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Dynamic networks have become ubiquitous in the current technological frame-

work. Such networks have widespread applications in commercial, public safety and

military domains. Systems utilizing these networks are deployed in scenarios influ-

encing critical aspects of human lives, e.g. connecting first responders to command

center in disasters, wildlife monitoring, vehicular communication, and health care

systems. In this dissertation, we explore two significant aspects of dynamic net-

works.

In the first part of the dissertation, we study coverage problem in dynamic

networks such as public safety networks. Networking infrastructure can partially

(or sometimes fully) breakdown during a catastrophe. At the same time, unusual

peaks in traffic load could lead to much higher blocking probability or service in-

terruptions for critical communication. Lack of adequate communication among

emergency responders or public safety personnel could put many lives at risks. One

possible solution to deal with such scenarios is through the use of mobile/portable



infrastructures, commonly referred to as Cells on Wheels (COW) or Cells on Light

Trucks (COLT). These mobile cells can effectively complement the existing undam-

aged infrastructure or enable a temporary emergency network by themselves. Given

the limited capacity of each cell, variable and spatially non-uniform traffic across

the disaster area can make a big impact on the network performance. Not only ju-

dicious deployment of the cells can help to meet the coverage and capacity demands

across the area, but also intelligent relocation strategies can optimally match the

network resources to potentially changing traffic demands. Assuming that each cell

can autonomously change its location, in this dissertation, we investigate such op-

portunities and constraints. We propose strategies for autonomous relocation of the

mobile resource to adapt network coverage and increase the supported user traffic.

We demonstrate the performance improvement for several scenarios via simulations

using our algorithms.

In practical scenarios, typically there are some areas in the field where mobile

base stations cannot move into. Structural obstacles, areas with outstanding water

or other hazardous materials, or surfaces with debris are examples of prohibited areas

that mobile cells are expected to avoid. Such prohibited areas introduce additional

constraints on designing intelligent relocation strategies. We propose a decentralized

relocation algorithm that enables mobile cells to adapt their positions in response

to potentially changing traffic patterns in a field with such prohibited areas.

In the second part of dissertation, we study routing problem in dynamic net-

works. Routing is critical when there is no direct link connecting source to its

destination. Performance of this algorithm is critical in many different applica-



tions. Two important metrics in routing are delay and throughput. We propose

a throughput-optimal routing and scheduling algorithm that improves delay per-

formance by accounting for the network topology. First, we propose algorithm for

the fixed topology scenario. We improve delay performance by solving an optimiza-

tion problem which aims to send packets mostly to greedy neighbors, subject to

throughput-optimality constraints. Next, we consider the network with dynamic

topology, where routers or links may be added or removed during time. We propose

variations of the proposed algorithm for networks with dynamic topology. We iden-

tify key design parameters and illustrate the performance of our schemes through

simulations.
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CHAPTER 1

Introduction

The past few decades have witnessed an unprecedented shift in the paradigm

of digital communication. The notion of communication, from transfer of voice

data between humans over fixed networks, has evolved to transmission of large

volume of heterogeneous data over mobile network between ‘things’. This change

can be attributed to significant progress in fundamental communication technology

that enables the advanced protocols and networks, coupled with advances in device

technology that enable the connectivity to these networks.

Complex wireless networks are ubiquitous in the world today in commercial,

civil and military domains. Examples of this range from the traditional cellular

networks to sensor networks for monitoring civil infrastructure or human health, or

ad-hoc networks between vehicles on the road, soldiers in a battlefield or emergency

responders in a disaster area.

It is clear that the application of these networks is no longer restricted to

augmenting the human life for comfort. Instead, they form an essential component

of several critical aspects of our lives, ranging from basic health to public safety.
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Thus, ensuring availability of these networks and guaranteeing their performance is

important to ensure the quality of our lives. Improving these aspects of networks

broadly encapsulates the direction of this dissertation.

1.1 Network Challenges

The goal of communication networks is to provide connectivity between the

end points for successful transmission of data from a source within the network to

a destination. The heterogeneity of the applications of these networks combined

with variation in the connecting devices leads to a broad range of architectures and

constraints. For example, cellular networks utilize fixed infrastructure to provide

connectivity between mobile users which are within the coverage area.

Sensor networks on the other hand utilize the sensor nodes as both infrastruc-

ture and sources to produce an aggregate of the state information at a designated

sink node. Similarly, ad-hoc networks consisting of mobile nodes, for example vehic-

ular networks or army platoons, create dynamic infrastructure using the nodes and

use it to exchange data between mobile sources and destinations. Public safety net-

works utilize temporary dynamic infrastructure provide connectivity between mobile

first responders.

One of the challenges to reliable connectivity, and hence data transmission, is

the inherent dynamicity in the network architectures. Dynamicity can be either due

to infrastructure dynamics or input dynamics. Infrastructure dynamics refers to the

scenarios where the topology of the network changes over time due to changes in the
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infrastructure or the end points. In these networks nodes may arrive (or depart) and

edges may form (or break) arbitrarily. An example of this is networks of platoons

in the battle field.

Input dynamics refers to changes in traffic source of the network due to both

temporal and geographic events. This includes networks that contain traffic trig-

gered by events, for example sensor networks or surveillance networks or networks

in disaster areas. One of the most well-known examples of networks that encapsu-

lates all forms of dynamicity is the public internet, where the infrastructure, traffic,

applications and geographical spread are all varying.

Since their initial deployment, significant research effort has been directed

towards improving the performance these networks. In this dissertation, we consider

two different aspects of networks which have dynamicity either in traffic source or

topology. Firstly, we consider the issue of coverage, wherein the goal is to vary

the network topology to optimally accommodate time varying traffic distribution.

Secondly, we consider the fundamental problem of routing packets from the source

to the destination in a multi-hop network, where the topology may be arbitrarily

varying over time.

1.2 Supported Traffic and Coverage Concerns in Public Safety Net-

works

During emergencies, the importance of public safety network becomes clear.

Natural disasters such as severe storms, earthquakes, and tornados can destroy base

3



station sites and network connections. Additionally, during these times of crisis,

the volume of cell users typically increases, which can overload the service network.

Obviously, the combination of these two phenomena makes the situation worse [1].

Since September 11, 2001, and Hurricane Katrina, the Federal Communica-

tions Commission (FCC) has taken important steps to improve availability of 911

services and public safety networks in case of emergency. For example the FCCs

Public Safety and Homeland Security Bureau (PSHSB) worked on several fronts

to improve communications during disasters, including streamlining collection of

outage information during times of crisis through the Disaster Information Report-

ing System, helping ensure that communications workers receive essential personnel

credentials during emergencies, working with other federal agencies to improve in-

teroperability among first responders [2].

New traffic hot-spots that typically involve vital life-saving information are

a major challenge for the communication network covering the disaster area. The

exact locations and magnitudes of these traffic hot-spots within a disaster area

are usually not known apriori. As the size of these possible emergency incidents

are unpredictable, the capacity requirements to meet the resulting highly variable

excess traffic is nearly impossible.

There is a need for a solution which can be quickly deployed and be built

spontaneously as devices get connected to each other. The proposed solution should

adapt the network to the changes in the traffic in order to provide service to the

emergency responders. Two important metrics in these networks are supported

traffic and covered area. The main goal of public safety networks is providing

4



service to the users. As a result, we are interested in large supported traffic. At

the same time, having larger covered area can increase the supported traffic. We

are interested to have a network which covers a large area, so new users joining the

network are under network coverage.

1.3 Routing Concerns in Multi-hop Networks

A multi-hop network is a network of computers and devices (nodes) which

are connected by communication links. In these networks, many pairs of nodes

cannot communicate directly, and must forward data to each other via one or more

cooperating intermediate nodes. In multi-hop networks, if two nodes are not directly

connected by a communication link, they need to forward packets to each other

through intermediate nodes. A source node transmits a packet to a neighboring node

with which it can communicate directly. The neighboring node in turn transmits

the packet to one of its neighbors, and so on until the packet is transmitted to its

ultimate destination. Each link that a packet is sent over is referred to as a hop; the

set of links that a packet travels over from the source to the destination is called a

route or path. Routes are discovered by running a distributed routing protocol on

the network. Figure 1.1 shows an example of a multi-hop network.

In general, there will be many potential routes between each pair of nodes in

the network. Since these route use different set of links, they will have different per-

formances. Routing algorithm is supposed to choose a path to forward the packets.

Two important metrics in routing algorithm are delay and throughput. There is an

5



S DR1 R2

Figure 1.1: A multi-hop network. Node S sends data to node D via cooperating nodes

R1 and R2

increasing demand for high throughput and low delay scheduling and routing algo-

rithms in both wireless and wired networks. High throughput is critical to respond

to increasing demand of different applications. Besides that, delay is very important

in real-time applications such as VoIP.

Tassiulas and Ephremides in [3] have proposed a new scheduling and routing

algorithm called back-pressure and proved its throughput-optimality. The algorithm

can be applied to multi-hop networks, including sensor networks, mobile ad hoc net-

works (MANETS). A routing/scheduling algorithm is throughput-optimal if it can

stabilize any traffic that can be stabilized by any other routing/scheduling algorithm.

The back-pressure algorithm [3], is a congestion based routing and scheduling pro-

tocol which sends packet along the links with higher queue differential backlog. It

has been proven in [3] that back-pressure algorithm is throughput-optimal.

Capacity region of the network is defined as the set of all end-to-end traffic
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load matrices that can be stably supported under some network control policy. By

stability we mean the time average queue length of all queues in the network doesn’t

go to infinity. A network policy is called throughput-optimal if its capacity region is

the same as network capacity region. Tassiulas and Ephremides have proved in [3]

that the back-pressure algorithm is throughput optimal for the capacity region of

the network denoted as ΛG. ΛG is defined as the set of all input rate matrices (λdi )

with λdi 6= 0 if i 6= d and (i, d) is a source destination pair, such that there exists a

rate matrix [µij] satisfying the following constraints:

• Efficiency constraints: µdij ≥ 0, µdii = 0, µddj = 0,
∑

d µ
d
ij ≤ µij,∀i, d, j.

• Flow constraints:λdi +
∑

l µ
d
li ≤

∑
l µ

d
il, ∀i, d : i 6= d.

As we know the queue length in the destination is 0. In the back-pressure we

send the packet to nodes which have smaller queue length. So, in heavy traffic the

traffic forces the packets toward the destination. However, in light loads there is

not enough packets in the network to push the traffic toward the destination. So

it explores all feasible paths between each source and destination. This extensive

exploration leads to network stability. However, in light or moderate traffic the

back-pressure may lead to unnecessarily long paths and routing-loops. As a result,

the back-pressure algorithm has poor end-to-end delay performance.

Greedy routing is another routing algorithm in which each base station sends

its packets to a neighbor which is closer to the destination in comparison to itself.

Since the path results in a decreasing distance to the destination, these paths are

loop free. Loop free paths results in better delay performance in comparison to back-
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pressure algorithm. However, in this method there is no consideration of throughput.

We are interested in a routing algorithm which has good delay performance

like greedy routing and is throughput-optimal like back-pressure.

1.4 Contributions of Dissertation

In public safety problem, we propose a solution through the use of mobile/portable

infrastructures commonly referred to as Cells on Wheels (COW) or Cells on Light

Trucks (COLT) besides the existing infrastructure. These mobile cells can effec-

tively complement the existing undamaged infrastructure or enable a temporary

emergency network by themselves. We introduce a new angle to address user cover-

age concerns in public safety networks. Instead of deploying COWs on pre-specified

locations in the target field, we propose distributed adaptive deployment of COWs.

Given the limited capacity of each cell, variable and spatially non-uniform traffic

across the disaster area can make a big impact on the network performance. Not

only judicious deployment of the cells can help to meet the coverage and capac-

ity demands across the area, but also intelligent relocation strategies can optimally

match the network resources to potentially changing traffic demands. Assuming

that each cell can autonomously change its location, we formulate the novel reloca-

tion optimization problem for maximization of total covered area subject to capacity

constraints of base stations. Capacity constraint ensures any user within coverage

range of any base station is supported. Maximizing coverage area will result in

covering new users. Then, we propose an adaptive self-deployment algorithm to
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solve the formulated problem. Our simulations show an average improvement of

approximately 35% in the supported traffic compared to static uniform deployment.

In real scenarios, these mobile base stations cannot freely relocate to all points

within the target field. Structural obstacles, areas with outstanding water or other

hazardous materials, or surface with debris are examples of prohibited areas where

mobile cells are expected to avoid. Such prohibited areas introduce additional con-

straints on designing an intelligent relocation strategy. We propose a decentralized

relocation algorithm that enables mobile cells to adapt their positions in response

to potentially changing traffic patterns in a field with prohibited areas. As shown

by our simulations, this autonomous network of mobile cells offers considerable im-

provement in terms of the supported traffic.

Next, we propose a throughput-optimal routing and scheduling algorithm that

improves delay performance by greedy embedding of the network in hyperbolic space.

We improve delay performance by solving an optimization problem, which aims to

send packets mostly to greedy neighbors, subject to throughput-optimality con-

straints. The algorithm that solves this optimization problem has a design param-

eter M . We study the effect of M on delay performance analytically. We validate

our theoretical results via simulations and demonstrate that the proposed algorithm

improves the delay performance. In real scenarios, nodes may join and leave the

network. For instance, consider a sensor network in which sensors are not moving,

topology of the network changes when sensors run out of battery or when a new

sensor joins the network. We propose an adaptation of the algorithm that has good

delay and throughput performance when topology of the network changes slowly.
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1.5 Organization of the Dissertation

This dissertation is organized into three primary parts (three chapters). The

first two chapters address the coverage problem. The last chapter addresses the

routing problem.

In Chapter 2, we formulate the problem of adapting coverage subject to in-

creasing supported traffic in public safety networks when base stations can freely

relocate to all points within the target field. We propose a decentralized relocation

algorithm that adapts the network coverage in order to increase the supported users

traffic. Our simulations show an average improvement of approximately 35% in the

supported traffic compared to static uniform deployment.

In Chapter 3, we formulate the problem of adapting coverage subject to in-

creasing supported traffic in public safety networks when these mobile cells might

not be able to freely relocate to all points within the target field. We propose a

decentralized relocation algorithm that enables mobile cells to adapt their positions

in response to potentially changing traffic patterns in a field with prohibited ar-

eas. As shown by our simulations, this autonomous network of mobile cells others

considerable improvement in terms of the supported traffic.

In Chapter 4, we study routing problem in multi-hop network. We propose

a solution to improve delay performance in the network while maintaining queue

stability. The algorithm that solves this optimization problem has a design param-

eter M . We study the effect of M on delay performance analytically. We validate

our theoretical results via simulations and demonstrate that the proposed algorithm
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improves the delay performance. Then, we consider a network in which the topology

of the network may change slowly. We propose an adaptation of the proposed algo-

rithm to adapt to these changes. We validate our theoretical results via simulations

and demonstrate that the proposed algorithm improves the delay performance.

In Chapter 5, we conclude the dissertation and discuss some future directions.
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CHAPTER 2

Autonomous Relocation Strategies for Cells on Wheels in

Public Safety Networks

2.1 Overview

Emergency scenarios such as natural or man-made disasters are typically char-

acterized by unusual peaks in traffic demand caused both by people in the disaster

area as well as the first responders and public safety personnel [1, 4]. Such traffic

hot-spots that typically involve vital life-saving information are a major challenge

for the communication network covering the disaster area. The exact locations and

magnitudes of these traffic hot-spots within a disaster area are usually unknown

apriori. As the size of these possible emergency incidents are unpredictable, es-

timating the capacity requirements to meet the resulting variable excess traffic is

nearly impossible.

Designing the communication network for peak traffic is clearly inefficient and

prohibitively expensive due to the large peak-to-average traffic ratio [1, 4]. In addi-

tion, an over-provisioned network infrastructure itself may be subject to break-downs

or target of attacks; and therefore, not able to address the peak communication needs
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during emergencies. A reasonable solution to this problem is using a set of mobile

base stations that can be quickly deployed to service the excess traffic during the

disaster recovery.

A portable cell site - a cell on light truck (COLT) or a cell on wheels (COW)

- can be used to augment the remaining communication infrastructure and keep

first responders connected to their command centers. Cellular antennas that are

attached to a pneumatic mast on a COLT or COW provide additional mobile con-

nection points. By properly deploying these mobile connection points, we can create

a temporary network to support first responders need and manage critical public

safety communication throughout the disaster area. Such mobile networks that can

be easily deployed, configured and adapted, offer an ideal solution to any disaster

response effort. These networks would allow public safety personnel and agencies to

maintain communication connectivity throughout their operation.

In this chapter, we propose an adaptive self-deployment algorithm where base

stations use to autonomously relocate and maximize network coverage subject to

their capacity limits. Our algorithm is a sub-optimal solution to a stochastic op-

timization problem that aims to maximize network coverage subject to capacity

constraints. We assume that each base station has access to information about the

location of its neighboring base stations and their capacity demand.
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2.1.1 Related Work

The base station deployment or positioning problem has been well studied in

the past. Simulated annealing [5], genetic approaches [6], greedy algorithms [7], lin-

ear programming [8] and evolutionary algorithms [9] are among different approaches

used to solve this problem. It has been shown that the identification of the globally

optimum base stations deployment in a network is far too complex to be solved

computationally (i.e. an NP-hard problem) [10]. In practice, most of the system

parameters required to find such an optimal solution is unknown. In addition, the

optimal positions could change due to the variations in traffic demand or its spatial

distribution. As a result, it is natural to assume that adaptive positioning of mobile

base stations based on instantaneous traffic distribution is also an NP-hard problem.

There have been serveral studies regarding providing network coverage in dis-

asters. One possible solution is roaming the public saftey traffic on other commercial

networks [11–14]. This solution has remedies such as security and different network

requirements between public safety and commercial network users which needs to

be implemented by commercial network providers [15]. Besides that, the network

infrastructure is still subject to break-downs or target of attacks. In [16–18] the

authors proposed using a portable self-configurable cellular system to assist with

damaged or destroyed network infrastructure in emergencies or other natural disas-

ters. In [19,20], the authors proposed using UAVs to provide connectivity. However,

the deployment phases in all proposed approaches were not considered to be au-

tonomous or adaptive. As a result, when the spatial distribution of traffic changes,
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the network may fail to adequately meet the traffic demand at various locations

on the field. In [21, 22], the authors have also proposed an adaptive relocation

algorithm to meet the capacity requirements of the traffic; but, their proposed al-

gorithm is centralized and requires knowledge of traffic distribution across the field.

The autonomous adaptive relocation problem in which each mobile node has lo-

cal information about the location of traffic sources in its coverage area has been

considered in [23,24]. There, the authors proposed a distributed algorithm for adap-

tive relocation of wireless access points in order to minimize the total transmission

power. However, minimizing total transmission power does not guarantee increasing

the total coverage area or total supported traffic. In addition, in their algorithm

each node requires information about the location of traffic sources within its cov-

erage area at each step in order to calculate its new location. This will incur a large

overhead for their proposed algorithm. To the best of our knowledge, there is no

distributed algorithm that aims to maximize network coverage subject to capacity

constraints.

Autonomous relocation algorithms have been extensively studied in mobile

sensor network to improve the total area coverage [25–30]. However, no consideration

has been given to scenarios with non-uniform spatial traffic distribution. In all these

proposed approaches, each node constructs its Voronoi polygon in each iteration and

chooses a point inside its Voronoi polygon as its new target point. The main idea

behind these algorithms is to move each sensor iteratively to a location that improves

its local coverage. Once a new location for a sensor is computed, the corresponding

local coverage area of the sensor (in the previously constructed Voronoi diagram)
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is compared to the preceding local coverage area. If the new local coverage area

is larger than the preceding one, the sensor moves to the new location; otherwise,

it remains in the current position. If the local coverage area by each sensor in an

iteration does not exceed a certain threshold, the algorithm is terminated (to ensure

a finite number of iterations). These strategies are either based on distance from

vertex or distance from the edge of the Voronoi polygon. As illustrated in [25],

in some scenarios vertex based algorithms have better performance and vice versa.

As a result, the VEDGE algorithm which considers distance from both vertex and

edge has the best coverage performance. VEDGE algorithm is a combination of the

Minimax-vertex algorithm and Maxmin-edge algorithm. Two candidate points are

calculated for each sensor based on these two methods, and the one which provides

better coverage is selected as the candidate location for that sensor.

Algorithm 1 represents Maxmin-edge strategy. The idea behind this strategy

is that when the sensors are evenly distributed, none of them should be too close to

any of its Voronoi edges. The candidate location of a sensor under the Maxmin-edge

strategy is a point inside the corresponding Voronoi polygon whose distance from the

nearest Voronoi edge is the largest. This point is denoted as Maxmin-edge centroid.

As showed in [25], the Maxmin-edge centroid is the center of the largest incircle or

excircle of one of the triangles created by three (extended) edges of the polygon.

Hence, one can develop an algorithm of complexity O(e4
i ) (which is typically not too

high, as noted earlier) to find the Maxmin-edge centroid of a Voronoi polygon

Algorithm 2 represents Minmax-vertex strategy [27]. The idea behind this

strategy is that when the sensors are evenly distributed, none of them should be too
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Algorithm 1 Algorithm: Finding the Maxmin-edge centroid of the i-th Voronoi

polygon

1: for f = 1, 2, ..., ei − 2 do

2: for g = f + 1, f + 2, ..., ei − 1 do

3: for h = g + 1, g + 2, ..., ei do

4: . calculate ωf,g,h

5: if ωf,g,h is inside the polygon then

6: record it

7: end if

8: end for

9: end for

10: end for

11: The center of the largest circle is the Maxmin-edge centroid of the polygon

close to any of its Voronoi vertices. The candidate location of a sensor under the

Minmax-vertex strategy is a point inside the corresponding Voronoi polygon whose

distance from the furthest Voronoi vertex is the smallest. This point is denoted

as Minmax-vertex centroid. As showed in [27], the Minmax-vertex centroid is the

center of smallest enclosing circle of the set of vertices. To find this circle, we

only need to find all the circumcircles of any two and any three Voronoi vertices.

Among those circles, the one with the minimum radius covering all the vertices is

the Minimax circle. The center of this circle is the Minimax point.
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Algorithm 2 Finding the Minmax-vertex centroid of the i-th Voronoi polygon

1: for u = 1, 2, ..., n− 2 do

2: for v = u+ 1, u+ 2, ..., n− 1 do

3: for w = v + 1, v + 2, ..., n do

4: . calculate C(Vu, Vv, Vw)

5: if V is inside C(Vu, Vv, Vw) ∀V ∈ Vp then

6: record it

7: end if

8: end for

9: end for

10: end for

11: for u = 1, 2, ..., n− 2 do

12: for v = u+ 1, u+ 2, ..., n− 1 do

13: . calculate C(Vu, Vv)

14: if V is inside C(Vu, Vv) ∀V ∈ Vp then

15: record it

16: end if

17: end for

18: end for

19: choose the one with minimum radius
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2.1.2 Summary of Contributions

Our contributions in this chapter can be summarized as follows

• We formulate the novel relocation optimization problem for maximization of

total covered area subject to capacity constraints of base stations.

• We propose an adaptive self-deployment algorithm in which base stations are

capable of autonomous relocation to increase total covered area while base

stations are not overloaded. Each base station uses information about location

of its neighboring base stations and their capacity demand.

• We validate the proposed method via simulations for different scenarios and

study the sensitivity of the solution to system parameters.

2.1.3 Outline of Chapter

The rest of this chapter is organized as follows. System description and as-

sumptions are provided in Section 2.2. In Section 2.2.1 we derive a coverage model

for each base station, which is used for problem formulation. In Section 2.3 the

problem formulation is provided. A distributed adaptive relocation algorithm that

simultaneously maximizes coverage and supported traffic is presented in Section 2.4.

In Section 2.5, we analyze the efficiency of the proposed algorithm through extensive

simulations.
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2.2 System Model

Consider a set of mobile nodes (i.e. base stations) denoted by S = {s1, s2, ..., sN}.

We assume that these mobile nodes can wirelessly communicate with each other.

Let Q ⊂ R2 represent the total geographical area (i.e. target field) which we are

interested to cover. Let P0 = {p0,1, p0,2, p0,3, ..., p0,N} denote the initial position of

these base stations where p0,i ∈ Q, ∀i ∈ {1, 2, .., N}.

Each user in Q connects to the base station with the strongest reference signal

which is greater than some specified threshold (i.e. receiver sensitivity denoted by

ηr). For simplicity, we assume a flat terrain propagation field with shadow fading

which has the same distribution over the region. We assume all base stations are

using equal power for transmission.

We also assume that there is an interference-coordination mechanism among

adjacent base stations; therefore, interference is negligible. For example, Inter-

Cell Interference Cancelation algorithms (ICIC) such as dynamic frequency reuse

schemes can be used to mitigate inter-cell interference. There is also non-inter-cell

coordinated schemes in which each base station uses orthogonal channel [31]. We

are also assuming that the spatial distribution of traffic sources in the target field is

non-uniform, and slowly variable.

2.2.1 Coverage Model

We define coverage area of a base station as the geographical region where the

average received signal strength is greater than or equal to ηr. This corresponds to
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50% coverage probability at cell-edge when shadow fading has log-normal distribu-

tion. In order to increase reliability of connection in coverage area, we can consider

a fade margin ηF which increases coverage probability at cell edge.

Our propagation and channel loss assumptions imply that there exists a Dmax

such that the average received signal strength is greater than η = ηF + ηr for all

points at distance less than or equal to Dmax of each base station. In order to

formalize the average total covered area over region Q, we define Voronoi region

Vi = V (pi) as follows:

Vi =
{
q ∈ Q | E[Prx(pi, q)] ≥ E[Prx(pj, q)], ∀j ∈ {1, ..., N} − {i}

}
(2.1)

where Prx(pi, q) is the received signal strength of base station i at point q.

Since all base stations are transmitting using equal power, Voronoi region

Vi = V (pi) will be the set of all points q ∈ Q such that E[L(pi, q)] ≤ E[L(pj, q)] where

L(pi, q) is the channel loss between point q and pi in dB. Thus, E[L(pi, q)] = E[Ls]+

E[Lp(pi, q)] holds where Ls and Lp represent shadow fading and pathloss respectively.

As a result, Vi will be the set of all points q ∈ Q such that E[Lp(pi, q)] ≤ E[Lp(pj, q)].

Due to the flat terrain assumption, this is equivalent to dist(q, pi) ≤ dist(q, pj). As

a result, the Voronoi region Vi = V (pi) is the set of all points q ∈ Q such that

dist(q, pi) ≤ dist(q, pj) for all i 6= j, i ∈ S.

2.3 Problem Formulation

Based on the defined coverage model, if coverage area of a base station does

not include a point within its Voronoi region, that point cannot be in coverage area
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of any other base station. We define the coverage metric as follows:

O(p1, ..., pN) =

∫
Q

max
i∈{1,2,...,N}

f(dist(q, pi))dq =
N∑
i=1

∫
Vi

f(dist(q, pi))dq (2.2)

Where f(x) is equal to 1 if x ≤ Dmax otherwise f(x) = 0.

Variable spatial traffic implies that, the amount of traffic in the coverage area

of each base station or equivalently its traffic load is also changing. This could lead

to situations where one or more base stations are located in hot-spots; and therefore,

cannot meet the traffic demand within their coverage (i.e. become overloaded). If

we assume that the total traffic demand throughout the target field is less than the

total network capacity (i.e. capacity of a base station multiplied by the number of

base stations), then it is imaginable that the overload scenarios faced by few base

stations can be overcome by judicious relocation of all base stations in the network.

However, in order to enhance the performance, such relocations should increase the

total traffic served by the network, with the ultimate objective of meeting the total

target area traffic demand.

In this chapter, we propose a strategy where base stations adaptively and au-

tonomously adjust their positions in order to maximize the supported traffic and

eliminate the base station overload situations in hot-spot zones. Given the aforemen-

tioned traffic constraint, our proposed relocation algorithm also tries to maximize

the network coverage area at the same time.

Let Pn denote the locations of base stations at iteration n, we are interested

to find a distributed algorithm in which Pn converges to P ∗ for a given traffic
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distribution and such that:

P ∗ = arg max
N∑
i=1

∫
Vi

f(dist(q, pi))dq (2.3)

s.t. ρ̂i < 1 ∀i ∈ {1, ..., N}

Where ρ̂i denotes the estimated average capacity demand of base station i which is

the sum of the required resources of all users u connected to cell i by a connection

function which gives the serving cell i to user u.

ρi =
∑
u∈Ui

ρi,u (2.4)

ρi,u =
si,u
s

(2.5)

si,u =

⌈
σu
ei,u

⌉
(2.6)

where Ui denotes the set of users which are supposed to connect to cell i. si,u denotes

the number of resources used by node u. s denotes the total number of available

resources at each base station. σu represents the required bit rate of user u in order

to transmit data. ei,u is the bandwidth efficiency of user u. The dxe represents

the minimum integer larger than x. We are interested to propose a relocation

algorithm that can achieve autonomous adaptive base station deployment subject

to the capacity constraints.

2.4 Autonomous Relocation of Cell on Wheels

Our proposed approach, described in Algorithm 3, makes use of the location

and capacity demand of the each base station and the base stations in its neighbor-

hood [32]. It applies an adaptation of simulation optimization algorithm presented
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in [33], which makes use of feasible direction method to carry out constrained op-

timization. The basic strategy of the algorithm in [33] is to generate a sequence of

feasible and improving solutions. If the magnitude of the constraint function is less

than a lower threshold, it means the constraint is well satisfied, then the variables

change in order to improve the objective function. If the constraint function is not

satisfied and it is greater than an upper threshold, the variables change in order to

satisfy the constraint.

Intuitively, Algorithm 3 aims to maximize network coverage while ensuring

that base stations are not over utilized. Each base station tries to increase its

local coverage, when the capacity constraints of itself and its neighbors are satisfied.

We refer to this phase as coverage improvement phase. On the other hand, if the

capacity constraint of a base station is not satisfied (i.e. overload situation), it makes

a request for help by sending a signal to the neighboring base stations and asking

them to get closer. We refer to this phase as load balancing phase. In this phase,

the neighboring base stations can relocate closer to the overloaded base stations if

they have available capacity. As a result of their moves, some traffic in the coverage

area of the overloaded base station have the opportunity to be offloaded onto the

neighboring base stations. The sequence of these relocations are expected to improve

the overall traffic support throughout the target area. As several neighboring base

stations could be in similar situations with varying degrees of excess traffic, the

algorithm uses the concept of a virtual force to determine the final direction where

an under-loaded base station should move along.

The virtual force exerted by sj on si is denoted as
−→
F ji, with the direction
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from si to sj. The final aggregate virtual force on each base station is the vector

summation of the virtual forces from all Voronoi neighbors. These virtual forces will

result in base stations moving toward areas with heavy traffic demands i.e. traffic

hot-spots. If the aggregate virtual force to a node is zero and the node is not over

utilized, it will move in a direction that increases its local coverage. If the aggregate

virtual force is not equal to zero, then the moving direction of that node will be the

same as the direction of the virtual force vector. The computational complexity of

the proposed algorithm in load-balancing phase for base station si is O(esi) where esi

represents the number of Voronoi edges/neighbors of base station si. Since typically

a node does not have too many Voronoi neighbors, the computational complexity

of such an algorithm is not expected to be high.

Authors in [27] have proposed an autonomous and distributed relocation al-

gorithm to improve coverage in mobile sensor networks. The algorithm iteratively

updates the location of each node in a way that improves its local coverage in the

previously constructed Voronoi polygon. The rationale behind the algorithm is that

when the mobile nodes are evenly distributed, none of them should be too far from

any of the Voronoi vertices. So a point inside a Voronoi polygon that has the short-

est distance from the furthest Voronoi vertex is selected as the candidate destination

point to relocate. The following theorem proves that there is no degradation in the

local coverage of each base station at each coverage improvement round. Therefore,

we can employ the algorithm in [27], in order to calculate the relocation direction

of each base station in the coverage improvement phase.
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Algorithm 3 Autonomous adaptive deployment algorithm

1: Each base station si broadcasts its location pi,t at time t and its capacity demand ρsi

to its Voronoi neighbors N (si) and then constructs its Voronoi polygon based on the

similar information it receives from other base stations

2: for each sj ∈ N (si) do

3: −→u ji =
pj,t−pi,t
‖pj,t−pi,t‖

4:
−→
F ji = max{ρsj − 1, 0}−→u ji

5:
−→
F i =

−→
F i +

−→
F ji

6: end for

7: . Each node si ∈ S calculates its new location as follows:

8: if
−→
Fi 6=

−→
0 and ρsi ≤ 1 then

9: . Load-balancing phase

10: <
−→
D i >=<

−→
F i >=

−→
F i
|
−→
Fi|

which is normalized vector
−→
Fi to unit length

11: else if
−→
Fi =

−→
0 and ρsi ≤ 1 then

12: . Coverage improvement phase

13: if moving to ci improves local coverage then

14: <
−→
D i >=

ci−pi,t
‖ci−pi,t‖

15: end if

16: end if

17: pt+1,i = Πi(pt,i + at,i <
−→
D i >)
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pi p
′
i

Figure 2.1: Example of a configuration for Theorem 1

Theorem 1. Consider the set S = {s1, s2, ..., sN} of nodes described in the previous

section, and let pi denote the location of node si. Let Vi and µ(.) denote the Voronoi

region of node si and the area function respectively. C(pi, r) represents a circle with

radius r centered at pi. If ∃p′i ∈ Vi s.t. µ(Vi ∩ C(p
′
i, r)) > µ(Vi ∩ C(pi, r)), then

µ(Vi ∩ C(q, r)) ≥ µ(Vi ∩ C(pi, r)) ∀q ∈ Lpi,p′i

Where Lpi,p′i
denotes the line which endpoints are pi and p

′
i. As Figure 2.1 shows,

if the local coverage of node si at point p
′
i is greater than its initial local coverage

(which is at point pi), then its local coverage at any point on the line segment which

endpoints are pi and p
′
i is greater than or equal to the initial coverage.

Proof. To prove that the area function does not have any true local minima as the

circle moves from pi toward p
′
i, we assume the opposite i.e. there exists a local

minima. Then, we show that this leads to a contradiction.

Without loss of generality, we assume that the circle is moving on the x axis.

Let Ct denote a circle with radius r and a center that is located at (t, 0). It is also

important to note, since Voronoi diagrams are intersection of half spaces, they are

convex polygons.

Let Wt = Ct ∩ Vi denote the intersection of the circle and the convex polygon.
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µ(Wt) is the area of Wt. We assume µ(Wt) is having a true local minima at t = t0,

so there exists t1 and t2 such that µ(Wt1), µ(Wt2) ≥ µ(Wt0) and at least one of the

inequalities is strict. For any set of t0, t1 and t2 such that t1 < t0 < t2, there exists

a 0 < λ < 1 such that t0 = λt1 + (1 − λ)t2. Denote C̃ = {(x, y, z)|(x − z)2 + y2 ≤

r2, (x, y, z) ∈ R3}, Ṽi = Vi×R and W̃ = Ṽi ∩ C̃. C̃ and Ṽi are convex regions in R3,

so W̃ is also convex. Let Gt denote the plane at z = t, so

W̃ ∩Gt = Wt × {t}

Consider the convex hull of points in W̃ ∩ (Gt1 ∪ Gt2) in W̃ . The convex hull of a

set of points is the smallest convex region containing all points. Due to convexity

of W̃ , we conclude the convex hull is a subset of W̃ . Due to convex hull definition,

the convex hull is the set of points in X for any 0 < λ < 1. Where X is defined as

follows:

X = {λp1 + (1− λ)p2|p1 ∈ W̃ ∩Gt1 , p2 ∈ W̃ ∩Gt2} =

{λp1 + (1− λ)p2|p1 ∈ Wt1 × {t1}, p2 ∈ Wt2 × {t2}} =

{λp1 + (1− λ)p2|p1 ∈ Wt1 , p2 ∈ Wt2} × {λt1 + (1− λ)t2}

= {λp1 + (1− λ)p2|p1 ∈ Wt1 , p2 ∈ Wt2} × {t0}

So we conclude X ⊂ Gt0 and as mentioned earlier X ⊂ W̃ . So X ⊂ (W̃ ∩ Gt0) =

(Wt0 × {t0}). So we conclude

λWt1 + (1− λ)Wt2 ⊂ Wt0 (2.7)
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As a result, the following holds

√
µ(Wt0) ≥

√
µ(λWt1) + µ((1− λ)Wt1)

≥∗
√
µ(λWt1) +

√
µ((1− λ)Wt2)

= λ
√
µ(Wt1) + (1− λ)

√
µ(Wt2)

>∗∗ λ
√
µ(Wt0) + (1− λ)

√
µ(Wt0)

Inequality “*” is valid due to Brunn-Minkowski theorem [34]. Since at least one of

µ(Wt2) or µ(Wt1) is strictly greater than µ(Wt0) inequality “**” holds. This leads

to a contradiction
√
µ(Wt0) >

√
µ(Wt0). Therefore, we can conclude that there is

no local minima along the path.

Based on Theorem 1, if moving base station i to p
′
i improves its local coverage,

then the local coverage of base station i increases or remains the same if it moves to

any point on the line segment between pi and p
′
i. Therefore, to guarantee there is no

local coverage degradation in the coverage improvement phase, we define the moving

direction to be the unit vector connecting current location to the destination point

obtained by the algorithm in [27]. The computational complexity in this phase is

equal to complexity of the algorithm in [27]. As a result, the complexity is equal to

O(m4
si

), where msi represent number of vertices in Voronoi polygon of base station

si, which is typically not too high.

In reality due to limited transmission power between base stations, a base

station may not be able to communicate to all its neighbors. Thus, the set of

neighbors is reduced to Li. Each base station i constructs its local Voronoi LVi as
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follows:

LVi = {q ∈ Q | dist(q, pi) ≤ dist(q, pj) ∀j ∈ Li} (2.8)

Consequently, some of the edges of the resultant polygon may be different from

those of the exact Voronoi polygon. As a result, the polygons constructed in this

case do not necessarily partition the field in the sense that some of them may overlap

with each other. This can have a negative impact on the detection of coverage holes.

Furthermore, the overlap of the polygons can lead to collision between base stations.

The following Theorem proves we can guarantee coverage improvement in

exact Voronoi polygon by limiting the moving distance of each base station in each

round.

Theorem 2. Let Rcom denote the communication distance between any pair of base

stations. Vi represents the exact Voronoi polygon of node i. LVi denotes the polygon

calculated by base station i based on the location information it receives from its

neighbors. C(pi, r) denotes a circle centered at pi with radius r. Assuming Rcom >

2∗Rcov, if base station i relocates to p
′
i within circle C(pi,

Rcom
2
−Rcov) then the local

covered area within LVi is equal to local covered area within Vi.

Proof. Since Rcom
2

> Rcov, all points out of circle C(pi,
Rcom

2
) are not initially covered

by base station i. So

C(pi, Rcov) = C(pi, Rcov) ∩ C(pi,
Rcom

2
) (2.9)

Since p
′
i ∈ C(pi,

Rcom
2
−Rcov), even after relocating to p

′
i none of the points that are
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out of circle C(pi,
Rcom

2
) would be covered by base station i.

C(p
′

i, Rcov) = C(p
′

i, Rcov) ∩ C(pi,
Rcom

2
) (2.10)

Then, we will prove:

C(pi,
Rcom

2
) ∩ LVi = C(pi,

Rcom

2
) ∩ Vi (2.11)

It can be concluded from 2.8,

Vi ⊂ LVi

so

C(pi,
Rcom

2
) ∩ Vi ⊂ C(pi,

Rcom

2
) ∩ LVi

Now we have to prove:

C(pi,
Rcom

2
) ∩ LVi ⊂ C(pi,

Rcom

2
) ∩ Vi

In order to prove it, we use contradiction. We assume ∃q ∈ Q s.t. q ∈ C(pi,
Rcom

2
)∩

LVi while q 6∈ C(pi,
Rcom

2
) ∩ Vi, this means

∃j s.t. dist(q, pi) > dis(q, pj) (2.12)

Based on definition of LVi, j 6∈ Li, so

dist(pi, pj) > Rcom (2.13)

On the other hand q ∈ C(pi,
Rcom

2
) concludes, dist(q, pi) <

Rcom
2

. By applying 2.12,

dist(q, pj) <
Rcom

2
can be concluded.
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We can rewrite:

dist(pi, pj) ≤ dist(pi, q) + dist(pj, q) ≤ Rcom (2.14)

where the first inequalities follows from the triangle inequality. Inequality 2.14

contradicts to 2.13. So we conclude 2.11 holds. By applying 2.11 to 2.9 and 2.10,

we have:

C(pi, Rcov) ∩ LVi = C(pi, Rcov) ∩ LVi ∩ C(pi,
Rcom

2
) =

C(pi, Rcov) ∩ Vi ∩ C(pi,
Rcom

2
) = C(pi, Rcov) ∩ Vi (2.15)

and

C(p
′

i, Rcov) ∩ LVi = C(p
′

i, Rcov) ∩ LVi ∩ C(pi,
Rcom

2
) =

C(p
′

i, Rcov) ∩ Vi ∩ C(pi,
Rcom

2
) = C(p

′

i, Rcov) ∩ Vi (2.16)

As a result, initial coverage and final coverage within both Vi and LVi is the same.

In Algorithm 3, base station i obtains the coordinate which increases the local

coverage within LVi by using algorithms presented in Section 2.1.1. Then, base

station i relocates by size at,i in the calculated direction. Based on Theorem 1, the

new local covered area within LVi is equal to or greater than the initial local covered

area within LVi. Based on Theorem 2, if at,i ≤ Rcom
2
− Rcov, the local covered area

within Vi has also improved. In reality due to existence of shadow fading, base

stations cannot determine exact communication distance Rcom. Assuming normal

shadow fading SNRpi,pj = Pi − Lp(pi, pj) + N + ε, where ε is a Gaussian random

32



variable with standard deviation σ on the link connecting BS i to BS j. We define

the probability of correct decoding pc, as the probability that the received SNR is

greater than threshold ηr. Thus, for the direct transmission from the BS i to BS j,

pc = Pr(SNRpi,pj > ηr) = Pr(Pi − Lp(pi, pj) +N + ε > ηr)

= Pr(ε > ηr −N − Pi + Lp(pi, pj)) = Q(
ηr −N − Pi + Lp(pi, pj)

σ
) (2.17)

where Q(x) = 1√
2π

∫ 2π

x
e−

x2

2 . We calculate Rcom for a specific pc. A larger pc

ensures a larger connection probability at distance Rcom.

After base station i calculates its moving direction at step t, it moves by at,i

meters toward the calculated direction. at,i denotes step size sequence for iterative

updates of base station i’s location. at,i = Aig(step(t, i)), where Ai is the scaling

factor and g(step(t, i)) is the decaying factor which gradually decreases from 1 to 0.

step(t, i) is initially set to 1 and each time base station i moves, it is incremented

by 1. Choice of at,i can affect the speed of convergence of the algorithm. In order

to adjust at,i to achieve proper convergence speed, we propose to use the following

procedure:

• If over the last M relocations of base station i, the moving direction remains

the same, then let Ai = 2at−1,i and set step(t, i) = 1.

• If over the last M relocations, the new location of base station i falls out of

its corresponding Voronoi polygon , then let Ai =
at−1,i

2
and set step(t, i) = 1.

In the above procedure, the value of M is also important. Small M could result

into incorrect updates due to small amount of information, while a large choice of

33



M increases the convergence time due to the slow update frequency of at,i. If over

the last M relocations, the total relocated distance by base station i is too small

or too large, this means at,i has not been properly chosen for the current network

status. This could be either due to the size the area or rapid change in the traffic

pattern.

Πi(.) in Algorithm 3, represents the projection function. If s is in load-

balancing phase, and if pt,i + at,i <
−→
D i > falls out of the Voronoi polygon of base

station i, then Πi(pt,i + at,i <
−→
D i >) will be projected in the polygon. Otherwise,

if pt,i + at,i <
−→
D i > falls out of the line segment whose endpoints are ci and pt,i,

Πi(pt,i + at,i <
−→
D i >) will be projected onto ci.

To conserve energy and decrease unnecessary nodes relocation in the network

while providing acceptable service quality, we also propose a stopping criterion. If

the base station is in coverage enhancement phase and point ci (in Algorithm 3)

cannot improve the coverage by a threshold εc, it will not move any further. If the

base station is in load-balancing phase and the magnitude of
−→
F is less than εlb, it

will again not move. We can achieve a trade-off between total node relocation and

performance by changing εlb and εcov. Larger εlb and εcov will decrease the relocation

which is at the cost of worse performance. Due to the nature of our algorithm, there

may be situations where a particular base station needs to relocate to opposing

directions in order to satisfy the load-balancing and coverage improvements phase

(i.e. oscillations). However, such oscillatory behaviors can be avoided by setting up

a proper stopping criterion for base stations relocation.

Remark: The problem investigated in this paper is a non convex optimization
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problem with unknown information about location of users within the field. Thus,

the proposed algorithm will not necessarily result in the optimal solution.

2.5 Simulations and Results

Consider a target area of size 1800m × 1800m. This target area size is com-

parable with case 3 of Scenario III cited in the FCC report on the Public Safety

Nationwide Interoperable Broadband Network [1]. Several mobile base stations that

are connected to a wireless backhaul network are expected to provide communication

services to users in this area. It is assumed that each base station has 50 resource

blocks of 180KHz in size. It is also assumed that the carrier frequency is 700MHz,

channel bandwidth is 10MHz, and transmission power of each base station is equal

to 16.39dBm/resource block. The receiver’s sensitivity is considered to be -90dBm.

Each base station has limited power in communicating with other base stations. It

is assumed transmission power of each base station for communication between each

other is equal to 33dBm.

We assume that traffic hot-spots are distributed with Poisson point process

(PPP), and users (i.e. traffic sources) are generated based on the model in [35].

In this model, first a random location is assigned to each user. Then, each user

u is moved toward its closest traffic hot-spot HSu by a factor of β ∈ [0, 1]. So,

the user’s new location unew is calculated as unew = βHSu + (1 − β)u. β has

a Gaussian distribution with mean µβ ∈ [0, 1] and variance σβ =
0.5−|µβ−0.5|

3
. A

large µβ will result in users being closer to hot-spots, while small µβ will lead to
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Figure 2.2: First scenario: (a) Initial locations of base stations; (b) Final locations of base

stations after execution of Algorithm 3

a uniform distribution of traffic. Each user is generating traffic with the rate of

64kbps, 128kbps or 256kbps based on a uniform distribution.

The path-loss at distance d of base station is modeled as 40 log(d)+30 log(f)+

49 where d is in km and f is in MHz. In addition, shadow fading with a standard de-

viation of 5dB is also considered. A spatially correlated shadow fading environment

with correlation function r(x) = e−
x
50 was generated as described in [24]. Using

the path-loss model and receiver sensitivity, Rcov is calculated to be 200m. Mobile

base stations employ our proposed algorithm to autonomously relocate and provide

better support of traffic within the target area. Node relocation, control signaling

exchange and all other updates are carried out using a 60s simulation time-step.

We set ai,t = 200
step(i,t)

, a decreasing function of step(i, t) and slowly converging to 0.

We set εlb = 0.04 and εcov = 1m2. To the best of our knowledge, there are no

dynamic deployment methodologies that aim to maximize network coverage subject

to capacity constraints without any information on spatial traffic distribution across
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Figure 2.3: Distribution of traffic demand in the first scenario
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Figure 2.4: Network coverage and supported traffic during execution of Algorithm 3 (first

scenario)
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the target field. As such, we have shown the performance of our proposed algorithm

with respect to static deployment scenarios.

First, we consider the capacity and coverage performance of the network con-

sidering an initial random deployment of mobile base stations at the center of a

400m × 400m target field. For example, Figure 2.2(a) shows the initial positions

of the base stations (marked by red triangles) along with initial user distribution

(marked by green asterisk). Figure 2.3 displays the traffic demand and its spatial

distribution over the region. In our simulations, µβ is equal to 0.63. Given this ini-

tial deployment, base station 27 encounters high traffic demand beyond its capacity

limit. With the execution of our proposed relocation algorithm, base stations that

have available capacity relocate closer to traffic hot-spots. When the capacities of

base stations meet the traffic demand within their coverage area, they will continue

relocating to expand network coverage within the target field. In this way, traffic

hot-spots that were originally outside the coverage area of the initial deployment

will get an opportunity to be discovered. The above process continues until all base

stations can meet their respective traffic demands and maximum network coverage

is achieved. Figure 2.2(b) shows the final base station positions after 35 time-steps.

Figure 2.4 shows how network coverage and the total supported user traffic evolve

during the execution of our proposed algorithm. As observed, Algorithm 3 results

in increasing the supported user traffic from 50% to 98% as well as improving the

network coverage from 31% to 71%.

Next, after the base stations converge to their final positions in Figure 2.2(b),

we consider a scenario where traffic hot-spots locations change. This is shown in
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Figure 2.5: Second scenario: (a) Initial locations of base stations; (b) Final locations of

base station after execution of Algorithm 3
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Figure 2.6: Network coverage and supported traffic during execution of Algorithm 3 (sec-

ond scenario)
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Figure 2.7: Average network coverage and supported traffic during execution of Algorithm

3 (assuming a uniform initial deployment)
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Figure 2.8: Initial location of base stations
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Figure 2.9: (a) Step size variations of base station 2 during execution of Algorithm 3

when the step size changes adaptively; (b) Network coverage and supported traffic during

execution of Algorithm 3 for both variable and fixed scale factor
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Figure 2.10: (a) Total moving distance of base stations up to each round during execution

of Algorithm 3 for two different set of stopping criterias; (b) Network coverage during

execution of Algorithm 3; (c) supported Traffic during execution of Algorithm 3
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Figure 2.5(a). With this new traffic distribution, base stations 1, 3, 7, 23 and 28 will

face high traffic demands above its capacity limit. Again, using Algorithm 3, the

base stations will autonomously relocate to new positions in order to adapt to new

traffic hot-spots and accommodate the corresponding demand. Final base station

positions are shown in Figure 2.5(b).

Figure 2.6 depicts changes in the area coverage and supported traffic during the

execution of our algorithm. As observed, the supported user traffic increases from

55% to 98%. The trade-off in supporting almost all traffic demand in this scenario

is the decrease in the overall network coverage. However, the relocation algorithm

will still achieve maximum possible coverage given the spatial distribution of traffic

and capacity limits of the base stations.

Next, we investigate the performance of our proposed algorithm by averaging

over 100 different scenarios assuming a uniform initial deployment and random spa-

tial traffic demands (i.e. µbeta, number of hot-spots and their location). The results

are shown in Figure 2.7. With an initial uniform deployment of base stations, oc-

currences of traffic hot-spots will cause several base stations to face traffic above

their capacity limits. These situations result in a low average supported traffic of

only 70%. Using Algorithm 3, the base stations will adaptively relocate to meet

non-uniformities in the traffic demand; and therefore, the average supported traffic

in the network will increase to 96%.

Next, we study how adaptation of step-size affects the performance of the

proposed algorithm in the network. Consider a scenario with initial distribution

as depicted in Figure 2.8. We set ai,t = 6
step(i,t)

which is small in comparison to
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dimensions of the Voronoi polygons. We assume there is no stopping constraint. M

is set to 4, which means each base station keeps track of its relocations during the

last 4 rounds. Figure 2.9(a) depicts changes in a2,t during time. As Figure 2.9(a)

shows, a2,t is initially equal to 6. Starting from round 2, base station 2 keeps moving

in the same direction which means the step-size is small. As a result from round

7, we observe a sudden increase in a2,t. In order to measure effectiveness of the

proposed adaptation algorithm, we compare coverage and supported traffic when

scale factor adaptation is deployed with when scale factor is fixed. As comparison

between Figure 2.9(a) and Figure 2.9(b) shows, after there is a sudden improvement

in step size, the coverage and supported traffic increase faster which is because

the initial step size was too small. As Figure 2.9(b) shows, adaptive scaling factor

improves network performance faster than the fixed one. This is due to the fact that

6 meters is too small in comparison to the size of Voronoi polygons, which means it

takes a large number of rounds for each base station to reach the desired point.

Next, we study the effect of εlb and εcov on the performance of our proposed

algorithm. Assume initial distribution as depicted in Figure 2.8. Figures 2.10(b)-

2.10(c) depict how network coverage and supported traffic change for varying values

of εcov and εlb. As these figures show, smaller εcov and εlb results in better perfor-

mance. However, as Figure 2.10(a) illustrates, the total moving distance increases

as the threshold decreases. This is because larger threshold will require larger per-

formance improvement to relocate each base station. As a result, the base stations

will not move if they cannot improve the performance by the specified threshold.

This limitation will degrade the performance while it decreases the total moving
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Figure 2.11: Initial locations of base stations
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Figure 2.12: Supported traffic and network coverage for varying values of PBS in scenario

depicted in Figure 2.11

distance.

Finally, we study effect of limited communication range between base stations

on the performance of the proposed algorithm. We compare the performance by

considering two different scenarios to study the effect of limited communication

range on coverage improvement and load balancing phases. First, we consider the

capacity and coverage performance of the network considering an initial random

deployment of mobile base stations and user distribution as shown in Figure 2.11.

In this scenario, Voronoi neighbors of overloaded base stations are within commu-
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Figure 2.13: Initial locations of base stations
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Figure 2.14: Supported traffic and network coverage for varying values of PBS in scenario

depicted in Figure 2.13
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nication distance of each other, so load balancing phase is not affected by power

significantly. As Figure 2.12 shows, coverage performance is not affected by the

transmission power between base stations. However, smaller communication range

results in slower improvement. This is because, based on Theorem 2, the maxi-

mum step size for small communication ranges is smaller than large communication

ranges.

Next, we consider the capacity and coverage performance of the network con-

sidering an initial random deployment of mobile base stations and user distribution

as shown in Figure 2.13. In this scenario there are not enough number of base

stations in the network and at most they can cover 54% of the area. So when a

node gets overloaded, it does not necessarily have a neighbor which is within its

communication distance. In Algorithm 3, if the neighbor nodes of overloaded base

stations cannot detect it, they will not relocate to offload the traffic from overloaded

neighbor. As a result, as shown in Figure 2.14, in this scenario larger power results

in better supported traffic.

2.6 Discussion

Cells on Wheels are a cost effective solution to complement a public safety net-

work during emergencies. The variable nature of the spatial distribution of traffic

throughout the target field along with the large peak-to-average traffic ratio ne-

cessitates judicious and adaptive deployment of the cells. Assuming, autonomous

mobile base stations, we have proposed a distributed relocation algorithm that aims
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to adaptively enhance network coverage subject to base stations capacity limit. The

execution of the algorithm will effectively adapt the overall network coverage in or-

der to maximize the supported user traffic. Simulations show that substantial gain

in performance can be achieved under typical usage scenarios.

In this chapter, it was assumed that the base stations can move toward any

direction without any restrictions. If there are obstacles or prohibited areas within

the target field, the relocation algorithm has to consider additional constraints.

In Chapter 3, we address this problem. Besides that, it was assumed all base

stations are mobile. However, as we discuss in future work, there may be scenarios

in which the overall network consists of a combination of mobile and static base

stations. We had also assumed all base stations are transmitting with the same

fixed power. We discuss in future work how having power as another variable will

affect the formulation. Another direction which is discussed in future work is keeping

connectivity in the network as the base stations relocate.
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CHAPTER 3

Autonomous Relocation Strategies for Cells on Wheels in

Environments with Prohibited Areas

3.1 Overview

As discussed in Chapter 2, networking infrastructure can partially (or some-

times fully) breakdown during a disaster. A mobile communication infrastructure

composed of Cells on Wheels was proposed as a viable solution to complement or

replace the existing static infrastructure. Two important metrics for any cellular

network is supported traffic and area coverage. We are interested in a deployment

which has large coverage and large supported traffic, however, when we have limited

number of resources it may not be possible to have both full coverage and full sup-

ported traffic. In Chapter 2, we proposed an algorithm which maximizes covered

area subject to capacity constraints in the network. However, we considered the

scenario in which base stations can move to any point within the field. In practice,

these mobile cells might not be able to freely relocate to all points within the target

field. Structural obstacles, areas with outstanding water or other hazardous ma-

terials, or surfaces with debris are examples of prohibited areas where mobile cells
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are expected to avoid. Such prohibited areas introduce additional constraints on

designing an intelligent relocation strategy.

3.1.1 Related Work

A stated in 2.1.1, autonomous relocation algorithms have been extensively

studied in mobile sensor network to improve the total area coverage. However, no

consideration of variable non-uniform traffic have been taken into account. In [36],

the authors proposed a strategy to maximize the sensing coverage in mobile sensor

network. The proposed algorithm is an iterative algorithm. In each iteration, each

sensor moves to a new location inside its Voronoi polygon which increases local

coverage. To this end, a gradient-based nonlinear optimization approach is utilized.

In each round of the coverage algorithm, every sensor moves to an optimum target

point within its Voronoi polygon in order to maximize the local coverage within

the polygon. The problem is efficiently solved using some nonlinear programming

techniques.

Consider a region defined by k relations hj(pi,t, q) ≤ 0 for j = 1, ..., k. By con-

catenation of the boundary functions hj(pi,t, q) as h(pi,t, q) = [h1(pi,t, q), ..., hk(pi,t, q)]
T ,

this region can be represented by h(pi,t, q) ≤ 0. Denote the boundary of µ(pi,t) by

∂µ(pi,t). The boundary of the region corresponds to the equalities in the above

formulation. Note that this boundary has k segments, where each segment can be

expressed as:

∂jµ(pi,t) = {q ∈ µ(pi,t) : hj(pi,t, q) = 0} (3.1)
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Consider the following integral function over the region:

F (pi,t) =

∫
µ(pi,t)

z(pi,t, q)dq (3.2)

where z(., .) is a given function. The gradient of F (pi,t) with respect to pi,t can be

computed as [36]:

∇pi,tF (pi,t) =

∫
µ(pi,t)

∇pi,tz(pi,t, q)dq

−
k∑
j=1

∫
∂jµ(pi,t)

z(pi,t, q)

‖∇qhj(pi,t, q)‖
∇pi,thj(pi,t, q)dq (3.3)

At each iteration base station i moves to location p
′
i,t which maximizes F (x).

Each base station uses an iterative algorithm to find the optimal position within its

Voronoi polygon. At each iteration, each base station calculates the gradient of the

objective function. Then, by using a line search algorithm it moves in the gradient

direction. This calculation stops when the difference between the coverage between

two consecutive round is less than a pre-specified threshold. The local coverage area

of each base station can be formulated as

J(pi,t) =

∫
µ(pi,t)

dq (3.4)

Here z(pi,t, q) = 1. Note that a polygon with m edges is represented as Hq−K ≤ 0,

where Hm×2 and Km×1 are matrices with real entries. The sensing disk centered at

pi,t can be also represented as ‖q−pi,t‖2−R2
S ≤ 0. Hq−K ≤ 0 ∩ ‖q−pi,t‖2−R2

S ≤

0 represents the intersection of the polygon and disk.

Gradient of 3.4 can be calculated by 3.3. Since z(pi,t, q) = 1, the first term in

3.3 vanishes. Also Hq −K ≤ 0 does not depend on pi,t. As a result the only term
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that is not equal to zero belongs to hm+1(pi,t, q) = ‖q− pi,t‖2−R2
S which represents

the sensing disk.

∇pi,thm+1(pi,t, q) = −2(q − pi,t) (3.5)

∇qhm+1(pi,t, q) = 2(q − pi,t) (3.6)

Therefore, the gradient of J(pi,t) with respect to the position of the sensor is

given by:

∇pi,tJ(pi,t) =

∫
∂µ(pi,t)

q − pi,t
‖q − pi,t‖

dq (3.7)

where ∂µ(pi,t) is the portion of the perimeter of the sensing disk which is inside Vi.

Given the direction ∇pi,tJ(pi,t), a line search procedure determines the optimal

step size for maximizing the objective function in that direction. This process will

be done in several iterations to get close to the optimal solution.

3.1.2 Summary of Contributions

Our contributions in this chapter can be summarized as follows:

• We formulate the novel relocation optimization problem for maximization of

total covered area subject to capacity constraints of base stations in existence

of prohibited areas.

• We propose an adaptive self-deployment algorithm in which base stations are

capable of autonomous relocation to increase total covered area while base

stations are not overloaded. Each base station uses information about location

of its neighboring base stations and their capacity demand.

52



• We validate the proposed method via simulations for different scenarios and

study the sensitivity of the solution to system parameters. .

• We compare the proposed method with the method in Chapter 2.

3.1.3 Outline of Chapter

The rest of this chapter is organized as follows. System description and as-

sumptions are provided in Section 3.2. In Section 3.3, problem formulation is pro-

vided. In Section 3.4, a distributed adaptive relocation algorithm that simultane-

ously maximizes coverage and supported traffic is presented. In Section 3.5, we

analyze the efficiency of the proposed algorithm through extensive simulations.

3.2 System Model

We consider same assumptions and coverage model as in section 2.2. We also

assume the base stations cannot move into specific areas in the field. Let QF ⊂ Q

represent the total geographical area (i.e. target field) in which the base station can

move into.

3.3 Problem Statement

We need a strategy where mobile base stations adaptively and autonomously

adjust their positions in order to increase the supported traffic by eliminating the

base station overload situations in traffic hot-spot zones. Given the aforementioned

traffic constraint, our proposed relocation algorithm also tries to maximize the net-
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work coverage area at the same time. Let Pn denote the locations of base stations at

iteration n, we are interested to find a distributed algorithm in which Pn converges

to P ∗ for a given traffic distribution and such that:

P ∗ = arg max
p1,...,pM∈QF

N∑
i=1

∫
Vi

f(dist(q, pi))dq (3.8)

s.t. ρ̂i ≤ 1 ∀i ∈ {1, ..., N}

Where ρ̂i denotes the estimated average capacity demand of base station i which is

the sum of the required resources of all users u connected to cell i by a connection

function which gives the serving cell i to user u.

ρi =
∑
u∈Ui

ρi,u, ρi,u =
si,u
s
, si,u =

⌈
σu
ei,u

⌉
where Ui denotes the set of users which are supposed to connect to cell i. si,u denotes

the number of resources used by node u. s denotes the total number of available

resources at each base station. σu represents the required bit rate of user u in order

to transmit data. ei,u is the bandwidth efficiency of user u. The dxe represents

the minimum integer larger than x. We are interested to propose a relocation

algorithm that can achieve autonomous adaptive base station deployment subject

to the capacity constraints.

3.4 Autonomous Relocation Strategy in Existence of Prohibited Ar-

eas

Our proposed approach is an iterative algorithm; where in each iteration every

base station first broadcasts its location along with the capacity demand from users
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in its coverage area to other neighboring base stations [37]. Each base station then

uses this information to calculate its new location. The new location is calculated

through an adaptation of simulation optimization algorithm presented in [33]. The

basic strategy of the algorithm in [33] is to generate a sequence of feasible and

improving solutions. If the constraint is well satisfied, then the variables change in

the direction which improves the objective function. If the constraint function is

not satisfied, the variables change in a direction which satisfies the constraint.

Intuitively, the proposed algorithm aims to maximize network coverage while

ensuring that base stations can meet their corresponding traffic demand. Each base

station tries to increase its local coverage, when the capacity constraints of itself and

its neighbors are satisfied. We refer to this phase as coverage improvement phase.

On the other hand, if the capacity constraint of a base station is not satisfied (i.e.

overload situation), it makes a request for help by sending a signal to the neighboring

base stations. We refer to this phase as load balancing phase.

In the load balancing phase, a base station moves in the direction which would

result in the fastest offloading of traffic from the overloaded Voronoi neighbors. Since

we do not have any information about traffic distribution in the area, we assume

traffic sources of each base station is uniformly distributed within its coverage area.

Let ϕ(q) denote the estimated traffic density at point q for overloaded areas, we

set ϕ(q) for the rest of area to 0. The amount of offloaded traffic from overloaded

neighbor base stations when base station i is at pi,t is as follows:

G(pi,t) =

∫
µ(pi,t)

ϕ(q)dq (3.9)
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Here z(pi,t, q) = ϕ(q) which is not a function of pi,t. So first term in equation 3.3

will be equal to zero. Based on the definition of ϕ(q), ϕ(q) is nonzero only on the

Voronoi edges which are besides overloaded neighbor base stations. As a result by

using 3.3, we have:

∇pi,tG(pi,t) =

−
|Oi|∑
j=1

∫
∂jµ(pi,t)

ϕ(q)

‖∇qhj(pi,t, q)‖
∇pi,thj(pi,t, q)dq (3.10)

where ∂jµ(pi,t) is the part of Voronoi polygon Vi which is mutual between base

station i and oj. hj(pi,t, q) represents the equation of ∂jµ(pi,t) and it is equal to

(poj ,t − pi,t)T (q − pi,t+poj ,t

2
). The gradients can be computed as follows:

∂hj(pi,t, q)

∂pi,t
= pi,t − q (3.11)

∂hj(pi,t, q)

∂q
= poj ,t − pi,t (3.12)

Then, we get the following:

∇pi,tG(pi,t) =

|Oi|∑
j=1

∫
∂jµ(pi,t)

ϕ(q)
q − pi,t

‖poj ,t − pi,t‖
dq (3.13)

∇pi,tG(pi,t) is the direction which offloads the traffic from the overloaded neighbor

base stations fastest. Figure 3.1 provides a geometrical interpretation of equation

3.13. In this figure, pk,t is the only overloaded neighbor of pi,t. Same weight is

assigned to all the points within the gray area. As Figure 3.1 shows, the gradient of

the G(pi,t) is toward pk,t.

In the coverage improvement phase, each base station moves in the direction

which increases local coverage fastest. The local coverage area of each base station
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pi,t pj,t

pk,tpz,t

Figure 3.1: Geometrical interpretation of the gradient function with respect to pi,t for load

balancing phase when base station located at pk,t is overloaded

can be formulated as

J(pi,t) =

∫
µ(pi,t)

dq (3.14)

Each base station can calculate gradient of its local coverage function as [36]

∇pi,tJ(pi,t) =

∫
∂µ(pi,t)

q − pi,t
‖q − pi,t‖

dq (3.15)

where ∂µ(pi,t) is the portion of the perimeter of the sensing disk which is inside

Vi. Figure 3.2 provides a geometrical interpretation of equation 3.15. It is desired

in this figure to maximize the gray region by properly relocating the base station i

inside the polygon. As Figure 3.2 shows, the gradient of the local coverage is toward

right.

It is important to note, if base station i is on the border of prohibited region

and prohibited area blocks the most desirable movement path, the gradient is not a

valid moving direction. In this case, base station moves in a valid direction which

has the largest positive directional derivative. Directional derivative of objective
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pi,t

Figure 3.2: Geometrical interpretation of the gradient function with respect to pi,t for

coverage improvement phase

function F with respect to direction u can be calculated as follows:

D−→u F (pi,t) = ∇pi,tF (pi,t).
−→u = ‖∇pi,tF (pi,t)‖‖−→u ‖ cos(θ)

where θ is the angle between ∇pi,tF (pi,t) and −→u . As a result, among all valid

moving directions, the one with the smallest θ (and positive cos(θ)), is increasing

the objective function fastest.

After base station i calculates its moving direction at step t, it moves by at,i

meters toward the calculated direction. at,i denotes step size sequence for iterative

updates of base station i’s location. at,i = Aig(step(t, i)), where Ai is the scaling

factor and g(step(t, i)) is the decaying factor which gradually decreases from 1 to 0.

step(t, i) is initially set to 1 and each time base station i moves, it is incremented

by 1. Choice of at,i can affect the speed of convergence of the algorithm. In order

to adjust at,i to achieve proper convergence speed, we propose to use the following

procedure:

• If over the last M relocations of base station i, the moving direction remains

the same, then let Ai = 2at−1,i and set step(t, i) = 1.

• If over the last M relocations, the new location of base station i falls out of
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its corresponding Voronoi polygon, then let Ai =
at−1,i

2
and set step(t, i) = 1.

In the above procedure, the value of M is also important. Small M could result

into incorrect updates due to small amount of information, while a large choice of

M increases the convergence time due to the slow update frequency of at,i. If over

the last M relocations, the total relocated distance by base station i is too small

or too large, this means at,i has not been properly chosen for the current network

status. This could be either due to the size the area or rapid change in the traffic

pattern.

Πi(.) in Algorithm 4, represents the projection function. If pt,i + at,i <
−→
D i >

falls out of the Voronoi polygon of base station i, then Πi(pt,i + at,i <
−→
D i >) will be

projected in the polygon. Besides that, in both phases, when base station reaches

the boundary of a prohibited area, it stops.

To conserve energy and decrease unnecessary nodes relocation in the network

while providing an acceptable service quality, we also propose a stopping criterion.

If the base station is in the coverage enhancement phase and the magnitude of

coverage hole is less than εcov, it will not move any further. If the base station is

in the load-balancing phase and the total amount of overloaded traffic within its

neighbors is less than εlb, it will not move any further. We can achieve a trade-off

between stopping time and performance by changing εlb and εcov. Larger εlb and εcov

will decrease the stopping time which is at the cost of worse performance.

Remark: The problem investigated in this paper is a non convex optimization

problem with unknown information about location of users within the field. Thus,
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Algorithm 4 Autonomous adaptive deployment algorithm

1: . Each base station si broadcasts its location pi,t at time t and its capacity demand

ρsi to its neighbors and then constructs its Voronoi polygon based on the similar

information it receives from other base stations

2: . Each node si ∈ S calculates its new location as follows:

3: Calculate ∇pi,tG(pi,t) by equation 3.13

4: if ∇pi,tG(pi,t) 6=
−→
0 and ρsi ≤ 1 then

5: . Choosing a valid moving direction which offloads traffic from overloaded neigh-

bors fastest

6: <
−→
D i >= arg max−→

D i:‖
−→
D i‖=1

−→
D i.∇pi,tG(pi,t)

7: else if ρsi ≤ 1 then

8: . Choosing a valid moving direction which increases local coverage fastest

9: Calculate ∇pi,tJ(pi,t) by equation 3.15

10: <
−→
D i >= arg max−→

D i:‖
−→
D i‖=1

−→
D i.∇pi,tJ(pi,t)

11: end if

12: pt+1,i = Πi(pt,i + at,i <
−→
D i >)

the proposed algorithm will not necessarily result in the optimal solution.

3.5 Simulation and Results

Consider a target area of size 1800m × 1800m. This target area size is com-

parable with case 3 of Scenario III cited in the FCC report on the Public Safety

Nationwide Interoperable Broadband Network [1]. Several mobile base stations that
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Figure 3.3: First scenario: (a) Initial locations of base stations; (b) Final locations of base

station after execution of Algorithm 4

are connected to a wireless backhaul network are expected to provide communication

services to users in this area. It is assumed that each base station has 50 resource

blocks of 180KHz in size. It is also assumed that the carrier frequency is 700MHz,

channel bandwidth is 10MHz, and transmission power of each base station is equal

to 16.39dBm/resource block. The receiver’s sensitivity is considered to be -90dBm.

Each base station has limited power in communicating with other base stations. It

is assumed transmission power of each base station for communication between each

other is equal to 36dBm.

We assume that traffic hot-spots are distributed with Poisson point process

(PPP), and users (i.e. traffic sources) are generated based on the model in [35].

In this model, first a random location is assigned to each user. Then, each user

u is moved toward its closest traffic hot-spot HSu by a factor of β ∈ [0, 1]. So,

the user’s new location unew is calculated as unew = βHSu + (1 − β)u. β has a

Gaussian distribution with mean µβ ∈ [0, 1] and variance σβ =
0.5−|µβ−0.5|

3
. A large
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Figure 3.4: Network coverage and supported Traffic during execution of Algorithm 4 (first

scenario)

µβ will result in users being closer to traffic hot-spots, while small µβ will lead to

a uniform distribution of traffic. Each user is generating traffic with the rate of

64kbps, 128kbps or 256kbps based on a uniform distribution.

The path-loss at distance d of a base station is modeled as 40 log(d)+30 log(f)+

49 where d is in km and f is in MHz. In addition, shadow fading with a standard de-

viation of 5dB is also considered. A spatially correlated shadow fading environment

with correlation function r(x) = e−
x
50 was generated as described in [24]. Using

the path-loss model and receiver sensitivity, Rcov is calculated to be 200m. Mobile

base stations employ our proposed algorithm to autonomously relocate and provide

better support of traffic within the target area. Node relocation, control signaling

exchange and all other updates are carried out using a 60s simulation time-step.

It is assumed that each base station can relocate up to a maximum of 60m during

a time-step. We set ai,t = 200
step(i,t)

, a decreasing function of step(n, t) and slowly

converging to 0. We set εlb = 2 and εcov = 3m2.

To the best of our knowledge, there are no dynamic deployment methodologies
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that aim to maximize network coverage subject to capacity constraints without any

information on spatial traffic distribution across the target field. As such, we have

shown the performance of our proposed algorithm with respect to static deployment

scenarios.

First, we consider the capacity and coverage performance of the network con-

sidering an initial random deployment of mobile base stations at the center of a

850m × 850m target field. For example, Figure 3.3(a) shows the initial positions

of the base stations (marked by red triangles) along with initial user distribution

(marked by green asterisk). Prohibited areas are shown by black polygons. In our

simulations, µβ is equal to 0.6. Given this initial deployment, base stations 1, 18 and

19 encounter high traffic demands beyond their capacity limits. With the execu-

tion of our proposed relocation algorithm, base stations that have available capacity

relocate closer to traffic hot-spots. When the capacities of base stations meet the

traffic demand within their coverage area, they will continue relocating to expand

network coverage within the target field. In this way, traffic hot-spots that were

originally outside the coverage area of the initial deployment will get an opportu-

nity to be discovered. The above process continues until all base stations can meet

their respective traffic demands and maximum network coverage is achieved. Figure

3.3(b) shows the final base station positions after 30 time-steps. Figure 3.4 shows

how network coverage and the total supported user traffic evolve during the execu-

tion of our proposed algorithm. As observed, Algorithm 4 results in increasing the

supported user traffic from 80% to 97% as well as improving the network coverage

from 41% to 74%.
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Figure 3.5: Second scenario: (a) Initial locations of base stations; (b) Final locations of

base station after execution of Algorithm 4

0 10 20 30
Round

0.7

0.8

0.9

1

1.1

N
o

rm
a

liz
e

d
 S

u
p

p
o

rt
e

d
 T

ra
ff

ic
a

n
d

 C
o

v
e

ra
g

e

Supported Traffic
Network Coverage

Figure 3.6: Network coverage and supported Traffic during execution of Algorithm 4

(second scenario)
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Next, after the base stations converge to their final positions in Figure 3.3(b),

we consider a scenario where traffic hot-spots locations change. This is shown in

Figure 3.5(a). With this new traffic distribution, base stations 2, 15, 21 and 22

will face high traffic demands above their capacity limits. Again, using Algorithm

1, the base stations will autonomously relocate to new positions in order to adapt

to new traffic hot-spots and accommodate the corresponding demand. Final base

station positions are shown in Figure 3.5(b). Figure 3.6 depicts changes in the area

coverage and supported traffic during the execution of our algorithm. As observed,

the supported user traffic increases from 80% to 98% as well as improving the

network coverage from 76% to 81%.

Next, we investigate the performance of our proposed algorithm by averaging

over 100 different scenarios assuming a uniform initial deployment and random spa-

tial traffic demands (i.e. µbeta, number of hot-spots and their location). The results

are shown in Figure 3.7. With an initial uniform deployment of base stations, oc-

currences of traffic hot-spots will cause several base stations to face traffic above

their capacity limits. These situations result in a low average supported traffic of

only 67%. Using Algorithm 4, the base stations will adaptively relocate to meet

non-uniformities in the traffic demand; and therefore, the average supported traffic

in the network will increase to 97%.

Next, we study how adaptation of step-size affects the coverage and supported

traffic in the network. Consider a scenario with initial distribution as depicted in

Figure 3.8. We set ai,t = 5
step(i,t)

which is small in comparison to dimensions of the

Voronoi polygons. M is set to 4, which means each base station keeps track of its
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Figure 3.7: Average network coverage and supported traffic during execution of Algorithm

4 (assuming a uniform initial deployment)
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Figure 3.8: Initial location of base stations
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Figure 3.9: (a) Step size variations of base station 16 during execution of Algorithm 4

with adaptive scale factor; (b) Network coverage and supported traffic during execution

of Algorithm 4 for both adaptive and fixed scale factor
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Figure 3.10: total moving distance of base stations up to each round during execution of

Algorithm 4 for two different set of stopping criterias

relocations during the last 4 rounds. Figure 3.9(a) depicts changes in a16,t during

time. As Figure 3.9(a) shows, a16,t is initially equal to 4. Starting from round 3,

base station 16 keeps moving in the same direction which means the step-size is

small. As a result, from round 7, we observe a sudden increase in a16,t. In order to

measure effectiveness of the proposed adaptation algorithm, we compare coverage

and supported traffic when scale factor adaptation is deployed with when scale factor

is fixed. As comparison between Figure 3.9(a) and Figure 3.9(b) shows, after there

is a sudden improvement in step size, the coverage and supported traffic increase

faster which is because the initial step size was too small. As Figure 3.9(b) shows,

adaptive scaling factor results in faster improvement. As observed, there is only a

slight improvement in coverage and supported traffic with fixed scale factor. This

is due to the fact that 5 meters is too small in comparison to the size of Voronoi

polygons, which means it takes a large number of rounds for each base station to

reach the desired point.
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Figure 3.11: (a) Network coverage during execution of Algorithm 4; (b) supported Traffic

during execution of Algorithm 4
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Figure 3.12: Network coverage and supported Traffic during execution of Algorithm 4 for

two different communication ranges

Next, we study the effect of εlb and εcov on the performance of our proposed

algorithm. Assume initial distribution as depicted in Figure 3.8. Figures 3.11(a)-

3.11(b) depict how network coverage and supported traffic change for varying values

of εcov and εlb. As these figures show, smaller εcov and εlb results in better perfor-

mance. However, as Figure 3.10 illustrates, the total moving distance increases as

the threshold decreases. This is because larger threshold will require larger perfor-

mance improvement to relocate each base station. As a result, the base stations will

not move if they cannot improve the performance by the specified threshold. This

limitation will degrade the performance while it decreases the total moving distance.

Finally, we study effect of limited communication range between base stations

on the performance of the proposed algorithm. In Algorithm 4, base station i

just uses information of the neighbor base stations which are within distance 2Rcov

from itself to choose the moving direction. It is reasonable to assume transmission

power between base stations is such that it guarantees communication between base
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Figure 3.13: Initial locations of base stations

stations that are within distance 2Rcov. Hence, irrespective of the power, base

stations choose the same moving direction when Algorithm 4 is used. However, the

maximum moving distance depends on the Voronoi region which is affected by the

power. We study the effect of communication range between base stations on the

performance of Algorithm 4 by averaging over 100 different scenarios assuming a

uniform initial deployment and random µbeta. We consider the same target field as

in 3.5(a). As Figure 3.12 illustrates, in both scenarios the network achieves the same

performance on average.

3.6 Comparison between Algorithms 3 and 4

In Chapter 2, we proposed a relocation algorithm (Algorithm 3) to increase

coverage and supported traffic in public safety networks. In this chapter, it is

assumed base stations can relocate to any point within the target field. However,

in many practical scenarios, there are some areas in the field where mobile base

stations cannot move into. In Chapter 3, we proposed another algorithm (Algorithm
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4

4) which enables mobile cells to adapt their positions in response to potentially

changing traffic patterns in a field with prohibited areas. It is important to notice,

the proposed algorithm can also be used in scenarios with no prohibited area. In

this section, we compare the performance of these two algorithms when there is

no prohibited area within the target field by considering two different scenarios to

compare the coverage improvement and load balancing phases of the two proposed

algorithms.

First, we consider the coverage performance of the network considering an

initial random deployment of mobile base stations with no user as shown in Figure

3.13. Given that there is no traffic in the area, we can compare the performance

of the proposed coverage algorithms. As Figure 3.15 shows, total moving distance

in Algorithm 4 is much larger than Algorithm 3. In coverage improvement phase

of Algorithm 3, coverage improvement is guaranteed in every iteration which pre-

vents unnecessary movements by the base station. However, in Algorithm 4, since
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the chosen moving direction is calculated through gradient, it guarantees coverage

improvement for very short moving distance. After moving by ai,t in the calculated

direction, the new location does not necessarily result in better local coverage. We

can guarantee coverage improvement in every iteration by using line search back

tracking method, but it increases complexity of the algorithm dramatically. These

unnecessary movements increase the total moving distance in Algorithm 4 dramat-

ically. Figure 3.4 shows how network coverage and the total supported user traffic

evolve during the execution of these proposed algorithm. As observed, Algorithm 4

results in better coverage performance in comparison to Algorithm 3. This is due to

the fact, in Algorithm 4, base stations improve coverage by using gradient function.

In Figure 3.4, both Algorithms achieve almost the same supported traffic. This is

because in this scenario there are enough number of base stations in the network

such that each base station has at least one neighbor which is within distance 2Rcov.

As a result, in case of traffic overload, there is at least one neighbor which gets

notified and relocates to offload the traffic from over loaded base station.

Total moving distance in Algorithm 4 can be reduced by choosing an step size

which guarantees improvement in local covered area. This step size can be chosen

by deploying backtracking line search; however, this increasing complexity of the

algorithm dramatically.

Next, we consider a scenario as shown in Figure 3.16. In this scenario there

are not enough number of base stations in the network and at most they can cover

54% of the area. So when a node gets overloaded, it does not necessarily have a

neighbor which is within distance 2Rcov. As a result, as shown in Figure 3.17, in
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these scenarios Algorithm 3 achieves better performance in comparison to Algorithm

4. In Algorithm 4, since node 14 does not have enough of number of base neighbor

base stations within distance 2Rcov.

3.7 Discussion

In this chapter, we considered providing a communication network which can

be quickly deployed in the area. The proposed method in previous chapter does

not consider disability of base stations to move to all locations within the target

field due to the existence of various obstacles or other prohibited areas. Assum-

ing, autonomous mobile base stations, we have proposed a distributed relocation

algorithm that effectively adapts the overall network coverage in order to maximize

the supported user traffic. Our proposed algorithm iteratively determines the best

relocation direction for mobile cells while avoiding any prohibited area. Simulations

show that substantial gain in performance can be achieved under typical usage sce-

narios.

In this chapter, it was assumed all base stations are mobile. However, as we

discuss in future work, there may be scenarios in which the overall network consists

of a combination of mobile and static base stations. We had also assumed all base

stations are transmitting with the same fixed power. We discuss in future work

how having power as another variable will affect the formulation. Another direction

which is discussed in future work is keeping connectivity in the network as the base

stations relocate.
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CHAPTER 4

Routing in Multi-hop Networks

4.1 Overview

In recent decades, there has been huge improvement in multi-hop networks

which led to new networks such as sensor networks and mobile ad-hoc networks. In

these networks, designing a high performance and efficient routing algorithm is of

great importance. Some of the metrics critical to the performance of these networks

are throughput and delay. There is an increasing demand for high throughput and

low delay scheduling and routing algorithm in multi-hop networks. High throughput

is critical to respond to increasing demand of different applications. Besides that,

for a large class of applications such as video or voice over IP, embedded network

control and for system design; metrics like delay are of prime importance. In this

context, good routing and scheduling algorithms are needed to dynamically allocate

resources to maximize the network throughput region while resulting in small delay.

These networks can be either static or dynamic. Dynamicity in the network can

be either due to changes in network’s load or the topology of the network. We are

interested in a routing algorithm which can adapt the routing paths as the network
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changes while providing large throughput and small delay.

4.1.1 Related Work

Tassiulas and Ephremides in [3] proposed the back-pressure algorithm for

scheduling and routing in multi-hop networks, and proved its throughput-optimality.

A routing/scheduling algorithm is throughput-optimal in the sense of [3], if it can

stabilize any traffic that can be stabilized by any other routing/scheduling algorithm.

The back-pressure algorithm [3], is a congestion based routing and scheduling pro-

tocol which sends packet along the links with higher queue differential backlog. It

has been proven in [3] that back-pressure algorithm is throughput-optimal. It is

shown that the back-pressure algorithm can be combined with congestion control

to fairly allocate resources among competing users in a network [38], [39], [40], [41];

thus, providing a complete resource allocation solution from the transport layer to

the MAC layer. The back-pressure policy gives higher priority to links with higher

differential backlog. The algorithm is as follows:

1. Queue backlog Differential: For each link (i, j) calculate P d
ij = qdi − qdj .

2. Destination selection: At time t, node i chooses the maximum queue dif-

ferential backlog to its neighbors.

d∗ij = arg max
d∈D

P d
ij

P ∗ij = max{P d∗ij
ij , 0}

3. Scheduling: Γ is the set of all possible link schedules. The back-pressure
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algorithm chooses the link scheduling:

µ∗ = arg max
µ∈Γ

∑
(i,j)∈L

µijP
∗
ij

4. Packet forwarding: transmit µ∗ij packets of queue q
d∗ij
ij , if there is less than

µ∗ij packets in q
d∗ij
i transfer all the packets in the queue.

While the ideas behind scheduling using the weights suggested in that paper

have been successful in practice in base stations and routers, the adaptive routing

algorithm is rarely used. The main reason for this is that the routing algorithm

can lead to poor delay performance. In the back-pressure, the packets are sent to

the neighbor nodes which have smaller queue length. Since the queue length at

destination is 0, in heavy loads the traffic forces the packets toward the destination.

However, in light loads there is not enough packets in the network to push the traffic

toward the destination. This may lead to unnecessarily long paths and routing-

loops. As a result, this approach has poor delay performance especially in light loads

because it explores all feasible paths between each source and destination without

considering delay metric. This extensive exploration leads to network stability.

However, in light or moderate traffic the back-pressure may lead to unnecessarily

long paths and routing-loops. As a result, the back-pressure algorithm has poor

end-to-end delay performance. In [42] and [43], Gupta et al. analyzed the delay

performance of back-pressure with a fixed route between each source destination

pair. They provided a lower bound on the delay metric; however, this is only

applicable when back-pressure is applied just as the scheduling policy.
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There have been several studies on delay improvement in back-pressure. In

[44], Ji et al. used the age of head-of-line packets instead of queue length as link

weights, which is throughput-optimal for fixed routing. This solution solves last

packet problem, whereby packets belonging to some flows may be excessively delayed

due to lack of subsequent packet arrivals. In [45], Ying et al. proposed an algorithm

that adaptively selects a set of optimal routes between each source and destination,

but increases the computational complexity and the number of queues per node

considerably. Both [46] and [47] use shadow queues to improve delay performance

and decrease the number of queues in the network. Both algorithms are throughput-

optimal scheduling for fixed routing. Some attempts have been done to adopt the

original framework for handling finite buffer sizes [48]. There have been some efforts

to reduce the number of queues per desination [49]. There have been also some

works which study the delay performance under heavy trailed traffic [50]- [51].

Stai et al. in [52] assigned virtual coordinates in hyperbolic space to each node

such that there is a greedy path in hyperbolic space between each pair of nodes.

They applied back-pressure scheduling over a fixed set of greedy paths, and called

it Greedy back-pressure (GBP). In greedy back-pressure, described in Algorithm 5,

delay performance in light loads is improved by restricting the packets to be sent

along specific loop-free paths. However, it is at the cost of decreasing the capacity

region, which is the main characteristic of the back-pressure algorithm. Besides

that, as our results show, the delay of greedy back-pressure (as implemented in [52])

in heavy loads may be larger than traditional back-pressure. This is due to the

fact that in the greedy back-pressure of [52] they restrict packets to be sent along
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specific paths without considering the arrival rate information, which may lead to

congestion.

4.1.2 Summary of Contributions

Our contributions in this chapter can be summarized as follows:

• We formulate the problem by maximizing the total amount of packets that are

routed through loop-free paths subject to throughput-optimality constraints.

• We propose an algorithm which solves the optimization problem with same

complexity as back-pressure.

• We propose an adaptation of the algorithm to handle failures in the network.

• We validate our theoretical results via simulations and demonstrate that the

proposed algorithm improves the delay performance while keeping the throughput-

optimality feature.

4.1.3 Outline of Chapter

The rest of this chapter is organized as follows. In Section 4.2, we summarize

the properties of hyperbolic embedding and greedy routing. In Section 4.3, we de-

scribe our system and state our assumptions. In Section 4.4, we study the problem

when the topology of the network is not changing. In Subsection 4.4.1, we formal-

ize our optimization problem and obtain a greedy-aided back-pressure algorithm.

We study the influence of the design parameter on performance of the proposed al-
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Algorithm 5 Greedy back-pressure (GBP)

1: . Each node i maintains a separate queue for each destination d

2: for each directed link (i, j) do

3: for each destination d do

4: . if node j is a greedy neighbor of node i

5: if distH(i, d) > distH(j, d) then

6: P dij(t)← qdi (t)− qdj (t)

7: end if

8: end for

9: . Each link is assigned a weight Pij

10: Pij(t)← max{max
d
P dij(t), 0};

11: . The destination which achieves the maximum in previous line

12: d∗(i, j, t)← arg max
d

P dij(t);

13: end for

14: . Scheduling and routing rule: Choose the rate matrix through the maximization:

15: [µij(t)]← arg max
µ′∈Γ

∑
(i,j)

µ′ijPij(t)

16: for each directed link (i, j) do

17: if µij(t) > 0 then

18: the link (i, j) serves d∗(i, j, t) with µd
∗
ij (t) = µij(t)

19: end if

20: end for
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gorithm. In Subsection 4.4.2, we describe our simulation settings and compare the

proposed algorithm with the traditional back-pressure and the greedy back-pressure.

In Section 4.5, we assume after some time there may be a small change in topology

of the network. Then, we propose an adaptation of the algorithm in these networks.

In Section 4.5.3, we compare the proposed algorithm with traditional back-pressure

and the algorithm proposed in 4.4.1. In Section 4.6, we discuss complexity and

distributivity of the proposed algorithm.

4.2 Hyperbolic Embedding and Greedy Geographical Paths

There are several different models for constructing hyperbolic geometry. One

of the standard models is the Poincaré disc model. In this model, hyperbolic space

D is represented by a set of points (x, y) ∈ R2 such that x2+y2 ≤ 1, which represents

a unit disc. We refer to points in the hyperbolic plane using complex coordinates,

such that (x, y) is represented by the complex number z = x+ yi.

The hyperbolic plane has a boundary circle denoted by ∂D, which is x2+y2 = 1,

and represents the infinity. Points on ∂D are at infinite distance from any point

inside the circle. If u and v are two points in the unit disc, the distance between

these two points in the Poincaré disk model is :

cosh dD(u, v) =
2|u− v|2

(1− |u|2)(1− |v|2)
+ 1 (4.1)

In hyperbolic geometry, the path that realizes the hyperbolic distance between

two points (i.e. the shortest path) is called geodesic. In the Poincaré Disk model,

geodesics between two points are represented by arcs of Euclidean circle in D that
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are perpendicular to ∂D. Two distinct points on ∂D thus determine a hyperbolic

line in D. It is easy to show that given two points a = eiα and b = eiβ on ∂D , the

center of the Euclidean circle in C containing the hyperbolic line whose endpoints

at infinity are a and b, and the corresponding radius are given by

c =
1

m∗
R2 =

1

|m|2
− 1 (4.2)

where m = a+b
2

is the midpoint of the Euclidean chord joining a and b, and m∗ is

the complex conjugate of m.

Definition 1. An embedding of a graph G in Hd is a mapping C(G) : V → Hd that

assigns to each vertex v ∈ V , a virtual coordinate C(v).

In greedy geographical routing, nodes forward the packets based on the co-

ordinates of the destination and coordinates of their neighbors. Each node sends

the packet to the destination by forwarding the packet to any neighbor which is

closer to the destination than the node itself. If we use Euclidean coordinates of the

physical location of nodes, packets may get stuck in local minima of the distance-

to-destination function.

Greedy embedding is a graph embedding that makes simple greedy geometric

packet forwarding successful for every source-destination pair. In [53], the authors

showed every connected graph has a greedy embedding in hyperbolic space. In

[54], the authors proposed a distributed algorithm that assigns a virtual coordinate

in hyperbolic plane to each node in the network, such that there exists a greedy

geographical path for each pair of source and destination with respect to these

virtual coordinates.
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To embed the actual graph G in the hyperbolic plane, first an arbitrary span-

ning tree T of G is chosen. If T admits a greedy embedding in the hyperbolic space

then G also admits the greedy embedding. So, the algorithm embeds the spanning

tree T in the hyperbolic plane such that edges of T provide a greedy path between

each pair of source and destination. As a result, in this embedding each node has

at least one greedy neighbor to the destination, which is one of its children or its

parent.

The idea behind the embedding algorithm is based on the following Lemma:

Lemma 3. (Greedy Embedding): For a graph G with embedding C(G), let T be a

spanning tree of G. For each edge e ∈ T , let b(e) be the perpendicular bisector of

the embedded edge C(e). Then a sufficient condition for C to be a greedy embedding

of G is that for each e ∈ T , b(e) intersects no embedded edges of T other than C(e).

Figure 4.1 shows an embedding of a spanning tree. The dashed lines represent

the bisectors. Coordinate of root node is randomly chosen. Coordinate of its children

are chosen by calculating projection of the root node with respect to the bisectors.

Having a spanning tree T , the embedding algorithm is as follows:

1. Initialize by assigning to the root node r of the tree: (i) a virtual coordinate

C(r) in the hyperbolic plane (ii) the angles αr = π and βr = 2π corresponding

to the ideal points ar = eiαr and br = eiβr

2. For each node n ∈ G:

• Its parent pn: (i) sends C(pn), αn = αpn and βn = αpn+βpn
2

to n; and (ii)

updates αpn := βn.
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Figure 4.1: Example of a greedy embedding of an irregular spanning tree in the Poincaré

disk model

• Node n: (i) calculates c and R according to 4.2 with an = eiαn and

bn = eiβn and its own coordinate

C(n) =
R2

(C(pn))∗ − c∗
+ c (4.3)

and (ii) updates αn := αn+βn
2

.

All steps of the algorithm are suitable for distributed and asynchronous com-

putation. Communication takes place only between a node joining the embedded

graph and its parent node, which is elected from the immediate topographic neigh-

borhood in the graph. This embedding assigns coordinates to each node such that

it guarantees paths on the spanning tree are greedy for any pair of source and des-

tination. It is important to note that there may be other greedy paths besides the

paths on the tree.

4.3 System Model

Consider a network represented by a graph G = (V , E), where V is the set of

nodes and E is the set of directed links. Nodes are transmitters/receivers and links
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represent the channel between two nodes if they can directly communicate with each

other. µm,n is the maximum transmission rate supported on a directed link from

node m to node n. We assume that time is slotted, with a typical time slot denoted

by t. We denote µdij(t) as communication traffic in link (i, j) for destination d at

time t. Denote by Adi (t) the amount of new exogenous data that arrives at node i on

slot t that must eventually be delivered to node d. We assume each Adi (t) satisfies

the Strong Law of Large Numbers (SLLN). That is with probability 1 we have:

lim
t→∞

∑t−1
τ=0A

d
i (τ)

t
= λdi .

We assume λdi = 0 if i = d. qdi (t) denotes the queue length of a FIFO queue at node

i for destination d. A scheduling policy is a set of links that are active at the same

time. A scheduling policy is called feasible if activated links do not interfere with

each other. We call Γ the set of all feasible schedules. Also we use the notation

N (i) to denote the one-hop neighbors of node i.

The capacity region of the network is defined as the set of all end-to-end traffic

load matrices that can be stably supported under some network control policy. By

stability we mean the time average queue length of all queues in the network doesn’t

go to infinity. A network policy is called throughput-optimal if its capacity region is

the same as the network capacity region. In [3], the authors proved that the back-

pressure algorithm is throughput-optimal for the capacity region of the network

denoted as ΛG. ΛG is the set of all input rate matrices (λdi ) such that there exists a

rate matrix [µij] satisfying the following constraints:

• Efficiency constraints: µdij ≥ 0, µdii = 0,
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µddj = 0,
∑

d µ
d
ij ≤ µij, ∀i, d, j.

• Flow constraints: λdi +
∑

l µ
d
li ≤

∑
l µ

d
il, ∀i, d : i 6= d.

4.4 Network with Static Topology

In this section, we develop our algorithm for networks with fixed topology.

4.4.1 Greedy-aided Back-pressures

We are interested in a routing algorithm which minimizes average delay in the

network subject to the throughput-optimality constraint. Assume we have hyper-

bolic coordinates of nodes in our network obtained through a distributed hyperbolic

greedy embedding algorithm by choosing a random spanning tree. We assume our

network topology does not change frequently such that at each time slot the virtual

coordinates result in greedy paths between each pair of nodes.

In greedy routing, each node knows the virtual coordinates of itself, its neigh-

bors and destination. In this routing, packets are forwarded to a neighbor which

is closer to the destination than the node itself, so the distance to the destination

is decreasing. Decreasing distance to the destination ensures one node cannot be

passed twice, so the path is loop free. As a result, if packets are sent through greedy

links, they get to the destination through loop free paths. Thus, sending packets

through greedy links results in low delay when the network is not congested. How-

ever, restricting packets to be sent over a fixed set of paths may result in large delay

and unstable queues in heavy loads.
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In order to ensure throughput-optimality of the algorithm, the packets should

not be restricted to go through a set of pre-specified paths for all set of packet

arrivals. In order to keep the throughput-optimality feature while providing good

delay performance, we introduce a penalty function which is the total amount of

resources used over non-greedy links [55]. We are interested to find the routes for

flows such that time average expected penalty is minimized subject to throughput-

optimality constraints. Thus, we formulate the following optimization problem:

min
µdi,j(t)

lim
T→∞

1

T

T−1∑
t=0

∑
i,j,d∈ P

E{µdij(t)} (4.4)

s.t. {µnj(t)}(n,j)∈L ∈ ΛG,

where P denotes the set of (i, j, d) such that node j is not a greedy neighbor of node

i for destination d.

This optimization problem minimizes the total amount of resources used by non-

greedy links subject to throughput-optimality constraints. The solution to this

problem will route packets through greedy paths unless greedy paths will lead to

instability of queues.

Theorem 4. The scheduling and routing algorithm described in Algorithm 6 asymp-

totically solves the described optimization problem.

lim
T→∞

1

T

T−1∑
t=0

∑
i,j,d

E[µ
′d

i,j(t)] = copt +O(
1

M
) (4.5)

where copt is the infimum time average cost achievable by any policy that meets the

required constraints and E
[
µ
′d

i,j(t)

]
is the average link rate when using Algorithm 6

with fixed parameter M .
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Furthermore, the queues are stable and the expected value of the queue length is

bounded as follows:

∑
i,d

E[qdi (∞)] = O(M(copt − cmin)) (4.6)

where E[qdi (∞)] is the queue length as t→∞ and cmin represents a lower bound of

the cost function.

Proof. We denote by Q(t) = (qdi (t)), the matrix of queues in the network. We define

the Lyapunov function L(Q(t)) =
∑

i,d q
d
i (t)

2. Based on Chapter 4 of [56], we need

to design a controller that, at every time slot t, observes the Q(t) values and subject

to the known Q(t) greedily minimizes the drift-plus-penalty expression which is as

follows:

E{L(Q(t+ 1))− L(Q(t)) | Q(t)}+ME{
∑

i,j,d∈ P

µdij(t) | Q(t)} (4.7)

where M > 0 is a control parameter that affects performance-delay trade-off.

Intuitively, minimizing E{L(Q(t + 1)) − L(Q(t)) | Q(t)} alone would tend to push

the network to a lower congestion state; however, it may result in large penalty.

Thus, we minimize a weighted drift-plus-penalty, where M represents how much we

emphasize penalty minimization.

In order to minimize the drift-plus-penalty expression, we define two indicator func-

tions:

I1(i, j, d) = {distH(i, d) > distH(j, d) ∧ (j ∈ N (i))} which means link (i, j) is a

greedy path for destination d.

I2(i, j, d) = {distH(i, d) < distH(j, d) ∧ (j ∈ N (i))} which means link (i, j) is not a

89



greedy path for destination d.

We observe that I1 ∩ I2 = ∅. So we have:

∑
i,j,d

µdij =
∑

(i,j,d)|I1

µdij +
∑

(i,j,d)|I2

µdij (4.8)

The queue dynamics are:

qdi (t+ 1) = max
{
qdi (t)−

∑
j

µdij(t), 0
}

+
∑
j

µdji(t) + Adi (t) (4.9)

Based on Lemma 4.3 [57], if V , U , µ, A are all non-negative numbers and V ≤

max[U − µ, 0] + A then the following holds:

V 2 ≤ U2 + µ2 + A2 − 2U(µ− A) (4.10)

We derive an upper-bound of the drift-plus-penalty expression as follows:

E(L(Q(t+ 1))− L(Q(t))|Q(t)) +M
∑

(i,j,d)|I2

E[µdij(t)|Q(t)]

= E
[∑

i,d

qdi (t+ 1)2 −
∑
i,d

qdi (t)
2

∣∣∣∣Q(t)

]
+M

∑
(i,j,d)|I2

E[µdij(t)|Q(t)]

≤(4.9),(4.10)
∑
i,d

{
qdi (t)

2 + E
[
(
∑
j

µdij(t))
2 + (

∑
j

µdji(t) + Adi (t))
2|Q(t)

]}

−
∑
i,d

{
2qdi (t)E

[
(
∑
j

µdij(t)−
∑
j

µdji(t)− Adi (t))|Q(t)
]}
−
∑
i,d

qdi (t)
2

+M
∑

(i,j,d)|I2

E[µdij(t)|Q(t)] ≤ B + 2
∑
i,d

qdi (t)λ
d
i +M

∑
(i,j,d)|I2

E[µdij(t)|Q(t)]

− 2
∑
i,d

qdi (t)E
[(∑

j

µdij(t)−
∑
j

µdji(t)

)∣∣∣∣Q(t)

]
(4.11)
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where B is an upper-bound of

∑
i,d

E
[(∑

j

µdij(t)

)2

+

(∑
j

µdji(t) + Adi (t)

)2∣∣∣∣Q(t)

]

As a result by applying (4.8) in (4.11) we have

E(L(Q(t+ 1))− L(Q(t))|Q(t)) +M
∑

(i,j,d)|I2

E[µdij(t)|Q(t)] ≤ B + 2
∑
i,d

qdi (t)λ
d
i

− 2
∑
i,d

∑
(i,j)|I1

{(
qdi (t)− qdj (t)

)
E
[
µdij(t)

∣∣∣∣Q(t)

]}
− 2

∑
i,d

∑
(i,j)|I2

{(
qdi (t)− qdj (t)

)

E
[
µdij(t)

∣∣∣∣Q(t)

]}
+M

∑
(i,j,d)|I2

E[µdij(t)|Q(t)] = B + 2
∑
i,d

qdi (t)λ
d
i − 2

∑
i

{∑
j,d|I2

(qdi (t)− qdj (t)−
M

2
)E[µdij(t)|Q(t)] +

∑
j,d|I1

(qdi (t)− qdj (t))E[µdij(t)|Q(t)]

}
(4.12)

Every time slot, the control decision variables are chosen to minimize the right

hand side of the above inequality which results in Algorithm 6 (substitute M
2

with

M).

In Algorithm 6, M ≥ 0 is a design parameter. The algorithm prioritizes

routing packets along greedy paths over non-greedy ones in order to improve delay

performance while achieving throughput-optimality. With this change, one node can

send packets to the non-greedy neighbor if and only if the queue differential backlog

between the node and the non-greedy neighbor exceeds M . If we choose M = 0, GA-

BP would be the same as the traditional BP. Since hyperbolic embedding in [54]

guarantees existence of a greedy path to the destination, the routing algorithm

proposed in Algorithm 6 ensures packets would be routed to the destination even

when M =∞.
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Algorithm 6 Greedy-aided back-pressure (GA-BP)

1: . Each node i maintains a separate queue for each destination d

2: for each directed link (i, j) do

3: for each destination d do

4: . if node j is a greedy neighbor of node i

5: if distH(i, d) > distH(j, d) then

6: P dij(t)← qdi (t)− qdj (t)

7: else

8: P dij(t)← qdi (t)− qdj (t)−M

9: end if

10: end for

11: . Each link is assigned a weight Pij

12: Pij(t)← max{max
d
P dij(t), 0};

13: . The destination which achieves the maximum in previous line

14: d∗(i, j, t)← arg max
d

P dij(t);

15: end for

16: . Scheduling and routing rule: Choose the rate matrix through the maximization:

17: [µij(t)]← arg max
µ′∈Γ

∑
(i,j)

µ′ijPij(t)

18: for each directed link (i, j) do

19: if µij(t) > 0 then

20: the link (i, j) serves d∗(i, j, t) with µd
∗
ij (t) = µij(t)

21: end if

22: end for
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As shown in Theorem 4, the performance of the algorithm which solves the

optimization problem with fixed parameter M is within O( 1
M

) of the optimal solu-

tion. However, the total queue length in the network increases linearly with M (or,

equivalently, delay by Little’s law). Very large M results in larger congestion, while

too small M results in being far from the optimal solution. So we are interested in

an M which is neither too large nor too small. The intuition is that greedy paths

don’t always provide best set of paths. By choosing a proper M we will prevent

large delay in light loads by pushing packets to go through loop-free paths while as

congestion in the network increases the greedy paths may not guarantee stability of

queues. Then, the packets would be sent through non-greedy paths besides greedy

ones.

4.4.2 Simulations and Results

In this section, we evaluate the delay and throughput performance of greedy-

aided back-pressure (GA-BP) and compare it to BP and GBP via simulations. We

consider two networks of wireless nodes distributed over a region and a wireline

network which represents the GMPLS network of North America [58]. We assume

a one hop interference model between the links for wireless networks. We assume a

Poisson arrival process with mean λ for each flow in the network. In the simulations,

we observed the performance of the algorithms under different traffic loads and

network topology. For each, the simulation is executed for 50000 iterations.

We consider three scenarios with varying network topology depicted in Fig-
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 5  6  7  8

 9 10 11 12

Figure 4.2: Grid network topology

Figure 4.3: Sprint GMPLS network topology of North America

ures 4.2, 4.3 and 4.4. The scenarios are selected to contrast extreme performance

scenarios in the current algorithms. In the first and second scenarios, GBP has

poor performance in heavy loads and it achieves only about 50% of the network

capacity. In the third scenario, GBP almost achieves the capacity region of the

network. We study the performance of GA-BP in all scenarios and compare it with

the performance of GBP and BP.

The optimal throughput region is defined as the set of arrival rates in which

queue length and thus delay remains finite. We can consider the traffic load under

94



Figure 4.4: Random network topology

Flow ID (Source,Destination)

1 (3,11)

2 (5,12)

3 (2,9)

4 (1,8)

Table 4.1: Set of arrival rates for scenario 1

which the queue length and thus delay increases rapidly as the boundary of the

optimal throughput region.

In the first scenario, shown in Figure 4.2, the network has a grid structure

with 12 nodes and 17 links. 4 flows are created in the network as shown in Table

4.1. The arrival rate of each flow ranges from 0.05 to 1.3. Each link can transmit

three packets during a time slot. We find the hyperbolic embedding of the graph

for a minimum spanning tree (by assigning weight equal to 1 to each link) with 1
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Flow ID (Source,Destination)

1 (1,23)

2 (4,23)

3 (15,27)

4 (19,11)

Table 4.2: Set of arrival rates for scenario 2

Flow ID (Source,Destination)

1 (1,14)

2 (5,15)

3 (12,3)

4 (7,13)

Table 4.3: Set of arrival rates for scenario 3
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Figure 4.5: Average delay vs. average arrival rate in scenario 1
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Figure 4.6: Performance parameters in scenario 1 for varying M : (a) ratio of total packets

routed over non-greedy links to the packets routed over greedy ones; (b) sum of queue

length vs. average arrival rate; (c) average delay vs. average arrival rate
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Figure 4.7: Average delay vs. average arrival rate in scenario 2

as the root node.

Figure 4.5 shows delay as a function of the arrival rate for the three algorithms

BP, GBP and GA-BP with M = 1. It can be seen GA-BP and BP achieve the same

capacity region boundary which supports our theoretical results on throughput-

optimality. Moreover, GA-BP achieves better delay performance compared to BP

and GBP. This is because under the back-pressure algorithm, packets are sent over

routing loops and unnecessarily long paths when there is not enough congestion in

the network. This leads to poor delay performance especially in light and moderate

traffic. By using GA-BP, packets are routed through loop free paths of the greedy

embedding in light loads. However, as the gradients build up toward the destination,

packets are also forwarded through non-greedy paths which decreases the congestion

in the network. So GA-BP improves delay by routing packets through shorter paths,

while it also exploits long paths in the heavy traffic regime.

We vary our control parameter M to study its impact on the performance

of GA-BP. In Figure 4.6(a), we illustrate the impact of M on the ratio of total
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Figure 4.8: Performance parameters in scenario 3: (a) average delay vs. average arrival

rate; (b) ratio of total packets routed over non-greedy links to the packets routed over

greedy ones; (c) average delay vs. average arrival rate varying M.
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packets routed over non-greedy links to the packets routed over greedy ones. It can

be seen that as M increases the ratio of the packets routed over non-greedy links

over greedy ones decreases. In Theorem 4, we have proved that the average packets

sent through non-greedy links are asymptotically minimized when M → ∞. Our

simulation results are consistent with the theorem.

In light traffic, for the case of M = 0 (traditional back-pressure), the ratio

is large. This is because in very light loads, there is not sufficient traffic in the

network. So it takes very long time to build up gradient toward the destination. As

a result, the packets choose their next hop randomly. As the arrival rate increases,

the gradients towards the destinations build up faster. Thus, the packets traverse

mostly through short loop free paths. Since greedy paths also contain a set of

short loop free paths, when M = 0, as arrival rate increases, the ratio decreases.

As shown in Figure 4.6(a), the ratio of GA-BP became closer to that of the back-

pressure algorithm. This is because in a heavy traffic regime, GA-BP also exploits

non-greedy paths to maintain stability. As M increases, higher priority is assigned

to send packets through greedy links, so as expected the ratio decreases.

Next, we study the effect of M on the sum of queue length in the network. In

Figure 4.6(b), we illustrate congestion in the network when using GA-BP for various

values of M . As stated in the Theorem 4, the upper-bound on sum of instantaneous

queue length in the network increases as M increases. Our simulation results are

consistent with the theorem.

Next, we study the effect of M on delay performance. Figure 4.6(c) depicts

the delay performance for varying values of M . The delays for different values of M
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(except 0) are almost the same in the light traffic region. However, in moderate to

heavy traffic, small M leads to better delay performance. This is because as stated

in the Theorem 4, the sum of queue lengths in the network is bounded by a term

proportional to M . So for large M , total congestion in the network increases which

results in larger delay. On the other hand, for very small M (M = 0) the ratio

of the packets sent through non-greedy links increases which causes loops and long

paths in light loads. As M increases, the nodes prefer to send the packets to greedy

neighbors. Thus for heavy load scenario, this significantly increases congestion along

those paths, leading to an increase in delay. It can be observed that while setting

M = 50 results in an improvement in delay for light load, it has the opposite effect

for heavy load. This clearly highlights the influence of congestion along greedy paths

as we increase the load.

In the second scenario, we consider a wireline network shown in Figure 4.3,

which represents the GMPLS network topology of North America [58]. This network

has 31 nodes and 52 links. We assume each link can transmit 64 packets during a

time slot. We construct the hyperbolic embedding of the graph for one arbitrary

spanning tree.

In Figure 4.7, we compare the delay performance of GA-BP when M = 300

with GBP and BP. It can be seen GA-BP and BP achieve the same capacity region

boundary which supports our theoretical results on throughput-optimality. More-

over, GA-BP achieves better delay performance compared to BP and GBP. This is

because under the back-pressure algorithm, packets are sent over routing loops and

unnecessarily long paths when there is not enough congestion in the network. This
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leads to poor delay performance especially in light and moderate traffic. By using

GA-BP, packets are routed through loop free paths of the greedy embedding in light

loads. However, as the gradients build up toward the destination, packets are also

forwarded through non-greedy paths which decreases the congestion in the network.

So GA-BP improves delay by routing packets through shorter paths, while it also

exploits long paths in the heavy traffic regime.

As stated earlier, we are interested to use long routes when the short routes are

congested. We can detect congestion over greedy paths and start sending packets

through non-greedy links by choosing a proper M . Increasing M will delay sending

packets over non-greedy routes. Proper choice of M depends on queue differential

backlog over greedy links when the packets are sent just through greedy paths and

the network is stable. If the maximum achievable average queue length of a network

is larger in comparison to another network, based on the characteristics of back-

pressure, average queue differential backlog in this network is larger. As a result, a

larger M should be chosen in order to prevent packets to be sent along non-greedy

links before the greedy ones become heavily loaded. If the maximum achievable

average queue length is large, small M results in sending packets through non-greedy

links before congestion happens. In this scenario, the average length of active queues

is much larger than the average queue length when λ = 0.5 in scenario 1. As a result,

proper M in scenario 2 is larger than the one in scenario 1.

For the third scenario, as illustrated in Figure 4.4, we consider 15 nodes with

58 links. 4 flows are created in the network as shown in Table 4.2. The arrival rate

of each flow ranges from 0.05 to 1.3. We assume each link can transmit five packets
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during a time-slot. We construct the hyperbolic embedding of the graph for one

arbitrary spanning tree.

In Figure 4.8(a), we compare the delay performance of GA-BP when M = 10

with GBP and BP. It can be seen that the throughput-optimal region of GBP is the

same as BP. And GA-BP and GBP perform considerably better than BP. Based on

this figure, we conclude the greedy paths are performing well for this set of sources

and destinations in the network. As expected in this scenario, proper M is larger

than scenario 1. The reason is that the average queue length when λ is close to the

capacity region, using the GBP algorithm is larger than the corresponding number

in scenario 1.

In Figure 4.8(b), we illustrate the impact of M on the ratio of total packets

routed over non-greedy links to the packets routed over greedy ones. It can be

seen that as M increases, the ratio of the packets routed over non-greedy links over

greedy ones decreases. Since routing over the greedy paths in this scenario achieves

the capacity region of the network, we can achieve throughput-optimality without

sending packets through non-greedy links which results in zero penalty. Based on

Theorem 4, since the zero penalty is achievable, the upper bound of average sum of

queue length would not depend on M . As a result, as M increases the upper bound

of sum of queues remains the same. On the other hand, as M increases packets are

sent through loop free greedy paths which improves delay performance.

Simulation results in this section show that the GA-BP algorithm has better

performance and it achieves the capacity region of the network. In GA-BP, M is a

critical parameter that should be selected carefully. The selected M should neither
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be too large nor too small compared to the scale of the queue length.

4.5 Network with Dynamic Topology

As stated earlier, in multi-hop networks, designing a high performance and

efficient routing algorithm is of great importance. Some of the metrics critical

to performance of these networks are throughput and delay. In Section 4.4, we

considered networks in which the topolgy remains the same. In this section, we

consider dynamic networks. In these networks, the topology of the network (and

the capacity region) changes due to the addition and deletion of nodes. Networks

with variable topology are everywhere. They are in the internet where links and

routers are continuously added and removed, in local-area networks where users and

hence traffic are dynamic, also in mobile adhoc wireless networks in which nodes are

moving and environment condition changes. Dynamicity can be either continuous

or transient. In continuous ones, changes are constantly occurring and the system

has to constantly adapt to them. In transient dynamic network, which is considered

in this section, changes occur for a short period, after which the system is static for

an extended time period. For instance, consider a sensor network in which sensors

are not moving, topology of the network changes when sensors run out of battery

or when a new sensor joins the network.

An important issue in dynamic networks is the design and analysis of routing

schemes. In these kind of networks, routing paths should be chosen according to

real-time network topology changes. In this chapter, we are interested to propose an
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adaptation of the Algorithm 6 to adapt to minor changes in the network topology.

4.5.1 Related Work

The back-pressure algorithm proposed in [3], is an algorithm for dynamically

routing traffic over a multi-hop network by using congestion gradients. The algo-

rithm can be applied to wireless communication networks, including sensor networks,

mobile ad hoc networks (MANETS), and heterogeneous networks with wireless and

wireline components. Back-pressure is adaptive to dynamic topology, when either

the links are not interfering with each other or when a distributed scheduling al-

gorithm is used. However, as stated in the previous section, this algorithm may

introduce large delay due to sending packets through routing loops.

In [54], the authors proposed an embedding and routing scheme for arbitrary

network connectivity graphs, based on greedy routing and utilizing virtual node

coordinates. The authors suggested to use adapted routing algorithm in case a

packet gets stuck in a local minimum due to changes in the topology of the network.

The resulting routing is referred as Gravity-Pressure routing. This technique tries to

forward the packets via neighbors which decrease the distance toward the destination

as much as possible. To achieve this end, they considered two modes for a packet

called gravity mode and pressure mode. They added a flag bit to the header of the

packet which determines mode of the packet. When a packet is generated, it is in

gravity mode. When it reaches local minima, it changes its mode to pressure mode

and saves its distance to the destination denoted by dv. The packet’s mode changes
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to gravity mode when it reaches a node which distance is less than dv. In order to

avoid the packet from getting stuck into a loop, each packet has to maintain a path

trace from the moment a local minimum is detected to prevent going through the

same path again. However, Gravity-Pressure has very poor delay performance.

In [52], the authors proposed an algorithm to address local minima as a result

of node removal in dynamic networks. However, the proposed algorithm does not

guarantee delivery of packets to the destination in connected networks. In [52],

when the packet reaches a node which does not have any greedy neighbor (i.e. the

neighbor which lies on the greedy path to the destination), it can be sent to any of its

neighbors until it gets to a node which has a greedy neighbor toward the destination.

This method may results in sending packet over a loop and periodically returning

to the same local minima point.

4.5.2 Dynamic Greedy-aided Back-pressure

Based on the embedding method provided in [54], new coordinates will be

assigned to nodes joining the network such that the greedy property is guaranteed.

However, when a node leaves, the greedy property can be locally destroyed and the

greedy routing must be adapted in order to avoid possible local minima, without

re-embedding the whole network. If node i is the only greedy neighbor of node j

toward destination d, node j will not have any greedy path toward destination d

after i’s removal. In dynamic greedy-aided back-pressure, when node j loses all its

greedy neighbors toward destination d, it notifies its neighbors that destination d is
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not reachable through j by following greedy path. Each node j keeps track of its

greedy neighbors which cannot reach destination by following greedy neighbors. Gj

includes all (k, d) such that dist(k, d) < dist(j, d) and d is not greedily reachable

through k.

We modify the objective function in static scenario for dynamic networks:

min
∑
i,j,d

µdij(1− I(i, j, d))Ri,d

s.t throughput-optimality (4.13)

Where I(i, j, d) = 1{distH(i,d)>distH(j,d)∧(j∈N (i)))∧(j,d)6∈Gi} which means d is greed-

ily reachable through neighbor j. Ri,d represents reachability of node d through

node i. Ri,d = 0 if node d is reachable through greedy neighbors of node i, otherwise

it is equal to 1.

This optimization problem aims to minimize sending packets to non-greedy

links, if the initiator of the link has greedy path to the destination.

Theorem 5. The scheduling and routing algorithm described in Algorithm 7 asymp-

totically solves the described optimization problem.

lim
T→∞

1

T

T−1∑
t=0

∑
i,j,d

E[µ
′d

i,j(t)(1− I(i, j, d))Ri,d] = copt +O(
1

M
) (4.14)

where copt is the infimum time average cost achievable by any policy that meets the

required constraints and E
[
µ
′d

i,j(t)

]
is the average link rate when using Algorithm 7

with fixed parameter M .

Furthermore, the queues are stable and the expected value of the queue length is
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bounded as follows:

∑
i,d

E(qdi [∞]) = O(M(copt − cmin)) (4.15)

where E[qdi (∞)] is the queue length as t→∞ and cmin represents a lower bound of

the cost function.

Proof. The proof follows exactly the same procedure as Theorem 4.

The following theorem proves throughput-optimality of DGA-BP assuming a

controller adapts the arrival rates to lie inside the capacity region. This means the

algorithm can ensure throughput-optimality in dynamic networks.

Theorem 6. Let Tk be a time interval during which the number of nodes N(Tk)

stays constant and I(i, j, d) ∀i, j, d does not change. In addition, assume λdi (t) lies

within capacity region ΛG(Tk). Then, the qdi (t) queues are strongly stable.

Proof. We denote I(i, j, d) and Ri,d in interval Tk by ITk(i, j, d) and RTk(i, d). We

define four indicator functions:

I1Tk
(i, j, d) = {ITk(i, j, d) = 1}, which means based on current information, node

i assumes node j is a greedy neighbor with a greedy path toward destination d.

I2Tk
(i, j, d) = {ITk(i, j, d) = 0 ∧ RTk(i, d) = 1}, which means based on current

information, node i assumes it has at least one greedy path toward destination d;

however, node j is either not a greedy neighbor or it does not have a greedy path

toward destination. I3Tk
(i, j, d) = {RTk(j, d) = 0}, which means based on current

information, node j assumes it does not have any greedy path toward destination

d. I4Tk
(i, j, d) = {ITk(j, i, d) = 1}, I5Tk

(i, j, d) = {ITk(j, i, d) = 0 ∧ RTk(j, d) = 1} ,
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I6Tk
(i, j, d) = {RTk(j, d) = 0}.

Note that if we replace i and j with each other, I1Tk
, I2Tk

, I3Tk
change to I4Tk

I5Tk
, I6Tk

respectively. We define L(t) =
∑NTk

i=1

∑VTk
d=1 q

d
i (t)

2 as the Lyapunov function for

t ∈ Tk. We can prove throughput-optimality by mimicing Theorem 2 in [52] as

follows. First we need to prove the Lyapunov drift takes the form

E[L(q(t+ 1))− L(q(t))|q(t)] ≤ BTk −
NTk∑

i=1,d=1

qdi (t)ε (4.16)

This shows that for each interval Tk with constant number of nodes N(Tk), if the

arrival rates are adapted through a controller to lie inside the capacity region of this

interval ΛG(Tk), the sum of queues is bounded. Then, we check the Lyapunov drift

at the transitions between two intervals with different number of nodes or different

I(i, j, d). Then, we will have

∃Bmax ∀t s.t. E[L(q(t+ 1))− L(q(t))|q(t)] ≤ Bmax −
∑
i,d

qdi (t)ε (4.17)

Then, we take expectation of 4.17 with respect to Q(t) and take summation over t.

By using telescopic sum, we can prove stability of queues.

4.5.3 Simulation and Results

In this section, we evaluate the delay and throughput performance of dynamic

greedy-aided back-pressure (DGA-BP) and compare it to BP and GA-BP via sim-

ulations. We consider GMPLS network which was also studied in Section 4.4.2.

We assume a Poisson arrival process with mean λ for each flow in the network.

In the simulations, we observed the performance of the algorithms. For each, the

simulation is executed for 50000 iterations.
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Figure 4.9: Average delay vs. average arrival rate after node 7’s removal

The optimal throughput region is defined as the set of arrival rates in which

queue length and thus delay remains finite. We can consider the traffic load under

which the queue length and thus delay increases rapidly as the boundary of the

optimal throughput region.

Figure 4.3 represents the topology of the network. This network has 31 nodes

and 52 links. We assume each link can transmit 64 packets during a time slot. 4

flows are created in the network as shown in Table 4.4. The arrival rate of each flow

ranges from 20 to 67. Each link can transmit 64 packets during a time slot. We find

the hyperbolic embedding of the graph for a minimum spanning tree (by assigning

weight equal to 1 to each link) with 1 as the root node.

After some time, node 7 fails. The proposed algorithm is deployed to route

the packets in the network. Figure 4.9 shows delay as a function of the arrival rate

for the three algorithms BP, GA-BP and DGA-BP with M = 300. After node 7’s

failure, there still exists greedy paths between each pair of nodes and there is no

local minima on the paths connecting sources to destinations. As a result, both
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Flow ID (Source,Destination)

1 (1,31)

2 (4,31)

3 (15,27)

4 (19,11)

Table 4.4: Set of flows in dynamic scenario

Flow ID (Source,Destination)

1 (1,31)

2 (4,31)

3 (19,11)

Table 4.5: Set of flows after node 15’s removal
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GA-BP and DGA-BP achieve good delay performance.

After some time node 15 fails as well. Due to failure, there won’t be any greedy

path between nodes 1 and 31, 4 and 31. Besides that, since node 15 is removed from

the network, it does not generate any packet. Table 4.5 shows the updated set

of flows in the network. Figure 4.10 depicts the delay as a function of the arrival

rate for the three algorithms BP, GA-BP and DGA-BP with M = 300. As stated

earlier, DGA-BP, GA-BP and BP achieve the same capacity region boundary which

supports our theoretical results on throughput-optimality. As expected, DGA-BP

achieves better performance in comparison to GA-BP and BP. In GA-BP packets

are mostly forced to go through greedy paths which may result in local minima.

The packets generated by nodes 1 and 4 get stuck at local minima. When they

reach local minima, they cannot be forwarded to any neighbor until the queue

differential backlog reaches M . In light loads, it takes long time to acheive a queue

differential backlog greater than M . As a result, this will increase delay in light

loads significantly. However, in DGA-BP packet is not forced to go through paths

which lead to local minima. This will improve the delay performance of DGA-BP

in comparison to GA-BP significantly.

4.6 Complexity and Distributivity of Greedy-aided back-pressure

In this section, we compare the computational complexity and distributivity

of the proposed algorithm to the traditional back-pressure algorithm. Intuitively,

it may be observed that the complexity of our method is similar to the traditional
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Figure 4.10: Average delay vs. average arrival rate after node 15’s removal

back-pressure. In the first stage of our method, we embed the graph in hyperbolic

space by assigning a hyperbolic coordinate to each node. This involves the over-

head of computing a spanning tree in the graph. However, since this step is only

required once in the beginning, the overhead may be negligible over the lifetime of

the network. In both algorithms, each node computes and utilizes queue differential

backlogs (with a bias factor for our algorithm) to make routing decisions. Thus,

the recurring steps in each algorithm have the same complexity. Addition of new

nodes will not affect complexity of the algorithm. However, in case of failure there

is a signal overhead to let the neighbors of node i know if node i does not have any

greedy neighbor with reachable path toward destination d.

Even though the traditional back-pressure is a centralized algorithm, sev-

eral studies on suitable distributed scheduling algorithms that achieve throughput-

optimality have been proposed in the literature, e.g. [59]- [60]. We may modify

the weights assigned to links in these scheduling algorithms by utilizing the metrics

from GA-BP. Thus, these algorithms can be utilized to substitute the scheduling
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in GA-BP, enabling the execution of our algorithm in a distributed manner while

satisfying throughput-optimality. Since the hyperbolic coordinates are calculated in

a distributed manner, as demonstrated in [54], a fully distributed implementation

of our algorithm is possible.

4.7 Discussion

In this paper, we have proposed a greedy-aided back-pressure algorithm to

improve the delay performance, while maintaining the throughput-optimality prop-

erty of the traditional back-pressure algorithm. We analyzed the proposed algorithm

analytically and via simulations. We demonstrated the improvement in delay per-

formance of our algorithm over traditional routing schemes. Our algorithm provides

the network designer a control parameter M to tune the delay-performance of the

network. As we discuss in future work, an algorithm which can adaptively find the

proper parameter in the network is a future direction. Further, our algorithm is

robust to addition of new nodes. Due to the incremental property of hyperbolic

embedding, there is no need to re-embed the network. However, for real network

deployments, link and node failures may occur. We proposed an adaptation of the

algorithm to adapt to changes in the network. However, the proposed solution is

not proper for highly dynamic networks. As discussed in future work, finding an

algorithm that can adapt to frequent changes in the network is a future direction.
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Algorithm 7 Dynamic greedy-aided back-pressure (DGA-BP)

1: . Each node i maintains a separate queue for each destination d

2: for each directed link (i, j) do

3: for each destination d do

4: . if node d is greedily reachable through node i

5: if Ri,d = 1 then

6: . if node j is a greedy neighbor with a greedy path toward destination d

7: if I(i, j, d) = 1 then

8: P dij(t)← qdi (t)− qdj (t)

9: else

10: P dij(t)← qdi (t)− qdj (t)−M

11: end if

12: else

13: P dij(t)← qdi (t)− qdj (t)

14: end if

15: end for

16: . Each link is assigned a weight Pij

17: Pij(t)← max{max
d
P dij(t), 0};

18: . The destination which achieves the maximum in previous line

19: d∗(i, j, t)← arg max
d

P dij(t);

20: end for
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we discussed two different problems in dynamic networks.

In first problem, we discussed coverage problem in public safety networks. Public

safety organizations increasingly rely on wireless technology for their mission critical

communication during emergencies and disaster response operations. In such sce-

narios, a communication network could face much higher traffic demands compared

to its normal operation. Given the limited capacity of base stations in the network,

such peak traffic scenarios could lead to high blocking probability or equivalently

service interruptions during critical communications. At the same time, networking

infrastructure can partially (or sometimes fully) breakdown during a disaster. A

mobile communication infrastructure composed of Cells on Wheels can be a viable

solution to complement or replace the existing static infrastructure. A proper de-

ployment of these mobile cells can enhance the network coverage or accommodate

excess traffic in areas with high concentration of users such as first responders. In

addition, an intelligent relocation strategy can be used to efficiently adapt the cell
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locations to match variations in the spatial distribution of the traffic.

In the second part of dissertation, we considered routing problem in multi-hop

networks. We proposed greedy-aided back-pressure algorithm to improve the delay

performance, while maintaining the throughput-optimality property of the tradi-

tional back-pressure algorithm. Our algorithm introduces a control parameter M

by which we tune the delay performance of the network. We analyzed the perfor-

mance of the proposed algorithm analytically and via simulations. We demonstrated

the improvement in delay performance of our algorithm over traditional routing

schemes. Further, our algorithm is robust to addition of new nodes. Due to the

incremental property of hyperbolic embedding, there is no need to re-embed the

network. However, for real network deployments, link and node failures may occur

frequently. This may lead to loss of greedy paths, causing the packets to get stuck

in local minima. This requires an adaptation in the greedy route selection. We

addressed this problem through exchanging additional information between nodes.

However, the proposed algorithm does not work in networks with frequent failures.

In the remainder of this chapter, we provide intuitive connections and results

that may be explored for future research in these directions.

5.2 Autonomous Relocation Strategies for Cells on Wheels

In Chapters 2 and 3, we emphasized on the need for a network which can be

quickly deployed and adapt itself to changes in traffic distribution. We proposed

distributed relocation algorithms that effectively adapt the overall network coverage
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in order to increase the supported user traffic. Our proposed algorithms iteratively

determine the best relocation direction for mobile cells. Simulations show that

substantial gain in performance can be achieved under typical usage scenarios. Here,

we suggest some future directions in the autonomous relocation problem.

5.2.1 Adaptive Power Allocation

One of the assumptions for our proposed algorithm is all base stations are

having the same coverage range. As discussed in Section 2.2.1, this assumption

results in approximating the total covered area by summing the local covered areas

in each Voronoi polygon. By considering power as another variable, we will be

able to increase the total covered area and supported traffic. By such a solution, if

traffic load in an area is light, the power of the base station increases to increase the

covered area and provide service to more number of users; however, base stations

decrease transmission power in areas with dense traffic. In order to formulate the

total covered area in case of non-identical communication range, we can use multiply

weighted Voronoi Diagrams [27].

5.2.2 Mix of Stationary and Mobile Base Stations

Natural disasters such as tornado and earthquake may not break down the

network infrastructure. However, it could result in sudden increase in traffic load and

large peak to average traffic ratio. These unusual peaks in traffic load could lead to

much higher blocking probability or service interruptions for critical communication.
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One possible solution to tackle this problem is using Cell on Wheels. By deploying

Cell on Wheels in the areas where the base stations are overloaded, we can offload the

traffic from overloaded base stations. There is a need for an autonomous relocation

algorithm for COWs underlay LTE network in order to improve the supported traffic.

5.2.3 Connectivity

As discussed in Chapters 2 and 3, base stations have limited communication

range between each other. As stated earlier, one possible way to create backhaul

network for such networks is by creating an adhoc network which consists of mobile

base stations. These mobile base stations will deploy routing algorithms to forward

traffic between each other. This network necessitate connectivity between base sta-

tions in order to guarantee the collected data can reach the destination. Adaptation

of the proposed solution to guarantee connectivity in the network remains an un-

solved issue that is critical for future systems.

5.3 Routing

In Chapter 4, we proposed a routing algorithm based on back-pressure and

greedy routing which improves delay performance while maintaining throughput

optimality feature. Our proposed algorithm combines back-pressure and greedy

routing in an innovative method such that it restricts route selection to greedy paths

as long as queues are stable and it reverts to non-greedy paths in other scenarios.

The proposed algorithm does not increase the complexity of the routing algorithm
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with respect to back-pressure routing. Then, we proposed an adaptation of the

proposed algorithm to handle infrequent failures of nodes in the network.

5.3.1 Self-tuning Algorithm for M

In Chapter 4, our algorithm provided the network designer a control parameter

M to tune the delay-performance of the network. The magnitude of optimal M may

vary depending on the network topology and arrivals. Self adaptation of M remains

an unsolved issue that is critical for future network.

5.3.2 Extracting Path Length Information from Hyperbolic Coordi-

nates

As stated in Chapter 4, we are interested in a routing algorithm which sends

packet through shorter paths in light load. As congestion in the network increases

the packets are sent through non-greedy paths. Hyperbolic embedding usually pro-

vides a set of greedy paths for each pair of source and destination. Extracting

information regarding length of the paths from the hyperbolic coordinates of neigh-

bors can help in prioritizing greedy paths with respect to each other.

5.3.3 Frequent Node Failures

The proposed algorithm results in large overhead in case of frequent node

failures in the network. An adaptation of our routing algorithm which can be

deployed in highly dynamic scenarios remains an unsolved issue that is critical for
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future network.
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