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Tidal freshwater wetlands are often found near urban centers, and as a result 

of human development they are subject to multiple environmental stressors. Increases 

in nutrient runoff, sedimentation, and hydrologic alterations have had significant 

impacts on these systems and on the ecosystem services they provide. One of the 

consequences of these stressors is the expansion of invasive species that can affect 

native biodiversity and the many biogeochemical processes that are key to wetland 

ecosystem function. This research looked at how human activities affect microbial 

communities in tidal freshwater wetlands, and explored various aspects of an invasive 

plant’s ecology in the Chesapeake Bay.  

In our first study, we found that microbial community composition differed 

along a rural to urban gradient and identified microbial taxa that were indicators of 

either habitat. Rural sites tended to have more methanogens and these were also 



  

indicators in these system, whereas in urban systems nitrifying bacteria were the main 

indicator taxa. This study suggested that urban wetlands have different microbial 

communities and likely different functions than those in rural areas, particularly 

concerning nitrogen and contaminant removal. Our second study looked at 

management of an invasive lineage of Phragmites australis which is commonly 

found in wetlands impacted by nitrogen enrichment. We evaluated the effects of 

different C:N ratios on the competitive ability of this lineage and a native North 

American lineage. Even though carbon addition did not improve the native’s 

competitive ability, we identified facilitative interactions when both lineages were 

growing together. This suggests that native and invasive Phragmites might coexist if 

there are no additional disturbances to the system. Our last study focused on plant-

fungal interactions, and found that both Phragmites lineages benefitted from 

inoculation with fungal endophytes under salt stress. These results suggest that 

studies of plant-fungal interactions can yield insights into mechanisms of invasion, 

and could be further investigated in native wetland plants susceptible to increased salt 

stress following sea-level rise. Our results provide insights into plant and microbial 

ecology in the Chesapeake Bay’s tidal freshwater wetlands, and improve our 

understanding of the invasion process and management strategies of Phragmites 

australis. 
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Chapter 1: Review of nutrient pollution in the Chesapeake Bay and 

its effects on plant and microbial ecology 

 

The Chesapeake Bay is the largest estuary in the United States with an area of 

approximately 11,601km2 approximately and 315km of tidal zones on its main stem 

(1,2). Due to the Bay’s shallowness relative to its length, it is one of the few estuaries 

that holds a semi-diurnal tide (3). These tidal currents play a key role in transport and 

accumulation of contaminants in the Bay through resuspension and redepositions of 

bottom sediments (4), and are responsible for salinity gradients across the major 

tributaries in the Bay.  

Salinity levels can range from ~0.1% in the freshwater upper tributaries, to 

25-30% near the mouth of the Bay (5). These salinity variations result in different 

types of wetlands that have developed across the Bay; in the upper reaches of the 

estuary there are tidal freshwater wetlands characterized by salinities below 0.5ppt 

(6), and as salinity increases these transition into brackish and salt marshes (7).   

Compared to brackish or salt marshes, freshwater wetlands support the 

greatest diversity of plants (7,8) and are considered to be one of the most productive 

ecosystems on Earth (9,10). Tidal exchanges of nutrients and  particulate matter 

contribute to the high productivity of these systems and help support a diverse food 

web. Tidal freshwater wetlands act as sources, sinks, and transformants of organic 

matter (11,12) and therefore play key roles in biogeochemical cycles of major 

nutrients.  

The landscape position of tidal freshwater wetlands makes them intermediates 

between land and aquatic systems and therefore have critical ecosystem functions 
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(10). Some of the many services that these wetlands provide include water filtration, 

flood mitigation, climate regulation and wildlife habitat (12). Due to their inland 

location, freshwater tidal wetlands tend to be close to urban centers and therefore are 

prone to human impacts (13). About 18 million people live in the Chesapeake Bay 

watershed and population is expected to increase leading to further degradation and 

loss of these wetlands (13).  

Sea level could also lead to increased wetland losses; and in the Chesapeake 

Bay coastal wetland losses to sea-level rise has already been reported (14). In this 

context, freshwater tidal wetlands could be at risk due to salt intrusions that can alter 

C cycling (15,16) and promote nutrient release from sediments (17,18) exacerbating 

nutrient pollution, and altering plant community structure (19,20). Due to its 

topographical location, freshwater wetlands would not be able to migrate further 

upstream and freshwater plant communities will likely be replaced by salt-tolerant 

species (21) increasing the loss of these valuable systems.  

Current wetland cover in the Chesapeake Bay is estimated to have decreased 

by 60% in the last 300 years (22). Before European settlements the Bay area was 

predominantly covered by forests, but urban development and agricultural fields 

quickly replaced these systems increasing surface runoff and soil erosion, and filling 

natural wetlands and streams (23,24). The increase in sedimentation rates together 

with the overexploitation of oyster reefs that filtered particulate matter, made the Bay 

prone to overfertilization (4). Specifically, humans contribute to nutrient pollution in 

the Bay through municipal treatment plants, sewage, runoff from fertilized field, 

animal feedlots (5) and atmospheric depositions from fossil fuel combustions (23). As 
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a result, nitrogen and phosphorus loads have increased 6-8 fold and 13-24 fold 

respectively from pre-colonial times to the mid 1980s (25). 

Nutrient pollution can affect the structure and function of freshwater tidal 

wetlands by altering its biogeochemistry, plant, animal and microbial communities.  

Nutrient enrichment of the Bay’s waters has led to an increase in phytoplankton that 

shades and kills submerged aquatic vegetation, and subsequently depletes dissolved 

oxygen causing a decrease in benthic macrofauna (26) and commercially valuable 

species (2,27). In addition, oxygen depletion decreases redox potential leading to 

changes in nutrient cycling and biogeochemistry in the sediments. Among these 

changes, low oxygen conditions can release NH4 and PO4 from the sediments creating 

a feedback loop that further promotes the eutrophic state (26). Eutrophication has also 

contributed to the spread of undesirable invasive plant species that can replace native 

vegetation and significantly alter the ecosystem’s structure and function. The next 

section further explores the link between nutrient enrichment and plant invasion, and 

focuses on the spread of a non-native lineage of Phragmites australis.  

Effects of nutrient pollution on invasive plant ecology in tidal freshwater 

wetlands  

 

Although wetlands only occupy <6% of the Earth’s landmass, 24% of the 

world’s most invasive species are wetland plants (28). The availability of invasive 

propagules, together with nutrient enrichment or release, can ultimately lead to 

successful wetland plant invasions (29). Tidal freshwater wetlands can be very 

susceptible to nutrient pollution and invasive propagule dispersal because of their 

landscape position; they are usually found downstream of the nutrient rich sources 
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(30) and their connection to the estuary means tidal action can also promote the 

spread of contaminants and invasive species (31).  

Invasive plants tend to share similar traits that allow them to be successful in 

nutrient-rich environments. Some of these traits include high growth rates, high 

photosynthetic rates, efficient dispersal and efficient use of N and P (32). Increases in 

atmospheric nitrogen deposition, fertilization and disturbances that promote nutrient 

release allow fast-growing, nitrophilic species to outcompete native species that are 

adapted to low nutrient conditions (33–35). Shifts in competitive balance between 

native species and more competitive invasive plants have been reported in various 

nutrient-enriched ecosystems including grasslands (36), deserts (37), and wetlands 

(38)  

In the case of the Chesapeake Bay as well as other areas across the U.S., 

excessive use of fertilizers has had a major impact in freshwater wetland plant 

communities as it facilitated the spread of invasive plants like Phragmites australis. 

This invasion was initially considered to be a results of human activities that caused 

disturbances like hydrological changes and  nutrient pollution (39); and although 

these factors contributed to Phragmites expansion, the main determinant was the 

introduction of a non-native European lineage that thrived under those disturbed 

conditions (40). 

Native and invasive lineages of Phragmites differ morphologically and 

physiologically. Morphologically, the native can be differentiated based on its 

caducous leaf sheathes, longer ligule and glume length (41), lighter colored leaves, 

and reddish smooth stems (42) that grow less dense than the invasive lineage (43). 
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Physiologically, native Phragmites has lower photosynthetic rates, nitrogen uptake, 

growth rate, phenotypic plasticity (44) and is less tolerant to salinity (45).  

Establishment of invasive Phragmites can affect plant and animal 

communities, hydrology and biogeochemical cycles. Areas that are invaded by dense 

mono-specific stands of invasive Phragmites have less plant diversity and different 

plant species composition than areas dominated by native vegetation (46,47). Animal 

communities can also be affected by this invasion as non-native Phragmites modifies 

wetland topography and can decrease fish recruitment, which could limit the 

availability of prey for wading birds (48). In addition, invasive stands have been 

reported to support shorter food chains (49). Concerning hydrological changes, 

invasive Phragmites can promote sedimentation and over time develop stands that are 

elevated, have a relatively flat surface, are infrequently flooded and have little 

standing water (50). Although this increase in elevation and changes in the 

hydroperiod might have negative effects on marsh function (51), it could also 

increase marsh sustainability in areas threatened by sea-level rise (52). Finally, 

nitrogen and carbon cycles can be affected due to greater litter inputs, and rooting 

depth of the invasive lineage. These aspects are further summarized in the next 

section.  

Effects of nutrient pollution on wetland microbial ecology and biogeochemistry 

 
Microbial communities play a key role in biogeochemical cycles of tidal 

freshwater wetlands affecting relevant processes like greenhouse gas emissions, water 

quality and primary productivity. The predominantly saturated conditions create 

reducing conditions while the presence of vegetation results in soil oxygenation near 
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roots zones promoting chemical and microbially-mediated transformations of 

elements like carbon, phosphorus, nitrogen, iron and manganese (9). Microbial 

substrate availability and hydrology determine process rates and occurrences (53,54), 

and in tidal freshwater wetlands the tidal hydrology leads to open element cycles 

through exchanges of water and solutes with both terrestrial and aquatic systems.  

Nutrient enrichment in freshwater wetlands can alter microbial community 

structure and ecosystem function. For example, eutrophic sediments have been 

reported to have bacterial communities with greater number of anaerobic and beta-

proteobacteria (55,56), and less diversity of annamox bacteria (57). Concerning 

ecosystem function, greater nitrate inputs can inhibit iron (Fe) reduction as N 

reducers outcompete Fe reducers (58). Similarly, N and P enrichment has been seen 

to decrease methanogenesis likely due to increased competition for substrates of 

methanogens with denitrifiers (39,40). Chapter 2 further explores the effects of 

urbanization, and nutrient enrichment on microbial community structure of freshwater 

tidal wetlands. 

Biogeochemical cycling, particularly of C and N, has also been affected by the 

invasion of P. australis. Decomposition rates of Phragmites litter can be much slower 

than that of native vegetation due to the high C:N of its stems, binding nutrients to 

organic material and thus making them unavailable to other wetlands plants (60,61). 

Another of the mechanisms by which this invasive plant alters C and N cycling is 

through its deeper rooting profile relative to native wetland species, which “primes” 

microbial communities deep in the soil promoting carbon and nitrogen mineralization 

(62,63).  The deeper rooting profiles also allow invasive Phragmites to access deep 
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nitrogen pools that are unavailable to native wetlands plants immobilizing it in its 

biomass. In addition to immobilization, the rooting system can also promote nitrogen 

removal from the system by coupling nitrification and denitrification through efficient 

ventilation of sediments (64). Although nutrient removal is considered a valuable 

ecosystem service provided by wetlands which usually act as nutrient sinks, 

Phragmites invaded sites may act as sinks or sources of nitrogen depending on the 

rates of the aforementioned processes as well as litter decomposition rates, and 

environmental or anthropogenic nitrogen inputs (65) 

Wetland restoration and invasive Phragmites management 

 
Recognition of the importance of tidal freshwater wetlands and the ecosystem 

services they provide led to the Clean Water Act and an increase in restoration and 

conservation efforts of these systems. Some of the key functions that motivate 

wetland restoration include flood abatement, biodiversity support, carbon 

management and water quality improvement (66). But in spite of great efforts, many 

times the restored wetlands don’t achieve functional equivalence to reference sites 

(67).  

Some of the challenges when restoring wetlands to support diverse vegetation 

include constraints in dispersal, poor conditions for species establishment, priority 

effects in species recruitment, unforeseen biotic interactions, and changes in the 

available species pool that might include invasive species (68). The aggressive spread 

of invasive Phragmites australis in many freshwater wetlands poses major difficulties 

to restoration due to its great dispersal ability (69,70), phenotypic plasticity (44,71), 

and its potential to alter wetland hydrology (72,73) and soil biogeochemistry (74). As 
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a result, control or eradication of Phragmites has become an important conservation 

goal for many wetland restoration projects. 

Controlling the spread and eradicating stands of invasive Phragmites has 

proven to be a great challenge, and resource management agencies have used multiple 

techniques and approaches with varying degrees of success. The most common 

method is chemical control using herbicide, which usually requires multiple years of 

applications to be effective (75). However, the lack of data on appropriate doses, and 

its possible impacts on non-target vegetation (76) and on the long-term recovery of 

native vegetation, make it hard to assess its success (77).  Other methods include 

mechanical control (mowing, excavating or burning) and biological control using 

grazers like cattle. Although they can be somewhat effective at a local scale, these 

methods are difficult to apply at a landscape scale which is necessary for effective 

eradication (77).  

These commonly used methods for invasive Phragmites control have been 

costly and not very successful (78) leading to the development and research of new 

approaches. Given that this invasion has been linked to eutrophic conditions, nitrogen 

management has been proposed as a method to control the spread of Phragmites (77). 

One way to achieve this is through the addition of C rich amendments that promote N 

immobilization making excess nutrients unavailable to invasive plants. This has 

shown some promise in controlling other invasive grasses and promoting native plant 

restoration. For example studies by Blumenthal et al. (79) and Averett et al. (2004) 

(80) observed that sawdust additions can decrease plant available N and biomass of 

undesirable grass species biomass, and promote restoration of native grasses. In spite 
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of some successful results using this method, other studies in grasslands have found 

no effect of sawdust addition on native plant restoration (81,82). The potential use of 

this approach in wetland restoration or for control of invasive Phragmites is 

investigated in Chapter 3. 

A more novel but complex approach to controlling invasive plants like 

Phragmites involves microbiome manipulations (83). This approach suggests that 

characterizing the microbiome of invasive plants like Phragmites can lead to the 

identification of either pathogens or relevant mutualists that could either help control 

or manage the fitness of the plant. Although there has been some success in 

identifying pathogenic oomycetes that are commonly found in invasive Phragmites 

soils and are rare in the native lineage (84), the virulence of these organisms against 

each lineage the and potential success of these organisms as biocontrol agents 

remains to be evaluated. In Chapter 4 we characterized the root fungal endophytes of 

native and invasive Phragmites and explored the role of dark septate endophytes in 

salt tolerance of these lineages. 

 
In conclusion, tidal freshwater wetlands provide many valuable ecosystem 

services, but are susceptible to loss and degradation due to human activities. Nutrient 

enrichment can be particularly detrimental to these systems as it affects microbial 

communities and therefore biogeochemical cycles, and promotes plant invasions that 

can alter the ecosystem’s structure and function (28). In tidal freshwater wetlands 

invasion by a non-native lineage of Phragmites australis has been linked to nitrogen 

enrichment and other anthropogenic disturbances (47,85) and once established it can 

decrease plant biodiversity and alter hydrology and nutrient cycles. Management 
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efforts to eradicate this invasive plant have rarely been successful, so novel methods 

like N immobilization and microbiome manipulations are being investigated as 

alternatives (77). These methods might also aid in the restoration of native species, 

including native Phragmites genotypes, and if successful they could constitute a more 

comprehensive wetland management and restoration tool.  
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Abstract  

Urban expansion causes coastal wetland loss, and environmental stressors 

associated with development can lead to wetland degradation and loss of ecosystem 

services. This study investigated the effect of urbanization on prokaryotic community 

composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural 

setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We 

sampled soil associated with two pairs of functionally similar plant species, and used 

Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic 

communities. Urban stressors included raw sewage inputs, nutrient pollution, and 
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polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the 

gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 

0.001), but did not differ between plant species within sites. Indicator taxa included 

Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed 

a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban 

sites. Functional profiles in the Buenos Aires communities showed higher abundance 

of pathways related to nitrification and xenobiotic degradation in the urban site. 

These results suggest that changes in prokaryotic taxa across the gradient were due to 

surrounding stressors, and communities in urban and rural wetlands are likely 

carrying out different functions.  

Introduction 

 
Global urbanization has rapidly increased throughout the last 60 years, and by 

2050, two-thirds of the world population will live in urban settlements (1). Population 

growth and the resulting urban expansion is a major cause of wetland loss worldwide 

(2,3). Coastal wetlands are particularly susceptible to loss and habitat degradation, as 

the most dramatic population growth has occurred in cities located near coastlines 

(4,5).  

Urban development has a direct effect on wetland ecosystem services, and the 

loss and degradation of these systems can impact human health and well-being (6). 

Increased impervious surfaces facilitate the transport of pollutants into waterways and 

directly impact wetland habitat quality (7). On average, in the United States, urban 

storm water runoff can carry 0.26 mg/L of phosphorus, 0.2 mg/L of nitrogen, and 

54.5 mg/L of suspended sediments (8), which can transport various contaminants like 
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heavy metals and polycyclic aromatic hydrocarbons (PAHs) (9,10). As a result, urban 

wetlands tend to have more non-native plant species, typically favored by nutrient 

inputs, and higher sediment concentrations of heavy metals and organic chemicals 

(11,12).  

Changes in urban wetland habitat can affect the diversity and richness of 

biota. For example, urbanization has been seen to reduce macro-organism species 

diversity by creating homogeneous plant and animal assemblages (13,14). Johnson et 

al. (15) reported that urban wetlands had significantly less richness of aquatic insects, 

mollusks, amphibians, aquatic reptiles, and crayfish than wetlands in non-urban 

systems. A study on urban rivers, which are subject to similar stressors as urban 

wetlands, found microbial richness decreased in the urban areas and had higher 

abundance of genes related to xenobiotic metabolism (16). To our knowledge, no 

studies have looked at the effects of urbanization on tidal freshwater wetlands (TFW) 

prokaryotic communities, but it is expected that they would also be susceptible to 

anthropogenic disturbances (17,18).  

Wetland prokaryotic communities may change directly in response to added 

nutrients or shifts in the length and intensity of the hydroperiod, but may also 

indirectly be impacted by vegetation. In order to investigate the role of different plant 

functional groups on wetland prokaryotic communities, we sampled the root zones of 

two plant species. Root morphology and plant type can influence rhizosphere 

prokaryotic communities through plant exudates and oxygen release (19,20). Some 

studies have found that prokaryotic community structure can vary between wetland 

plant species (21) and even between lineages of the same species (22,23). Other 
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studies reported site-specific effects (24) or found that soil characteristics were the 

main drivers of microbial community composition (18).  

We examined the prokaryotic communities in TFWs located near two major 

capital cities: Buenos Aires (Argentina), and Washington, D.C. (United States). Tidal 

freshwater wetlands are located in the upper part of estuaries and are characterized by 

salinity levels lower than 0.5% (25), and daily tidal fluctuations due to the influence 

of the nearby estuary. Their location often represents the most inland point that can 

still be reached by ships in the estuary, supporting early settlements in these tidal 

areas that continued to develop over the next few centuries (26). As a result of 

increased economic activity and population growth, tidal wetlands are particularly 

vulnerable to environmental degradation and loss associated with urban development 

(27,28).  

Our study used next-generation DNA sequencing to test three hypotheses: (1) 

Prokaryotic community composition and function will vary across the established 

urban gradient; (2) prokaryotic communities will differ between plant species at each 

site; and (3) specific prokaryotic taxa will be indicative of urban wetlands, regardless 

of geographic location of the city.  

Materials and Methods  

 

Site Description  

The cities of Buenos Aires and Washington D.C. are two examples of large 

cities that developed near tidal freshwater wetlands. Both cities are located at similar 

latitudes North and South of the Equator (Buenos Aires: 34.6037◦ S; D.C.: 38.9072◦ 
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N) and have experienced significant population growth over the last few decades. 

This trend is expected to continue in both areas, and current population estimates are 

around 3 million people in Buenos Aires with ~376,000 residents in the county where 

we sampled (29), and almost 700,000 in Washington D.C. (30).  

Argentinian sites were located in the Lower Paraná Delta, in the upper portion of Rio 

de la Plata estuary. Islands formed in this area in the last ~750 years and the delta 

continues to expand due to sediment deposition (31). About half of this area has been 

affected by human activities, mainly forestry and development associated with 

tourism and recreation (32). To allow these activities, hydrological modifications like 

levees and dikes were constructed, which altered the natural environment and affected 

hydrologic regimes (33). Wetlands in the Lower Paraná delta have been increasingly 

lost to urban expansion (34). Most of the developed area uses septic systems, and as 

drainfields become less effective over time, wastewater is released into the 

waterways. Water quality in this area is also affected by inadequate disposal of solid 

wastes, industrial pollution, and fuel spills from heavy boat traffic (35,36).  

The United States sites were located in the Chesapeake Bay estuary. These 

tidal marshes originated during the Holocene (~10,000 years ago), when Pleistocene 

valleys were gradually inundated by rising sea level (37). As a result of human 

intervention and sea level rise, over half of the tidal wetlands in the Bay are 

considered to be degraded (38). The main perturbations associated with development 

near these wetlands are pollutant runoff that is promoted by large impervious surfaces 

(27,39) and nutrient enrichment from agriculture and sewage treatment facilities (40). 

Washington D.C. has a combined sewer overflow system, so after heavy rainfalls a 
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mix of storm water and sewage is released into nearby waterways, introducing 

bacterial pathogens and degrading water quality (41).  

The study sites are located in freshwater tidal wetlands in the Paraná River 

delta (Buenos Aires, Argentina), and in the Chesapeake Bay (Maryland, USA). 

Within each region, sites corresponding to urban, suburban, and rural environments 

were identified (Figure 1).  

In Buenos Aires the sites were located in the Lower Paraná Delta, just north of 

the City of Buenos Aires. The urban gradient was established by locating sites that 

had varying degrees of development. The urban site is on the Sarmiento River near its 

confluence with the Luján River (34◦24′48.81′′S, 58◦34′1.76′′W), which is considered 

to be highly contaminated with wastewater and industrial waste (42). The selected 

area is influenced by tidal inputs from the Luján River, experiences heavy boat 

traffic, and has been modified to accommodate residential houses. The suburban site 

(34◦23′8.27′′S, 58◦34′6.30′′W) is located upriver from the urban site, and the rural site 

is located on the Unión River (34◦22′55.73′′S, 58◦31′38.77′′W) on unmanaged land 

with no signs of human development upstream.  

In Maryland the sites are located in the Anacostia River (38◦92′41.1′′N, 

76◦94′58.8′′W; soil series Zekiah and Issue), Patuxent River (38◦78’58′′N, 

76◦71′30.8′′W; soil series Nanticoke and Mannington), and Choptank River 

(38◦48′52.67′′N, 75◦53′19.82′′W; soil series Nanticoke and Mannington). The 

Anacostia River runs along the border of Washington D.C. and is highly urbanized 

and affected by industrial activities and sewage inputs from the city’s combined 

sewer system. The Patuxent watershed is located between Washington D.C. and 
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Baltimore, representing a site of intermediate urban development, and the Choptank 

River is located across the Chesapeake Bay in Eastern Maryland, where agriculture is 

the predominant land use (43).  

We selected two species that have different morphological features at each 

site. In Washington D.C. the selected species were Phragmites australis (Cav.) Trin. 

ex Steud., and Peltandra virginica (L.) Schott, and in Buenos Aires, Hymenachne 

grumosa and Sagittaria montevidensis. Phragmites and Hymenachne are clonal 

grasses that have thick rhizomes, tall and rigid stems, and horizontal cable-like 

stolons. Peltandra and Sagittaria have fleshy triangular leaves and a shallower root 

system with bulbous vertical corms or tubers. In addition, Phragmites is an invasive 

species that has higher nutrient requirements (44) and produces more biomass than 

other native species (45).  

Sample Collection 

Samples were collected on a summer day at each location (January in Buenos 

Aires and August in Maryland). In Maryland, three soil samples were collected from 

the rhizosphere of Phragmites australis, and three from Peltandra virginica at each of 

the sites. We used a half circle Russian peat borer (Eijelkamp, Giesbeek, Netherlands) 

to collect a 50-cm deep soil sample next to the stem to get plant-influenced soil. In 

Buenos Aires four soil samples were collected from the rhizosphere of Hymenachne 

grumosa and Sagittaria montevidensis. We used a spade shovel with measurement 

markings to collect soils from a depth of 30 cm, as these plants have a shallower root 

system than those sampled near D.C. Approximately 2 g of homogenized rhizosphere 

soil were added into sterile Falcon tubes that contained 4 mL of LifeGuard soil 
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preservation solution (MoBio Laboratories, Carlsbad, CA) and shipped to the 

University of Maryland for soil and prokaryotic community analysis.  

Soil Analysis 

Key soil properties known to have a significant impact on prokaryotic ecology 

were analyzed using the methods outlined by Yarwood et al. (22). Total C and N 

content were determined by combustion analysis at 950◦C and soil organic matter 

was calculated using loss-on-ignition (550 ◦C for 24 hr). To measure pH, five grams 

of soil were added to 25 mL of distilled water to make a 1:5 ratio slurry, which was 

then measured using a pH electrode. Finally, particle size analysis (PSA) was carried 

out using the hydrometer method for the Washington D.C. samples and the pipette 

method (46) for the Buenos Aires samples. Logistics of working in different countries 

prevented the use of the same core type and particle size analysis method.  

DNA Extraction and Illumina Library Preparation  

DNA extractions were carried out using the Qiagen DNeasy PowerLyzer 

PowerSoil kit (Qiagen, Hilden, Germany). The Buenos Aires samples were 

centrifuged, and the excess solution drained before beginning the extractions. These 

were carried out following the manufacturer’s instructions, except for the 

homogenization step that was done using a FastPrep-24 (45 s at 6 m/s; MP 

Biomedicals, LLC, Solon, OH). Samples were quantified using a Qubit 2.0 

fluorometer (Invitrogen) and diluted to 5ng/ul for PCR amplification and subsequent 

amplicon sequencing. The 16S rRNA region was targeted using the primers 

515F+adapter (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG 
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ACAGGTGCCAGCMGCCGCGGTAA-3′ ) and 806R+adapter (5′ -

GTCTCGTGGGCTCGGAGAT 

GTGTATAAGAGACAGGGACTACVSGGGTATCTAAT -3′) (47). The PCR 

reaction had 3.5 uL of DNA, 17.5 uL of ThermoScientific TM PhusionTM Flash 

High-Fidelity PCR Mastermix (Thermo Fisher Scientific), and 7 uL of each primer (1 

ng/uL). The PCR product was then processed for Illumina sequencing using the 16S 

Metagenomic Sequencing Library Preparation protocol (Part # 15044223 Rev. B, 

support.illumina.com). The cleanup was carried out using AMPure XP beads 

(Beckman Coulter, Pasadena, CA), and the Nextera XT 96 index kit (Illumina) was 

used for sample indexing. Samples were pooled, and amplicon size of the library was 

checked using a Bioanalyzer 2100 (Agilent Technologies). Q-PCR was used for 

library quantification, and the final library was diluted to 12 pM, spiked with 30% 

PhiX (Illumina), and run on an Illumina MiSeq using a 600-cycle v3 cartridge.  

Data Analysis 

R was used for statistical analysis and drawing figures (48). Illumina 

sequencing output was processed using the dada2 package (version 1.6) (49) for 

filtering, dereplication, sample inference, merging of pair end reads, and chimera 

checking. The algorithm used for chimera checking in this performs a Needleman-

Wunsch global alignment of each sequence to compare it with more abundant 

sequences, and check if the “child” sequence can be obtained from exact 

combinations of right and left segments of “parent “sequences, which would classify 

them as chimeras. Taxonomic assignments were carried out by matching sequences to 

the SILVA database (SILVA v128, arb-silva.de) and the resulting amplicon sequence 
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variant table was analyzed using the phyloseq (v1.2) (50) and vegan (v2.4-4) (51) R 

packages. Samples were rarefied to the minimum sequence number for each data set 

(Buenos Aires = 11,811, Maryland = 59,939). Rarefaction curves were produced and 

confirmed that coverage of sampling was appropriate, as all but one sample curve 

leveled off at the proposed sequence cut-off (Figure S1 in supplementary materials). 

Non-metric multidimensional scaling (NMDS) based on a Bray-Curtis dissimilarity 

matrix was used to visualize differences between sites and plant species, and 

homogeneity of group dispersion was checked using the vegan functions betadisper 

and permutest. Nested PERMANOVA was used to test for statistical differences with 

the adonis function and a calculated p value < 0.05 was considered significant. 

Significant factors identified through permutational multivariate analysis of variance 

(PERMANOVA) were further examined with pairwise comparisons using 

permutation MANOVAs to assess differences between group levels. This was done 

using the pairwise.perm.manova function from the RVaideMemoire package (52) 

with 999 permutations on the Bray-Curtis distance matrix and Bonferroni corrections 

to adjust p-values after multiple testing. The associations between community 

composition and the most abundant phyla were evaluated using the envfit function, 

and vectors that showed significant correlations were fitted to the non-metric 

multidimensional scaling (NMDS) ordination. Correlations between community 

composition and soil variables were also evaluated with the envfit function to identify 

significant environmental factors. Prokaryotic amplicon sequence variants (ASVs) 

were classified into urban or rural habitat generalist or specialist using a multinomial 

species classification method (CLAMtest) in vegan. We used a coverage limit of 10, 
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an alpha of 0.005, and a specialization value of 0.67, which is considered 

conservative (53). Furthermore, indicator taxa for urban and rural habitats were 

identified using the multipatt function in the indispecies package (54), and significant 

associations between taxa and sites were evaluated using permutation tests. The t4f 

(Tax4Fun) function in the R package of the metagenomics (55) was used to explore 

functional traits and predict metabolic capabilities based on 16S rRNA sequencing 

data and the KEGG pathway database. Mean relative abundance of prokaryotic taxa 

were calculated by dividing the number of sequences of that taxa by the total number 

of sequences in a sample. We used either t-tests for pairwise comparisons or ANOVA 

(using Type III Sums of Squares for Argentina samples) to examine differences in 

mean relative abundance of certain taxa between sites. Log transformations of the 

data were carried out when assumptions of normality or homogeneity of variances 

were not met.  

Results 

 
Soil analysis revealed few differences between urban, suburban, and rural 

sites in Buenos Aires, and only soil organic matter (%SOM) increased from rural to 

urban (Table 1). In Washington D.C., pH increased from rural to urban sites, while 

%SOM decreased along the gradient. Prokaryotic communities in each area were 

correlated to different soil parameters. In Buenos Aires, %SOM and %clay were 

significantly correlated to community composition (R2 = 0.63, p = 0.001 and R2 = 

0.41, p = 0.014, respectively), and those variables were correlated to each other (r = 

0.78). The Washington D.C. soil variables associated with prokaryotic communities 

were pH and soil organic matter (R2 = 0.58, p = 0.001 and R2 = 0.48, p = 0.009, 
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respectively), and these variables were also correlated to each other (r = −0.75).  

Illumina sequencing generated approximately 3.7 million high quality sequences with 

a median of 76,000 sequences per sample (min=11,811, max=910,766). Nested 

PerMANOVA revealed that microbial communities were significantly different along 

the urban gradient in Buenos Aires and in Washington D.C. (Buenos Aires: F=2.6, 

p=0.005; Washington D.C.: F=2.3 p=0.001), and differed between plant types at the 

p<0.1 significance level (Buenos Aires: F=1.5 p=0.089; Washington D.C.: F=1.3, 

p=0.085) (Figure 2). Pairwise comparisons of the different sites showed that in 

Buenos Aires only urban and rural sites differed in community composition 

(p=0.006), while in Washington D.C. the urban site communities differed from both 

the suburban and rural sites (p=0.018 and p=0.015 respectively). Shannon and 

Simpson diversity indexes did not differ between sites at either location (results not 

shown). The average OTU richness in urban, suburban and rural sites in Buenos Aires 

was 751, 220 and 503, respectively. In Washington D.C. 2382 taxa were identified for 

the urban, 2347 for the suburban and 2379 for the rural site. 

The most abundant bacterial phyla were Proteobacteria (63.9%), Firmicutes 

(7.8%), and Chloroflexi (7.4%) in Buenos Aires; and Proteobacteria (16.5%), 

Chloroflexi (13%), and Acidobacteria (11.5%) in Washington D.C. The most 

abundant archaea phylum was Euryarchaeota in both areas (1.8% in Buenos Aires; 

9.3% in Washington D.C.). In Buenos Aires, Chloroflexi was strongly correlated to 

urban communities, Proteobacteria to urban and suburban, and Euryarchaeota to 

communities in rural samples (Figure 2a). In Washington D.C., Proteobacteria and 

Acidobacteria were correlated to urban prokaryotic communities, while Chloroflexi 
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and Euryarchaeota were better correlated to rural communities (Figure 2b). In both 

areas the most abundant class within Euryarchaeota was Methanomicrobia (56.5% in 

Buenos Aires; 44.9% in Washington D.C.).  

Both urban sites had more unique Proteobacteria ASVs than suburban or 

rural sites (460 in Buenos Aires and 1102 in Washington D.C.) (Figure 3). Most 

unique ASVs in those urban sites belonged to the Class Deltaproteobacteria, with 

201 unique ASVs in Buenos Aires and 493 in Washington D.C. This was particularly 

surprising in Buenos Aires, where relative abundance of Deltaproteobacteria did not 

differ between sites (F = 3.03, p = 0.075), while Gammaproteobacteria significantly 

increased from rural to urban sites (t = −2.26, p = 0.047), and comprised 93.4% of all 

Proteobacteria ASVs in the urban site.  

Within the Gammaproteobacteria, Enterobacteriaceae were most abundant in 

Buenos Aires and significantly higher in the urban site compared to the rural site (t = 

3.6, p = 0.005). Bacteria putatively identified in the genus Escherichia/Shigella were 

exclusively found within the urban site. There was markedly higher relative 

abundance of coliform bacterial families in the suburban and urban sites compared 

with the rural site, which was mostly driven by Enterobacter and Citrobacter (Figure 

S2a in supplementary materials).  

In Washington D.C., Xanthomonadales was the most abundant taxon within 

the Gammaproteobacteria and also showed a higher relative abundance in the urban 

than rural site (t = 2.58, p = 0.028). Members of the Xanthomonadales have the 

ability to break down PAHs, as well as other complex substrates (57,58). Following 
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this observation, other bacterial groups that have that capability were further 

explored.  

The relative abundance of members of the Xanthomonadales order 

(Arenimonas, Dyella, Luteimonas, Lysobacter, Rhodanobacter, and Xanthomonas), as 

well as other bacterial genera known to break down PAHs (59), were significantly 

higher in the urban sites relative to the suburban and rural sites (F = 4.4, p = 0.013) 

(Figure S2b in supplementary materials).  

KEGG metabolic pathways of the prokaryotic communities, and specifically 

those associated to xenobiotic biodegradation and nitrification, were investigated 

(Table S1 in supplementary materials). For the Buenos Aires samples, most ASVs 

could be mapped to KEGG organisms, allowing a relatively good functional 

prediction based on 16S rRNA data. The average FTU, which indicates the fraction of 

ASVs that could not be mapped to KEGG organisms, was 55% for rural, 36% for 

suburban, and 31% for urban sites. The obtained KEGG profiles suggest that 

functional traits were more similar between urban and suburban sites, while rural 

communities appear to be more functionally distinct (Figure S3a in supplementary 

materials). Metabolic pathways associated with expected urban stressors, such as 

pollution and excess nitrogen, were further analyzed. There was a significant 

enrichment in xenobiotic degradation pathways in the urban site relative to the rural 

site (t = 2.29, p = 0.05) and the same pattern was observed for nitrification pathways 

(t = 2.7, p = 0.025) (Figure 4a). In Washington DC, sites exhibited distinct metabolic 

capabilities (PerMANOVA F = 4.17, p = 0.007) (Figure S3b in supplementary 

materials), and an enrichment of xenobiotic degradation pathways in the urban 
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relative to the rural site (t = 2.4, p = 0.049) was observed. Nitrification capacity was 

lowest in the suburban site and similar in the rural and urban sites (F = 4.52, p = 

0.029) (Figure 4b). However, the average FTUs for the prokaryotic communities in 

Washington D.C. was much higher (around 92.5% on average), so only a small 

portion of the total community was represented in the KEGG profiles. Therefore, 

prediction of functional traits from taxonomic data in Washington D.C. would be 

inaccurate.  

Urban and rural sites in Buenos Aires and Washington D.C. contained ASVs 

that were classified as specialists for each habitat based on the CLAM test (Figure 5). 

In Buenos Aires, 5% were classified as urban specialists and 9% as rural specialists, 

while 82% of ASVs were too rare to classify. In Washington D.C., 21% were urban 

specialists, 16% were rural specialists, and 52% were too rare to classify.  

In Buenos Aires only 12 taxa were indicators of the urban site while 182 were 

identified in the rural site. In Washington D.C. there were 153 indicator taxa of the 

urban and 130 of the rural site. Among these indicator taxa, those that had the highest 

fidelity and specificity values as defined by Dufrêne and Legendre (60) were further 

examined to identify useful indicator taxa and compared between Buenos Aires. This 

resulted in 6 urban and 46 rural indicator taxa in Buenos Aires and 26 urban and 37 

rural indicators in Washington D.C. (Table S2 in supplementary materials).  

Nitrite-oxidizing bacteria of the genus Nitrospira and Nitrolancea were indicators of 

the urban environments in Washington D.C. and Buenos Aires, respectively. Bacteria 

of the family Nitrospiraceae were also relevant indicators of the rural environments at 

both sites. In Buenos Aires, ammonia-oxidizing archaea within the Thaumarchaeota 
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were indicators of the urban location and had significantly higher relative abundance 

in the urban site (F = 7.4, p = 0.006) (Figure S4 in supplementary materials).  

In addition to being highly correlated to rural sites in Buenos Aires and 

Maryland (Figure 2), Methanobacteria within the phylum Euryarchaeota were 

identified as rural indicators in both regions. Relative abundance of this phylum was 

significantly lower in urban than rural sites (Buenos Aires: t = 2.47, p = 0.03; 

Washington D.C.: t = 2.53, p = 0.03) and was mostly driven by a decrease in 

Methanobacteriales in both areas (Buenos Aires: t= 2.35, p = 0.04; Washington D.C.: 

t = 5.9, p < 0.001) (Figure 6).  

Discussion 

 
In support of hypothesis one, we observed differences in the prokaryotic 

community composition across the urban to rural gradient (Figure 2). A common 

factor that shapes prokaryotic community structure is soil pH (18,61). In our study, 

pH did not vary significantly across the urbanization gradient in Buenos Aires, but 

did increase with urbanization in Washington D.C. Additionally, pH was negatively 

correlated to %SOM. In contrast, SOM was higher in urban than rural sites in Buenos 

Aires. In both cases, %SOM was significantly correlated to community composition 

along the gradient. A study by Arroyo et al. (62) found similar results in natural and 

constructed wetlands, where SOM and not pH was the main soil variable related to 

microbial communities.  

Species richness and diversity did not change significantly across the urban 

gradient in either location. Our results differ from those of other studies that found 

urbanization was negatively related to species richness and diversity in urban rivers 



 

 

34 
 

(63,64), but agrees with one study on headwater streams, where alpha diversity did 

not change due to urbanization (65). Even though we did observe enrichment of 

certain bacterial groups in the urban sites (Figure S2 in supplementary materials), 

richness and diversity indexes did not differ across the established gradient at either 

area.  

Consistent with previous studies in freshwater systems, Proteobacteria were 

the most abundant taxa in all sites (66,67). This phylum was correlated with urban 

prokaryotic communities in Buenos Aires and Washington D.C. (Figure 2), and the 

Class Gammaproteobacteria was the main driver of that relationship in both cities. 

Associations between Proteobacteria and urbanization have been reported in other 

systems (63,68,69), and urban sites in our study had the greatest number of unique 

ASV’s (Figure 3). The nature of this association has been related to nutrient 

enrichment (63,70), which would be common in areas receiving sewage inputs or 

stormwater runoff.  

Within the Class Gammaproteobacteria, the order Enterobacteriales was the 

most prevalent across sites in Buenos Aires, while the order Xanthomonadales was 

the most abundant in Washington D.C. These orders were significantly more 

prevalent in urban rather than rural sites, suggesting that this could be related to 

specific environmental stressors at each of the urban sites. For example, some 

members of the Enterobacteriales are widely used as indicators of fecal 

contamination (71), and the presence of E. coli and other gastrointestinal associated 

bacteria in the urban site in Buenos Aires (Figure S2a in supplementary materials) 

was likely related to sewage flow in that area (34). In addition to being common 
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residents of the human intestinal tract, Enterobacter and Citrobacter are capable of 

degrading various types of hydrocarbons (72,73). The increase of these genera in 

suburban and urban sites (Figure S2a in supplementary materials) may be attributed 

to heavy boat traffic and industrialization. This observation was supported by the 

community’s KEGG functional profiles that showed an enrichment in xenobiotic 

biodegradation pathways in the urban site (Figure 4a).  

In the Washington D.C. urban site, contamination with PAHs of industrial 

origin is a major environmental concern (74,75). Although our study did not 

specifically test for PAHs, other studies observed an increase in these compounds in 

our specific urban location. Studies by Pinkney et al. (76,77) found that sediment 

PAH concentrations were considerably higher in the Anacostia than in the Choptank 

River (15–39mg/kg and 1.5 mg/kg dry weight respectively), where our urban and 

rural samples were collected. In our study, we found that there was a marked increase 

in the relative abundance of bacterial genera capable of degrading PAHs at the urban 

location relative to the rural and suburban sites (Figure S2b in supplementary 

materials). Our KEGG functional profiles were very limited at these sites, but the 

small subset of data obtained suggested that pathways associated to xenobiotic 

metabolism were more prevalent in the urban site, and these sites were functionally 

distinct from the rural sites (Figure 4b). We speculate that specific phyla were 

enriched in the urban sites in Buenos Aires and Washington D.C. as a result of major 

environmental pollutants affecting those areas, but functional gene analyses in future 

studies would help to corroborate this conclusion.  
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Archaea of the class Methanobacteria were relevant indicators in rural sites of 

Buenos Aires and Maryland, and were significantly more abundant in soils from rural 

compared to urban locations (Figure 6). Nutrient additions have been related to 

decreases in methanogenesis (78,79), and nitrate concentrations were found to be 

relevant in structuring archaeal communities in an urban river (63). Our urban sites 

did not have significantly higher levels of total nitrogen, but inputs of mineral 

nitrogen associated with more impervious surfaces and sewage inputs could explain 

the observed reduction in Methanobacteria. This can be confirmed for our 

Washington D.C. sites, where levels of ammonia were significantly higher in our 

urban compared to our rural site (22,24). Even though we lack mineral nitrogen data 

for the Buenos Aires sites, metabolic pathways associated with nitrification were 

more prevalent in the urban than rural sites (Figure 4a), and ammonia oxidizing 

archaea that are stimulated by high organic nitrogen loads (80) were identified as 

relevant indicators of the urban site in Buenos Aires. In addition, we observed a 

significant increase in ammonia-oxidizing archaea and bacteria in the urban sites 

relative to the suburban or rural sites in Buenos Aires and Washington D.C. (Figure 

S3 in supplementary materials). These results suggest that excess nitrogen inputs are 

likely related to changes in prokaryotic community composition in our urban sites.  

The largest number of unique ASVs corresponded to the Deltaproteobacteria 

in Buenos Aires and Washington D.C. (Figure 3). Deltaproteobacteria are capable of 

anaerobic respiration of nitrogen and sulfur compounds and degradation of organic 

compounds in wetlands (67). This group includes multiple families of sulfate 

reducing bacteria, which can utilize a variety of C sources, including lipids and 
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PAHs, to carry out dissimilatory sulfate reduction (81–83). Some sulfate reducing 

bacteria can remove toxic materials from the water (84), and increases in these 

bacterial groups have been related to wastewater loadings in some freshwater 

wetlands (85). In our urban sites, factors like stormwater runoff, hydrocarbon 

pollution, and sewage inputs could therefore explain the unique community of 

Deltaproteobacteria.  

Chloroflexi were significant components of the prokaryotic communities in 

both cities (Figure 2) and were predominantly represented by bacteria of the class 

Anaerolineae. A study on low tidal flats of an estuarine wetland found that the Class 

Anaerolineae was significantly correlated to total nitrogen and soil microbial 

respiration (86). Members of the Class Anaerolineae are common components of 

anaerobic digesters, which would suggest that these bacteria could have an important 

role as part of the microbial heterotrophic community, but their ecological roles are 

still unknown (87). Even though the functions of Anaerolineae remain elusive, they 

appear to be relevant in soil community structure and establish interactions with other 

groups of bacteria (88,89).  

Acidobacteria belonging to the Class Subgroup 6 were the main group 

associated with urban communities in Maryland (Figure 2b). Bacteria belonging to 

this group have a complete set of genes to carry out assimilatory nitrate reduction and 

contain operons for detoxification of heavy metals (90). Members of Subgroup 6 are 

abundant in nutrient rich soils and multiple groups of Acidobacteria can tolerate 

pollutants, such as PCBs and petroleum compounds. This has led to speculation that 

Acidobacteria might play a role in the degradation of such compounds (91).  
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Our results suggest that urban sites in Washington D.C. and Buenos Aires are 

subject to similar stressors, particularly higher concentrations of pollutants, and the 

shifts in prokaryotic community composition and putative functions reflected these 

conditions. Sewage inputs are also a concern at both urban sites and the presence of 

fecal bacteria in the Buenos Aires site was expected, as there is no sewage 

infrastructure. Our urban site in Washington D.C. also experiences frequent 

contamination from sewage (92), but our sampling time likely corresponded to a time 

when sewage concentrations were low. The closest combined sewer overflow outfall 

is located downstream of our sampling location and there were no heavy rainfall 

around our sampling date that would have resulted in overflow and subsequent 

upstream transport due to tides.  

Our second and third hypotheses were not fully supported. Concerning 

hypothesis 2, which stated that prokaryotic communities would differ between plant 

species, we found that plant identity had a relatively small influence on community 

composition at each site (Figure 2). Therefore, factors associated with site differences 

had a greater role in structuring prokaryotic communities than plant properties. It is 

likely that other factors related to urbanization, such as various pollutants, override 

plant differences. Other studies in freshwater wetlands have found similar results, and 

concluded that either edaphic factors (93), site-specific factors (24), or certain 

landscape factors (94) have a greater effect in structuring prokaryotic communities.  

Concerning our third hypothesis, we did not find a specific indicator taxa that 

was common for both urban locations. This is in part due to the large difference 

between prokaryotic communities in the two regions. When we compared the two 
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regions, they were more different from each other than across the gradients (data not 

shown). We did, however, observe that methanogens were relevant indicators of both 

rural locations, and identified other functionally similar indicators at the different 

sites. Nitrite-oxidizing bacteria were indicators of urban and rural areas in 

Washington D.C., and those belonging to the Nitrospira have been previously 

identified as common indicators of freshwater sediments (16). Some organisms 

within the genus Nitrospira can carry out complete nitrification (95), which would 

make them a relevant functional group in urban as well as in rural sites, where 

agriculture is the prevalent land use. In Buenos Aires, Chloroflexi bacteria belonging 

to the genus Nitrolancea were indicators of the urban site. These nitrite-oxidizing 

bacteria have only recently been described, and are considered to be better 

competitors at higher levels of nitrite than Nitrospira (96). The identification of 

similar functions among the different indicator taxa at each location suggests that 

studies of functional traits rather than specific taxa would be a better approach to 

characterize prokaryotic communities in these urban wetlands.  

The results of this study should be interpreted in light of the following 

limitations: we were unable to collect contaminant data for the different sites which 

could have helped support our findings, and functional data had to be inferred from 

community composition. In addition, sample size was low, and even though it was 

enough to detect site differences, a larger sample size might have allowed a better 

resolution of community differences between plant types. Studies of the proposed 

patterns and processes in other urban wetlands would be of interest.  
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Conclusions 

 
Prokaryotic community composition shifted along the urban gradient in TFWs 

in Buenos Aires and Washington D.C. Given the important roles of bacteria and 

archaea in biogeochemical cycles, changes in community composition in these 

systems could have an effect on ecosystem function. In our study, differences in 

prokaryotic groups between sites likely reflected variation in environmental stressors, 

such as nutrient and hydrocarbon pollution. A loss of methanogens and an increase in 

nitrifying bacteria across the rural to urban gradient at both locations could have 

implications for nutrient and carbon processing in these systems, and might serve as 

an indicator of an altered state. Future studies of prokaryotic communities in other 

cities that experience either similar or different stressors would help confirm our 

observations. Our results also suggest that prokaryotic communities in these urban 

wetlands could be carrying out different functions than those in rural sites, 

particularly concerning pollutant transformation or removal.  
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Table 1: Soil characteristics for the urban, suburban and rural sites within each 
area. Results are arithmetic means ± standard errors, except for texture results that are 
shown as percent values per site. 
 

 

  

  Buenos Aires Washington D.C. 

Parameter Rural Suburban Urban Rural Suburban Urban 
pH   6.4±0.2  5.4±0.08    5.8±0.1       4±0.3  4.7±0.1   5.7±0.1  
SOM (%)     11.6±0.5     6.6±0.02    24.7±2.2    35.6±0.5      11.8±1.2   6.5±0.7  
C (%)   2.7±0.2     1.7±0.1  3.54±0.7      1.9±0.2        5.6±0.6        3±0.4  
N (%) 0.2±0.02   0.2±0.01  0.32±0.1     0.12±0.1        0.4±0.1     0.2±0.03  
C/N 13 11.67 11.77 15.63 14.1 15.7 
Sand (%) 0.31 0.38 0.33 0.26 0.35 0.17 
Silt (%) 0.43 0.4 0.42 0.34 0.53 0.58 
Clay (%) 0.25 0.22 0.25 0.4 0.12 0.26 
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Figure 1: Location of sampling sites in Buenos Aires (a) and Washington D.C. (b). 

U=urban, S=suburban and R=Rural. Base map: OpenStreetMap 
(https://www.openstreetmap.org) 
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Figure 2: Non-metric multidimensional scaling ordination (NMDS) constructed using 
a Bray-Curtis dissimilarity matrix. Each point represents a sample with colors 
corresponding to sites, and shapes to plant species. The final stress values were 0.193 
and 0.124 for the Buenos Aires (a) and Washington D.C. (b) ordinations respectively. 
Vectors show the correlation of the most abundant phyla to community composition 
at the different sites. 
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Figure 3: Venn-like representation of overlap between OTUs at urban, suburban and 
rural sites for the phylum Proteobacteria. Each point represents an individual OTU 
with colors corresponding to different classes of Proteobacteria. Numbers in 
parenthesis indicate the total number of unique OTUs at each site. The center 
hexagon contains OTUs shared by all sites, while the trapezoids contain OTUs either 
exclusive to each site or those shared between two of them. In Buenos Aires (a) there 
were 45 OTUs shared by all sites and in Washington D.C. (b) 280. The plots were 
created using the unionplot R package (97) 
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Figure 4: Bar plot showing mean abundance and standard error of metabolic 
pathways of nitrification and xenobiotic biodegradation across sites in Buenos Aires 
(a) and Washington D.C. (b) 
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Figure 5: CLAM test results showing the classification of OTUs as habitat specialists 
or generalists based on relative abundance of species at each site for Buenos Aires (a) 
and Washington D.C. (b) OTUs were divided into four categories: urban specialists 
(Urban), rural specialists (Rural), generalists with no habitat preference, and too rare 
to classify (Rare). Note: some points are stacked so specific values for each category 
can be found in the text 
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Figure 6: Mean relative abundance of Euryarchaeota classes for Buenos Aires and 
Washington D.C. in urban, suburban and rural sites. Bars represent standard errors 
and different letters indicate significant differences between means (Tukey p<0.05). 
Unclassified archaea are not included and only comprised 0.2% of total 
Euryarchaeota. 
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Table S1: Relative abundance of metabolic pathways associated to xenobiotic degradation (a) and nitrification (b). 
 
a) 
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0.00
08 

0.03
97 

0.00
76 

0.11
13 

2.64
60 

2.22
07 

0.78
44 

0.00
14 

HI2 Buenos 
Aires 

Subur
ban 

7.99
96 

0.11
40 

0.10
96 

0.35
70 

6.17
94 

6.67
72 

1.34
24 

0.00
74 

0.62
49 

0.04
57 

0.47
81 

2.45
44 

2.00
57 

0.59
12 

0 

HI3 Buenos 
Aires 

Subur
ban 

1.74
79 

0.02
91 

0.02
58 

0.06
52 

1.68
29 

1.70
23 

0.44
76 

0.00
76 

0.08
90 

0.01
31 

0.04
99 

0.65
35 

0.57
64 

0.16
80 

0.00
06 

HI4 Buenos 
Aires 

Subur
ban 

6.65
35 

0.02
67 

0.07
57 

0.23
60 

9.29
43 

7.13
73 

2.81
46 

0.00
08 

0.22
26 

0.01
03 

0.23
46 

2.94
31 

2.51
71 

0.86
17 

0 

HR1 Buenos 
Aires 

Rural 4.82
93 

0.04
33 

0.05
81 

0.33
75 

3.47
57 

4.09
59 

0.70
52 

0.00
38 

0.27
04 

0.02
50 

0.13
35 

1.49
56 

1.36
92 

0.33
37 

0 

HR2 Buenos 
Aires 

Rural 7.31
43 

0.03
35 

0.17
72 

0.30
02 

7.67
17 

6.41
29 

2.14
99 

0.00
17 

0.71
58 

0.00
35 

0.10
22 

2.76
46 

2.47
74 

0.72
32 

0 

HR4 Buenos 
Aires 

Rural 4.10
83 

0.03
96 

0.05
91 

0.25
39 

3.33
12 

3.66
69 

0.73
01 

0.00
28 

0.31
92 

0.02
59 

0.11
16 

1.61
62 

1.25
62 

0.31
30 

0 

HU1 Buenos 
Aires 

Urban 4.80
10 

0.01
67 

0.05
86 

0.19
57 

6.87
11 

5.90
36 

2.13
29 

0.00
27 

0.15
64 

0.00
58 

0.11
35 

2.30
51 

2.01
52 

0.64
13 

0.00
10 

HU2 Buenos 
Aires 

Urban 4.62
68 

0.00
51 

0.07
26 

0.21
62 

7.34
67 

5.51
35 

2.38
78 

0.00
09 

0.25
01 

0.00
22 

0.08
89 

2.45
79 

2.04
71 

0.68
01 

0.00
24 

HU3 Buenos 
Aires 

Urban 4.85
27 

0.01
64 

0.05
33 

0.17
49 

7.61
24 

5.74
65 

2.42
84 

0.00
23 

0.09
66 

0.00
55 

0.10
49 

2.40
24 

2.03
81 

0.71
45 

0.00
05 

HU4 Buenos 
Aires 

Urban 5.24
35 

0.03
14 

0.05
88 

0.19
63 

8.03
92 

5.94
56 

2.54
06 

0.00
34 

0.11
88 

0.01
28 

0.13
26 

2.51
76 

2.12
35 

0.75
42 

0 

SI1 Buenos 
Aires 

Subur
ban 

9.10
09 

0.17
71 

0.14
29 

0.29
38 

8.52
56 

7.47
19 

2.31
62 

0.00
40 

0.90
17 

0.03
02 

0.27
72 

3.25
63 

2.87
16 

0.81
59 

0 

                  



 

 

60 
 

Table S1a: continued 
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Table S1a: continued 
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Table S1: continued 
b)  

Sample Area Site K10944 K10945 K10946 K10535 K00370 K00371 
HI1 Buenos Aires Suburban 0.0007 0.0007 0.0002 0.0015 11.5115 4.6876 
HI2 Buenos Aires Suburban 0.0123 0.0181 0.0189 0.0257 5.3729 2.1869 
HI3 Buenos Aires Suburban 0.0013 0.0019 0.0019 0.00345 2.1507 0.8780 
HI4 Buenos Aires Suburban 0.0011 0.0013 0.0014 0.00461 12.3990 5.0466 
HR1 Buenos Aires Rural 0.0119 0.0128 0.0120 0.0481 3.0017 1.2459 
HR2 Buenos Aires Rural 0.0051 0.0046 0.0045 0.0327 9.1910 3.7513 
HR4 Buenos Aires Rural 0.0047 0.0063 0.0059 0.0144 2.8606 1.1810 
HU1 Buenos Aires Urban 0.0035 0.0044 0.0040 0.0079 9.4267 3.8293 
HU2 Buenos Aires Urban 0.0019 0.0021 0.0005 0.0044 10.1779 4.1331 
HU3 Buenos Aires Urban 0.0042 0.0063 0.0064 0.0098 10.6640 4.3477 
HU4 Buenos Aires Urban 0.0037 0.0055 0.0035 0.0138 11.2445 4.5699 
SI1 Buenos Aires Suburban 0.0022 0.0033 0.0035 0.0068 11.2144 4.5408 
SI2 Buenos Aires Suburban 0.0002 0.0002 0.0002 0.0007 13.7507 5.5784 
SI3 Buenos Aires Suburban 0.0032 0.0025 0 0.0119 11.8775 4.8224 
SR1 Buenos Aires Rural 0.0107 0.0135 0.0124 0.0329 2.3554 0.9712 
SR2 Buenos Aires Rural 0.0008 0.0011 0.0010 0.0019 10.3566 4.2192 
SR3 Buenos Aires Rural 0.0121 0.0169 0.0165 0.0319 8.4174 3.2734 
SU1 Buenos Aires Urban 0.0017 0.0020 0.0021 0.0064 13.2144 5.3899 
SU3 Buenos Aires Urban 0.0009 0.0013 0.0014 0.0018 14.4210 5.8645 
SU4 Buenos Aires Urban 0.0027 0.0037 0.0031 0.0085 6.6694 2.7008 
S11 Washington Suburban 1.5E-05 1.9E-05 1.4E-05 3.8E-05 0.0004 0.0002 
S12 Washington Rural 2.4E-05 3.3E-05 3.1E-05 6.3E-05 0.0004 0.0002 
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Table S1b: continued 
S23 Washington Suburban 1.9E-05 2.4E-05 1.7E-05 4.1E-05 0.0004 0.0002 
S24 Washington Rural 3.4E-05 4.9E-05 4.9E-05 7.9E-05 0.0005 0.0002 
S35 Washington Suburban 6.5E-06 7.2E-06 2.4E-06 1.4E-05 0.0004 0.0002 
S36 Washington Rural 1.6E-05 2E-05 1.4E-05 3.4E-05 0.0005 0.0002 
S47 Washington Suburban 9E-06 1.2E-05 8.3E-06 2.1E-05 0.0004 0.0002 
S48 Washington Rural 3E-05 4.2E-05 3.9E-05 6.6E-05 0.0006 0.0002 
S59 Washington Urban 2.9E-05 4E-05 3.5E-05 6.6E-05 0.0009 0.0004 
S60 Washington Suburban 6.1E-05 8.6E-05 8.2E-05 0.00014 0.0005 0.0002 
S71 Washington Urban 2.4E-05 3.3E-05 3.2E-05 5.2E-05 0.0004 0.0002 
S72 Washington Suburban 1.5E-05 2E-05 1.5E-05 3.1E-05 0.0004 0.0001 
S78 Washington Rural 4.9E-05 7E-05 6.5E-05 0.00011 0.0006 0.0002 
S79 Washington Urban 5.2E-06 7.7E-06 8E-06 1.1E-05 0.0007 0.0003 
S83 Washington Urban 3.9E-05 5.4E-05 4.8E-05 8.7E-05 0.0009 0.0003 
S84 Washington Urban 3.2E-05 4.3E-05 3.7E-05 6.4E-05 0.0005 0.0002 
S95 Washington Rural 2.6E-05 3.5E-05 3.2E-05 5.6E-05 0.0004 0.0002 
S96 Washington Urban 3.9E-05 5.3E-05 4.8E-05 8.8E-05 0.0007 0.0003 

  



 

 

64 
 

Table S2: Indicator taxa identified for the Urban and Rural sites in Buenos Aires and 
Washington D.C. 
 

Buenos Aires Urban 
Phylum Class Order Family Genus 
Verrucomicro
bia 

OPB35_soil_gr
oup NA NA NA 

Thaumarchae
ota 

Soil_Crenarcha
eotic_Group(S
CG) NA NA NA 

Acidobacteria Subgroup_6 NA NA NA 

Chloroflexi 
Ktedonobacteri
a 

Ktedonobacteral
es NA NA 

Proteobacteri
a 

Alphaproteobac
teria Rhodospirillales Acetobacteraceae Acidicaldus 

Chloroflexi 
Thermomicrobi
a 

Sphaerobacteral
es Sphaerobacteraceae Nitrolancea 

Buenos Aires Rural 
Phylum Class Order Family Genus 
Euryarchaeot
a 

Methanomicrob
ia 

Methanosarcina
les Methanosaetaceae 

Methanosaet
a 

Euryarchaeot
a 

Methanobacteri
a 

Methanobacteri
ales 

Methanobacteriacea
e 

Methanobact
erium 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Euryarchaeot
a 

Methanobacteri
a 

Methanobacteri
ales 

Methanobacteriacea
e 

Methanobact
erium 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Firmicutes Clostridia Clostridiales Clostridiaceae_1 

Clostridium_
sensu_stricto
_1 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Leptolinea 
Thaumarchae
ota Group_C3 NA NA NA 
Proteobacteri
a 

Betaproteobact
eria Rhodocyclales Rhodocyclaceae 

Dechloromo
nas 

Omnitrophica 
Omnitrophica_I
ncertae_Sedis 

Unknown_Orde
r Unknown_Family 

Candidatus_
Omnitrophus 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Proteobacteri
a 

Deltaproteobact
eria 

Deltaproteobact
eria_Incertae_S
edis 

Syntrophorhabdace
ae 

Syntrophorh
abdus 

Proteobacteri
a 

Alphaproteobac
teria Rhizobiales Methylocystaceae 

Methylocysti
s 

Acidobacteria Subgroup_6 NA NA NA 
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Table S2: continued 
Proteobacteri
a 

Gammaproteob
acteria 

Methylococcale
s Crenotrichaceae Crenothrix 

Chloroflexi Caldilineae Caldilineales Caldilineaceae NA 
Bacteroidetes SB-5 NA NA NA 

Chloroflexi KD4-96 NA NA NA 
Bathyarchaeo
ta NA NA NA NA 

Acidobacteria Subgroup_17 NA NA NA 
Actinobacteri
a Actinobacteria PeM15 NA NA 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Actinobacteri
a Actinobacteria 

Corynebacterial
es Mycobacteriaceae 

Mycobacteri
um 

Actinobacteri
a Coriobacteriia Coriobacteriales Coriobacteriaceae NA 
Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Anaerolinea 

Bacteroidetes Bacteroidia 
Bacteroidia_Inc
ertae_Sedis Draconibacteriaceae NA 

Nitrospinae 
Belgica2005-
10-ZG-3 NA NA NA 

Bacteroidetes 
Sphingobacterii
a 

Sphingobacteria
les Lentimicrobiaceae NA 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Ignavibacteri
ae Ignavibacteria 

Ignavibacteriale
s PHOS-HE36 NA 

Acidobacteria Subgroup_6 
Unknown_Orde
r Unknown_Family 

Vicinamibac
ter 

Proteobacteri
a 

Deltaproteobact
eria 

Desulfobacteral
es Desulfobacteraceae 

Desulfatirha
bdium 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae NA 
Saccharibacte
ria NA NA NA NA 

Chloroflexi Caldilineae Caldilineales Caldilineaceae NA 
Proteobacteri
a 

Deltaproteobact
eria 

Syntrophobacter
ales 

Syntrophobacterace
ae 

Desulforhab
dus 

Proteobacteri
a 

Deltaproteobact
eria 

Desulfuromona
dales Geobacteraceae Geobacter 

Acidobacteria Subgroup_6 NA NA NA 
Verrucomicro
bia Spartobacteria 

Chthoniobactera
les 

Chthoniobacteracea
e 

Chthoniobac
ter 

Nitrospirae Nitrospira Nitrospirales Sh765B-TzT-35 NA 
Ignavibacteri
ae Ignavibacteria 

Ignavibacteriale
s BSV26 NA 
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Table S2: continued 

Bacteroidetes 
Bacteroidetes_
vadinHA17 NA NA NA 

Spirochaetae Spirochaetes Spirochaetales Spirochaetaceae 
Spirochaeta_
2 

Proteobacteri
a 

Gammaproteob
acteria Chromatiales Chromatiaceae NA 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Anaerolinea 
Washington D.C. Urban 

Phylum Class Order Family Genus 
Nitrospirae Nitrospira Nitrospirales 0319-6A21 NA 
Proteobacteri
a 

Deltaproteobact
eria 43F-1404R NA NA 

Nitrospirae Nitrospira Nitrospirales 0319-6A21 NA 
Proteobacteri
a 

Alphaproteobac
teria Rhizobiales Bradyrhizobiaceae 

Bradyrhizobi
um 

Proteobacteri
a 

Betaproteobact
eria 

Nitrosomonadal
es Nitrosomonadaceae NA 

Proteobacteri
a 

Betaproteobact
eria 

Nitrosomonadal
es Nitrosomonadaceae NA 

Gemmatimon
adetes 

Gemmatimona
detes 

Gemmatimonad
ales 

Gemmatimonadace
ae NA 

Verrucomicro
bia Spartobacteria 

Chthoniobactera
les DA101_soil_group NA 

Proteobacteri
a 

Betaproteobact
eria 

Nitrosomonadal
es Nitrosomonadaceae NA 

Acidobacteria Blastocatellia Blastocatellales 
Blastocatellaceae_(
Subgroup_4) NA 

Proteobacteri
a 

Deltaproteobact
eria Desulfurellales Desulfurellaceae H16 

Acidobacteria NA NA NA NA 
Proteobacteri
a 

Deltaproteobact
eria Desulfurellales Desulfurellaceae H16 

Chloroflexi KD4-96 NA NA NA 
Proteobacteri
a 

Alphaproteobac
teria Rhizobiales Bradyrhizobiaceae 

Bradyrhizobi
um 

Acidobacteria Subgroup_6 NA NA NA 

Nitrospirae Nitrospira Nitrospirales 0319-6A21 NA 
Acidobacteria Holophagae Subgroup_7 NA NA 

Acidobacteria Holophagae Subgroup_7 NA NA 
Acidobacteria Subgroup_11 NA NA NA 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 
Latescibacteri
a NA NA NA NA 
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Table S2: continued 
Gemmatimon
adetes 

Gemmatimona
detes 

Gemmatimonad
ales 

Gemmatimonadace
ae NA 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA 
Proteobacteri
a 

Gammaproteob
acteria 

Acidiferrobacter
ales 

Acidiferrobacterace
ae Sulfurifustis 

Washington D.C. Rural 
Phylum Class Order Family Genus 
Euryarchaeot
a 

Methanobacteri
a 

Methanobacteri
ales 

Methanobacteriacea
e 

Methanobact
erium 

Euryarchaeot
a 

Methanomicrob
ia 

Methanosarcina
les Methanosaetaceae 

Methanosaet
a 

Proteobacteri
a 

Deltaproteobact
eria Desulfarculales Desulfarculaceae 

Desulfatigla
ns 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae NA 

Acidobacteria Subgroup_6 NA NA NA 
Ignavibacteri
ae Ignavibacteria 

Ignavibacteriale
s Ignavibacteriaceae 

Ignavibacteri
um 

Proteobacteri
a 

Deltaproteobact
eria 

Syntrophobacter
ales Syntrophaceae 

Desulfobacc
a 

Proteobacteri
a 

Betaproteobact
eria 

Nitrosomonadal
es Gallionellaceae Gallionella 

Bathyarchaeo
ta NA NA NA NA 
Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA 
Verrucomicro
bia 

S-BQ2-
57_soil_group NA NA NA 

Proteobacteri
a 

Deltaproteobact
eria 43F-1404R NA NA 

Euryarchaeot
a 

Thermoplasmat
a 

Thermoplasmat
ales 

Marine_Benthic_Gr
oup_D_and_DHVE
G-1 NA 

Bathyarchaeo
ta NA NA NA NA 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA 

Euryarchaeot
a 

Thermoplasmat
a 

Thermoplasmat
ales 

Marine_Benthic_Gr
oup_D_and_DHVE
G-1 NA 

Proteobacteri
a 

Deltaproteobact
eria 

Syntrophobacter
ales Syntrophaceae NA 

Acidobacteria Subgroup_18 NA NA NA 

Euryarchaeot
a 

Thermoplasmat
a 

Thermoplasmat
ales 

Marine_Benthic_Gr
oup_D_and_DHVE
G-1 NA 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae NA 
Nitrospirae Nitrospira Nitrospirales Nitrospiraceae NA 
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Table S2: continued 
Proteobacteri
a 

Deltaproteobact
eria 

Syntrophobacter
ales Syntrophaceae 

Desulfobacc
a 

Verrucomicro
bia Spartobacteria 

Chthoniobactera
les DA101_soil_group NA 

Hadesarchaea NA NA NA NA 
Actinobacteri
a Actinobacteria Frankiales Sporichthyaceae NA 
Verrucomicro
bia 

S-BQ2-
57_soil_group NA NA NA 

Nitrospinae MD2898-B26 NA NA NA 
KSB3_(Mod
ulibacteria) NA NA NA NA 
Aminicenante
s NA NA NA NA 
Proteobacteri
a 

Gammaproteob
acteria 

Acidiferrobacter
ales 

Acidiferrobacterace
ae Sulfurifustis 

Nitrospirae Nitrospira Nitrospirales Nitrospiraceae NA 
Candidate_di
vision_YNPF
FA NA NA NA NA 
Latescibacteri
a NA NA NA NA 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae NA 

NA NA NA NA NA 
Acidobacteria Subgroup_13 NA NA NA 

Chloroflexi NA NA NA NA 
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Figure S1: Relative abundance of the family Enterobacteriaceae in Buenos Aires (a) and bacterial genus capable of PAH degradation 
in Washington D.C. (b)
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Figure S2: Non-metric multidimensional scaling ordination (NMDS) of KEGG metabolic profiles of the microbial communities. Each 
point represents a sample with colors corresponding to sites, and shapes to plant species. Buenos Aires (a), Washington D.C (b)
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Figure S3: Relative abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and nitrite oxidizing 
bacteria (NOB) along the urban gradient in Buenos Aires and Washington D.C. 

Buenos Aires
W

ashington D.C.

Rural Suburban Urban

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Site

Re
la

tiv
e 

Ab
un

da
nc

e

Phylum
AOA
AOB
NOB



 

 

72 
 

Chapter 3: Intraspecific facilitation of native and invasive 
Phragmites australis across varying C:N ratios 

 
Martina Gonzalez Mateu1, Stephanie A. Yarwood1  and Andrew H. Baldwin1 

 
1 Department of Environmental Science and Technology, University of Maryland, 
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Abstract 
 

Land use changes and greater nitrogen input into waterways have facilitated 

the spread of an invasive lineage of Phragmites australis. Its establishment has led to 

a decrease in native wetland plant diversity,  including the displacement of a native 

American lineage of Phragmites that is considered to be a low-nutrient specialist. 

Management efforts to eradicate invasive Phragmites have been extensive but not 

very effective in the long-term. Limiting nutrients could help control the spread of 

this invasive lineage, and would be expected to benefit the native lineage. Therefore, 

this study evaluated the use of a carbon-rich amendment as a management tool for 

Phragmites. We set up a greenhouse experiment to assess the competitive interactions 

of native and invasive Phragmites under varying C:N ratios, using either urea or 

sawdust additions. Our results show that there was an overyielding effect in 

intergenotypic treatments that was independent of C:N ratios. When grown together 

native and invasive Phragmites had greater above and belowground biomass relative 

to monoculture treatments, and primarily allocated carbon to rhizomes and stems. 

Since invasive Phragmites did not suppress the growth of the native but rather 
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enhanced it, we suggest that intergenotypic facilitation could promote coexistence of 

the two lineages. Concerning our C:N treatments, we found that carbon and nitrogen 

additions had varying effects on several parameters depending on whether the plants 

were growing in monoculture or mixed treatments. However, overall sawdust 

addition did not improve the competitive ability of native Phragmites, and urea 

additions increased aboveground biomass in both plant types. At the levels evaluated 

in this study, carbon additions would not constitute an effective management tool to 

control invasive Phragmites or restore the native lineage.  

 

Introduction 
 

The introduction of a non-native lineage of the wetland grass Phragmites 

australis to the United States has led to a dramatic increase in its relative abundance 

at the expense of native plants. (Farnsworth and Meyerson 1999, Saltonstall 2002, 

Findlay et al. 2003, Silliman and Bertness 2004). Once established, invasive 

Phragmites forms large mono-specific stands that can reduce animal and plant 

diversity (Minchinton 2003, Able et al. 2003), and alter biogeochemical cycles 

(Mozdzer and Megonigal 2013, Bernal et al. 2017).  

The aggressive expansion of this introduced lineage was likely facilitated by 

changes in land use (Silliman and Bertness 2004, Lelong et al. 2007, Meadows and 

Saltonstall 2007), increased nutrient pollution (Packett and Chambers 2006, 

Saltonstall and Court Stevenson 2007), and the plant’s own ecophysiological traits 

that contribute to its invasiveness (Mozdzer Thomas J. and Zieman Joseph C. 2010, 
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Mozdzer et al. 2013). Compared to a native American lineage of this Phragmites 

australis, the invasive European lineage has greater phenotypic plasticity (Mozdzer et 

al. 2013), nitrogen uptake capacity (Packett and Chambers 2006, Mozdzer Thomas J. 

and Zieman Joseph C. 2010), ventilation efficiency (Tulbure et al. 2012) and salt 

tolerance (Vasquez et al. 2005). These traits have allowed invasive Phragmites to 

become dominant in many wetland habitats, particularly in areas susceptible to 

disturbance and nutrient enrichment (King et al. 2007, Kettenring et al. 2015, Sciance 

et al. 2016) where it can gain a competitive advantage over native vegetation 

(Bertness et al. 2002, Holdredge et al. 2010).   

Management of invasive Phragmites is costly and not always effective 

(Martin and Blossey 2013). Current eradication strategies primarily rely on herbicide 

application, mowing and burning which are used at local scales, and have uncertain 

results in the long-term (Hazelton et al. 2014). In order to achieve an effective control 

it is necessary to implement a watershed-scale approach and it needs to specifically 

target nutrient management (Rickey and Anderson 2004, Packett and Chambers 2006, 

Hazelton et al. 2014, Kettenring 2011).  

Carbon rich soil amendments have been widely evaluated as a tool to control 

invasive species across different landscapes (Blumenthal et al., 2003; Eschen et al., 

2006; Mitchell and Bakker, 2011; Rashid and Reshi, 2010).  Increasing the C:N ratio 

of the soil stimulates microbial uptake of the newly added carbon together with soil 

available nitrogen. As nitrogen gets immobilized into the microbial biomass, it 

becomes temporarily unavailable to plants and other organisms (Blumenthal et al 

2003; Perry et al. 2004; Rashid & Reshi, 2010) resulting in a reduction in net nitrogen 
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mineralization (Averett et al. 2004). Many plant invasions, including that of 

Phragmites, are facilitated by excess nitrogen (Perry et al. 2010), therefore limiting 

available nitrogen through carbon amendments could serve as an additional 

management strategy (Hazelton et al. 2014). 

The goal of our study was to evaluate the potential of C:N manipulations as a 

tool for control of the invasive lineage and for native Phragmites restoration. We 

established a greenhouse competition experiment of native and invasive Phragmites 

and added either sawdust or urea to assess competition outcomes. We predicted that 

sawdust addition would increase C:N, promote nitrogen immobilization, and favor 

native Phragmites that is considered to be a low-nutrient specialist (Holdredge et al. 

2010). Urea addition would instead decrease C:N, promote nitrogen mineralization, 

and have a greater effect on aboveground biomass production of the invasive lineage 

than the native making it a more effective competitor. 

 

Methods  
 

Greenhouse set-up 

Phragmites rhizomes were collected in a freshwater tidal wetland in the 

Patuxent River on March 2015 from an invasive (38°40'1.16"N, 76°41'57.48"W) and 

a native (38°42'17.32"N, 76°42'9.11"W) stand. Rhizomes were cut to a length of two 

nodes, and planted in 2:1 potting soil and sand mixture where they grew for 8 weeks. 

Four plantlets of similar sizes were transplanted into 6.52-liter circular pots with a 2:1 

mixture of potting soil and sand, and slow release fertilizer (Osmocote® Scotts Sierra 
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Co, Maryville, OH) was added to result in a nitrogen load equivalent of 25g 

N/m2/year that would prevent nutrient limitation. Greenhouse temperature was kept at 

32°C during the day and dropped to 7°C at night. To maintain moisture, pots were 

placed into 19-liter buckets filled with water up to 10cm below the edge of the pots. 

Every week, pots were removed from the bucket, leftover water was poured through 

them to flush accumulated solutes, and they were allowed to drain before returning 

them to the bucket and re-filling the water. To prevent plant chlorosis, 1ml a freshly 

prepared iron sulfate (FeSO4) was added every week on the surface of the pot 

(Willson et al. 2017) at a rate of 0.1462 g/pot/week (Eller et al. 2013). After a month 

of growth, the individual buckets were surrounded with shade cloth (Easy Gardener 

Sun Screen Fabric-Saddle Tan color) to reduce lateral light penetration and keep the 

stems vertical as occurs in vegetation stands. 

 

Experimental design and treatment applications 

Competition experiments were established under four C:N ratios using a 

substitutive design (De Wit 1960) , where plant density was kept constant and relative 

abundance of each species was varied. This experimental design is particularly useful 

to evaluate if intraspecific competition differs in intensity from interspecific 

competition (Morin, 1999). To assess the effects of competition between native and 

invasive Phragmites under different C:N ratios pots were set up either as 

monocultures of 4 plantlets of each type, or as mixtures that combined two native and 

two invasive plantlets on each side of a single pot. For the C:N treatments, a high C:N 

was established by incorporating 1.25kg/m2 of sawdust into the potting mixture 
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(Kaytee Pine pet bedding, Chilton, WI, USA) prior to planting, and a low C:N by 

adding 46-0-0 urea fertilizer on the surface of the pots weekly at a rate of 50g 

N/m2/year; this rate represents an estimate of the annual nitrogen loading for 

freshwater marshes in the Chesapeake Bay area (Boynton et al. 2008, Bukaveckas 

and Isenberg 2013). We applied a 2x2 factorial arrangement of sawdust and urea 

treatments, with two levels of sawdust (none and 1.25 kg/m2) and two levels of urea 

(none and 50g/m2/yr). This design allowed us to examine interactions between 

sawdust and urea in addition to main effects. 

We set up the experiment as a complete randomized block design (RCBD) 

with four blocks following a perceived light gradient in the greenhouse. Each block 

contained one experimental unit for each of the four treatment combinations, resulting 

in a full factorial arrangement of native and invasive types (monocultures and 

mixture) and under the different C:N treatments (urea and sawdust).  

 

Plant measurements and harvesting 

The experiment was carried out over 13 weeks, and weekly measurements 

included stem height, diameter and total stem count. Twice during the experiment, 

after 4 and 11 weeks of growth, we used a PAM-2100 Chlorophyll Fluorometer 

(Waltz, Effeltrich, Germany) to record chlorophyll fluorescence as quantum yield (Y) 

during the day and maximum quantum yield (Fv/Fm) at night. Quantum yield is 

strongly related to carbon fixation, while maximum quantum yield can be used as an 

indicator of photosynthetic performance (Maxwell and Johnson 2000).  We took two 

fluorescence measurements per pot of the second highest collared leaf of each plant. 
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At the end of the experiment we harvested the above and belowground biomass, 

separating leaves with leaf blades from the stems, and lateral roots from rhizomes 

after thoroughly washing these over a 5mm mesh sieve. The leaves for each pot were 

counted and their specific area was measured using a LI-3100C Area Meter (LI-

COR,USA). Harvested biomass was dried at 70°C until it reached a constant mass. 

Using the dry biomass we calculated specific leaf area (SLA=leaf area/leaf biomass), 

which has been correlated with leaf nitrogen content, and relative growth rate 

(Garnier et al., 1997, Evans and Poorter, 2001). We also assessed how the different 

treatments affected biomass allocation by calculating the following ratios: leaf mass 

ratio (LMR=leaf biomass/total biomass), stem mass ratio (SMR=stem biomass/total 

biomass), rhizome mass ratio (RHMR=rhizome biomass/total plant biomass), root 

mass ratio (RMR=lateral root biomass/total plant biomass), rhizome:root ratio 

(rhizome biomass/lateral root biomass),  and shoot-to-root ratio (total 

aboveground/total belowground biomass).  

 

Data analysis 

   All data analysis was completed in R studio (v.1.0.153). We used a three-way 

analysis of variance (ANOVA) to evaluate the effects of lineage, urea and sawdust 

additions on response variables. We then grouped response variables across C:N 

treatments used two-way ANOVAs to assess the effects of lineage and planting 

treatment (monoculture versus mixture) on each response. We checked the data for 

normality and homogeneity of variance and performed transformations when 

necessary to meet ANOVA assumptions. Mean comparisons of significant factors 



 

 

79 
 

were evaluated using the Tukey HSD.test function in the R package “agricolae” (de 

Mendiburu, 2019). 

To further investigate the intensity of genotypic competition we used the 

Relative Interaction Index (RII) (Armas 2004). This index is symmetrical around 0 

and bound between -1 and 1;  negative values indicate competition while positive 

values indicate that facilitation is the prevalent interaction. We calculated the RII 

index as RII = (Bw − Bo)/(Bw + Bo), where Bw is the biomass of the plant growing in 

mixture and Bo is half of the biomass of the plant growing in monoculture. We used 

three-way ANOVAs to assess differences in this index based on plant type and 

additions of urea or sawdust, and t-tests to see if the overall RII means differed from 

0. 

 

Results 
 

Although the original goals of this study were to evaluate the effects of 

changes in C:N ratio on competition of native and invasive Phragmites, we also 

found that there were surprising intergenotypic facilitation outcomes independent of 

treatment effects and investigated those further. 

When native and invasive Phragmites were grown together, there was an 

overall increase in rhizome:root ratio (Figure 1), and biomass allocation to stems 

(Table 1) resulting in higher stem:leaf ratio in both lineages relative to monocultures 

(Figure 2). On the other hand, when growing together both lineages had lower LMR, 

SLA, RMR, Fv/Fm and final stem height and diameter than they did in monoculture 
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(Table 1, Supplementary Table 5).  In addition, native Phragmites had greater 

shoot:root ratio in mixture than in monoculture (Table 1).  

Overall, regardless of monoculture or mixture treatment,  we found that native 

Phragmites had greater rhizome:root ratio than the invasive lineage (Figure 1); but 

lower stem count, leaf area, leaf count, lateral root biomass, aboveground biomass, 

rhizome biomass and RMR (Supplementary Table 6).  

We observed predominantly positive interactions (i.e., facilitation) when 

native and invasive Phragmites were grown together in the same pots (Figure 3). The 

calculated Relative Interaction Index values across urea and sawdust treatments were 

significantly greater than 0 for aboveground (t30=15.4, p<0.001) and belowground 

biomass (t27=32.47 p<0.001). This was also observed for both components of 

aboveground biomass (leaves and shoots) and belowground biomass (rhizomes and 

lateral roots), which showed positive interactions in the mixture treatments 

(Supplementary figures 1-4). There was a significant difference between lineages for 

belowground RII, as native Phragmites showed higher RII values (i.e., greater 

facilitation of growth by the other lineage) than the invasive type (F1,17=15.9, 

p=0.001); no differences were observed between native and invasive for aboveground 

RII (F1,19=0.76, p=0.395). Urea and sawdust additions had no effect on the outcome 

of the interaction values estimated for above or belowground biomass (p>0.05).  

The C:N treatment effects were sometimes dependent on lineage, and the 

response to these treatments sometimes differed when the plants were growing in 

monoculture or in mixture. (Supplementary Tables 1-4). Specifically, in mixture 

treatments urea addition led to greater rhizome biomass (F1,21=6.41, p=0.0194), leaf 
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biomass (F1,20=30.822, p<0.001), stem biomass (F1,21=7.219, p=0.014), aboveground 

biomass (F1,19=17.48 , p<0.001; Figure 4c), SLA (F1,18=24.05, p<0.001; Figure 4d), 

higher leaf count (F1,21=17.02, p<0.001), and higher stem count (F1,21=4.48 , p=0.046) 

(Supplementary tables 2, 4 and 7). There was also a significant Lineage x Urea 

interaction for LMR, as urea addition increased the LMR of invasive (2-way 

interaction: F1,20=4.89, p=0.039) relative to native Phragmites without urea.  

Similarly, in monoculture treatments, urea addition increased rhizome 

biomass (F1,20=8.69, p=0.008), SLA (F1,18=68.5, p<0.001; Figure 4), aboveground 

biomass except when combined with sawdust in native Phragmites (3-way 

interaction: F1,18=5.07, p=0.042; Figure 4a); and increased leaf counts for both 

lineages (F1,21=11.88, p=0.002). Urea addition in monoculture also increased Fv:Fm 

when no sawdust was incorporated (F1,21=4.62, p=0.042) (Supplementary tables 1 and 

7). 

In monoculture, sawdust addition resulted in lower SMR (F1,18=9.36, p=0.007) 

and stem diameter (F1,21=4.38, p=0.048) for both genotypes, and increased RHMR in 

native Phragmites  (F1,19=6.15, p=0.016) (Supplementary tables 1,3 and 8). The 

sawdust treatment also had lower stem count relative to urea or urea+sawdust 

(F1,21=13.51, p=0.001). In mixture plantings, sawdust addition showed no significant 

main effects on any of the assessed plant parameters (p>0.05; Supplementary Tables 

2 and 4).  
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Discussion 
 

To our considerable surprise, we found facilitation to be the predominant 

interaction between native and invasive Phragmites, as reflected by greater above and 

belowground biomass of both lineages in mixture treatments than in monoculture 

(Figure 3). Interactions between native and invasive Phragmites have been 

considered to be overall negative, and several studies have attributed the displacement 

of native plants to competitive exclusion by the introduced Phragmites lineage 

(Chambers et al. 1999, Saltonstall 2002, Wilcox et al. 2003, Meadows and Saltonstall 

2007). However, competitive interactions were not experimentally measured in these 

studies so the reported replacement of native vegetation by invasive Phragmites 

cannot be definitively considered a result of direct resource competition (Mozdzer 

2013). Our finding of facilitative interactions (i.e., overyielding) between native and 

invasive Phragmites, would suggest that other mechanisms and not competitive 

exclusion favor the establishment of the introduced lineage in detriment of  the native. 

Intergenotypic interactions can result in overyielding (Rao and Prasad 1984, 

Crutsinger et al. 2006, Kotowska et al. 2010, Cook-Patton et al. 2011) through 

complementarity mechanisms which include niche partitioning and facilitation 

(Loreau and Hector 2001). Niche partitioning could constitute a relevant mechanism 

for the observed interactions given the marked morphological and physiological 

differences between native and invasive Phragmites (League et al. 2006, Mozdzer 

Thomas J. and Zieman Joseph C. 2010, Mozdzer et al. 2013); but it is difficult to 

evaluate in our greenhouse setting. Field studies have found that invasive Phragmites 
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has deeper rooting profiles than native plants and can access resources that are 

unavailable to natives (Moore et al. 2012, Bernal et al. 2017); this could make niche 

partitioning a possible mechanism for coexistence in the field. In our greenhouse on 

the other hand, depth separation of roots seems unlikely due to the limited space 

provided, but roots might still separate out in space based on kin recognition as seen 

in Fang et al. (2013). In that study, the authors looked at three genotypes of rice 

growing in cylinders with kin or nonkin and found that plants of the same genotype 

had significantly more overlapping roots, than plant roots in intergenotypic treatments 

which grew away from each other. In our study the observed decrease in RMR in 

intergenotypic arrangements (Table 1) could imply a more efficient use of space and 

belowground resources relative to monocultures. Facilitative interactions could also 

explain overyielding in mixture treatments. For example, it is possible that native 

Phragmites benefited from better soil aeration provided by greater belowground 

biomass of the invasive lineage. And it is likely that the increase in biomass of the 

invasive in mixture treatments resulted from a greater availability of nutrients as the 

native lineage has lower nitrogen demands (Mozdzer Thomas J. and Zieman Joseph 

C. 2010).  

When grown together, native and invasive Phragmites allocated more biomass 

to rhizomes than lateral roots (Figure 1, Table 1) and to stems rather than leaves 

(Figure 2; Table 1). Concerning rhizome allocation, Cheplick and Gutierrez (Cheplick 

2000) also found a greater allocation to storage organs in a clonal grass under 

competition, and suggested it might help the plant’s persistence within an occupied 

area. The increase in biomass allocation to stems without an associated increase in 
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their overall height or diameter could be due to an investment in mechanical stability 

to support more leaf biomass, and could further promote persistence in the 

environment through greater translocation of nutrients and carbohydrates to rhizomes 

in the winter (Boar 1996). 

 Holdredge et al. (2010) performed a similar competition experiment, and 

although their two-year experiment found no significant intergenotypic suppression 

of native Phragmites by the invasive lineage, they suggested that the greater biomass 

and higher expansion rate of the invasive eventually leads to displacement of the 

native. They also found that native Phragmites can be a good competitor under low 

nutrient conditions, but based on field observations they suggest it is outcompeted 

under eutrophic conditions. As opposed to competitive exclusion of native 

Phragmites, our greenhouse study suggests that there can be facilitative interactions 

between native and invasive plants when grown together. We also found that native 

and invasive Phragmites appear to be equally capable of harnessing nutrients and had 

a comparable relative increase in aboveground biomass after urea additions  (Figure 

4, Supplementary Table 7). This is unlike the disproportionate increase in this 

parameter for the invasive that was seen in Holdredge et al (2010) and in line with the 

results reported for Phragmites seedlings in Saltonstall and Stevenson (2007). It is 

possible that the differences in our results lie in the source or our Phragmites 

populations that can result in morphological and physiological differences (Clevering 

et al. 2001, Saltonstall and Court Stevenson 2007). Rhizomes used in the Holdredge 

et al. (2010) study were excavated from a brackish marsh and re-planted at 

oligohaline sites, whereas our rhizomes were collected in a freshwater and nutrient 
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rich wetland. Native Phragmites is more sensitive to salinity than the invasive lineage 

(Vasquez et al. 2005), therefore native populations might have been affected by 

salinity in the Holdredge et al. (2010) study limiting their nutrient uptake (Brown et 

al. 2006), while invasive populations were capable of quickly responding to nutrient 

additions based on their greater salinity tolerance (Vasquez et al. 2005) and nitrogen 

uptake capacity (Mozdzer Thomas J. and Zieman Joseph C. 2010).  

In addition to our greenhouse results, our field observations and others in the 

literature (Saltonstall and Court Stevenson 2007, Kettenring and Mock 2012) support 

that native and invasive lineages can co-exist even in eutrophic systems. Kettenring et 

al. (2012) further suggest that there is little evidence that native Phragmites stands are 

being replaced by the invasive lineage, and some of our study sites in the nutrient-rich 

Patuxent and Choptank Rivers in Maryland have neighboring stands of native and 

invasive Phragmites that have remained relatively unchanged for at least 10 years. 

Furthermore, we planted native Phragmites in an area dominated by the invasive 

lineage in Jug Bay Wetlands Sanctuary (Patuxent river, MD, USA) and three years 

later the native is still present and has expanded beyond our original plots (Appendix 

Figure 6). This expansion started from rhizomes after the first year because we 

harvested the aboveground biomass and it likely continued to expand belowground as 

we found stems growing around our original plots. We were unable to confirm if 

there was native growth from seed dispersion in the general area due to limited 

access. These observations support the importance of belowground spread for the 

native lineage (Kettenring and Mock 2012) and its ability to persist in an area 

dominated by the invasive lineage. 
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Although the C:N treatment effects were sometimes variable between 

monoculture and mixture treatments (Supplementary Tables 6-8), we did find an 

overall effect of urea addition on aboveground biomass, leaf count, SLA and rhizome 

biomass which matches those seen in previous studies (Saltonstall and Court 

Stevenson 2007, Holdredge et al. 2010, Mozdzer and Megonigal 2012). Both lineages 

benefitted from urea additions, but invasive Phragmites had greater values for these 

parameters supporting the idea that nitrogen enrichment can make this lineage an 

effective competitor and promote its invasiveness particularly following disturbance 

(Silliman and Bertness 2004, Rickey and Anderson 2004, Holdredge et al. 2010). 

Rhizome biomass showed a greater relative increase in native than invasive 

Phragmites after urea addition (Supplementary Tables 3, 4 and 7), and the native 

overall allocated more biomass to rhizomes than the invasive did (Figure 1) 

supporting the importance of vegetative reproduction in this lineage (Kettenring and 

Mock 2012).  

Sawdust addition did not have significantly differential effects on native and 

invasive Phragmites, and did not benefit the native as we originally hypothesized. It 

overall did not have a significant effect on most parameters, and the increase in 

rhizome biomass and decrease in SMR observed with sawdust addition in 

monoculture might not have been detected in the mixture treatments because 

intergenotypic interactions likely had a stronger effect than low C:N on those 

parameters. 

In conclusion, our greenhouse study suggests that C:N modifications at the 

proposed level would be unlikely to be a useful strategy for management or 
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restoration of Phragmites. Many of the plant response parameters were variable 

depending on whether the plants were in monoculture or mixture treatment, and 

sawdust addition did not improve the native’s competitive ability. This study found 

that facilitation was the predominant interaction when the genotypes were grown 

together regardless of C:N treatment, and therefore supports the idea that disturbance 

rather than competitive exclusion is likely responsible for the extirpation of native 

Phragmites (Lelong et al., 2007; Mozdzer et al., 2013; Saltonstall and Court 

Stevenson, 2007). 
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Table 1: Mean values and standard error for plant parameters that were significantly 
different between monoculture and mixture treatments. Within each parameter, 
different letters indicate significant differences between lineages and/or planting 
treatments (p<0.05). SMR=Stem Mass Ratio, SLA= Specific Leaf Area, LMR= Leaf 
Mass Ratio, RMR= Root Mass Ratio. 
 

Parameter Lineage Monoculture Mixture 

SMR 
Native 0.205 ± 0.02 b 0.304 ± 0.01 a 

Invasive 0.190 ± 0.02 b 0.386 ± 0.01 a 

Rhizome:Root 
Native 2.792 ± 0.08 b 3.320 ± 0.09 a 

Invasive 2.010 ± 0.08 c 2.602 ± 0.08 b 

Shoot:Root 
Native 0.819 ± 0.14 b 1.015 ± 0.04 a 

Invasive 0.866 ± 0.11 ab 0.844 ± 0.04 ab 

Stem height 
Native 89.643 ± 0.32 a 83.608 ± 0.53 ab 

Invasive 84.460 ± 0.25 a 72.54 ± 0.34 b 

SLA 
Native 42.742 ±0.57 ab 16.031 ± 0.76 c 

Invasive 49.798 ± 0.61 a 33.362 ± 0.70 b 

LMR 
Native 0.186 ± 0.02 a 0.139 ± 0.00 b 

Invasive 0.183 ± 0.02 a 0.144 ± 0.01 b 

RMR 
Native 0.239 ± 0.07 ab 0.191 ± 0.04 b 

Invasive 0.344 ± 0.08 a 0.238 ± 0.05 ab 

Stem diameter 
Native 3.265 ± 0.07 a 2.865 ± 0.08 ab 

Invasive 2.973 ± 0.03 a 2.506 ± 0.09 b 

Fv/Fm 
Native 0.824 ± 0.001 a 0.822 ± 0.003 b 

Invasive 0.826 ± 0.001 a 0.823 ± 0.002 b 
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Figure 1: Mean rhizome:root ratio and standard error of native and invasive 
Phragmites australis growing together in mixtures or in monoculture. Different 
letters indicate significant differences between planting treatments (p<0.05).  
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Figure 2: Mean stem:leaf ratio and standard error of native and invasive Phragmites 
australis growing together in mixture or in monoculture. Different letters indicate 
significant differences between planting treatments (p<0.05).  
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Figure 3: Relative Interaction Index (RII) for aboveground (a) and belowground (b) 
biomass of native and invasive Phragmites australis across C:N treatments. 
Control=No Urea/Sawdust addition, Sawdust=1.25kg/m2 , Urea=50g/m2/year 
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Figure 4: Boxplot of aboveground biomass and specific leaf area (SLA) in 
monoculture (a,b respectively) and mixture (c,d respectively) and across C:N 
treatments. Control=No Urea/Sawdust addition, Sawdust=1.25kg/m2 , 
Urea=50g/m2/year 
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Supplementary Table 1: ANOVA results of treatment effects on aboveground parameters for Phragmites growing in monoculture 
 
  

Aboveground 
biomass Stem height Stem diameter Stem count 

Stem 
biomass SMR 

Leaf 
count  

F p F p F p F p F p F p F p 
Urea (S) 97.22 <0.001 0.01 0.949 0.33 0.571 136.34 <0.001 3.39 0.0799 1.56 0.228 53.28 <0.001 
Sawdust 

(S) 
18.06 <0.001 2.67 0.117 4.38 0.049 13.511 0.001 0.74 0.4 9.36 0.006 2.47 0.131 

Lineage 
(L) 

8.57 0.0118 2.94 0.101 5.70 0.026 125.66
2 

<0.001 0.02 0.891 2.86 0.108 148.49 <0.001 

UxS 2.89 0.113 1.87 0.185 0.46 0.506 2.164 0.156 0.89 0.354 0.23 0.639 0.05 0.827 
UxL 0.04 0.841 0.60 0.445 1.90 0.182 60.48 <0.001 0.10 0.752 0.23 0.639 11.88 0.002 
SxL 9.52 0.008 3.63 0.07 1.38 0.253 2.286 0.145 1.22 0.282 3.21 0.09 0.47 0.501 

UxSxL 5.06 0.042 0.08 0.783 0.0 0.972 0.013 0.91 0.69 0.416 0.03 0.857 0.38 0.544 
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Supplementary Table 1: Continued 
 

 Leaf area SLA Stem:Leaf LMR Leaf biomass 
Quantum yield 

(Y) Fv/Fm  
F p F p F p F p F p F p F p 

Urea (S) 72.23 <0.001 68.504 <0.001 0.239 0.633 0.59 0.453 4.238 0.052 1.74 0.202 3.696 0.069 
Sawdust 

(S) 
2.607 0.121 0.123 0.73 0.323 0.579 0.65 0.431 1.641 0.214 0.136 0.716 0.114 0.789 

Lineage 
(L) 

9.41 0.006 19.085 <0.001 2.748 0.119 0.001 0.975 2.389 0.137 1.418 0.248 2.939 0.102 

UxS 0.627 0.437 0.668 0.425 0.183 0.675 0.189 0.669 0.844 0.369 2.174 0.156 4.617 0.044 
UxL 2.995 0.098 0.241 0.629 0.036 0.852 0.702 0.414 0.012 0.914 0.031 0.862 0.038 0.848 
SxL 1.913 0.181 0.047 0.832 0.379 0.548 3.37 0.084 4.017 0.058 0.047 0.831 0.08 0.779 

UxSxL 0.485 0.493 1.086 0.311 2.642 0.126 0.921 0.351 0.135 0.717 1.852 0.189 0.055 0.817 
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Supplementary Table 2: ANOVA results of treatment effects on aboveground parameters for Phragmites growing in mixture 
 

 
Aboveground 

biomass Stem height Stem diameter Stem count Stem biomass SMR Leaf count  
F p F p F p F p F p F p F p 

Urea (S) 17.48 <0.001 0.365 0.552 3.392 0.079 4.48 0.046 7.219 0.0138 0.133 0.719 17.019 <0.001 
Sawdust 

(S) 
2.144 0.159 0.48 0.496 0.098 0.757 0.59 0.451 3.621 0.071 2.008 0.173 0.009 0.923 

Lineage 
(L) 

14.174 0.001 0.153 0.7 3.589 0.072 24.6 <0.001 19.95 <0.001 13.246 0.002 100.66 <0.001 

UxS 0.223 0.642 1.153 0.295 2.169 0.156 0.11 0.749 2.873 0.105 2.8 0.111 0.413 0.527 
UxL 0.568 0.46 0.002 0.969 0.288 0.597 0.04 0.837 0.014 0.908 0.376 0.547 0.067 0.798 
SxL 0.017 0.897 0.086 0.773 0.785 0.386 0 0.988 2.265 0.147 0.53 0.475 0.196 0.662 

UxSxL 1.244 0.279 0.545 0.469 0.124 0.728 0.54 0.471 1.052 0.317 0.27 0.609 0.215 0.647 
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Supplementary Table 3: ANOVA results of treatment effects on belowground parameters for Phragmites growing in monoculture 
 

 
Belowground 

biomass 
Rhizome 
biomass 

Lateral root 
biomass RHMR RMR Rhizome:Root  

F p F p F p F p F p F p 
Urea (S) 1.349 0.259 8.69 0.008 0.549 0.467 0.09 0.768 66.994 <0.001 0.753 0.396 

Sawdust (S) 1.647 0.213 0.011 0.917 0.708 0.401 5.334 0.032 23.113 <0.001 0.592 0.451 
Lineage (L) 1.459 0.24 17 <0.001 94.87 <0.001 0.256 0.619 17.409 <0.001 20.095 <0.001 

UxS 2.171 0.155 2.142 0.159 0.374 0.548 0.087 0.7708 31.181 <0.001 0.152 0.701 
UxL 0.006 0.939 0.139 0.724 0 0.994 1.986 0.175 0.811 0.378 0.459 0.506 
SxL 2.09 0.163 0.896 0.355 2.463 0.131 6.115 0.023 0.137 0.716 3.001 0.099 

UxSxL 4.398 0.048 3.11 0.093 0.974 0.335 0.023 0.88 0.046 0.831 0.042 0.839 
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Supplementary Table 4: ANOVA results of treatment effects on belowground parameters for Phragmites growing in mixture 
  

Belowground 
biomass 

Rhizome 
biomass 

Lateral root 
biomass RHMR RMR Rhizome:Root  

F p F p F p F p F p F p 
Urea (S) 0.185 0.672 6.413 0.019 1.33 0.262 0.426 0.522 22.136 <0.001 0 0.851 

Sawdust (S) 0.141 0.711 0.427 0.521 0.022 0.884 0.295 0.593 9.149 0.007 0.036 0.987 
Lineage (L) 12.669 0.002 6.499 0.018 15.259 0.0008 5.178 0.035 4.762 0.041 30.042 <0.001 

UxS 2.23 0.15 1.807 0.193 1.047 0.318 0.622 0.44 7.382 0.0133 0.536 0.472 
UxL 0.74 0.399 0.192 0.666 0.149 0.703 0.065 0.8 0.111 0.742 0.004 0.534 
SxL 0.266 0.612 1.738 0.202 0.795 0.383 1.603 0.221 0.409 0.529 0.421 0.953 

UxSxL 0.464 0.503 1.489 0.235 0.209 0.652 0.377 0.546 0.346 0.563 0 0.989 
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Supplementary Table 5: ANOVA results showing effect of lineage and planting (monoculture vs mixture) on response variables 
 

 SMR Rhizome:Root Shoot:Root Stem height 
Planting F p F p F p F p 
Mono_Mix 197.142 <0.001 22.644 <0.001 6.265 0.0015 14.437 <0.001 
Lineage 4.384 0.041 38.549 <0.001 0.411 0.524 0.751 0.389 
Lineage x 
Mono_Mix 0.004 0.949 1.036 0.313 3.346 0.0681 0.157 0.694 
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Supplementary Table 5: continued 
 

 SLA LMR RMR Stem diameter 
Planting F p F p F p F p 

Mono_Mix 35.673 <0.001 71.317 <0.001 4.184 0.0456 14.287 <0.001 
Lineage 12.73 <0.001 0.076 0.784 5.692 0.021 8.106 0.006 

Lineage x 
Mono_Mix 4.007 0.0508 0.525 0.472 0.199 0.657 0.084 0.774 
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Supplementary Table 6: Mean and standard error of various response variables of native and invasive Phragmites under different 
C:N treatments and across planting treatments 
 

Lineage Treatment 
Rhizome:

Root 
Stem 
count Leaf Area 

Leaf 
count 

Lateral root 
biomass 

Aboveground 
biomass 

Rhizome 
biomass RMR 

Invasive Control 2.35±0.17 9.8±1.1 883.3±4.9 98.8±15 32.46±2.77 66.63±3.84 72.89±0.79 0.49±0.10 
Invasive Sawdust 2.31±0.18 8.1±1.0 710.8±3.8 94.0±12 33.33±3.81 64.69±3.92 72.13±0.67 0.25±0.06 
Invasive Urea 2.21±0.24 15.0±1.4 1721.6±5.2 175.8±20 34.80±3.91 73.22±3.08 74.75±0.99 0.21±0.04 
Invasive UreaSaw 2.36±0.25 13.5±1.6 1686.3±4.8 162.3±24 34.78±4.08 72.23±3.25 74.13±1.12 0.21±0.05 
Native Control 3.11±0.44 5.9±1.1 545.3±6.1 47.0±13 22.03±1.89 63.44±3.64 63.31±4.14 0.34±0.08 
Native Sawdust 3.10±0.06 5.4±0.9 489.7±4.9 42.1±9 23.13±0.50 64.08±4.36 71.29±0.61 0.18±0.05 
Native Urea 2.93±0.16 7.7±1.4 1269.4±7.9 64.1±14 25.60±2.07 73.61±1.83 72.63±0.76 0.15±0.02 
Native UreaSaw 3.13±0.06 7.7±1.2 1044.9±6.4 64. 7±14 22.85±0.53 64.62±3.69 71.23±0.35 0.18±0.04 
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Supplementary Table 7: Mean and standard error of variables affected by urea addition in monoculture and mixture treatments 
 

Lineage Treatment Mono_Mix 
Aboveground 

biomass Stem Count Leaf Count SLA Stem biomass 
Invasive No urea Mixture 73.80±0.59 7.4±0.9 71.71±7.1 20.33±1.83 49.91±0.37 
Invasive No urea Monoculture 54.80±0.90 10.7±0.8 124.83±6.9 36.34±1.66 28.23±0.59 
Invasive Urea Mixture 78.90±1.31 11.0±0.9 130.33±15.9 47.09±4.04 51.78±0.61 
Invasive Urea Monoculture 66.55±1.77 17.5±0.2 207.83±12.9 64.74±3.01 33.30±1.22 
Native No urea Mixture 71.01±0.36 3.6±0.5 22.63±2.9 8.96±1.58 49.08±0.25 
Native No urea Monoculture 52.10±0.89 8.3±0.3 73.83±4.7 32.83±2.10 26.32±0.63 
Native Urea Mixture 74.54±1.46 5.4±0.7 37.71±5.9 24.11±4.75 50.63±0.84 
Native Urea Monoculture 63.53±3.32 10.3±0.9 95.50±7.9 55.54±4.75 33.85±1.4 

Invasive UreaSaw Mixture 78.4±3.97 10.0±0.0 111.67±12.6 46.99±8.13 51.87±1.01 
Invasive UreaSaw Monoculture 66.07±5.36 17.0±1.2 213.0±14.6 67.14±3.41 32.80±2.27 
Native UreaSaw Mixture 72.63±2.58 5.3±1.3 37.67±24.7 20.54±7.80 49.40±0.66 
Native UreaSaw Monoculture 56.6±2.42 10.0±0.0 91.67±11.6 54.38±4.02 28.77±0.68 
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Supplementary Table 7: continued 
 

Lineage Treatment Mono_Mix Leaf biomass Rhizome biomass  LMR Fv:Fm 
Invasive No urea Mixture 23.76±0.28 70.89±0.33 0.13±0.002 0.822±0.003 
Invasive No urea Monoculture 26.57±0.32 74.13±0.51 0.16±0.008 0.825±0.002 
Invasive Urea Mixture 27.12±0.74 72.13±0.51 0.15±0.002 0.827±0.005 
Invasive Urea Monoculture 33.25±0.61 76.75±0.69 0.18±0.002 0.827±0.001 
Native No urea Mixture 21.94±0.14 68.51±1.52 0.14±0.002 0.829±0.002 
Native No urea Monoculture 25.54±0.29 65.34±4.99 0.18±0.007 0.823±0.001 
Native Urea Mixture 23.91±0.65 70.89±0.23 0.14±0.002 0.822±0.003 
Native Urea Monoculture 29.68±1.58 72.96±0.69 0.18±0.005 0.825±0.001 

Invasive UreaSaw Mixture 26.53±1.29 71.88±0.91 0.15±0.002 0.822±0.006 
Invasive UreaSaw Monoculture 33.27±0.91 76.38±1.28 0.18±0.004 0.825±0.001 
Native UreaSaw Mixture 23.23±0.85 70.70±0.37 0.14±0.003 0.821±0.003 
Native UreaSaw Monoculture 27.83±0.72 71.75±0.49 0.18±0.001 0.824±0.001 
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Supplementary Table 8: Mean and standard error for variables affected by sawdust addition in monoculture and mixture treatments 
 

Lineage Treatment Mono_Mix SMR Stem diameter (mm) RHMR Stem count 
Invasive No sawdust Mixture 0.29±0.00 2.62±0.25 0.45±0.02 10.0±1.1 
Invasive No sawdust Monoculture 0.18±0.00 3.03±0.09 0.48±0.04 14.8±1.5 
Invasive Sawdust Mixture 0.28±0.01 2.39±0.12 0.44±0.02 8.3± 1.1 
Invasive Sawdust Monoculture 0.17±0.02 2.92±0.08 0.47±0.03 13.3±1.7 
Native No sawdust Mixture 0.31±0.01 2.81±0.26 0.46±0.01 4.6±0.7 
Native No sawdust Monoculture 0.21±0.00 3.47±0.14 0.40±0.06 9.7±1.1 
Native Sawdust Mixture 0.30±0.00 2.92±0.10 0.49±0.02 4.3±0.7 
Native Sawdust Monoculture 0.18±0.00 3.07±0.17 0.56±0.06 9.0±0.4 
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Supplementary Figure 1: Relative Interaction Index (RII) for leaf biomass of native 
and invasive Phragmites australis across C:N treatments. Control=No Urea/Sawdust 
addition, Sawdust=1.25kg/m2 , Urea=50g/m2/year. Bars show standard error. RII 
values were significantly different from 0 (t=10.09, p<0.001) and showed no 
significant differences between lineages or treatments. 
  

0.0

0.1

0.2

0.3

Control Sawdust Urea UreaSaw
Treatment

R
II 

Le
af

 b
io

m
as

s

Lineage
Invasive
Native



 

 

111 
 

 
 

 
 
Supplementary Figure 2: Relative Interaction Index (RII) for stem biomass of native 
and invasive Phragmites australis across C:N treatments. Control=No Urea/Sawdust 
addition, Sawdust=1.25kg/m2 , Urea=50g/m2/year. Bars show standard error. RII 
values were significantly different from 0 (t=10.13, p<0.001) and showed no 
differences between lineages or treatments. 
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Supplementary Figure 3: Relative Interaction Index (RII) for root biomass of native 
and invasive Phragmites australis across C:N treatments. Control=No Urea/Sawdust 
addition, Sawdust=1.25kg/m2 , Urea=50g/m2/year. Bars show standard error. RII 
values were significantly different from 0 (t=10.13, p<0.001). There were no 
differences between treatments, but native Phragmites had overall greater RII than 
the invasive (F1,25=12.82, p=0.0014) 
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Supplementary Figure 4: Relative Interaction Index (RII) for rhizome biomass of 
native and invasive Phragmites australis across C:N treatments. Control=No 
Urea/Sawdust addition, Sawdust=1.25kg/m2 , Urea=50g/m2/year. Bars show standard 
error. Means for RII were significantly different from 0 (t=42.6, p<0.001). The native 
lineage had greater RII than the invasive (F1,26=12.45, p=0.002), and there were no 
differences in RII based on C:N treatments.     
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Abstract  
 

Fungal endophytes can improve plant tolerance to abiotic stress. However, the 

role of these plant-fungal interactions in invasive species ecology and their 

management implications remain unclear. This study characterized the fungal 

endophyte communities of native and invasive lineages of Phragmites australis and 

assessed the role of dark septate endophytes (DSE) in salt tolerance of this species. 

We used Illumina sequencing to characterize root fungal endophytes of contiguous 

stands of native and invasive P. australis along a salinity gradient. DSE colonization 

was assessed throughout the growing season in the field, and their role in salinity 

tolerance was investigated using laboratory and greenhouse studies. Native and 

invasive lineages had distinct fungal endophyte communities that shifted across the 

salinity gradient. DSE colonization was greater in the invasive lineage and increased 
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with salinity. Laboratory studies showed that DSE inoculation increased P.australis 

seedling survival under salt stress; and a greenhouse assay revealed that the invasive 

lineage had greater aboveground biomass under mesohaline conditions when 

inoculated with a DSE. We observed that P.australis can establish mutualistic 

associations with DSE when subjected to salt stress. This type of plant-fungal 

association merits further investigation in integrated management strategies of 

invasive species and restoration of native Phragmites.  

Introduction 
 

Fungal endophytes establish mutualistic associations with most plant species, 

and can play a major role in plant ecology and community structure (86). These 

endophytes can improve host nutrient uptake (87,88), improve host defense against 

pathogens (89), modify trophic interactions (90–92), and improve host tolerance to 

abiotic stress (93,94). At the plant community level, they can affect plant diversity 

(95,96) and can be important factors in plant invasion ecology (97,98). A better 

understanding of plant-microbe interactions can help improve various aspects of 

invasive species management (99). Kowalski et al. (83) recently proposed a 

framework for a microbial-based control strategy of invasive species; the basis of this 

strategy is that greater understanding of key microbial association of invasive and 

native species can lead to new insights of invasive species success and improve 

management practices.  

The aggressive expansion of the invasive European lineage of P. australis is 

an issue in several regions of the United States. Management of this lineage has been 

costly. Despite agencies spending over $4.6 million/year (78), most eradication 



 

 

116 
 

efforts are unsuccessful and focused on short-term results (77,83). Once established, 

invasive P. australis forms dense monotypic stands affecting native plant diversity 

(47,61,100), hydrology (101), and biogeochemistry (62,102) in invaded areas. 

Expansion of this lineage has been common in brackish marshes (103,104) and salt 

marshes, where it can significantly alter ecological functions (50,61). 

The native North American haplotype F of P. australis (40) is less salt-

tolerant than the invasive European haplotype M (45), and is therefore predominantly 

found in low-salinity habitats (43). Both lineages share the same physiological 

mechanisms of salt-tolerance, which are K+ accumulation in plant tissues and Na+ 

exclusion (105,106); but the growth potential of the invasive lineage has been 

considered key to its invasiveness at higher salinities (45). Expansion of the invasive 

lineage into salt marshes has also been related to clonal integration (107) and 

temporary decreases in soil salinity (47,108). Benefits of microbial associations for 

salinity tolerance of  P. australis have been theorized (109) but have not been 

assessed until this study. 

In wetlands, one of the most common groups of root endophytes are dark 

septate endophytes (DSE). In these systems they are commonly found to coexist with 

mycorrhizal fungi and are more prevalent in monocotyledonous than dicotyledonous 

plant species (110,111). Dark septate endophytes are considered generalist root fungi 

and have been found to associate with over 600 plants, including some that are non-

mycorrhizal in various ecosystems (112,113). Based on the classification by 

Rodriguez et al. (2009) (86), these Class IV endophytes can be characterized as sterile 

or conidial, they have dark melanized hyphae and microsclerotia, and are likely to 
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play an important role in plant ecophysiology. Several studies have found DSE 

colonization is common in plants exposed to abiotic stress (114–116), and 

experimental inoculation of plants with DSE has been reported to improve host 

tolerance to heavy metal contamination (117) and drought (118). Some of the 

possible mechanisms by which DSE can affect host fitness include the production of 

bioactive compounds (117,119), and increasing nutrient uptake by colonized hosts 

(87,118). Considering the ubiquitous nature of DSE in wetland grass species and their 

ability to promote stress-tolerance in various hosts, their associations with wetland 

plants and potential functional roles merit further investigation. Specifically, their 

interactions with native and invasive plants like P. australis could be of interest to 

improve management of the invasive lineage as proposed by Kowalski et al. (2015) 

(83). 

In this study we characterized the fungal endophyte communities of 

contiguous stands of native and invasive P. australis across a salinity gradient. We 

used next generation sequencing and microscopy to address the role of lineage and 

salinity in structuring root fungal communities over a growing season. In pursuing 

this objective, we identified salinity-driven DSE colonization patterns that led to a 

follow up question: Can fungal endophytes improve salt-tolerance of P. australis? We 

hypothesized that DSE mutualists played a role in stress tolerance of the invasive P. 

australis lineage, and used laboratory and greenhouse assays to test this prediction. 

 

Materials and methods 
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Study sites and sampling 

We selected three sites with contiguous stands of native and invasive P. 

australis along a salinity gradient in the Choptank River in eastern Maryland, U.S.A 

(Figure 1). The salinity regimes at these tidal wetland sites range from freshwater 

(<0.5%) to oligohaline (0.5-5%) (6). During the summer of 2016, we collected 

rhizomes from native and invasive P. australis by excavating the plant and clipping 

rhizomes that had multiple lateral and fine roots. Four rhizomes were sampled from 

each stand from plants that were at least 5 m away from each other. Sampling was 

carried out approximately every two weeks between June and October, resulting in a 

total of 84 rhizomes of each lineage that were collected for analysis. To monitor 

water level, we installed loggers (HOBO U20L-04, Bourne MA, USA) in stands of 

native and invasive P. australis at sites A and C, and water level was recorded every 

5 minutes from July to October. We calculated the level of inundation for each stand 

based on the percent time that the water was above the soil surface over the two-week 

period before each rhizome sampling date. Salinity was recorded at each site using a 

portable salinity meter (YSI, Yellow Springs OH,USA). We collected soil samples 

from each site in July and analyzed them for percent nitrogen (%N) and carbon (%C) 

by combustion at 950◦C, pH using a 1:5  soil:DI water slurry and soil organic matter 

(SOM) using loss-on-ignition (550◦C for 24 h). We characterized root morphology of 

native and invasive P. australis  based on three samples from each stand and 

measured lateral root density and length, and root hair density (34).   
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Root processing and endophyte sequencing 

Lateral and fine roots were clipped and separated for different uses. Some 

were stored in 50% ethanol for staining and microscopy, and the rest were surfaced 

sterilized and either stored at       -80˚C for Illumina sequencing, or used to isolate 

fungal endophytes. Surface sterilization was carried out as described in Ban et al 

(2012) (120), with 99% ethanol for 1 m, 35% hydrogen peroxide for 5 m, 99% 

ethanol for 30 s and washed three times in sterile DI water. We confirmed the success 

of the root sterilization by imprinting the roots on potato dextrose agar (PDA) and 

confirming no signs of growth after incubation. 

To isolate root endophytes we clipped the ends of the roots and placed them 

on PDA with ampicillin and streptomycin. Plates were incubated in the dark at 23˚C 

and fungi that emerged from the roots were transferred to new PDA plates. We 

characterized the isolated endophytes using Sanger sequencing. Endophyte recovery 

from the Choptank sites was low, so additional isolates were obtained using the same 

methods from roots of invasive Phragmites that was located at a mesohaline site (8 

ppt) on the Patuxent River (N38°32'20”, W76°40'3”).  We extracted fungal DNA 

using a Zymo Quick DNA Fungal/Bacterial kit according to manufacturer’s 

instructions. BigDye® Terminator v3.1 (ThermoFisher) was used for PCR 

amplification using the ITS1F/ITS4R and the EF1-728F/EF1-986R primer sets to 

amplify the internal transcribed spacer (ITS) region and alpha elongation factor (EF), 

respectively. EdgeBio cleanup plates were used to recover the cleaned sample, which 

was then vacuum concentrated using a speedvac, re-suspended in 20 µl of HiDi 

formamide, and denatured for 2 m at 95°C. We processed the resulting sequences 
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using SeqScanner v.1.0 (ABI) to check quality, DNAStar to assemble contigs at 97% 

similarity, and BLAST (NCBI) to assign taxonomy.   

Sterile roots from two of our sampling dates (June 30th and August 24th) were 

used for DNA extractions and subsequent Illumina sequencing of the ITS1 region. 

We used a PowerPlant Pro DNA isolation kit (MoBio, Carlsbad CA, USA) for DNA 

extractions and followed the manufacturer’s instructions, except for the lysing step, 

which was carried out using a FastPrep®-24 (two 60 s cycles at 6 m s-1; MP 

Biomedicals, LLC, Solon OH, USA). We quantified the extracted DNA using a Qubit 

2.0 fluorometer and diluted it to 5 ng µl-1 for PCR and amplicon sequencing. The ITS 

region was targeted using the primer+adapter for ITS1F (5’-TCG 

TCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGGTCATTTAGAGGAAGT

AA-3’) and ITS2 (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCGTTCTTCAT 

CGATGC-3’) with Illumina adapters.  The PCR reaction had 3.5 µl of DNA, 17.5 µl 

of ThermoScientific TM PhusionTM Flash High-Fidelity PCR Mastermix (Thermo 

Fisher Scientific), and 7 µl of each primer. PCR products were purified using 

AMPure XP beads (Beckman Coulter, Pasadena CA, USA) following the Illumina 

protocol (Part # 15044223 Rev. B, support.illumina.com), and indexed using the 

Illumina Nextera  XT 96 index kit. Samples were pooled, and amplicon size of the 

library was checked using a Bioanalyzer 2100 (Agilent Technologies). We quantified 

the library using Q-PCR, and the final library was diluted to 12 pM, spiked with 30% 

PhiX (Illumina), and ran on an Illumina MiSeq using a 600-cycle v3 cartridge.   
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Roots that were stored in 50% ethanol were used for fungal colonization 

assessment using microscopy. They were cleared by autoclaving in 10% KOH for 15 

m, acidified in 1%HCl for 20 m, and stained with 0.05% trypan blue for 2 h (121). 

Roots were de-stained overnight in 50% glycerol and stored in lactoglycerol. Percent 

colonization of DSE was assessed using the grid intercept method  (122), with 100 

intersections per slide.   

Laboratory and greenhouse 

We assessed the salt-resistance of the isolated endophytes from the 

mesohaline site by growing them in PDA with 200 mM, 400 mM and 600 mM NaCl. 

We then used all salt-tolerant endophytes in a laboratory experiment to evaluate their 

effect on survival of P. australis under salt-stress. We began by surface sterilizing 

seeds using 70% ethanol for 2 m, 10% bleach for 5 m and three sterile DI water 

rinses.  

For the laboratory experiment, we germinated sterile seeds of invasive P. 

australis in 1% agar. After germination, four seedlings were transferred to Magenta 

boxes containing solid MS media with 100 mM NaCl. We then added either a disc of 

actively growing fungi, or a disc of sterile PDA media as a control next to each 

seedling. For the less salt-resistant native P. australis lineage, we inoculated the seeds 

prior to adding them to the Magenta Box because 100 mM of NaCl can be very 

stressful for this lineage (45) and we speculated the endophytes might improve its 

chances of surviving the transplant. We added the sterile seeds either to PDA plates 

that had different endophytes actively growing, or to sterile PDA media for control. 

After 24 h, we transferred the seeds to 1% agar for germination, and then added the 
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seedlings to Magenta boxes containing solid MS media with 100 mM NaCl and 

ampicillin. We recorded the number of surviving seedlings of native and invasive P. 

australis after two months. Based on these results, we selected one of the endophytes 

for a greenhouse experiment to further evaluate its effect on salinity tolerance of 

invasive Phragmites. In addition, we stained a subset of the seedling roots (as 

described in the previous section), to confirm fungal colonization and DSE 

classification of the endophytes. 

For the greenhouse experiment, sterile seeds of invasive P. australis were 

germinated in 1% agar at 14 h of light and a 30˚/18˚C diurnal temperature shift. We 

transferred seedlings into Magenta boxes with half-strength Murashige and Skoog 

(MS) basal salt solid media and ampicillin. After 3 weeks, we planted 23 seedlings 

into 2 l pots containing a sterile mix of 2:1 Sungro potting soil and sand. Plant height 

was recorded at the beginning of the experiment and used as a covariate for analysis. 

One week after planting, we began the endophyte treatment by adding a disc of the 

selected fungal endophyte that was actively growing on PDA near the base of each 

plant, or a disc of sterile PDA media for control plants. A week later, we began the 

salt treatments by adding 100 mM of NaCl to irrigation water and gradually 

increasing additions by 100 mM weekly until the final treatment levels 

(Mesohaline=200 mM and Polyhaline=400 mM) were reached. This gave us a 

factorial design with 3 levels of salinity (Freshwater, Mesohaline, and Polyhaline) 

and 2 levels of endophyte (Endophyte and No Endophyte). We placed the pots into 

aluminum pans to collect drainage water, and plants were watered twice weekly with 

1 l of tap water. We added NaCl weekly to the irrigation water to maintain salt 
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treatments, and fertilizer (Jack’s All Purpose 20-20-20) was added bi-weekly in the 

amounts recommended by the manufacturer. After 2 months, plants were re-potted 

into 4 l pots and we increased watering frequency to 3 times a week. Bi-weekly 

measurements included plant height, number of shoots, and salinity of the drainage 

and reservoir water using a portable salinity meter (YSI, Yellow Springs, Ohio). At 

the end of the experiment, we measured chlorophyll fluorescence as an indicator of 

stress using a PAM-2100 Chlorophyll Fluorometer (Walz, Effeltrich Germany) on the 

second collared leaf of two stems per pot. We recorded the quantum yield (Y) during 

the day, and the maximum quantum yield (Fv/Fm) at night. We harvested the plants 

after 4 months and recorded leaf number, leaf area (LI-COR LI-3100), total above 

and belowground dry biomass, number of shoots, lateral root length and density, and 

rhizome diameter. Total nitrogen and total carbon of leaf tissue was analyzed by 

combustion using a LECO CN628 analyzer (LECO, St. Joseph, MI, USA). 

Data analysis 

We used R v.1.0.153 (123) for all data analysis and figure drawings. Paired 

end sequences from Illumina were processed using the dada2 package (124) and 

taxonomy assigned using the UNITE database (125). The phyloseq (126) and vegan 

(127) packages were then used for data analysis and ggplot2 (128) for plotting 

figures. Samples were rarefied to 14,705 sequences which provided overall good 

coverage based on rarefaction curves (Supplementary figure 1). Samples were then 

filtered based on prevalence, and taxa with a prevalence of at least 7% was kept. Non-

metric multidimensional scaling (NMDS) based on a Bray-Curtis dissimilarity matrix 

was used to visualize endophyte community composition across sites and between 
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lineages. Permutational multivariate ANOVA (PerMANOVA) was used to assess 

differences between communities, and homogeneity of group dispersion was checked 

using the vegan functions betadisper and permutest. When PerMANOVA was 

significant, we used pairwise comparisons to contrast the specific factors using the 

package RVAideMemoire (129). Alpha diversity based on log-transformed observed 

and Fisher’s alpha index was evaluated using ANOVA (type III SS). We used the 

FunGUILD database (130) to assess differences in functional profiles of fungal 

communities associated to native and invasive P. australis. We used the trophic 

modes output to evaluate the prevalence of Symbiotrophs, Saprotrophs, Pathotrops 

and combinations of these in each lineage. 

Differences in DSE root colonization across dates and between sites for each 

lineages were assessed using two-way ANOVA (type III SS) and Tukey’s post-hoc 

means comparisons test. Pearson correlation coefficients were calculated to determine 

the relationship of percent colonization with sampling date and salinity.  

Greenhouse results were first analyzed using ANOVA (type III SS) to 

evaluate if initial height was a significant explanatory variable for each parameter. 

When it was, the data were analyzed as an ANCOVA using covariate-adjusted means 

with the package emmeans (131). Planned pairwise contrasts with a Tukey 

adjustment were used to assess differences between endophyte treatments at each 

salinity level. When the initial height was not significant, it was removed from the 

model and data were analyzed as an ANOVA (type III SS). Variables were log-

transformed to meet ANOVA assumptions when necessary. 
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Results 

Site characteristics 

Percent carbon (%C), and nitrogen (%N) were higher in Site A, and pH 

tended to be lower at that site. There were also a few site-specific differences between 

native and invasive stands, specifically the native stand soils had higher %C in sites B 

and C and overall higher %N at all sites; and invasive stands had higher %SOM in 

sites B and C. Root morphological characteristics did not differ significantly overall 

between lineages or across sites (Table 1). 

Fungal root endophyte community analysis 

After rarefaction and filtering of Illumina sequences there was a total of 165 

amplicon sequence variant (ASVs). Most fungal ASVs were present in both lineages 

(71%) and half of them were found at the three sites. The most abundant Orders were 

Lulworthiales, Agaricales, Pezizales and Pleosporales (Supplementary figure 2). 

Fungal endophytes communities did not differ between June and August 

(PerMANOVA, F41=0.99, p=0.46), and were therefore combined for the rest of the 

analyses. When evaluating beta diversity between the sites and lineages, we found a 

significant interaction between factors (PerMANOVA, F37=2.2, p=0.001). We then 

ran separate PerMANOVAs for each lineage and site to evaluate changes in 

community composition across the salinity gradient. Fungal endophytes associated 

with native P. australis in Site A (~0.7 ppt), differed from those at sites B (~1.2 ppt) 

and C (~3 ppt) (PerMANOVA, F20=2.49, p=0.002).  For invasive P. australis, fungal 

communities only differed between Site A and Site C (PerMANOVA, F17=2.79, 

p=0.002). Contiguous stands of native and invasive P. australis had distinct 
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endophyte communities in every site (Site A: F12=2.49, p=0.01; Site B: F14=2.69, 

p=0.007; Site C: F11=2.69, p=0.02) (Figure 2 NMDS). Alpha diversity did not differ 

between lineages or across sites (p>0.05). (Supplementary figure 3). 

Only 83 (50%) of the ASVs could be assigned to the Genus level, and 55 

(33.5%) to Species. This resulted in limited functional profiles from FunGUILD that 

uses these taxonomic levels to assign putative trophic modes to the fungal species. 

Based on those assignments, there were no significant differences between functional 

groups of endophytes of native or invasive P. australis. The only exception was the 

presence of a symbiont in one sample of the native lineage at Site A that had the 

arbuscular mycorrhizae (AM) Rhizophagus irregularis (Supplementary figure 4).  

DSE colonization 

 Percent DSE colonization was consistent overall throughout the growing 

season, and always higher in the invasive lineage (Figure 3a). There was a significant 

correlation between DSE colonization and salinity in the invasive lineage (r=0.47, 

n=82, p<0.01), but no correlation in the native lineage (r=-0.037, n=79, p=0.75) 

(Figure 3b). Inundation level had no apparent relationship to the observed percent 

DSE colonization (Figure 4). 

Endophyte isolation and Sanger sequencing 

We isolated 15 fungal endophytes from invasive P. australis roots, and were 

categorized as DSE based on microscopic observation of inoculated plant roots. 

Sequencing output based on the ITS region resulted in 12 contigs that were 

predominantly matched to uncultured fungi (Supplementary table 1). Sequencing of 
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the alpha-elongation factor gene did not provide enough resolution to differentiate 

between any of the isolates.  

Endophyte salinity tolerance 

Fourteen of the isolated endophytes showed growth in PDA with up to 600 

mM NaCl; therefore, all of these were tested in Magenta box laboratory assays to 

evaluate their effect on seedling survival of both lineages. Seedlings of invasive and 

native P. australis inoculated with endophyte GG2D showed the highest survival 

relative to the control treatment and other endophytes tested (Table 2). Based on 

these results, endophyte GG2D was selected to further evaluate its effect on salt 

tolerance of P. australis in a greenhouse experiment. 

Greenhouse assay 

Endophyte inoculation increased aboveground biomass of invasive P. 

australis only at the mesohaline salinity treatment (ANCOVA, contrast t15=2.42, 

p=0.029) (Figure 5 a). This was mainly driven by a significant increase in average 

stem height (ANOVA, F11=6.77, p=0.039) (Figure 5 b) and leaf biomass (ANCOVA, 

contrast t15=2.58, p=0.021) (Figure 5 c), and an increase in stem biomass (ANCOVA, 

contrast t15=2.1, p=0.053) at that salinity level in inoculated plants.  Other 

aboveground parameters, including number of stems, stem biomass, leaf count, and 

leaf area, did not differ significantly between inoculated and non-inoculated plants 

(data not shown).  

Belowground parameters including rhizome and lateral root biomass, rhizome 

diameter, and lateral root length and number, did not differ between control and 
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endophyte inoculated plants (p>0.05, data not shown). Root-to-shoot ratio tended to 

be lower in endophyte treatments across all salinity levels (p<0.1) (Figure 5 d).  

Photosynthetic efficiency based on quantum yield (Y) and maximum quantum 

efficiency (Fv/Fm) did not differ between salinity treatments (ANOVA, Y: F16=1.3, 

p=0.29; Fv/Fm: F16=0.37, p=0.69), or between inoculated and not inoculated plants 

(ANOVA, Y: F16=0.1, p=0.75; Fv/Fm: F16=1.02,p=0.33 ).  

Total carbon in leaf tissue did not differ between salinity or fungal treatments 

(ANOVA, F15=0.28, p=0.75; F15=0.08, p=0.78; respectively). Total nitrogen differed 

between salinity treatments (ANOVA, F15=8.73, p=0.003), and was highest in 

mesohaline conditions and lowest in freshwater. Total leaf nitrogen did not differ 

between inoculated and non-inoculated plants (F15=0.64, p=0.44). 

Discussion 
Native and invasive lineages of the common reed P. australis are colonized by 

distinct fungal endophytes that can improve the salt-tolerance of these grasses. We 

observed an increase in DSE colonization with salinity in the invasive lineage, and 

greater overall colonization of this lineage relative to the native (Figure 3a); we 

speculated this was due to a mutualistic association between DSE and the invasive 

lineage, likely related to salt tolerance. This warranted further investigation on the 

potential role of DSE in salinity tolerance of invasive P. australis, which has not been 

considered a relevant factor to explain P. australis expansion into saline areas so far.  

The ‘habitat adapted hypothesis’ (93) suggests that plants may associate with 

endophytes to improve their tolerance to environmental stress, and these endophytes 

can confer similar stress-tolerance to genetically distant plants. This has been 
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commonly reported for Class II endophytes that can benefit a host under a specific 

stress, and induce a similar response in closely related hosts (86,93,132). Similarly, in 

our study Class IV DSE isolated from roots of invasive P. australis improved salt-

tolerance of both the invasive and native lineage (Table 2). This suggests that DSE 

mutualisms may be an additional mechanisms of salt-tolerance for P. australis that 

might enhance the invasion of the European lineage. On the other hand, these 

mutualisms could also be useful in restoration of the native lineage if inoculation 

improves its survival in areas susceptible to salt-water intrusions (45).  

DSE associations can range from parasitic to mutualistic, but are predicted to 

be primarily the latter in plants under abiotic stress (133). Accordingly, our 

greenhouse study showed that invasive P. australis did not appear to benefit from 

inoculation under freshwater conditions; but had higher aboveground biomass at 

mesohaline salinity (Figure 5). These results highlight the importance of 

environmental conditions in the outcome of host-fungal interactions, as has been seen 

with mycorrhizae and other endophytic fungi (86,134); and can help explain why 

there are such mixed results in the literature concerning the effects of DSE in its hosts 

(135,136).  

Photosynthetic efficiency is one of the mechanism by which DSE could 

enhance plant tolerance to abiotic stress (137,138). In our study DSE inoculation had 

no effect on quantum yield (Y) or maximum quantum yield (Fv/Fm), and did not affect 

C or N content in leaves; so growth promotion was likely related to other factors. 

These could include a reduction of reactive oxygen species (ROS) by fungal melanin, 
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increased osmolyte production, or greater water uptake; as water can be a limiting 

resource at high salinities.  

Fungal inoculation led to an overall decrease in root:shoot ratio relative to 

non-inoculated controls (Figure 5), as inoculated plants generally favored above over 

belowground growth. This is often observed in mycorrhizal plants where extensive 

hyphal networks promote water and nutrient uptake (139,140), but a meta-analysis on 

DSE found no influence of inoculation on plant root:shoot ratio (135). In our study 

DSE inoculation tended to decrease root:shoot ratio across all treatments, suggesting 

that preferential allocation of C aboveground was not a result of an imposed abiotic 

stress, but rather a response of the host to inoculation.  

In eutrophic wetlands, like our study system, greater aboveground biomass 

could translate to a significant competitive advantage. Given the abundance of 

nitrogen (141) and phosphorus in these wetlands (142), belowground competition for 

these resources is relaxed, and aboveground competition has a greater role in plant 

community structure (143,144)(70,71). Based on our greenhouse findings, we 

propose DSE could play a role in expansion and establishment of invasive P. 

australis into brackish marshes by increasing its competitive ability. 

Characterizing microbial communities of the native and invasive lineages, and 

identifying relevant microbial associations can help improve management of P. 

australis (83,99). Our study characterized fungal endophyte communities of 

contiguous stands of native and invasive P. australis and showed that community 

composition was lineage and site-specific (Figure 2), even though most taxa were 

present in both lineages and half of them were found at all sites. These results differ 
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from those reported by Bickford et al. (2018) (145) that found no differences in root 

fungal endophytes between P. australis lineages in the Great Lakes, USA. However, 

soil saturation was a relevant environmental factor in that study, whereas water level 

did not appear to play a role in endophyte colonization or community structure in our 

study sites (Figure 4).  

Dark septate endophyte colonization has been reported to vary seasonally, 

showing a decrease at the end of the growing season in alpine plant communities and 

in a tall grass prairie (146,147). In our study DSE colonization was prevalent in both 

lineages throughout the growing season (Figure 3b), and likely underestimated 

because our staining method did not allow detection of hyaline hyphae (115). The 

high prevalence of DSE and lack of evident disease symptoms in colonized plants, 

suggest a relevant, and yet unexplored, role of these endophytes in our study system 

even at low salinities.  

Our study focused on the effects of DSE on salt tolerance, and specifically 

looked at NaCl as a stress factor; future research could further address the ecological 

role of DSE in wetland plants by looking at their effects on sulfide tolerance for 

example. This would be particularly relevant in freshwater wetlands where salt water 

intrusion is already affecting coastal biogeochemistry and plant community 

composition (18,148). P. australis growth is inhibited by high sulfide (149), so it 

would be interesting to know if DSE can also improve this plant’s tolerance to sulfide 

toxicity. Sulfide could also have a negative effect on seedlings that colonize sites after 

invasive P. australis removal (150), so beneficial effects for plant restoration using 

DSE should also be evaluated.  



 

 

132 
 

Identification of our fungal endophyte isolates through Sanger sequencing was 

not possible primarily due to a lack of representation of these organisms in the 

database searched. We used two different primer sets for sequencing but were unable 

to get enough resolution to differentiate among some of the endophytes, even when 

they showed clear morphological differences. Similarly, only 50% of the most 

prevalent sequences obtained using high throughput sequencing could be matched at 

the Genus level, highlighting the lack of database coverage for these types of 

endophytes. 

To conclude, our results indicate that P. australis can benefit from DSE 

colonization when exposed to salt-stress. Therefore, the role of fungal mutualists, 

particularly in a context of sea-level rise, is worth considering in future studies of 

invasion ecology, species management, and restoration of native plants.  

 

 

  



 

 

133 
 

Acknowledgements 
 
We would like to thank Sarah Emche for her assistance with microscopy and Sanger 

sequencing. We would also like to thank the many helpers we had in the laboratory, 

field and greenhouse: Zach Berry, Jessie King, Nicku Keshavarz, Zack Bernstein, 

Henry Wald, Amy Kuritzky, Diane Leason, Eni Baballari, Lindsay Wood, Brian Scott 

and Dietrich Epp Schmidt. Also Ryan Kepler for his assistance with phylogenetic 

analysis of the Sanger sequences.  

Part of this work was supported by the Maryland Native Plant Society.  

 

Competing interest 

The authors declare no competing of interests. 

 

  



 

 

134 
 

Work Cited 

 
1. Rodriguez RJ, Jr JFW, Arnold AE, Redman RS. Fungal endophytes: diversity and 

functional roles. New Phytologist. 2009 Apr 1;182(2):314–30.  

2. Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic 
fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. 
Mycologia. 2007 Mar 1;99(2):175–84.  

3. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, et al. A 
phosphate transporter from the root endophytic fungus Piriformospora indica 
plays a role in phosphate transport to the host plant. J Biol Chem. 2010 Aug 
20;285(34):26532–44.  

4. Busby PE, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant 
disease. Plant Mol Biol. 2016 Apr 1;90(6):645–55.  

5. Clay K. Interactions among fungal endophytes, grasses and herbivores. Res Popul 
Ecol Researches on Population Ecology. 1996;38(2):191–201.  

6. Omacini M, Chaneton EJ, Ghersa CM, Müller CB. Symbiotic fungal endophytes 
control insect host-parasite interaction webs. Nature. 2001 Jan 4;409(6816):78–
81.  

7. Bultman TL, Bell GD. Interaction between fungal endophytes and environmental 
stressors influences plant resistance to insects. Oikos. 2003;103(1):182–90.  

8. Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Beckwith F, et al. 
Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal. 2008 
Apr;2(4):404.  

9. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al. 
Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front 
Microbiol. 2016;7.  

10. Clay K, Holah J. Fungal Endophyte Symbiosis and Plant Diversity in 
Successional Fields. Science. 1999 Sep 10;285(5434):1742–4.  

11. Afkhami ME, Strauss SY. Native fungal endophytes suppress an exotic dominant 
and increase plant diversity over small and large spatial scales. Ecology. 2016 
May 1;97(5):1159–69.  

12. Uchitel A, Omacini M, Chaneton EJ. Inherited fungal symbionts enhance 
establishment of an invasive annual grass across successional habitats. Oecologia. 
2011 Feb 1;165(2):465–75.  



 

 

135 
 

13. Aschehoug ET, Metlen KL, Callaway RM, Newcombe G. Fungal endophytes 
directly increase the competitive effects of an invasive forb. Ecology. 2012 Jan 
1;93(1):3–8.  

14. Dickie IA, Bufford JL, Cobb RC, Desprez‐Loustau M-L, Grelet G, Hulme PE, et 
al. The emerging science of linked plant–fungal invasions. New Phytologist. 2017 
Sep 1;215(4):1314–32.  

15. Farnsworth EJ, Meyerson LA. Species Composition and Inter-annual Dynamics 
of a Freshwater Tidal Plant Community Following Removal of the Invasive 
Grass, Phragmites australis. Biological Invasions. 1999 Jun 1;1(2–3):115–27.  

16. Rooth JE, Stevenson JC. Sediment deposition patterns in Phragmites 
australiscommunities: Implications for coastal areas threatened by rising sea-
level. Wetlands Ecology and Management Wetlands Ecology and Management. 
2000;8(2–3):173–83.  

17. Mozdzer TJ, Megonigal JP. Increased Methane Emissions by an Introduced 
Phragmites australis Lineage under Global Change. Wetlands. 2013 Aug 
1;33(4):609–15.  

18. Rice D, Rooth J, Stevenson JC. Colonization and expansion of <Emphasis 
Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands. 2000 Jun 
1;20(2):280.  

19. Packett CR, Chambers RM. Distribution and nutrient status of haplotypes of the 
marsh grass Phragmites australis along the Rappahannock River in Virginia. 
Estuaries and Coasts: J ERF. 2006 Dec 1;29(6):1222–5.  

20. Glenn EP. Relationship between cation accumulation and water content of salt‐
tolerant grasses and a sedge. Plant, Cell & Environment. 1987 Apr 1;10(3):205–
12.  

21. Lissner J, Schierup H-H. Effects of salinity on the growth of Phragmites australis. 
Aquatic Botany. 1997 Jan 1;55(4):247–60.  

22. Amsberry L, Baker MA, Ewanchuk PJ, Bertness MD. Clonal Integration and the 
Expansion of Phragmites australis. Ecological Applications. 2000;10(4):1110–8.  

23. Bart D, Hartman JM. The Role of Large Rhizome Dispersal and Low Salinity 
Windows in the Establishment of Common Reed, Phragmites australis, in Salt 
Marshes: New Links to Human Activities. Estuaries. 2003;26(2):436–43.  

24. Soares MA, Li H-Y, Kowalski KP, Bergen M, Torres MS, White JF. Evaluation 
of the functional roles of fungal endophytes of <Emphasis Phragmites australis 
from high saline and low saline habitats. Biol Invasions. 2016 Sep 1;18(9):2689–
702.  



 

 

136 
 

25. Weishampel PA, Bedford BL. Wetland dicots and monocots differ in colonization 
by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza. 2006 
Oct 1;16(7):495–502.  

26. Kandalepas D, Stevens KJ, Shaffer GP, Platt WJ. How Abundant are Root-
Colonizing Fungi in Southeastern Louisiana’s Degraded Marshes? Wetlands. 
2010 Apr 1;30(2):189–99.  

27. Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative 
biotrophic root‐colonizing fungi. New Phytologist. 1998 Oct 1;140(2):295–310.  

28. Mandyam K, Jumpponen A. Seeking the elusive function of the root-colonising 
dark septate endophytic fungi. Studies in Mycology. 2005 Jan 1;53:173–89.  

29. Read DJ, Wandter KH. Observations on the Mycorrhizal Status of Some Alpine 
Plant Communities. The New Phytologist. 1981;88(2):341–52.  

30. Barrow J, Aaltonen R. Evaluation of the internal colonization of Atriplex 
canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host 
physiological activity. Mycorrhiza. 2001 Sep 1;11(4):199–205.  

31. Rains KC, Nadkarni NM, Bledsoe CS. Epiphytic and terrestrial mycorrhizas in a 
lower montane Costa Rican cloud forest. Mycorrhiza. 2003 Oct 1;13(5):257–64.  

32. Wang J, Li T, Liu G, Smith JM, Zhao Z. Unraveling the role of dark septate 
endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: 
physiological, cytological and genic aspects. Sci Rep Scientific Reports. 
2016;6(1).  

33. Li X, He X, Hou L, Ren Y, Wang S, Su F. Dark septate endophytes isolated from 
a xerophyte plant promote the growth of Ammopiptanthus mongolicus under 
drought condition. Sci Rep Scientific Reports. 2018;8(1).  

34. Zhu L, Li T, Wang C, Zhang X, Xu L, Xu R, et al. The effects of dark septate 
endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. 
Environ Sci Pollut Res. 2018 Dec 1;25(35):35232–41.  

35. Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y. The Response of Dark Septate 
Endophytes (DSE) to Heavy Metals in Pure Culture. PLoS One [Internet]. 2012 
Oct 31 [cited 2019 Mar 24];7(10). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485351/ 

36. Burke DJ. Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on 
mycorrhizal colonization and community structure in three herbaceous plants in a 
mixed deciduous forest. American Journal of Botany. 2008;95(11):1416–25.  



 

 

137 
 

37. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A New Method 
which Gives an Objective Measure of Colonization of Roots by Vesicular-
Arbuscular Mycorrhizal Fungi. The New Phytologist. 1990;115(3):495–501.  

38. R Core Team. R: A Language and Environment for Statistical Computing 
[Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2018. 
Available from: https://www.R-project.org/ 

39. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 
DADA2: High-resolution sample inference from Illumina amplicon data. Nature 
Methods. 2016;13:581–3.  

40. Nilsson R. The UNITE database for molecular identification of fungi: handling 
dark taxa and parallel taxonomic classifications. Nucleic acids research. 
2019;47(D1):D259–64.  

41. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive 
analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217.  

42. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. 
vegan: Community Ecology Package [Internet]. 2019. Available from: 
https://CRAN.R-project.org/package=vegan 

43. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-
Verlag New York; 2016. Available from: http://ggplot2.org 

44. Hervé M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics 
[Internet]. 2019. Available from: https://CRAN.R-
project.org/package=RVAideMemoire 

45. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: 
An open annotation tool for parsing fungal community datasets by ecological 
guild. Fungal Ecology. 2016 Apr 1;20:241–8.  

46. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means 
[Internet]. 2019. Available from: https://CRAN.R-project.org/package=emmeans 

47. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, et al. 
Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: 
A Strategy for Mitigating Impacts of Climate Change. PLOS ONE. 2011 Jul 
5;6(7):e14823.  

48. Mandyam KG, Jumpponen A. Mutualism–parasitism paradigm synthesized from 
results of root-endophyte models. Front Microbiol. 2015;5.  

49. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et 
al. A meta‐analysis of context‐dependency in plant response to inoculation with 
mycorrhizal fungi. Ecology Letters. 2010 Mar 1;13(3):394–407.  



 

 

138 
 

50. Newsham KK. A meta-analysis of plant responses to dark septate root 
endophytes. New Phytologist. 2011;190(3):783–93.  

51. Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes 
on plant growth: a meta-analysis. Mycorrhiza. 2013 Feb 1;23(2):119–28.  

52. Ban Y, Xu Z, Yang Y, Zhang H, Chen H, Tang M. Effect of Dark Septate 
Endophytic Fungus Gaeumannomyces cylindrosporus on Plant Growth, 
Photosynthesis and Pb Tolerance of Maize (Zea mays L.). Pedosphere. 2017 Apr 
1;27(2):283–92.  

53. He Y, Yang Z, Li M, Jiang M, Zhan F, Zu Y, et al. Effects of a dark septate 
endophyte (DSE) on growth, cadmium content, and physiology in maize under 
cadmium stress. Environ Sci Pollut Res. 2017 Aug 1;24(22):18494–504.  

54. Kothari SK, Marschner H, George E. Effect of VA mycorrhizal fungi and 
rhizosphere microorganisms on root and shoot morphology, growth and water 
relations in maize. New Phytologist. 1990;116(2):303–11.  

55. Neumann E, George E. Nutrient Uptake: The Arbuscular Mycorrhiza Fungal 
Symbiosis as a Plant Nutrient Acquisition Strategy. Arbuscular Mycorrhizas: 
Physiology and Function. 2010;137–67.  

56. Yarwood SA, Baldwin AH, Mateu MG, Buyer JS. Archaeal rhizosphere 
communities differ between the native and invasive lineages of the wetland plant 
Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biol 
Invasions. 2016 Sep 1;18(9):2717–28.  

57. Clement CG, Nelson DM, W., 1943- C Larry, Dorfman DS, Mabrouk A, Bauer 
LJ. Choptank ecological assessment : digital atlas : baseline status report. 2016 
Sep [cited 2019 Sep 19]; Available from: 
https://repository.library.noaa.gov/view/noaa/12907 

58. Emery NC, Ewanchuk PJ, Bertness MD. Competition and Salt-Marsh Plant 
Zonation: Stress Tolerators May Be Dominant Competitors. :16.  

59. Maurer DA, Zedler JB. Differential invasion of a wetland grass explained by tests 
of nutrients and light availability on establishment and clonal growth. Oecologia. 
2002 Apr;131(2):279–88.  

60. Bickford WA, Goldberg DE, Kowalski KP, Zak DR. Root endophytes and 
invasiveness: no difference between native and non-native Phragmites in the 
Great Lakes Region. ECS2 Ecosphere. 2018;9(12).  

61. Ruotsalainen A, Väre H, Vestberg M. Seasonality of root fungal colonization in 
low-alpine herbs. Mycorrhiza. 2002 Feb 1;12(1):29–36.  



 

 

139 
 

62. Mandyam K, Jumpponen A. Seasonal and temporal dynamics of arbuscular 
mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are 
minimally affected by nitrogen enrichment. Mycorrhiza. 2008 Mar 1;18(3):145–
55.  

63. Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, et al. A 
global perspective on wetland salinization: ecological consequences of a growing 
threat to freshwater wetlands. Ecosphere. 2015;6(10):art206.  

64. Chambers RM, Mozdzer TJ, Ambrose JC. Effects of salinity and sulfide on the 
distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. 
Aquatic Botany. 1998 Nov 1;62(3):161–9.  

65. Seliskar DM, Smart KE, Higashikubo BT, Gallagher JL. Seedling sulfide 
sensitivity among plant species colonizing Phragmites-infested wetlands. 
Wetlands. 2004 Jun 1;24(2):426–33.  

 
 
 
 
 
 
 
  



 

 

140 
 

Table 1: Site and root morphology characteristics of native and invasive Phragmites 
stands. Different letters indicate significant mean differences (p<0.05). 
 

 
  

Site and P. 
australis 
lineage 

Site A Site B Site C 

Invasive Native Invasive Native Invasive Native 

Average 
salinity 

(ppt) 

0.7±0.2 0.7±0.2 1.2±0.2 1.2±0.2 3±0.6 3±0.6 

pH 6bc 5.7c 6.5a 6.3ab 6.5a 6.7a 

%SOM 32.9a 31.1a 20.8b 15.9d 25.7c 21.0b 

%C 16.7a 16.5a 7.9b 10.6c 10.9c 12.9d 

%N 1.2a 1.3b 0.6c 0.8d 0.8e 0.9f 

Lateral root 
density 

29.7a 13.7a 29.3a 21a 18a 27.5a 

Lateral root 
length (cm) 

5.4ab 5.9ab 4.3b 6.1a 4.1b 5.2ab 

Root hair 
density 

45.8a 9.1b 24.3b 25.3b 24.3b 13.2b 
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Table 2: Percent surviving seedlings in Control (non-inoculated) and DSE inoculated 
treatments for each lineage of Phragmites australis growing in MS media with 

100mM NaCl. Numbers in parenthesis indicate the number of surviving seedlings 
over the total seedlings tested. For the invasive assay seedlings were added to 4 

Magenta boxes, but some of the boxes were excluded due to contamination. For the 
native assay total numbers vary based on germination success, and NA indicates no 
seeds germinated after inoculation with that specific endophyte. Endophyte GG2D 

(bolded) was the selected endophyte for the greenhouse assay. 
 

Endophyte Invasive Native 

Control 50% (2/4) 13% (1/8) 

GG2D 100% (4/4) 86% (6/7) 

GG1E 67% (2/3) 25% (2/8) 

GN 33% (1/3) 0% (0/3) 

GG4B 67% (2/3) 67% (2/3) 

GGI9 0% (0/4) 40% (2/5) 

GG7A 33% (1/3) 50% (2/4) 

GGID 67% (2/3) 50% (3/6) 

GG3 25% (1/4) NA 

GG8 33% (1/3) NA 

BN3 0% (0/3) NA 

GG2C 33% (1/3) NA 

GG9 33% (1/3) NA 

GG2 0% (0/3) NA 
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Figure 1: a) Sites located along the Choptank River in the Chesapeake Bay following 
a salinity gradient over 12.5 km (Site A=~0.7 ppt, Site B=~1.2 ppt and Site C=~ 3 
ppt). b) Example of contiguous stand of native (left, shorter) and invasive (right, 
taller) P. australis in Site B. 
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Figure 2: Non-metric multidimensional scaling plot of fungal root endophyte 
communities associated with native and invasive lineages of Phragmites australis 
across a salinity gradient. 
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Figure 3: Percent dark septate endophye (DSE) colonization of native and invasive 
lineages of Phragmites australis a) across the growing season and b) at increasing 
levels of salinity. 
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Figure 4: Percent dark septate endophyte (DSE) colonization and percent inundation 
over time at Site A (~0.7 ppt) and Site C (~3 ppt). The y-axis shows either the %DSE 
Colonization or the % Inundation (percentage of time when the water was above the 
soil surface in the 14 days prior to sampling). The lines indicate the %Inundation over 
time in loggers placed in Sites A (top) and C (bottom) in native and invasive 
Phragmites stands. The circles show the %DSE Colonization for each lineage at the 
different sampling times, and the error bars shows the standard error.  
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Figure 5: Boxplots showing the effects of dark septate endophyte inoculation of 
invasive P. australis at different salinity levels (Freshwater: No added NaCl, 
Mesohaline: 200 mM NaCl and Polyhaline: 400 mM NaCl) on a) aboveground 
biomass, b) average stem height, c) leaf biomass and d) root:shoot ratio.  
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Supplementary Table 1  Results of BLAST search of Sanger sequences from the ITS region of fungal endophyte isolates of invasive 
Phragmites australis.  
 

Endophyte Similarity and Closest BLAST 
match 

Characterization Reference 

GG2D 97%: Fungal endophyte voucher 
ARIZ:DM0192 18S ribosomal 
RNA gene and internal transcribed 
spacer 1, partial sequence  

Fungal endophyte isolated 
from healthy, mature 
submerged root of 
Persicaria amphibia in 
Willow Creek Reservoir, 
Arizona 
Taxonomy: NA 

Sandberg DC, Battista LJ, Arnold AE. Fungal 
endophytes of aquatic macrophytes: diverse host-
generalists characterized by tissue preferences 
and geographic structure. Microb Ecol. 
2014;67(4):735–747.  
Accession number: KF673730.1 

GGIE, 
GG4B, 
GGI9, 
GGID, GG8, 
BN3, GG2C, 
GG4A, 
GG10  

874%-93.1%: Fungal sp. strain 
S184S internal transcribed spacer 
1, partial sequence; 5.8S ribosomal 
RNA gene and internal transcribed 
spacer 2, complete sequence; and 
28S ribosomal RNA gene, partial 
sequence 

Cultured fungus isolated 
from Ammophila 
breviligulata 
Taxonomy: NA 

David, AS, Seabloom, EW, May, G. 
Disentangling environmental and host sources of 
fungal endophyte communities in an 
experimental beachgrass study. Mol Ecol. 2017; 
26: 6157– 6169 
Accession number: KU839097.1 

GG7A 96%: Fungal sp. 51 SAB-2015 
strain SV664 internal transcribed 
spacer 1, partial sequence; 5.8S 
ribosomal RNA gene and internal 
transcribed 
spacer 2, complete sequence; and 
28S ribosomal RNA gene, partial 
sequence. 

Isolated from Spartina 
alterniflora in Barataria 
Bay, USA 
Taxonomy: NA 

Kandalepas D, Blum MJ, Van Bael SA (2015) 
Shifts in Symbiotic Endophyte Communities of a 
Foundational Salt Marsh Grass following Oil 
Exposure from the Deepwater Horizon Oil Spill. 
PLoS ONE 10(4): e0122378.  
Accession number: KP757570.1 
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Supplementary Table 1 (cont.) 
 

GG9 98.1%: Trematosphaeria hydrela 
genomic DNA sequence contains 
ITS1, 5.8S rRNA gene and ITS2, 
isolate F259  

Isolated from Arabis 
alpina surface sterilized 
roots 
 
Taxonomy: Eukaryota; 
Fungi; Dikarya; 
Ascomycota; 
Pezizomycotina; 
Dothideomycetes; 
Pleosporomycetidae; 
Pleosporales; 
Massarineae; 
Trematosphaeriaceae; 
Trematosphaeria 

Almario, Juliana & Jeena, Ganga & Wunder, Jörg 
& Langen, Gregor & Zuccaro, Alga & Coupland, 
George & Bucher, Marcel. (2017). Root-
associated fungal microbiota of nonmycorrhizal 
Arabis alpina and its contribution to plant 
phosphorus nutrition. Proceedings of the National 
Academy of Sciences. 114.  
Accession number: LT821517.1 

GG3 97.2%: Cf. Phialocephala sp. 
AU_BD15 internal transcribed 
spacer 1, partial sequence; 5.8S 
ribosomal RNA gene, complete 
sequence; and internal transcribed 
spacer 2, partial sequence  

Taxonomy: Eukaryota; 
Fungi; Dikarya; 
Ascomycota; 
Pezizomycotina; 
Leotiomycetes; 
Helotiales; Helotiales 
incertae sedis; 
Phialocephala. 

Phialocephala sp. strain AU_BD15  
Culture collection: Gareth Griffith, Wales, UK 
Accession number: JN995646.1 

GN, GG2 NA Excluded from analysis 
due to poor sequencing 
quality 
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Supplementary Figure 1 Rarefaction curves for ITS Illumina sequences showing 
cutoff at 14,705 sequences. 
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Supplementary Figure 2: Relative abundance of the ten most abundant Orders of 
fungal root endophytes found in native and invasive lineages of Phragmites australis  
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Supplementary Figure 3: Alpha diversity of fungal root endophytes of native and 
invasive Phragmites australis across a salinity gradient (A=~0.7 ppt, B=~1.2 ppt and 
C=~3 ppt). Diversity was measured at each stand and is based on Illumina sequencing 
results. 
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Supplementary Figure 4: Trophic mode assignment for fungal root endophytes of 
native and invasive Phragmites australis based on the FunGUILD database. 
The figure is based on 85 of the 165 sequences that could be matched to the 
FunGUILD database. 
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Chapter 5:  Conclusions 
 

Tidal freshwater wetlands provide key ecosystem services, but their location 

near urban centers makes them susceptible to degradation from human activities and 

development. Inputs of contaminants and nutrients into these systems results in 

changes in microbial communities, biogeochemical cycles and native plant 

communities which have become increasingly threatened by non-native plant 

invasions. In this dissertation we first looked at overall differences between microbial 

communities in urban and rural wetlands, emphasizing how nutrient and pollutant 

inputs affect community structure and function. We then focused on different aspects 

of the invasion of Phragmites australis which is considered to be linked to increased 

anthropogenic disturbance, and specifically N enrichment in the Chesapeake Bay. We 

explored the potential use of a novel management approach using a carbon-rich 

amendment to immobilize N, and assessed its effect on the competitive interactions 

between native and invasive Phragmites. Lastly, we studied the role of plant-fungal 

interactions in the invasion process of Phragmites, and evaluated their role in salt 

tolerance of this plant.  

 

Chapter 2 summary 
 
 
In chapter 2 we looked at the microbial community structure across an urban gradient 

in tidal freshwater wetlands located in Washington D.C., USA and Buenos Aires, 

Argentina; two major cities located at similar latitudes north and south. We 

hypothesized that microbial communities would differ across the proposed gradient, 
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and between two plant species at each site, and that there were specific microbial taxa 

that could serve as indicators of urban wetlands. To test these hypothesis we 

identified an urban, suburban and rural wetland near each city and collected 

rhizosphere soil at each of those sites from either Phragmites australis and Peltranda 

virginica in the U.S., or from Hymenachne grumosa and Sagittaria montevidensis in 

Argentina.  

 16S rDNA gene sequencing confirmed that the microbial communities 

differed across the urban gradient at both locations, but we did not detect significant 

differences between plant species at each site. Nitrifying bacteria were identified as 

indicators of urban wetlands, and Methanobacteria that carry out methanogenesis 

were indicators of rural wetlands. We also identified a decrease in methanogens and 

an increase in ammonia-oxidizers across the rural-urban gradient, which was likely a 

result of higher nitrogen inputs into urban waters that increased the competition 

between denitrifiers and methanogens. Analysis of the KEGG functional profiles 

further revealed that nitrification and xenobiotic degradation pathways were more 

abundant in urban than rural sites. This was an interesting but expected pattern 

considering that these are known contaminants in both of the urban wetlands 

surveyed. 

 This chapter explored how N inputs and other anthropogenic disturbances can 

affect microbial structure and function in freshwater tidal wetlands, and identified 

similar patterns even in urban wetlands that were geographically distant. Based on 

these results we propose that microbial communities in urban wetlands might be 
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carrying out different functions that those in rural areas; and microbial communities 

could be used as indicators of wetland function. 

 
Chapter 3 summary 
 
 

This chapter evaluated the potential of sawdust application as a soil 

amendment to limit the growth of invasive Phragmites australis while improving the 

competitive ability of the native lineage. We set up a greenhouse competition 

experiment to assess the interaction between lineages under varying C:N ratios, and 

in monoculture or mixed planting arrangements.   

 We were surprised to find that plants growing in mixed arrangements showed 

facilitative interactions and had greater above and belowground biomass when 

compared to monocultures regardless of C:N treatments. This was unexpected 

considering that many reports in the literature suggest that invasive Phragmites 

competitively excludes the native lineage, especially under high N conditions. We 

propose that this was due to non-kin recognition that might promote effective niche 

partitioning of belowground resources resulting in greater biomass in the mixed 

treatments. Another interesting find was that both lineages allocated more resources 

to rhizomes than lateral roots in the mixed planting treatments across C:N, suggesting 

that persistence in the environment might be prioritized through investment in these 

belowground storage structures.   

 Our field observations also corroborate the lack of competitive exclusion of 

the native lineage in invasive dominated sites. We have identified neighboring stands 

of native and invasive Phragmites that have remained relatively unchanged for at 
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least 15 years, and have seen native Phragmites grow and expand when planted in the 

middle of a stand of the invasive lineage in one of our field sites.  This supports the 

results from other studies that suggest that local extirpations of native Phragmites 

populations are likely mediated by disturbance and subsequent rapid growth of the 

invasive lineage, and is not just a result of competitive exclusion. 

 Concerning our C:N treatments, we found that urea addition overall increased 

aboveground and rhizome biomass in both lineages as expected, but sawdust addition 

did not limit the growth of the invasive lineage or favor the native as we initially 

hypothesized. Therefore at the levels studied, C additions would not be recommended 

as a management tool for Phragmites. 

 

Chapter 4 summary 
 
 
  In chapter 4 we characterized root fungal endophytes in native and invasive 

Phragmites australis. We collected root samples throughout a growing season from 

contiguous stands of each lineage at three sites that varied in salinity, and used ITS 

sequencing to characterize the fungal communities, and microscopy to determine 

fungal colonization. Interestingly, we found that each lineage selected for specific 

endophytes in its roots and therefore harbored different fungal communities, even 

though the overall pool of available fungal species was almost the same. Our 

microscopy results revealed that invasive Phragmites had consistently higher 

colonization by dark septate endophytes (DSE) throughout the growing season, and 

colonization was not dependent on water level as has been seen in other plant-fungal 

systems. We also noted that colonization of the invasive lineage increased with 
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salinity, and hypothesized that DSE might have a role in salt tolerance of invasive 

Phragmites.  

 To explore the role of DSE in salt tolerance, we isolated fungal endophytes 

from the invasive lineage and set up a laboratory study where we inoculated the 

isolates into seedlings of either native or invasive Phragmites. Our results showed 

that seedling survival increased for both lineages, so we followed up with a 

greenhouse assay to assess the effect of one of the endophytes in salt-tolerance of the 

invasive lineage. Our greenhouse results showed that under mesohaline conditions 

invasive Phragmites had greater aboveground biomass when inoculated with a DSE 

supporting the role of these endophytes in plant stress tolerance. 

 These results suggest that fungal mutualists could be an additional, and yet 

unexplored mechanism that could allow invasive Phragmites to establish in brackish 

and salt marshes and improve its ability to compete against native vegetation by 

increasing its aboveground biomass under stress. 

 

Final thoughts 
 
 
 Our results suggest that tidal freshwater wetlands in urban settings harbor 

distinct microbial communities that reflect the common environmental stressors in 

those areas. Nitrogen enrichment was one of the main stressors and both indicator 

taxa and functional profile analysis supported this. Future studies in other urban 

freshwater wetlands could further explore the relationship between microbial 

community structure and wetland function, specifically concerning processes like 

nitrification and pollutant removal.  
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Nitrogen inputs into the Chesapeake Bay are considered to be one of the 

causes of invasive Phragmites expansion. We explored whether immobilizing N 

through C additions could alter plant competitive interactions of native and invasive 

Phragmites australis. However, our results suggest that N immobilization through 

sawdust addition may not be an effective method for controlling the spread of this 

lineage. Native and invasive Phragmites responded similarly to sawdust addition, and 

at the levels tested it did not favor the native lineage as hypothesized. Regardless of 

treatment additions, our study found that native and invasive Phragmites established 

facilitative interactions, and we consider it unlikely that the invasive could 

competitivity exclude the native in the absence of disturbance. The mechanisms 

behind the observed facilitation could be further investigated to evaluate if niche 

partitioning or kin recognition play a role in that interaction. This could be achieved 

by growing native Phragmites with other wetland native species as well as with the 

invasive and evaluating differences in biomass production and resource allocation. 

Our study also assessed the role of fungal endophytes in the expansion of the 

invasive lineage into brackish areas and found that DSE could increase aboveground 

biomass under moderate salt stress, possibly giving the invasive lineage a competitive 

advantage. Native Phragmites seedlings also benefited from fungal inoculation, so we 

suggest that DSE inoculations could be explored as a tool for restoration of this 

species or to improve its fitness in a context of sea-level rise. Furthermore, it would 

be interesting for future studies to look at the role of DSE in salinity tolerance of 

other grasses, and particularly crops in areas susceptible to sea level rise. For 

example, in eastern Maryland farmers are already experiencing problems growing 
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crops as their sources of freshwater are becoming increasingly more saline. If DSE 

inoculations prove to be effective in grass crops, they might provide at least a 

temporary solution to decreasing yields at moderate salt levels. 

 In conclusion human disturbances like increased nitrogen inputs into tidal 

freshwater wetlands have altered microbial and plant communities, changing the 

structure and function of these systems. Efforts to restore these wetlands should focus 

on preserving valued ecosystem functions such as N or contaminant removal in urban 

sites, while also maintaining a diverse plant community that can harbor the great 

biodiversity that characterizes freshwater wetlands. A better understanding of the role 

of plant-microbe interactions in plant fitness could be valuable for both control and 

restoration of wetland plant species. 
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Appendices 

 
Chapter 2 Supplemental figures:  
 

 
 
Figure 1: Set-up of experimental plots in Jug Bay Wetlands Sanctuary (MD,USA) to 
replicate C:N and planting treatments presented in Chapter 2. Vegetation in the 
established 1m2 plots was mowed and plots were covered with plastic for ~3 weeks 
before planting. 
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Figure 2: Photographs of plots showing four plantlets of either monocultures of each 
lineage of mixed plantings (2 of each lineage) in plots urea (left) or sawdust (right) as 
C:N treatments.  
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Figure 3: Percent cover of non-Phragmites species across different stem ratios of 
native and invasive Phragmites in mixed planting treatment plots established in Jug 
Bay Wetlands Sanctuary (MD, USA) after one year.  
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Figure 4: Results of non-parametric multidimensional scaling (NMDS) using 
Jaccard’s index (presence-absence matrix) showing plant community composition of 
plots established in Jug Bay Wetlands Sanctuary(MD, USA) that had either only 
invasive Phragmites or both native and invasive stems. Stress=0.194 
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Figure 5: Mean percent cover of native Phragmites after one year of C:N treatment 
application in Jug Bay Wetlands Sanctuary, MD,USA. Different letters indicate 
significant differences (alpha=0.05).  
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Figure 6: Native Phragmites growing in between invasive Phragmites in Jug Bay 
Wetlands Sanctuary (MD,USA) after 4 years of planting. 
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