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Abstract

Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network

data is a top priority beyond research, as such data would fuel applications in industry, gov-

ernments, and the broader public alike. Road network data are openly available via user-

generated content such as OpenStreetMap (OSM) but lack the resolution required for many

tasks, e.g., emergency management. More importantly, however, few publicly available

data offer information on elevation and slope. For most parts of the world, up-to-date digital

elevation products with a resolution of less than 10 meters are a distant dream and, if avail-

able, those datasets have to be matched to the road network through an error-prone pro-

cess. In this paper we present a radically different approach by deriving road network

elevation data from massive amounts of in-situ observations extracted from user-contrib-

uted data from an online social fitness tracking application. While each individual observa-

tion may be of low-quality in terms of resolution and accuracy, taken together they form an

accurate, high-resolution, up-to-date, three-dimensional road network that excels where

other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth.

In fact, the 1m spatial resolution dataset created in this research based on 350 million indi-

vidual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based

ground-truth and can be used to enhance existing road network datasets where individual

elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Ele-

vation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked

Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap

road geometries without requiring any changes to the OSM data model.
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1 Introduction and motivation

In September of 2014, NASA’s Jet Propulsion Laboratory announced that it would be publicly

releasing 1 arc second, or approximately 30m, resolution global (between 60˚ N and 56˚ S

latitude) topographic data from NASA’s Shuttle Radar Topology Mission (SRTM) [1]. This

release was heralded as a major success, significantly improving upon the previous global

SRTM resolution of 3 arc seconds. Today, 1/3 arc second resolution elevation data is available

for most parts of the U.S. via the United States Geological Survey’s National Elevation Dataset

(NED) and selected regions are even available at 1/9 arc second. Through the advent of aerial

Light Detection and Ranging (LiDAR) technology, the availability of high-resolution elevation

data for specific regions has increased dramatically. Most of Oregon state, for example, has

access to 9 foot resolution elevation data [2]. Slowly but steadily, the topography of the earth is

being mapped at higher and higher resolutions.

Access to such high-resolution elevation data comes with a cost though. LiDAR data collec-

tion is expensive, time-consuming, and covers only a small region at a time. The complexity

and cost often mean that the temporal resolution of the data is limited. Not surprisingly, most

parts of the Earth surface can only be studied using 30m SRTM data. This resolution is suffi-

cient for many large-scale applications, but falls short for small-scale purposes and more spe-

cifically for urban areas. Furthermore, the temporal resolution of the SRTM data is severely

limited with the current dataset having been collected in 2000. Many domains and application

areas would benefit from an alternative and inexpensive approach to constructing elevation

datasets with high spatial and temporal resolutions.

To give a concrete example, in most counties in the United States emergency response per-

sonnel (EMP) are legally required to be able to access buildings within their service area. This

implies that emergency response vehicles must be able to reach these buildings via the local

road network. However, emergency response vehicles, e.g., fire trucks, are limited in their

turning radius and ability to maneuver up an incline. In many U.S. counties it is explicitly

mandated that roads in a region not exceed a certain grade, e.g., 10 percent [3] to allow access

by EMP. Detailed data concerning the elevation and grade of many county roads is often

unknown and even if high-resolution (LiDAR) data are available, buildings, transportation

infrastructure, terrain features, and a dense vegetation canopy cover can often occlude the

underlying roads. Furthermore, high-resolution data are not updated frequently even for some

of the most developed areas.

Consequently, there is a need for alternative sources of elevation data. Intuitively one would

assume that such an alternative source must be airborne, but this is not necessarily the case.

Today, massive datasets are generated from cheap, sensor-rich devices operated by individuals

that actively choose to share these data via online platforms. Social media platforms publish

thousands of pieces of content per second from people that are opting to share not only opin-

ions and photographs, but location information, personal physiological data, local environ-

mental conditions, and so on. Wearable fitness trackers (e.g., Fitbit, Polar) have joined the

social web and numerous applications have been developed to allow users of wearable devices

to share their personal information with each other. Essentially, we are witnessing a shift from

traditional active Volunteered Geographic Information (VGI), where users actively contribute

spatial information, to passive VGI, where sensor-enabled devices passively share and commu-

nicate with other each other and through online services. In the following, we will argue that

this enables entirely new means of collecting road network data including elevation, namely by

in-situ sensing.

One application that is leading the Online Social Fitness Tracking (OSFT) revolution is

Strava (http://www.strava.com). Strava is a fitness tracking application that allows users to
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upload completed activities to their platform and compete with other users over specific seg-

ments of roads or trails. In March of 2015 it was estimated that Strava had over 8 million users

with roughly 1 million of those actively contributing data [4]. A unique feature of Strava is that

users can upload activities (e.g., a bicycle ride) from virtually any mobile or wearable device

that collects sensor information. This means that a million users openly share activity trajecto-

ries containing latitude, longitude, timestamp, and elevation data along with information per-

taining to the device, gender, and age group of the contributor. Put differently, Strava has

constructed a platform that collects and publishes hyper-local environmental and physiological

sensor data, crowd-sourced from fitness enthusiasts. This information is already having an

impact on domains ranging from health and fitness [5] to transportation infrastructure [6]

and urban planning [7]. The company also currently offers a service aimed at urban planners,

allowing those with access the ability to ingest their cycling data.

From a research perspective, these OSFT data offer an unprecedented opportunity to access

high volumes of user-contributed, three dimensional data along the surface of road networks.

In some cases, tens of thousands of users will have contributed three-dimensional fixes gener-

ated by cycling computers (e.g., Garmin Edge 500) to a single segment of road. While these

data vary in their accuracy and precision, the sheer amount of data permits the opportunity to

construct high-resolution elevation profiles for many of the world’s roads. In this work, we

explore the possibilities for these data and show that it is feasible to construct low cost, high

spatial and temporal resolution elevation profiles from user-contributed social fitness tracking

data despite the fact that each individual observation may be of low quality. Furthermore we

show that these data can be used to augment existing open geodatasets such as OpenStreetMap

(OSM) through the addition of elevation values along ways and nodes. While we will use

Strava as datasource here, our arguments and proposed methods are more generic and can be

used to generate elevation data from any in-situ observations by citizens using smartphones

and other forms of wearable technology.

The concrete research questions addressed in this work are as follows:

1. The quality of in-situ observations relies on the devices used and their sensors. Are the dif-

ferences in vertical accuracy of devices that rely on barometric altimeters and those that do

not, reflected in the data contributed to online social fitness tracking applications? Previous

work has shown there to be significant differences in accuracy depending on the sensor

availability of cycling computers. In this work we show the degree to which these differ-

ences in accuracy have permeated into the social fitness tracking application Strava.

2. Given the accuracy of certain types of sensors, what elevation accuracy can be expected

from user-contributed cycling data? Through the removal of systematically erroneous data

from devices lacking barometric altimeters, we show that it is possible to generate elevation

profiles for road segments, accurate to within meters of ground-truth LiDAR data. Further-

more, we demonstrate that these data can be used to supplement existing approaches to

producing high-resolution elevation profiles.

3. Can elevation data contributed by users of an online social fitness tracking application, be

used to augment existing open geographic data platforms, e.g., OpenStreetMap? We dem-

onstrate the feasibility of doing so by assigning elevation data aggregated from OSFT users

to nodes along OpenStreetMap roads.

4. Finally, the elevation data constructed from OSFT users is of a high spatial resolution with

elevation values every one meter along road segments. The inclusion of these data in Open-

StreetMap is not directly possible as one would have to change the underlying OSM data

model. Can high-resolution, user-contributed elevation dataset be constructed and linked
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back to OpenStreetMap data using Linked Data technologies [8]? We construct and publish

a Linked Data version of our user-contributed elevation data and link it to LinkedGeoData

(LGD) through sameAs relationships with LGD node identifiers. Thereby we make eleva-

tion data available and query-able without requiring any modifications to OpenStreetMap.

The remainder of this work is organized as follows. Section 2 introduces the data that are

used in this research along with a description of the Strava API and relevant tools. Section 3

presents the methods that were used in generating the user-contributed elevation profiles. A

number of points outlining the value of the user-contributed elevation profiles are described

in Section 4 and the approach to augmenting existing open geodata is stated in Section 5.

Finally, an overview of relevant and related work is given in Section 6 and conclusions and

future work are presented in Section 7.

2 Data

In this section, we introduce the data, study areas, and the most frequent sensor platforms

used by Strava users.

2.1 Segments & LiDAR data

Data accessible through the Strava platform is organized into two basic types of geospatial

data. Activities are trajectories of geospatial information contributed by a single user over one

continuous period of time (e.g., a bicycle ride). Segments are user-contributed portions of road

or trail where athletes can compete for time [9]. In most cases, a single user activity will tra-

verse one or many segments.

For our study, we selected five high traffic bicycle segments within Santa Barbara, California

and Washington, District of Columbia. These segments vary in multiple ways as outlined in

Table 1. For instance, Segment A is relatively long in distance with numerous uphill and down-

hill segments, while Segment B is shorter and involves a slow and steady incline. Segment C is a

short, but unique segment that includes going under an overpass. Note that this segment is not

included when comparing cycling segments to the ground-truthed LiDAR data for accuracy.

This segment will be discussed further in Section 4.

The selection of these three Santa Barbara segments was also based on the availability of an

aerial LiDAR dataset used for ground-truthing the elevation values. Waveform LiDAR data

were collected in August 2010 with a helicopter-mounted Riegl Q560 laser scanner. The data

were georeferenced with two local differential GPS stations. The waveform was discretized and

a bare earth digital terrain model was generated at 0.25m pixel resolution, later aggregated to

1.0m pixel resolution for the purpose of this study. The study area and relevant spatial layers

are shown in Fig 1. In addition to the three Santa Barbara segments, two segments were chosen

from within Washington, DC. These segments were included to ensure that any results of our

Table 1. Segments selected to show a broad range of road types. Activity and Athlete counts current as of Oct 2016.

ID Strava ID Length Elv. Diff. #Activities #Athletes Description

Santa Barbara, CA

A 2727695 4.5km 22.3m 24970 5197 Rural, Hilly, Canopy tree cover

B 749094 2.4km 47.9m 24347 4084 Sub-urban, Steady rise from sea

C 7324522 161m 2.4m 33805 5678 Urban, Under highway overpass

Washington, DC

D 650024 1.6km 30.2m 18324 1949 Inner city park, hilly, tree cover

E 8068210 4.0km 13.1m 80995 8668 River’s Edge, tree cover

https://doi.org/10.1371/journal.pone.0186474.t001
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analysis were not region-specific. Ground-truth elevation data for Washington DC was

accessed from LiDAR data that was collected in the Winter of 2014 by Quantum Spatial Inc.

using a Leica ALS 70 sensor. The data was accessed through a digital elevation model format at

1.0m pixel resolution. Combined, these five segments cover rural, sub-urban, and inner city

areas and include various transportation and geographic features such as an overpass, hills,

dense tree cover, and so forth.

2.2 Activities & devices

A sample of activities, each traversing at least one segment, were randomly selected from our

segment set. A total of 11672, 11770, 15920, 15782 and 19231 activities were sampled from Seg-

ments A—E respectively with each activity consisting of a trajectory containing latitude and

longitude point fixes along with elevation values (in meters to one decimal place) for each fix.

In total, over 350 million fixes were accessed across all activities. Very little metadata is sup-

plied on the contributing devices via the application programming interface (API), however

the name of the device from which trajectory information was contributed was recorded.

There were 70 unique devices used to collect activity data. Each device vendor’s specification

website was accessed to determine which sensors are present. Table 2 lists the top 12 devices

along with their activity count and sensor used for determining elevation. Just over 52% of the

74375 activities accessed where contributed via devices that contained barometric altimeter

sensors, 40% relied on GPS elevation, and 8% could not be reliably determined.

Through the Strava V3 API, the efforts for each of the segments were accessed. Each effort
points to an activity in the sample set and includes the start and end indices and timestamps

for when the activity traversed the specified segment. The fixes that traversed the segment

were extracted (based on start and end indices) and stored as three dimensional point geome-

tries in a PostGreSQL/PostGIS database. The median number of fixes per segment was calcu-

lated across all efforts in a given segment. Any segment effort containing a number of fixes less

than two standard deviations from the median was removed from analysis. This was done to

Fig 1. Santa Barbara study area showing a sample cycling activity (black) covering the three Strava segments

(orange) and the LiDAR-based digital elevation model (green-scale gradient). Note that the LiDAR-based DEM has

been smoothed for visualization purposes in this figure.

https://doi.org/10.1371/journal.pone.0186474.g001
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ensure that segment efforts with a very small number of fixes (e.g., 5) did not influence the

aggregate value. The fixes from segment efforts that met this criteria were then joined as three

dimensional line strings representing a single activity effort over a segment. Each of these

activity line strings ranged in spatiotemporal resolution as the frequency with which coordi-

nate fixes were recorded on the device was not uniform. However, every coordinate fix was

accompanied by an elevation value regardless of the elevation sensor employed by the device.

3 Methods

While the previous section described the selection of the used data, we introduce the methods

and processing steps employed to derive the final data product in the following.

3.1 2D segment data matching

As a first step, we downloaded Polyline data from OpenStreetMap for the three Santa Barbara

segments. These segments are subsections of the road network, which OpenStreetMap refers

to as ways. Fig 2 shows a sample of these segment efforts in two dimensions. We calculated

Hausdorff distance [10] between each individual activity effort and the OSM segment. Haus-

dorff distance calculates the similarity between two geometric objects. In this case, given the

map projection, the unit of similarity is meters and roughly reflects the absolute maximum dif-

ference between segments. We assume that all athletes were cycling on the specified OSM road

segment (and not off road) and that the OSM road segment represents the center line of the

road. Table 3 reports the distance values for each of the Santa Barbara segments across all

devices as well as the top three most common devices.

In examining these mean Hausdorff distance values we see that many of these segment

efforts differ from the OSM center line by a significant amount. Much of this is likely due to

obstruction and multipathing errors in the GPS units [11]. In some cases, especially in regions

with tree canopy cover, there are significant jumps in consecutive location fixes. Existing work

in this area has explored using these two dimensional activity efforts to better estimate road

segments including combined work from Strava labs and OpenStreetMap [12, 13]. In this

work, the Strava Labs team built a tool that iteratively loops through existing OpenStreetMap

road segments and determines a function that best matches (snaps them to) existing density-
based center-lines of the Strava Heatmap. The heatmap is a linear kernel density estimation

based on all segment efforts from athletes that have contributed their activity data to the Strava

Table 2. Top 12 devices used across three Santa Barbara segments.

Device Activities Elevation Sensor

Garmin Edge 500 29588 Barometric Altimeter

Strava iPhone App 29419 GPS

Strava Android App 8801 GPS

Garmin Edge 510 6415 Barometric Altimeter

Garmin Edge 800 4629 Barometric Altimeter

Garmin Edge 705 2732 Barometric Altimeter

Garmin Edge 810 2050 Barometric Altimeter

GPX File Upload 1574 Unknown

Garmin Edge 305 1541 Barometric Altimeter

Garmin Edge 520 1428 Barometric Altimeter

Garmin Forerunner 910XT 1346 Barometric Altimeter

Garmin Forerunner 305 1020 GPS

https://doi.org/10.1371/journal.pone.0186474.t002
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application. Their result shows that high-quality data can be created from a massive dataset of

low-quality fixes. Our work in this paper relies on this same fact and makes no effort to

enhance their horizontal, two-dimensional approach, but instead focuses on the third dimen-

sion, namely elevation.

3.2 Elevation data

Multiple steps are required to generate 3D road profiles from in-situ observations. The first

step involves ground-truthing and data cleaning. This is followed by a second step in which

the elevation profiles are construed. After doing so, similarity is measured to compare the pro-

files based on three different measures, Root Means Square Error, Hausdorff Distance, and

Earth Mover Distance. Based on this step, devices are selected that produce more accurate ele-

vation readings. The results are compared to the LiDAR base line and the USGS National Ele-

vation Dataset (NED).

3.2.1 Ground-truthing & data cleaning. As a first step in working with elevation data,

each of the Santa Barbara OSM segment lines were converted to point representations by gen-

erating a single point every one meter along each segment. A one meter buffer was constructed

around each point and used to clip the LiDAR digital elevation data. The minimum pixel ele-

vation value was taken from each buffered region and assigned as the true elevation value for

Fig 2. A sample of 10,000 activity efforts across Segment A (green). The OSM road segment is shown in pink. Base imagery by

Google/Digital Globe.

https://doi.org/10.1371/journal.pone.0186474.g002

Table 3. Mean Hausdorff distance, in meters, for the three Santa Barbara segments. Standard deviation are shown in parentheses.

Segment Garmin Edge 500 iPhone App Android App Overall

A 27.63 (8.77) 30.9 (13.94) 24.39 (10.25) 28.99 (11.49)

B 67.66 (25.62) 37.26 (22.12) 37.23 (14.73) 54.48 (29.43)

C 21.59 (19.36) 15.86 (8.75) 14.57 (10.64) 19.95 (18.05)

https://doi.org/10.1371/journal.pone.0186474.t003
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the point on the OSM road segment. The minimum pixel value within each buffer was taken to

account for errors in elevation due to canopy cover at the exact point on the road segment.

This approach worked in most cases, producing elevation profiles with reasonably smooth gra-

dients across the entire road segment. In Segment A however, there were some issue with the

LiDAR-derived elevation pixel values which produced a number of small errors in the eleva-

tion profile (Fig 3), likely due to canopy cover or angle of reflectance. Making the assumption

that a paved road segment could not have a gradient greater than 30˚ over any one meter seg-

ment [14], these errors were rectified. First, we adjusting all elevation values that created an

angle smaller or great than a 30˚ given the elevation value immediately before them to a value

that makes an exact 30˚ gradient. A moving window containing five elevation values was aver-

aged in these areas to further smooth the elevation profile. In Section 4 we show that the eleva-

tion profiles from the OSFT activities themselves can be used in lieu of this cleaning approach

to provide a more accurate elevation profile.

3.2.2 Constructing elevation profiles. Elevation profiles for each of the OSFT segment

efforts were constructed based on the following method. Each segment effort is represented as

a three dimensional line feature in PostGIS. Each line feature was generated by interpolating

between, potentially sparse (greater than 1m), elevation fixes. Each node in an OSM road seg-

ment (now with nodes every 1m) is then used to extract the closest point on the line along

each segment effort. The elevation at this point is then extracted from the three dimensional

segment line feature. This method ensures that each segment effort returns an elevation value

at the same one meter distance interval along the road segment. Finally, each segment effort is

converted to a two-dimensional elevation profile with elevation (in meters) on the Y-axis and

metric distance on the X-axis. Each of these elevation profiles is then compared to the respec-

tive OSM/LiDAR road segment elevation profile.

3.2.3 Measuring similarity between effort data and LiDAR-derived OSM profiles. In

order to compare elevation profiles, we must first introduce measures for assessing similarity.

In this work, we employ three measures for comparing elevation profiles, namely Root Mean
Square Error (RMSE), Hausdorff Distance (HD) and Earth Mover’s Distance (EMD). Each of

these measures focuses on a different dimension of similarity and reporting the values together

gives an overall holistic view of the similarity of two elevation profiles. The RMSE measures

the square root of the average square of the difference between each elevation fix along a seg-

ment (every 1 meter). The HD measures how far apart two shapes are in metric space and in

this case the measure reports the absolute maximum difference between the two profiles.

Fig 3. Cleaning LiDAR-derived profile errors to produce a smooth elevation profile.

https://doi.org/10.1371/journal.pone.0186474.g003
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Lastly, the EMD measures the similarity of two distributions, or in this case, two normalized

elevation profiles by determining the cost of converting one profile into the other [15]. The

smaller the value, the more similar the elevation profiles. Each of these measures was used to

determine the similarity between each segment effort profile and the LiDAR-derived OSM ele-

vation profile. In our case, the term accuracy is more appropriate than similarity as the OSM

elevation values are based on ground-truthed LiDAR data and assumed to be the true elevation

of the road segment.

3.2.4 Segment effort attributes. Before measuring the accuracy of these individual seg-

ment efforts, they are first split based on a variety of attributes. Elevation profiles from individ-

ual athletes are grouped (for example, one athlete traversed Segment A 493 times over 4 years)

but no significant difference is found between individual athletes, gender, or age group. The

profiles are also split by device with the most notable difference in accuracy found between

devices that measure elevation through the use of a barometric altimeter sensor and those

that do not. Fig 4 shows elevation profiles for six of the most common devices used in OSFT

activities.

The Garmin Edge 500, 510, 800 and Garmin Forerunner 910X devices all use barometric

altimeter sensors to determine elevation [16], while the iPhone and Android devices rely on

alternative methods [17]. Though newer iPhone and Android devices do contain barometric

sensors, the Strava application does not request access to this information. In general, devices

relying on barometric altimeter readings tend to be precise and similar in shape to the LiDAR-

based elevation data. The overall accuracy of each segment effort is quite low however, with

elevation fixes differing by up to 60 meters at the same point along a road. Combining segment

efforts within segments we find that the mean and median values are close to the OSM/LiDAR

elevation profile for the Garmin Edge 500, but are less accurate for the other Garmin devices.

There are a number of factors at work here, primarily the small sample size of 30 devices for

the Forerunner 910Xs over Segment A versus the 4174 for the Edge 500. The RMSE between

the LiDAR elevation and the median Garmin Edge 500 elevation is 3.37m with a HD of 6.43m

and an EMD of 5.94e–05.

The non-barometric altimeter-enabled devices such as the iPhone and Android applica-

tions rely on a combination of location technologies, the primary method being global naviga-

tion satellite systems (GNSS) such as GPS-based elevation. The Strava support documentation,

however, states that for “. . .devices without barometric altimeters, [strava] consults elevation

databases to determine elevation at each point in the activity.” [18] The support documenta-

tion goes on to state that the database used in the United States is the USGSNational Elevation
Dataset (NED), reporting elevation at 1/3 arc-seconds, the same dataset from which the green

elevation profile is plotted in Fig 4. Notably, the mean and median elevation values, as well as

the raw elevation values, shown in the plots for the iPhone and Android applications differ sig-

nificantly from the interpolated NED profile shown in green. In fact the Hausdorff distance

for the mean iPhone elevation to the NED profile is 24.8m. This implies that in this case either

an alternate database is being used or that the elevation data from the device was not snapped

to any database and instead GNSS elevation was reported unaltered. Either way, the non-baro-

metric altimeter devices differ substantially from the LiDAR elevation data in Santa Barbara

and should not be relied on for accurate elevation values. In comparison, the NED profiles for

the Washington DC segments (D & E) are similar to the LiDAR reported elevation profiles on

average, but still differ substantially in the Hausdorff distance measure. These differences are

discussed further in Section 3.2.5.

3.2.5 Refining the elevation model. Removing the non-barometric altimeter-enable

devices from our set of segment efforts, we take the remaining efforts and calculate the overall

mean and median elevation values for each of the three training segments (A, B & D).
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Remember that Segment C contains an overpass so is not used in the accuracy training models.

Segment D was included as it represents a different region. To further refine the elevation

model we split the segment efforts by device and year in order to determine if certain devices

or software updates to devices produce higher accuracy mean and median elevation values.

Any data prior to 2013 was excluded from our analysis as after splitting by device, there was

not enough data to produce any meaningful results. In each of the training segments, we calcu-

lated the RMSE, HD and EMD between the OSM/LiDAR elevation profiles and the user-con-

tributed segment effort median elevation profile across all barometric altimeter-enabled

Fig 4. Elevation values for six devices over Segment A. The Garmin Edge and Forerunner devices all rely on barometric altimeter

sensors to determine elevation while the iPhone and Android applications do not.

https://doi.org/10.1371/journal.pone.0186474.g004
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devices and years. The results of this analysis found that there was little difference between

years (a proxy for device software updates) and that segment efforts from 2013-2015 should be

included in the refined elevation model. In examining the accuracy of segment efforts from

each of the barometric altimeter-enabled devices we found that Garmin Edge 500, 510 and 800

devices produced the most consistently accurate elevation profiles across the three training

segments. This was likely due to these being the most popular devices used on the OSFT appli-

cation and therefore had the least amount of variance across segments. Other devices such as

the Garmin Forerunner 910XT produced very accurate results for Segment B but very inaccu-

rate results for the other two training segments. Again, the amount of data produced by each

of these devices likely had the strongest impact on accuracy. It should also be noted that num-

ber of activity efforts does have an impact on the median and therefore the overall accuracy.

Across all training segments, we found that randomly reducing the number of activity efforts

to below 110 began to have a significant negative impact on the overall accuracy and introduce

high variance within each segment.

Combining segment efforts from the three top performing devices, namely the Garmin

Edge 500, 510 and 800, we report the accuracy for all training segments as well as Segment E, a

segment that was not used in the training data. Table 4 lists the three measures of accuracy for

these four road segments. The elevation profiles calculated via the median of our user-contrib-

uted, in-situ elevation data (ISED) segment efforts are compared with those of the National

Elevation Dataset provided by the U.S. Geological Survey [19]. Again, note that this NED is

the source of elevation data that the Strava platform claims to use when a device does not have

a barometric altimeter sensor. In all but one case, the ISED profiles are more accurate than the

NED profiles and often by a large margin. In the case of Segment D, the RMSE of the NED is

relatively low over the entire segment indicating high accuracy overall, but the maximum off-

set (HD) is over double that of the user-contributed median elevation. Furthermore, the shape

(EMD) of the NED profile differs substantially from the ground-truth data relative to the ISED

median. The number of activity efforts that contribute to the mean also have an impact on the

overall accuracy.

4 Supplementing and cleaning existing elevation data

Up to this point the focus of this research has been on constructing accurate user-contributed

elevation profiles through comparison to existing high-resolution LiDAR data. However, an

important benefit of these user-contributed elevation profiles is that they can contribute eleva-

tion profiles to regions where LiDAR data is either not available, inaccurate, or not suitable for

determining elevation of a road. An example of the former is when part of a road segment has

fully or partially closed canopy cover from vegetation suggesting that laser pulses are unable to

Table 4. Three measures of elevation profile accuracy for four road segments. The median value for our in-situ elevation data (ISED) from user-contrib-

uted observations of each segment are compared to the interpolated National Elevation Data profile for the same segment.

Segment Statistic RMSE HD EMD

A ISED Median 3.38 6.92 0.23

NED 8.05 25.92 0.66

B ISED Median 1.15 5.05 0.10

NED 3.53 11.55 6.29

D ISED Median 3.23 6.04 0.05

NED 1.76 12.75 0.35

E ISED Median 5.01 7.81 0.11

NED 5.52 7.92 0.47

https://doi.org/10.1371/journal.pone.0186474.t004
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breach the canopy and return true ground elevation values. An example of the latter is found

when trying to construct an elevation profile for a road segment that passes below an overpass,

Segment C for example.

Fig 3 depicts a concrete example in the LiDAR profile of Segment A. At a distance of roughly

1600 meters we see errors in the Raw LiDAR elevation profile which can be attributed to dense

canopy vegetation cover that results in shorter LiDAR pulse returns or scattering based on leaf

angle. This was initially cleaned to provide an accuracy comparison for the in-situ, user-con-

tributed elevation profile based on the method discussed in Section 3.2. Since the ISED profiles

are constructed from an aggregate of thousands of cycling activities and rely on barometric

sensors, they are less prone to such canopy errors.

Additionally, ISED profiles can be used to supplement standard elevation profiling

approaches in cases where elevation can not be determined from an areal view-point. Segment
C is a road segment which passes under a highway overpass. As shown in Fig 5, the LiDAR

data (black points) for this segment correctly reports a number of sudden elevation changes

shown between 100 and 200 m along the X-axis, the overpassing highway. The blue line repre-

sents the median elevation reported from a reduced set of barometric altimeter enabled cycling

devices along this segment. This line depicts a profile of the segment traversing under the high-

way overpass, unencumbered by the highway overpass, one that is not possible to recreate

from aerial LiDAR scans.

The ISED approach can be employed in countless other situations where elevation cannot

be accurately determined from airborne sources or the resolution of these source is inadequate.

Furthermore, user-contributed elevation profiles can be generated across any time span, given

a reasonable amount of data. For example, an elevation profile can be constructed for a road

segment before and after a tectonic event to identify any major changes in slope or elevation.

While this is possible with traditional elevation acquisition technology, repeated, high tempo-

ral resolution, data collection is often time consuming and cost prohibitive. ISED profiles offer

an alternative and supplemental method to these traditional approaches.

5 Open elevation data

In this section we discuss how to make the created road network elevation data Web-available

without having to change the OpenStreetMap data model.

Fig 5. Segment C contrasting LiDAR elevation profile with ISED profile.

https://doi.org/10.1371/journal.pone.0186474.g005
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5.1 Augmenting OpenStreetMap

Having demonstrated that high-resolution elevation data can be generated from in-situ obser-

vations from user-contributed OSFT data, we turn our focus to the process of publishing these

data. OpenStreetMap (http://openstreetmap.org) is the largest and most comprehensive data-

set of open geospatial data available today. The existing node and way structure of OSM

uniquely identifies nodes along a street and the street segment, respectively (nodes and ways

are also used to represent other point and line features). We use the identifiers associated

with these nodes and ways as objects on which to link our user-contributed elevation data. The

latitude and longitude coordinate geometry representations of these nodes are compared

against our ISED 1m resolution road segments and the elevation value for each OSM node is

determined by taking the elevation value from the closest ISED segment node. We recently

updated OpenStreetMap (https://www.openstreetmap.org/changeset/46398492) to include

elevation values for the sample segments described in this research and as we continue to gen-

erate user-contributed elevation values along new road segments, we will continue to update

OpenStreetMap.

5.2 Linking high-resolution data

In most cases, OSM road segments are made up of far fewer nodes than the ISED 1m resolu-

tion road segments as their function is to trace the curvature and interconnectedness of roads,

not to provide an even sampling of nodes. In the case of Segment A, for example, the overlap

with OSM way #16249534 produces 3140 nodes in ISED Segment A and only 321 nodes for the

equivalent OSM segment. Furthermore, these OSM nodes are typically not evenly distributed

across the segment. Over all five segments in our sample dataset, we calculate an average

RMSE of 6.83m, a HD of 43.42m and EMD of 0.036 between elevation profiles generated from

the reduced set of OSM nodes and the higher-resolution ISED data. As reported by the EMD,

the overall shape of the profiles remains similar, which is not surprising given that one is

merely a reduced set of values from the other. The HD and RMSE values, however, point to

some issues with reducing the dataset’s spatial resolution. While the RMSE between profiles is

already approx. 7 meters, there are a number of instances where the differences are even more

substantial.

Provided these findings, access to the higher-resolution dataset may be of interest to many

domains and application areas. Rather than changing the OpenStreetMap data model by

updating ways with nodes every 1m (which would essentially break the OSM data model for

many other purposes and dramatically increase the data size), we decided to generate a supple-

mentary dataset from ISED containing the higher horizontal resolution elevation data. Using

Linked Data principles, we overlay an OSM way on our ISED road segment and assign it a

new URI. This URI is then assigned a sameAs relationship to the OSM way in LinkedGe-

oData. LinkedGeoData.org [20] offers a structured, Linked Data [8] version of OSM data

where each node and way are assigned a unique identifier (e.g., http://linkedgeodata.org/

triplify/way16249534). A way represents a street segment and contains a geometry attribute

which in turn links to a positional sequence object which lists a sequence of nodeURIs

(Fig 6).

The way in our ISED consists of a sequence of nodes that, when appropriate, are linked

back to the original OSM nodes. An example of these relationships are shown in Fig 7. A TTL

file containing all segments used in this paper is accessible in RDF format at http://ptal.io/ised/

santabarbara.ttl. Each node in our dataset consists of a required set of predicates as well as an

optional sameAs predicate that links to a LinkedGeoData node. The required predicates are

shown in Table 5.
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6 Related work

Related work in this area has focused primarily on generating new datasets from user-contrib-

uted and crowd sourced data or on the accuracy and precision of local and global elevation

datasets. To the best of our knowledge, little work has been done at the intersection of user-

contributed elevation data from online social fitness tracking.

A number of recent projects have explored the sensors on mobile devices from a user-gen-

erated data perspective to generate a range of interesting datasets and services as well as

research findings [21–24]. Our previous work [25] has shown that sensors accessible on most

current smart-phones can be employed to differentiate place types and could be used in contri-

bution to volunteered geographic services [26]. Microsoft’s Nericell project aimed at analyzing

road and traffic conditions based on data collected via accelerometer and microphone sensors

on mobile devices [27] while [28] measured urban noise through mobile devices’ sensors. Spe-

cific to the barometric sensor, existing work has identified this sensor in determining altitude

estimations for indoor navigation [29, 30], medical applications [31, 32], and human move-

ment and transportation research [33, 34].

As data sources and platforms, social fitness tracking and activity applications such as

Strava have been the focus of quite a few previous publications [35]. Griffen et al. [36] relied

on analysis of data from the Strava application to show the relationship between bicycling fit-

ness and steep terrain while others explored the digital footprint of citizens based on their

activity trajectories [37]. Online social fitness tracking applications have gone on to sell a lot of

the fitness activity data contributed by their users for various purposes such as urban design

[7, 38] and transportation infrastructure planning [6]. Systems have been designed for the pur-

pose visualizing, sharing and analyzing much of this transportation data [39].

From an open geodata perspective, existing work has merged openstreetmap data with

Shuttle Radar Topography Mission (SRTM) based digital elevation models (approx. 3 arc sec-

ond resolution) to construct hydrological models [40]. The OpenStreetMap community itself

Fig 6. LinkedGeoData representation for part of Segment A.

https://doi.org/10.1371/journal.pone.0186474.g006
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has used SRTM data to construct the OpenCycleMap [41] an interactive web map which

includes contour lines for bicycle routing. [42] has ambitiously merged various publicly avail-

able elevation datasets using SRTM as a gap-filler and published global elevation datasets at

varying degrees of resolution. Recent work by Wang et al. [43] extracted elevation values from

Fig 7. A sample of in-situ elevation data represented as linked data in turtle format. Note the sameAs

relationships linking ISED entities (ways, nodes) to corresponding LinkedGeoData entities.

https://doi.org/10.1371/journal.pone.0186474.g007

Table 5. Predicates required of the ISED Node class.

Predicate Prefix Range

elevationM http://dbpedia.org/property float

elevationMaxM http://dbpedia.org/property float

elevationMinM http://dbpedia.org/property float

modified http://purl.org/dc/terms dateTime

wasDerivedFrom http://www.w3.org/ns/prov string

agent http://www.w3.org/ns/prov URI

https://doi.org/10.1371/journal.pone.0186474.t005
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Google Earth and measured the accuracy for transportation applications. While their approach

performs will when compared to benchmarks, there is no mention of the influence of canopy

cover or other such obstacles. Furthermore, the frequency with which data is contributed to

Strava means that our road elevation data can be updated daily (or in some cases hourly) and

does not require an update from a third-party data provider.

7 Conclusions and future work

Generating high-resolution elevation profiles is very often costly and time consuming. For a

number of applications in many parts of the world, the spatial and temporal resolution of exist-

ing elevation data is not sufficient. The recent rise of online social fitness tracking applications

has allowed individuals to publish local elevation data by way of barometric altimeters and

GPS sensors in their mobile and wearable devices. Although each individual in-situ observa-

tion varies substantially in terms of spatial and temporal resolution and accuracy, the extensive

amount of data from a variety of devices invites the construction of an aggregate, up-to-date

elevation dataset for road networks at a 1m spatial resolution. In this work, we have shown

that elevation profiles generated from user-contributed data can approximate the accuracy of

high resolution elevation profiles generated from ground-truthed LiDAR data. In fact, on aver-

age, our elevation profiles have a RMSE of 3.11m compared to the LiDAR data while using

NED for the same profile results in a RMSE of 4.75m. Furthermore, we demonstrated that

user-contributed elevation profiles can be used to supplement existing elevation data sources

in situations where they fall short, e.g., in cases of overpasses. In contrast to LiDAR and NED

data, our dataset can also be kept up-to-date by simply streaming in sensor readings from

cyclists. Lastly, we introduce a method to enhance OpenStreetMap, an existing open geo-

graphic dataset, through the addition of elevation values along road segments. Using the tenets

of Linked Data, we present an approach to publishing our high-resolution, user-contributed

elevation data and linking them back to existing spatial data sources without having to change

the OSM data model.

Future work in this area will involve expanding the scope of data sources from Strava

cycling data to other platforms, e.g., MapMyFitness and other exercises, e.g., climbing. Efforts

are currently underway to expand the regional scope of this work outside of the two study

areas presented. One of the limitations of this work is that many of the regions that are in

need of high resolution elevation models are places where uploading fitness tracking data is

less common. We aim to explore the range of the various platforms and propose potential

solutions for this limitation in future work. From a temporal perspective, next steps will

focus on using in-situ elevation data to monitor changes in elevation and slope over time.

Last, a RESTful application programming interface is in development that will return the ele-

vation value of the closest known point provided geographic coordinates on the surface of

the earth.
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22. Mazilu S, Blanke U, Calatroni A, Tröster G. In: Augusto JC, Wichert R, Collier R, Keyson D, Salah AA,

Tan AH, editors. Low-Power Ambient Sensing in Smartphones for Continuous Semantic Localization.

Cham: Springer International Publishing; 2013. p. 166–181. Available from: http://dx.doi.org/10.1007/

978-3-319-03647-2_12.

23. Guo B, Wang Z, Yu Z, Wang Y, Yen NY, Huang R, et al. Mobile crowd sensing and computing: The

review of an emerging human-powered sensing paradigm. ACM Computing Surveys (CSUR). 2015; 48

(1):7. https://doi.org/10.1145/2794400

24. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone sensing.

IEEE Communications magazine. 2010; 48(9):140–150. https://doi.org/10.1109/MCOM.2010.5560598

25. Regalia B, McKenzie G, Gao S, Janowicz K. Crowdsensing Smart Ambient Environments and Services.

Transactions in GIS. 2016; 20:382–298. https://doi.org/10.1111/tgis.12233
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