plant-insect systems, and 

could be largely responsible for the high diversity of species in both. The cost and effort 

required to generate the number and types of markers with the number of individuals 

needed to detect hybridization are decreasing rapidly (Glenn 2011), improving our ability 

to test how hybridization affects the evolution of interacting species. Increased effort will 

likely reveal that plant hybridization is the missing link explaining how adaptive 

radiations proceed in highly specialized lineages of insects. 

  



 

 
 

Table 4.1: Genotyped sample sizes from each population.  

    Ilex coriacea Ilex glabra 

State  Site  Population Plants Flies Combo Plants Flies Combo

FL  Apalachicola National Forest  Hunters (HUN) 9 6 4 8 1 1 
    Sopchoppy (SOP) 5 0 0 1 0 0 

  Etoniah Creek State Forest  East V (EAV) 0 0 0 10 0 0 
    Stuck in Sand (SIS) 10 5 4 8 9 7 

GA  Crooked River State Park  Crooked River (CRG) 0 0 0 10 3 2 

SC  Francis Marion National Forest  Big Ocean Bay (BOB) 18 19 7 13 21 3 
    Wambaw Trail (WAM) 20 19 12 12 18 1 

NC  Croatan National Forest  Catfish Lake (CAT) 10 18 0 9 3 0 
    Road 152 (152) 23 27 14 10 21 1 

VA  Great Dismal Swamp National Wildlife Refuge  Great Dismal Swamp (GDS) 9 2 1 9 1 0 

DE  Cape Henlopen State Park  Cape Henlopen (CHE) 0 0 0 8 10 7 

  Total 104 96 42 98 87 22 

‘Combo’ refers to combinations of individual genotyped flies and the genotyped plant from which they were collected. 
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Table 4.2. Adjusted hybrid indices for plant populations. The standard hybrid index was 

adjusted so that all ‘parental’ individuals have an index of 0 and an index above 0 

indicates some level of mixed genotype (see text). Adjusted indices were then averaged 

over all individuals in a population. 

Population N Mean Standard Deviation Standard Error of Mean 
HUN 17 0.052938 0.132544 0.032147 
SOP 6 0.072731 0.143235 0.058475 
EAV 10 0.014748 0.028223 0.008925 
SIS 18 0.026783 0.04746 0.011187 
CRG 10 0.00803 0.013211 0.004178 
BOB 31 0.025078 0.085422 0.015342 
WAM 32 0.020816 0.059917 0.010592 
152 33 0.015237 0.049879 0.008683 
CAT 19 0.026697 0.067206 0.015418 
GDS 18 0.014552 0.021252 0.005009 
CHE 8 0.006347 0.015464 0.005467 
 
 

Table 4.3. Adjusted hybrid indices for fly populations. The standard hybrid index was 

adjusted so that all ‘parental’ individuals have an index of 0 and an index above 0 

indicates some level of mixed genotype (see text). Adjusted indices were then averaged 

over all individuals in a population. 

Population N Mean Standard Deviation Standard Error of Mean 
HUN 7 0.278335 0.181328 0.068536 
SIS 14 0.172567 0.164555 0.043979 
CRG 3 0.121203 0.128849 0.074391 
BOB 40 0.094846 0.110644 0.017494 
WAM 37 0.104827 0.124812 0.020519 
152 48 0.142987 0.151814 0.021912 
CAT 21 0.208212 0.142443 0.031084 
GDS 3 0.237584 0.244655 0.141252 
CHE 10 0.065696 0.092991 0.029406 

 
 



 

143 
 

Figure 4.1: Endemic range Ilex coriacea and I .glabra with collection sites labeled. 
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Figure 4.2. Hypothesized effects of gene flow in plants on gene flow in insects. Ha: If traits important for host use in insects are 

intermediate in hybrid plants, insects from both parental host plant species could encounter one another on hybrid plants, potentially 

resulting in gene flow between insects that otherwise would not encounter one another. Therefore, the more hybridization found in a 

given location with both host plants, the more gene flow that would be expected to be seen between host-associated insect populations 

or species. Hb: If traits important for host use in insects are novel or transgressive in hybrid plants, they could prevent insects from 

either parental host plant species from using the novel host, potentially selecting for greater host fidelity, decreasing gene flow 

between host-associated insect populations or species. Hc: If traits important for host use in insects display a range of phenotypes 

from parental to intermediate to novel, there may be no association between hybridization in host plants and gene flow in insects. 

  



 

 
 

Figure 4.2 
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Figure 4.3. Adjusted hybrid index: The hybrid index varies between 0 and 1 where 0 represents an individual from species (or host-

associated population) A with no mixed ancestry and 1 represents an individual from species (or host-associated population) B with no 

mixed ancestry. Individuals with hybrid indices between 0 and 1 represent individuals with some degree of mixed ancestry, where 0.5 

would represent an F1 hybrid. If hybrid indices are averaged in a location with both A and B, the average would likely be an 

intermediate value closer to the species (or host-associated population) with the larger sample size. Therefore, hybrid indices were 

standardized by subtracting any values greater than 0.5 from 1, resulting in values between 0 and 0.5 where 0 represents parental and 

0.5 represents an F1 hybrid. The image on the left contains the original hybrid indices of individuals from NC followed by their 

adjusted hybrid index on the right. Once values have been standardized, they can be averaged for a population to obtain a comparable 

estimate of the degree of hybridization within a given population. 

  



 

 
 

Figure 4.3 
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Figure 4.4. Comparison of hybrid indices of individual flies on their host plants. Hybrid indices were generated based on AFLPs. 

Shape indicates plant status and color indicates fly status using a 10% threshold to be considered a ‘hybrid’. 
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Figure 4.5. Average adjusted hybrid indices of populations. Populations had a minimum of five individuals present. Population CHE 

was left out of the regression analysis because it is out of the range of I. coriacea. 
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APPENDIX A: Code written in R to calculate linkage disequilibrium between dominant 

markers 

########################################################################
# Code for calculating Linkage Disequilibrium between dominant loci based on  

# equations from Hill 1974. 
######################################################################## 
 
rm(list=ls()) 
 
utils:::setWindowTitle(paste("=",getwd())) 
 
#########################       READ ME     ############################## 
# The input file should be a tab-delimited text file 
# The file should consist of a first column identifying a sample (individual) 
# followed by the markers 
# The first row should be the marker names 
# The markers should all be in binary format. 
# This is not set up to handle missing data, nor is it set up to handle data 
# with more than 2 alleles or haplotypes.  I may be able to modify this as needed. 
###################################################################### 
 
cat("\n")       # outputs an empty line 
cat("Enter input file name","\n")    # Don't forget the .txt 
inputfile<-readLines(n=1) 
 
cat("Enter output file name","\n")    # Don't forget the .txt 
outputfile<-readLines(n=1) 
 
genos<-read.delim(paste(inputfile), header=T, row.names=1) 
 
samplenames<-row.names(genos) 
markernames<-colnames(genos) 
 
# The following sets up the table for the LD calculations 
                                         
# markers 1 and 2 are each a column for a marker to be compared 
# obs is the table which should be the output of the observed values 
 
makeobserved<-function(marker, othermarker) { 
  samps<-length(marker) 
  marker1<-marker 
  marker2<-othermarker 
  obsrows<-c("A-","aa","Total") 
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  obscols<-c("B-","bb","Total") 
  obs=matrix(data=NA, nrow=3, ncol=3) 
  rownames(obs)<-obsrows 
  colnames(obs)<-obscols 
  AB=0 
  aB=0 
  Ab=0 
  ab=0 
  for(n in 1:samps){ 
    if(marker1[n]==1){ 
      if(marker2[n]==1) AB=AB+1 
      if(marker2[n]==0) Ab=Ab+1 
    }                                ## These count the number of samples in each 
    if(marker1[n]==0){              ## combination of alleles for the two markers 
      if(marker2[n]==1) aB=aB+1 
      if(marker2[n]==0) ab=ab+1 
    } 
     
  }                          # There is probably an easier way to do this 
  obs[1,1]=AB               # but I'm not shooting for clean code. 
  obs[1,2]=Ab                # Here I'm setting up the observed matrix. 
  obs[2,1]=aB 
  obs[2,2]=ab 
  obs[1,3]=sum(obs[1,1:2]) 
  obs[2,3]=sum(obs[2,1:2]) 
  obs[3,1]=sum(obs[1:2,1]) 
  obs[3,2]=sum(obs[1:2,2]) 
  obs[3,3]=sum(obs[3,1:2]) 
  return(obs) 
} 
 
makep<-function(obs) {   # obs is the table of observed values 
  obss<-obs 
  sumaa<-obss[2,3] 
  tot<-obss[3,3] 
  pval=1-sqrt((sumaa/tot)) 
  return(pval) 
} 
 
makeq<-function(obs) { 
  obss<-obs 
  sumbb<-obss[3,2] 
  tot<-obss[3,3] 
  qval=1-sqrt((sumbb/tot)) 
  return(qval) 
} 
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makef22<-function(obs) { 
  obss<-obs 
  aabb<-obss[2,2] 
  tot<-obs[3,3] 
  f22=sqrt(aabb/tot) 
  return(f22) 
} 
 
makeD<-function(obs) { 
  obss<-obs 
  f22<-makef22(obss) 
  sumaa<-obss[2,3] 
  sumbb<-obss[3,2] 
  tot<-obss[3,3] 
  LD=f22-sqrt((sumaa*sumbb))/tot 
  return(LD) 
} 
 
makeK<-function(obs) { 
  obss<-obs 
  LD<-makeD(obss) 
  pval<-makep(obss) 
  if(pval==0) {       # removing NAs 
    pval<-0.000001 
  }  
  qval<-makeq(obss) 
  if(qval==0) {                   # removing NAs 
    qval<-0.000001 
  }  
  tot<-obss[3,3] 
  kval=(4*tot*(LD^2))/(pval*(2-pval)*qval*(2-qval)) 
  return(kval) 
} 
 
# for eventually outputting the calculated values 
 
fullLD=matrix(data=NA, nrow=1, ncol=11)  
colnames(fullLD)<-c("Compare","Marker1", "Marker2", "A_B_", "A_bb", "aaB_", 
"aabb", "p", "q", "D", "k") 
 
#samplenames, markernames, genos 
 
nummark<-length(markernames) 
 
for(i in 1:(nummark-1)){ 
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  print("i=") 
  print(i) 
  remaining<-i+1                        # the for statements will go through every 
  for(j in remaining:nummark){          # combination of markers 
    marker1<-genos[,i] 
    marker2<-genos[,j] 
    observed<-makeobserved(marker1, marker2) 
    AB<-observed[1,1] 
    Ab<-observed[1,2] 
    aB<-observed[2,1] 
    ab<-observed[2,2] 
    pval<-makep(observed) 
    qval<-makeq(observed) 
    Dval<-makeD(observed) 
    Kval<-makeK(observed) 
    comparename=paste(markernames[i],markernames[j],sep="-") 
    fullLDentry<-c(comparename,markernames[i],markernames[j], AB, Ab, aB, ab, pval, 
qval, Dval, Kval) 
    fullLD<-rbind(fullLD, fullLDentry) 
  } 
} 
rownames(fullLD)<-fullLD[,1] 
fullLD<-fullLD[2:nrow(fullLD),2:ncol(fullLD)] 
fullLD<-as.data.frame(fullLD) 
likeli<-as.numeric(as.vector(fullLD$k)) 
pvalue<-vector(mode="numeric", length=nrow(fullLD)) 
for(i in 1:nrow(fullLD)){ 
  if(!is.na(likeli[i])){ 
    pvalue[i]=pchisq(likeli[i], df=1, lower.tail=F) 
  } 
} 
fullLD<-cbind(fullLD, pvalue) 
 
write.table(fullLD, file=outputfile, quote=F, sep="\t", append=F)  
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APPENDIX B: Summary Data for Phytomyza glabricola 

Sample Host Sex Population Location Collection AFLP EF-1alpha

152C004 C F 152 NC 2006 X X 

152C013 C M 152 NC 2006 X X 

152C026 C M 152 NC 2006 X X 

152C031 C M 152 NC 2006 X X 

152C032 C F 152 NC 2006 X X 

152C039 C F 152 NC 2006 X X 

152C042 C M 152 NC 2006 X X 

152C059 C F 152 NC 2006 X X 

152C061 C M 152 NC 2006 X X 

152C062 C F 152 NC 2006 X X 

152C077 C M 152 NC 2006 X X 

152C092 C F 152 NC 2006 X X 

152C096 C F 152 NC 2006 X X 

152C099 C M 152 NC 2006 X 

152C101 C F 152 NC 2006 X 

152C102 C M 152 NC 2006 X X 

152C123 C F 152 NC 2006 X X 

152C127 C F 152 NC 2006 X X 

152C130 C M 152 NC 2006 X X 

152C142 C M 152 NC 2006 X X 

152C143 C F 152 NC 2006 X X 

152C190 C F 152 NC 2006 X X 

152C223 C M 152 NC 2007 X X 

152C234 C M 152 NC 2007 X 

152C248 C F 152 NC 2007 X X 

152C258 C F 152 NC 2007 X 

152C264 C F 152 NC 2007 X X 

152C265 C ? 152 NC 2007 X 

152C271 C F 152 NC 2007 X X 

152C272 C F 152 NC 2007 X 

152C273 C M 152 NC 2007 X X 

152C280 C M 152 NC 2007 X 

152C288 C M 152 NC 2007 X X 

152G001 G M 152 NC 2006 X X 

152G002 G F 152 NC 2006 X X 

152G012 G M 152 NC 2006 X X 

152G013 G M 152 NC 2006 X 

152G015 G M 152 NC 2006 X X 

152G018 G F 152 NC 2006 X X 

152G030 G M 152 NC 2006 X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

152G033 G F 152 NC 2006 X 

152G034 G M 152 NC 2006 X X 

152G035 G F 152 NC 2006 X X 

152G037 G F 152 NC 2006 X X 

152G038 G M 152 NC 2006 X X 

152G040 G F 152 NC 2006 X X 

152G053 G M 152 NC 2006 X 

152G066 G M 152 NC 2006 X X 

152G068 G F 152 NC 2006 X X 

152G075 G F 152 NC 2006 X X 

152G086 G F 152 NC 2006 X X 

152G093 G M 152 NC 2006 X X 

152G096 G F 152 NC 2006 X X 

152G098 G M 152 NC 2006 X X 

152G109 G F 152 NC 2006 X X 

152G116 G F 152 NC 2006 X X 

152G123 G F 152 NC 2006 X 

152G126 G M 152 NC 2006 X 

152G164 G M 152 NC 2007 X X 

152G167 G F 152 NC 2007 X 

152G183 G M 152 NC 2007 X 

152G199 G M 152 NC 2007 X X 

BOBC006 C M BOB SC 2006 X X 

BOBC007 C F BOB SC 2006 X X 

BOBC012 C F BOB SC 2006 X 

BOBC019 C F BOB SC 2006 X 

BOBC023 C F BOB SC 2006 X X 

BOBC037 C F BOB SC 2006 X X 

BOBC039 C F BOB SC 2006 X X 

BOBC046 C M BOB SC 2006 X X 

BOBC047 C M BOB SC 2006 X 

BOBC049 C F BOB SC 2006 X X 

BOBC050 C M BOB SC 2006 X 

BOBC074 C F BOB SC 2006 X 

BOBC076 C M BOB SC 2006 X X 

BOBC084 C F BOB SC 2006 X X 

BOBC127 C M BOB SC 2006 X X 

BOBC128 C F BOB SC 2006 X X 

BOBC130 C F BOB SC 2006 X X 

BOBC134 C M BOB SC 2006 X 

BOBC149 C F BOB SC 2006 X X 

BOBC196 C M BOB SC 2007 X X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

BOBC198 C M BOB SC 2007 X X 

BOBC228 C F BOB SC 2007 X 

BOBC230 C M BOB SC 2007 X X 

BOBC241 C F BOB SC 2007 X 

BOBC243 C F BOB SC 2007 X 

BOBG001 G M BOB SC 2006 X X 

BOBG002 G M BOB SC 2006 X X 

BOBG003 G M BOB SC 2006 X X 

BOBG004 C F BOB SC 2006 X 

BOBG005 G M BOB SC 2006 X X 

BOBG007 G M BOB SC 2006 X X 

BOBG010 G M BOB SC 2006 X X 

BOBG034 G M BOB SC 2006 X X 

BOBG045 G F BOB SC 2006 X X 

BOBG057 G M BOB SC 2006 X X 

BOBG067 C M BOB SC 2006 X 

BOBG090 G F BOB SC 2006 X X 

BOBG094 G F BOB SC 2006 X X 

BOBG095 G F BOB SC 2006 X X 

BOBG104 G F BOB SC 2006 X X 

BOBG111 G F BOB SC 2006 X 

BOBG114 G F BOB SC 2006 X X 

BOBG120 G F BOB SC 2006 X X 

BOBG128 G M BOB SC 2006 X X 

BOBG158 G ? BOB SC 2007 X X 

BOBG159 G ? BOB SC 2007 X 

BOBG169 G F BOB SC 2007 X X 

BOBG174 G F BOB SC 2007 X X 

BOBG190 G M BOB SC 2007 X 

BOBG198 G M BOB SC 2007 X X 

CATC004 C F CAT NC 2006 X X 

CATC010 C M CAT NC 2006 X X 

CATC049 C F CAT NC 2006 X X 

CATC051 C F CAT NC 2006 X X 

CATC076 C F CAT NC 2006 X 

CATC105 C F CAT NC 2006 X X 

CATC113 C M CAT NC 2006 X 

CATC115 C M CAT NC 2006 X X 

CATC119 C M CAT NC 2006 X X 

CATC124 C M CAT NC 2006 X X 

CATC135 C M CAT NC 2006 X X 

CATC145 C M CAT NC 2006 X X 



 

157 
 

Sample Host Sex Population Location Collection AFLP EF-1alpha

CATC148 C F CAT NC 2006 X 

CATC158 C M CAT NC 2006 X X 

CATC159 C M CAT NC 2006 X X 

CATC168 C M CAT NC 2006 X X 

CATC172 C M CAT NC 2006 X X 

CATC175 C M CAT NC 2006 X 

CATC176 C F CAT NC 2006 X X 

CATC179 C M CAT NC 2006 X X 

CATC183 C F CAT NC 2006 X X 

CATC189 C M CAT NC 2006 X X 

CATG001 G F CAT NC 2006 X 

CATG013 G F CAT NC 2006 X X 

CATG025 G M CAT NC 2006 X 

CATG038 G F CAT NC 2006 X X 

CATG073 G F CAT NC 2006 X X 

CHEG005 G ? CHE DE 2007 X 

CHEG033 G M CHE DE 2007 X X 

CHEG048 G F CHE DE 2007 X X 

CHEG049 G M CHE DE 2007 X X 

CHEG059 G ? CHE DE 2007 X 

CHEG064 G ? CHE DE 2007 X 

CHEG088 G F CHE DE 2007 X X 

CHEG095 G F CHE DE 2007 X X 

CHEG096 G F CHE DE 2007 X X 

CHEG106 G F CHE DE 2007 X 

CHEG107 G M CHE DE 2007 X X 

CHEG108 G F CHE DE 2007 X 

CHEG109 G ? CHE DE 2007 X X 

CHEG114 G M CHE DE 2007 X X 

CHEG122 G F CHE DE 2007 X X 

CRGG002 G M CRG GA 2007 X X 

CRGG007 G F CRG GA 2007 X 

CRGG008 G F CRG GA 2007 X X 

CRGG014 G larva CRG GA 2007 X X 

EAVG001 G larva EAV EAST-FL 2007 X 

EAVG002 G larva EAV EAST-FL 2007 X 

GDSC005 C M GDS VA 2007 X 

GDSC039 C F GDS VA 2007 X 

GDSC056 C M GDS VA 2007 X X 

GDSC065 C F GDS VA 2007 X X 

GDSG012 G M GDS VA 2007 X X 

HUNC002 C F HUN WEST-FL 2007 X X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

HUNC003 C F HUN WEST-FL 2007 X X 

HUNC006 C M HUN WEST-FL 2007 X X 

HUNC007 C F HUN WEST-FL 2007 X X 

HUNC009 C M HUN WEST-FL 2007 X X 

HUNC014 C M HUN WEST-FL 2007 X X 

HUNG002 G M HUN WEST-FL 2007 X X 

PCo15 C ? BOB SC Scheffer & Hawthorne X 

PCo16 C ? BOB SC Scheffer & Hawthorne X 

PCo18 C ? BOB SC Scheffer & Hawthorne X 

PCo19 C ? BOB SC Scheffer & Hawthorne X 

PCo21 C ? BOB SC Scheffer & Hawthorne X 

PCo23 C ? BOB SC Scheffer & Hawthorne X 

PCo26 C ? BOB SC Scheffer & Hawthorne X 

PCo27 C ? BOB SC Scheffer & Hawthorne X 

PCo28 C ? BOB SC Scheffer & Hawthorne X 

PCo29 C ? BOB SC Scheffer & Hawthorne X 

PCo30 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo31 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo33 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo34 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo35 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo36 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo37 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo38 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo39 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo40 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo41 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo42 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo43 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo44 C ? Carolina Beach NC Scheffer & Hawthorne X 

PCo45 C ? Carolina Beach NC Scheffer & Hawthorne X 

PGl14 G ? BOB SC Scheffer & Hawthorne X 

PGl15 G ? BOB SC Scheffer & Hawthorne X 

PGl16 G ? BOB SC Scheffer & Hawthorne X 

PGl17 G ? BOB SC Scheffer & Hawthorne X 

PGl18 G ? BOB SC Scheffer & Hawthorne X 

PGl20 G ? BOB SC Scheffer & Hawthorne X 

PGl21 G ? BOB SC Scheffer & Hawthorne X 

PGl22 G ? BOB SC Scheffer & Hawthorne X 

PGl23 G ? BOB SC Scheffer & Hawthorne X 

PGl24 G ? BOB SC Scheffer & Hawthorne X 

PGl25 G ? BOB SC Scheffer & Hawthorne X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

PGl26 G ? BOB SC Scheffer & Hawthorne X 

PGl27 G ? BOB SC Scheffer & Hawthorne X 

PGl28 G ? BOB SC Scheffer & Hawthorne X 

PGl31 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl39 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl40 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl41 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl42 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl44 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl45 G ? Carolina Beach NC Scheffer & Hawthorne X 

PGl46 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl47 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl48 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl49 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl50 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl51 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl52 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl53 G ? Archibold SOUTH-FL Scheffer & Hawthorne X 

PGl54 G ? Long Island NY Scheffer & Hawthorne X 

PGl55 G ? Long Island NY Scheffer & Hawthorne X 

PGl56 G ? Annapolis MD Scheffer & Hawthorne X 

PGl62 G ? Annapolis MD Scheffer & Hawthorne X 

PGl63 G ? NJ NJ Scheffer & Hawthorne X 

PGl64 G ? NJ NJ Scheffer & Hawthorne X 

SISC004 C F SIS EAST-FL 2007 X X 

SISC014 C M SIS EAST-FL 2007 X X 

SISC025 C larva SIS EAST-FL 2007 X 

SISC030 C M SIS EAST-FL 2007 X X 

SISC040 C M SIS EAST-FL 2007 X X 

SISC041 C larva SIS EAST-FL 2007 X 

SISC042 C F SIS EAST-FL 2007 X X 

SISG003 G M SIS EAST-FL 2007 X X 

SISG007 G larva SIS EAST-FL 2007 X 

SISG011 G F SIS EAST-FL 2007 X X 

SISG032 G M SIS EAST-FL 2007 X X 

SISG048 G M SIS EAST-FL 2007 X X 

SISG050 G F SIS EAST-FL 2007 X X 

SISG054 G M SIS EAST-FL 2007 X 

SISG066 G M SIS EAST-FL 2007 X X 

SISG067 G M SIS EAST-FL 2007 X X 

SISG069 G M SIS EAST-FL 2007 X X 

SISG076 G M SIS EAST-FL 2007 X X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

WAMC002 C M WAM SC 2006 X X 

WAMC004 C M WAM SC 2006 X X 

WAMC014 C M WAM SC 2006 X X 

WAMC028 C M WAM SC 2006 X 

WAMC031 C F WAM SC 2006 X X 

WAMC034 C F WAM SC 2006 X 

WAMC036 C M WAM SC 2006 X X 

WAMC040 C F WAM SC 2006 X X 

WAMC041 C F WAM SC 2006 X 

WAMC044 C F WAM SC 2006 X 

WAMC054 C F WAM SC 2006 X X 

WAMC057 C M WAM SC 2006 X X 

WAMC063 C F WAM SC 2006 X X 

WAMC066 C F WAM SC 2006 X 

WAMC078 C F WAM SC 2006 X 

WAMC082 C M WAM SC 2006 X X 

WAMC084 C M WAM SC 2006 X X 

WAMC090 C M WAM SC 2006 X 

WAMC092 C M WAM SC 2006 X X 

WAMC102 C M WAM SC 2007 X 

WAMC103 C F WAM SC 2007 X X 

WAMC106 C M WAM SC 2007 X 

WAMC114 C F WAM SC 2007 X X 

WAMC121 C F WAM SC 2007 X X 

WAMC124 C larva WAM SC 2007 X 

WAMC127 C F WAM SC 2007 X 

WAMC128 C F WAM SC 2007 X X 

WAMC141 C ? WAM SC 2007 X X 

WAMC146 C larva WAM SC 2007 X 

WAMC148 C F WAM SC 2007 X X 

WAMG001 G M WAM SC 2006 X X 

WAMG005 G M WAM SC 2006 X X 

WAMG008 G M WAM SC 2006 X X 

WAMG012 G F WAM SC 2006 X X 

WAMG016 G F WAM SC 2006 X X 

WAMG020 G M WAM SC 2006 X X 

WAMG031 G F WAM SC 2006 X X 

WAMG037 G F WAM SC 2006 X X 

WAMG038 G F WAM SC 2006 X X 

WAMG040 G M WAM SC 2006 X X 

WAMG043 G M WAM SC 2006 X X 

WAMG050 G F WAM SC 2006 X X 
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Sample Host Sex Population Location Collection AFLP EF-1alpha

WAMG052 G F WAM SC 2006 X 

WAMG055 G F WAM SC 2006 X X 

WAMG062 G F WAM SC 2006 X X 

WAMG067 G M WAM SC 2006 X 

WAMG068 G F WAM SC 2006 X X 

WAMG069 G M WAM SC 2006 X 

WAMG073 G M WAM SC 2006 X 

WAMG075 G F WAM SC 2006 X X 

WAMG076 G F WAM SC 2006 X 

WAMG092 G M WAM SC 2007 X X 

WAMG096 G M WAM SC 2007 X 

 Hosts are host plants Ilex coriacea (C) and I. glabra (G). Sex are sex of the flies: female 
(F), male (M), larva, or unknown (?). Individuals sampled in 2006 and 2007 are from 
Cape Henlopen (CHE), Great Dismal Swamp (GDS), Croatan (152 and CAT), Francis 
Marion (BOB and WAM), Crooked River (CRG), Etoniah Creek (SIS), and Apalachicola 
(HUN) (see Figure 2.1 for map). Details for individuals not collected in 2006 or 2007 can 
be found in Scheffer and Hawthorne (2007). 
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APPENDIX C: Results of NEWHYBRIDS in Phytomyza glabricola 

Highlighted posterior probabilities represent the different cutoffs for introgression: 
backcross in bold, less than 75% posterior probability of belonging to a parental type in 
bold italics, and less than 90% posterior probability of belonging to a parental type in 
italics. 

Sample Coriacea-fly Backcross-coriacea F1 Backcross-glabra Glabra-fly 

152C004 0.69483 0.30506 0.00008 0.00003 0 

152C013 0.99535 0.00462 0.00002 0.00002 0 

152C026 0.12764 0.84579 0.02624 0.00032 0 

152C031 0.1273 0.85883 0.01384 0.00004 0 

152C032 0.8078 0.19199 0.0002 0 0 

152C039 0.97639 0.02357 0.00003 0.00001 0 

152C042 0.97766 0.02227 0.00003 0.00003 0 

152C059 0.99719 0.00278 0.00002 0.00001 0 

152C061 0.98565 0.0143 0.00004 0 0 

152C062 0.99673 0.00325 0.00002 0.00001 0 

152C077 0.75451 0.24512 0.00033 0.00004 0 

152C092 0.97206 0.0279 0 0.00003 0 

152C096 0.98758 0.01239 0.00002 0.00002 0 

152C102 0.02938 0.92371 0.04481 0.0021 0 

152C123 0.98965 0.01032 0.00002 0.00001 0 

152C127 0.6564 0.34341 0.00018 0.00001 0 

152C130 0.98347 0.01648 0.00003 0.00002 0 

152C142 0.88241 0.11747 0.00008 0.00004 0 

152C143 0.99751 0.00247 0.00002 0.00001 0 

152C190 0.9926 0.00736 0.00003 0.00001 0 

152C223 0.96684 0.03309 0.00003 0.00004 0 

152C248 0.99956 0.00042 0.00001 0 0 

152C258 0.83909 0.16073 0.00017 0 0 

152C264 0.80683 0.19308 0.00008 0.00001 0 

152C271 0.97316 0.0268 0.00003 0 0 

152C273 0.984 0.01596 0.00002 0.00002 0 

152C288 0.09805 0.86949 0.03188 0.00058 0 

152G001 0 0.00022 0 0.00116 0.99853 

152G002 0 0.00001 0.00144 0.24645 0.75211 

152G012 0 0.00021 0.00056 0.05715 0.94208 

152G015 0 0 0 0.00064 0.99935 

152G018 0 0 0.00001 0.00263 0.99736 

152G034 0 0.00036 0.00392 0.14465 0.85106 

152G035 0 0.00001 0.00087 0.17271 0.82641 

152G037 0 0 0.00001 0.00173 0.99826 

152G038 0 0 0 0.00329 0.99671 
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Sample Coriacea-fly Backcross-coriacea F1 Backcross-glabra Glabra-fly 

152G040 0 0 0 0.00627 0.99372 

152G066 0 0 0 0.00122 0.99878 

152G068 0 0.00016 0.00249 0.14035 0.857 

152G075 0 0 0 0.00205 0.99795 

152G086 0 0 0.00021 0.03859 0.96119 

152G093 0 0 0 0.00017 0.99982 

152G096 0 0.00018 0.00004 0.00032 0.99947 

152G098 0 0 0.00001 0.00947 0.99053 

152G109 0 0 0.00001 0.00471 0.99528 

152G116 0 0 0.00003 0.01343 0.98654 

152G164 0 0 0 0.00034 0.99966 

152G199 0 0 0 0.00012 0.99988 

BOBC006 0.98802 0.01192 0.00003 0.00003 0 

BOBC007 0.99334 0.00663 0.00002 0 0 

BOBC012 0.9989 0.00107 0.00002 0.00001 0 

BOBC019 0.99545 0.00452 0.00002 0 0 

BOBC023 0.99792 0.00206 0.00002 0 0 

BOBC037 0.99521 0.00478 0.00001 0 0 

BOBC039 0.99689 0.00308 0.00002 0.00001 0 

BOBC046 0.99641 0.00354 0.00002 0.00003 0 

BOBC049 0.99987 0.0001 0.00002 0 0 

BOBC076 0.75172 0.24811 0.00014 0.00003 0 

BOBC084 0.99536 0.0046 0.00002 0.00001 0 

BOBC127 0.99026 0.0097 0.00002 0.00003 0 

BOBC128 0.98369 0.01628 0.00002 0.00002 0 

BOBC130 0.9978 0.00217 0.00002 0.00001 0 

BOBC149 0.92269 0.07724 0.00004 0.00003 0 

BOBC196 0.77289 0.22644 0.00062 0.00005 0 

BOBC198 0.98163 0.01832 0.00005 0.00001 0 

BOBC230 0.98467 0.01527 0.00001 0.00004 0 

BOBC243 0.98683 0.01313 0.00001 0.00002 0 

BOBG001 0 0 0 0.00017 0.99982 

BOBG002 0 0 0.00002 0.00862 0.99136 

BOBG003 0 0 0.00001 0.00615 0.99383 

BOBG005 0 0.00006 0.00005 0.00075 0.99914 

BOBG007 0 0 0.0005 0.0745 0.92499 

BOBG010 0 0 0 0.00023 0.99977 

BOBG034 0 0 0 0.00022 0.99977 

BOBG045 0 0 0.00001 0.02353 0.97645 

BOBG057 0 0.00001 0.00011 0.03298 0.9669 

BOBG090 0 0.00086 0.0214 0.45957 0.51817 

BOBG094 0 0 0.00004 0.01593 0.98403 
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Sample Coriacea-fly Backcross-coriacea F1 Backcross-glabra Glabra-fly 

BOBG095 0 0 0.00002 0.01182 0.98816 

BOBG104 0 0 0.00002 0.01086 0.98911 

BOBG111 0 0 0.00004 0.0102 0.98976 

BOBG114 0 0.00004 0.00051 0.04628 0.95317 

BOBG120 0 0 0 0.00097 0.99903 

BOBG128 0 0 0 0.00133 0.99867 

BOBG158 0 0 0.00016 0.08061 0.91923 

BOBG169 0 0 0.00002 0.01248 0.9875 

BOBG174 0 0 0.00002 0.00132 0.99866 

BOBG198 0 0 0 0.00226 0.99773 

CATC004 0.99275 0.00722 0.00002 0.00001 0 

CATC010 0.82866 0.17081 0.00052 0.00001 0 

CATC049 0.99732 0.00265 0.00002 0.00001 0 

CATC051 0.98409 0.01588 0.00002 0.00002 0 

CATC105 0.99598 0.00399 0.00002 0.00001 0 

CATC115 0.91022 0.08967 0.00008 0.00004 0 

CATC119 0.45149 0.53159 0.01686 0.00006 0 

CATC124 0.9354 0.0645 0.00008 0.00002 0 

CATC135 0.6342 0.36477 0.001 0.00003 0 

CATC145 0.74724 0.25252 0.00022 0.00002 0 

CATC158 0.84137 0.15844 0.00015 0.00004 0 

CATC159 0.82206 0.17776 0.00017 0.00002 0 

CATC168 0.77915 0.22045 0.00038 0.00003 0 

CATC172 0.02232 0.86638 0.0754 0.03589 0 

CATC176 0.98656 0.01341 0.00001 0.00002 0 

CATC179 0.07718 0.91764 0.00509 0.00009 0 

CATC183 0.99745 0.00253 0.00002 0.00001 0 

CATC189 0.99546 0.00449 0.00001 0.00004 0 

CATG013 0 0 0.00006 0.02188 0.97806 

CATG038 0 0 0.00004 0.03677 0.96319 

CATG073 0 0 0.0003 0.06826 0.93143 

CHEG033 0 0 0 0.00205 0.99795 

CHEG048 0 0 0 0.00114 0.99885 

CHEG049 0 0 0 0.00024 0.99976 

CHEG088 0 0 0.00001 0.0002 0.99979 

CHEG095 0 0 0.00011 0.03809 0.96181 

CHEG096 0 0 0.00002 0.01153 0.98845 

CHEG107 0 0 0 0.0011 0.99889 

CHEG109 0 0 0 0.00495 0.99505 

CHEG114 0 0 0.0001 0.03494 0.96496 

CHEG122 0 0 0.00001 0.00294 0.99705 

CRGG002 0 0 0.00001 0.00247 0.99753 



 

165 
 

Sample Coriacea-fly Backcross-coriacea F1 Backcross-glabra Glabra-fly 

CRGG008 0 0.00001 0.00213 0.18799 0.80988 

CRGG014 0 0 0.00001 0.00616 0.99384 

GDSC056 0.00921 0.85928 0.12452 0.00699 0 

GDSC065 0.3398 0.65794 0.00225 0.00001 0 

GDSG012 0 0 0 0.0034 0.9966 

HUNC002 0.97846 0.0215 0.00002 0.00001 0 

HUNC003 0.95707 0.04289 0.00003 0.00001 0 

HUNC006 0.89035 0.10953 0.00009 0.00003 0 

HUNC007 0.75733 0.24256 0.00009 0.00002 0 

HUNC009 0.06793 0.91389 0.01777 0.00042 0 

HUNC014 0.03545 0.87577 0.08584 0.00294 0 

HUNG002 0 0 0.00004 0.02079 0.97917 

SISC004 0.00633 0.98404 0.00924 0.00039 0 

SISC014 0.62245 0.37695 0.00054 0.00005 0 

SISC030 0.21185 0.78772 0.00036 0.00007 0 

SISC040 0.14824 0.79494 0.04818 0.00863 0.00001 

SISC042 0.05308 0.94497 0.00194 0 0 

SISG003 0 0 0 0.00556 0.99443 

SISG011 0 0 0.00012 0.02969 0.97019 

SISG032 0 0 0 0.00028 0.99972 

SISG048 0 0 0 0.01391 0.98609 

SISG050 0 0.0353 0.13903 0.60432 0.22135 

SISG066 0 0 0 0.00075 0.99925 

SISG067 0 0 0 0.00096 0.99904 

SISG069 0 0 0 0.00351 0.99649 

SISG076 0 0 0.00009 0.01654 0.98336 

WAMC002 0.16851 0.82209 0.00929 0.00011 0 

WAMC004 0.9963 0.00364 0.00001 0.00004 0 

WAMC014 0.95987 0.04005 0.00005 0.00003 0 

WAMC031 0.97133 0.02863 0.00002 0.00001 0 

WAMC036 0.97295 0.02699 0.00003 0.00003 0 

WAMC040 0.99281 0.00715 0.00003 0.00001 0 

WAMC054 0.59293 0.40519 0.00186 0.00003 0 

WAMC057 0.96627 0.03366 0.00004 0.00004 0 

WAMC063 0.19328 0.80252 0.00419 0.00001 0 

WAMC082 0.99412 0.00583 0.00002 0.00002 0 

WAMC084 0.98998 0.00999 0.00002 0.00001 0 

WAMC092 0.99469 0.00527 0 0.00004 0 

WAMC103 0.90599 0.09395 0.00004 0.00002 0 

WAMC114 0.99055 0.00942 0.00002 0.00001 0 

WAMC121 0.99527 0.0047 0.00002 0.00001 0 

WAMC127 0.97302 0.02694 0.00001 0.00003 0 
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Sample Coriacea-fly Backcross-coriacea F1 Backcross-glabra Glabra-fly 

WAMC128 0.89917 0.10065 0.00017 0.00001 0 

WAMC141 0.97811 0.02186 0 0.00003 0 

WAMC148 0.99483 0.00514 0.00003 0 0 

WAMG001 0 0 0.00006 0.01718 0.98276 

WAMG005 0 0 0.00012 0.05285 0.94703 

WAMG008 0 0 0.00001 0.00597 0.99402 

WAMG012 0 0 0 0.00164 0.99836 

WAMG016 0 0 0.00002 0.00305 0.99692 

WAMG020 0 0 0.00001 0.00534 0.99465 

WAMG031 0 0.00001 0.00012 0.03445 0.96543 

WAMG037 0 0.00001 0.00015 0.06199 0.93785 

WAMG038 0 0 0.00001 0.00556 0.99443 

WAMG040 0 0 0 0.00131 0.99869 

WAMG043 0 0 0.00002 0.00144 0.99854 

WAMG050 0 0 0 0.00401 0.99598 

WAMG055 0 0 0.00001 0.00108 0.99891 

WAMG062 0 0.00002 0.00035 0.10234 0.89729 

WAMG068 0 0 0 0.00074 0.99925 

WAMG075 0 0 0.00001 0.00003 0.99995 

WAMG092 0 0 0.00003 0.01995 0.98003 

WAMG096 0 0 0 0.00105 0.99895 

 
  



 

 
 

APPENDIX D: Full results of genome scans 

i) Among host comparisons. ii) Within host and among sex comparisons. 
 Under “Total” the first column is from DFDIST and the second column is from BAYESCAN. All other columns are results from DFDIST. 
Markers with no polymorphism in a particular subset are labeled as “rem” for removed. Numbers indicate significance (99%, 95%, or 
90% level.) Only markers with 95% or greater probability of being outliers were included as outliers in Chapter 1. 
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27 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem 

28 rem 95 
   

rem rem rem rem rem rem rem rem 

29 
       

30 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

31 
       

32 
       

33 rem 
   

rem 
 

rem rem rem rem rem 

34 
      

rem rem rem rem 

35 
       

36 
       

37 
      

rem rem 
 

rem 

38 rem 
   

rem rem rem rem rem rem rem rem rem rem rem 

39 rem 
   

rem 
 

rem rem rem rem rem rem rem rem rem rem rem 

40 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

41 
       

42 
      

90 rem rem rem rem rem rem 

43 
 

rem 
    

rem rem rem rem rem rem rem rem 

44 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

45 90 
     

rem rem rem 
 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

46 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

47 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

48 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

49 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

50 rem rem 
  

rem 
 

rem rem rem rem rem rem rem rem rem rem rem rem rem 

51 95 
     

rem 
 

52 
     

rem rem rem rem 
 

53 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

54 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem 

55 
 

rem 
    

90 rem rem rem rem rem rem rem rem 

56 
    

rem rem rem rem rem rem rem rem rem rem 

57 rem 
   

rem rem rem rem rem rem rem rem rem 
 

rem rem 

58 rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

59 rem 
   

rem 
 

rem rem rem rem rem rem rem rem rem rem rem rem 

60 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

61 
    

rem 
 

rem rem rem rem rem rem rem rem rem rem 

62 rem rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

63 
 

rem 
    

rem rem rem rem rem rem rem 

64 
    

rem 
 

rem rem rem rem rem 

65 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

66 
 

90 
    

rem rem 
 

rem 

67 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem 

68 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

69 
    

90 
 

rem 
 

rem 

70 95 
 

99 99 99 99 99 95 99 99 99 95 
 

95 95 

71 
 

rem 
    

rem rem rem rem rem 

72 99 
 

99 99 99 99 99 99 99 99 95 rem 
 

  95 99 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

73 
      

90 90 95 95 

74 
 

99 
    

rem rem rem 

75 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

76 
      

rem rem rem rem rem rem rem rem 

77 
      

rem rem rem 

78 
       

79 
       

80 
      

rem rem 

81 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

82 
       

rem rem rem 

83 
    

rem rem rem rem rem rem rem rem rem rem 

84 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

85 
      

  
 

86 
      

rem rem rem rem rem rem rem 

87 
  

90 
 

95 
 

95 95 rem rem rem rem rem rem 

88 
       

rem 

89 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem 

90 rem 
     

rem rem rem 

91 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

92 99 rem 
    

rem rem rem rem 95 99 99 99 

93 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

94 
  

99 99 99 90 99 95 99 95 99 95 95 99 95 95 99 90 

97 rem 
     

rem rem 
 

rem 

98 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

99 
       

rem 

100 
      

rem rem rem rem rem rem 

101 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

102 
       

103 
       

104 rem 
     

rem rem rem rem 

105 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

106 
       

107 
       

108 
 

rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

109 
 

95 
     

110 
       

111 99 
   

90 
 

rem 90 

112 
      

rem rem rem 

113 
      

rem 

114 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

115 
  

99 99 99 99 99 95 99 99 99 99 95 
 

95 95 

116 99 rem 
   

rem rem rem rem rem rem rem   95 
 

rem rem rem rem 

117 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

118 
  

99 99 99 99 99 99 99 99 99 99   90 99 90 95 99 99 99 

119 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

120 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

121 
    

rem 
 

rem rem 
 

rem 

122 95 
   

rem 
 

rem 
 

123 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

124 
      

rem 
 

rem rem 

125 
       

126 
      

rem rem 
 

rem 

127 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

128 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

129 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

130 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

131 
      

rem rem 

132 
       

134 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem 

135 
    

rem rem rem rem rem rem rem rem rem rem 

136 
 

rem 
    

rem rem rem rem rem rem rem rem 

137 
       

138 
       

139 
  

90 
   

90   
 

140 
      

rem 
 

141 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

142 rem 
     

rem rem rem rem rem rem rem rem rem rem rem rem rem 

143 
 

rem 
    

rem rem rem rem rem rem 

144 90 rem 90 90 
  

90 95 99 95 90 95 
 

99 99 

145 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

146 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

147 rem 
 

90 
   

95 90 
 

148 95 rem 
  

rem rem rem rem rem rem rem rem 90 95 

149 
       

150 
       

151 
       

152 
       

153 
      

rem 
 

rem rem 

154 
      

rem rem rem rem 

155 
 

rem 
    

rem rem rem rem rem rem rem 

156 
      

rem 
 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

157 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

158 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

159 
      

rem rem rem rem rem 

160 
 

rem 
    

rem rem rem rem rem rem rem rem 

161 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

162 
      

rem rem rem rem 

163 rem 
   

rem 
 

rem rem rem rem rem rem rem rem rem rem rem 

164 
       

165 
      

rem 

166 rem 
   

rem rem rem rem rem rem rem rem rem rem rem 

167 95 99 
    

90 90     95 
 

168 rem 
   

rem rem rem rem rem rem rem rem rem rem rem 

169 
      

rem rem 

170 90 
      

171 
      

rem rem 

172 
      

rem rem 

173 rem 
   

rem rem rem rem rem rem rem rem rem rem rem 

174 
 

  
    

rem rem rem rem 

175 
      

rem 

176 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem 

177 
       

178 
      

rem rem rem rem 

179 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

180 
      

90 95 
 

181 
 

90 
    

rem 
 

182 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

183 rem 
   

rem 
 

rem rem rem rem rem rem rem 
 

rem rem 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

184 
 

99 
    

rem rem 

185 
    

rem 
 

rem rem rem rem rem rem rem rem 

186 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

187 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

188 rem 
     

rem rem rem rem rem rem rem rem 

189 
    

rem 
 

rem rem rem rem rem rem rem rem rem rem 

190 
     

rem rem rem rem rem rem rem rem rem rem 

191 
      

rem rem rem rem rem 

192 
      

rem rem 

193 
 

95 
     

rem 

194 
      

rem rem rem rem 

195 
 

99 
     

rem 

196 90 
      

197 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem 

199 
      

rem rem rem 

200 
 

rem 95 95 
 

90 95 rem rem rem rem 90 95 

201 
      

rem rem 

202 
       

203 rem rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

204 rem 
 

99 95 95 95 90 rem 95 90 rem rem rem 

205 
      

rem rem rem rem rem rem 

206 
       

207 
       

rem rem 

208 
    

rem 
 

rem rem rem rem rem rem rem rem 

209 
       

210 
      

rem rem rem 

211 
       



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

212 
 

rem 
    

rem rem rem rem rem rem rem rem rem 

213 
  

95 95 95 95 90 95 95 95 95 95 90 95 99 95 

214 rem 
     

rem rem rem 

215 
 

rem 
    

rem rem rem rem rem rem rem 

216 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem 

217 
      

90 
 

218 
      

rem rem rem rem 

219 
       

220 
      

rem 

221 
 

rem 
  

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

222 rem 
   

rem 
 

rem rem rem rem rem rem rem 

223 
 

rem 
    

rem rem rem rem 

224 
       

225 99 rem 
  

rem rem rem rem rem rem rem rem   95 
 

rem rem rem 

226 99 99 
    

95 95 95 

227 rem 
 

99 99 
 

95 99 90 90 99 
 

228 
      

rem rem rem 

229 
 

99 
    

90 rem 90 rem 

230 
      

rem rem 

231 
  

95 95 
 

90 95 95 
 

rem rem rem 

232 
       

233 
      

rem 
 

234 
       

235 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

236 
      

  95 90 95 95 90 90 

237 
    

rem 
 

rem rem 
 

rem 

238 
  

95 
   

90 95 rem 
 

90 90 



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

239 
  

90 
 

95 95 
 

  

240 
       

95 

241 rem 99 
   

rem rem rem rem rem rem rem rem rem rem rem 

242 
  

99 95 95 99 90 95 99 90 
 

243 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem 

244 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

245 95 
     

  95 95 90 rem rem rem 

246 
  

99 99 95 99 95 95 95 99 99 95 95 
 

95 95 

247 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem 

248 
      

rem rem rem 

249 
       

250 
       

rem rem 

251 
       

252 rem 
   

rem rem rem rem rem rem rem rem rem rem rem 

253 
       

rem 

254 rem 
   

rem rem rem rem rem rem rem rem rem rem rem rem rem rem rem 

255 rem 90 99 99 90 99 99 99 99 99 99 90 99 95 99 99 99 

256 rem 
   

rem 
 

rem rem 
 

rem 

257 rem 
   

rem 
 

rem rem rem rem rem rem rem rem rem 

258 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem rem 

259 
 

95 
    

95   90 90 90 rem 90 90 95 rem 

260 
      

rem 

261 
       

262 
    

rem rem rem rem rem rem rem rem rem rem 

263 
 

rem 
    

rem rem rem rem rem rem rem rem rem rem rem 

264 
       

265 
       



 

 
 

Locus 
coriacea-
flies 

glabra-
flies 

Total 
NC-
DE 

NC-
NC 

NC-
SC 

NC-
EFL 

SC-
DE 

SC-
NC 

SC-
SC 

SC-
EFL 

EFL-
DE 

EFL-
NC 

EFL-
SC 

EFL-
EFL 

WFL-
DE 

WFL-
NC 

WFL-
SC 

WFL-
EFL 

266 
      

rem rem 

267 
      

rem rem rem rem rem rem 

268 
       

269 
 

rem 
  

rem 
 

rem rem rem rem rem rem rem rem rem 

 

ii) 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

1 rem rem rem rem rem rem 90 99 rem 
 

2 
    

99 99 99 99

3 
  

rem 
 

rem rem rem rem 
 

4 
    

rem 
 

5 
     

6 rem rem 
  

rem 
 

7 
  

rem rem rem rem rem rem rem rem 

8 99 rem 99 rem 95 
 

9 
  

rem rem rem 
 

10 rem rem rem rem rem rem rem rem 
 

11 
    

rem rem rem rem rem rem 

12 rem rem rem rem rem rem rem 
 

13 
     

14 rem 95 rem 95 rem rem rem rem 

15 
    

rem rem rem rem rem 

16 rem rem rem rem rem rem rem rem 
 

17 
     

18 
    

rem rem rem rem rem rem 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

19 rem rem 
  

rem rem rem 
 

20     
99 99 99 99

21   
rem 

 
rem rem rem 

 
22     

rem 90 95 95 

23   
rem rem rem rem rem rem rem rem 

24 rem rem rem rem rem rem rem rem rem 
 

25 rem 
 

rem rem rem 
 

26 rem rem 
  

rem rem 
 

27   
rem rem rem rem rem rem rem 

28 rem rem rem rem rem 90 rem 
 

29     
90 

 
30   

rem rem rem rem rem rem rem rem 

31    
rem rem 

 
32     

99 99 99 99

33 rem rem rem rem rem rem 
 

34     
rem rem 

 
35     

rem 
 

36     
rem 

 
37     

rem 
 

38 rem rem rem rem rem rem rem 
 

39 rem rem rem rem rem rem rem rem rem 
 

40 rem rem 
  

rem rem rem rem rem rem 

41     
99 99 99 99

42     
rem rem rem rem 

 
43     

rem rem rem rem rem 95 rem 95 

44 rem rem rem rem rem rem rem rem rem rem rem 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

45 rem 90 rem 90 
 

46 rem rem rem rem rem rem rem rem rem rem 

47 rem rem rem rem rem rem rem rem rem rem 

48 rem rem rem rem rem rem rem rem rem rem rem 

49 rem rem rem rem rem rem rem rem rem rem rem rem

50 rem rem rem rem rem rem rem rem rem rem 

51  
  rem 95 

 
52 rem rem rem rem 90 

53 rem rem rem rem rem rem rem rem 
 

54   
rem rem rem rem rem rem rem rem 

55    
  rem rem rem rem rem rem 

56 rem rem rem rem rem 
 

57 rem rem rem rem rem rem 90 rem 
 

58 rem rem rem rem rem rem rem rem 
 

59 rem rem rem rem rem rem rem rem rem 
 

60 rem rem 
  

rem rem rem rem rem rem 

61 rem rem rem rem rem rem rem rem 
 

62 rem rem rem rem rem rem rem rem rem rem rem rem

63     
rem rem rem rem rem 90 rem 

64 rem rem 
  

rem rem 
 

65 rem rem rem rem rem rem rem rem rem rem rem rem

66     
rem 90   

67   
rem rem rem rem rem rem rem 

68  
rem 

  
rem rem rem rem rem rem 

69  
90 

  
95 

70 95 rem 90 rem 90 99 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

71     
rem rem rem rem 

 
72 99 

 
99 

 
95 90 

 
73      
74     

rem 95 
 

75 rem rem rem rem rem rem rem rem rem rem rem 

76   
rem rem rem 

 
77   

rem 
 

rem 
 

78     
rem   

79     
rem 

 
80     

rem 
 

81   
rem rem rem rem rem rem rem rem 

82     
rem rem rem 

 
83 rem rem 

  
rem rem rem 

 
84 rem rem rem rem rem rem rem rem 

 
85   

rem rem rem 
 

86 rem rem rem rem rem 
 

87 90 
   

rem rem rem rem 
 

88     
rem 90 

 
89   

rem rem rem rem rem rem rem rem 

90 rem rem rem rem rem rem 
 

91 rem rem rem rem rem rem rem rem 
 

92  
99 

 
99 99 rem rem rem rem rem 

93 rem rem rem rem rem rem rem rem 
 

94     
rem rem 

 
97 rem rem rem rem rem rem 

 
98 rem rem rem rem rem rem rem rem rem rem rem rem



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

99    
rem rem 99 95 99 90

100   
rem rem rem rem 

 
101 rem rem rem rem rem rem rem rem 

 
102     

rem 
 

103      
104 rem rem rem rem rem rem 

 
105 rem 

 
rem rem rem rem rem rem rem rem 

106      
107     

rem 
 

108 rem rem rem rem rem rem rem rem rem rem 

109     
90 99 95 95 

 
110  

  
   

111 rem 99 
 

95 90 90 
 

112     
rem 

 
113   

   
rem 99 

 
95 

114 rem rem rem rem rem rem rem rem 
 

115     
rem rem 90 

 
116 99 rem 95 rem rem rem rem rem rem 

117 rem rem rem rem rem rem rem rem rem rem 
 

118  
rem rem rem rem rem rem rem rem 

119   
rem rem rem rem rem rem rem rem 

120 rem rem rem rem rem rem rem rem rem rem rem 

121 rem rem rem rem 
 

122 95 95 
  

rem 
 

123 rem rem rem rem rem rem rem rem rem rem 

124     
rem rem 95 99 99 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

125     
99 99 99 99

126      
127 rem rem rem rem rem rem rem rem rem rem rem 

128 rem rem rem rem rem rem rem rem 
 

129   
rem rem rem rem rem rem rem rem 

130 rem rem rem rem rem rem rem rem 
 

131 rem rem rem rem rem 
 

132     
99 99 99 99

134 rem rem 
  

rem rem rem rem rem 

135 rem rem rem rem rem rem 
 

136     
rem rem rem rem rem rem 

137    
90 99 99 99 99

138      
139   

rem rem rem 
 

140     
rem 

 
141 rem rem rem rem rem rem rem rem rem rem rem 

142 rem rem rem rem rem rem rem rem rem 
 

143   
rem rem rem rem 

 
144  

90 
  

rem 
 

145 rem rem 
  

rem rem rem rem rem rem 

146 rem rem 
  

rem rem rem rem rem rem 

147 rem rem rem rem rem rem 
 

148 rem 95 
 

90 rem rem rem rem rem 

149     
rem 90 90 

150      
151      



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

152      
153     

rem rem 
 

154     
rem rem 

 
155     

rem rem rem rem rem 

156      
157 rem rem rem rem rem rem rem rem 

 
158 rem rem rem rem rem rem rem rem rem rem rem

159 rem 
 

rem 
 

rem 
 

160     
rem rem rem rem rem 95 rem 

161   
rem rem rem rem rem rem rem rem 

162 rem rem 
  

rem 
 

163 rem rem rem rem rem rem rem rem rem 
 

164     
90 

165     
rem 90 

166 rem rem rem rem rem rem rem 
 

167 95 
 

99 
 

90   99 
 

168 rem rem rem rem rem rem 
 

169     
rem 

 
170  

95 
  

95 
 

171     
rem 

 
172     

rem 
 

173 rem rem rem rem rem rem rem rem 
 

174    
90 rem 

 
175 90 

 
  

 
rem 

 
176   

rem rem rem rem rem rem rem 

177      



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

178     
rem rem 

 
179 rem rem rem rem rem rem rem rem rem rem rem 

180     
99 

 
181     

  90 
 

182 rem rem rem rem rem rem rem rem 
 

183 rem rem rem rem rem rem 90 rem 
 

184     
rem 99 90 

 
185 rem rem 

  
rem rem rem rem 

 
186 rem rem 

  
rem rem rem rem rem rem rem rem

187 rem 
 

rem 
 

rem rem rem rem rem rem 

188 rem rem rem rem rem rem 95 95 

189 rem rem rem rem rem rem rem rem 
 

190 rem rem 
  

rem rem rem 
 

191     
rem rem 99 

 
95 

192     
rem 99 99 99 99

193     
rem 95 99 99 99 99 95

194     
rem rem 

 
195     

90 
 

196  
90 

 
95 

 
197 rem rem 

  
rem rem rem rem rem rem rem rem

199    
rem rem 99 

 
95 

200     
rem rem rem rem rem 

201     
rem rem rem 

 
202      
203 rem rem rem rem rem rem rem rem rem rem rem 

204 rem rem rem rem rem rem 
 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 

205 rem rem 
  

rem rem 
 

206     
rem 

 
207  

90 
 

  rem 90 
 

208 rem 
 

rem 
 

rem rem rem rem 
 

209      
210     

rem rem 
 

211      
212    

rem rem rem rem rem rem 

213     
rem 

 
214 rem rem rem rem rem rem 

 
215     

rem rem rem rem rem rem 

216   
rem rem rem rem rem rem rem rem 

217      
218   

rem rem rem 
 

219      
220     

rem 
 

221 rem rem rem rem rem rem rem rem rem rem 

222 rem rem rem rem rem rem rem 
 

223     
rem rem rem rem rem 

224      
225 99 rem 95 

 
rem rem rem rem rem 

226  
90 95 

 
95 90 90 

 
227 rem rem rem rem rem rem 

 
228     

rem rem 
 

229  
90 

  
rem 99 99 90 

 
230     

rem 95 



 

 
 

 Within coriacea-flies Within glabra-flies Sex 

Locus NC-EFL NC-WFL SC-EFL SC-WFL EFL-WFL DE-SC DE-EFL NC-EFL SC-EFL coriacea-flies glabra-flies Total 
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APPENDIX E: Classification of plant samples based on the results of NEWHYBRIDS and 

STRUCTURE analyses 

Highest probabilities are indicated in bold. Using a cutoff of 0.90 for belonging to a 
parental group, both analyses result in the same the final classification, given in the last 
column. 

NEWHYBRIDS STRUCTURE 

Sample 
I. 

coriacea 
backcross 
coriacea 

F1 
backcross 

glabra 
I. 

glabra
I. coriacea I. glabra Classification 

P152C012 1 0 0 0 0 0.9999 0.0001 I. coriacea 
P152C013 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C014 1 0 0 0 0 0.996 0.004 I. coriacea 
P152C031 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C042 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C077 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C092 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C099 1 0 0 0 0 0.9987 0.0013 I. coriacea 
P152C122 1 0 0 0 0 0.998 0.002 I. coriacea 
P152C127 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C130 1 0 0 0 0 1 0 I. coriacea 
P152C133 1 0 0 0 0 0.9991 0.0009 I. coriacea 
P152C222 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C234 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C240 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C247 1 0 0 0 0 0.999 0.001 I. coriacea 
P152C254 1 0 0 0 0 0.994 0.006 I. coriacea 
P152C271 0.99996 0.00004 0 0 0 0.9877 0.0123 I. coriacea 
P152C272 1 0 0 0 0 1 0 I. coriacea 
P152C280 1 0 0 0 0 0.997 0.003 I. coriacea 
P152C288 0.84829 0.1517 0.00001 0 0 0.8776 0.1224 late Bx I.coriacea
P152CE02 0.7758 0.22419 0 0 0 0.833 0.167 late Bx I.coriacea
P152CE06 1 0 0 0 0 0.998 0.002 I. coriacea 
P152G027 0 0 0 0 1 0.001 0.999 I. glabra 
P152G167 0 0 0 0 1 0.0062 0.9938 I. glabra 
P152G168 0 0 0 0 1 0.001 0.999 I. glabra 
P152G172 0 0 0 0 1 0.001 0.999 I. glabra 
P152G174 0 0 0 0 1 0.001 0.999 I. glabra 
P152G180 0 0 0 0 1 0.001 0.999 I. glabra 
P152G183 0 0 0 0 1 0.001 0.999 I. glabra 
P152G199 0 0 0 0 1 0.001 0.999 I. glabra 
P152GE01 0 0 0 0 1 0.001 0.999 I. glabra 
P152GE02 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBC006 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC016 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC046 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC047 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC048 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC061 1 0 0 0 0 0.998 0.002 I. coriacea 
PBOBC084 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC092 1 0 0 0 0 1 0 I. coriacea 
PBOBC142 1 0 0 0 0 0.9992 0.0008 I. coriacea 
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NEWHYBRIDS STRUCTURE 

Sample 
I. 

coriacea 
backcross 
coriacea 

F1 
backcross 

glabra 
I. 

glabra
I. coriacea I. glabra Classification 

PBOBC149 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC181 0.99999 0.00001 0 0 0 0.9632 0.0368 I. coriacea 
PBOBC187 1 0 0 0 0 0.997 0.003 I. coriacea 
PBOBC191 0.75963 0.24037 0 0 0 0.8573 0.1427 late Bx I.coriacea
PBOBC198 1 0 0 0 0 0.9992 0.0008 I. coriacea 
PBOBC228 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBC240 1 0 0 0 0 0.9998 0.0002 I. coriacea 
PBOBCE04 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBCE05 0 0.00662 0.99339 0 0 0.552 0.448 F1 hybrid 
PBOBG011 0 0 0 0.00009 0.99991 0.0584 0.9416 I. glabra 
PBOBG028 0 0 0 0 1 0.004 0.996 I. glabra 
PBOBG067 1 0 0 0 0 0.999 0.001 I. coriacea 
PBOBG159 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBG169 0 0 0 0 1 0.007 0.993 I. glabra 
PBOBG170 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBG174 0 0 0 0 1 0.006 0.994 I. glabra 
PBOBG182 0 0 0 0 1 0.005 0.995 I. glabra 
PBOBG190 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBG198 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBG205 0 0 0 0 1 0.003 0.997 I. glabra 
PBOBGE01 0 0 0 0 1 0.001 0.999 I. glabra 
PBOBGE17 0 0 0 0 1 0.001 0.999 I. glabra 
PCATC093 0.99848 0.00152 0 0 0 0.9813 0.0187 I. coriacea 
PCATC115 0.00001 0.99938 0.00061 0 0 0.7431 0.2569 Bx I. coriacea 
PCATC185 1 0 0 0 0 0.998 0.002 I. coriacea 
PCATC197 1 0 0 0 0 0.997 0.003 I. coriacea 
PCATC204 1 0 0 0 0 0.999 0.001 I. coriacea 
PCATC212 1 0 0 0 0 0.989 0.011 I. coriacea 
PCATC219 1 0 0 0 0 0.999 0.001 I. coriacea 
PCATC225 1 0 0 0 0 0.999 0.001 I. coriacea 
PCATC240 0.99999 0.00001 0 0 0 0.98 0.02 I. coriacea 
PCATC245 1 0 0 0 0 0.997 0.003 I. coriacea 
PCATG107 0 0 0 0 1 0.001 0.999 I. glabra 
PCATG114 0 0 0 0 1 0.001 0.999 I. glabra 
PCATG134 0 0 0 0 1 0.005 0.995 I. glabra 
PCATG137 0 0 0 0 1 0.002 0.998 I. glabra 
PCATG143 0 0 0 0 1 0.001 0.999 I. glabra 
PCATG148 0 0 0 0 1 0.001 0.999 I. glabra 
PCATG151 0 0 0 0 1 0.001 0.999 I. glabra 
PCATGE09 0 0 0 0 1 0.001 0.999 I. glabra 
PCATGE17 0 0 0 0 1 0.002 0.998 I. glabra 
PCHEG003 0 0 0 0 1 0.001 0.999 I. glabra 
PCHEG033 0 0 0 0 1 0.001 0.999 I. glabra 
PCHEG047 0 0 0 0 1 0.003 0.997 I. glabra 
PCHEG058 0 0 0 0 1 0.001 0.999 I. glabra 
PCHEG089 0 0 0 0 1 0.0226 0.9774 I. glabra 
PCHEG093 0 0 0 0 1 0.001 0.999 I. glabra 
PCHEG114 0 0 0 0 1 0.001 0.999 I. glabra 
PCHEG119 0 0 0 0 1 0.001 0.999 I. glabra 
PCRGG001 0 0 0 0 1 0.0206 0.9794 I. glabra 
PCRGG007 0 0 0 0 1 0.002 0.998 I. glabra 
PCRGG008 0 0 0 0 1 0.001 0.999 I. glabra 
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NEWHYBRIDS STRUCTURE 

Sample 
I. 

coriacea 
backcross 
coriacea 

F1 
backcross 

glabra 
I. 

glabra
I. coriacea I. glabra Classification 

PCRGG010 0 0 0 0 1 0.001 0.999 I. glabra 
PCRGG013 0 0 0 0 1 0.001 0.999 I. glabra 
PCRGG014 0 0 0 0 1 0.0186 0.9814 I. glabra 
PCRGG017 0 0 0 0 1 0.008 0.992 I. glabra 
PCRGGE24 0 0 0 0 1 0.001 0.999 I. glabra 
PCRGGE32 0 0 0 0 1 0.001 0.999 I. glabra 
PCRGGE36 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVG001 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVG002 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVG004 0 0 0 0.00012 0.99988 0.0514 0.9486 I. glabra 
PEAVGE02 0 0 0 0 1 0.004 0.996 I. glabra 
PEAVGE03 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVGE06 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVH003 0 0 0 0.00004 0.99996 0.062 0.938 I. glabra 
PEAVH004 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVHE01 0 0 0 0 1 0.001 0.999 I. glabra 
PEAVHE02 0 0 0 0 1 0.001 0.999 I. glabra 
PGDSC003 1 0 0 0 0 0.9988 0.0012 I. coriacea 
PGDSC009 1 0 0 0 0 0.999 0.001 I. coriacea 
PGDSC012 1 0 0 0 0 0.998 0.002 I. coriacea 
PGDSC024 1 0 0 0 0 0.996 0.004 I. coriacea 
PGDSC036 1 0 0 0 0 0.997 0.003 I. coriacea 
PGDSC055 1 0 0 0 0 0.999 0.001 I. coriacea 
PGDSC057 1 0 0 0 0 0.999 0.001 I. coriacea 
PGDSCE01 1 0 0 0 0 0.997 0.003 I. coriacea 
PGDSCE02 1 0 0 0 0 0.999 0.001 I. coriacea 
PGDSG018 0 0 0 0.00005 0.99995 0.0565 0.9435 I. glabra 
PGDSG020 0 0 0 0 1 0.001 0.999 I. glabra 
PGDSG021 0 0 0 0 1 0.0272 0.9728 I. glabra 
PGDSG026 0 0 0 0 1 0.002 0.998 I. glabra 
PGDSG032 0 0 0 0 1 0.006 0.994 I. glabra 
PGDSG037 0 0 0 0 1 0.001 0.999 I. glabra 
PGDSG046 0 0 0 0 1 0.007 0.993 I. glabra 
PGDSGE05 0 0 0 0.00002 0.99998 0.0583 0.9417 I. glabra 
PGDSGE12 0 0 0 0 1 0.001 0.999 I. glabra 
PHUNC001 0.99999 0.00001 0 0 0 0.994 0.006 I. coriacea 
PHUNC003 1 0 0 0 0 0.999 0.001 I. coriacea 
PHUNC006 0.99996 0.00004 0 0 0 0.9839 0.0161 I. coriacea 
PHUNC010 1 0 0 0 0 0.998 0.002 I. coriacea 
PHUNC012 0.00762 0.97475 0.01763 0 0 0.7429 0.2571 Bx I. coriacea 
PHUNC014 1 0 0 0 0 0.998 0.002 I. coriacea 
PHUNCE04 1 0 0 0 0 0.999 0.001 I. coriacea 
PHUNCE06 1 0 0 0 0 0.996 0.004 I. coriacea 
PHUNCE08 1 0 0 0 0 0.999 0.001 I. coriacea 
PHUNG002 0 0 0 0 1 0.001 0.999 I. glabra 
PHUNGE01 0 0 0 0 1 0.009 0.991 I. glabra 
PHUNGE05 0 0.00008 0.99989 0.00002 0 0.4954 0.5046 F1 hybrid 
PHUNGE07 0 0 0 0 1 0.001 0.999 I. glabra 
PHUNGE09 0 0 0 0 1 0.001 0.999 I. glabra 
PHUNGE11 0 0 0 0 1 0.0019 0.9981 I. glabra 
PHUNGE14 0 0 0 0 1 0.001 0.999 I. glabra 
PHUNGE15 0 0 0 0 1 0.001 0.999 I. glabra 
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NEWHYBRIDS STRUCTURE 

Sample 
I. 

coriacea 
backcross 
coriacea 

F1 
backcross 

glabra 
I. 

glabra
I. coriacea I. glabra Classification 

PSISC001 1 0 0 0 0 0.998 0.002 I. coriacea 
PSISC009 0.96664 0.03336 0 0 0 0.9164 0.0836 I. coriacea 
PSISC010 1 0 0 0 0 0.999 0.001 I. coriacea 
PSISC013 1 0 0 0 0 0.998 0.002 I. coriacea 
PSISC025 1 0 0 0 0 0.999 0.001 I. coriacea 
PSISC026 1 0 0 0 0 0.999 0.001 I. coriacea 
PSISC028 0.99958 0.00042 0 0 0 0.9851 0.0149 I. coriacea 
PSISC033 1 0 0 0 0 0.997 0.003 I. coriacea 
PSISCE36 0.99408 0.00592 0 0 0 0.9033 0.0967 I. coriacea 
PSISCE37 0.99999 0.00001 0 0 0 0.992 0.008 I. coriacea 
PSISG006 0 0 0 0 1 0.0016 0.9984 I. glabra 
PSISG010 0 0 0 0 1 0.002 0.998 I. glabra 
PSISG032 0 0 0 0.00004 0.99996 0.0484 0.9516 I. glabra 
PSISG048 0 0 0 0 1 0.001 0.999 I. glabra 
PSISG057 0 0 0 0 1 0.005 0.995 I. glabra 
PSISG063 0 0 0 0 1 0.002 0.998 I. glabra 
PSISG076 0 0 0 0 1 0.001 0.999 I. glabra 
PSISGE16 0 0 0 0 1 0.001 0.999 I. glabra 
PSOPC001 1 0 0 0 0 0.997 0.003 I. coriacea 
PSOPC005 0 0.31468 0.68532 0 0 0.656 0.344 F1 / Bx I. coriacea
PSOPCE01 1 0 0 0 0 0.998 0.002 I. coriacea 
PSOPCE02 0.99879 0.00121 0 0 0 0.9689 0.0311 I. coriacea 
PSOPCE03 1 0 0 0 0 0.9929 0.0071 I. coriacea 
PSOPGE02 0 0 0 0 1 0.001 0.999 I. glabra 

PWAMC013 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC014 1 0 0 0 0 0.997 0.003 I. coriacea 
PWAMC034 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC036 1 0 0 0 0 0.998 0.002 I. coriacea 
PWAMC040 0.99999 0.00001 0 0 0 0.994 0.006 I. coriacea 
PWAMC046 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC057 1 0 0 0 0 0.9956 0.0044 I. coriacea 
PWAMC063 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC084 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC090 0.01321 0.98544 0.00135 0 0 0.7617 0.2383 Bx I. coriacea 
PWAMC106 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC113 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC121 0.99999 0.00001 0 0 0 0.983 0.017 I. coriacea 
PWAMC123 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC128 1 0 0 0 0 0.991 0.009 I. coriacea 
PWAMC141 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMC144 1 0 0 0 0 1 0 I. coriacea 
PWAMC148 1 0 0 0 0 1 0 I. coriacea 
PWAMCE04 1 0 0 0 0 0.999 0.001 I. coriacea 
PWAMCE07 1 0 0 0 0 0.9967 0.0033 I. coriacea 
PWAMG011 0 0 0.00029 0.10433 0.89538 0.1699 0.8301 late Bx I. glabra 
PWAMG079 0 0 0 0 1 0.0181 0.9819 I. glabra 
PWAMG091 0 0 0 0 1 0.001 0.999 I. glabra 
PWAMG093 0 0 0 0 1 0.001 0.999 I. glabra 
PWAMG094 0 0 0 0 1 0.002 0.998 I. glabra 
PWAMG096 0 0 0 0 1 0.001 0.999 I. glabra 
PWAMG097 0 0 0 0 1 0.002 0.998 I. glabra 
PWAMG098 0 0 0 0 1 0.001 0.999 I. glabra 
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NEWHYBRIDS STRUCTURE 

Sample 
I. 

coriacea 
backcross 
coriacea 

F1 
backcross 

glabra 
I. 

glabra
I. coriacea I. glabra Classification 

PWAMGE02 0 0 0 0 1 0.009 0.991 I. glabra 
PWAMGE08 0 0 0 0 1 0.001 0.999 I. glabra 
PWAMGE15 0 0 0 0 1 0.0418 0.9582 I. glabra 
PWAMGE19 0 0 0 0 1 0.001 0.999 I. glabra 
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APPENDIX F: Estimated hybrid indices of flies 

Hybrid index calculated using package INTROGRESS using method described in Buerkle 
(2005). Flies with a 0.99 or higher membership in a parental type using NEWHYBRIDS 
used as training samples. Values of 0 correspond to coriacea-flies and 1 to glabra-flies.  

Sample Lower limit 95% CI Hybrid Index Upper limit 95% CI 

152C004 0.04024 0.177669 0.367981 

152C013 0 0 0.164214 

152C026 0.293484 0.485933 0.686612 

152C031 0.225633 0.388817 0.569845 

152C032 0.041704 0.172718 0.366856 

152C039 0 0.067773 0.273666 

152C042 0.110608 0.274485 0.472594 

152C059 0 0 0.067859 

152C061 0.13374 0.268919 0.434151 

152C062 0 0 0.097234 

152C077 0.225287 0.400157 0.58788 

152C092 0.027973 0.105241 0.242405 

152C096 0.002934 0.048775 0.177236 

152C102 0.264345 0.449763 0.647324 

152C123 0.016885 0.095757 0.251175 

152C127 0.149408 0.301338 0.482423 

152C130 0.072599 0.213317 0.394513 

152C142 0.175531 0.347175 0.539385 

152C143 0 0 0.116087 

152C190 0 0 0.110181 

152C223 0.119151 0.290581 0.489884 

152C248 0 0 0.068257 

152C258 0.04123 0.176185 0.37407 

152C264 0.04108 0.141983 0.302539 

152C271 0.00786 0.096404 0.276939 

152C273 0.017407 0.151249 0.338493 

152C288 0.28823 0.481623 0.683161 

BOBC006 0.059464 0.203115 0.396588 

BOBC007 0 0 0.119467 

BOBC012 0 0 0.074828 

BOBC019 0 0 0.076621 

BOBC023 0 0 0.112447 

BOBC037 0 0 0.102516 

BOBC039 0 0 0.092464 

BOBC046 0 0 0.207053 

BOBC049 0 0 0.055993 

BOBC076 0.084266 0.243605 0.440171 
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Sample Lower limit 95% CI Hybrid Index Upper limit 95% CI 

BOBC084 0 0 0.076003 

BOBC127 0 0 0.21199 

BOBC128 0.014799 0.087033 0.238572 

BOBC130 0 0 0.096036 

BOBC149 0.019763 0.147619 0.342668 

BOBC196 0.120675 0.317181 0.533168 

BOBC198 0 0.103105 0.316278 

BOBC230 0.023717 0.141591 0.321405 

BOBC243 0.048937 0.165948 0.340814 

CATC004 0 0 0.107374 

CATC010 0.086385 0.254633 0.45814 

CATC049 0 0.009359 0.16693 

CATC051 0.006038 0.084118 0.256804 

CATC105 0 0 0.106245 

CATC115 0.099277 0.276397 0.483591 

CATC119 0.237448 0.432325 0.636585 

CATC124 0.049085 0.209599 0.422755 

CATC135 0.105537 0.294366 0.512135 

CATC145 0.153612 0.322014 0.518148 

CATC158 0.108502 0.294497 0.505593 

CATC159 0.04206 0.184082 0.383859 

CATC168 0.153744 0.326972 0.527042 

CATC172 0.360713 0.541901 0.723648 

CATC176 0.027425 0.117041 0.268919 

CATC179 0.182266 0.369523 0.573128 

CATC183 0 0 0.08571 

CATC189 0 0.067461 0.29542 

GDSC056 0.291795 0.488745 0.690856 

GDSC065 0.092554 0.224007 0.404764 

HUNC002 0 0 0.171713 

HUNC003 0.036956 0.137402 0.304285 

HUNC006 0.226444 0.399493 0.588301 

HUNC007 0.07045 0.195317 0.371834 

HUNC009 0.280749 0.470731 0.666317 

HUNC014 0.282814 0.481214 0.682191 

SISC004 0.107627 0.257936 0.455074 

SISC014 0.178078 0.355346 0.557794 

SISC030 0.14137 0.309233 0.501687 

SISC040 0.356086 0.566226 0.77432 

SISC042 0.118811 0.253978 0.428405 

WAMC002 0.309655 0.484122 0.663118 

WAMC004 0 0.074297 0.266229 
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Sample Lower limit 95% CI Hybrid Index Upper limit 95% CI 

WAMC014 0.106802 0.292092 0.503433 

WAMC031 0 0.051036 0.251256 

WAMC036 0.041312 0.196237 0.400658 

WAMC040 0 0 0.155469 

WAMC054 0.034827 0.167643 0.364797 

WAMC057 0.067241 0.244578 0.458567 

WAMC063 0.101163 0.236751 0.416411 

WAMC082 0 0 0.187056 

WAMC084 0 0 0.107154 

WAMC092 0 0.021512 0.154889 

WAMC103 0.114417 0.260649 0.444939 

WAMC114 0 0 0.116897 

WAMC121 0 0 0.089098 

WAMC127 0 0.025753 0.231995 

WAMC128 0.009584 0.110593 0.303656 

WAMC141 0.066132 0.174396 0.325955 

WAMC148 0 0 0.09558 

152G001 0.891268 1 1 

152G002 0.582556 0.784241 0.942123 

152G012 0.74665 0.940946 1 

152G015 0.859403 1 1 

152G018 0.814837 1 1 

152G034 0.579304 0.803845 0.977303 

152G035 0.585799 0.797395 0.960696 

152G037 0.724972 0.952753 1 

152G038 0.826736 1 1 

152G040 0.882449 1 1 

152G066 0.869392 1 1 

152G068 0.385795 0.602523 0.818626 

152G075 0.727981 0.960235 1 

152G086 0.478255 0.7009 0.924138 

152G093 0.931993 1 1 

152G096 0.874091 1 1 

152G098 0.852013 1 1 

152G109 0.675388 0.912916 1 

152G116 0.593441 0.816723 1 

152G164 0.920002 1 1 

152G199 0.929503 1 1 

BOBG001 0.922129 1 1 

BOBG002 0.801706 0.996334 1 

BOBG003 0.830424 1 1 

BOBG005 0.911736 1 1 
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Sample Lower limit 95% CI Hybrid Index Upper limit 95% CI 

BOBG007 0.582248 0.797163 0.964302 

BOBG010 0.887584 1 1 

BOBG034 0.923174 1 1 

BOBG045 0.584187 0.772771 0.922413 

BOBG057 0.543372 0.758394 0.956629 

BOBG090 0.436498 0.653349 0.860381 

BOBG094 0.556715 0.788343 0.99544 

BOBG095 0.606299 0.810092 0.987354 

BOBG104 0.599669 0.799819 0.95804 

BOBG111 0.568403 0.791454 0.989195 

BOBG114 0.492276 0.734013 0.959707 

BOBG120 0.78981 0.992946 1 

BOBG128 0.808458 1 1 

BOBG158 0.718429 0.90766 0.993715 

BOBG169 0.59672 0.817267 0.981772 

BOBG174 0.818717 0.995739 1 

BOBG198 0.87337 1 1 

CATG013 0.563452 0.773858 0.954803 

CATG038 0.620056 0.821377 0.969613 

CATG073 0.510752 0.732792 0.927453 

CHEG033 0.894356 1 1 

CHEG048 0.838917 1 1 

CHEG049 0.921617 1 1 

CHEG088 0.861569 1 1 

CHEG095 0.59017 0.813286 0.982705 

CHEG096 0.521086 0.733629 0.91617 

CHEG107 0.841466 0.971499 1 

CHEG109 0.859295 0.990282 1 

CHEG114 0.707317 0.900714 1 

CHEG122 0.69541 0.933633 1 

CRGG002 0.874063 1 1 

CRGG008 0.540341 0.743466 0.922935 

CRGG014 0.695741 0.892924 1 

GDSG012 0.865858 1 1 

HUNG002 0.547733 0.735811 0.888825 

SISG003 0.829556 1 1 

SISG011 0.635561 0.845318 1 

SISG032 0.906714 1 1 

SISG048 0.751961 0.915656 1 

SISG050 0.355736 0.569317 0.787949 

SISG066 0.910902 1 1 

SISG067 0.905519 1 1 
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Sample Lower limit 95% CI Hybrid Index Upper limit 95% CI 

SISG069 0.828042 0.964182 1 

SISG076 0.653263 0.899851 1 

WAMG001 0.690165 0.908518 1 

WAMG005 0.690977 0.876161 0.998092 

WAMG008 0.825496 1 1 

WAMG012 0.854275 1 1 

WAMG016 0.695376 0.934704 1 

WAMG020 0.793706 0.995487 1 

WAMG031 0.482638 0.695667 0.885341 

WAMG037 0.494283 0.702429 0.886004 

WAMG038 0.638329 0.869924 1 

WAMG040 0.860028 1 1 

WAMG043 0.827625 1 1 

WAMG050 0.707186 0.946399 1 

WAMG055 0.72975 0.925781 1 

WAMG062 0.462724 0.67395 0.88104 

WAMG068 0.824537 1 1 

WAMG075 0.917742 1 1 

WAMG092 0.773307 0.932029 0.995833 

WAMG096 0.852588 1 1 
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APPENDIX G: Estimated hybrid indices of plants 

Hybrid index calculated using package INTROGRESS using method described in Buerkle 
(2005). Flies with a 0.99 or higher membership in a parental type using NEWHYBRIDS 
used as training samples. Values of 0 correspond to I. coriacea and 1 to I. glabra.  

Lower limit 95% CI Hybrid Index Upper limit 95% CI 

P152C012 0 0 0.025698 

P152C013 0 0 0.053315 

P152C014 0 0.010338 0.088731 

P152C031 0 0 0.043222 

P152C042 0 0 0.040316 

P152C077 0 0 0.033806 

P152C092 0 0 0.036663 

P152C099 0 0 0.038073 

P152C122 0 0.004466 0.052682 

P152C127 0 0 0.043644 

P152C130 0 0 0.025685 

P152C133 0 0 0.027589 

P152C222 0 0 0.0296 

P152C234 0 0 0.036493 

P152C240 0 0 0.028275 

P152C247 0 0 0.025766 

P152C254 0 0.01984 0.08644 

P152C271 0 0.042124 0.12622 

P152C272 0 0 0.023759 

P152C280 0 0.005776 0.057586 

P152C288 0.084275 0.191218 0.312071 

P152CE02 0.126972 0.219771 0.326941 

P152CE06 0 0.000124 0.043281 

PBOBC006 0 0 0.028814 

PBOBC016 0 0 0.072876 

PBOBC046 0 0 0.027086 

PBOBC047 0 0 0.051491 

PBOBC048 0 0 0.035279 

PBOBC061 0 0 0.09251 

PBOBC084 0 0 0.039025 

PBOBC092 0 0 0.023988 

PBOBC142 0 0 0.027247 

PBOBC149 0 0 0.027793 
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Lower limit 95% CI Hybrid Index Upper limit 95% CI 

PBOBC181 0 0.035257 0.110599 

PBOBC187 0 0.011242 0.068153 

PBOBC191 0.085477 0.169217 0.269075 

PBOBC198 0 0 0.026275 

PBOBC228 0 0 0.034426 

PBOBC240 0 0 0.026256 

PBOBCE04 0 0 0.040278 

PBOBCE05 0.335557 0.450678 0.569088 

PCATC093 0.010444 0.120739 0.244897 

PCATC115 0.176288 0.275032 0.383824 

PCATC185 0 0 0.047636 

PCATC197 0 0.002171 0.073857 

PCATC204 0 0 0.037701 

PCATC212 0 0.01814 0.088144 

PCATC219 0 0 0.033301 

PCATC225 0 0 0.04053 

PCATC240 0 0.060716 0.15936 

PCATC245 0 0.023525 0.120159 

PGDSC003 0 0.001707 0.065924 

PGDSC009 0 0 0.029495 

PGDSC012 0 0.001237 0.061215 

PGDSC024 0 0.031956 0.115365 

PGDSC036 0 0.010401 0.079618 

PGDSC055 0 0 0.038927 

PGDSC057 0 0 0.043521 

PGDSCE01 0 0.005507 0.057589 

PGDSCE02 0 0 0.04712 

PHUNC001 0 0.02963 0.125045 

PHUNC003 0 0 0.054668 

PHUNC006 0 0.048122 0.143082 

PHUNC010 0 0.006221 0.090855 

PHUNC012 0.194598 0.301103 0.414193 

PHUNC014 0 0 0.067559 

PHUNCE04 0 0 0.040135 

PHUNCE06 0 0.006985 0.088297 

PHUNCE08 0 0 0.045128 

PSISC001 0 0 0.050524 

PSISC009 0.063424 0.159493 0.271938 
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Lower limit 95% CI Hybrid Index Upper limit 95% CI 

PSISC010 0 0 0.053521 

PSISC013 0 0 0.079916 

PSISC025 0 0 0.065409 

PSISC026 0 0 0.065497 

PSISC028 0 0.084127 0.192921 

PSISC033 0 0.007095 0.087982 

PSISCE36 0.024638 0.108613 0.215233 

PSISCE37 0 0.01682 0.118496 

PSOPC001 0 0.009944 0.088487 

PSOPC005 0.254694 0.360351 0.470751 

PSOPCE01 0 0 0.057405 

PSOPCE02 0 0.06609 0.1633 

PSOPCE03 0 0 0.075683 

PWAMC013 0 0 0.048819 

PWAMC014 0 0 0.081011 

PWAMC034 0 0 0.030449 

PWAMC036 0 0 0.05216 

PWAMC040 0 0.035807 0.118286 

PWAMC046 0 0 0.032636 

PWAMC057 0 0.020926 0.107268 

PWAMC063 0 0 0.02808 

PWAMC084 0 0 0.062606 

PWAMC090 0.19029 0.292752 0.403628 

PWAMC106 0 0 0.039684 

PWAMC113 0 0 0.043323 

PWAMC121 0 0.035198 0.107299 

PWAMC123 0 0 0.042134 

PWAMC128 0 0 0.065964 

PWAMC141 0 0 0.028303 

PWAMC144 0 0 0.025341 

PWAMC148 0 0 0.024998 

PWAMCE04 0 0 0.044783 

PWAMCE07 0 0.015259 0.086885 

P152G027 0.94886 1 1 

P152G167 0.93114 0.990836 1 

P152G168 0.971648 1 1 

P152G172 0.944232 1 1 

P152G174 0.957031 1 1 
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Lower limit 95% CI Hybrid Index Upper limit 95% CI 

P152G180 0.944899 1 1 

P152G183 0.963427 1 1 

P152G199 0.951566 1 1 

P152GE01 0.966544 1 1 

P152GE02 0.957848 1 1 

PBOBG011 0.823666 0.931449 1 

PBOBG028 0.933788 0.99176 1 

PBOBG067 0 0 0.047665 

PBOBG159 0.962983 1 1 

PBOBG169 0.908178 0.98034 1 

PBOBG170 0.957779 1 1 

PBOBG174 0.920248 1 1 

PBOBG182 0.909803 0.988887 1 

PBOBG190 0.970665 1 1 

PBOBG198 0.942747 1 1 

PBOBG205 0.939187 0.996527 1 

PBOBGE01 0.967177 1 1 

PBOBGE17 0.956403 1 1 

PCATG107 0.967214 1 1 

PCATG114 0.963714 1 1 

PCATG134 0.934101 0.993083 1 

PCATG137 0.93544 1 1 

PCATG143 0.960553 1 1 

PCATG148 0.952656 1 1 

PCATG151 0.964708 1 1 

PCATGE09 0.950092 1 1 

PCATGE17 0.9382 1 1 

PCHEG003 0.955845 1 1 

PCHEG033 0.959381 1 1 

PCHEG047 0.933861 0.993413 1 

PCHEG058 0.97114 1 1 

PCHEG089 0.865035 0.955808 1 

PCHEG093 0.955865 1 1 

PCHEG114 0.955244 1 1 

PCHEG119 0.962303 1 1 

PCRGG001 0.89625 0.971309 1 

PCRGG007 0.932682 1 1 

PCRGG008 0.970856 1 1 
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Lower limit 95% CI Hybrid Index Upper limit 95% CI 

PCRGG010 0.964625 1 1 

PCRGG013 0.940418 1 1 

PCRGG014 0.893681 0.968683 1 

PCRGG017 0.904673 0.979712 1 

PCRGGE24 0.960689 1 1 

PCRGGE32 0.968973 1 1 

PCRGGE36 0.970409 1 1 

PEAVG001 0.966078 1 1 

PEAVG002 0.96704 1 1 

PEAVG004 0.833854 0.931418 0.996201 

PEAVGE02 0.925534 0.988188 1 

PEAVGE03 0.958 1 1 

PEAVGE06 0.951692 1 1 

PEAVH003 0.838434 0.932911 0.995173 

PEAVH004 0.964382 1 1 

PEAVHE01 0.944697 1 1 

PEAVHE02 0.953552 1 1 

PGDSG018 0.849092 0.940017 0.993682 

PGDSG020 0.943189 1 1 

PGDSG021 0.880159 0.958813 1 

PGDSG026 0.925581 1 1 

PGDSG032 0.894918 0.979268 1 

PGDSG037 0.956336 1 1 

PGDSG046 0.888733 0.973004 1 

PGDSGE05 0.844617 0.937768 0.998009 

PGDSGE12 0.967166 1 1 

PHUNG002 0.95316 1 1 

PHUNGE01 0.912115 0.976066 1 

PHUNGE05 0.401698 0.516045 0.630666 

PHUNGE07 0.943692 1 1 

PHUNGE09 0.958852 1 1 

PHUNGE11 0.925399 1 1 

PHUNGE14 0.952761 1 1 

PHUNGE15 0.961249 1 1 

PSISG006 0.95581 1 1 

PSISG010 0.943579 1 1 

PSISG032 0.824217 0.925274 0.998471 

PSISG048 0.965583 1 1 
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Lower limit 95% CI Hybrid Index Upper limit 95% CI 

PSISG057 0.880786 0.968779 1 

PSISG063 0.918511 1 1 

PSISG076 0.953857 1 1 

PSISGE16 0.959009 1 1 

PSOPGE02 0.968661 1 1 

PWAMG011 0.719095 0.817707 0.900909 

PWAMG079 0.905637 0.975597 1 

PWAMG091 0.962003 1 1 

PWAMG093 0.959671 1 1 

PWAMG094 0.93032 1 1 

PWAMG096 0.963477 1 1 

PWAMG097 0.945043 1 1 

PWAMG098 0.972086 1 1 

PWAMGE02 0.921292 0.988506 1 

PWAMGE08 0.969113 1 1 

PWAMGE15 0.867357 0.952031 1 

PWAMGE19 0.956112 1 1 
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