
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Randomized Difference Two-Timescale Simultaneous
Perturbation Stochastic Approximation Algorithms for
Simulation Optimization of Hidden Markov Models

by Shalabh Bhatnagar, Michael C. Fu,
Steven I. Marcus, Shashank Bhatnagar

T.R. 2000-13

Randomized Difference Two-Timescale Simultaneous Perturbation

Stochastic Approximation Algorithms for Simulation Optimization

of Hidden Markov Models ∗

Shalabh Bhatnagar
Institute for Systems Research

University of Maryland, College Park, MD 20742
shalabh@isr.umd.edu, fax: (301) 314-9920

Michael C. Fu
The Robert H. Smith School of Business

and Institute for Systems Research
University of Maryland, College Park, MD 20742

mfu@rhsmith.umd.edu, fax: (301) 314-9157

Steven I. Marcus
Department of Electrical and Computer Engineering

and Institute for Systems Research
University of Maryland, College Park, MD 20742

marcus@isr.umd.edu, fax: (301) 314-9920

Shashank Bhatnagar
Department of Physics

University of Addis Ababa, P. O. Box 21926, Code 1000
Addis Ababa, Ethiopia

shashank bhatnagar@hotmail.com, fax: +251 (1) 550655

June 1, 2000

Abstract

We propose two finite difference two-timescale simultaneous perturbation stochastic approx-
imation (SPSA) algorithms for simulation optimization of hidden Markov models. Stability
and convergence of both the algorithms is proved. Numerical experiments on a queueing model
with high dimensional parameter vectors demonstrate orders of magnitude faster convergence
using these algorithms over related (N + 1)-Simulation finite difference analogues and another
Two-Simulation finite difference algorithm that updates in cycles.

Key Words Simulation optimization, two-timescale SPSA algorithms, hidden Markov models.

∗This research was supported in part by the NSF under Grant DMI-9713720, by the Semiconductor Research
Corporation under Grant 97-FJ-491 and by DoD contract Number MDA90497C3015.

1

1 Introduction

A popular approach to simulation optimization of discrete event systems with continuous-valued

parameters is based on stochastic approximation [1], [20], [22], [27]. Gradient descent stochastic

approximation algorithms are typically used to perform function optimization in cases where the

function to be optimized is difficult to compute analytically [16]. Several stochastic approximation

schemes that have been used for optimization of long run average performance measures suffer

from the drawback that they require data aggregation (for averaging) over regeneration epochs

[13], [15]. These epochs can be very infrequent (particularly for large systems/networks), making

the scheme extremely slow in practice. In [12], an algorithm that updates the parameter after a

fixed number of customers is presented and convergence proved. However, the algorithms in [12],

[13] and [15] all require the availability of direct gradient estimates, and are all based on infinitesimal

perturbation analysis [19]. In [23] and [24], various stochastic approximation algorithms governed

by finite difference estimates (as well as direct gradient estimates) were considered for optimizing

a steady-state performance measure with respect to a scalar parameter in a single-server queue.

In [3], [4] and [5], a more general setting for vector parameters and long-run average perfor-

mance measures is considered, in which the parameter is updated at deterministic instants that

are obtained using two timescales; a faster timescale at which the system evolves, and a slower

timescale at which the parameter is updated. Specifically, in [4], the parameter is updated at de-

terministically increasing time instants that are in turn obtained using two timescales (see also [2]).

On the other hand, in [5], the parameter is updated at every instant using coupled iterations that

are governed by different timescales. However as with any other forward finite difference scheme

[23], [24], these schemes also require (N +1) parallel simulations for an N -vector parameter. Thus,

if the parameter dimension (N) is large, the corresponding number of simulations required to ob-

tain the optimum parameter is large as well. A proposed alternative in [4] uses only two parallel

simulations at any instant by moving the algorithm in bigger loops or cycles. This, however, results

in slow convergence.

Spall [28] proposed a stochastic approximation technique that requires only two simulations for

a parameter vector of any dimension and updates all parameter components at every instant. This

technique came to be known as simultaneous perturbation stochastic approximation (SPSA), since

it simultaneously perturbs the various parameter components randomly, most commonly by using

independent and identically distributed (i.i.d.), symmetric Bernoulli random variables in the two

simulations, and uses the estimates thus obtained for updating the parameter. It has been applied

in various contexts; for instance, see [17] for an application of SPSA to optimization of discrete

event systems. Most of the work in discrete event systems (except [17]) is on low-dimensional

problems (cf. [4], [24],[23], [12],[21]). In [28] and [22], a general idea for high-dimensional problems

is proposed.

Motivated by all of the above considerations, in this paper we develop SPSA variants (that we

call SPSA-1 and SPSA-2) of the two-timescale algorithms of [4] and [5] (respectively) for optimizing

high-dimensional parameters in hidden Markov models. The algorithm SPSA-1 uses only two

parallel simulations and updates the parameter at increasing time instants as in [4]. The algorithm

SPSA-2 also uses only two parallel simulations but has the added advantage (over the algorithm

in [5]) that it allows for data aggregation over a fixed number of instants in between two successive

2

updates of the parameter for better performance. Moreover, the algorithm in [5] was only for

ordinary Markov processes and not hidden Markov models (which is a more general setting) [14]

considered here. We prove the convergence of both of these schemes and numerically demonstrate

the algorithms on a feedback queueing network with high-dimensional parameters. These schemes

are found to converge orders of magnitude faster than their (N + 1)-Simulation analogues in [4]

and [5], and also the Two-Simulation algorithm of [4] that moves in cycles.

Hidden Markov models arise in several queueing and stochastic control applications. To il-

lustrate a very simple instance of a hidden Markov model, consider an M/G/1 queue. Let {qn}

represent the queue length process observed at customer arrival epochs. Similarly, let {rn} repre-

sent the sequence of residual service times of the customers in service at these epochs. Then the

joint process {(qn, rn)} is Markov. In most real life applications only the process {qn} is observed

whereas {rn} is not. Thus in this example, {qn} represents a hidden Markov model.

In [7], we applied algorithms SPSA-1 and a special case of SPSA-2 for the closed loop feedback

control of available bit rate (ABR) service in asynchronous transfer mode (ATM) networks, by

considering parameterized feedback policies. A finite state setting was considered there and as a

result there was no problem with stability of the schemes. We develop these algorithms in this

paper in the framework of hidden Markov models with an unbounded state space, and therefore

stability issues are explicitly addressed. The convergence of SPSA-1 in the finite state setting of [7]

was proven in [6]. The convergence analysis of SPSA-2 in any setting has not been shown earlier.

The rest of the paper is organized as follows: In the next section, we formulate the optimization

problem, present the assumptions on the system and give a result on tightness of the stationary

measures for the hidden Markov model. In Section 3, we present our SPSA algorithms (SPSA-1

and SPSA-2) and compare their performance with their corresponding analogues in [4] and [5]. In

Sections 4 and 5, we present the detailed convergence analyses for both algorithms. In Section 6,

numerical results comparing the SPSA algorithms with those of [4] and [5] for a simple queueing

system are presented. Finally, Section 7 provides the concluding remarks.

2 The Optimization Problem

The process that we seek to optimize is an Rd - valued parameterized (with parameter θ ∈ RN)

hidden Markov model (HMM) represented by {Y (j), j ≥ 0} and is given by the set of coupled

iterations

X(j + 1) = F (X(j), Y (j), ξ(j), θ), (2.1)

Y (j + 1) = G(X(j), Y (j), η(j), θ), (2.2)

j ≥ 0. Here the state process {X(j)} is Rq - valued and is unobserved or hidden. Further, {ξ(j)},

{η(j)} are i.i.d. sequences in Rl and Rs, respectively, and are mutually independent of one another.

The maps F : Rq ×Rd×Rl×RN →Rq and G : Rq ×Rd×Rs×RN →Rd are measurable. Also,

θ
4
= (θ1, . . . , θN)T ∈ RN represents the parameter to be tuned in order to minimize a certain cost

function J(θ) (defined below). We will assume that θ takes values in a compact set C ⊂ RN , and

that C is of the form C
4
=
∏N
i=1[θi,min, θi,max]. We assume that the joint process {(X(j), Y (j))}

is ergodic Markov for every fixed θ, and has stationary distribution µθ(dx, dy) ∈ P(Rq+d). Let

νθ(dy) be the marginal of this stationary distribution in P(Rd). Here, P(...) represents the space

3

of all probability measures on ‘...’. Also, let pθ(x, y; dx
′, dy′) represent the transition kernel of

{(X(j), Y (j))}. Let h : Rd → R be a given bounded and continuous cost function. Our aim then

is to find a θ in the set C that minimizes the average cost

J(θ) = lim
N→∞

1

N

N−1∑
j=0

h(Y (j)).

Since {(X(j), Y (j))} is ergodic Markov (for fixed θ), the above limit exists and

J(θ) =

∫
h(y)νθ(dy).

Remark As shown in [8], very general classes of random processes have an HMM representation

if one is permitted time nonhomogeneity viz., replace F and G in (2.1)-(2.2) above with Fj , Gj ,

j ≥ 0. Also, {ξ(j)} and {η(j)} can be taken to be uniformly distributed on [0, 1] without loss of

generality.

We now proceed with the rest of the model. As mentioned earlier, the parameter θ in (2.1)-(2.2)

has to be tuned in order to minimize J(θ). Let θ̃n ∈ C represent the parameter value at instant n.

Thus in particular, we will consider the following dynamics:

X(j + 1) = F (X(j), Y (j), ξ(j), θ̃j), (2.3)

Y (j + 1) = G(X(j), Y (j), η(j), θ̃j), (2.4)

j ≥ 0. Let Gn
4
= σ(X(j), Y (j), ξ(j), η(j), θ̃j, j ≤ n), n ≥ 0, represent the natural-filtration

generated by {X(j), Y (j), ξ(j), η(j), θ̃j , j ≥ 0}. Note that since {θ̃j} could be any arbitrarily

defined parameter sequence, {(X(j), Y (j))} defined simply by (2.3)-(2.4) would in general not be

Markov. We thus force {(X(j), Y (j))} to be Markov by assuming that any sequence {θ̃j, j ≥ 0}

satisfies

P (X(n+ 1) ∈ A,Y (n+ 1) ∈ B | Gn) = pθ̃n(X(n), Y (n);A,B), (2.5)

for any A,B, Borel in Rq and Rd respectively. We call any such {θ̃n} satisfying (2.5), an M-

Sequence.

Next, we list the following assumptions on our system. Assumptions (A1), (A2) and (A3)

are needed to prove convergence of our first algorithm SPSA-1, while (A1), (A2′) and (A3) are

required for convergence of algorithm SPSA-2. Both algorithms SPSA-1 and SPSA-2 are presented

in Section 3.

Assumptions

(A1) The average cost J(θ) is continuously differentiable.

(A2) The map (θ, x, y) ∈ RN+q+d → pθ(x, y; dx
′, dy′) ∈ P(Rq+d) is continuous.

(A2′) For any h ∈ C(Rq+d) vanishing at ∞,

lim
‖(x,y)‖→∞

∫
pθ(x, y; dx

′, dy′)h(x′, y′) = 0

uniformly over θ ∈ C.

(A3) Liapunov Stability Condition: There exist nonnegative V ∈ C(Rq+d), K ⊂ Rq+d compact

and ε0 > 0 such that under any M-Sequence {θ̃n},

4

1. lim‖(x,y)‖→∞ V (x, y) =∞,

2. supnE[V (X(n), Y (n))2] <∞,

3. E[V (X(n+ 1), Y (n+ 1)) | Gn] ≤ V (X(n), Y (n))− ε0,

whenever (X(n), Y (n)) 6∈ K, n ≥ 0.

Note that a sufficient condition for (A1) to be satisfied is that the parameterized stationary dis-

tribution µθ(dx, dy) of the ergodic Markov process {(X(n), Y (n))} be continuously differentiable

in the parameter θ. In [29], certain sufficiency conditions for showing the latter have been given.

Assumptions (A2) and (A2′) are technical conditions that are satisfied routinely by most systems

[4], [5]. Finally, Assumption (A3) is required to ensure that the system remains stable, and is a

standard assumption. In [3], the algorithms of [4] and [5] were applied to a closed loop feedback

control problem in asynchronous transfer mode (ATM) networks and all the above assumptions

were verified for the system (also see [6] for verification of Assumptions (A1), (A2) and (A3) for a

similar system).

Recall that a sequence {µ̂n} of probability measures on S is tight if for each ε > 0, there exists

a compact set Kε ⊂ S such that µ̂n(Kε) > 1− ε for all n. The following lemma shows that the sets

of all parameterized stationary distributions {µθ, θ ∈ C} and their marginals {νθ, θ ∈ C} are tight

and crucially uses Assumption (A3) for its proof. This result is required later in the analysis.

Lemma 2.1 {µθ, θ ∈ C} (resp., {νθ, θ ∈ C}) is compact in P(Rq+d) (resp., P(Rd)) and the

map θ→ µθ (resp., νθ) is continuous.

Proof Follows in exactly the same manner as Lemma 2.1 of [4]. 2

3 Two-Timescale SPSA Algorithms

In this section, we shall present our two-timescale SPSA algorithms and compare their performance

with corresponding two-timescale finite difference algorithms in [4] and [5]. In order to put things

in proper perspective and to clearly bring out the advantages of our SPSA algorithms, we shall

first begin with the (N + 1)-Simulation finite difference stochastic approximation algorithm of [4]

that we refer to as (N + 1)-Simulation FDSA-1 and its corresponding Two-Simulation alternative

(proposed in that paper) referred here as Two-Simulation FDSA-1. We shall then present our

first SPSA algorithm (SPSA-1). Later, we shall illustrate the (N + 1)-Simulation finite difference

algorithm of [5] that we refer to as (N + 1)-Simulation FDSA-2, followed by its generalized SPSA

version (SPSA-2). We shall then briefly compare the performance of all these algorithms and argue

the reasons for the superior performance of SPSA-1 and SPSA-2 over the algorithms in [4] and [5].

3.1 The Algorithms

The algorithms presented here are called two-timescale algorithms since they are governed with

two step-size sequences (or timescales) {a(n)} and {b(n)} defined below. Let δ > 0 be a fixed

small constant. Let πi(x)
4
= min(max(θi,min, x), θi,max), i = 1, . . . ,N , denote the point closest

to x ∈ R in the interval [θi,min, θi,max] ⊂ R, i = 1, . . . ,N , and π(θ) be defined by the vector

π(θ)
4
= (π1(θ1), . . . , πN (θN))T . Then π(θ) is a projection of θ ∈ RN onto the set C. Define

5

sequences {a(n)} and {b(n)} as follows: a(0) = b(0) = 1, a(i) = i−1, b(i) = i−α, i ≥ 1, and with
1

2
< α < 1. Then clearly,

a(n+ 1)

a(n)
,
b(n+ 1)

b(n)
→ 1, as n→∞, (3.1)∑

n

a(n) =
∑
n

b(n) =∞,
∑
n

a(n)2,
∑
n

b(n)2 <∞, a(n) = o(b(n)). (3.2)

Define {nm,m ≥ 0} as follows: n0 = 1 and nm+1 = min{j > nm |
∑j
i=nm+1 a(i) ≥ b(m)}, m ≥ 1.

Then {nm} represents a deterministically increasing sequence of points. In SPSA-1 (as also (N+1)-

Simulation FDSA-1 and Two-Simulation FDSA-1), {nm} defines the parameter update instants of

the algorithm.

Note that any finite difference stochastic approximation scheme ordinarily requires (N +1) par-

allel simulations for an N -vector parameter. The two-timescale stochastic approximation algorithm

in [4] for an N -vector parameter (which we call (N + 1)-Simulation FDSA-1) is thus as follows:

(N + 1)-Simulation FDSA-1

The first simulation corresponds to {(X(j), Y (j))} and is governed by {θ̃j} that is in turn

defined by θ̃j = θ(m), for nm ≤ j < nm+1. The remaining N parallel simulations are represented

by {(Xi(j), Yi(j))}, i = 1, . . . ,N , and are respectively governed by {θ̂i(j)}, i = 1, . . . ,N , with

θ̂i(j) = θ(m) + δei, for nm ≤ j < nm+1, and where ei is the unit vector with 1 in the ith direction.

The algorithm then is as follows: For i = 1, . . . ,N ,

θi(m+ 1) = πi

θi(m) +

nm+1∑
j=nm+1

a(j)

(
h(Y (j)) − h(Yi(j))

δ

) . (3.3)

It is clear that one would require N + 1 parallel simulations using this algorithm. An alternative

scheme was proposed in [4] that uses only two parallel simulations at any instant. This, it achieves

by moving the algorithm in ‘cycles’, in each of which only one component is updated. This scheme

that we call Two-Simulation FDSA-1 is as follows:

Two-Simulation FDSA-1

The first simulation here corresponds to {(X(j), Y (j))} and is governed by {θ̃j} where the

parameter θ̃j is the N -vector θ̃j = (θ̃j,1, . . . , θ̃j,N)T with θ̃j,i = θi(m), for nNm+i−1 ≤ j < nNm+i,

i = 1, . . . ,N , m ≥ 0 (with N being the dimensionality of the parameter vector), where θ̃j,i (resp.

θi(m)) is the ith component of θ̃j (resp. θ(m)). The second simulation is now represented as

{(X̄(j), Ȳ (j))} and is governed by {θ̂j} defined by θ̂j = θ(m) + δei, for nNm+i−1 ≤ j < nNm+i,

i = 1, . . . ,N , m ≥ 0. The algorithm is as follows: For i = 1, . . . ,N ,

θi(m+ 1) = πi

θi(m) +

nNm+i∑
j=nNm+i−1+1

a(j)

(
h(Y (j)) − h(Ȳ (j))

δ

) . (3.4)

Thus using this scheme, the whole parameter is updated once every nNm steps instead of the nm
steps required for one update using the (N + 1)-Simulation FDSA-1 version (3.3) of it. Next, we

present our first randomized difference SPSA algorithm (SPSA-1).

Let for any i ≥ 0, 4(i) ∈ RN be a vector of mutually independent and mean zero random

variables {41,i, . . . 4N,i}, (viz., 4(i)
4
= (41,i, . . . ,4N,i)

T) taking values in a compact set E ⊂ RN

6

and having a common distribution. We assume that these random variables satisfy Condition (B)

below.

Condition (B) There exists a constant K̄ < ∞, such that for any l ≥ 0, and i ∈ {1, . . . ,N},

E
[
4−2
l,i

]
≤ K̄.

Further, we assume that {4(i)} is a mutually independent sequence with 4(i) independent of

σ(θ(l), l ≤ i), the filtration generated by the sequence of parameter updates. Condition (B) is a

standard condition in SPSA algorithms. Minor variants of this condition are for instance available

in [28], [11]. Note that distributions like Gaussian and Uniform are precluded while using Condition

(B). An important consequence of E
[
4−2
l,i

]
<∞ is that P (4l,i = 0) = 0.

We now proceed with our first algorithm, SPSA-1, wherein we use only two parallel simulations

and update all parameter components every nm instants by perturbing all of these simultaneously

along random directions in the two simulations.

SPSA-1

Consider two parallel simulations {(Xk(j), Y k(j))}, k = 1, 2, respectively governed by {θ̃kj },

k = 1, 2 as follows: For the process {(X1(j), Y 1(j))}, we define θ̃1
j = θ(m) − δ4(m), for nm <

j ≤ nm+1, m ≥ 0. The parameter sequence {θ̃2
j} for {(X2(j), Y 2(j))} is similarly defined by

θ̃2
j = θ(m) + δ4(m), for nm < j ≤ nm+1, m ≥ 0. In the above, θ(m)

4
= (θ1(m), . . . , θN (m))T

is the value of the parameter update that is governed by the following recursion equations. For

i = 1, . . . ,N ,

θi(m+ 1) = πi

θi(m) +
nm+1∑

j=nm+1

a(j)

(
h(Y 1

j)− h(Y 2
j)

2δ4m,i

) , (3.5)

m ≥ 0. It will be shown in the proof of Theorem 4.1 that the sequence {nm} is an exponentially

increasing sequence. Thus algorithms (N + 1)-Simulation FDSA-1, Two-Simulation FDSA-1 and

SPSA-1 update parameters at exponentially increasing time instants. Hence, using these algo-

rithms, subsequent parameter updates become less frequent as time progresses. The algorithm of

[5] (cf. (N + 1)-Simulation FDSA-2 below) on the other hand, uses coupled iterations with two-

timescales and updates the whole parameter at every instant (even though it requires N+1 parallel

simulations at any instant). We present this algorithm next.

(N + 1)-Simulation FDSA-2

Let {(X(n), Y (n))} be governed by {θ(n)} (where θ(n)
4
= (θ1(n), . . . θN (n))T is the nth update

of parameter θ) and which is updated according to equations (3.6) below. Let us also define N

additional parallel simulations as follows: For i = 1, . . . ,N , let {(Xi(n), Y i(n))} be governed by

{θ(n) + δei}, where ei is the unit vector with 1 in the ith direction. In the following, the sequences

{Z(n)} and {Zi(n)}, i = 1, . . . ,N , perform weighted averages of the cost function values and are

defined as in the last two equations in (3.6) below. Let Z(0) = Zi(0) = 0, i = 1, . . . ,N . Then, for

i = 1, . . . ,N ,

θi(n+ 1) = πi

(
θi(n) + a(n)

[
Z(n)− Zi(n)

δ

])
Z(n+ 1) = Z(n) + b(n)(h(Y (n))− Z(n))

Zi(n+ 1) = Zi(n) + b(n)(h(Y i(n))− Zi(n)) (3.6)

7

It is clear that one requires N +1 parallel simulations in this manner. Finally, we present our next

SPSA algorithm (SPSA-2) which requires only two parallel simulations as in SPSA-1 but which also

allows for data aggregation over a fixed number L of epochs in between two successive parameter

updates for better performance. We will explain the last part in detail later.

SPSA-2

Let {(X−(l), Y −(l))} and {(X+(l), Y +(l))} be the two parallel simulations. These depend on

parameter sequences {θ(n) − δ4(n)} and {θ(n) + δ4(n)} respectively in the manner explained

below: Let L ≥ 1 be a given fixed integer. We extract double sequences {(X−m(n), Y −m (n))} and

{(X+
m(n), Y +

m (n))}, n ≥ 0, m = 0, 1, . . . , L − 1, from the two parallel simulations in the following

manner. Write l as l = nL + m, where n ≥ 0 and m ∈ {0, 1, . . . , L − 1}. Now, set X−m(n)
4
=

X−(nL+m) and Y −m (n)
4
= Y −(nL+m). Similarly, X+

m(n)
4
= X+(nL+m) and Y +

m (n)
4
= Y +(nL+

m) respectively. Now, for m = 0, 1, . . . , L − 1, (X−m(n), Y −m (n)) is governed by the parameter

θ(n) − δ4(n). Similarly, for m = 0, 1, . . . , L − 1, (X+
m(n), Y +

m (n)) is governed by the parameter

θ(n)+δ4(n). We also define two double sequences {Z−m(n)} and {Z+
m(n)}, n ≥ 0, m = 0, 1, . . . , L−

1, in recursions (3.7) for averaging the cost function. Let Z−0 (0) = Z−1 (0) = . . . = Z−L (0) = 0 and

Z+
0 (0) = Z+

1 (0) = . . . = Z+
L (0) = 0. Then, for i = 1, . . . ,N , n ≥ 0,

θi(n+ 1) = πi

(
θi(n) + a(n)

[
Z−L (n)− Z+

L (n)

2δ4n,i

])
,

where, for m = 0, 1, . . . , L− 1,

Z−m+1(n+ 1) = Z−m(n+ 1) + b(n)(h(Y −m (n+ 1))− Z−m(n+ 1)),

Z+
m+1(n+ 1) = Z+

m(n+ 1) + b(n)(h(Y +
m (n+ 1))− Z+

m(n+ 1)), (3.7)

with Z−0 (n+ 1) = Z−L (n) and Z+
0 (n+ 1) = Z+

L (n). Note again that one requires only two parallel

simulations in this manner as opposed to N + 1 earlier.

Remark Note that for L = 1, the algorithm SPSA-2 is simply as follows: Let {(X−(n), Y −(n))}

and {(X+(n), Y +(n))} be the two parallel simulations respectively governed by {θ(n) − δ4(n)}

and {θ(n) + δ4(n)}. Then, for i = 1, . . . ,N ,

θi(n+ 1) = πi

(
θi(n) + a(n)

[
Z−(n)− Z+(n)

2δ4n,i

])
,

Z−(n+ 1) = Z−(n) + b(n)(h(Y −(n))− Z−(n)),

Z+(n+ 1) = Z+(n) + b(n)(h(Y +(n))− Z+(n)), (3.8)

with Z−(0) = Z+(0) = 0. We observed in the numerical experiments that the algorithm (3.8)

(corresponding to L = 1) did not exhibit good performance when the parameter dimension is high.

This could probably be due to the fact that in the latter case, the system does not adapt as quickly

to the new parameter update before it changes again. By selecting L > 1, one can effectively take

care of this problem by holding the parameter fixed for L instants, thus giving the system sufficient

time to adapt to the new parameter update. The choice of L is completely arbitrary though. In

the numerical experiments for instance, where we consider the parameter vectors to be 10 and

40-dimensional respectively, the value of L is chosen as 100.

8

3.2 Comparison of Algorithms

We can classify the five algorithms broadly into two categories - those that update the parameter

over time instants (or their multiples) of increasing separation nm, m ≥ 1, and those that update

the parameter at regular intervals. Let us first consider the algorithms in the first category. These

comprise (N + 1)-Simulation FDSA-1, Two-Simulation FDSA-1 and SPSA-1. As already stated

earlier, (N+1)-Simulation FDSA-1 requires N+1 parallel simulations at every instant but updates

the whole parameter vector once every nm instants. On the other hand, Two-Simulation FDSA-1

uses only two simulations and updates the parameter in cycles of nNm, m ≥ 1 instants, where N

is the parameter dimension. SPSA-1, however, updates the full parameter every nm instants and

still requires only two parallel simulations for doing so. Thus SPSA-1 has the combined advantages

of (N +1)-Simulation FDSA-1 and Two-Simulation FDSA-1. Moreover SPSA-1 tracks trajectories

of the ordinary differential equation (o.d.e.) (4.7) as does (N + 1)-Simulation FDSA-1. It was

shown in [4] that Two-Simulation FDSA-1 tracks trajectories of an o.d.e. that is similar to (4.7)

but with a factor 1/N multiplying its RHS. This factor essentially serves to slow down the rate of

convergence of the algorithm (3.4).

Our next set of algorithms viz., (N+1)-Simulation FDSA-2 and SPSA-2 update parameters after

every fixed number of instants. In particular, (N+1)-Simulation FDSA-2 updates the full parameter

vector every instant while requiring N + 1 parallel simulations for the same. SPSA-2, on the other

hand, requires only two parallel simulations and updates the parameter after every fixed number

‘L’ of instants. This number (L ≥ 1) is chosen arbitrarily. SPSA-2 thus allows for data aggregation

in between successive parameter update epochs (for better performance) while requiring only two

parallel simulations at any instant. It will be shown in Section 5 that SPSA-2 tracks the trajectories

of the o.d.e. (4.7) on the slower timescale. A similar result was shown in [5] for (N +1)-Simulation

FDSA-2. In Section 6, we shall consider a simple queueing network with parameter vectors of

dimensions 10 and 40 respectively. We found that both SPSA-1 and SPSA-2 exhibit significantly

superior performance than the algorithms in [4] and [5] mentioned here. We shall consider in

Section 6 the following step-size sequences {a(n)} and {b(n)}: a(0) = b(0) = 1, a(n) = 1/n and

b(n) = 1/n2/3, n ≥ 1. For these sequences, n0 = 1, n50 ≈ 2.5 × 104, n100 ≈ 4.3 × 105 etc. Thus, a

possible disadvantage in using SPSA-1 is for large systems/networks that require several updates

of the parameter before convergence is achieved, since in using this scheme, successive parameter

updates are held fixed over intervals of increasing sizes and thus the parameter is updated less often

as time progresses. This is not the case with algorithm SPSA-2 where we hold the parameter fixed

only for a fixed number L of epochs before updating it. This intuition is also confirmed in Section

6 where we show numerical experiments with parameters of dimensions 10 and 40 respectively. We

observed that when the parameter dimension is 10, SPSA-1 outperforms SPSA-2. However, when

the same is increased to 40, it is SPSA-2 that performs better than SPSA-1.

As already observed, the algorithms SPSA-1 and SPSA-2 are computationally superior than

their corresponding variants. This is however achieved by generating N i.i.d. random variables

4n,1, . . . ,4n,N , that satisfy Condition (B). In particular, one could select these to be i.i.d., Bernoulli

distributed (as we do in our numerical experiments in Section 6) viz., 4n,i = ±1, w.p. 1/2,

i = 1, . . . ,N . It will become clear in the convergence analysis in the next two sections that

it is these randomizations and the particular form of the gradient estimates that are primarily

responsible for both of these schemes using only two parallel simulations at any instant as against

9

N + 1. The presence of 4n,i in the denominator of the gradient estimate term on the RHS in

the update equation for the ith component θi(n) of θ(n) in (3.5), and the first equation in (3.7),

essentially ensures that the update for the ith component occurs only in the ith gradient direction

(with the rest of them averaging to zero). Generating N i.i.d., Bernoulli random variables or in

general those satisfying Condition (B), is far more computationally simpler than generating N

parallel simulations, the latter requires in particular simulating N independent parallel systems.

It will be shown in the next two sections that algorithms (3.5) and (3.7) asymptotically track the

stable points of the o.d.e. (4.7).

Finally, in [6], the algorithm SPSA-1 was analyzed in the context of rate based feedback flow

control in available bit rate (ABR) service in asynchronous transfer mode (ATM) networks. How-

ever, because of the finite state setting there, questions about stability of the scheme did not arise.

This is however not the case here. Our state space is unbounded and hence we require Liapunov

stability assumptions on the system to ensure tightness.

4 Convergence Analysis of SPSA-1

By a Polish space, we mean a complete separable metric space. Let S be a Polish space with

complete metric d̂. Also, let P(S) be the space of probability measures on S. Let Cb(S) be the

space of all bounded and continuous functions on S. A countable sequence of functions {fi} ⊂ Cb(S)

is called a separating class for P(S) if for any probability measures µ, ν ∈ P(S),

∫
fidµ =

∫
fidν,

i ≥ 1, implies µ = ν. It is easy to show (cf. Ch.2 of [9]) that such a separating class of functions

exists for any such P(S). Also, a class of functions {fα, α ∈ I} ⊂ Cb(S) is called a convergence

determining class for P(S) if for any sequence of measures {µn}∞n=1 ∈ P(S),

∫
fαdµn →

∫
fαdµ∞

∀α ∈ I, implies µn → µ∞ in P(S).

Now define a metric ρ on P(S) as follows: For any µ, ν ∈ P(S),

ρ(µ, ν) =
∞∑
n=1

2−n
∣∣∣∣∫ fndµ−

∫
fndν

∣∣∣∣ ,
where {fn} is a separating class of functions for P(S). The topology induced by ρ is called the

Prohorov topology. It can be shown that under ρ, the space P(S) is complete if and only if S is

compact and not otherwise. Thus ρ is not complete if S is not compact. Now consider the following

metric ρ̄ defined in the following manner: For ε > 0 and Borel A ⊂ S, let Aε = {x ∈ S | d̂(x,A) < ε}.

For µ, ν ∈ P(S), define

ρ̄(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε, for all Borel A ⊂ S}.

The metric ρ̄ is called the Prohorov metric. It retains the same topology as the Prohorov topology

and is in addition complete. Moreover, P(S) is separable under the Prohorov topology thereby

making the space P(S) Polish without the requirement that S be compact (in addition to being

Polish). It can also be shown that if S is a compact Polish space, then so is P(S). In what follows,

we shall assume that P(S) is equipped with the Prohorov topology and is thus Polish.

Consider now the stochastic approximation scheme SPSA-1. Recall that {(Xk(j), Y k(j))}, k =

1, 2, are the two parallel simulations respectively governed by {θ̃kj }, k = 1, 2, with θ̃1
j = θ(m)−δ4(m)

10

and θ̃2
j = θ(m) + δ4(m) respectively, for nm < j ≤ nm+1, m ≥ 0. Also, the dynamics of the

simulations {(Xk(j), Y k(j))}, k = 1, 2, is governed by equations of type (2.3)-(2.4), with ξ(j), η(j)

replaced with analogously defined ξk(j), ηk(j), k = 1, 2, respectively independent of one another.

In this section, we assume (A1), (A2) and (A3) (defined in Section 2) for our system. Let the

filtration be represented by Fn
4
= σ (Xk(j), Y k(j), ξk(j), ηk(j), θ̄j, 4̄j, k = 1, 2; j ≤ n), where

θ̄j = θ(m) and 4̄j = 4(m) for nm ≤ j < nm+1, m ≥ 0. For m ≥ 0, define P(Rq+d) - valued

random variables {µkm}, k = 1, 2, for f ∈ Cb(R
q+d) (the space of bounded and continuous functions

on Rq+d) by ∫
fdµkm =

∑nm+1

i=nm+1 a(i)f(Xk(i), Y k(i))∑nm+1

i=nm+1 a(i)
,

m ≥ 0, k = 1, 2. Let R̃q+d = Rq+d ∪ {∞} denote the one point compactification of Rq+d and let

δ∞ denote the Dirac measure at {∞}. In other words,

δ∞(x) =

{
1 if x = {∞}
0 otherwise

(4.1)

Using the natural embedding of Rq+d into R̃q+d, one may view {µkm,m ≥ 0}, k = 1, 2, as random

sequences in P(R̃q+d), a compact Polish space. The proof of Theorem 4.1 (below) differs at several

places from that of a similar result in [6] since as already stated earlier, the latter was shown for

finite state spaces which is not the case here. Moreover, Theorem 4.1 here, also serves to show

stability of the proposed scheme, instead of just being a step in the convergence analysis as in [6].

Theorem 4.1 Almost surely, (µ1
m, µ

2
m, θ(m),4(m)), m ≥ 0, converges in P(Rk+d)2 × C × E

to the compact set {(µθ−δ4, µθ+δ4, θ,4) | θ ∈ C,4 ∈ E}.

Proof The proof proceeds through several steps. For f ∈ Cb(R
q+d), define sequences

{Zk(m),m ≥ 1}, k = 1, 2, by

Zk(m) =
m−1∑
j=0

b(j)−1

 nj+1∑
i=nj+1

a(i)
(
f(Xk(i), Y k(i))−E

[
f(Xk(i), Y k(i)) | Fi−1

]) . (4.2)

Then {Zk(m),Fnm}, k = 1, 2, are zero mean, square integrable martingale sequences. Let us

represent their quadratic variation processes by {< Zk > (m)}, k = 1, 2, respectively. Then by

definition,

< Zk > (m) =
m−1∑
j=0

E
[
(Zk(j + 1)− Zk(j))

2 | Fnj
]
+E

[
Zk(0)

2
]
, (4.3)

with< Zk > (∞) = lim
m→∞

< Zk > (m). For ease of exposition, let us denote Fk(i)
4
= f(Xk(i), Y k(i)),

k = 1, 2, in this part of the proof. Note that

E
[
(Zk(j + 1)− Zk(j))

2 | Fnj
]

= E

 1

b(j)2

 nj+1∑
i=nj+1

a(i) (Fk(i) −E [Fk(i) | Fi−1])

2

| Fnj



= E

 1

b(j)2

nj+1∑
i=nj+1

a(i)2 (Fk(i)−E [Fk(i) | Fi−1])
2 | Fnj


11

+E

 1

b(j)2

nj+1∑
i,l=nj+1, i6=l

a(i)a(l) (Fk(i)−E [Fk(i) | Fi−1]) (Fk(l)−E [Fk(l) | Fl−1]) | Fnj

 .
The second term on the RHS above can be written as

E

 1

b(j)2

nj+1∑
i,l=nj+1, i>l

E [a(i)a(l) (Fk(i)−E [Fk(i) | Fi−1]) (Fk(l)−E [Fk(l) | Fl−1]) | Fi−1] | Fnj



+E

 1

b(j)2

nj+1∑
i,l=nj+1, i<l

E [a(i)a(l) (Fk(i)−E [Fk(i) | Fi−1]) (Fk(l)−E [Fk(l) | Fl−1]) | Fl−1] | Fnj


= 0 a.s.,

since for i > l, Fl ⊆ Fi−1 and similarly Fi ⊆ Fl−1 for i < l. Thus

E
[
(Zk(j + 1)− Zk(j))

2 | Fnj
]

=
1

b(j)2

nj+1∑
i=nj+1

a(i)2E

[(
f(Xk(i), Y k(i)) −E

[
f(Xk(i), Y k(i))

])2
| Fnj

]
. (4.4)

Now since f is a bounded and continuous function, there exist constants K1,K
′
1 > 0 such that

< Zk > (m) ≤ K1

m−1∑
j=0

1

b(j)2

nj+1∑
i=nj+1

a(i)2 ≤ K ′1

m−1∑
j=0

1

b(j)2

(
1

nj
−

1

nj+1

)
,

the latter inequality follows from the fact that
n∑
i=0

a(i)2 ≈ 1−
1

n
. Also note that

n∑
i=0

a(i) ≈ ln(n),

and
n∑
i=0

b(i) ≈ n1−α. Now, from the definition of {nm,m ≥ 0},
nm+1∑
i=0

a(i) ≈
m∑
i=0

b(i). Thus, ln(nm+1)

≈ m1−α. Hence, nm+1 ≈ exp(am1−α) for some a > 0. Thus, < Zk > (∞) < ∞. Hence, by

Proposition V11.2.3(c) of [26], {Zk(m),m ≥ 1}, k = 1, 2, are a.s. convergent martingale sequences.

Now let us consider {Z1(m)}. From the fact that
∑nm+1

j=nm+1 a(j)/b(m) → 1, as m → ∞ and from

(3.1), ∫ (
f(x, y)−

∫
f(x′, y′)pθ(m)−δ4(m)(x, y; dx

′, dy′)

)
µ1
m(dx, dy)→ 0 a.s. (4.5)

Now, since the above holds for all f ∈ Cb(R
q+d), it holds in particular for those f ∈ Cb(R

q+d) that

are in a countable convergence determining class of P(R̃q+d). Hence, outside a set of measure zero,

any limit point of (µ1
m, θ(m)− δ4(m)), m ≥ 0, in P(R̃q+d) × C must be of the form (bδ∞ + (1 −

b)µ, θ − δ4). In the above, b ∈ [0, 1], where when b < 1, µ must satisfy∫
f(x, y)µ(dx, dy) =

∫ ∫
f(x′, y′)pθ−δ4(x, y; dx′, dy′)µ(dx, dy).

Thus for b < 1, µ must be of the form µθ−δ4. For b = 1, µ is arbitrary and hence can be set

to be µθ−δ4 itself. Now, note that if in the definition of the sequences {Zk(m)}, k = 1, 2, the

function f(., .) is replaced by the Liapunov function V (., .), the sequences {Zk(m)} continue to

be martingale sequences. Also, from Assumption (A3.2) and (4.4), it is clear that the quadratic

12

variation process of such a martingale would converge as well. We then obtain (4.5) with function

V replacing f . Now define

φθ−δ4(x, y)
4
=

∫
V (x′, y′)pθ−δ4(x, y; dx′, dy′)− V (x, y),

with φθ−δ4({∞}) = −ε0, ∀θ ∈ C. Here ε0 is the same as in Assumption (A3.3). Now, as a conse-

quence of Assumption (A3.3), the map (θ, x, y)→ φθ(x, y) : C×R̃q+d →R is upper semicontinuous

and bounded from above. Further, if (µ1
m, θ(m) − δ4(m)) → (bδ∞ + (1 − b)µθ−δ4, θ − δ4) along

a subsequence, then from (4.5) with f replaced by V , we have,

0 = lim sup
m→∞

∫
φθ(m)−δ4(m)dµ

1
m ≤ (1 − b)

∫
φθ−δ4dµθ−δ4 − bε0, (4.6)

along the same subsequence. Now, it is clear from the definitions of φθ−δ4 and µθ−δ4 above that∫
φθ−δ4dµθ−δ4 = 0.

Thus from (4.6), we have 0 ≤ −bε0, which cannot happen unless b = 0. A similar argument holds

for the sequence {µ2
m}. Thus {µkm}, k = 1, 2, are tight in P(Rq+d) and have limit points of the

form µ1
θ−δ4 or µ2

θ+δ4. Now by Lemma 2.1, the maps θ → µ1
θ−δ4 and θ → µ2

θ+δ4, k = 1, 2, are

continuous. The claim now follows from the fact that any continuous image of a compact set is

compact. 2

The final step is to show convergence of the algorithm (3.5) to the set of local minima. The

o.d.e. technique is commonly used to prove convergence of stochastic approximation algorithms.

Here, we show that the algorithm (3.5) asymptotically converges to the stable points of the o.d.e.

(4.7). For any function H : RN →R, let ∇H(x)
4
= [∇1H(x), . . . ,∇NH(x)]T represent the gradient

of H at the point x ∈ RN . Let Z̃(t)
4
= (Z̃1(t), . . . , Z̃N (t)) ∈ RN , with Z̃i(t), i = 1, . . . ,N , satisfying

the o.d.e. .

Z̃i (t) = π̃i(−∇iJ(Z̃(t))), t ≥ 0, Z̃(0) ∈ C, (4.7)

where for any bounded, continuous, real valued function v(.),

π̃i(v(y)) = lim
0<η→0

(
πi(y + ηv(y)) − πi(y)

η

)
.

For x = (x1, . . . , xN)T , let π̃(x) = (π̃1(x1), . . . , π̃N (xN))T . The operator π̃(.) forces the o.d.e. (4.7)

to evolve within the constraint set C. Let K
4
= {θ ∈ C | π̃(∇J(θ)) = 0}.

We recall here a key result from [18] stated as Lemma 4.1 below. Consider an o.d.e. in RN

.
x (t) = F (x(t)), (4.8)

which has an asymptotically stable attracting set Ḡ. Let Ḡε denote the ε-neighborhood of Ḡ viz.,

Ḡε
4
= {x | ∃x′ ∈ G s.t. ‖ x− x′ ‖≤ ε}, where ‖ · ‖ represents the sup norm. For T > 0, γ > 0, say

that y(·) is a (T, γ)-perturbation of (4.8) if there exist real numbers 0 = T0 < T1 < T2 < · · ·, such

that Ti+1−Ti ≥ T , ∀i, and on each interval [Ti, Ti+1], there exists a solution xi(·) of (4.8) such that

sup
t∈[Ti,Ti+1]

∣∣∣xi(t)− y(t)∣∣∣ < γ.

13

The following result is adapted from [18], pp.339. The proof of this can be found in the appendix

of [10].

Lemma 4.1 For given ε > 0, T > 0, there exists a γ̄ such that for all γ ∈ [0, γ̄], any (T, γ)-

perturbation of (4.8) converges to Ḡε. 2

For fixed η > 0, let Kη 4= {θ ∈ C | ∃θ′ ∈ K s.t. ||θ − θ′|| ≤ η} represent the set of points within

a distance η of the set K. As a direct consequence of Lemma 4.1, for any given η, T > 0, ∃γ̄ > 0

s.t. ∀γ ∈ [0, γ̄], any (T, γ)-perturbation of (4.7) shall converge to Kη. Finally, Theorem 4.2 shows

that given η > 0, there exists a δ̄ > 0 such that the algorithm SPSA-1 for all δ ≤ δ̄, converges to

Kη a.s. We only sketch the proof of this theorem here since the details are similar to that in [6].

Theorem 4.2 Given η > 0, ∃δ̄ > 0 such that for any δ ∈ (0, δ̄], the algorithm (3.5) converges

to Kη almost surely.

Proof (sketch) Note that the algorithm (3.5) can be written as:

θi(m+ 1) = πi

θi(m) + b(m)

∑nm+1

j=nm+1 a(j)

(
h(Y 1

j)−h(Y 2
j)

2δ4m,i

)
b(m)

 .
Now from the fact that

∑nm+1

j=nm+1 a(j)/b(m)→ 1 as m→∞ and using the conclusions of Theorem

4.1, the algorithm can be shown to asymptotically exhibit the same behaviour as the following

algorithm:

θi(m+ 1) = πi

(
θi(m) + b(m)

(
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i

))
. (4.9)

Now construct martingale sequences {Ni(p)}, i = 1, . . . ,N , as follows: For i = 1, . . . ,N ,

Ni(p) =
p∑
j=0

b(j)(
J(θ(j) − δ4(j)) − J(θ(j) + δ4(j))

2δ4j,i

−E

[
J(θ(j)− δ4(j)) − J(θ(j) + δ4(j))

2δ4j,i
| F ′j

]
),

where, for j ≥ 1, F ′j
4
= σ(θ(0), θ(1), . . ., θ(j), 4(0), 4(1), . . ., 4(j − 1)) represents the filtration

and the expectation E[·] is w.r.t. the common expectation of 4j,i. Note that 4(j) is independent

of F ′j . It can now be easily shown (see [6]) that sequences {Ni(p)}, i = 1, . . . ,N , converge a.s.,

as p → ∞. Hence, one could replace algorithm (4.9) by the following equivalent algorithm: For

i = 1, . . . ,N ,

θi(m+ 1) = πi

(
θi(m) + b(m)E

[
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i
| F ′j

])
. (4.10)

Finally, it can be shown that as δ → 0,∣∣∣∣∣E
[
J(θ(j)− δ4(j)) − J(θ(j) + δ4(j))

2δ4j,i
| F ′j

]
−∇iJ(θ(j))

∣∣∣∣∣→ 0.

14

Thus (4.10) can be shown to asymptotically exhibit analogous behaviour as the following algorithm:

For i = 1, . . . ,N ,

θi(m+ 1) = πi (θi(m) + b(m) (−∇iJ(θ(m)))) .

The last finally can be shown to asymptotically track the stable points of the o.d.e. (4.7). 2

Remark Note that K is the set of all critical points of (4.7), and not just the set of local

minima. However, points in K that are not local minima will be unstable equilibria and since our

algorithm is of the gradient descent type, it will converge a.s. to the η-neighborhood of K0(
4
= the

set of local minima of J(.)) ⊂ K.

5 Convergence Analysis of SPSA-2

Consider now the stochastic approximation scheme SPSA-2. We assume (A1), (A2′) and (A3) in this

section. Recall that {(X−(l), Y −(l))} and {(X+(l), Y +(l))} are the two parallel simulations respec-

tively governed by {θ̃(l)−δ4̃(l)} and {θ̃(l)+δ4̃(l)}, where θ̃(l) = θ

([
l

L

])
and 4̃(l) = 4

([
l

L

])
,

and where

[
l

L

]
represents integral part of

l

L
. In other words, if l has the form l = nL+m, where

m ∈ {0, 1, . . . , L − 1} and n is an integer, then

[
l

L

]
= n. Note that by definition, {θ̃(l)} (resp.

{4̃(l)}) takes values in the compact set C (resp. E). Define P(Rq ×Rd×C ×E)-valued processes

{µ−n } and {µ+
n } by

µ−n (A1 ×A2 ×B ×D) =
1

n

n−1∑
m=0

I{X−(m) ∈ A1, Y
−(m) ∈ A2, θ̃(m) ∈ B, 4̃(m) ∈ D}

and

µ+
n (A1 ×A2 ×B ×D) =

1

n

n−1∑
m=0

I{X+(m) ∈ A1, Y
+(m) ∈ A2, θ̃(m) ∈ B, 4̃(m) ∈ D},

for Borel sets A1 ⊂ Rq, A2 ⊂ Rd, B ⊂ C and D ⊂ E. Let R̃q+d = Rq+d∪{∞} denote the one point

compactification of Rq+d. The following theorem establishes tightness of sequences {µ−n } and {µ+
n }

in P(Rq ×Rd×C ×E). The proof follows in a somewhat similar manner as the proof of Theorem

4.1. Here one first shows under the martingale stability theorem of [25], pp.53 and Assumption

(A2′) that {µ−n } and {µ+
n } are tight in P(R̃q+d×C ×E) which is a compact Polish space. Finally,

using the Liapunov function V (., .) in Assumption (A3) and again the martingale stability theorem

of [25], pp.53, one shows that {µ−n } and {µ+
n } are in fact tight in P(Rq ×Rd × C × E) itself. We

do not present the proof of Theorem 5.1 here so as to avoid repetition.

Theorem 5.1 Almost surely, {µ−n } and {µ+
n } are tight sequences in P(Rq ×Rd × C ×E). 2

We now proceed with the rest of the analysis. Let for k ≥ 1, F ′k
4
= σ(θ(0), θ(1), . . ., θ(k), 4(0),

4(1), . . ., 4(k − 1)). Then 4(k) is independent of F ′k, ∀k ≥ 1. Define sequences {N−i (p), p ≥ 1},

{N+
i (p), p ≥ 1}; i = 1, . . . ,N , as follows:

N−i (p) =
p∑
j=0

a(j)

(
J(θ(j)− δ4(j))

4j,i
−E

[
J(θ(j)− δ4(j))

4j,i
| F ′j

])
,

15

and

N+
i (p) =

p∑
j=0

a(j)

(
J(θ(j) + δ4(j))

4j,i
−E

[
J(θ(j) + δ4(j))

4j,i
| F ′j

])
.

Then, we have

Lemma 5.1 For every i = 1, . . . ,N , {N−i (p)} and {N+
i (p)} converge a.s.

Proof Follows in a similar manner as Lemma A.2 of [6]. 2

Now let s(0) = 0, s(n) =
n−1∑
i=0

a(i), n ≥ 0. Let4t,i = 4n,i, for t ∈ [s(n), s(n+1)], n ≥ 1. Further,

let 4(t) = (4t,1, . . . ,4t,N)T . Recall that for any bounded, continuous, real valued function v(·),

π̃i(v(y)) = lim
0<η→0

(
πi(y + ηv(y)) − πi(y)

η

)
.

Also, for x = (x1, . . . , xN)T ∈ RN , π̃(x) = (π̃1(x), . . . , π̃N (x))T . Consider the following o.d.e.: For

i = 1, . . . ,N ,
.
θi (t) = π̃i

(
E

[
J(θ(t)− δ4(t))− J(θ(t) + δ4(t))

2δ4t,i

])
, (5.1)

where, the operator E[·] in (5.1) represents the expectation w.r.t. the common c.d.f. of {4t,i}.

Recall that L represents the number of data aggregation epochs in between two successive parameter

updates in SPSA-2. Let c(i) = b(i)L. It is easy to see that∑
i

c(i) =∞,
∑
i

c(i)2 <∞, a(i) = o(c(i)).

Here, we shall consider {a(i)} and {c(i)} to be the two step-size sequences (as opposed to {a(i)}

and {b(i)} in SPSA-1). Let t(0) = 0, t(n) =
∑n−1
i=0 c(i), n ≥ 1. Let z−(·), z+(·) : [0,∞) → R

and θ̄(·) : [0,∞) → C denote the continuous functions obtained by setting z−(t(n)) = Z−L (n),

z+(t(n)) = Z+
L (n), θ̄(t(n)) = θ(n) respectively ∀n, with linear interpolation on [t(n), t(n + 1)],

n ≥ 0. Consider the system of o.d.e.’s
.
θ (t) = 0,

.
z
−

(t) = J(θ(t)− δ4(t)) − z−(t),

.
z

+
(t) = J(θ(t) + δ4(t)) − z+(t). (5.2)

We now have

Theorem 5.2 For any T, δ > 0, (z−(t(n) + .), z+(t(n) + .), θ(t(n) + .)) is a bounded (T, δ)-

perturbation of (5.2) for n sufficiently large.

Proof Note that the algorithm SPSA-2 (cf. (3.7)) can be rewritten as follows: For i = 1, . . . ,N ,

θi(n+ 1) = πi

(
θi(n) + a(n)

[
Z−L (n)− Z+

L (n)

2δ4n,i

])
,

Z−L (n+ 1) = Z−L (n) + c(n)
1

L

L−1∑
m=0

(h(Y −m (n+ 1)) − Z−m(n+ 1)),

16

Z+
L (n+ 1) = Z+

L (n) + c(n)
1

L

L−1∑
m=0

(h(Y +
m (n+ 1)) − Z+

m(n+ 1)). (5.3)

From {Z−m(n)} and {Z+
m(n)}, n ≥ 0, m ∈ {0, 1, . . . , L − 1} defined in (3.7), we obtain sequences

{Z−(l)} and {Z+(l)} as follows: First write l as l = nL+m for some n ≥ 0 andm ∈ {0, 1, . . . , L−1}.

Then set Z−(l) = Z−(nL+m)
4
= Z−m(n). Similarly set Z+(l) = Z+(nL+m)

4
= Z+

m(n). Now from

the second and third equations in (3.7), note that Z−(l + 1) (resp. Z+(l + 1)) is the convex

combination of h(.) and Z−(l) (resp. Z+(l)). Thus {Z−(l)} (resp. {Z+(l)}) are uniformly

bounded sequences with upper bound depending on h and ‖ Z−(0) ‖ (resp. ‖ Z+(0) ‖). Now

{Z−L (n)} (resp. {Z+
L (n)}) is just a subsequence of {Z−(l)} (resp. {Z+(l)}) and hence is uniformly

bounded (irrespective of the value of L) as well. Before we proceed further, let us look at the term

1

L

L−1∑
m=0

Z−m(n+ 1) on the RHS of the second equation in (5.3). We will show that it has the same

asymptotic behaviour as Z−L (n). A similar argument shall hold for the term
1

L

L−1∑
m=0

Z+
m(n+ 1) on the

RHS of the third equation in (5.3). First note that the terms Z−0 (n+1), Z−1 (n+ 1),...,Z−L−1(n+ 1)

are all governed by the same parameter update viz., (θ(n + 1) − δ4(n + 1)). Now recall that for

m ∈ {0, 1, . . . , L− 1}, Z−m(n+ 1) = Z−((n+ 1)L +m). For notational simplicity let (n+ 1)L = k

in the rest of the proof. Now from the second equation in (3.7),

Z−(k + 1) = (1− b(n))Z−(k) + b(n)h(Y −(k))

Similarly,

Z−(k + 2) = (1− b(n))Z−(k + 1) + b(n)h(Y −(k + 1))

= (1− b(n))2Z−(k) + (1− b(n))b(n)h(Y −(k)) + b(n)h(Y −(k + 1))

Proceeding in this manner, one obtains

Z−(k+L−1) = (1−b(n))L−1Z−(k)+(1−b(n))L−2b(n)h(Y −(k))+(1−b(n))L−3b(n)h(Y −(k+1))+· · ·

+(1− b(n))b(n)h(Y −(k + L− 3)) + b(n)h(Y −(k + L− 2))

Now,

1

L

L−1∑
m=0

Z−(k +m) =
1

L
[(1 + (1− b(n)) + · · ·+ (1− b(n))L−1)Z−(k)

+(b(n) + (1− b(n))b(n) + · · ·+ (1− b(n))L−2b(n))h(Y −(k))

+(b(n) + (1− b(n))b(n) + · · ·+ (1− b(n))L−3b(n))h(Y −(k + 1))

+ · · ·+ b(n)h(Y −(k + L− 2))]

=
1

L
[(

1− (1− b(n))L

b(n)
)Z−(k) + (1− (1− b(n))L−1)h(Y −(k)) + (1− (1− b(n))L−2)h(Y −(k + 1))+

· · ·+ b(n)h(Y −(k + L− 2))] (5.4)

Now applying standard martingale arguments (as in Lemma 4.3 of [5]) in the second (resp. third)

equation in (3.7), the algorithm (3.7) can be shown to behave asymptotically (as n, k →∞) in the

17

same manner as an analogous algorithm that has J(θ(n + 1) − δ4(n + 1)) (resp. J(θ(n + 1) +

δ4(n+ 1))) in place of the terms h(Y −(k)), h(Y −(k + 1)),. . . ,h(Y −(k+L− 2)) (resp. h(Y +(k)),

h(Y +(k + 1)),. . . ,h(Y +(k + L − 2))). Thus one can in particular consider the latter algorithm in

place of (3.7). Upon simplification now (with a slight abuse of notation), the RHS of (5.4) can be

replaced by

=
1

L
[(

1− (1− b(n))L

b(n)
)Z−(k) + LJ(θ(n+ 1)− δ4(n+ 1))

+
(1− b(n))L − 1

b(n)
J(θ(n+ 1)− δ4(n+ 1))].

Now,

‖
1

L

L−1∑
m=0

Z−(k +m)− Z−(k) ‖≤‖
1

L

L−1∑
m=0

Z−(k +m)−
1− (1− b(n))L

Lb(n)
Z−(k) ‖

+ ‖

(
1− (1− b(n))L

Lb(n)
− 1

)
Z−(k) ‖

≤‖ LJ(θ(n+ 1)− δ4(n+ 1)) +
(1− b(n))L − 1

b(n)
J(θ(n+ 1)− δ4(n+ 1))

+ ‖

(
1− (1− b(n))L

Lb(n)
− 1

)
Z−(k) ‖ .

Consider a real valued function f(x) =

(
1− (1− x)L

x

)
. By L’Hospital’s rule, it is easy to see that

lim
|x|→0

f(x) = L. It is thus clear that lim
b(n)→0

(
1− (1− b(n))L

b(n)

)
= L. Hence,

‖
1

L

L−1∑
m=0

Z−(k +m)− Z−(k) ‖−→ 0, as k →∞.

Finally, the first equation in (5.3) can be rewritten as

θi(n+ 1) = πi

(
θi(n) + c(n)

a(n)

c(n)

[
Z−L (n)− Z+

L (n)

2δ4n,i

])
(5.5)

Moreover, since a(n) = o(c(n)), applying standard arguments [10] to (5.5) and the second and third

equations in (5.3), one obtains the claim. 2

Define ẑ−(·), ẑ+(·) : [0,∞)→R and θ̂(·) : [0,∞)→ C by ẑ−(s(n)) = Z−L (n), ẑ+(s(n)) = Z+
L (n),

θ̂(s(n)) = θ(n) respectively ∀n, with linear interpolation on intervals [s(n), s(n+ 1)], n ≥ 0.

Lemma 5.2 For any T , δ > 0, θ̂(s(n)+.) is a bounded (T, δ)-perturbation of (5.1) for sufficiently

large n.

Proof Rewrite the first equation in (3.7) as follows: For i = 1, . . . ,N ,

θi(m+ 1) = πi(θi(m) + a(m)E

[
J(θ(m)− δ4(m))− J(θ(m) + δ4(m))

2δ4m,i
| F ′m

]

+η1(m) + η2(m)), (5.6)

18

where,

η1(m) = a(m)(
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i

−E

[
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i
| F ′m

]
),

and

η2(m) = a(m)

(
Z−L (m)− Z+

L (m)

2δ4m,i
−
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i

)
.

Now, η1(m) becomes asymptotically negligible by Lemma 5.1 and η2(m) vanishes asymptotically as

a consequence of Lemma 4.1 applied to Theorem 5.2. The algorithm (3.7) can then be viewed as a

discretization of the o.d.e. (5.1) except that as mentioned earlier, it has in addition asymptotically

diminishing error terms η1(m) and η2(m). Now a standard argument as in pp.191-194 of [20],

proves the claim. 2

Lemma 5.3 For any θ(m) ∈ C, for all i = 1, . . . ,N ,

lim
δ↓0

∣∣∣∣∣E
[
J(θ(m)− δ4(m)) − J(θ(m) + δ4(m))

2δ4m,i
| F ′m

]
−∇iJ(θ(m))

∣∣∣∣∣ = 0.

Proof Follows in a similar manner as Lemma A.5 of [6]. 2

Recall that the set K
4
= {θ ∈ C | π̃(∇J(θ)) = 0} is the asymptotically stable attractor set for

the o.d.e. (4.7) with J(·) itself serving as the strict Liapunov function. Further, Kη 4= {θ ∈ C | ‖

θ − θ0 ‖< η, θ0 ∈ K} represents the set of points in C that are within an η-distance from the set

K. We now have

Lemma 5.4 Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0, δ0], K
η is an asymptotically

stable attractor set for the o.d.e. (5.1).

Proof As already mentioned, J(·) itself serves as a strict Liapunov function for (4.7) outside

the set K. Now by Lemmas 5.2 and 5.3, for sufficiently small δ, J(·) will also serve as a strict

Liapunov function for (5.1) outside the set Kη. 2

Finally, we come to the main result of this section.

Theorem 5.3 Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0, δ0], θ(n)→ Kη a.s.

Proof Follows from Lemmas 4.1, 5.2 and 5.4. 2

This completes the convergence analysis of both the algorithms SPSA-1 and SPSA-2.

6 Numerical Results

In this section, we demonstrate our algorithms SPSA-1 and SPSA-2 by means of a simple queueing

system and numerically compare their performance with the algorithms in [4] and [5], (N + 1)-

Simulation FDSA-1, Two-Simulation FDSA-1 and (N + 1)-Simulation FDSA-2. We consider the

two-node queueing network shown in Figure 1 below.

There are two external arrival streams (one each) to the two nodes. Arrivals to the nodes from

these streams follow independent Poisson processes with rates λ1 and λ2. The service times are

19

 q = 1-p

p

λ 1 λ 2

µ 1 µ 2

Node 1 Node 2

Figure 1: Queueing Network

exponentially distributed with rates µ1(θ1) and µ2(θ2), respectively, where θ1 and θ2 are parameter

vectors at the two nodes. The exact dependence of µ1 and µ2 on θ1 and θ2, respectively, is given

below. A customer after service at Node 1 joins the queue at Node 2. After service at Node 2, a

customer either departs with probability p or is fed back to Node 1 with the remainder probability

of 1 − p. Let W i
j (θi), i = 1, 2, j = 1, 2, . . . , represent the waiting time of the jth customer at the

ith node when the parameter value for the ith node is θi. Our aim is to find the optimum (joint)

parameter vector (θ1, θ2) within the constraint set C which minimizes the sum of the stationary

mean waiting times in the two queues. The constraint set C is defined as follows: Given M > 0,

each component θji , i = 1, 2, j = 1, . . . ,M , takes values in the interval
[
θ
j
i,min, θ

j
i,max

]
and so the set

C is defined as

C =
[
θ1

1,min, θ
1
1,max

]
× . . .×

[
θM1,min, θ

M
1,max

]
×
[
θ1

2,min, θ
1
2,max

]
× . . .×

[
θM2,min, θ

M
2,max

]
.

We assume that both θ1 and θ2 are vectors of the same dimension M . Note that M = N/2. Thus,

θi
4
= (θ1

i , . . . , θ
M
i)T , i = 1, 2, and the whole parameter vector is represented as θ

4
= (θ1

1, . . . , θ
M
1 ,

θ1
2,. . .,θ

M
2)T . Let θ̄

4
= (θ̄1

1, . . . , θ̄
M
1 , θ̄1

2, . . . , θ̄
M
2)T represent the target parameter (we will explain this

in a moment). The dependence of the service times on the parameters has the following form:

µi(θi) =
µ̄i(

1 +
∏M
j=1

∣∣∣θji − θ̄ji ∣∣∣) , i = 1, 2,

where µ̄i, i = 1, 2, is assumed to be constant. Note that the cost, which is the sum of the stationary

mean waiting times in the two queues, will be minimized if the service rates are maximized. The

latter clearly occurs at θ = θ̄. Thus we know that the optimum for our problem lies at θ̄. Let θji (0),

i = 1, 2, j = 1, . . . ,M , represent the initial (starting) values of the parameter components.

For the simulation experiments, we select the following step-size sequences ({a(n)} and {b(n)})

for all the five schemes: a(0) = b(0) = 1, a(n) = 1/n, b(n) = 1/n2/3, n ≥ 1. Moreover, for SPSA-2,

we choose L = 100 in the experiments. Thus data is aggregated in SPSA-2 over 100 instants

in between two successive parameter updates. For both SPSA-1 and SPSA-2, we choose random

variables 4n,i, i = 1, . . . ,N , n ≥ 0, to be i.i.d., Bernoulli distributed viz., 4n,i = ±1 w.p. 1/2,

i = 1, . . . ,N , n ≥ 0. We now present the simulation results. We consider the following set up for

20

all the three algorithms.

λ1 = 0.2,

λ2 = 0.1,

µ̄1 = 87,

µ̄2 = 92,

p = 0.4,

θji,min = 0.1, i = 1, 2, j = 1, . . . ,M ,

θji,max = 0.6, i = 1, 2, j = 1, . . . ,M ,

θ̄ji = 0.3, i = 1, 2, j = 1, . . . ,M,

θj1(0) = 0.2, j = 1, . . . ,M ,

θj2(0) = 0.4, j = 1, . . . ,M .

We consider two values of M for our experiments: M = 5 and M = 20. Thus the parameter

vectors we consider in the simulations using the two schemes have dimensions 10 and 40 respectively.

We consider a total of 3× 105 data aggregation epochs for all the five schemes. The corresponding

total number of parameter updates for each algorithm (for M = 5 and 20 respectively) is shown in

Table 1 below.

Table 1: Number of Parameter Updates in 3× 105 epochs

Algorithm No. of Parameter No. of Parameter
Updates for M = 5 Updates for M = 20

(N + 1)-FDSA-2 3× 105 3× 105

SPSA-2 3× 103 3× 103

SPSA-1 92 92
(N + 1)-FDSA-1 92 92

Two-FDSA-1 9
2

10
2
12

40

Note that whereas there are 3 × 105 parameter updates in (N + 1)-Simulation FDSA-2, the

corresponding number in SPSA-2 is 3× 103 (since L = 100). Moreover, the corresponding number

in SPSA-1 and (N+1)-Simulation FDSA-1 is only 92. This is so because for the step-size sequences

considered in the experiments viz., a(0) = b(0) = 1, a(n) = 1/n, b(n) = 1/n2/3, n ≥ 1, the values n92

and n93 in {nm,m ≥ 1} (defined after (3.2)) are as follows: n92 ≈ 2.94 × 105 and n93 ≈ 3.09 × 105

respectively. Finally, in Two-Simulation FDSA-1, the number of parameter updates for M = 5

(mentioned in Table 1) is 9
2

10
. It is written in this manner to indicate that in addition to the

9 times that the whole parameter is updated in 3× 105 data aggregation epochs, the first two

components of the parameter vector are also updated for a 10th time. Similarly, for M = 20, the

number of parameter updates in Two-Simulation FDSA-1 is 2
12

40
.

In what follows, we shall compare the performance of our SPSA algorithms (SPSA-1 and SPSA-

2) with the algorithms of [4] and [5] (viz., (N + 1)-Simulation FDSA-1, Two-Simulation FDSA-1

and (N + 1)-Simulation FDSA-2), in terms of speed of convergence. We choose the Euclidean

distance between the current parameter update and the target parameter value as the performance

metric and plot that w.r.t. the number of data aggregation epochs for all the five schemes. The

21

Euclidean distance d(θ, θ̄) is defined by

d(θ, θ̄) =

((
θ1

1 − θ̄
1
1

)2
+ · · ·+

(
θM1 − θ̄

M
1

)2
+
(
θ1

2 − θ̄
1
2

)2
+ · · · +

(
θM2 − θ̄

M
2

)2
)1/2

.

We performed five independent replications of each experiment using different seeds. In Figures

2 and 3, the mean trajectories from these experiments are plotted for all five schemes, for both

the 10-dimensional and the 40-dimensional parameter cases respectively. The standard error from

these replications for the five schemes for both cases was computed at the end of these simulations,

and is indicated in Table 2.

As expected, algorithms SPSA-1 and SPSA-2 show significantly better performance than the

rest of the algorithms. Also, as expected, Two-Simulation FDSA-1 shows the worst performance

amongst the five algorithms. It is interesting to observe that for the 10-dimensional parameter

case, SPSA-1 shows the best performance amongst the five algorithms. Also, for this case, the

performance of (N + 1)-Simulation FDSA-2 is nearly as bad as that of Two-Simulation FDSA-1.

However, for the 40-dimensional parameter case, it is SPSA-2 (and not SPSA-1) that shows the

best performance. Moreover, the performance of (N + 1)-Simulation FDSA-2 for this case is close

to that of (N + 1)-Simulation FDSA-1, and is considerably better than that of Two Simulation

FDSA-1.

The above seems to indicate that for parameter dimensions that are not very high, SPSA-1

(resp. variants of SPSA-1 in [4]) performs better than SPSA-2 (resp. (N + 1)-Simulation analogue

of SPSA-2 in [5]). However, for cases where the parameter dimension is high, the opposite is true.

The reason for this could be that SPSA-1 and its variants require that the parameter be held

fixed over intervals of increasing size. Also, higher dimensional parameters would typically require

several updates before convergence is achieved.

We observed that when L = 1 (i.e., no data aggregation in between successive parameter

updates), SPSA-2 does not exhibit good performance. As already mentioned in Section 3, this is

probably because of the fact that since SPSA-2 uses only two parallel simulations, the system is

unable to adapt to the new parameter update before it changes again. Data aggregation over L

epochs (for L > 1) on the other hand leads to additional averaging and hence improved performance.

The choice of L is completely arbitrary though. We observed, however, that the performance

somewhat degrades when L is either too low or too high.

We observed that using SPSA-1, for M = 5 (i.e., number of dimensions of the parameter = 10),

the Euclidean distance between the current update and the optimum parameter became less than

0.10 (on an average of five replications) from its 28th parameter update onwards (after only 3183

data aggregation epochs). Using SPSA-2, the same is achieved from its 296th parameter update

(after 2.96 × 104 data aggregation epochs). However, using SPSA-1 (after running the algorithm

long enough), it was observed that for M = 20 (i.e., number of dimensions of the parameter = 40),

the same distance became less than 0.10 after its 102nd parameter update (after nearly 4.75× 105

data aggregation epochs). The same is achieved in SPSA-2 from its 829th update onwards (or after

only 8.29 × 104 data aggregation points).

It should be noted that for the same number of data aggregation epochs, SPSA-1, SPSA-2 and

Two-Simulation FDSA-1 require the least number of simulations. In particular, for 3 × 105 data

aggregation epochs, the algorithms SPSA-1, SPSA-2 and Two-Simulation FDSA-1, each require

22

2× 3× 105 simulations for both the 10-parameter and the 40-parameter vectors, whereas, (N +1)-

Simulation FDSA-1 and (N +1)-Simulation FDSA-2 require 11×3×105 simulations (each) for the

10-parameter and 41× 3× 105 simulations for the 40-parameter cases, respectively.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Data Aggregation Epochs

Di
st

an
ce

 fr
om

 O
pt

im
um

SPSA−2
SPSA−1
(N+1)−FDSA−1
(N+1)−FDSA−2
Two−FDSA−1

Figure 2: 10-Parameter Vector

Table 2: Distance after 3× 105 Data Aggregation Epochs

Algorithm Mean ± Standard Error Mean ± Standard Error
(10-Parameter Vector) (40-Parameter vector)

SPSA-1 0.011 ± 0.001 0.121 ± 0.03
SPSA-2 0.051 ± 0.02 0.063 ± 0.02

(N + 1)-FDSA-1 0.227 ± 0.03 0.492 ± 0.06
(N + 1)-FDSA-2 0.315 ± 0.003 0.507 ± 0.05

Two-FDSA-1 0.317 ± 0.04 0.782 ± 0.05

On a Sun Ultra10 Unix workstation, for M = 5, it took about 2 minutes using SPSA-1 for the

Euclidean distance from optimum to become less than 0.05. SPSA-2 required about 3-4 minutes

for the same. On the other hand, for M = 20, SPSA-1 took about 15 minutes, while SPSA-2

required only about 5 minutes for the same to happen. (N + 1)-Simulation FDSA-1 and (N + 1)-

Simulation FDSA-2 (along with Two-Simulation FDSA-1) took orders of magnitude more time than

SPSA-1 and SPSA-2. For M = 20, after almost 6.5 × 107 data aggregation epochs and running

for nearly 21 hours, the separation from optimum of (N + 1)-Simulation FDSA-1 was about 0.44,

while that of (N + 1)-Simulation FDSA-2 was about 0.42. As expected, Two-Simulation FDSA-1

showed the worst performance. For M = 20, after 8
20

40
parameter updates (or nearly 5 × 108

data aggregation epochs) and running for almost 18 hours, the Euclidean distance from optimum

using Two-Simulation FDSA-1 was still about 0.70. Thus, our simulation experiments confirm that

both algorithms SPSA-1 and SPSA-2 presented here, perform orders of magnitude faster than the

23

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Data Aggregation Epochs

Di
st

an
ce

 fr
om

 O
pt

im
um

SPSA−2
SPSA−1
(N+1)−FDSA−1
(N+1)−FDSA−2
Two−FDSA−1

Figure 3: 40-Parameter Vector

algorithms (N +1)-Simulation FDSA-1, Two-Simulation FDSA-1 and (N +1)-Simulation FDSA-2

of [4] and [5].

7 Conclusions

We developed two simultaneous perturbation stochastic approximation (SPSA) algorithms (SPSA-

1 and SPSA-2) for simulation optimization of hidden Markov models. Both of these algorithms use

only two parallel simulations (each) and are generalized variants of the two-timescale stochastic

approximation algorithms of [4] and [5] ((N + 1)-Simulation FDSA-1, Two-Simulation FDSA-1

and (N + 1)-Simulation FDSA-2) respectively. Whereas SPSA-1 updates the parameter over time

instants of increasing separation as in [4], SPSA-2 updates once after every fixed number of instants.

The latter is a generalization of the algorithm in [5] that updates the parameter at every instant; and

shows improved performance. The convergence analysis for both the algorithms was presented. We

conducted numerical experiments with parameters of different dimensions on a two node queueing

network model with feedback using both the SPSA algorithms, the Two-Simulation algorithm of

[4] and its (N + 1)-Simulation analogue and the (N + 1)-Simulation algorithm of [5]. We found

that the SPSA algorithms converge orders of magnitude faster than the rest.

24

References

[1] S. Andradóttir. Simulation Optimization. Chapter 9 in Handbook of Simulation, ed. J. Banks,

Wiley, 1998.

[2] J. D. Bartusek and A. M. Makowski. On stochastic approximation driven by sample averages:

convergence results via the ODE method. Technical Report, Institute for Systems Research,

University of Maryland, http://www.isr.umd.edu/TechReports/ISR/1994/TR 94-4/, 1994.

[3] S. Bhatnagar. Multiscale stochastic approximation schemes with applications to ABR service

in ATM networks. Doctoral dissertation, Dept. of Electrical Engineering, Indian Institute of

Science, Bangalore, India, July 1997.

[4] S. Bhatnagar and V. S. Borkar. Multiscale stochastic approximation for parametric optimiza-

tion of hidden Markov models. Probability in the Engineering and Informational Sciences,

11:509–522, 1997.

[5] S. Bhatnagar and V. S. Borkar. A two time scale stochastic approximation scheme for simula-

tion based parametric optimization. Probability in the Engineering and Informational Sciences,

12:519–531, 1998.

[6] S. Bhatnagar, M. C. Fu, and S. I. Marcus. Optimal multilevel feedback policies for ABR flow

control using two timescale SPSA. Technical Report, Institute for Systems Research, University

of Maryland, http://www.isr.umd.edu/TechReports/ISR/1999/TR 99-18/ (shortened version

submitted for journal publication), 1999.

[7] S. Bhatnagar, M. C. Fu, and S. I. Marcus. Two timescale SPSA algorithms for rate-based ABR

flow control. Chapter 27 in System Theory: Modeling, Analysis and Control, ed. T.Djaferis

and I.Schick, Kluwer Academic, 1999.

[8] V. S. Borkar. On white noise representations in stochastic realization theory. SIAM J. Control

and Optim., 31:1093–1102, 1993.

[9] V. S. Borkar. Probability Theory: An Advanced Course. Springer Verlag, New York, 1995.

[10] V. S. Borkar. Stochastic approximation with two time scales. Systems and Control Letters,

29:291–294, 1997.

[11] H. F. Chen, T. E. Duncan, and B. P.-Duncan. A Kiefer-Wolfowitz algorithm with randomized

differences. IEEE Trans. Autom. Contr., 44(3):442–453, 1999.

[12] E. K. P. Chong and P. J. Ramadge. Optimization of queues using an infinitesimal perturbation

analysis - based stochastic algorithm with general update times. SIAM J. Contr. and Optim.,

31(3):698–732, 1993.

[13] E. K. P. Chong and P. J. Ramadge. Stochastic optimization of regenerative systems using

infinitesimal perturbation analysis. IEEE Trans. on Autom. Contr., 39(7):1400–1410, 1994.

25

[14] R. J. Elliott, L. Aggoun, and J. B. Moore. Hidden Markov Models: Estimation and Control.

Springer-Verlag, New York, 1995.

[15] M. C. Fu. Convergence of a stochastic approximation algorithm for the GI/G/1 queue using

infinitesimal perturbation analysis. J. Optim. Theo. Appl., 65:149–160, 1990.

[16] M. C. Fu. Optimization via simulation: a review. Annals of Oper. Res., 53:199–248, 1994.

[17] M. C. Fu and S. D. Hill. Optimization of discrete event systems via simultaneous perturbation

stochastic approximation. IIE Trans., 29(3):233–243, 1997.

[18] M. W. Hirsch. Convergent activation dynamics in continuous time networks. Neural Networks,

2:331–349, 1987.

[19] Y. C. Ho and X. R. Cao. Perturbation Analysis of Discrete Event Dynamical Systems. Kluwer,

Boston, 1991.

[20] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and Un-

constrained Systems. Springer Verlag, New York, 1978.

[21] H. J. Kushner and F. J. Vazquez-Abad. Stochastic approximation methods for systems over

an infinite horizon. SIAM J. Contr. and Optim., 34(2):712–756, 1996.

[22] H. J. Kushner and G. G. Yin. Stochastic Approximation Algorithms and Applications. Springer

Verlag, New York, 1997.

[23] P. L’Ecuyer, N. Giroux, and P. W. Glynn. Stochastic optimization by simulation: Numerical

experiments with the M/M/1 queue in steady-state. Management Science, 40(10):1245–1261,

1994.

[24] P. L’Ecuyer and P. W. Glynn. Stochastic optimization by simulation: Convergence proofs for

the GI/G/1 queue in steady state. Management Science, 40(11):1562–1578, 1994.

[25] M. Loéve. Probability Theory, vol. 2, 4th ed. Springer Verlag, New York, 1977.

[26] J. Neveu. Discrete Parameter Martingales. North Holland, Amsterdam, 1975.

[27] G. C. Pflug. Optimization of Stochastic Models: The Interface Between Simulation and Opti-

mization. Kluwer Academic, 1996.

[28] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient

approximation. IEEE Trans. Autom. Cont., 37(3):332–341, 1992.

[29] F. J. Vazquez-Abad and H. J. Kushner. Estimation of the derivative of a stationary measure

with respect to a control parameter. J. Appl. Prob., 29:343–352, 1992.

26

