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(Deep) neural networks are increasingly being used for various computer vision

and pattern recognition tasks due to their strong ability to learn highly discrimi-

native features. However, quantitative analysis of their classification ability and

design philosophies are still nebulous. In this work, we use information theory to

analyze the concatenated restricted Boltzmann machines (RBMs) and propose a

mutual information-based RBM neural networks (MI-RBM). We develop a novel

pre-training algorithm to maximize the mutual information between RBMs. Exten-

sive experimental results on various classification tasks show the effectiveness of the

proposed approach.



MUTUAL INFORMATION-BASED
RBM NEURAL NETWORKS

by

Kang-Hao Peng

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2016

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Joseph JaJa
Professor Prakash Narayan
Professor Richard La



c© Copyright by
Kang-Hao Peng

2016



Acknowledgments

I owe my gratitude to my advisor, Dr. Rama Chellappa. His vision on theo-

retical analysis for deep neural networks has inspired me to discover knowledge and

conduct experiments. This dissertation could not have be completed without his

supports and advise. In addition, I sincerely thank him for giving me the opportu-

nity to work on challenging projects with the most intelligent and amazing people.

It has been a pleasure working in this group.

Moreover, I gratefully acknowledge the assistance from Mr. Heng Zhang. His

identification of the usefulness of RBM in non-vision datasets (such as touch data)

is crucial in this work. I would also like to give special gratitude to Mr. Jun-Cheng

Chen, for his experimental supervisions.

Finally, I sincerely acknowledge the support of NVIDIA Corporation for do-

nating the Tesla K40 GPU used in this research.

ii



Table of Contents

List of Figures iv

List of Abbreviations v

1 Introduction 1

2 (Persistent) Contrastive Divergence 4

3 Mutual Information for RBM 7
3.1 Conditional and Marginal Distribution . . . . . . . . . . . . . . . . . 8
3.2 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Approximate Expectation Using Gibbs Sampling . . . . . . . . . . . . 11
3.4 Annealed Importance Sampling . . . . . . . . . . . . . . . . . . . . . 12
3.5 Training Mutual Information-based RBM Neural Networks . . . . . . 13

4 Experiments 16
4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 COIL-20 and COIL-100 . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Touch Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion 24

A Detailed Derivation of RBM Mutual Information 25
A.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.3 Marginal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.4 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.4.1 From KL Divergence . . . . . . . . . . . . . . . . . . . . . . . 29
A.4.2 Mutual Information Gradient w.r.t. Weights . . . . . . . . . . 30

Bibliography 39

iii



List of Figures

3.1 RBM neural networks with two hidden layers. Wi are weights of the
neural networks and logistic regression layer. V is the input layer,
Yi is the ith hidden layer, and L is the output label layer. W1,W2

are first pre-trained, then W1,W2,W3 are fine-tuned. Biases are not
shown in this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Mutual information versus network architecture with hidden layer
sizes [k, k] on AA touch dataset. . . . . . . . . . . . . . . . . . . . . 22

4.2 Error rate versus network architecture on AA touch dataset. . . . . . 23

iv



List of Abbreviations

FFNN Feed Forward Neural Network
CNN Convolutional Neural Network
RBM Restricted Boltzmann Machine
CD Contrastive Divergence
PCD Persistent Contrastive Divergence

v



Chapter 1: Introduction

Deep neural networks (DNNs) are artificial neural networks (ANNs) with a

deeper architecture, better activation function and appropriate pre-training algo-

rithms. Different network architectures have been proposed including convolutional

neural networks (CNNs) [1], the Autoencoder [19], and restricted Boltzmann ma-

chines (RBMs) [21]. For visual data that exhibit spatial correlation, the combination

of CNN, rectified linear units (ReLUs) [7], max-pooling and fully connected layers

has been the dominant architecture for feature extraction. For non-visual data,

RBMs and autoencoder have been applied.

Conventionally, ANNs use sigmoid function as the activation function and are

trained using back propagation. However, the sigmoid function suffers from the

problem that weight gradients vanish when back-propagated to the input layer. Un-

supervised pre-training algorithms can initialize its weights and avoid the gradient

vanishing problem. Popular pre-training methods include contrastive divergence

(CD) [20] that adjusts the RBM parameters according to the maximum likelihood

(ML) of visible nodes and persistent contrastive divergence (PCD) [6] that essentially

improves CD by an improved Gibbs’ sampling procedure. Under ML pre-training,

the hidden nodes are treated as latent variables to represent the probability distri-
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bution of visible nodes.

Despite the success of DNNs for feature learning, there are few theoretical

studies for DNN. Fundamental questions such as architecture design philosophy re-

main unanswered. For example, [26,27] concentrate on DNNs’ ability to universally

approximate marginal distributions of visible nodes. Specifically, they put more em-

phasis on the representative power of DNNs and show that DNNs can approximate

any distribution over binary vectors to arbitrary accuracy.

In this work, we analyze RBMs from the information theoretic point of view

to obtain insights on the design philosophy of DNNs. Specifically, in one layer of

neural networks, by assuming that visible and hidden nodes follow Boltzmann dis-

tribution, the mutual information between visible and hidden nodes is a function of

parameters. The supremum value of mutual information is termed channel capacity,

and it measures the maximum information (in terms of bits) that can be reliably

transmitted through conditional distribution between input and output.

Furthermore, we propose a novel pre-training algorithm to maximize mu-

tual information in RBM neural networks. Experiments on three image datasets

(COIL20, COIL100, CIFAR10) and two touch datasets (touchalytics, Active Au-

thentication touch) demonstrate that RBM neural networks using the proposed pre-

training algorithm outperform networks using other popular pre-training algorithms

based on contrastive divergence and persistent contrastive divergence. Finally, we

analyze neural networks via information theory with various architectures.

Note that there are some recent works that apply mutual information to neural

networks. In [5], mutual information is used to measure the usefulness of RBM
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hidden nodes. They discover that classification performance of neural networks is

robust to deletion of hidden nodes that have lower mutual information measures.

This thesis is organized as follows. Chapter 2 describes (persistent) contrastive

divergence that is the fundamental approach for training RBM deep neural networks.

Chapter 3 derives the mutual information between RBMs and its gradients. A novel

training algorithms to maximize the mutual information for RBM neural networks

is proposed. Chapter 4 presents experimental results on various datasets. Chapter

5 concludes the thesis with a brief summary. Finally, the derivation of mutual

information is presented in Appendix A.
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Chapter 2: (Persistent) Contrastive Divergence

Consider an RBM that has binary visible nodes V ∈ {0, 1}n and hidden nodes

Y ∈ {0, 1}m. Their joint probability mass function (pmf) follows the Boltzmann

distribution that is a parametric model with parameters θ := (W,b, c),

Pθ(V = v,Y = y) =
1

Z(θ)
exp(vTWy + bTv + cTy)

where W ∈ Rn×m is the weight matrix, b ∈ Rn, c ∈ Rm are the biases.

Z(θ) :=
∑

v,y exp(vTWy+bTv+cTy) is the partition function that normalizes the

probability mass function. Note that the following Markov relationships hold,

Vi → Y → Vj, Yi → V→ Yj,∀i 6= j

Next, consider a training dataset D = {v1,v2, · · · ,vN}, where each vs ∈ {0, 1}n is a

realization of V for index s = 1, 2, · · · , N , and N is the size of the training dataset.

Given D, we define the empirical distribution as

P 0(V = v) :=
1

N

N∑
s=1

1{vs = v}

where 1{x = y} is the indicator function. In addition, define the marginal distribu-

tion after K-step Gibbs sampling as,

PK
θ (V = v) :=

1

N

N∑
s=1

1{vKs = v}
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vKs is obtained by iterating the following Gibbs sampler K times.

VK+1
s ∼ Bernoulli

(
σ
(
WyKs + b

))
YK+1
s ∼ Bernoulli

(
σ
(
W TvKs + c

))
where σ(x) := 1/(1 + exp(−x)) is the sigmoid function, and we set v0

s = vs ∈ D

as initial condition. Theoretically, PK
θ (v) converges to Pθ(v) for N,K → ∞, or

approximately (VK
s ,Y

K
s ) ∼ Pθ.

Now, CD adopts the maximum likelihood criterion that adjusts θ to maximize

the log-likelihood of D, or equivalently to minimize the Kullback-Leibler (KL) di-

vergence between the empirical distribution P 0(v) and the final distribution P∞θ (v).

D(P 0||P∞θ ) := −H(P 0)− 〈logP∞θ (v)〉P 0

where 〈.〉P denotes expectation over distribution P , therefore 〈.〉P 0 is simply the

average over the training dataset. Since the entropy H(P 0) is fixed, minimizing the

KL divergence is equivalent to maximizing 〈logP∞θ (v)〉P 0 . We can derive

〈
∂ logP∞θ (V)

∂wik

〉
P 0

= 〈viyk〉P 0 − 〈viyk〉P∞θ

≈ 〈viyk〉P 0 − 〈viyk〉P 1
θ

Although Gibbs sampling has the well known drawback that its convergence to

stationary distribution takes considerable time, [20] has shown that, empirically

one-step Gibbs sampling is good enough. Therefore, the weight matrix is updated

according to

w
(t)
ik = w

(t−1)
ik + η

(
〈viyk〉P 0 − 〈viyk〉P 1

θ(t−1)

)
5



where η ≥ 0 is the learning rate and θ(t) = (W (t),b(t), c(t)) is the parameters at

iteration t. The updating rule for biases follow the similarity.

Note that, Gibbs sampling operates in batch mode, and PCD differs from CD

by initializing the state of each Gibbs sampling by the sample outcomes from the

last batch.
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Chapter 3: Mutual Information for RBM

For communication channels, we can often claim independence of source distri-

bution from channel distribution. In RBM, we need to consider the source and chan-

nel distribution jointly since θ controls both the conditional Pθ(y|v) and marginal

Pθ(v) distribution. In this section, we first derive the conditional and marginal

distribution of RBM, then compute the mutual information and finally propose a

training algorithm to maximize it in RBM neural network.
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3.1 Conditional and Marginal Distribution

First note that Pθ(Yk = 1|V = v) = σ (
∑n

i=1 viwik + ck). We can simplify the

conditional probability as

Pθ(Y = y|V = v)

=
m∏
k=1

σ

(
n∑
i=1

viwik + ck

)yk

σ

(
−

n∑
i=1

viwik − ck

)1−yk

=
m∏
k=1

σ

(
−

n∑
i=1

viwik − ck

)(
σ (
∑n

i=1 viwik + ck)

σ (−
∑n

i=1 viwik − ck)

)yk
=

m∏
k=1

σ

(
−

n∑
i=1

viwik − ck

)
exp

(
n∑
i=1

viwikyk + ckyk

)

= exp(vTWy + cTy)
m∏
k=1

σ

(
−

n∑
i=1

viwik − ck

)

= Pθ(v,y) exp
(
−bTv

)
Z(θ)

m∏
k=1

σ

(
−

n∑
i=1

viwik − ck

)

(3.1)

By Bayes’ theorem, we obtain the following marginal,

P θ(V = v) =
Pθ(y,v)

Pθ(y|v)

= exp
(
bTv

)(
Z(θ)

m∏
k=1

σ

(
−

n∑
i=1

viwik − ck

))−1 (3.2)

Similarly, we can also obtain the marginal of hidden nodes,

P θ(Y = y) =
Pθ(y,v)

Pθ(v|y)

= exp(cTy)

(
Z(θ)

n∏
i=1

σ

(
−

m∑
k=1

wikyk − bi

))−1 (3.3)
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3.2 Mutual Information

By the definition of the mutual information, we have

I(V;Y) :=
∑
v,y

Pθ(v,y)

[
log

(
Pθ(v,y)

Pθ(v)Pθ(y)

)]

= logZ(θ) + E
[
VTWY

]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

Vjwjl + cl

))]

+
n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

wjlYl + bj

))]
(3.4)

In this thesis, our objective is to adjust the parameters θ = (W,b, c) to maxi-

mize the mutual information. First, we calculate the gradient of mutual information,

and then adjust the weights using the stochastic gradient ascent.

We calculate the gradient in (3.4) one term at a time, then combine them to

have the gradient of mutual information. Without loss of generality, in the following

we will only show the gradient with respect to weight wik.

• Gradient of logZ(θ) with respect to wik

∂

∂wik
logZ(θ) = E[ViYk]

Furthermore, the following equalities hold:

E[ViYk] = E

[
Viσ

(
n∑
j=1

Vjwjk + ck

)]

= E

[
σ

(
m∑
l=1

wilYl + bi

)
Yk

]
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• Gradient of E
[
VTWY

]
with respect to wik

∂

∂wik
E
[
VTWY

]
= E

[
VTWY(ViYk)

]
− E

[
VTWY

]
E [ViYk] + E [ViYk]

• Gradient of E
[
log σ

(
−
(∑n

j=1 Vjwjl + cl

))]
with respect to wik

∂

∂wik

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

Vjwjl + cl

))]

= −E

[
Viσ

(
n∑
j=1

Vjwjk + ck

)]

+
m∑
l=1

E

[
log σ

(
−

n∑
j=1

Vjwjl + cl

)
(ViYk − E[ViYk])

]

• Gradient of E
[

log σ
(
−
(∑m

l=1wjlYl + bj

))]
with respect to wik

∂

∂wik

n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

wjlYl + bj

))]

= −E

[
σ

(
m∑
l=1

wilYl + bi

)
Yk

]

+
n∑
j=1

E

[
log σ

(
−

m∑
l=1

wjlYl + bj

)
(ViYk − E[ViYk])

]

Combining the above equations, the gradient of mutual information can be

calculated as

∂I

∂wik
= E

[(
ViYk − E[ViYk]

)
VTWY

]
+ E

[(
ViYk − E[ViYk]

) m∑
l=1

log σ

(
−

n∑
j=1

Vjwjl − cl

)]

+ E

[(
ViYk − E[ViYk]

) n∑
j=1

log σ

(
−

m∑
l=1

wjlYl − bj

)] (3.5)
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∂I

∂bi
= E

[
(Vi − E[Vi])V

TWY
]
+

E

[(
Vi − E[Vi]

) n∑
j=1

log σ

(
−

m∑
l=1

wjlYl − bj

)] (3.6)

∂I

∂ck
= E

[
(Yk − E[Yk])V

TWY
]
+

E

[(
Yk − E[Yk]

) m∑
l=1

log σ

(
−

n∑
j=1

Vjwjl − cl

)] (3.7)

As W,b, c belong to Euclidean space (an open set with non-empty interior),

the necessary condition for supremum mutual information is that the gradients in

(3.5-3.7) equal to zero. However, the close form solution is not tractable. Therefore,

we apply stochastic gradient ascent. By first initializing θ(0) randomly and iteratively

adjusting the parameters θ(t) according to its gradients, we maximize the mutual

information between visible and hidden nodes.

3.3 Approximate Expectation Using Gibbs Sampling

We see that the exact calculation of expectations in (3.4-3.7) requires summing

over exponentially many elements, which is intractable. Therefore, we use Gibbs

sampling to approximate the expectations. Using (3.1) we can sample the random

variables (V,Y) ∼ Pθ. Now, for any function g(V,Y) we can approximate its

expectation by the following

E [g(V,Y)] ≈
〈
g(v(K)

s ,y(K)
s )

〉
P 0 (3.8)

Nevertheless, we see that (3.5-3.7) contain an expectation inside an expectation.

This may result in large variation of the final approximation. Therefore we need
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large batch and high K value so that the gradients in (3.5-3.7) can be approximated

reasonably well. Alternatively, we can use tools that can symbolically calculate the

gradient of (3.4) with respect to parameters. GPU-based languages such as theano

can do this task easily. However, in this case we have to approximate the partition

function. In our experiments, we use annealed importance sampling.

3.4 Annealed Importance Sampling

Annealed Importance Sampling (AIS) is an algorithm that enables fast ap-

proximation of partition function Z(θ). Here we briefly introduce the M -stage AIS.

More details can be found in [16]. First, we assume outcome (V,Y) ∼ P rθ
M

can be

sampled for r = 0, 1, · · · ,M − 1. This can be trivially achieved by (3.1) by scaling

down parameters from θ to rθ
M

. Note that

Z (θ)

Z (0)
=
Z
(

1
M
θ
)

Z (0)

Z
(

2
M
θ
)

Z
(

1
M
θ
) · · · Z (θ)

Z
(
M−1
M

θ
)

Provided M is large enough, we can approximate the ratio

Z( r+1
M
θ)

Z( r
M
θ)
≈ 1

N

N∑
s=1

P ∗r+1(v
(r)
s ,y

(r)
s )

P ∗r (v
(r)
s ,y

(r)
s )

(3.9)

where (V
(r)
s ,Y

(r)
s ) ∼ P rθ

M
, and P ∗r is the unnormalized pmf,

P ∗r (v,y) = exp
( r
M

(
vTWy + bTv + cTy

))
Finally, we can trivially calculate Z(0) = 2n+m.
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3.5 Training Mutual Information-based RBM Neural Networks

As shown in figure 3.1, typically an RBM neural network is greedily pre-

trained layer by layer using unsupervised methods, then is fine-tuned by minimizing

the logistic regression error through back-propagation. Note that, a deep network

can have many hidden layers.

Different from previous works, we pre-train the neural networks by greedily

maximizing the mutual information layer-wisely. Note that, given a training dataset,

the source (visible node) entropy is fixed. Therefore maximizing the mutual infor-

mation is equivalent to minimizing the conditional entropy H(V|Y). This increases

the dependency of V and Y. Since we usually use the outcome of the hidden nodes

for further classification tasks, maximizing the mutual information helps to improve

the classification performance for neural networks. We name the resulting neural

network as MI-RBM. Our pre-training algorithm is summarized in Algorithm 1.

13



Algorithm 1 Pre-training MI-RBM

Require: Training data D

Initialization: Randomly initialize θ(0)

Main loop: Update (θ(t), θ(t+1)) for t = 1, · · · , T

1: for r = 0 to M do

2: Sample
(
v
(r)
s ,y

(r)
s

)
∼ P r

M
θ(t) by iterating (3.1) K times for all indices s in D

3: end for

4: for r = 0 to M − 1 do

5: Construct ratio(r) as (3.9) using
(
v
(r)
s ,y

(r)
s

)
6: end for

7: logZ(θ(t)) = (n+m) log 2 +
∑M−1

r=0 log (ratio(r))

8: Construct I (V;Y) as (3.4), where expectations in (3.4) are approximated

by (3.8) using
(
v
(M)
s ,y

(M)
s

)
, and log-partition function is approximated by

logZ(θ(t))

9: Construct gradient ∇θI as in (3.5-3.7) or by symbolic programming language

using constructed I(V;Y).

10: Update θ(t+1) = θ(t) + η∇θI.

Ensure: θ(T )
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Figure 3.1: RBM neural networks with two hidden layers. Wi are weights of the

neural networks and logistic regression layer. V is the input layer, Yi is the ith hidden

layer, and L is the output label layer. W1,W2 are first pre-trained, then W1,W2,W3

are fine-tuned. Biases are not shown in this figure.
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Chapter 4: Experiments

4.1 Experiments

We report the resulting experiments on three image datasets: the Columbia

University Image Library (COIL-20, COIL-100) and the Canadian Institute for Ad-

vanced Research (CIFAR-10) datasets; and on two screen touch datasets (touchalyt-

ics, Active Authentication touch). We compare the proposed MI-RBM with RBM

deep neural networks pre-trained using CD and PCD. We name them CD-RBM and

PCD-RBM for simplicity.

In the following experiments we use theano [29] to calculate the mutual infor-

mation, its gradient and approximate the partition function using annealed impor-

tance sampling. We also use momentum [25] to train RBMs and dropout [17] to

fine-tune the final neural networks.

4.1.1 COIL-20 and COIL-100

COIL-20 and COIL-100 [14] consist of images of 20 and 100 objects repectively.

Each object is represented by 72 images taken sequentially. Each image has 5◦

rotation apart from each other, and has 32 × 32 pixels. For each object, we select

16



12 images as test data, 12 images as validation data and the remaining 48 images

as training data. We train a neural network for COIL-20 with hidden layer sizes

[100 100 100] and for COIL-100 with [300 300 300]. Pre-training with CD, PCD and

MI-RBM over 300 epochs, and fine-tune using logistic regression over 2,000 epochs.

From Tables 4.1 and 4.2, we see that MI-RBM outperforms the others.

Table 4.1: Probability of Error - COIL-20

COIL-20

CD-RBM PCD-RBM MI-RBM

Original 1.67% 2.50% 1.25%

Dropout 1.25% 0.83% 0.83%

Table 4.2: Probability of Error - COIL-100

COIL-100

CD-RBM PCD-RBM MI-RBM

Original 4.08% 3.25% 2.58%

Dropout 7.42% 4.42% 2.58%

Table 4.3 shows the mutual information before and after back propagation.

We observe the following:

• Large network size corresponds to large mutual information value after pre-

training. For instance, large mutual information value at the first layer is due

to the input size (32× 32) being larger than hidden layers sizes.

17



• Back propagation and dropout reduce the mutual information value.

Table 4.3: Mutual Information (measured in nat)

COIL-20, architecture = [100 100 100]

1st 2nd 3rd Pe

Pre-trained 394.56 70.21 70.21 -

Finetuned 394.98 69.69 69.76 1.25%

COIL-100, architecture = [300 300 300]

Pre-trained 799.31 362.23 362.23 -

Finetuned 799.51 360.98 361.43 2.83%

Dropout rate 0.1 760.98 320.24 264.61 1.66%

Dropout rate 0.2 711.85 267.46 307.92 3.00%

4.1.2 CIFAR-10

CIFAR-10 [15] consists of tiny images (32× 32 pixels) of 10 objects (airplane,

automobile, etc.) Each object has 40,000 training, 10,000 validation and 10,000 test

images. We train gray-scaled CIFAR-10 on two networks with hidden layer sizes

[1k 1k 1k] and [1k 1k 1k 1k], with batchsize 400 and momentum. From Table 4.4,

it is seen that MI-RBM is better than CD-RBM under the same architecture and

training epochs. In addition, the entropy for gray scaled CIFAR-10 is 574.55 nat and
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the entropy of labels is 2.30 nat. After finetuning, the minimum mutual information

among all layers is 1296.71 nat.

Table 4.4: Probability of Error - CIFAR-10 (k is 1,000)

Hidden layer size CC-RBM CD-RBM

[1k 1k 1k] 44.41% 48.71%

[1k 1k 1k 1k] 44.85% 50.24%

Finally, for image datasets such as CIFAR-10, convolutional features can be

more discriminative, and we look forward to extending our approach to CNN in

future works.

4.1.3 Touch Data

There has been a growing interest in applying screen touch data to authenticate

users on smartphones [3] and [2]. Every swipe is a sequence of touch events recorded

when the finger is in touch with the screen of the smartphone. Each swipe s is

encoded as a sequence of vectors

si = (xi, yi, ti, Ai, o
ph
i ),

i ∈ {1, · · · , Nc} where xi, yi are the location points, ti is the time stamp, Ai is the

area occluded by the finger and ophi is the orientation of the phone (e.g. landscape or

portrait). Since the number of touch events in every swipe is different, hand-crafted

feature vector of low dimension [3] is first extracted and followed by some tradi-

tional classifiers like SVM and dictionary learning. Performance can be significantly
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boosted by incorporating kernels to the classifier.

The problem with kernelized classifiers is that it does not scale well to large

dataset and computation time is often prohibitive. These problems make the ker-

nelized classifiers not attractive especially on mobile platforms. We apply RBM

neural networks to the raw features (hand-crafted feature) and try to learn more

discriminative representation which is the output of the last hidden layer.

We use two publicly available touch datasets: Touchalytics dataset [3] con-

sisting of 41 users’ touch data collected using Android smartphones and Active

Authentication (AA) touch dataset [2] consisting of 50 users’ touch data collected

over 3 sessions using iPhone 5s. For each of these datasets, we randomly split the

dataset with ratio 6 : 2 : 2 for training, cross-validation and testing respectively.

We repeat the random partition for 5 times. We feed the original touch features to

the MI-RBM as well as CD-RBM and PCD-RBM and use the output of the last

hidden layer of the networks as the new features. The hidden layers of the networks

are set to be [80, 60]. We apply a linear SVM classifier to the original features as

well as learned representations, tune the parameters using the cross validation set

and report classification error averaged over five trials in Table 4.5.

Table 4.5: Averaged Classification Errors on Touch Data.

Datasets Raw features CD-RBM PCD-RBM MI-RBM

Touchalytics 59.65 % 31.33 % 30.14 % 28.88 %

AA touch 81.85 % 63.78 % 59.31 % 55.13 %
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From Table 4.5 we observe that all the RBM neural networks learn more

discriminative representations and show significant improvement in terms of classi-

fication performance compared with the raw touch features. MI-RBM performs the

best.

Furthermore, we study the influence of mutual information on the performance

of the neural networks. According to information theory, if data with entropy H is

to be transmitted reliably through a channel, then the channel capacity C should

be greater than H.

For the AA touch dataset, we calculate the upper bound of the entropy of

data HD ≈ 8.9022 nats by the following approximation

HD =
1

N

N∑
i=1

H(ps)

H(ps) =
∑
i

−psi log (psi)− (1− psi) log (1− psi)

where psi is the ith element of ps and it denotes the probability of the visible node

vsi equals 1. Usually ps is the input feature after normalization.

From Figure 4.1, we observe that the mutual information of each layer after

pre-training is affine with respect to network size, and it always drops after fine-

tuning. Therefore, to reliably transmit the data over the network, the network size

k needs to be greater than 10 after pre-training, and k needs to be greater than 25

after fine-tuning.

We also compare the error rate of MI-RBM, CD-RBM and PCD-RBM un-

der the same network architecture shown in Figure 4.2. This show that mutual

information serves as a design guide for the DNN architectures.
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Figure 4.1: Mutual information versus network architecture with hidden layer sizes

[k, k] on AA touch dataset.
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Figure 4.2: Error rate versus network architecture on AA touch dataset.
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Chapter 5: Conclusion

In this work we analyze the RBM neural networks via information theoretic

point of view by deriving the expression of mutual information and its gradient

with respect to parameters. We propose a RBM pre-training method based on

maximizing mutual information. Experiments on various datasets show that the

proposed neural networks outperforms other RBMs neural networks. The future

work will explore the application of mutual information to convolutional RBM.
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Appendix A: Detailed Derivation of RBM Mutual Information

Consider an RBM that has V ∈ {0, 1}n visible nodes and Y ∈ {0, 1}m hidden

nodes. The joint distribution of them is given by

P (V = v,Y = y) =
1

Z(W,b, c)
exp(vTWy + bTv + cTy) (A.1)

where W ∈ Rn×m is the weight matrix, b ∈ Rn, c ∈ Rm are biases, and Z(W,b, c)

is the partition function that normalizes the pmf.

Z(W,b, c) =
∑

v∈{0,1}n

∑
y∈{0,1}m

exp(vTWy + bTv + cTy)

A.1 Markov Chains

The following Markov chain holds for any i 6= j.

Vi → Y → Vj

Yi → V→ Yj
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A.2 Conditional Probability

It is easy to verify that

P (Yl = 1|V = v,Y\l = y\l) = P (Yl = 1|V = v) = σ

(
n∑
j=1

vjWjl + cl

)

P (Vj = 1|Y = y,V\j = v\j) = P (Vj = 1|Y = y) = σ

(
m∑
l=1

Wjlyl + bj

) (A.2)

where the function σ : R→ (0, 1) is the sigmoid function,

σ(x) =
1

1 + e−x
, x ∈ R

Sigmoid function has the properties that

• 1− σ(x) = σ(−x)

• σ(−x) = e−xσ(x).

• log σ(x)
σ(−x) = x for natural logarithm log(.)
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A.3 Marginal Distribution

Because Y are conditionally independent of each other given V = v. The

conditional probability can be further simplified by the following

P (Y = y|V = v) =
m∏
k=1

σ

(
n∑
i=1

viWik + ck

)yk

σ

(
−

(
n∑
i=1

viWik + ck

))1−yk

=
m∏
k=1

σ

(
−

(
n∑
i=1

viWik + ck

))(
σ (
∑n

i=1 viWik + ck)

σ (− (
∑n

i=1 viWik + ck))

)yk
=

m∏
k=1

σ

(
−

(
n∑
i=1

viWik + ck

))
exp

(
n∑
i=1

viWikyk + ckyk

)

= exp(vTWy + cTy)
m∏
k=1

σ

(
−

(
n∑
i=1

viWik + ck

))

= P (Y = y,V = v)Z(W,b, c) exp
(
−bTv

) m∏
k=1

σ

(
−

(
n∑
i=1

viWik + ck

))

Therefore, by Bayes’ theorem,

P (V = v) =
P (Y = y,V = v)

P (Y = y|V = v)

=

(
Z(W,b, c)

m∏
l=1

σ

(
−

(
n∑
j=1

vjWjl + cl

)))−1
exp

(
bTv

) (A.3)

Similarly,

P (Y = y) =
P (Y = y,V = v)

P (V = v|Y = y)

=

(
Z(W,b, c)

n∏
j=1

σ

(
−

(
m∑
l=1

Wjlyl + bj

)))−1
exp

(
cTy

) (A.4)

Therefore, since
∑

v∈{0,1}n P (V = v) =
∑

y∈{0,1}m P (Y = y) = 1, we have

Z(W,b, c) =
∑

v∈{0,1}n

(
m∏
l=1

σ

(
−

(
n∑
j=1

vjWjl + cl

)))−1
exp

(
bTv

)
Z(W,b, c) =

∑
y∈{0,1}m

(
n∏
j=1

σ

(
−

(
m∑
l=1

Wjlyl + bj

)))−1
exp

(
cTy

)
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We can also obtain the following essential formulae

exp
(
bTv

) m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))
=

∑
y∈{0,1}m

exp
(
vTWy + bTv + cTy

)
(A.5)

exp
(
cTy

) n∏
j=1

σ−1

(
−

(
m∑
l=1

Wjlyl + bj

))
=

∑
v∈{0,1}n

exp
(
vTWy + bTv + cTy

)
(A.6)

A.4 Mutual Information

We are interested in the mutual information of RBM for the following reasons:

• Boltzmann machines (as well as RBMs) are generative models, i.e., there is a

true PV (v) that we want to learn. In other words, we simply use latent vari-

ables Y ∈ {0, 1}m and weights W to approximate PV (v) by
∑

y∈{0,1}m P (v,y).

• Practically we treat the latent variables Y as the feature of visible nodes V,

and we further feed Y into another classifier (e.g. SVM, NN, etc.)

• Furthermore, although convolution neural network (CNN) is not a Boltzmann

machine, practically the CNN is also treated as a feature extractor, and gen-

erally performs better than other feature extractors (e.g. SIFT) in computer

vision, the capacity of RBM serves as the fundamental knowledge of why deep

learning network works so well.

The objective of our problem can now be defined as follows

sup
W

I(V;Y) (A.7)
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A.4.1 From KL Divergence

The mutual information is defined as I(V;Y ) = D(P (V;Y)||P (V)P (Y)),

where the marginal distributions are given by (A.3) and (A.4). The above KL

divergence is written as

D(P (V,Y)||P (V)P (Y)) =
∑
v,y

P (v,y) [− logP (v)− logP (y) + logP (v,y)]

where

− logP (V = v) = logZ(W,b, c)− bTv +
m∑
l=1

log σ

(
−

(
n∑
j=1

vjWjl + cl

))

− logP (Y = y) = logZ(W,b, c)− cTy +
n∑
j=1

log σ

(
−

(
m∑
l=1

Wjlyl + bj

))

logP (V = v,Y = y) = − logZ(W,b, c) + vTWy + bTv + cTy

Therefore,

− logP (v)− logP (y) + logP (v,y)

= logZ(W,b, c) + vTWy

+
m∑
l=1

log σ

(
−

(
n∑
j=1

vjWjl + cl

))
+

n∑
j=1

log σ

(
−

(
m∑
l=1

Wjlyl + bj

))
Finally we have the mutual information,

I(V;Y) = D(P (V,Y)||P (V)P (Y))

=
∑
v,y

P (v,y) [− logP (v)− logP (y) + logP (v,y)]

= logZ(W,b, c) + E
[
VTWY

]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))]
+

n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))]

(A.8)
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A.4.2 Mutual Information Gradient w.r.t. Weights

Since W ∈ Rn×m is an open set, and log(.), σ(.) functions are continuously

differentiable, necessarily the maximizing weights satisfy

∂

∂Wik

I(V;Y) = 0,∀i ∈ {1, · · · , n},∀k ∈ {1, · · · ,m}

First we prepare some derivatives.

• Partition function

∂

∂Wik

Z(W,b, c) =
∑

(v,y)∈{0,1}n+m

∂

∂Wik

exp(vTWy + bTv + cTy)

=
∑

(v,y)∈{0,1}n+m
exp(vTWy + bTv + cTy)viyk

Therefore,

∂

∂Wik

logZ(W,b, c) =
1

Z(W,b, c)

∂

∂Wik

Z(W,b, c) = E [ViYk]

For biases

∂

∂bi
Z(W,b, c) =

∑
(v,y)∈{0,1}n+m

∂

∂bi
exp(vTWy + bTv + cTy)

=
∑

(v,y)∈{0,1}n+m
exp(vTWy + bTv + cTy)vi

Therefore ∂
∂bj

logZ(W,b, c) = E[Vi] and similarly, ∂
∂ck

logZ(W,b, c) = E[Yk].

Now, from the marginal distribution point of view, we have
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∂

∂Wik

Z(W,b, c) =
∂

∂Wik

∑
v∈{0,1}n

m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))
exp

(
bTv

)
=

∑
v∈{0,1}n

exp
(
bTv

) [∏
l 6=k

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]
∂

∂Wik

σ−1

(
−

(
n∑
j=1

vjWjk + ck

))

=
∑

v∈{0,1}n
exp

(
bTv

) [∏
l 6=k

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]
σ
(∑n

j=1 vjWjk + ck

)
σ
(
−
(∑n

j=1 vjWjk + ck

))vi
=

∑
v∈{0,1}n

exp
(
bTv

) [ m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]
σ

(
n∑
j=1

vjWjk + ck

)
vi

where, for any function f : R→ R, we have

∂

∂x
σ (f(x)) =

∂

∂x
(1 + exp (−f(x)))−1

= − (1 + exp (−f(x)))−2 exp (−f(x))

(
− ∂

∂x
f(x)

)
= σ(f(x))σ(−f(x))

(
∂

∂x
f(x)

)

Therefore,

∂

∂Wik

logZ(W,b, c) =
1

Z(W,b, c)

∂

∂Wik

Z(W,b, c) = E

[
Viσ

(
n∑
j=1

VjWjk + ck

)]

Finally, follow the similarity, we have the following equality

E[ViYk] = E

[
Viσ

(
n∑
j=1

VjWjk + ck

)]
= E

[
σ

(
m∑
l=1

WilYl + bi

)
Yk

]
(A.9)

We can also differentiate the partition function with respect to biases and have

E[Vi] = E

[
σ

(
m∑
l=1

WilYl + bi

)]
, and E[Yk] = E

[
σ

(
n∑
j=1

VjWjk + ck

)]
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• Joint distribution P (V = v,Y = y)

∂

∂Wik

P (V = v,Y = y) =
∂

∂Wik

(
1

Z(W,b, c)
exp(vTWy + bTv + cTy)

)
= −

∂
∂Wik

Z(W,b, c)

Z(W,b, c)2
exp(vTWy + bTv + cTy)

+
1

Z(W,b, c)

∂

∂Wik

exp(vTWy + bTv + cTy)

= P (V = v,Y = y) (viyk − E [ViYk])

∂

∂bi
P (V = v,Y = y) =

∂

∂bi

(
1

Z(W,b, c)
exp(vTWy + bTv + cTy)

)
= −

∂
∂bi
Z(W,b, c)

Z(W,b, c)2
exp(vTWy + bTv + cTy)

+
1

Z(W,b, c)

∂

∂bi
exp(vTWy + bTv + cTy)

= P (V = v,Y = y) (vi − E [Vi])

and similarly,

∂

∂ck
P (V = v,Y = y) = P (V = v,Y = y)(yk − E[Yk])

• Correlation: E
[
VTWY

]
∂

∂Wik

E
[
VTWY

]
=
∑
v,y

(
vTWy

∂

∂Wik

P (v,y) + P (v,y)viyk

)

=
∑
v,y

(
vTWyP (v,y) (viyk − E [ViYk]) + P (v,y)viyk

)
= E

[
VTWY (ViYk)

]
− E[VTWY]E[ViYk] + E [ViYk]
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∂

∂bi
E
[
VTWY

]
=
∑
v,y

(
vTWy

∂

∂bi
P (v,y)

)

=
∑
v,y

(
vTWyP (v,y) (vi − E [Vi])

)
= E

[
VTWY (Vi)

]
− E[VTWY]E[Vi]

and similarly,

∂

∂ck
E
[
VTWY

]
= E

[
VTWY (Yk)

]
− E[VTWY]E[Yk]

• Marginals: P (V = v), P (Y = y)

∂

∂Wik

P (V = v)

=
∂

∂Wik

[
exp

(
bTv

)
Z−1(W,b, c)

m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]

= exp
(
bTv

) [ m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))(
−∂Z(W,b,c)

∂Wik

Z2(W,b, c)

)

+ Z−1(W,b, c)
∂

∂Wik

m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]

= −P (V = v)E [ViYk] + P (V = v)σ

(
n∑
j=1

vjWjk + ck

)
vi

= P (V = v)

(
σ

(
n∑
j=1

vjWjk + ck

)
vi − E

[
σ

(
n∑
j=1

VjWjk + ck

)
Vi

])

Similarly, we have

∂

∂Wik

P (Y = y)

= P (Y = y)

(
σ

(
m∑
l=1

Wilyl + bi

)
yk − E

[
σ

(
m∑
l=1

WilYl + bi

)
Yk

])
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Now, turn to the biases

∂

∂bi
P (V = v) =

∂

∂bi

[
exp

(
bTv

)
Z−1(W,b, c)

m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]

=
m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))
∂

∂bi

[
exp

(
bTv

)
Z−1(W,b, c)

]
= P (V = v) [vi − E[Vi]]

∂

∂ck
P (V = v) =

∂

∂ck

[
exp

(
bTv

)
Z−1(W,b, c)

m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))]

= exp
(
bTv

) ∂

∂ck

[
m∏
l=1

σ−1

(
−

(
n∑
j=1

vjWjl + cl

))
Z−1(W,b, c)

]

= P (V = v)

[
σ

(
n∑
j=1

vjWjk + ck

)
− E[Yk]

]

Similarly,

∂

∂ck
P (Y = y) = P (Y = y)[yk − E[Yk]]

∂

∂bi
P (Y = y) = P (Y = y)

[
σ

(
m∑
l=1

Wilyl + bi

)
− E[Vi]

]

• Sigmoid function: for any function f : R→ R

∂

∂x
log σ (f(x)) =

1

σ(f(x))

∂

∂x
σ (f(x)) = σ(−f(x))

(
∂

∂x
f(x)

)
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Therefore,

∂

∂Wik

log σ

(
−

(
n∑
j=1

vjWjl + cl

))
=


−σ
(∑n

j=1 vjWjk + ck

)
vi if l = k

0 otherwise

∂

∂Wik

log σ

(
−

(
m∑
l=1

Wjlyl + bj

))
=


−σ
(∑m

l=1Wilyl + bi

)
yk if j = i

0 otherwise

∂

∂ck
log σ

(
−

(
n∑
j=1

vjWjl + cl

))
=


−σ
(∑n

j=1 vjWjk + ck

)
if l = k

0 otherwise

∂

∂bi
log σ

(
−

(
m∑
l=1

Wjlyl + bj

))
=


−σ
(∑m

l=1Wilyl + bi

)
if j = i

0 otherwise

We have,

∂

∂Wik

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))]

=
m∑
l=1

∑
v,y

[
P (v,y)

∂

∂Wik

log σ

(
−

(
n∑
j=1

vjWjl + cl

))

+ log σ

(
−

(
n∑
j=1

vjWjl + cl

))
∂

∂Wik

P (v,y)

]

= −E

[
Viσ

(
n∑
j=1

VjWjk + ck

)]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(ViYk − E[ViYk])

]
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∂

∂ck

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))]

=
m∑
l=1

∑
v,y

[
P (v,y)

∂

∂ck
log σ

(
−

(
n∑
j=1

vjWjl + cl

))

+ log σ

(
−

(
n∑
j=1

vjWjl + cl

))
∂

∂ck
P (v,y)

]

= −E

[
σ

(
n∑
j=1

VjWjk + ck

)]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(Yk − E[Yk])

]

Similarly,

∂

∂Wik

n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))]

= −E

[
σ

(
m∑
l=1

WilYl + bi

)
Yk

]

+
n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))
(ViYk − E[ViYk])

]

∂

∂bi

n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))]

= −E

[
σ

(
m∑
l=1

WilYl + bi

)]

+
n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))
(Vi − E[Vi])

]
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Now, again from the marginal distribution point of view, we have

∂

∂Wik

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))]

=
m∑
l=1

∑
v

P (v)
∂

∂Wik

log σ

(
−

(
n∑
j=1

vjWjl + cl

))

+
m∑
l=1

∑
v

log σ

(
−

(
n∑
j=1

vjWjl + cl

))
∂

∂Wik

P (v)

= −E

[
Viσ

(
n∑
j=1

VjWjk + ck

)]

+ E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))
σ

(
n∑
j=1

VjWjk + ck

)
Vi

]

− E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))]
E

[
σ

(
n∑
j=1

VjWjk + ck

)
Vi

]

Therefore, we have the following equality

E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(ViYk − E[ViYk])

]

= E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))
σ

(
n∑
j=1

VjWjk + ck

)
Vi

]

− E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))]
E

[
σ

(
n∑
j=1

VjWjk + ck

)
Vi

]

This simply implies the following equalities

E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(ViYk)

]

= E

[
m∑
l=1

log σ

(
−

(
n∑
j=1

VjWjl + cl

))(
σ

(
n∑
j=1

VjWjk + ck

))
Vi

]
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Finally, combined with the equality of (A.9), we can derive the derivative of mutual

information as

∂

∂Wik

D(P (V,Y)||P (V)P (Y))

= E [ViYk] + E
[
VTWY (ViYk)

]
− E[VTWY]E[ViYk] + E [ViYk]

− E

[
Viσ

(
n∑
j=1

VjWjk + ck

)]
− E

[
σ

(
m∑
l=1

WilYl + bi

)
Yk

]

+
m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(ViYk − E[ViYk])

]

+
n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))
(ViYk − E[ViYk])

]

= E
[
VTWY (ViYk − E[ViYk])

]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(ViYk − E[ViYk])

]

+
n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))
(ViYk − E[ViYk])

]

(A.10)

Similarly,

∂

∂bi
D(P (V,Y)||P (V)P (Y))

= E
[
VTWY (Vi − E[Vi])

]
+

n∑
j=1

E

[
log σ

(
−

(
m∑
l=1

WjlYl + bj

))
(Vi − E[Vi])

] (A.11)

∂

∂ck
D(P (V,Y)||P (V)P (Y))

= E
[
VTWY (Yk − E[Yk])

]
+

m∑
l=1

E

[
log σ

(
−

(
n∑
j=1

VjWjl + cl

))
(Yk − E[Yk])

] (A.12)

When the above derivative equals 0 for all i, k, we say this is the necessary condition

to achieve supremum value of mutual information, i.e., channel capacity.
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