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Abstract

This paper describes a new method for determining the
consensus sequences that signal the start of translation
and the boundaries between exons and introns (donor
and acceptor sites) in eukaryotic mRNA. The method
takes into account the dependencies between adjacent
bases, in contrast to the usual technique of considering
each position independently. When coupled with a dy-
namic program to compute the most likely sequence, new
consensus sequences emerge. The consensus sequence in-
formation is summarized in conditional probability ma-
trices which, when used to locate signals in uncharacter-
ized genomic DNA, have greater sensitivity and speci-
ficity than conventional matrices. Species-specific ver-
sions of these matrices are especially effective at distin-
guishing true and false sites.

1 Introduction

As part of an automated system for finding coding re-
gions in uncharacterized eukaryotic DNA, we have devel-
oped a new method for finding the signals that indicate
the start of translation, the beginnings of introns (donor
sites), and the ends of introns (acceptor sites). The basis
of the method is the computation of conditional proba-
bilities for each of the four bases that comprise DNA! in
a fixed set of positions around each site. The standard
method, by contrast, computes the probabilities of the
bases in each position as if they were independent of ad-
jacent bases. Instead, the new method is to compute, for
each position, the probability of each base given the base
in the previous position, where “previous” is defined as
the adjacent base in the 5’ direction. In the consensus
pattern that emerges, the identity of each base 1s depen-
dent on its neighbors.

The resulting conditional probability (CP) matrices
indicate that for several positions in all three types of

I Although splicing and translation occur in mRNA, here we fol-
low the convention of expressing sequences and sequence patterns

in terms of ACGT rather than ACGU.

sites (start of translation, donor, and acceptor sites)
the probability of a base occurring in a given position
is sometimes strongly dependent on the previous base.
This has a natural biological explanation, in that the
mechanisms responsible for translation and splicing in-
volve molecules that recognize and bind to sets of ad-
jacent bases in the mRNA. Unlike matrices in which
all probabilities are independent of adjacent positions,
the consensus sequence cannot simply be “read off” by
choosing the highest probability in each column. Instead,
a dynamic program can be used to generate a consensus
sequence from a CP matrix. The sequence that is pro-
duced by the program is the most likely sequence given
the data in the matrix.

To generate the new consensus matrices and se-
quences, we have used a data set of 570 complete verte-
brate coding sequences in conjunction with the CP ma-
trices to generate new consensus sequences for the start
site, donor site, and acceptor site in vertebrate DNA.
These patterns are different from the patterns that would
be produced by a standard consensus matrix and, math-
ematically speaking, are more likely than the patterns
generated by a matrix of independent probabilities. For
comparison, we have also generated traditional consen-
sus matrices, which correspond closely to previously pub-
lished matrices. Traditional consensus matrices tabulate
the probability of each base b at position ¢, P(b,¢). The
use of conditional probabilities requires the tabulation of
P(by,i|bg,i—1), i.e., the probability of base b; in position
¢t given base by in the previous position. These matrices
form the basis of an algorithm for signal detection that
1s equivalent to a first-order Markov chain method.

Many previous studies have attempted to character-
ize the sequences around the start, donor, and acceptor
sites in eukaryotic organisms. Kozak [1, 2] has produced
several comprehensive studies of the consensus sequence
around the start of translation, and introduced the scan-
ning model of ribosome progression that is now widely
accepted. Senapathy et al. [3] and Mount et al. [4],
among others, have characterized the sequence patterns
around splice junctions, and more recent results have



described the patterns and processes for non-consensus
(AT-AC) splicing [5]. The consensus sequences uncov-
ered in these previous studies have been most frequently
described as matrices containing the probabilities of the
four bases in the positions immediately surrounding the
sites.

Specific computational systems for identifying splice
junctions have been developed by many previous re-
searchers. Brunak et al. [6] used a neural network that
considered positional frequencies, binding energies, and
other coding measures. Zhang and Marr [7] used a com-
bination of features including dinucleotide frequencies to
identify donor sites in S. pombe, and found evidence for
pairwise correlations in the signals. Solovyev et al. [§]
identify splice sites with a linear discriminant that com-
bines triplet counts, octamer frequencies, G, GG, and
GGG counts, and other measures. Because correct iden-
tification of sequence signals is a critical component of
gene-finding systems, some of those systems have ex-
plicit models of start sites, donor sites, and acceptor sites
enbedded in their algorithms. GenelD [9] uses a model of
independent base probabilities around each site, as does
GeneParser [10, 11].

Fickett [12] provides a recent review of the main work
on identifying signals (both splice junctions and transla-
tion start sites), and points out that the best previous
results used a combination of different types of evidence,
both from the bases immediately surrounding the site
and from sequences extending some distance away from
the site. Fickett also describes a common variation on
the consensus matrix known as the position wetght ma-
triz, which uses P(b,¢)/P(b) instead of just P(b, ). This
gives the relative frequency of each base in each position,
and may offer advantages in regions of high or low GC
content.

The main results of the current study, while consis-
tent with Fickett’s conclusion that the best methods
combine many different coding measures, offers an al-
ternative point of view. In the experiments below, we
used only one coding measure, the conditional probabil-
ity of the bases in the immediate vicinity of the splice
and start sites, and obtained accuracies that are surpris-
ingly good, given the limited information used. While it
is true that higher accuracies may be obtained by using
information from a larger window around the site [8], the
bulk of the signal recognition ability comes from the lo-
cal information. In addition, non-local coding measures
are already used elsewhere in gene assembly programs
[9, 11, 13], and the benefits of that information are re-
flected in better performance overall on the gene-finding
problem. The results here show that, when 1t comes to
identifying signals in DN A sequences, the majority of the
required information is contained locally in the sequence
pattern itself. This makes good sense biologically, since
the translation and splicing machinery seems to operate
primarily on mRNA that is near the sites.

Another conclusion of this study is that conditional

probabilities are consistently better than independent
positional probabilities, and sometimes strikingly so.
This should prove very useful in gene-finding systems or
other systems that use positional weight matrices. Our
group’s gene-finding systems VEIL [14] and MORGAN
[15] already use conditional probabilities for site detec-
tion. Recently, the Genie system was modified to use
dinucleotide probabilities instead of independent proba-
bilities, and significant improvements in its overall gene-
finding accuracy were reported based on this change
alone [16]. Finally, based on the improvements shown
below from species-specific matrices, one can recommend
that future efforts to characterize splice junctions and
start sites should emphasize the collection of large, high-
quality datasets for each organism of interest.

2 Methods and Results

2.1 Sequence Data

The data for this study were originally collected by
Burset and Guigo [17], who used it to study gene-
finding systems. They collected a large set of genes, and
carefully edited the set so as to remove sequences that
were likely to contain erroneous annotation or to repre-
sent non-standard splicing mechanisms (e.g., alternative
splicing or AT-AC splicing). Database entries were dis-
carded if the protein coding region was ambiguous, if the
sequences included pseudogenes, if alternatively spliced
forms of the gene were listed, or if the gene contained no
introns. This produced 1410 sequences, which were then
further refined by discarding sequences whose protein
coding region did not start with ATG, whose length was
not a multiple of three, whose introns did not start with
the dinucleotide GT and end with AG, or that had pro-
tein coding regions with an in-frame stop codon. (By us-
ing only “standard” GT-AG introns, the statistical meth-
ods for characterizing the splice sites should produce a
clearer picture of the consensus pattern.) Sequences cor-
responding to immunoglobulins and histocompatibility
antigens were discarded, and finally all sequences entered
prior to January 1993 were discarded, leaving only rela-
tively recent entries.

The resulting data set contains 570 complete protein
coding sequences; each comprising one gene with at least
one intron. The sequences contain a total of 2649 ex-
ons and 2079 introns. For the purpose of characterizing
start sites, 562 patterns are available, because 8 of the
sequences contain less than 4 bases prior to the start of
translation. Because every intron has both a donor and
acceptor site, there are 2079 subsequences available to
compute the consensus for these sites.?

2The data set is available by ftp from ftp.cs.jhu.edu in the di-
rectory pub/salzberg/sitedata.



2.2 Conditional Matrix

Computation

Probability

To compute a matrix of conditional probabilities, the
columns of the matrix are defined to be positions on ei-
ther side of the site of interest. For example, the start
site matrix in this study uses positions from -12 through
+6 (12 positions upstream of the start codon through 4
positions downstream, where the start codon itself occu-
pies positions 0-2). Each entry in the matrix contains
the conditional probability of base z in position ¢ given
that base y is in position ¢ — 1 (the previous position),
which 1s computed as:

P(xilyi—1) = P(a; ANyiz1)/ P(yi-1)

A simple dinucleotide frequency count gives the proba-
bility of  and y occurring together in adjacent positions
t—1 and ¢. For the first column only, the matrix contains
the independent probabilities of the four bases, and all
the remaining columns contain conditional probabilities.
Note that the conditional probability matrix is not equiv-
alent to a dinucleotide probability matrix; in a separate
study (data not provided), dinucleotides were found to be
inferior to conditional probabilities at 1dentifying splice
sites. (The dinucleotide matrix contained P(x;Ay;_1) for
each position. These probabilities, rather than the con-
ditionals, were multiplied together to produce a score,
using the algorithm given in Section 2.4.)

Tables 4,6, and 8 are the conditional probability ma-
trices for the start sites, donor sites, and acceptor sites
for the 570 vertebrate sequences. For comparison, Tables
5,7, and 9 show the standard consensus matrices for the
same set of sequence data. In these matrices, each entry
represents the independent probability of a base occur-
ring in that position. Note that the 570 sequences used
to compile these tables contain a significant fraction of
closely homologous sequences. No attempts were made
to remove homologies, and a systematic analysis of how
homology changes the statistics is beyond the scope of
this paper. It is clear from even a cursory examination
of the tables that the when the probability of a base 1s
conditioned on the previous position, it often changes
dramatically. For example, consider Tables 6 and 7 in
position 4+3. In Table 7, adenine is observed to appear
in that position in 71% of the donor sites. However, in
Table 6 the picture is more complicated: if position +2
contains adenine, cytosine, or guanine, then adenine is
still the most likely base at +3, but when position +2
contains thymine, then guanine follows in position 4+3 a
full 63% of the time, while adenine’s probability drops
to 19%. Further examination of the CP matrices reveals
numerous instances of this type of dependency between
adjacent bases.

2.3 Consensus Sequences for Start, Ac-
ceptor, and Donor Sites

To find the consensus sequence from a conventional ma-
trix, one can simply read it off by noting the highest
probability that appears in each column. In a conven-
tional matrix, each column contains just four probabil-
ities, and the highest probability in the column is the
base most likely to appear in that position. However,
the consensus sequence cannot be read directly from a
CP matrix. One can instead compute the most likely
sequence, which 1s not the same as the consensus — the
consensus can be thought of as the “typical” pattern for
a site. For example, if a position contains thymine 40%
of the time and cytosine 38% of the time, the most likely
base is T, but the consensus is better represented as Y
(pyrimidine).

To discover the most likely sequence from one of the
CP matrices, one must use a dynamic program that finds
the most probable path from left to right through the ma-
trix P. The idea is that we must compute, for each posi-
tion, the probability of the most likely sequence ending
in A, C, (G, and T respectively. This gives us a column
of a new matrix M, where each of the n columns of M
contains the probability of the most likely sequence end-
ing in one of the four bases. To extend M by one more
column, we use the CP matrix P to find the probability
of the best path ending in A that had one of (4, C, G, T)
in the previous location. More formally, M can be com-
puted by:

Pb=a,c,g,t) forj=1
My ; = { max  P(bjlz;j_1)(My;-1) forj>1
bw€e(a,c,yg,t)

In this notation, My ; refers to the row of M that corre-
sponds to the base b, and j is the column corresponding
to the j!* position of the pattern.?

The consensus sequences for the vertebrate data set,
aligned with the most likely sequence from the condi-
tional probability matrices shown in Tables 4-9, are:

Start site

CP matrix CAAACAGACACCATGGTG
Indep. matrixC * AC C* GCC A CC ATG G * G
Kozak, 87 (GCC)GCCRCC ATG G
Donor site

CP matrix CAGGTGAGTGGGGGG

Indep matrix A/CAGGTRAGT

Senapathy et al. A/C A GGTRAGT

Acceptor site

CP matrix TTTTCTCTTTGC C AGG
Indep. matrix Y YYTYYYYYY * C AGG
Senapathy etal TY YY Y Y Y Y Y Y * C AG G

In the patterns, “Y” means either C or T (pyrim-
idine) and “R” means A or G (purine). Positions

3A C program to compute M and generate the most likely se-
quence from a CP matrix is available by ftp to ftp.cs.jhu.edu, in
the file pub/salzberg/matrixdp.c.



where no base occurred at least 33% of the time are
marked by *. The sequences shown for the CP matrix
does not have *’s because these are the most likely se-
quences. The consensus patterns from the CP matri-
ces are nearly identical to Kozak’s consensus sequence,
(GCC)GCC(A/G)CCATGAG [1] and to Senapathy et al.’s
[3] reported donor and acceptor sequences. The only dif-
ference is in the (GCC) at position -9 in the start se-
quence, where the new CP matrix indicates ACA. Here,
despite the fact that cytosine has a higher independent
probability than adenine at positions -9, -7, and -5, the
most likely sequence has adenine in those positions when
pairwise dependencies are taken into account.

The similarity between the consensus patterns pro-
duced by CP and independent probability matrices con-
firms that the CP matrices, despite their dramatic dif-
ferences in the details of their entries, capture similar
summary information about the patterns used to create
them. However, as we discuss next, they can produce
substantial improvements when used in signal detection
methods.

2.4 Detecting Signals with CP Matrices

Consensus matrices can be used for signal detection in
the following manner. For any pattern of anonymous
DNA, one must compute a score based on its probability
of being a true instance of a start, donor, or acceptor site.
This score can be compared to the scores of known true
sites to determine if the anonymous pattern is also a true
site. Independent probability matrices have been used in
this manner in a number of well-known gene finding sys-
tems, including GeneParser [11] and GenelID [9], and in
the newer system MORGAN [15]. Very recently, Reese
et al. [16] changed the splice site recognition function in
the Genie gene-finding system from independent prob-
ability matrices to dinucleotide probabilities, and they
report a significant increase in overall accuracy from this
change alone.

The scoring function estimates the probability that
a new sequence 1s a true site, which we can write as
P(T|S); i.e., the probability of a true site T' given a se-
quence S = (81, 82,...,8y). A consensus matrix contains
the probability of a sequence given that it is a true site,
or P(S|T) (this follows from the fact that only true sites
are used to create these matrices). Thus to compute
P(T|S), we use Bayes’ Law:

P(T|S) = P(S|T)P(T)/P(S)

When comparing a set of patterns to detect true sites,
we can treat the underlying prior P(7T') as a constant.
P(S) is normally estimated by multiplying the individ-
ual base probabilities for s1,s2,... s,, and P(S|T) is
the product of the entries in the matrix. Note that this
approach, because it multiplies the individual probabil-
ities of the sequence of bases, implicitly assumes that
these probabilities are independent.

For conditional probability matrices, the scoring func-
tion is similar, with the difference being that the score
P(S|T) in the CP matrix is really a 1-state Markov chain
model, computed by multiplying the conditional proba-
bilities of each successive base, given the previous base
in the sequence. Thus the CP matrix takes into account
the dependencies between adjacent bases in the sequence.
When estimating P(S), we use the 16 prior conditional
probabilities for each base given the four possible bases
in the previous position. We then compute P(S) as

n

P(s1) [[ P(silsi-1)

i=2

The 16 priors can be computed based on the entire data
set, or on each coding sequence separately. Experiments
using both methods (data not shown) revealed that using
the entire data set to compute the priors was superior,
so this method was used for the experiments below.

We compared the two scoring methods, conventional
matrices and CP matrices, as follows. First, all true
sites from the data set were scored using both methods.
Then these scores were sorted to determine a detection
threshold.* For example, if the lowest-scoring true site
is used to set the threshold, then no true sites will be
missed, giving a sensitivity of 100% (equivalent to a false
negative rate of 0%). This threshold is then used for
every other subsequence in the data set, which contains
2.88 million bp, to determine how many false sites will
score above the threshold (the false positive rate).

Table 1 shows the signal detection rates for start sites,
donor sites, and acceptor sites on the complete set of
vertebrate sequences. The left side of the table contains
sensitivity and false positive rates for conditional prob-
ability matrices and the right side shows the same val-
ues for conventional matrices. Sensitivity is defined as
the probability of correctly identifying a true site, and
the false positive rate (FP) is 1 minus the probability
of correctly rejecting a site as false. The table reports
the number of true sites missed (1—Sensitivity) and the
number of false sites that passed the threshold (false pos-
itives). To provide a further comparison, the table also
gives the correlation coefficient (CC) for each threshold,
computed as

(TP+TN)— (FPxFN)

V(TP + FN)* (TN + FP)x (TP + FP)* (TN + FN)

Note that maximizing the CC is not the right way to set
thresholds for problems such as this, where there are far
more negative examples than positive ones. Thus a CC
of 0.51 can be obtained using conditional probabilities
if one is willing to miss 30% of true donor sites, but
if this matrix is used within a gene finding system, the
threshold should probably be set to miss as few true sites
as possible.

4The sorted scores and thresholds are available by ftp in the
same directory as the complete data set, at ftp.cs.jhu.edu in the
directory pub/salzberg/sitedata.



For each line in the table, thresholds were set so that
increasing numbers of true start sites would be missed,
and these same thresholds were then used against the
complete database. For example, in the second line of
Table 1, a threshold was set using the CP matrix that
would correctly identify 545/562 true start sites, miss-
ing only 17. This same threshold would lead to 15,307
other sites being labeled as true sites, which is 0.53%
of the total. Another threshold was set using the con-
ventional matrix so that it too would identify 545 true
start sites. This threshold would then lead to 20,346, or
0.71% of other sites being incorrectly labeled. The data
from Table 1 is shown graphically in Figures 1-2, which
illustrate that the CP matrix method consistently beats
the conventional matrices for any level of sensitivity.

The table and figures show that CP matrices give a
consistent advantage over conventional matrices. For
start sites, CP matrices give a 25-35% reduction in false
positives for a given sensitivity level. For donor sites,
the differences range from 30% to 50%, while for accep-
tor sites, CP matrices provide a benefit ranging from

15% to over 30%.

The results above use a single data set, which gives an
optimistically biased estimate of the benefit of CP ma-
trices. As a more stringent test of these results, the data
were divided into separate training and test sets. 456 se-
quences (80%) were randomly selected for training, and
the remaining 114 (20%) were used for testing. All the
conditional probability matrices were re-constructed us-
ing only the training data, and thresholds were set using
the training data. The same thresholds were then used
for the test data to measure the false negative and false
positive rates. The results are given in Table 2, and
shown graphically in Figures 3-5. Not surprisingly, the
threshold setting for false negatives (true sites missed)
on the training data was sometimes accurate, but some-
times inaccurate at estimating the false negative rate on
the test data, for both types of matrices. However, the
main purpose of this additional experiment is to see if the
difference between CP and conventional matrices holds
when the matrices are used on a separate test set. As
the table shows, the false positive rate is 20-40% lower
for most threshold settings, and the CC is always lower
as well. Although the differences are not as great as in
1, the CP matrices still show a consistent improvement
over independent probability matrices.

Finally, we investigated how these differences change
when one uses a database from a single species. It turns
out that the CP matrices provide an even greater ad-
vantage if the sequences come only from human, rather
than from a wide range of vertebrates. We extracted
a subset of 93 human sequences from the original 570
sequences and repeated the experiments above. Experi-
mental results for this subset, which contains 606,097bp,
439 exons, and 346 introns, are shown in Table 3. There
are two improvements noticeable in the human-specific
table. First, the false positive rate (FP) for all three

types of sites improves substantially when compared to
conventional matrices matrices. The improvement is a
factor of four for 100% sensitivity for start sites, where
the number of false positives fell from 8499 to 2256. At
less sensitive levels, this difference is even greater in some
cases. For donor sites the differences are not as large, but
at some sensitivity levels the number of false positives is
almost cut in half.

Second, a more striking difference can be observed by
comparing the numbers for CP matrices only between
Table 3 and Table 1. This comparison shows that the
false positive rate of CP matrices for human-only data is
much lower than for vertebrate data. For example, con-
sider start site recognition at the 100% sensitivity level.
Here there were 1% false positives in the vertebrate data,
versus 0.37% for the human data. At 90% sensitivity, the
false positive rate fell to 0.26% for vertebrates, while it
fell even further, to 0.08%, for human sequences. Thus
the species-specific improvement in the false positive rate
seems to be around a factor of four. Note that Table
3, like Table 1, shows differences between the methods
when using a single data set. Although the data set is
too small to experiment with a separate test set here,
these differences are likely to decrease on separate test
data, as they did in Table 2.

The most likely sequence patterns from the human-
only CP matrices can be computed using dynamic pro-
gramming, just as in Section 2.3. These sequences, com-
pared to those from the vertebrate data, are:

Start site
HumanC A AACAGACACCATGGTGC
Vert. CAAACAGACACCATGGTGC
Donor site

HuimanC A GGTGAGTGGCAAGGGGG
Vertt. CAGGTGAGTGGGGGGGGGG
Acceptor site
HumanT T T
Vert. T TT

G

TCCCCCCACAGG
TCTCTTTGC CAG G
Note that although the start sequence consensus is iden-
tical, the donor site has three differences and the acceptor

site has five.

2.5 Comparisons

Although comparisons are difficult to make without us-
ing identical data sets, a very rough comparison might
be informative. The splice site detection method of
Solovyev et al. is reported to be the best known method,
and their tests also used human-only data. Because their
method was only used for donor and acceptor sites, and
not for start sites, we will only compare those numbers
here. A description of their algorithm is beyond the
scope of this discussion, but in brief it is a straight-
forward linear discriminant function based on a set of
complex features. The feature include: triplet composi-
tion in an 80-base window around donor sites, a 10-base
consensus matrix, the number of G bases, GG pairs, and



GGG triplets in a 50-base region of the intron, and oc-
tanucleotide frequency measures for a 114-base window
around the site. They use a similar set of features for ac-
ceptor sites. They report an overall accuracy for donor
site prediction of 97%, with C'C’ = 0.63. However, they
do not give a breakdown into false positives and false neg-
atives, and because the number of pseudo-sites is vastly
greater than the number of true sites (97.8% of their
test data was pseudo-sites), it is hard to compare their
numbers to those reported here. One of their figures in-
dicates that they obtained a 3% false positive rate for
96% sensitivity, which for their data would indicate ap-
proximately 900 false positives. For acceptor sites, they
report a 4% false positive rate at 96% sensitivity, which
would yield approximately 3600 false positives (they had
a substantially more pseudo-acceptor sites).

The false positive rates in the Solovyev study only
counted sites already containing a GT or AT as poten-
tial donor or acceptor sites. Table 3 counts all sites when
computing false positive rates, so to make a rough com-
parison, false positive rates in Table 3 should be mul-
tiplied by 16. Thus at a sensitivity of 95%, the table
shows that the CP matrices have a 5.6% false positive
rate for pseudo-donor sites, and 9.9% for pseudo-acceptor
sites. This is not quite as good as the linear discriminant
method, but it is surprisingly close given how much less
information is used. Clearly, though, some non-local in-
formation can be useful: for example, the branch site
occurs some distance upstream of the 3’ acceptor, and
the local matrices do not capture this site. In addition,
the coding region side of any site cannot contain in-frame
stop codons, so the presence of stop codons can be used
to rule out many false positives. Thus if the only goal is
to identify splice sites, a method based on both local and
non-local information should be used, but if a position
weight matrix is being used in the context of a larger
system, then the data presented here suggest that the
matrix should be replaced with a CP matrix.

Although CC values are often used in comparisons,
they are not the best standard to use here. As shown
in the tables above, the highest CC values are obtained
for relatively high false negative rates, because of the
skewed composition of the data. For the same reason,
overall accuracy is not a good indicator of performance
either. For example, in the human sequences, at thresh-
old level that missed 40% of the donor sites, the CC is
0.54 and the overall accuracy is 99.9%. But if the matrix
is being used as part of a gene-finding effort, it might be
too conservative to set the threshold so high. By com-
bining a more generous threshold with other constraints,
such as internal codon or hexamer frequencies and open
reading frame requirements, one should be able to use
the CP matrices to achieve better exon recognition than
is currently being obtained by gene-finding methods that
use independent position weight matrices. (For example,
the MORGAN system [15] uses these CP matrices with
a threshold that misses less than 1% of true sites, and

uses other coding measures to distinguish between true
exons and pseudo-exons with high accuracy.)

3 Discussion

The identification of sequence patterns is essential to un-
derstanding the machinery behind translation and splic-
ing of mRNA. Identification of the most likely base at
each position around a splice site is the first step in char-
acterizing these patterns. The current study uses the
growing amount of sequence data to go one step further
towards characterizing splice sites. The conditional prob-
ability matrices computed in this study show numerous
important dependencies between adjacent bases around
start sites, donor sites, and acceptor sites. Although the
overall consensus pattern changes only slightly with the
use of these new matrices, the ability to detect true sites
accurately improves substantially. As more data accu-
mulates, 1t should be possible to refine these matrices
further and develop even better methods for site recog-
nition.

The results above indicate that the further improve-
ments in splice site recognition can be had by construc-
tion of a species-specific conditional probability matrix.
If there is not enough data available for a species, then
a CP matrix encompassing a larger family of organisms
is still preferable to a matrix of independent probabili-
ties. As the amount of DNA sequence for all organisms
grows, it should become possible to develop accurate ma-
trices tailored to many individual species. Besides pro-
viding better characterizations of the sites, these matri-
ces should also help to improve the performance of gene
finding systems.

There are at least two possible explanations for the
different performance of the human-only sequence pat-
terns and the more general vertebrate sequence patterns.
One is that the patterns are different simply because the
human sequences are closer evolutionarily, and therefore
have not diverged as much as the patterns across the
complete data set. A second, more interesting explana-
tion is that the mechanisms of splicing themselves may
be slightly different in humans; i.e., there may be some
specialized aspects of translational initiation and RNA
splicing that are made evident in the sequences that ap-
pear in the genome. This latter question is an important
issue for further investigation.
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Consensus Matrices

This appendix contains both conditional probability
(CP) matrices and independent probability matrices for
start sites, donor sites, and acceptor sites. All the proba-
bilities are based on the same database of 570 vertebrate
sequences. These matrices are all available electronically
by ftp at the site ftp.cs.jhu.edu. Connect to the direc-
tory pub/salzberg and get the file sitematrices.h. The
C code to compute the most likely sequence from one of
these matrices is available at the same site, in the files
cpmatrix.h and matrixdp.c.



Signal Detection (All Vertebrate Sequences)

True Sites CP Matrix Conventional Matrix

Missed

False Sites False Sites
Labeled True Labeled True

Num % Num % | CC Num % | CC
Start 0 0 28,021 0.97 | 0.14 35,791 1.24 | 0.12
Site 17 2.8 15,307 0.53 | 0.18 20,346 0.71 | 0.16
Detection 31 54 11,599 0.40 | 0.20 18,010 0.62 | 0.16
(562 true 56 10 7,438 0.26 | 0.24 11,282 0.39 | 0.20
sites) 169 30 2,442  0.08 | 0.31 3,666 0.13 | 0.26
281 50 716 0.02 | 0.38 1,346 0.05 | 0.29
Donor 0 0] 133,816 4.6 | 0.12 | 143,480 5.0 | 0.12
Site 3 01 46,051 1.6 | 0.21 81,536 2.8 | 0.16

Detection 29 14| 22437 0.78 | 0.29 | 34,146 1.2 0.23
(2079 true 104 5.0 11,772 041 | 0.37 | 18,471 0.64 | 0.30

sites) 208 10 7,753 0.27 | 0.42 | 12,668 0.44 | 0.34

624 30 2,412 0.08 | 0.51 3,702 0.13 | 0.44
Acceptor 0 0] 165963 5.7 | 0.11 | 213,312 7.4 | 0.09
Site 3 0110469 3.6 |0.14 | 163,228 5.6 | 0.11

Detection 30 14| 36436 1.3 ]0.23| 52,447 1.8 | 0.19
(2079 true 103 5.0 | 21,410 0.74|0.28 | 29,496 1.0 | 0.24
sites) 208 10 14,796 0.561 | 0.32 17,623 0.61 | 0.29
623 30 9,393  0.19 | 0.39 6,517 0.23 | 0.36

Table 1: Sensitivity and false positive rates of start, donor, and acceptor site detection for a range of different threshold
values, using conditional probability (CP) matrices and conventional independent probability matrices.

Training Test Data
CP Matrix Conventional Matrix

FN (%) | FN (%) FP (%) CC |FN (%) FP (%) CC
Start 0 1 1.05 0.13 0 1.30 0.12
Sites 1 1 0.86 0.14 0 1.21 0.12
(114 test 5 6 0.42 0.19 6 0.64 0.16
sites) 10 14 0.27 0.22 12 0.38 0.19
20 27 0.14 0.25 20 0.22 0.23
Donor 0 0 4.74 0.11 0 5.10 0.11
Sites 1 0 0.84 0.26 2 1.28 0.21
(385 test 5 10 0.39 0.34 7 0.63 0.28
sites) 10 16 0.25 0.39 13 0.43 0.31
20 27 0.14 0.43 27 0.22 0.36
Acceptor 0 0 5.59 0.10 0 7.47 0.09
Sites 1 1 1.45 0.20 0 2.15 0.17
(385 test 5 4 0.77 0.27 4 1.06 0.23
sites) 10 9 0.53 0.30 9 0.64 0.28
20 23 0.28 0.34 21 0.35 0.31

Table 2: False negative (FN) rates, false positive (FP) rates, and the correlation coefficient (CC) for site detection on
a separate test set of 114 sequences.



Signal Detection (93 Human Sequences)

True Sites CP Matrix Conventional Matrix
Missed
False Sites False Sites
Labeled True Labeled True
Num % | Num % | CC| Num % CC
Start 0 0 2256 0.37 | 0.20 8499 1.41 | 0.10
Site 2 21 1518 0.25 | 0.23 5714 0.94 | 0.12
Detection 5 5.4 843  0.14 | 0.30 3922  0.65 | 0.14
(93 true 10 11 468 0.08 | 0.36 2221  0.37 | 0.18
human 20 22 293 0.05 | 0.39 1256  0.21 | 0.21
sites) 46 50 37 0.01] 0.53 183  0.03 | 0.31
Donor 0 0 6252 1.03 | 0.23 | 10621 1.76 | 0.18
Site 8 2.3 3440  0.57 | 0.29 4814  0.80 | 0.25

Detection 17 49| 2143 035 | 0.36 | 3656 0.60 | 0.28
(346 true 35 10| 1300 0.22 | 042 | 2319 0.38 ] 0.33

sites) 69 20 644 0.11 | 049 | 1361 0.23 | 0.37

138 40 220 0.04 | 0.54 372 0.06 | 0.46
Acceptor 0 0| 11057 1.83 | 0.17 | 17162 2.84 | 0.14
Site 6 1.7] 6519 1.08]0.22 | 9936 1.64 | 0.18

Detection 17 49| 3738 0.62|0.28 | 6112 1.01 | 0.22
(346 true 35 10| 2626 0.43 | 031 | 3512 0.58 | 0.27
sites) 69 20| 1824 0.30 | 0.32 | 2104 0.35| 0.31
137 40 763 0.13 | 036 | 1006 0.17 | 0.32

Table 3: Sensitivity and false positive rates of start, donor, and acceptor site detection for a set of 93 human DNA
sequences using CP and conventional matrices computed from those sequences.

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

.23 .24 .42 .27 .16 .30 .16 .20 .16 .44 .28 .29 1.0 0.0 0.0 0.0 .38 .11 .37 P(a;|a;_:)
.23 .27 .24 .32 .57 .29 .08 .22 .67 .06 .45 .17 0.0 0.0 0.0 0.0 .14 .19 .27 P(c;|a;_1)
.23 .45 .24 .28 .23 .30 .68 .45 .14 .47 .15 .50 0.0 0.0 0.0 0.0 .40 .59 .27 P(gi|a;_1)
.23 .05 .10 .14 .04 .11 .08 .13 .03 .03 .13 .05 0.0 1.0 0.0 0.0 .08 .11 .08 P(t;|ai_1)
.40 .35 .30 .25 .15 .33 .29 .08 .32 .78 .48 .08 1.0 0.0 0.0 0.0 .32 .18 .38 P(a|c;_1)
.40 .26 .33 .26 .47 .29 .28 .47 .46 .04 .41 .80 0.0 0.0 0.0 0.0 .29 .29 .28 P(ci|ei_)
.40 .09 .11 .20 .10 .07 .21 .05 .13 .17 .10 .05 0.0 0.0 0.0 0.0 .01 .17 .13 P(gi|ci—1)
.40 .30 .26 .29 .28 .31 .21 .40 .10 .01 0.0 .07 0.0 0.0 0.0 0.0 .38 .37 .22 P(t;|ci_1)
A7 .17 .45 .22 .24 .29 .29 .41 .21 .59 .19 .19 1.0 0.0 0.0 .28 .17 .09 .22 P(a|gi_1)
.17 .35 .19 .37 .40 .36 .33 .30 .55 .03 .67 .35 0.0 0.0 0.0 .15 .35 .28 .47 P(ci|gi_1)
.17 .33 .15 .30 .21 .17 .29 .16 .21 .34 .06 .44 0.0 0.0 0.0 .48 .14 .39 .23 P(gi|gi_1)
.17 .15 .21 .11 .16 .17 .09 .14 .03 .03 .07 .01 0.0 0.0 0.0 .09 .34 .21 .07 P(t;|gi_1)
.19 .10 .11 .11 .07 .20 .05 .06 .14 .47 .30 .11 1.0 0.0 0.0 0.0 .04 .03 .13 P(a;|ti_1)
.19 .47 .37 .51 .48 .32 .20 .40 .59 .12 .20 .82 0.0 0.0 0.0 0.0 .44 .17 .46 P(c;|ti_1)
.19 .26 .24 .22 .23 .24 .60 .27 .20 .38 .10 .03 0.0 0.0 1.0 0.0 .30 .69 .25 P(g;|t;_1)
.19 .17 .28 .16 .23 .25 .15 .27 .06 .03 .40 .03 0.0 0.0 0.0 0.0 .22 .12 .16 P(t;|t;_1)

Table 4: Conditional probability matrix for vertebrate start sites. Each column after the first contains the probability
of a base in that position given the base in the previous position, as indicated at the end of each row.

-2 -41 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 O +1 +2 +3 +4 +5 +6

0.23 .25 .33 .22 .16 .29 .20 .25 .22 .66 .27 .15 1.0 0.0 0.0 .28 .24 .11 .26 P(a)
0.40 .32 .28 .35 .48 .31 .21 .33 .56 .05 .50 .58 0.0 0.0 0.0 .16 .29 .24 .40 P(c)
0.17 .25 .17 .25 .18 .16 .46 .21 .17 .27 .12 .22 0.0 0.0 1.0 .48 .20 .45 .21 P(y)
0.19 .19 .21 .18 .19 .24 .14 .21 .06 .02 .11 .05 0.0 1.0 0.0 .09 .26 .21 .12 P(?)

Table 5: Standard probability matrix for vertebrate start sites.



-3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17
.35 .60 .07 0.0 0.0 0.0 .64 .06 .20 .24 .19 .26 .16 .29 .23 .25 .28 .24 .26 .25 .24 Fiaﬂai_l)
.36 .09 .02 0.0 0.0 0.0 .10 .03 .11 .22 .28 .24 .19 .18 .20 .20 .25 .24 .21 .24 .18 F%Cﬂai—l)
.35 .18 .86 1.0 0.0 0.0 .13 .89 .39 .37 .23 .30 .38 .33 .37 .30 .31 .31 .30 .27 .34 f«gﬂai_l)
.35 .14 .06 0.0 0.0 0.0 .13 .03 .30 .17 .29 .20 .27 .19 .20 .25 .16 .21 .23 .24 .23 P(Uh%—l)
.35 .69 .17 0.0 0.0 0.0 .70 .19 .25 .35 .20 .27 .27 .30 .22 .26 .24 .22 .21 .29 .27 P(a;ci_1)
.35 .11 .06 0.0 0.0 0.0 .05 .21 .27 .26 .38 .31 .33 .33 .34 .35 .33 .36 .37 .30 .31 P(QWQ_l)
.35 .07 .61 1.0 0.0 0.0 .07 .41 .09 .13 .06 .11 .11 .41 .10 .11 .10 .09 .10 .11 .09 f«gﬂcb_ﬁ
.35 .13 .16 0.0 0.0 0.0 .18 .20 .39 .26 .37 .31 .29 .27 .33 .28 .33 .33 .32 .31 .34 P(U|Q_1)
.19 .65 .11 0.0 0.0 0.0 .83 .05 .15 .28 .21 .18 .21 .20 .24 .19 .24 .17 .20 .19 .20 f«aimi_l)
.19 .15 .01 0.0 0.0 0.0 .06 .05 .15 .29 .26 .30 .24 .23 .26 .25 .21 .30 .25 .22 .20 f«cﬂgi_l)
.19 .11 .80 1.0 0.0 0.0 .09 .87 .15 .28 .34 .37 .39 .43 .32 .42 .36 .35 .39 .43 .39 f«gﬂgi_l)
.19 .09 .08 0.0 1.0 0.0 .03 .03 .55 .15 .20 .14 .15 .14 .18 .15 .19 .17 .15 .16 .21 })@imi—l)
.11 .16 .02 0.0 0.0 .51 .19 .05 .11 .24 .15 .15 .15 .18 .16 .10 .13 .15 .16 .15 .15 P(aﬂh_l)
.11 .24 .03 0.0 0.0 .03 .08 .11 .12 .19 .30 .28 .21 .18 .25 .24 .25 .22 .26 .21 .23 F%Cﬂh—l)
.11 .31 .86 1.0 0.0 .43 .63 .77 .43 .36 .28 .31 .37 .40 .25 .32 .27 .30 .31 .32 .34 f«gﬂh_l)
.11 .29 .08 0.0 0.0 .03 .10 .06 .33 .20 .27 .25 .26 .24 .34 .35 .35 .33 .26 .32 .29 f“tﬂh_l)
Table 6: Conditional probability matrix for vertebrate donor sites.
-3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17
0.35 .59 .08 0.0 0.0 .51 .71 .06 .15 .27 .19 .21 .20 .24 .22 .20 .22 .19 .20 .22 .21 FTa)
0.35 .13 .02 0.0 0.0 .03 .08 .05 .16 .23 .30 .29 .25 .23 .26 .26 .26 .28 .28 .24 .23 f«c)
0.19 .14 .82 1.0 0.0 .43 .12 .84 .17 .31 .23 .26 .30 .32 .27 .29 .26 .26 .27 .28 .29 f«g)
0.11 .14 .08 0.0 1.0 .03 .09 .05 .52 .20 .27 .24 .24 .21 .25 .25 .26 .26 .24 .26 .26 P(ﬂ
Table 7: Standard probability matrix for vertebrate donor sites.
-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
.09 .18 .22 .10 .13 .14 .14 .11 .09 .18 .58 .06 1.0 0.0 0.0 P(a|a;j_1)
.09 .27 .33 .20 .36 .40 .35 .41 .40 .34 .28 .76 0.0 0.0 0.0 P(ci|aj_1)
.09 .03 .02 .04 .02 .02 .01 .02 0.0 0.0 .04 .01 0.0 1.0 0.0 P(g;|ai_1)
.09 .52 .43 .56 .50 .44 .50 .47 .51 .48 .09 .18 0.0 0.0 0.0 P({;|ai_1)
.34 .09 .09 .09 .10 .12 .13 .09 .08 .10 .36 .04 1.0 0.0 0.0 P(ailci_1)
.34 .32 .32 .32 .37 .41 .38 .42 .51 .48 .31 .68 0.0 0.0 0.0 P(ci|ci_1)
.34 .06 .03 .03 .04 .02 .07 .03 .02 .02 .09 0.0 0.0 0.0 0.0 P(gi|ei—1)
.34 .52 .57 .56 .50 .45 .42 .47 .40 .41 .23 .27 0.0 0.0 0.0 P(t;|ei_1)
.13 .08 .09 .03 .10 .06 .06 .04 .06 .07 .24 .02 1.0 0.0 .25 P(a;|gi—1)
.13 .27 .33 .24 .32 .33 .38 .42 .30 .27 .21 .85 0.0 0.0 .16 P(ci|gi_1)
13 .11 .12 .15 .16 .10 .12 .14 .08 .19 .45 0.0 0.0 0.0 .50 P(gi|gi_1)
.13 .54 .46 .58 .42 .50 .43 .40 .55 .47 .10 .13 0.0 0.0 .09 P(i;|gi—1)
.44 .06 .06 .03 .05 .07 .06 .06 .05 .06 .16 .04 1.0 0.0 0.0 P(a;[ti—1)
.44 .32 .30 .32 .40 .32 .41 .40 .41 .28 .26 .68 0.0 0.0 0.0 P(c;|ti—1)
.44 .18 .18 .15 .14 .20 .17 .12 .09 .08 .31 0.0 0.0 0.0 0.0 P(g;|ti1)
44 .44 .46 .50 .42 .41 .36 .42 .45 .58 .26 .28 0.0 0.0 0.0 P(f;|ti_1)
Table 8: Conditional probability matrix for vertebrate acceptor sites.
-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
0.09 .08 .09 .06 .07 .09 .09 .07 .06 .08 .27 .04 1.0 0.0 .25 FTa)
0.34 .31 .31 .31 .38 .36 .39 .41 .44 .37 .28 .74 0.0 0.0 .16 f«c)
0.13 .12 .11 .10 .10 .11 .11 .08 .05 .05 .22 0.0 0.0 1.0 .bO f«g)
0.44 .49 .49 .b3 .45 .44 .40 .44 .44 .49 .23 .22 0.0 0.0 .09 P(ﬁ

Table 9: Standard probability matrix for vertebrate acceptor sites.
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Figure 1: Comparison of the conditional probability (CP) matrix and independent probability matrix for detection of start
sites. The vertical axis shows the number of sites incorrectly labeled as start sites (false positives) out of 2.8 million sites. The

horizontal axis shows how many true sites were missed out of 562 total.
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Figure 2: Comparison of the conditional probability (CP) matrix and independent probability matrix for detection of donor and
acceptor sites. The horizontal axis, which is shown on a log scale for clarity, shows how many true sites were missed. The CP
method has fewer false positives for every threshold setting, for both the donor and acceptor site matrices.
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Figure 3: Comparison of the conditional probability (CP) matrix and independent probability matrix for detection of start sites
on a separate test set of 114 sequences.
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Figure 4: Comparison of the conditional probability (CP) matrix and independent probability matrix for detection of donor
sites on a separate test set of 114 sequences with 385 donor sites.



10- T T T T

CP matrix <—
Independent matrix -+--

False Positives (%)

0.1 1 1 1 1
0 5 10 15 20 25
True Sites Missed (%)

Figure 5: Comparison of the conditional probability (CP) matrix and independent probability matrix for detection of acceptor
sites on a separate test set of 114 sequences with 385 acceptor sites.



